
On the 6502A brilliant or sloppy design?Jesús AriasMar
h 28, 2011Contents1 Introdu
tion 12 Hardware �aws, trade-o�s, bugs... 22.1 La
k of 3-state address bus . 22.2 Dummy Reads . 22.3 Dummy Writes . 22.4 Dummy Fet
hes . 32.5 In
omplete de
oding logi
. 32.6 Interrupts & Reset . 42.6.1 The B �ag . 42.6.2 The BRK op-
ode ($00) . 52.6.3 Lost BRKs . 62.6.4 No instru
tion between interrupts . 62.7 BCD arithmeti
 . 63 Instru
tion set 73.1 Useless addressing modes . 73.2 Missing useful instru
tions . 74 Busting myths 94.1 6502 vs Z80 speed
omparison . 104.1.1 6502 test
ode . 104.1.2 Z80 test
ode . 134.1.3 Compiled
ode . 154.1.4 Comparing results . 164.2 Interrupt laten
y . 175 RISC vs CISC 185.1 The BN16 pro
essor . 195.1.1 BN16 test
ode . 215.2 Comparison results . 241 Introdu
tionThe 6502 was a very popular CPU during the 8-bit
raze 30 years ago. It is still being used as a
heap
orein the embedded market, mainly in its 16-bit in
arnation: the 65816, but it is not widely known as it wasde
ades ago. It still has many enthusiasts doing proje
ts with it. It has been implemented as a VHDL orVerilog
ore many times. Several TTL CPUs had been designed using the same instru
tion set as the 6502,et
, et
, et
. The 6502 is a very interesting CPU due to its simpli
ity: few registers, few instru
tions, fewtransistors. It is a logi
al introdu
tory example for
omputer design. And it is also interesting due to the1

prominent role it played during the development of the early personal
omputer, with many
lassi
 ma
hinesrunning on it.But, on the other hand, some of these enthusiast seems to have been so fo
used on it that they think itis the Holy Grail of
omputing, while, the 6502 is also well known for its many bugs, limitations, and weirdbehavior. In this do
ument I'm mainly playing the Devil's Advo
ate against the 6502, exposing its not sobrilliant aspe
ts. I don't want to redu
e the merit of their designers. They did a magni�
ent job, but theirbig goal was to design the
heapest possible CPU in the World, not the fastest, nor the
leanest, nor themost robust. What gave the 6502 its pla
e in the
omputing history was its low pri
e. We mustn't forgetthat.This do
ument in
ludes the knowledge I
olle
ted from my own experimentation with a 6502 prototypeI build about one year ago along with that available on Internet resour
es. In some o

asions I'm presentingdiagrams inferred from known fa
ts, but not a

urate in the stri
ter way. There are also some personal viewsthat
an be shared or not, spe
ially those related with the instru
tion set of the pro
essor.The do
ument begins with some hardware related issues of the 6502,
ontinues dis
ussing the limitationsof its instru
tion set, then, a performan
e
omparison between the 6502 and its main
ompetitor, the Z80,is presented, and, �nally the 6502 and a RISC
pu design are
ompared.2 Hardware �aws, trade-o�s, bugs...The 6502 as it was originally released in
luded lots of �aws and bugs [4℄. Many of these problems were
orre
ted in the CMOS version, the 65C02. But the improved version
ame to the market too late andalmost all 6502 systems were designed around the NMOS
hip with all its problems. It is quite sure thatthe designers were aware of some of these problems before the �rst
hip went out of the fa
tory line. Somewere the result of design trade-o�s when redu
ing the hardware
omplexity, while others weren't just takenseriously. None of them was
onsidered of enough importan
e for a design revision, so, all NMOS 6502exhibit them.Here are some examples of odd hardware behavior or just missing expe
ted fun
tionality.2.1 La
k of 3-state address busThe original 6502
ame without the possibility of disabling its address output drivers, and, therefore, itbe
ame a nuisan
e for the designers of systems with any sort of DMA. This feature
an be added externally,using 74LS244 3-state drivers, but any other CPU on the market gives you this possibility for free.The fa
t is that in
luding a 3-state
apability to the address bus requires only a negligible amount ofhardware inside the
hip, and there are many unused pins in the pa
kage, so, I don't see the reason for notin
luding it. In fa
t, a follower
hip, the 6510, in
luded a 3-state address bus, probably due to
ustomerdemands (and
ustomers were Atari and Commodore, not you or me).2.2 Dummy ReadsThe 6502 also la
ks an output to validate the R/W signal: some sort or VMA or MEMRQ pin. As a
onsequen
e all
lo
k
y
les are memory a

esses, either reads or writes, but, there are some
y
les whenthe CPU is doing internal pro
essing and the value on the data bus is irrelevant. Most of these
y
les aredummy reads.Lets
onsider for instan
e the RTS instru
tion whose timing diagram [2℄ is shown in Figure 1. Beforeretrieving the return address from the sta
k the sta
k pointer has to be in
remented. During this
y
lea dummy read is performed. The same happens at the end of the instru
tion when the PC has to bein
remented. The RTS instru
tion does two dummy reads (and one dummy fet
h, dis
ussed later).Dummy reads aren't wasted time. This time is needed for internal pro
essing anyway. Their only impa
tis on memory sharing systems and in the total power
onsumption due to extra memory a
tivity.2.3 Dummy WritesSome instru
tions
an also have dummy writes. This happens with all Read-Modify-Write instru
tions likeINC zp. In these instru
tions the data from memory is read, written to the same address unmodi�ed and,2

$400PC return address $500xx

$FF

$04

$400 $401 $500

$60 $FFxx $04 xx

RTS
instr.

previous
instr.
next

$1F0 $1F1 $1F2

LDA #

$A9 $05

$501
Addr.
bus

bus
Data

PROGRAMSTACK

xx

$100,S $1F0

$1F1

$1F2

SYNC

Read PCL Read PCH

+ other

Fetch

operand

Dummy
Fetch

Dummy
Read

Dummy
Read

(not needed)

processing
(if possible)

