

Programming	the	65816	Including	the
6502,	65C02,	and	65802

Programming	the	65816	Including	the	6502,	65C02,	and	65802

Copyright	©	1986	by	Brady	Communications	Company,	Inc.

All	rights	reserved

including	the	right	of	reproduction

in	whole	or	in	part	in	any	form

A	Brady	Book

Published	by	Prentice	Hall	Press

A	Division	of	Simon	&	Schuster,	Inc.

Gulf	+	Western	Building

One	Gulf	+	Western	Plaza

New	York,	New	York	10023

PRENTICE	HALL	PRESS	is	a	trademark	of	Simon	&	Schuster,	Inc.

1		2		3		4		5		6		7		8		9		10

Library	of	Congress	Cataloging	in	Publication	Data

Eyes,	David,	1955-

Programming	the	65816	including	the	6502,	65C02,	and	65802.

Includes	index.

1.	65x	series	microprocessors—Programming.

2.	Assembler	language	(Computer	program	language)

3.	Computer	architectures.	I.	Lichty,	Ron.	II.	Title.

QA76.8.S633E95			1985						005.2‘65					85-14892

ISBN	0-89303-789-3

To	Carolyn	and	Althea
—David

To	Marilou,
and	to	Mike	and	Jean

—Ron

Contents
Preface

Acknowledgments

Foreword

Introduction

Part	I	Basics

1	Basic	Assembly	Language	Programming	Concepts

Binary	Numbers	/	Grouping	Bits	into	Bytes	/	Hexadecimal
Representation	of	Binary	/	The	ASCII	Character	Set	/	Boolean
Logic	/	Signed	Numbers	/	Storing	Numbers	in	Decimal	Form	/
Computer	Arithmetic	/	Microprocessor	Programming	/	Writing	in
Assembly	Language	/	Basic	Programming	Concepts

Part	II	Architecture

2	Architecture	of	the	6502

Microprocessor	Architecture	/	The	6502	Registers	/	Addressing
Modes	/	Instructions	/	The	6502	System	Design	/	NMOS	Process	/
Bugs	and	Quirks

3	Architecture	of	the	65C02

The	65C02	Architecture	/	Addressing	Modes	/	Instructions	/
CMOS	Process	/	Bugs	and	Quirks

4	Sixteen-Bit	Architecture:	The	65816	and	the	65802

Power-On	Status:	6502	Emulation	Mode	/	The	Full-Featured	65x
Processor:	The	65816	in	Native	Mode	/	The	65802	Native	Mode	/
Emulation	Mode	/	Switching	Between	6502	Emulation	and	Native
Modes	/	65802/65816	Bugs	and	Quirks

Part	III	Tutorial

5	SEP,	REP,	and	Other	Details

The	Assembler	Used	in	This	Book	/	Address	Notation

6	First	Examples:	Moving	Data

Loading	and	Storing	Registers	/	Moving	Data	Using	the	Stack	/
Moving	Data	Between	Registers	/	Storing	Zero	to	Memory	/	Block

Moves

7	The	Simple	Addressing	Modes

Immediate	Addressing	/	Absolute	Addressing	/	Direct	Page
Addressing	/	Indexing	/	Absolute	Indexed	with	X	and	Absolute
Indexed	with	Y	Addressing	/	Direct	Page	Indexed	with	X	and
Direct	Page	Indexed	with	Y	Addressing	/	Accumulator	Addressing
/	Implied	Addressing	/	Stack	/	Direct	Page	Indirect	Addressing	/
Absolute	Long	Addressing	/	Absolute	Long	Indexed	with	X
Addressing	/	Direct	Page	Indirect	Long	/	Block	Move

8	The	Flow	of	Control

Jump	Instructions	/	Conditional	Branching	/	Unconditional
Branching

9	Built-In	Arithmetic	Functions

Increment	and	Decrement	/	Addition	and	Subtraction:	Unsigned
Arithmetic	/	Comparison	/	Signed	Arithmetic	/	Signed
Comparisons	/	Decimal	Mode

10	Logic	and	Bit	Manipulation	Operations

Logic	Functions	/	Bit	Manipulation	/	Shifts	and	Rotates

11	The	Complex	Addressing	Modes

Relocating	the	Direct	Page	/	Assembler	Addressing	Mode
Assumptions	/	Direct	Page	Indirect	Indexed	with	Y	Addressing	/
Direct	Page	Indexing	Indirect	Addressing	/	Absolute	Indexed
Indirect	Addressing	/	Direct	Page	Indirect	Long	Indexed	with	Y
Addressing	/	Stack	Relative	Addressing	/	Stack	Relative	Indirect
Indexed	Addressing	/	Push	Effective	Instructions

12	The	Basic	Building	Block:	The	Subroutine

The	Jump-to-Subroutine	Instruction	/	The	Retum-from-Subroutine
Instruction	/	JSR	Using	Absolute	Indexed	Indirect	Addressing	/
The	Long	Jump	to	Subroutine	/	Return	from	Subroutine	Long	/
Branch	to	Subroutine	1	Coding	a	Subroutine:	How	and	When	/
Parameter	Passing

13	Interrupts	and	System	Control	Instructions

Interrupts	/	Status	Register	Control	Instructions	/	No	Operation

Instructions

Part	IV	Applications

14	Selected	Code	Samples

Multiplication	/	Division	/	Calling	an	Arbitrary	6502	Routine	/
Testing	Processor	Type	/	Compiler-Generated	65816	Code	for	a
Recursive	Program
The	Sieve	of	Eratosthenes	Benchmark

15	DEBUG16—A	65816	Programming	Tool

Declarations	/	LIST	/	FLIST	/	FRMOPRND	/	POB	/	STEP	/
PUTHEX	/	CLRLN	/	UPDATE	/	PRINTLN	/	TRACE	/	EBRKIN	/
CHKSPCL	/	DUMPREGS	/	PUTREG8	/	Tables

16	Design	and	Debugging

Debugging	Checklist	/	Generic	Bugs:	They	Can	Happen
Anywhere	/	Top-Down	Design	and	Structured	Programming	/
Documentation

Part	V	Reference

17	The	Addressing	Mode

18	The	Instruction	Sets

19	Instruction	Lists

Appendices

A	65x	Signal	Description

6502	Signals	/	65C02	Signals/65802	Signals	/	65816	Signals

B	65x	Series	Support	Chips

The	6551	Serial	Chip

C	The	Rockwell	65C02

D	Instruction	Groups

Group	I	Instructions	/	Group	II	Instructions

E	W65C816	Data	Sheet

F	The	ASCII	Character	Set

Limits	of	Liability	and	Disclaimer	of	Warranty
The	authors	and	publisher	of	 this	book	have	used	their	best	efforts	 in	preparing	this

book	and	 the	programs	contained	 in	 it.	These	efforts	 include	 the	development,	 research,
and	testing	of	the	theories	and	programs	to	determine	their	effectiveness.	The	authors	and
publisher	 make	 no	 warranty	 of	 any	 kind,	 expressed	 or	 implied,	 with	 regard	 to	 these
programs	or	the	documentation	contained	in	this	book.	The	authors	and	publisher	shall	not
be	 liable	 in	 any	 event	 for	 incidental	 or	 consequential	 damages	 in	 connection	 with,	 or
arising	out	of,	the	furnishing,	performance,	or	use	of	these	programs.