Fetch

operand

incr. S incr. S

Fetch Fetch

Op−codeOp−code

incr. PC

$4FF

$60
RTS

$A9

xx $05$501$401

Figure 1: Detailed timing for the RTS instru
tion (inferred from available data).�nally, written to the same address modi�ed [2℄. The �rst write
y
le is, thus, a dummy write. As withdummy reads, dummy writes aren't wasted time, just unne
essary memory bandwidth.2.4 Dummy Fet
hesDummy fet
hes happens when a single byte instru
tion is exe
uted. After reading the op-
ode at PC address,a se
ond read is performed at PC+1. This se
ond read retrieves the �rst byte of the operands for multi-byteinstru
tions, but, for single-byte instru
tions it is unneeded, and therefore, it is wasted time.Thanks to dummy fet
hes all instru
tions have the same �rst
y
le. This
an, surely, help in redu
ing the
omplexity of the CPU sequen
er at the expense of some pro
essing speed penalty. The 6502 was designedto be
heap and hardware simpli
ity was more valuable than speed. This speed penalty is also dis
ussed inse
tion 4.1.4 where it was found to be of little importan
e (about 10% slower).Dummy fet
hes
an explain why after a SYNC
y
le the address on the bus is always in
remented, withhardware interrupts being the only ex
eptions to this rule.2.5 In
omplete de
oding logi
.The 6502 sequen
er diagram is shown in Figure 2. This diagram was obtained from data available from [3℄ andthe transistor-level s
hemati
 from [1℄. It is basi
ally a seven-bit shift register with a �walking one� drivingthe AND-plane of a half PLA, the OR-plane of the PLA being repla
ed with random logi
. PLA is not avery
onvenient name be
ause the array
onne
tions aren't programmable: a
onne
tion is made by pla
ing atransistor in the array during the design of the
hip. The 6502 sequen
er is therefore
ompletely hardwired.The shift register is used for
ounting the instru
tion
y
les in pla
e of a more
onventional
ounter andde
oder. The shift register is not the only input to the PLA, other bits
ome from the instru
tion register(the register where the op-
ode of the
urrent instru
tion is stored). The PLA AND-plane outputs are theBoolean produ
ts of any desired
ombination of inputs, but not all
ombinations
an �t in the PLA. In thisrespe
t the PLA di�ers from an ordinary ROM. The PLA was therefore programmed to de
ode only thedo
umented op-
odes of the 6502 and no more than that. As undo
umented op-
odes were supposed to be�don't
are�
ases in the Boolean equations of the PLA, the size of the PLA was redu
ed to a minimum.3

Q0
Q1
Q2
Q3
Q4
Q5
Q6

SDRES

Q0

Q1

Q2

Q3

Q4

Q5

Q7

Q6

CLR

D0
D1
D2
D3
D4
D5
D6
D7

State

force

Instruction
register

Reset SYNC

counter
(shift register)

output
unused

bus

Data

from

BRK

fetch operand

fetch op−code

Product−term inputs

21−input, 130−output, PLA AND plane

programmable
connections

(OR plane)

Random Logic

Control signals

n

Figure 2: Inferred blo
k diagram of the 6502 sequen
er. (The programmable
onne
tion lo
ations does not
orrespond to the a
tual ones).Unfortunately, this design strategy also led to weird behavior when undo
umented op-
odes are exe
uted.Most of them exe
ute useless operations. Some of them have variable e�e
ts be
ause of bus
ontentions insidethe CPU, and a few of them have the surprisingly e�e
t of stopping the CPU
ompletely. These later op-
odesare, jokingly
alled, the KIL instru
tions.A KIL op-
ode basi
ally don't get the SYNC output a
tive for any of the 7
lo
k
y
les it takes for the�walking one� to get out of the shift register. After this happens the shift register is
ompletely �lled withzeroes and the pro
essor is dead. Only a RESET
an get the 6502 into an operational state again.This �aw
ould be related to pipelining, a novel
on
ept applied to mi
ropro
essors at the time of the6502 design. The idea is to do the op-
ode fet
h of the new instru
tion in parallel with the last exe
ution
y
le of the
urrent instru
tion, if possible. A
onvenient way of arranging this is to a
tually do the op-
odefet
h during the last
y
le of the
urrent instru
tion along with its last pro
essing step. So, the SYNC signal(op-
ode fet
h) is a
tivated from one of the outputs of the sequen
er instead of the state
ounter. If the
urrent op-
ode fails to a
tivate the SYNC signal it be
omes a KIL.All KIL op-
odes have the bit 1 set (for instan
e op-
ode = $02). This is surely related to the fa
t thatone output from the instru
tion register is not
onne
ted to the PLA (bit 1, of
ourse).The KIL op-
odes seems to be
losely related to the Halt and Cat
h Fire, HCF, instru
tion of the 6800CPU. But, as long as I know, these op-
odes were intended as a fa
tory test, so, they were intentional. TheHCF stops exe
uting instru
tions and keeps the address bus
ounting, turning the 6800 CPU into no morethan an expensive binary
ounter.2.6 Interrupts & Reset2.6.1 The B �agOne of the most bizarre things about the 6502 is the behavior of its Break �ag. A �PHP, PLA� sequen
ealways reads it as �1�, but it is pushed as �0� into the sta
k when a hardware interrupts happens. The4

V

N

D

I

Z

C

In
te

rn
al

 b
us

detNMI

IRQ
B

res.

rd_P

6

7

5

4

3

2

1

0

Figure 3: Fun
tional s
hemati
 of the status register of the 6502 CPUs
hemati
 of Figure 3 helps to understand this behavior: First, there is no storage for this �ag. It is justthe validated interrupt line. During normal program exe
ution it is always read as �1� be
ause a �0� willinterrupt the program before the a
tual read. When an interrupt is exe
uted the �ag register is read withthe B �ag as �0� and pushed into the sta
k. Before jumping to the interrupt ve
tor the I �ag is set and theNMI edge dete
tor is reset, so, when the exe
ution
ontinues the B �ag is one again.2.6.2 The BRK op-
ode ($00)The BRK op-
ode
an be fet
hed into the instru
tion register be
ause of four di�erent possible events:1. The program
ontains a BRK instru
tion and it is fet
hed like any other op-
ode.2. The IRQ input goes low and the I �ag is reset.3. A falling edge in the NMI input happens.4. The CPU is reset.The instru
tion register
an be
leared instead of fet
hing the
urrent op-
ode when an interrupt or resethappens, e�e
tively
onverting the fet
hed op-
ode into a BRK (see Figure 2). But, then, the exe
ution ofthe BRK instru
tion di�ers depending on the
ause of the BRK in the following ways:
• A software BRK lets the PC to be in
remented two times before pushing it into the sta
k, pushesthe �ags register (with B as �1�), and, �nally, reads the new PC value from the addresses $FFFE and$FFFF.
• An IRQ interrupt pushes the PC and the �ags register with B as �0�, but it does not in
rement thePC, allowing the interrupted op-
ode to be fet
hed again after RTI. The new PC value is read fromthe addresses $FFFE and $FFFF.
• An NMI interrupt does the same as the IRQ interrupt but the PC is read from addresses $FFFA and$FFFB.
• The Reset is very interesting. The sta
k pointer is de
remented by 3, like if three values were beingpushed into the sta
k, but nothing gets written into the memory. In fa
t, the BRK instru
tion triesto push the PC and the �ags register, but the R/W line is for
ed high and the three write
y
les areturned into dummy reads. It, �nally, reads the new PC value from addresses $FFFC and $FFFD.So, the BRK instru
tion gets a lot of di�erent uses, with the software BRK being the least priority todesigners. Its behavior is modi�ed with a few gates that
an inhibit the normal PC in
rement or memory5

write. The internal buses are pre
harged high, and if nothing pulls their lines low they will be read as allones. To generate the three di�erent addresses for the ve
tors only three pull-down transistors are needed(for bits 0, 1, and 2). A lot of fun
tionality is a
hieved with only a few transistors. Compare this to theburden of the 8080
ase where the external interrupt sour
e has to put an op-
ode into the data bus.2.6.3 Lost BRKsThe BRK instru
tion is like a �xed address subroutine
all. The only noti
eable remark being the fa
t thatit is a
tually a two-byte instru
tion. The se
ond byte is not used by the pro
essor, but it
an be retrievedfrom the program memory by the BRK handler routine and it
an get a user-de�ned meaning. It is temptingto use the BRK as a system
all, but beware: the 6502 has an important bug regarding the BRK instru
tion[4℄. Interrupts are exe
uted by turning the
urrently fet
hed op-
ode into a BRK. But, when the interruptedinstru
tion is also a BRK the PC in
rements like for a software BRK but the B �ag is pushed as �0� like fora hardware interrupt. As a
onsequen
e, the BRK handler is exe
uted for a hardware interrupt, and, whenthe RTI instru
tion is exe
uted, the next instru
tion fet
hed is that after the BRK. The BRK instru
tion istherefore skipped, like if it was removed from the normal program �ow.2.6.4 No instru
tion between interruptsThe IRQ handler routine has to take the ne
essary steps in order to dea
tivate the IRQ line before returningto the interrupted
ode with an RTI instru
tion. If the IRQ line is still low when the RTI is exe
uted anew interrupt will happen just at the end of the RTI exe
ution. Not a single instru
tion of the interruptedprogram is exe
uted in this
ase. This di�ers from the behavior of other pro
essors where one instru
tion ofthe interrupted program gets exe
uted between interrupts, a tri
k often exploited by debuggers to implementa single-step exe
ution. In the 6502
ase other solutions have to be found, like, for example, triggering anIRQ just after the fet
h
y
les of the exe
uted instru
tion by using a
arefully set timer (if your systemin
ludes a 6522 VIA this is possibly the simplest solution).2.7 BCD arithmeti

Accumulator

In
te

rn
al

 d
at

a
bu

s ALU

H
al

f−
ca

rr
y

ca
rr

y

adjust

BCD

Flag
to Zero

from
D flag

enable

Figure 4: Detail of the BCD
orre
tion blo
k and its pla
ement in the 6502 datapath.The 6502 is able do perform arithmeti
 using BCD values. Instead of using a BCD adjusting instru
tionlike many other pro
essors (namely DAA on Intel's or Z80), the mode of operation is sele
ted by the de
imal�ag in the status register. If the D �ag is one the ADC and SBC instru
tions operate in BCD mode. For theADC instru
tion this involves dividing the 8-bit data into two 4-bit BCD digits and to add 6 to the nibbleswhose value ex
eeds 9, a
ondition that requires one
arry output for ea
h 4-bit digit of the ALU. The BCD6

adjust are two simple 4-bit adders that
an add 6, 9 (for SBC) or 0 to ea
h digit depending on their
ontrolinputs. The Figure 4 shows a diagram of the ALU, BCD adjust logi
, a

umulator, and the way they areinter
onne
ted.When operating in de
imal mode the N and V �ags doesn't make sense, but the Z �ag is also invalid.That's odd, be
ause the Z �ag
an have an useful role also for BCD values, but, the real 6502
an have theZ �ag set when the result is $66 in de
imal mode.This �aw is easily explained by looking at the diagram of Figure 4. The Z �ag is
omputed as the 8-bitNOR fun
tion of all the bits of the internal data bus, not the a

umulator inputs. Thus, an a
tive Z �ag istelling us that the output of the ALU is zero but the BCD adjust logi

an have added some non-zero valueto this result. It seems that the Z �ag
omputation is done in the wrong pla
e. But, that pla
e was sele
tedbe
ause there are instru
tions that
an
hange the Z �ag without having the ALU nor the a

umulatorinvolved (for instan
e LDX).So, it looks that the 6502 designers didn't want to have the Z �ag
orre
t. Doing this would have requiredanother 8-input NOR gate pla
ed on the a

umulator inputs and the Z �ag sour
e swit
hed depending if thea

umulator is the destination or not. This doesn't look like mu
h extra hardware, but the designers wentthe easy way: de
laring the Z �ag invalid when in de
imal mode. It seems that they had little regard forthis mode, maybe be
ause it was a last hour marketing de
ision to boost sales by o�ering something more.In my opinion the BCD mode has little or no pra
ti
al use, and, by the way, the developers of Commodoreshould have had the same opinion be
ause they forgot to
lear the D �ag in the IRQ handler routine of theC64 [4℄ :) Modern CPUs no longer have BCD support, further supporting this opinion.3 Instru
tion setThe 6502 got an �spartan� instru
tion set that made things a little di�
ult for programmers. This instru
tionset was in
reased in the 65C02 with mu
h needed instru
tions. As always happens with instru
tion setupgrades, appli
ations usually target the smaller instru
tion set in order to run on all possible CPUs, and, asa
onsequen
e, improvements aren't used in most of the a
tual
ode. This is parti
ularly true for the 6502:Almost all systems were based on the NMOS 6502 and only a negligible amount of
ode was optimized forthe newer CMOS version.Both the oddities of the 6502 instru
tions and their addressing modes are presented in the following text.3.1 Useless addressing modesThe 6502 fans are proud of the many addressing modes it provides to programmers. But, some of themhave little or no pra
ti
al use. The ZP,X and ZP,Y are seldom used be
ause arrays aren't pla
ed on zeropage very often. The zero page area is mu
h valued for program and system variables, and, usually, there isno spa
e left for arrays. Also, these addressing modes are parti
ular
ases of the more general ABS,X andABS,Y modes that are what usually get used.The (IND,X) mode is a
lear
ase of nonsense. It addresses an array of pointers in the zero-page. Afterwriting thousands of assembler-
ode lines I never found the opportunity of using it. In my opinion it is notonly useless, but a
lassi
al example of the CISC weakness: A pie
e of hardware inside the CPU whi
h israrely used. On the other hand the (IND),Y mode is used very often. In many o

asions I missed a similar(IND),X mode. That would have been mu
h more pra
ti
al.3.2 Missing useful instru
tionsThe instru
tion set of the 6502 has few instru
tions (56), with almost all of them being regularly used inthe programs. Due to this some people like to name the 6502 as the ��rst RISC�. The meaning of the termRISC is usually understood to be something more than just a redu
ed set of instru
tions. It implies a largeset of registers, a load-store ar
hite
ture and a deep instru
tion pipeline. None of these
hara
teristi
s arefound in the 6502, but, indeed, its instru
tion set is redu
ed, maybe too mu
h. In many o

asions theprogrammers have to resort to tri
ks, workarounds, or just extra instru
tions to do simple operations thatin other pro
essors are done with single instru
tions. Some examples of the 6502 instru
tion set pe
uliaritiesfollows: 7

No ADD, SUBIn the 6502 all additions and subtra
tions in
lude the
arry, so, before doing a simple addition you must besure the
arry �ag is
leared. This involves another instru
tion (CLC). The same goes for the subtra
tion,but in this
ase the
arry has to be set with SEC before exe
uting SBC. I must re
ognize it is better to haveonly the addition with
arry than having only the addition (this later being a serious �aw for the PIC familyof mi
ro
ontrollers), but, setting the
arry before ADC/SUB is a nuisan
e that makes the
ode longer andslower. The ADD and SUB instru
tions would require the ability to for
e the
arry input to the ALU to zeroor one, respe
tively. But this is already done for
omparisons,
onditional bran
hes and indexed addressingmodes, so, the datapath hardware is already there. Only the instru
tion de
oding is missing.No
omparison with
arryWhile the addition and subtra
tion always in
ludes the
arry, the
omparison instru
tion, CMP, does not.Therefore, when
omparing 16 or 32-bit values, the programmer has to resort to the SBC instru
tion. Butthat instru
tion modi�es the a

umulator. A
omparison with
arry, CPC, would not have this problem.No INC A, DEC AIn the 6502 when the a