Registered	Trademarks
Apple	 and	 ProDOS	 are	 trademarks	 of	Apple	Computer,	 Inc.	 PIE	 is	 a	 trademark	 of

SOFTWEST.

Preface
It	 is	with	great	excitement	 that	we	present	 this	book,	which	not	only	 introduces	 the

65816	and	the	65802	in	complete	detail	for	the	first	time,	but	also	encompasses	the	6502
and	65C02	in	what	is	meant	to	provide	a	complete	reference	guide	to	the	65x	family.

As	6502	enthusiasts,	we	believe	the	two	new	16-bit	microprocessors—the	65802	and
the	65816—represent	a	great	leap	forward.	We	think	they	hold	the	potential	in	days	ahead
for	advances	in	systems	and	software	even	greater	than	those	realized	by	the	6502	in	the
early	 days	 of	 the	microcomputer	 revolution.	Because	 of	 their	 unique	 compatibility	with
the	 6502	 and	 65C02,	 they	 bridge	 the	 past	 with	 the	 future	 in	 a	 way	 that	 no	 other
microprocessor	has	done.

While	 this	 collaboration	 represents	 our	 first	 work	 of	 reference	 proportions	 in	 the
computer	 science	 field,	both	of	us	have	written	extensively	 in	 this	 field	 and	others,	 and
both	 of	 us	 develop	 software	 professionally.	 It	 was	 our	 unalloyed	 enthusiasm	 for	 the
subject	that	led	us	to	this	undertaking.	We	hope	the	thrill	we	experienced	when	we	ran	our
first	 65802	 programs	 on	 beta	 copies	 of	 the	 processor	 plugged	 into	 our	 Apples	 will	 be
yours	to	experience,	too.

Both	of	us	learned	to	program	primarily	through	books	and	hands-on	experimentation
with	personal	computers	rather	than	through	formal	training.	Because	of	this,	we	share	a
high	regard	for	the	value	of	books	in	the	learning	process	and	have	formed	strong	opinions
about	 what	 is	 useful	 and	 what	 is	 not	 in	 learning	 how	 to	 use	 and	 program	 a	 new
microprocessor.	We	hope	what	worked	for	us	will	work	for	you.

Ron	Lichty David	Eyes
San	Francisco,	California Lowell,	Massachusetts

Acknowledgments
Many	people	have	made	contributions,	directly	and	indirectly,	to	the	development	of

this	book.	To	begin	with,	we	want	to	thank	the	designer	of	the	65816,	65802,	and	65C02,
Bill	Mensch:	first,	for	inviting	us	to	be	part	of	his	vision;	second,	for	sharing	so	much	of
his	time	to	educate	us	in	the	details	of	the	65816	design	during	the	two	years	in	which	it
passed	 from	first	 logic	drawings	 to	 functional	 silicon;	and	 finally,	 for	providing	us	with
copies	 of	 consecutive	 beta	 versions	 of	 65802	 and	 65816	 processors	 for	 us	 to	 test	 our
routines	and	programs	and	to	use.

It	 was	 Smokie	 Clenney	 who	 first	 got	 David	 to	 consider	 writing	 a	 computer	 book.
Mike	Violano	wisely	suggested	he	seek	a	coauthor	about	the	time	Ron	realized	he	wanted
to	write	this	book	and	learned	David	had	already	started	one.

Chris	Williams,	our	editor,	was	among	the	first	to	understand	the	significance	of	the
65816.	He	 further	 contributed	 to	 this	 book	by	 encouraging	us	 to	deal	with	not	 only	 the
65802	and	65816	but	 the	entire	65x	family.	We	have	appreciated	his	unflagging	support
throughout	this	effort.

Tom	Crosley,	Larry	Hittel,	Bill	Judd,	Bill	Mensch,	and	Mike	Westerfield	all	reviewed
the	 entire	 manuscript	 for	 this	 work	 in	 a	 matter	 of	 weeks,	 providing	 many	 valuable
suggestions	for	which	we	are	grateful.	Any	errors	remaining	in	this	book	were	most	likely
introduced	after	they	painstakingly	proofed	it.	Their	comments	guided	us	as	we	sought	to
hone	our	facts	and	our	presentation.

Tom	 Crosley,	 who	 at	 Softwest	 is	 Ron’s	 employer,	 is	 also	 his	 mentor,	 and	 most
important,	 his	 friend.	 He	 deserves	 special	 thanks	 both	 for	 his	 patience	 when	 Ron’s
attention	wandered	for	days	and	weeks	at	a	time	back	to	the	65816	and	for	his	guidance
and	advice,	for	which	we	are	both	thankful.

Mike	Westerfield	deserves	 to	be	commended	 for	creating	 the	 first	65x	assembler	 to
work	with	 the	65802	 and	65816,	ORCA/M.	We	certainly	 could	not	 have	developed	 the
example	programs	and	routines	in	this	book	in	such	a	short	time	without	it.

During	 David’s	 early	 involvement	 with	 the	 65816	 project	 he	 worked	 for	 Bill
Overholt.	Bill	provided	much	needed	support	and	encouragement	when	there	were	those
who	said	the	chip	would	never	happen.	Bob	Norby,	recently	of	GTE	Microcircuits,	was	a
valuable	 resource	 and	 promoter	 of	 our	 book	 project.	 Mike	Weinstock	 deserves	 special
thanks	 for	 lending	David	 an	 emergency	 printer	 during	 three	 of	 our	most	 active	writing
months.	Larry	Hittel,	who	made	one	of	the	first	of	his	Com	Log	Apple16	cards	available,
thereby	gave	us	a	complete	65816	test	system.	Hank	Harrison	provided	David	with	much
hospitality	during	frequent	visits	to	California	during	the	creation	of	the	book.	Bill	Judd,
currently	 of	 Apple	 computer,	 encouraged	 David	 through	 his	 friendship	 and	 eager
anticipation	of	the	finished	book.	Gus	Andrade,	also	of	Apple	Computer,	shared	the	results
of	his	exhaustive	analysis	of	the	65816	with	us,	pointing	out	some	anomalies	we	had	been
unaware	of.	Thanks	also	to	Bob	Sander-Cederlof	and	Roger	Wagner	for	providing	us	with
versions	of	the	S-C	assembler	and	Glen	Bredon’s	Merlin	assembler.