umulator has to be in
remented or de
remented the ADC or SBC instru
tions haveto be used together with the burden of setting the
arry �ag properly. This makes the
ode longer, slower,and the
arry �ag value is lost. The newer 65C02 in
ludes these instru
tions at last.No PHX, PHY, PLX, PLYIn the NMOS 6502 these instru
tions were missing. They were added later in the CMOS version. Theyare really useful: Not only they save
ode and time. They also allows you to preserve the value in thea

umulator when saving the X and/or Y registers. As an example
onsider the following: all registers mustbe saved before
alling a subroutine and then restored. The value in the a

umulator has to be preservedfor the
alled routine. We want to do this without modifying any variable in the zero-page or any stati
allo
ated memory:6502
ode : 65C02
ode :pha ; save r e g i s t e r s pha ; save r e g i s t e r stxa phxpha phytya j s r bitbang_outpha ply ; r e s t o r e r e g i s t e r st sx ; r e l oad A

 from sta
k plxinx p lainx r t s ; r e turninxlda $100 , xj s r bitbang_outp la ; r e s t o r e r e g i s t e r stayp lataxp lar t s ; r e turnToo few addressing modes for BITThe BIT instru
tion only have the ZP and ABS addressing modes. That's a pity be
ause it
ould be usefulfor testing the
ontents of memory without losing the value in the a

umulator. With this limitation it is only8

useful for testing �xed memory addresses like I/O registers. Again, in the 65C02 there are more addressingmodes in general and for the BIT instru
tion in parti
ular.No JSR (IND)The instru
tion set in
ludes a JMP (IND) but not a JSR (IND). Therefore, when
alling a ve
torized routinewe must
all a trampoline routine �rst:. . .j s r i n d
 a l l. . .i n d
 a l l : ; Trampoline rout inejmp (ve
 to r)This approa
h results in a longer and slower
ode than doing a JSR (IND). By the way, the JMP (IND)instru
tion is buggy and
are must be taken to ensure your ve
tor does not
ross a page [4℄. This is not abig problem if variables are properly aligned.�Volatile� Z and N �agsAlmost every instru
tion modify the Z and N �ags, with load instru
tions being a notable
ase. This savesinstru
tions for testing data for zero or sign in the
ode, but, on the other hand, you must do your programbifur
ation just after these �ags are valid or almost any other
ode will
hange them. Other CPUs havefewer �ag-
hanging instru
tions and you
an insert
ode between
omparisons and
onditional jumps. Thisfeature also plays a role in the invalid Z �ag in de
imal mode (see subse
tion 2.7)Values
ontrary to what is normally expe
tedThe
arry �ag has to be set before SBC or an additional one is subtra
ted. After SBC the
arry �ag isset if the result is zero or positive. That is: if the minuend is bigger or equal than the subtrahend. Mostother CPUs have the opposite values for their
arry �ag when doing subtra
tions, with the
arry a
ting asa �borrow� bit.The I �ag is the IRQ mask. It means that hardware interrupts are masked (or inhibited) when the I �agis set. Therefore, the CLI instru
tion allows interrupts to happen while SEI disables the interrupts. TheCLI mnemoni
 is found in many other pro
essors with the opposite meaning.4 Busting mythsThere are two basi
 myths about the 6502 that deserve some analysis. The �rst is that, as it uses less
lo
k
y
les per instru
tion, the 6502 is faster than other simmilar CPUs. In order to disprove this I
hoose theZ80 as the CPU to
ompare the 6502 with. The 6502 and the Z80 have more in
ommon than it is usuallythough. Both were designed by people who resigned from their former
ompanies after being fed up withtheir dilbertian bosses. They
ompleted their respe
tives designs on small
ompanies,
ontended with theirformer employers in the market, and won. The 6502 and Z80 wiped the 6800 and 8080 out of the 8-bitmarket. They were very su

essful during that era, but both were unable to evolve into
ompetitive 16 or 32bits designs. The Z80 takes 3
lo
k
y
les to perform a memory read while the 6502 does the same in justone
lo
k
y
le. But what this really means is that a memory
hip that is just fast enough for a 1 MHz 6502is equally good for a 3 MHz Z80, and, therefore, Z80 systems were usually running with faster
lo
ks thanthose based on the 6502. What we have to
ompare is time, measured in se
onds or mi
rose
onds, insteadof
lo
k
y
les.The other myth I want to address is that of the interrupt laten
y. It is usually said that the 6502 has avery short interrupt laten
y, but this doesn't take into a

ount the overhead in the interrupt routine itself.Again, I will
ompare the 6502 interrupt against that of its main
ompetitor, the Z80.
9

4.1 6502 vs Z80 speed
omparisonDuring the eighties the 8-bit personal
omputer market was �lled with lots of in
ompatible
omputer models.Most of them were powered by the Z80 or 6502 CPUs. Only a small fra
tion of models relied on otherpro
essors, like the 6809. The battle was, thus, served. Z80 and 6502 users were eager to
onvin
e ea
h otherabout the error they made by
hoosing the opposite CPU. I was also involved in those arguments at thattime, and my position was on the Z80 side. Now, many years later, I think I got a more balan
ed opinion.I'll try to make an obje
tive
omparison about the performan
e of these two pro
essors.Comparing �apples� and orangesThis is a never ending debate. There are always some pie
es of
ode better suited for any parti
ular CPUar
hite
ture and ben
hmarks tends to be biased. For instan
e, the Z80 will beat any
ontemporary CPUwhen moving data in the memory thanks to its LDIR instru
tion, but the 6502
an be a winner when doingBCD arithmeti
. 6502 fans argue that their CPU uses less
lo
k
y
les per instru
tion than the Z80, but thelater usually ran on faster
lo
ks. Also, the Z80 in
ludes more �useful� instru
tions in its set, meaning thatless instru
tions are required for a parti
ular pro
essing task. So, what we should
ompare? The ben
hmarkmust be neutral in the sense that neither CPU
an take advantage of their spe
i�
 features. But, this also
an be
onsidered unfair be
ause a good programmer would use those features whenever possible to get afaster
ode. It would be a better idea to resort to a real-life appli
ation for the ben
hmark, but, it is not easyto �nd the same appli
ation ported to these very di�erent ar
hite
tures. And what has to be its sour
e
ode?A high level language
an give di�erent results depending on the
ompiler or interpreter used. Therefore,what I'm trying to do �rst is to
ode a parti
ular appli
ation in assembler language for both pro
essors,and I'll try to do my best to redu
e the
ode size and exe
ution time to a minimum in both
ases. Theappli
ation has to be simple, be
ause of the work it would require otherwise, but not too simple or it willnot be a representative
ase. I settled for the following:A Eratosthenes sieve to
ompute prime numbers between 2 and 2048. It will require 256 bytes of data tohold a �
ompressed� sieve and, therefore, single bit, multi-byte addressing is involved. The size of the sieveallows for an e�
ient addressing in the 6502
ase, but it does not matter for the Z80
ode. Both pro
essorswill have to deal with 16-bit arithmeti
, bit manipulation, binary to ASCII
onversion and memory �lling.I/O
an be very system dependent and, while used to test the
orre
tness of the results, will be removed forthe �nal speed test: the dummy
hara
ter printing routine will only
ontribute with its
all and return delayto the total exe
ution time. When the output is printed the following is obtained:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433. .1847 1861 1867 1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 19511973 1979 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039The exe
ution time will be measured by exe
uting the
ode in an emulator and looking at the
y
le
ount.But, what
lo
k frequen
y should we use for the emulated pro
essors? First, we will take a look to the 8-bitma
hine survey from Table 1 whose data was mainly
olle
ted from Wikipedia [5℄. It looks
lear that 6502systems were running at lower
lo
k frequen
ies, most of them at around 1 MHz, while Z80s were
lose to 4MHz. In the following
omparison we will use the average frequen
ies from the table, namely 1.305 MHz forthe 6502 and 3.751 MHz for the Z80.4.1.1 6502 test
odeThe sour
e
ode for the 6502 test follows.
∗=0tmp1 : ∗=∗+1 10

System CPU Clo
k (MHz) System CPU Clo
k (MHz)Apple IIe 6502 1.023 ZX Spe
trum Z80 3.5Commodore 64 6510 1.023 Amstrad CPC Z80 4Commodore PET 6502 1 Spe
travideo 328 Z80 3.6Commodore VIC20 6502 1.023 Grundy New Brain Z80 4Commodore 128 8502 2 Commodore 128 Z80 4Atari 2600 6507 1.19 Sony Hit Bit 75 (MSX) Z80 3.58Atari 800XL 6510 1.79 VTe
h Laser 200 Z80 3.57Ori
 Atmos 6502 1 Jupiter A
e Z80 3.25BBC mi
ro 6502 2 Tatung Einstein Z80 4A
orn Atom 6502 1 DEC Rainbow 100 Z80 4.012Average 1.305 Average 3.751Table 1: 8-bit system
lo
k rate and CPU surveytmp2 : ∗=∗+1number : ∗=∗+2index : ∗=∗+2
∗=$e000d i r exe : ldy #0 ; Mark a l l numbers as primes to beginlda #$ f fl 1 : s t a array , yinybne l 1s ty number+1 ; s t a r t with number=2lda #2s ta numbermbu
 : lda number ;
he
k i f primes ta tmp1lda number+1s ta tmp2l s r tmp2 ; y = number /8ro r tmp1l s r tmp2ro r tmp1l s r tmp2ro r tmp1ldy tmp1lda number ; A = 1<<(number&7)and #7taxlda #1
px #0beq l 3l 2 : a s ldexbne l 2 11

l 3 : and array , y ;
he
k b i tbne l 35 ; not primejmp nxn; number i s prime . p r i n t i tl 35 : lda numbers ta tmp1lda number+1s ta tmp2; tmp1−tmp2 : data to be pr in t edldy #0prn1 : ;−−−−−−−−−−−−− d iv ide tmp1−tmp2 by 10 . Remainder r e s u l t in Aldx #16lda #0dv1 : a s l tmp1r o l tmp2r o l
mp #10b

 dv2sb
 #10in
 tmp1dv2 : dexbne dv1;−−−−−−−−−−−−−
 l
ad
 # '0 'phainylda tmp1ora tmp2bne prn1;−−−−−−−−−−−−−prn2 : p laj s r
outdeybne prn2lda #10j s r
out;−−−−−−−−−−−−−−− Now, mark every mu l t ip l e o f number as not primelda number ; index=numbers ta indexlda number+1s ta index+1bu
2 :
 l
 ; index+=numberlda indexad
 numbers ta indexs ta tmp1lda index+1ad
 number+1s ta index+1s ta tmp2lda #8 ; i f (index>=$800) break
mp index+1 12

b

 nxnl s r tmp2 ; y = index /8ro r tmp1l s r tmp2ro r tmp1l s r tmp2ro r tmp1ldy tmp1lda index ; A = ~(1<<(number&7))and #7taxlda #1
px #0beq l 7l 6 : a s ldexbne l 6l 7 : eor #$ f fand array , y ; mark the b i ts ta array , yjmp bu
2nxn : in
 number ; number++bne l 5in
 number+1l 5 : lda number+1 ; i f (number&0x7 f f)!=0
ont inue
mp #8beq theendjmp mbu
theend : r t s
out : r t s ; dummy
hara
 t e r output rout inearray=$300 ; 256 byte arrayThis
ode was run on an emulator modi�ed form the Marat Fayzullin & Alex Krasivsky
ode. Theemulator keep tra
k of the total number of
y
les, number of instru
tions exe
uted and number of dummyfet
hes.4.1.2 Z80 test
odeThe sour
e
ode for the Z80 test follows.; DE: number; HL: indexorg 0x0ld hl , array ;Mark a l l numbers as primes to beginld de , array+1 13

ld b
 ,255ld a , 0 x f fld (h l) , al d i rld de , 2 ; s t a r t with number=2mbu
 : ld h , dld l , es r l h ; l=number /8r r ls r l hr r ls r l hr r lld b
 , arrayadd hl , b
ld a , e ; A = 1<<(number&7)and 7ld b , ald a , 1j r z , l 2l 1 : s l a adjnz l 1l 2 : and (h l) ;
he
k b i tj r z , nxp;−−−−−−−−−−−−− number i s prime −−−−−−−−−;−−−−− p r i n t i t −−−−−ld h , dld l , e;−−−−−−−−−−−−− d iv ide HL by 10 . Remainder r e s u l t in Ald
 , 0prn1 : xor ald b ,16dv1 : s l a lr l hr l a
p 10j r
 , dv2sub 10in
 ldv2 : djnz dv1add a , 0 x30 ;
onvert to ASCII d i g i tpush a fin

ld a , hor lj r nz , prn1ld b ,
prn2 : pop a f
 a l l
outdjnz prn2 14

ld a , 32 ; spa
e
 a l l
out;−−−−−−−−−−−−−−− Now, mark every mu l t ip l e o f number as not primeld h , dld l , ebu
2 : add hl , de;−−−−−− i f (HL>=$800) breakld a , h
p 0x8j r n
 , nxppush h lld a , ls r l h ; l=index /8r r ls r l hr r ls r l hr r lld b
 , arrayadd hl , b
and 7ld b , ald a , 1j r z , l 4l 3 : s l a adjnz l 3l 4 :
p land (h l)ld (h l) , a ; mark the b i tpop hlj r bu
2;−−−−−−−−−−−− not prime −−−−−−−−−−−nxp : in
 de ; number++ld a , d
p 8jp nz , mbu
 ; i f (number<2048)
ont inueha l t
out : r e tarray :This
ode was run in an emulator modi�ed from the Mar
el de Kogel
ode. It keeps tra
k on the totalnumber of
y
les and instru
tions exe
uted. The repeat instru
tions (LDIR, among others) are re
orded asone instru
tion per ea
h repetition. These instru
tions
an be best
onsidered as single-instru
tion loops,and, by the way, they
an be interrupted.4.1.3 Compiled
odeIn order to
ompare the performan
e of both CPUs running
ompiled
ode the same sieve program was
oded using C. The sour
e listing follows: 15

void
out (uns igned
har) ;void simput
h (u8 d){//
out (d) ;}u8 array [2 5 6 ℄ ;u8 buf [4 ℄ ;main (){ u16 number , index ;u8 t ;array [0 ℄=0 x f f ;f o r (t=1; t ; t++) array [t ℄=0 x f f ;f o r (number=2;number<2048;number++) {i f (array [number>>3℄&(1<<(number&7))) {// p r i n t numberindex=number ;t =0;do {buf [t++℄=(index%10)+ '0 ';index /=10;} whi l e (index) ;do { simput
h (buf[−−t ℄) ;} whi l e (t) ;simput
h (' ') ;f o r (index=number+number ; index <2048; index+=number) {array [index>>3℄&=~(1<<(index &7)) ;}}}} This
ode was
ross-
ompiled using �

65� for the 6502
ase and �sd

 -mz80� for the Z80
ase. We mustbe aware that, when
omparing the exe
ution times, we are a
tualy
omparing the preforman
es of both theCPUs and the
ompilers. The results are dis
used in the following subse
tion.4.1.4 Comparing resultsThe results of the previous tests are summarized in table 2. These results apply only for the
odes presentedhere and
an vary substantially for other appli
ations. Starting with assembler language results: if we
an
onsider these tests as representatives for the average appli
ations we
an
on
lude that the Z80 requiresalmost double the number of
lo
k
y
les than the 6502 to perform the same task, but, when
omparing thenumber of instru
tions the Z80 only requires about 80 % of the number of instru
tions of the 6502. This later
an be though as the Z80 being �more CISC�: the savings
ome mainly from LDIR and 16-bit arithmeti
. Atthe end, the average Z80 is about a 30 % faster than the average 6502 thanks to its more than double
lo
krate.The
ode size also gets redu
ed by about a 30% in the Z80
ase thanks to its more
omplex instru
tions.This
an be an interesting result if memory is a
on
ern.Another interesting result is the per
entage of dummy fet
h
y
les for the 6502. Even with many singlebyte instru
tions in the
ode, the dummy fet
hes are only an 8.24 % of the total
lo
k
y
les. An enhan
ed16

Assembler Compiled C6502 Z80 Z80/6502

65 sd

 Z80/6502Code size (bytes) 202 144 0.71 819 644 0.79Number of
lo
k
y
les 1181744 2282458 1.93 5815906 8220928 1.41Number of instru
tions 389087 304526 0.78 1682544 928211 0.55Number of dummy fet
hes 97368 � � 598220 � �Clo
k Frequen
y (MHz) 1.305 3.571 2.74 1.305 3.571 2.74Exe
ution time (ms) 905 639 0.706 4457 2302 0.516Average
y
les per instru
tion 3.04 7.49 2.46 3.46 8.86 2.56Per
entage of dummy fet
hes 8.24 % � � 10.3% � �Table 2: Summary of test resultssequen
er with no dummy fet
hes will only improve the speed of the pro
essor by a 9 % while, probably,requiring many more transistors. Thus, the gain will not worth the e�ort. A wise design trade-o�.When the
ompiled
odes are
ompared the Z80/sd

ombination is a
lear winner, requiring about halfthe number of instru
tions and exe
ution time than the 6502/

65. That
omes at no surprise be
ause the

65
ode in
ludes lots of subroutine
alls to library helper fun
tions. This is the result of being
ompiling
ode for a CPU that was designed without any regard for high-level languages. In both
ases the exe
utiontime is mu
h longer than the required for the
orresponding assembler language program: about 5 timeslonger for the

65
ase and 3.6 times larger for the sd

ase.The average number of
lo
ks per instru
tion also in
reases for the
ompiled
odes. This is due to theextensive use of the (ind),y addressing mode and jsr/rts instru
tions in the 6502
ase, while, for the Z80, theuse of the registers IX and IY also results in more average
lo
ks per instru
tion.As a
on
lusion: A 1 MHz 6502 has more or less the same pro
essing power as a 2 MHz Z80 whenprogramming the appli
ations dire
tly in assembler language. The performan
e drops more in the 6502
asewhen moving to a
ompiled language due to its inade

uate instru
tion set. During the 8-bit
omputer eramost of the Z80 were running with 3.5 to 4 MHz
lo
ks while many 6502 were only 1 MHz, so, on average,the Z80 systems were noti
eably faster. What saves the 6502 is the fa
t that it in
ludes about one half ofthe transistors of the Z80 and that made it
heaper in a era when CPU
hips were really expensive.4.2 Interrupt laten
yThe 6502 has a reputation of being very fast at servi
ing interrupts, its interrupt laten
y being very short.Some people even
laims it is shorter than that of modern CPUs like ARMs! So, lets
ompare it againstits main
ontender, the Z80. Nobody
laims the Z80 is very fast at servi
ing interrupts, but lets see. Inthe 6502 pro
essor the interrupt is exe
uted as a modi�ed BRK instru
tion. This instru
tion takes 7
lo
k
y
les to exe
ute, and, thus, some people say the interrupt laten
y is 7
lo
k
y
les. Of
ourse, this simplisti
analysis overlooks lots of things. The interrupt laten
y
an be de�ned as the maximum time lapse betweenthe assertion of the IRQ input and the exe
ution of the related servi
e
ode. This in
ludes:1. The time needed for the
urrent instru
tion to
omplete its exe
ution. The instru
tion with themaximum number of
y
les has to be
onsidered for a worst
ase s
enario. In the 6502 this instru
tionis 6
y
les long (after ex
luding the BRK instru
tion that will be skipped due to the famous 6502 bug).But there is still another parti
ular
ase: If the instru
tion interrupted is a
onditional bran
h theinterrupt will be delayed until the next instru
tion. This adds another 3
y
les for the taken bran
h.In the Z80
ase the longest instru
tion takes 23
lo
k
y
les.2. The time needed for jumping to the interrupt servi
e routine. This is 7
y
les for the 6502 and 19
y
les for the Z80 (in interrupt mode 2).3. The time expended saving the used registers. After the interrupt all the CPU registers must retaintheir original values in order to not disturb the interrupted program. The interrupt
all itself usuallyonly saves the PC and �ags. Any other register has to be saved expli
itly. On some CPUs there arealternate register sets available for the interrupt routines that avoid saving registers to RAM. This isthe
ase of the Z80: using the EXX and EX AF,AF' instru
tions there is no need to push anything17

into the sta
k. The 6502 must save the needed registers on the sta
k, and this usually means the A, Xand Y registers, and remember: the NMOS 6502 la
ks the PHX and PHY instru
tions.4. The time expended investigating the
ause of the interrupt and jumping to its parti
ular servi
e
ode.This is needed when an interrupt is shared between various sour
es. This is always the
ase for the6502, even for a single interrupt sour
e, be
ause the interrupt routine has to dis
ern between a hardwareinterrupt and the exe
ution of a BRK instru
tion. On the other hand, the pro
essors with ve
torizedinterrupts
an jump to the proper routine dire
tly. In the Z80
ase this
an be a