Final	 thanks	must	go	to	our	families—Marilou	and	Carolyn,	and	our	children,	Mike
and	Jean,	and	Althea.	We	appreciate	their	love	and	support	and	patience	throughout.

This	 book	 was	 written	 on	 Apple	 //	 computers	 with	 Hayden	 Software’s	 PIE	Writer
word	processing	system	and	The	Speller	spell-checker,	Byte	Works’	ORCA/M	assembler,
Epson	MX-80	and	C.Itoh	dot	matrix	printers,	and,	at	David’s	end,	the	Sider	hard	disk.	All
performed	marvelously.

Foreword
It	was	 in	 July	 1972,	 approximately	 one	 year	 after	 joining	Motorola	 Semiconductor

Products	Division,	Phoenix,	Arizona,	that	I	was	first	introduced	to	microprocessor	design.
Previously,	I	had	worked	on	analog	computers	before	graduating	from	Temple	University
in	Philadelphia.	While	at	 the	University	of	Arizona	I	worked	on	computer	simulation	of
plasmas,	 simulating	 plasma	 reactions	 to	 radio	 frequency	 energy	 in	 search	 of	 a
breakthrough	 enabling	 a	 nuclear	 fusion	 energy	 generation	 system	 (without	 radioactive
waste)	to	become	a	reality.	I	graduated	from	the	University	of	Arizona	with	a	bachelor’s
degree	in	electrical	engineering,	majoring	in	digital	semiconductor	design	with	a	minor	in
computer	engineering.

Then	 in	 July	 1972,	 I	 was	 faced	 with	 a	 major	 challenge.	 Rod	 Orgill	 and	 I	 were
assigned	the	task	that	six	engineers	(two	teams	before	us)	had	failed,	which	was	to	deliver
a	 custom	 microprocessor	 to	 Olivetti	 of	 Italy.	 This	 was	 a	 very	 capable	 PMOS	 8-bit
microprocessor,	 which	 became	 a	 basis	 for	 the	 design	 approach	 of	 the	 Motorola	 8-bit
NMOS	6800.	Rod	(who	now	works	for	HP	in	Colorado)	and	I	were	successful;	we	were
allowed	to	stay	in	design	and	become	part	of	the	6800	design	team.	As	you	may	be	aware,
the	6800	led	to	the	68000.	As	you	may	or	may	not	be	aware,	it	also	led	to	the	6502.

In	August	of	1974,	a	 few	of	us	 left	Motorola	and	ended	up	at	MOS	Technology	 in
Valley	Forge,	Pennsylvania.	In	September	1975	in	the	St.	Francis	Hotel	in	San	Francisco,
we	introduced	the	NMOS	6502	with	a	purchase	price	of	$25.	Because	of	the	price,	Steve
Wozniak	and	others	could	become	 familiar	with	 this	wonderful	 technology.	At	$375.00,
(the	price	of	the	Intel	8080	and	Motorola	6800),	Steve	and	others	would	have	bought	a	TV
instead;	with	 the	6502,	we	are	 talking	about	a	computer	chip	 selling	 for	 the	price	of	an
engineering	textbook.	And	so	the	personal	computer	technology	was	born.

In	May	1978,	I	founded	the	Western	Design	Center,	Inc.,	in	Mesa,	Arizona.	Our	goal
is	 to	 create	 the	 most	 affordable,	 highest	 performance,	 easiest	 to	 use,	 lowest	 power
technology	 the	world	has	 seen.	To	 this	 end	we	created	 the	65C02	 in	1982	by	using	 the
low-power	CMOS	process	(the	same	technology	that	lets	a	wristwatch	run	for	a	year	off	of
a	single	battery).	It	is	a	direct	replacement	for	the	NMOS	6502.	The	65C02	is	destined	to
become	the	most	used	core	microprocessor	for	a	vast	base	of	custom	controller	chips	used
in	 telephones,	 heart	 pacers,	 and	more.	 The	Apple	 //c	was	 introduced	 in	 1984	 using	 the
65C02,	and	the	Apple	//e	now	uses	it	as	well.

As	Apple	was	introducing	the	Apple	//c	to	the	world,	I	was	introducing	to	Apple	the
16-bit	version	of	 the	65C02	known	as	 the	65816.	The	65816	will	ultimately	 replace	 the
65C02	(as	the	65C02	becomes	used	predominantly	in	one-chip	microcomputers)	and	will
become	the	midrange	computer	chip.	Features	have	been	selected	that	allow	for	complete
emulation	of	the	6502	and	65C02	using	the	E	(emulation)	bit.	(Incidentally,	it	was	David
Eyes	 who	 first	 suggested	 the	 E	 bit.)	 This	 saves	 a	 lot	 of	 software	 from	 premature
obsolescence.

Other	 features	 were	 picked	 for	 high-level	 languages,	 cache	memory,	 and	 recursive
and	 reentrant	 code,	 just	 like	 the	 “big	 systems.”	 There	 will	 be	 other	 generations.	 The
65832,	for	example,	will	have	32-bit	floating	point	operations,	in	addition	to	8-	and	16-bit

operations.	It	will	plug	into	a	65816	socket	and,	of	course,	will	be	fully	compatible	with
the	65C02	and	65816.

As	 the	 technology	 improves	 over	 the	 next	 10	 years	 and	 the	 density	 of	 integration
increases,	we	expect	to	have	full-size	personal	computers	on	one	chip	with	only	memory
off	chip.	The	memory	cycle	time	for	cache	operation	should	approach	100	MHz,	the	speed
of	 multimillion	 dollar	 mainframes.	 The	 power	 of	 the	 65C02,	 in	 the	 same	 time	 frame,
should	drop	to	under	1	micro	amp	(the	same	as	a	watch	chip)	running	off	a	watch	crystal.
Because	 the	 technology	 is	 low-power	CMOS,	 low-cost	packages	are	available,	and	heat
generated	is	very	low;	therefore,	low-cost	environments	can	be	built.	The	cost	of	the	basic
microprocessor	 chip	will	 be	under	$5.00.	And	 so,	 this	 same	 technology	 that	will	 power
human	 beings	 in	 heart	 pacers	 will	 also	 power	 telephones,	 communication	 networks,
personal	computers,	and	desk-top	work	stations.	 It	 is	my	belief	 that	 this	 technology	will
fuel	world	peace.