omplished by puttingthe CPU into the interrupt mode 2 (ve
torized).Lets
ompare the beginning of the 6502 and Z80 interrupt routines and lets do some
y
le
ounting:6502 Z80
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−; 9
 y
 l e s (
urr . i n s t r .) ; 23
 y
 l e s (
urr . i n s t r .); + 7
 y
 l e s (IRQ) ; +19
 y
 l e s (IRQ, IM=2); sav ing r e g i s t e r s ; sav ing r e g i s t e r spha ; 3
 y
 l e s exx ; 4
 y
 l e stxa ; 2
 y
 l e s ex af , af ' ; 4
 y
 l e spha ; 3
 y
 l e stya ; 2
 y
 l e s ;−−− A
tual ISR
odepha ; 3
 y
 l e s . . .; f i nd i ng the IRQ sour
e . . .b i t IOREG ; 4
 y
 l e s . . .bpl nothard ; 2
 y
 l e s;−−− A
tual ISR
ode.nothard : ;
he
k other sour
e s; among them BRK
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Total l a t en
y : 35
 y
 l e s Total l a t en
y : 50
 y
 l e s26 .8 us � 1.305 MHz 14 .0 us � 3.571 MHzAgain, the real interrupt laten
y for the average Z80 is about half of that of the 6502. So, it doesn'tlooks like the 6502 is so fast when servi
ing interrupts. The 65C02
an use the PHX and PHY instru
tionssaving 4
y
les, but, this doesn't
hange the pi
ture too mu
h.5 RISC vs CISCAnother test is presented in order to
ompare the 6502 pro
essor with a modern RISC pro
essor. First, Ithough about using an 8-bit AVR for this purpose, but I la
ked a tweakable emulator, and the AVR has lotsof instru
tions making the writing of an emulator just too mu
h work. But, I already have the emulator formy own CPU design: the BN16, and it
an be easily adapted for these tests. The BN16 is a 16-bit pro
essorand the
omparison
ould look too mu
h in favor of the RISC. But, as we latter see, the 16-bit ar
hite
tureis more a handi
ap than an advantage for this parti
ular test, so, I went ahead with it. But, let present theBN16 pro
essor �rst.

18

Fetch
Unit

Execution
Unit

M
U

X

NORMAL

INTERR.

MUX

INTERR.

INC

NORMAL

Cin

a b

R1

R2

R3

R4

R5

R6

R7

ALU

+1

R0 − PC

R0 − PC

IR

CZS CZS

Flags

Data Address

Decoder

Control lines

nop

IRQ

ImmgateA

gateB

Mode
logic

Figure 5: Blo
k diagram of the BN16 CPU5.1 The BN16 pro
essorI designed the BN16 pro
essor as a tea
hing exer
ise some years ago. It is an extremely simple CPU witha Von Newman memory ar
hite
ture, a two-stage fet
h-and-exe
ute pipeline and only 16 op-
odes in itsinstru
tion set. Its blo
k diagram is shown in Figure 5. It in
ludes eight 16-bit registers with the R0register a
ting as a program
ounter. Alternative PC and �ag registers are used when exe
uting interruptservi
e routines as there is no formal sta
k for saving the status of the interrupted program. The instru
tionregister, IR, stores the op-
odes read from memory prior to its exe
ution, but, when the memory buses arenot available, the IR register is loaded with NOP op-
odes. This happens when a load (LD) or store (ST)instru
tion is exe
uted, turning these instru
tions into e�e
tive 2-
y
le instru
tions. The rest of the op-
odesoperate with data on the registers and they are exe
uted at a rate of 1 instru
tion per
lo
k
y
le. For theLD and ST instru
tions only the indexed addressing mode is supported: the memory address is stored inone of the 8 registers of the bank.The BN16 CPU has a very short instru
tion set. Its en
oding is shown in �gure 6. Op-
odes are 16-bitlong, but only the 4 most signi�
ative bits determine the instru
tion, the rest being the
ondition
odes andoperands. All instru
tions
an be
onditionally exe
uted depending on the values of the �ags and on the bitsof their
ondition
odes. A 000 value in the
ondition
ode �eld of any instru
tion makes it a NOP. Manyinstru
tions in
lude three operands: two sour
e registers an a destination register. This makes the design ofthe de
oder easy, but limits the number of available registers to 8.The BN16 CPU has very few instru
tions but many of them
an operate on the program
ounter. Thisopens many possibilities to programmers, like
alling subroutines by �rst
opying the PC to other registerand then jumping. The PC
an also be used as an index register for the LD instru
tion, thus, providing animmediate addressing mode. The ADDQ and SUBQ instru
tions are a
onvenient way of in
rementing andde
rementing registers, while the JR instru
tion is also a
onvenient way to jump to other program lo
ation.These instru
tions have immediate operands en
oded in the op-
ode, and, in the JR
ase, the program
ounter is implied as the destination register. This later instru
tion
ompli
ated the de
oder design, but it is19

op Rd Racc n

op Rd Rbcc xxx

op Rdcc xxx Rb

op Rbcc xxx Ra

op Rd Ra Rbcc

JR

ST

LD

3 operands

2 operands

cc offset

Instruction format

op

op Instruction

NC
C
NZ
Z
NS
S

nop

no carry
carry
no zero
zero
positive
negative

T
F

always
000
001
010
011
100
101
110
111

cc Condition codes

ADDQ,SUBQ

Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Ra,n,Rd
Ra,n,Rd
Rb,Rd
Rb,Rd

Ra,Rb,Rd
Ra,Rb,Rd
Ra,Rb,Rd
Rb,Rd
(Rb),Rd
Ra,(Rb)
offset

ADD
SUB
ADC
SBB
ADDQ
SUBQ
NOT
NEG
AND
OR
XOR
ROR
LD
ST
JR
RETI

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

flags

C Z S
C
C
C
C
C

Z
Z
Z
Z
Z

S
S
S
S
S

Z
Z

S
S

−
−
−
−
−

C
−
−
− − −

− −

Z
Z
Z
Z
Z

S
S
S
S
S

− − −Figure 6: BN16 instru
tion set en
odingworth the e�ort. The RETI instru
tion swit
hes ba
k to the normal PC and �ag registers from the interruptroutine.Due to pipelining the instru
tion that follows a jump (any instru
tion with PC as the destination register)is already loaded into the IR register and it will be exe
uted immediately after the jump. The programmerhas to pla
e a NOP after a jump if there is no other useful instru
tion available. This does not apply for theLD (Rx),PC instru
tion, as the NOP is automati
ally loaded into the instru
tion register due to LD.The BN16 has no sta
k, but its fun
tionality
an be implemented by software. One register has to beused as the sta
k pointer. Any register would be good, but, for the sake of software
ompatibility, I
hooseR1 for SP. Also, another register
an be reserved for the PC storage during subroutine
alls. I
hoose R2 forthis role and named it LR.The CPU was designed for a CMOS te
hnology using s
hemati

apture, so, it is detailed to the transistorlevel. It has an stati
 design, in
luding 7678 transistors. If the CPU were designed as a dynami
, NMOS,
hip, the transistor
ount
ould be way lower, with a rough estimate being about 3000 to 4000 transistors.This makes the BN16 similar to the 6502 in terms of hardware
omplexity, and, therefore, justi�es evenmore its
hoi
e for the CISC vs RISC test. I was amazed when I learned about the ARM ar
hite
ture. TheBN16 is basi
ally an s
aled-down version of the ARM, and I designed it without knowing mu
h about thatpro
essor.
20

5.1.1 BN16 test
odeThe sour
e
ode for the BN16 test follows:org 0 ; RESET ve
 to rj r i n i txor p
 , p
 , sp ; I n i t SPorg 2 ; IRQ ve
 to rr e t inopi n i t : ld (p
) , l r ; F i l l s i e v e with onesword arrayld (p
) , r3word 128 ; 2048/16ld (p
) , r4word 65535l 1 : s t r4 , (l r)subq r3 , 1 , r3j r . nz l 1addq l r , 1 , l r; r7 = numberld (p
) , r7 ; s t a r t with number 2word 2mbu
 : ro r r7 , r6 ;
ompute po in t e rro r r6 , r6ro r r6 , r6ro r r6 , r6ld (p
) , l rword 4095and r6 , l r , r6ld (p
) , l rword arrayadd r6 , l r , r6ld (p
) , r4 ;
ompute maskword 15ld (p
) , r3word 1and r4 , r7 , r4j r . z l 3nopl 2 : subq r4 , 1 , r4j r . nz l 2add r3 , r3 , r3l 3 : ld (r6) , r4 ;
he
k b i tand r4 , r3 , r3j r . z nextprimenop 21