This	 book,	 as	 I	 see	 it,	 is	 and	 will	 become	 the	 vehicle	 that	 WDC	 will	 use	 to
communicate	not	only	to	the	layman,	but	also	to	the	engineer.	Within	this	edition	many	of
the	details	of	the	operation	exist.	I	hope	the	success	of	this	edition	will	provide	the	basis
for	future	editions	which	will	include	new	details	about	the	chip	and	system	usage	gained
from	industry	experience,	as	well	as	information	about	new	versions	of	the	processors.

The	 development	 of	 these	 processors	 is	 not	 the	 work	 of	 one	 man:	 many	 have
contributed	directly	 and	 indirectly.	 I	would	 like	 to	 thank	 a	 few	of	 the	 people	who	have
helped	me	through	the	years:	Rod	Orgill,	E.	Ray	Hirt	(vice-president	of	WDC),	and	Chuck
Peddle	 who	 have	 given	 me	 many	 good	 ideas	 over	 the	 years;	 Lorenz	 Hittel	 who	 has
suggested	many	 features	 used	 on	 the	 65C02	 and	 65816;	Desmond	 Sheahan,	 Ph.D.	 and
Fran	Krch	who,	while	at	GTE	Microcircuits,	were	instrumental	in	having	the	65C02	and
65816	 second	 sourced	 by	 GTE—a	 key	 to	 the	 early	 success	 of	 these	 programs;	 Apple
computer	engineers	who	suggested	features	for	the	65816;	Mike	Westerfield	who	created
the	ORCA/M	macro	assembler;	David	Eyes	 and	Ron	Lichty	who	not	only	have	written
this	book,	which	promises	to	be	a	classic,	but	also	helped	in	the	debug	process	by	running
some	 of	 the	 first	 software	 exploring	 various	modes	 of	 operation;	Will	 Troxell	who	 has
developed	 a	 high-performance	board	 for	 the	Apple	 //	 and	 a	 high-performance	operating
system	exploiting	the	potential	of	the	65816;	my	sister,	Kathryn,	Secretary	of	WDC,	and
WDC’s	layout	design	manager	who	laid	out	the	entire	65816;	and	the	entire	staff	at	WDC.

A	special	thanks	to	my	wife,	Dolores	(Treasurer	of	WDC),	who	has	given	me	much
love,	support,	encouragement,	laid	out	chips,	taught	layout	designers,	and	given	me	four,
happy,	healthy,	beautiful	children.

William	D.	Mensch,	Jr.
Mesa,	Arizona

June	1985

Introduction
For	years,	the	6502	stood	alone	as	the	original	and	sole	member	of	the	65x	series—or

6500	series,	as	the	family	was	originally	to	be	called.	First	shipped	in	1975,	the	6502	was,
at	 its	 height,	 the	 most	 popular	 eight-bit	 microprocessor	 on	 the	 market,	 with	 tens	 of
millions	 sold.	 It	 is	 found	 in	 such	 personal	 computers	 as	 those	made	 by	 Acorn,	 Apple,
Atari,	Commodore,	and	Ohio	Scientific—to	name	some	of	 the	 leading	manufacturers	of
past	and	present—as	well	as	in	video	games	and	dedicated	control	applications.	Currently
the	 6502	 is	 manufactured	 by	 its	 original	 developer,	 MOS	 Technology,	 and	 also	 by
Rockwell	International.

The	 65C02,	 first	 introduced	 in	 1983,	 was	 intended	 as	 a	 replacement	 for	 the	 6502.
Using	 the	 CMOS	 fabrication	 process	 which	 became	 popular	 for	 microprocessor
manufacturing	 in	 the	 early	 eighties,	 it	 strove	 for	 (and	 for	 most	 practical	 purposes
achieved)	 complete	 compatibility	with	 the	6502,	 and	 sought	 to	differentiate	 itself	 in	 the
market	 primarily	 by	 virtue	 of	 its	 CMOS	 fabrication.	 Nonetheless,	 it	 included	 several
significant	 enhancements	 to	 the	 6502	 instruction	 set	 and	 fixed	 some	 of	 the	 known
problems	 in	 the	6502	design.	These	minor	extensions,	 it	 turned	out,	were	 intimations	of
the	65802	and	65816	to	come.

The	65C02	was	the	design	effort	of	William	D.	Mensch,	Jr.,	who	had	been,	at	MOS
Technology,	the	lead	designer	on	the	original	6502	development	project.	Mensch	left	MOS
Technology	 to	 found	his	own	company,	The	Western	Design	Center,	where	he	designed
the	65C02.	In	addition	to	being	available	from	the	Western	Design	Center,	 the	65C02	is
also	 manufactured	 by	 GTE	Microcircuits,	 NCR,	 Rockwell	 International,	 and	 Hyundai.
The	first	notable	adoption	of	the	65C02	was	by	Apple	Computer	for	their	portable	Apple
//c	 computer,	 in	which	 the	 low	power	 consumption	and	 low	heat	generation	 that	 results
from	the	CMOS	process	provides	significant	advantage	over	the	6502.

Almost	 immediately	 after	 completing	 the	 65C02,	Mensch	 and	The	Western	Design
Center	began	work	on	the	65816	and	65802	processors,	sixteen-bit	versions	of	the	original
6502	design.	In	addition	to	the	strengths	they	inherit	from	the	6502	and	the	set	of	powerful
new	 extensions	 they	 implement,	 the	 65802	 and	 65816	 are	 unique	 among	 modern
microprocessors	 in	 that	 they	 faithfully	 execute	 the	 object	 code	 of	 their	 eight-bit
predecessors,	the	6502	and	65C02.

Although	 they	 are	 two	 distinct	 products,	 the	 65802	 and	 65816	 are	 really	 just	 two
versions	 of	 the	 same	 design,	 which	 is	 fully	 realized	 in	 the	 65816,	 with	 its	 sixteen-
megabyte	 address	 space.	The	65802,	on	 the	other	hand,	provides	 compatibility	with	 the
6502	not	only	on	a	software	level	but,	incredibly,	on	a	hardware	level,	too:	it	can	replace	a
6502	or	65C02	in	an	existing	system	and	emulate	the	processor	it	replaces	faithfully,	even
as	 it	 provides	 a	 broad	 range	 of	 new	 features	 like	 sixteen-bit	 registers;	 but	 all	 that
compatibility	leaves	it	confined	to	the	earlier	processors’	64K	address	space.

The	 hardware	 compatibility	 of	 the	 65802	 makes	 the	 65816	 architecture	 readily
accessible	 to	 the	 thousands	of	users	of	 existing	personal	 computers.	 It	will	 undoubtedly
provide	many	users	with	their	first	exposure	to	the	65816.

How	to	Use	this	Book

The	uniqueness	of	 the	65802’s	and	65816’s	compatibility	with	 the	6502	and	65C02
cried	out	for	a	unique	approach	to	an	assembly	language	book	about	them:	an	introduction
not	just	to	one	of	these	microprocessors,	but	to	the	entire	family	of	them.

How	you	 approach	 this	 book	will	 depend	most	 of	 all	 on	who	you	 are.	 If	 you	have
little	 experience	with	assembly	 language,	you	 should	probably	begin	with	Chapter	One,
Basic	Programming	Concepts,	and	read	sequentially.	You	will	find	that	it	introduces	you
to	the	concepts	essential	to	understanding	everything	that	follows.	It	should	also	provide	a
useful	and	convenient	review	for	more	experienced	readers.

If	you	understand	assembly	language,	but	have	little	or	no	experience	with	65x	family
processors,	 you	 should	 begin	 with	 Part	 Two,	Architecture.	 Each	 of	 the	 three	 chapters
introduces	the	architecture	of	one	of	the	three	generations	of	65x	processors.	Because	the
65802	executes	the	same	instruction	set	as	the	65816	(as	limited	by	the	65802’s	memory
space	restrictions),	these	two	share	a	single	chapter.	Each	chapter	builds	on	the	last,	so	you
should	 read	 them	 in	 order:	 Since	 the	 65816	 is	 a	 superset	 of	 all	 of	 the	 other	 processors,
each	 chapter	 describes	 a	 larger	 subset	 of	 the	 complete	 65816	design.	 Furthermore,	 they
illustrate	 the	 register	 set	and	other	basics	on	which	 the	 tutorial	 section	which	 follows	 is
based.

If	you	know	and	have	worked	with	the	6502	before,	you	may	want	to	skip	or	lightly
skim	the	6502	architecture	chapter	and	go	right	on	to	the	65C02	chapter.	If	you	know	the
65C02,	you	can	go	right	on	to	the	65816/65802	chapter.

Part	Three,	Tutorial,	is	a	teaching	section,	with	code	examples	sprinkled	throughout.
It	 is	 devoted	 to	 a	 step-by-step	 survey	 of	 all	 256	 different	 instructions,	 grouped	 into	 six
categories	 (moving	 data,	 flow	 of	 control,	 arithmetic,	 logic	 and	 bit	 manipulation,
subroutines,	 and	 system	 control	 and	 interrupts),	 and	 all	 25	 different	 addressing	modes,
divided	into	two	classes	(simple	and	complex).

Those	 of	 you	 who	 either	 have	 no	 experience	 with	 assembly	 language	 or	 have	 no
experience	with	the	65x	family	will	find	it	especially	helpful.	Even	if	you’re	familiar	with
the	65x	family,	however,	you	may	want	to	selectively	read	from	this	section.

Having	built	up	to	a	concept	of	the	65816	by	examining	its	predecessor	designs,	the
tutorial	 section	 views	 the	 entire	 series	 from	 this	 vantage—that	 of	 the	 full	 65816
architecture.	Of	course,	the	65816	is	a	superset	of	all	the	other	members	of	the	65x	family,
so	 a	 complete	 discussion	 of	 the	 65816	 is	 by	 definition	 a	 discussion	 of	 all	 the	 other
processors	as	well.

Almost	all	of	the	examples	in	this	section	and	the	next	are	intended	to	be	executed	on
a	system	with	either	a	65802	or	65816	processor,	and	more	likely	than	not	include	65816
instructions,	although	there	are	some	examples	which	are	intentionally	restricted	to	either
the	6502	or	65C02	instruction	set	for	purposes	of	comparison.

As	 the	 65816	 is	 explored,	 however,	 care	 is	 taken	 to	 distinguish	 features,	 such	 as
instructions	or	addressing	modes,	by	the	processors	that	they	are	common	to.	In	this	way,
this	book	provides	 the	only	reference	needed	for	 the	programmer	faced	with	developing
software	for	more	than	one	of	the	different	processors	in	the	series.

The	 highlighting	 and	 contrasting	 of	 the	 differences	 between	 the	 processors	 in	 the

series	should	also	be	helpful	for	the	programmer	already	familiar	with	one	processor	who
wants	to	learn	another—both	the	65816	programmer	who	needs	to	restrict	his	knowledge
when	programming	for	the	6502,	as	well	as	the	6502	programmer	who	wishes	to	learn	the
65816.

If	 your	 interest	 is	 in	writing	 applications	 for	 the	 65x	processors,	 you	will	 find	Part
Four,	Applications,	 of	 particular	 interest	 and	 use.	 From	 the	 selected	 code	 examples	 in
Chapter	14	to	the	debugging	tool	in	Chapter	15	to	the	debugging	checklist	in	Chapter	16,
this	section	should	provide	helpful,	down-to-earth	examples	and	how-to.

But	even	if	your	interest	in	the	65x	family	is	strictly	academic,	you	should	study	the
examples	in	Chapter	14:	The	code	for	the	sieve	of	Eratosthenes,	for	example,	provides	you
the	 means	 of	 comparing	 the	 65816/65802	 with	 other	 processors,	 in	 design,	 size,	 and
speed;	multiply	and	divide	routines	for	all	three	generations	of	65x	processors	demonstrate
what	can	be	involved	in	conversion	between	them;	there’s	a	comparison	between	machine
code	 created	 by	 a	 hypothetical	 compiler	 and	 assembly	 code	 written	 by	 a	 hypothetical
programmer;	and	there	are	routines	which	deal	with	the	likelihood	that	many	readers	will
write	65802	programs	to	be	run	under	6502-based	and	65C02-based	operating	systems.

Finally,	 Part	 Five,	 Reference,	 is	 designed	 so	 you	 can	 turn	 to	 it	 over	 and	 over	 for
information	and	detail	on	how	the	various	instructions	and	addressing	modes	work,	their
syntax,	 and	 their	 opcodes.	 You’ll	 find	 fully	 illustrated	 addressing	 modes	 arranged
alphabetically	 in	 Chapter	 17;	 the	 instructions	 arranged	 alphabetically,	 with	 descriptions
and	tables	of	opcodes	and	syntax,	in	Chapter	18;	and	the	instructions	listed	four	ways—
alphabetically,	functionally,	numerically,	and	mapped	in	a	matrix—in	Chapter	19.