; Prime number : p r i n t i t; d iv ide by 10xor r3 , r3 , r3 ; remainderor r7 , r7 , r6ld (p
) , r5 ; d i v i d e rword 10xor r4 , r4 , r4 ; number o f d i g i t sl 35 : ld (p
) , l r ; loop
ounterword 16add r6 , r6 , r6 ; s h i f t l e f tl 4 : ad
 r3 , r3 , r3sub r3 , r5 , r3add .
 r3 , r5 , r3 ; r e s t o r e valueaddq . n
 r6 , 1 , r6 ; update quot i en tl 6 : subq l r , 1 , l rj r . nz l 4add r6 , r6 , r6 ; s h i f t l e f tr o r r6 , r6 ; undo l a s t s h i f tld (p
) , l rword 48 ; ASCII '0 'add l r , r3 , r3subq sp , 1 , sp ; to s ta
ks t r3 , (sp)addq r4 , 1 , r4or r6 , r6 , r6j r . nz l 35xor r3 , r3 , r3l 7 : ld (sp) , r3 ; from sta
kaddq p
 , 2 , l rj r put
h ; p r i n t i taddq sp , 1 , spsubq r4 , 1 , r4j r . nz l 7nopld (p
) , r3word 32 ; spa
eaddq p
 , 2 , l rj r put
h ; p r i n t i tnop; Now, mark mu l t i p l e s as not primes; r6 = indexadd r7 , r7 , r6 ; index=2∗numberbu

 l r : ld (p
) . l r ;
ompare with 2048word 2048sub r6 , l r , l rj r . n
 nextprimenopro r r6 , r5 ;
ompute po in t e r22

ro r r5 , r5ro r r5 , r5ro r r5 , r5ld (p
) , l rword 4095and r5 , l r , r5ld (p
) , l rword arrayadd r5 , l r , r5ld (p
) , r4 ;
ompute maskword 15ld (p
) , r3word 1and r4 , r6 , r4j r . z l 9nopl 8 : subq r4 , 1 , r4j r . nz l 8add r3 , r3 , r3l 9 : ld (r5) , r4 ;
 l e a r b i tnot r3 , r3and r4 , r3 , r3s t r3 , (r5)j r bu

 l radd r7 , r6 , r6 ; add number to indexnextprime :ld (p
) , r6 ;
ompare with maxword 2047sub r7 , r6 , r6j r . nz mbu
addq r7 , 1 , r7 ; next
and idatehang : j r hangnop;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−; r ou t ine to p r i n t R3 as an ASCII
harput
h : or l r , l r , p
 ; re turn (dummy pr i n t)noparray : ; The s i e v e data s t a r t hereThis
ode di�ers from that of the 6502 be
ause of the 16-bit data of the BN16 pro
essor. Being ableto do 16-bit arithmeti
 dire
tly means that one instru
tion is saved for additions or in
rements, but in thewhole listing there are only two
ases when this saving is a
hieved: when adding the number to index andwhen in
rementing number (; next
andidate). Comparisons are also 16-bit long, but, in the 6502
ase, onlythe MSBs are
ompared with the same results, so, there are no savings. On the other hand, when
omputingthe bit mask the 16-bit pro
essor is in a
lear disadvantage be
ause it has to iterate more times: The 8-bitmask requires between 0 to 7 shifts, with 3.5 shifts being the average
ase, while, the 16-bit mask requires 7.5shifts on average. This means that, not only the shift instru
tion, but also the related
ounter de
rement and23

jump have to be exe
uted twi
e the times than for an 8-bit CPU, greatly over
oming the savings from thefaster addition/in
rement. Therefore, we must
on
lude that the Eratosthenes sieve test is biased in favorof the 8-bit CPUs as long as the 16-bit pro
essor is unable to do multibit shifts with single instru
tions.The
ode was run in an emulator (there is not a physi
al implementation of the BN16 yet), and the
y
le
ount was re
orded. Also, the number of for
ed-NOP fet
hes and program NOPs were a

ounted for.The former
ome from LD or ST instru
tions, and they help to
al
ulate the average number of
y
les perinstru
tion. The program NOPs were in
luded in the
ode after jumps be
ause a wrong instru
tion will beexe
uted otherwise.5.2 Comparison results Assembler
ode test6502 BN16 BN16/6502Code size 202 bytes 112 words 1.11Number of instru
tions 389087 424783 1.09Number of
lo
k
y
les 1181744 472083 0.40Number of NOPs � 15616 �Average
y
les per instru
tion 3.04 1.11 0.36Per
entage of NOPs � 3.67% �Table 3: Summary of test resultsThe results of the BN16 test and those of the 6502 are summarized in Table 3. Both
odes have similarsizes when
ompared as 2 bytes per word. The number of instru
tions exe
uted are about a 10% higher forthe RISC CPU. This is due to the longer bit mask
omputation, but also to the fa
t that RISC instru
tionsare simpler and more are needed to perform the same task. For instan
e, lets
onsider a subroutine
all. Inthe 6502
ase it is a single instru
tion, but in the BN16 it is done in three steps:1) addq p
,2,lr ; Save PC+2 (return address) into R22) jr routine ; Jump3) nop ; Exe
uted be
ause of pipeliningBut, even when exe
uting more instru
tions, the BN16 pro
essor requires less than half the number of
lo
k
y
les than the 6502. By looking at this result it isn't a surprise that CISC CPUs be
ame extin
t duringthe nineties: you
an do a lot more with the same number of transistors in a RISC ar
hite
ture. The keyparameter for the high speed of the RISC pro
essor is the low average number of
lo
k
y
les per instru
tion:about 1/3 of the 6502 (and the 6502 was well regarded for its low number of
lo
k
y
les per instru
tion!).The BN16 also exe
utes many NOPs. If these instru
tions are subtra
ted from the total, the averagenumber of
y
les per instru
tion raises to 1.15, that is a 38% of the 6502
ase. Still, a huge improvementwith respe
t to the CISC.Verilog and Spi
e simulations of the BN16 CPU seems to indi
ate that it
an run with a 30 MHz
lo
k ina 350 nm CMOS te
hnology. The worst
ase delay
omes from the
arry propagation in the ALU. It
ouldbe improved with
arry lookahead
ir
uitry, but, again, the BN16 was designed to be simple. Not be
ause itwas intended to be
heap, like the 6502, but be
ause it had to be easy to understand.Referen
es[1℄ 6502 S
hemati
. http://impulzus.s
h.bme.hu/6502/download/6502_A4.ps.[2℄ Do
umentation for the NMOS 65xx/85xx Instru
tion Set. http://nesdev.parodius.
om/6502_
pu.txt.[3℄ How MOS 6502 Illegal Op
odes really work. http://www.pagetable.
om/?p=39.[4℄ MOS Te
hnology 6502 (Wikipedia). http://en.wikipedia.org/wiki/6502.[5℄ Wikipedia. http://en.wikipedia.org. 24