If	 you’re	 a	whiz	 at	 assembly	 language	 or	 already	 know	 one	 of	 the	 65x	 processors
intimately,	 this	 section	 may	 be	 all	 you	 need	 to	 learn	 and	 use	 the	 entire	 65x	 family
(although	we	recommend	looking	over	the	architecture	and	applications	sections	for	ideas
and	review;	you	may	also	want	 to	use	the	Debugl6	program	in	Chapter	15	as	an	aid	for
developing	code).

If	you	need	specialized	information—hardware	descriptions,	data	sheets,	compatible
I/O	parts,	cycle	descriptions,	instruction	group	breakdowns,	deviant	family	members,	and
an	ASCII	chart	(with	high-bit	both	set	and	reset)—you’ll	find	it	in	the	appendix.

Programming	the	65816	Including	the
6502,	65C02,	and	65802

Part	I

Basics

1

Basic	Assembly	Language	Programming
Concepts

This	chapter	reviews	some	of	the	key	concepts	that	must	be	mastered	prior	to	learning
to	 program	 a	 computer	 in	 assembly	 language.	 These	 concepts	 include	 the	 use	 of	 the
binary	and	hexadecimal	number	systems;	boolean	 logic;	how	memory	 is	addressed	as
bytes	 of	 data;	 how	 characters	 are	 represented	 as	ASCII	 codes;	 binary-coded	 decimal
(BCD)	 number	 systems,	 and	 more.	 The	 meaning	 of	 these	 terms	 is	 explained	 in	 this
chapter.	 Also	 discussed	 is	 the	 use	 of	 an	 assembler,	 which	 is	 a	 program	 used	 to	 write
machine-language	 programs,	 and	 programming	 techniques	 like	 selection,	 loops,	 and
subroutines.

Since	the	primary	purpose	of	this	book	is	to	introduce	you	to	programming	the	65816
and	the	other	members	of	the	65x	family,	this	single	chapter	can	only	be	a	survey	of	this
information,	rather	than	a	complete	guide.

Binary	Numbers
In	its	normal,	everyday	work,	most	of	the	world	uses	the	decimal,	or	base	ten,	number

system,	and	everyone	takes	for	granted	that	this	system	is	the	“natural”	(or	even	the	only)
way	 to	 express	 the	 concept	 of	 numbers.	 Each	 place	 in	 a	 decimal	 number	 stands	 for	 a
power	of	ten:	ten	to	the	0	power	is	1,	ten	to	the	1st	power	is	ten,	ten	to	the	2nd	power	is
100,	and	so	on.	Thus,	starting	from	a	whole	number’s	right-most	digit	and	working	your
way	left,	the	first	digit	is	multiplied	by	the	zero	power	of	ten,	the	second	by	the	first	power
of	ten,	and	so	on.	The	right-most	digits	are	called	the	low-order	or	least	significant	digits
in	 a	positional	 notation	 system	 such	 as	 this,	 because	 they	 contribute	 least	 to	 the	 total
magnitude	 of	 the	 number;	 conversely,	 the	 leftmost	 digits	 are	 called	 the	 high-order	 or
most	 significant	 digits,	 because	 they	 add	 the	most	 weight	 to	 the	 value	 of	 the	 number.
Such	a	system	is	called	a	positional	notation	system	because	the	position	of	a	digit	within
a	string	of	numbers	determines	its	value.

Presumably,	it	was	convenient	and	natural	for	early	humans	to	count	in	multiples	of
ten	 because	 they	 had	 ten	 fingers	 to	 count	with.	But	 it	 is	 rather	 inconvenient	 for	 digital
computers	 to	 count	 in	 decimal;	 they	 have	 the	 equivalent	 of	 only	 one	 finger,	 since	 the
representation	 of	 numbers	 in	 a	 computer	 is	 simply	 the	 reflection	 of	 electrical	 charges,
which	are	either	on	or	off	in	a	given	circuit.	The	all	or	nothing	nature	of	digital	circuitry
lends	itself	to	the	use	of	the	binary,	or	base	two,	system	of	numbers,	with	one	represented
by	 “on”	 and	 zero	 represented	by	 “off.”	A	one	or	 a	 zero	 in	 binary	 arithmetic	 is	 called	 a
binary	digit,	or	a	bit	for	short.

Like	 base	 ten	 digits,	 base	 two	 digits	 can	 be	 strung	 together	 to	 represent	 numbers
larger	 than	 a	 single	 digit	 can	 represent,	 using	 the	 same	 technique	 of	 positional	 notation

described	for	base	ten	numbers	above.	In	this	case,	each	binary	digit	 in	such	a	base	two
number	represents	a	power	of	two,	with	a	whole	number’s	right-most	bit	representing	two
to	the	zero	power	(ones),	the	next	bit	representing	two	to	the	first	power	(twos),	the	next
representing	two	to	the	second	power	(fours),	and	so	on	(Figure	1.1).

Grouping	Bits	into	Bytes
As	explained,	if	the	value	of	a	binary	digit,	or	bit,	is	a	one,	it	is	stored	in	a	computer’s

memory	by	 switching	 to	 an	 “on”	or	 charged	 state,	 in	which	case	 the	bit	 is	described	as
being	set;	if	the	value	of	a	given	bit	is	a	zero,	it	is	marked	in	memory	by	switching	to	an
“off”	state,	and	the	bit	is	said	to	be	reset.

While	 memory	 may	 be	 filled	 with	 thousands	 or	 even	 millions	 of	 bits,	 a
microprocessor	must	be	able	to	deal	with	them	in	a	workable	size.

Figure	1.1.	Binary	Representation.

The	 smallest	memory	 location	 that	 can	be	 individually	 referenced,	or	addressed,	 is
usually,	 and	 always	 in	 the	 case	 of	 the	 65x	 processors,	 a	 group	 of	 eight	 bits.	 This	 basic
eight-bit	unit	of	memory	is	known	as	a	byte.	Different	types	of	processors	can	operate	on
different	numbers	of	bits	at	any	given	time,	with	most	microprocessors	handling	one,	two,
or	four	bytes	of	memory	in	a	single	operation.	The	6502	and	65C02	processors	can	handle
only	eight	bits	at	a	time.	The	65816	and	65802	can	process	either	eight	or	sixteen	bits	at	a
time.

Memory	is	organized	as	adjacent,	non-overlapping	bytes,	each	of	which	has	its	own
specific	 address.	 An	 address	 is	 the	 unique,	 sequential	 identifying	 number	 used	 to
reference	 the	 byte	 at	 a	 particular	 location.	 Addresses	 start	 at	 zero	 and	 continue	 in
ascending	numeric	order	up	to	the	highest	addressable	location.

As	stated,	 the	65802	and	65816	can	optionally	manipulate	two	adjacent	bytes	at	 the
same	time;	a	sixteen-bit	data	item	stored	in	two	contiguous	bytes	is	called	a	double	byte
in	this	book.	A	more	common	but	misleading	usage	is	to	describe	a	sixteen-bit	value	as	a
word;	 the	 term	word	 is	more	 properly	 used	 to	 describe	 the	 number	 of	 bits	 a	 processor
fetches	 in	 a	 single	 operation,	 which	 may	 be	 eight,	 sixteen,	 thirty-two,	 or	 some	 other
number	of	bits	depending	on	the	type	of	processor.

It	 turns	out	 that	bytes—multiples	of	eight	bits—are	conveniently	sized	storage	units
for	 programming	microprocessors.	 For	 example,	 a	 single	 byte	 can	 readily	 store	 enough
information	 to	uniquely	 represent	all	of	 the	characters	 in	 the	normal	computer	character
set.	An	eight-bit	binary	value	can	be	easily	converted	to	 two	hexadecimal	(base	sixteen)
digits;	 this	 fact	 provides	 a	 useful	 intermediate	 notation	 between	 the	 binary	 and	decimal
number	systems.	A	double	byte	can	represent	the	entire	range	of	memory	addressable	by
the	6502,	65C02,	and	65802,	and	one	complete	bank—64K	bytes—on	the	65816.	Once
you’ve	adjusted	to	it,	you’ll	find	that	there	is	a	consistent	logic	behind	the	organization	of
a	computer’s	memory	into	eight-bit	bytes.

Since	the	byte	is	one	of	the	standard	units	of	a	computer	system,	a	good	question	to
ask	at	this	point	would	be	just	how	large	a	decimal	number	can	you	store	in	eight	bits?	The
answer	is	255.	The	largest	binary	number	you	can	store	 in	a	given	number	of	bits	 is	 the
number	represented	by	that	many	one-bits.	In	the	case	of	the	byte,	this	is	11111111,	or	255
decimal	 (or	 28	 —	 1).	 Larger	 numbers	 are	 formed	 by	 storing	 longer	 bit-strings	 in
consecutive	bytes.

The	size	of	a	computer’s	memory	is	typically	expressed	in	bytes,	which	makes	sense
because	the	byte	is	the	smallest	addressable	unit.	And	since	a	byte	is	required	to	store	the
representation	 of	 a	 single	 alphanumeric	 character,	 you	 can	 get	 an	 easy	 visualization	 of
about	how	much	storage	64K	of	memory	 is	by	 thinking	of	 that	many	characters.	The	K
stands	 for	 one	 thousand	 (from	 the	 Greek	 kilo,	 meaning	 thousand,	 as	 in	 kilogram	 or
kilometer);	however,	since	powers	of	two	are	always	much	more	relevant	when	discussing
computer	 memories,	 the	 symbol	 K	 in	 this	 context	 actually	 stands	 for	 1024	 bytes,	 the
nearest	 power-of-two	 approximation	 of	 1000,	 so	 64K	 is	 65,536	 bytes,	 128K	 is	 131,072
bytes,	and	so	on.

Within	 a	 given	 byte	 (or	 double	 byte)	 it	 is	 often	 necessary	 to	 refer	 to	 specific	 bits
within	the	word.	Bits	are	referred	to	by	number.	The	low-order,	or	right-most	bit,	is	called
bit	zero;	 this	corresponds	to	 the	one’s	place.	The	next-higher-order	bit	 is	bit	one,	and	so
on.	The	high-order	bit	of	a	byte	 is	 therefore	bit	seven;	of	a	double	byte,	bit	 fifteen.	The
convention	of	calling	the	low-order	bit	the	“right-most”	is	consistent	with	the	convention
used	 in	decimal	positional	notation;	normal	decimal	numbers	are	read	from	left	 to	right,
from	high-order	to	low-order.	Figure	1.2	 illustrates	 the	bit	numbers	for	bytes	and	double
bytes,	as	well	as	the	relative	weights	of	each	bit	position.

Figure	1.2.	Bit	Numbers.

Hexadecimal	Representation	of	Binary

While	 binary	 is	 a	 convenient	 number	 system	 for	 computers	 to	 use,	 it	 is	 somewhat
difficult	 to	 translate	 a	 series	 of	 ones	 and	 zeroes	 into	 a	 number	 that	 is	meaningful.	Any
number	 that	 can	 be	 represented	 by	 eight	 binary	 bits	 can	 also	 be	 represented	 by	 two
hexadecimal	 (or	hex	 for	 short)	 digits.	Hexadecimal	 numbers	 are	 base	 sixteen	numbers.
Since	base	two	uses	the	digits	zero	through	one,	and	base	ten	the	digits	zero	through	nine,
clearly	base	sixteen	must	use	digits	standing	for	the	numbers	zero	through	fifteen.	Table
1.1	is	a	chart	of	 the	sixteen	possible	four-bit	numbers,	with	 their	respective	decimal	and
hexadecimal	representations.

Table	1.1.	Decimal	and	Hex	Numbers.

Because	 the	 positional	 notation	 convention	 reserves	 only	 a	 single	 place	 for	 each
multiplier	of	the	power	of	that	base,	the	numbers	ten	through	fifteen	must	be	represented
by	a	single	base-sixteen	digit.	Rather	than	create	entirely	new	symbols	for	digits,	the	first
six	letters	of	the	alphabet	were	chosen	to	represent	the	numbers	ten	through	fifteen.	Each
of	 the	sixteen	hex	digits	corresponds	 to	one	of	 the	possible	combinations	of	 four	binary
digits.

Binary	numbers	larger	than	1111	are	converted	to	hexadecimal	by	first	separating	the
bits	into	groups	of	four,	starting	from	the	rightmost	digit	and	moving	left.	Each	group	of
four	bits	is	converted	into	its	corresponding	hex	equivalent.	It	is	generally	easier	to	work
with	 a	 hexadecimal	 number	 like	 F93B	 than	 its	 binary	 counterpart	 1111100100111011.
Hexadecimal	 numbers	 are	 often	 used	 by	machine	 language	 programming	 tools	 such	 as
assemblers,	monitors,	 and	 debuggers	 to	 represent	memory	 addresses	 and	 their	 contents.
The	value	of	hexadecimal	numbers	 is	 the	ease	with	which	 they	can	be	converted	 to	and
from	their	binary	equivalents	once	the	table	has	been	memorized.

While	a	hexadecimal	3	and	a	decimal	3	stand	for	the	same	number,	a	hexadecimal	23
represents	two	decimal	sixteen’s	plus	3,	or	35	decimal.	To	distinguish	a	multiple-digit	hex
number	from	a	decimal	one,	either	the	word	hexadecimal	should	precede	or	follow	it,	or	a
‘$’	should	prefix	it,	as	in	$23	for	decimal	35,	or	$FF	to	represent	255.	A	number	without
any	indication	of	base	is	presumed	to	be	decimal.	An	alternative	notation	for	hexadecimal
numbers	is	to	use	the	letter	H	as	a	suffix	to	the	number	(for	example,	FFH);	however,	the

dollar-sign	prefix	is	generally	used	by	assemblers	for	the	65x	processors.

The	ASCII	Character	Set
Characters—letters,	numbers,	and	punctuation—are	stored	in	the	computer	as	number

values,	and	translated	to	and	from	readable	form	on	input	or	output	by	hardware	such	as
keyboards,	printers,	and	CRTs.	There	are	26	English-language	lower-case	letters,	another
26	upper-case	ones,	and	a	score	or	so	of	special	characters,	plus	the	ten	numeric	digits,	any
of	which	might	be	typed	from	a	keyboard	or	displayed	on	a	screen	or	printer,	as	well	as
stored	or	manipulated	internally.	Further,	additional	codes	may	be	needed	to	tell	a	terminal
or	 printer	 to	 perform	 a	 given	 function,	 such	 as	 cursor	 or	 print	 head	 positioning.	 These
control	 codes	 include	 carriage	 return,	 which	 returns	 the	 cursor	 or	 print	 head	 to	 the
beginning	of	 a	 line;	 line	feed,	which	moves	 the	 cursor	 or	 print	 head	 down	 a	 line;	bell,
which	 rings	 a	 bell;	 and	 back	 space,	 which	 moves	 the	 cursor	 or	 print	 head	 back	 one
character.

The	American	 Standard	Code	 for	 Information	 Interchange,	 abbreviated	ASCII
and	pronounced	AS	key,	was	designed	to	provide	a	common	representation	of	characters
for	all	computers.	An	ASCII	code	is	stored	in	the	low-order	seven	bits	of	a	byte;	the	most
significant	bit	is	conventionally	a	zero,	although	a	system	can	be	designed	either	to	expect
it	to	be	set	or	to	ignore	it.	Seven	bits	allow	the	ASCII	set	to	provide	128	different	character
codes,	 one	 for	 each	 English	 letter	 and	 number,	 most	 punctuation	 marks,	 the	 most
commonly	used	mathematical	symbols,	and	32	control	codes.

The	 use	 of	 different	 bit	 values,	 or	 numbers,	 to	 store	 character	 codes,	 is	 entirely
analogous	to	the	“decoder	ring”	type	of	cipher:	the	letter	‘A’	is	one,	‘B’	is	two,	and	so	on;
but	 in	 the	 case	 of	 the	 ASCII	 character	 set,	 the	 numbers	 assigned	 to	 the	 letters	 of	 the
alphabet	are	different,	and	there	are	different	codes	for	upper-	and	lower-case	letters.

There	 is	 an	ASCII	 chart	 in	Appendix	F	of	 this	 book.	Notice	 that	 since	 the	decimal
digits	0	 through	9	are	 represented	by	$30	 to	$39,	 they	can	be	easily	 converted	between
their	binary	representations	and	their	actual	values	by	the	addition	or	subtraction	of	$30.
The	 letters	 are	 arranged	 in	 alphabetical	 order,	 the	 capital	 letters	 from	 A	 through	 Z
represented	by	$41	through	$5A	and	the	lower-case	letters	from	a	through	z	represented	by
$61	 through	 $7A.	 This	 allows	 letters	 to	 be	 placed	 in	 alphabetical	 order	 by	 numerically
sorting	their	ASCII	values,	and	characters	to	be	converted	between	upper-	and	lower-case
by	the	addition	or	subtraction	of	$20.	Finally,	notice	that	the	control	characters	from	Ctrl-
@	 and	 Ctrl-A	 through	 Ctrl-Z	 and	 on	 to	 Ctrl-	 run	 from	 zero	 to	 $1F	 and	 allow	 easy
conversion	 between	 the	 control	 characters	 and	 the	 equivalent	 printing	 characters	 by	 the
addition	or	subtraction	of	$40.

To	 print	 a	 character	 on	 an	 output	 device,	 you	must	 send	 it	 the	ASCII	 value	 of	 the
character:	 to	print	an	 ‘A’,	you	must	send	$41	 to	 the	screen,	not	$A,	which	 is	 the	ASCII
code	for	a	line	feed;	and	to	print	an	‘8’,	you	must	send	$38,	not	$8,	which	is	the	ASCII
code	for	a	back	space.	The	space	character,	too,	has	an	ASCII	code:	$20.

Since	 any	memory	 value—take	 $41	 for	 example—could	 represent	 either	 an	ASCII
code	 (for	 ‘A’	 in	 this	 case)	 or	 a	 number	 (decimal	 65),	 the	 interpretation	 of	 the	 data	 is
defined	by	the	code	of	the	program	itself	and	how	it	treats	each	piece	of	data	it	uses	within

a	given	context.

Boolean	Logic
Logical	operations	 interpret	 the	binary	on/off	 states	of	a	computer’s	memory	as	 the

values	true	and	false	 rather	 than	 the	numbers	one	and	zero.	Since	 the	computer	handles
data	one	or	two	bytes	at	a	time,	each	logical	operation	actually	manipulates	a	set	of	bits,
each	with	its	own	position.

Logical	operations	manipulate	binary	“flags”.	There	are	three	logical	operations	that
are	supported	by	65x	microprocessor	instructions,	each	combining	two	operands	to	yield	a
logical	(true	or	false)	result:	and,	or,	and	exclusive	or.

Logical	And
The	AND	 operator	 yields	 true	 only	 if	 both	 of	 the	 operands	 are	 themselves	 true;

otherwise,	 it	 yields	 false.	Remember,	 true	 is	 equivalent	 to	 one,	 and	 false	 equivalent	 to
zero.	Within	the	65x	processors,	two	strings	of	eight,	or	in	the	case	of	the	65816,	eight	or
sixteen,	individual	logical	values	may	be	ANDed,	generating	a	third	string	of	bits;	each	bit
in	the	third	set	is	the	result	of	ANDing	the	respective	bit	in	each	of	the	first	two	operands.
As	a	result,	the	operation	is	called	bitwise.

When	considering	bitwise	logical	operations,	it	is	normal	to	use	binary	representation.
When	considered	as	a	numeric	operation	on	two	binary	numbers,	the	result	given	in	Figure
1.3	makes	little	sense.	By	examining	each	bit	of	the	result,	however,	you	will	see	that	each
has	been	determined	by	ANDing	the	two	corresponding	operand	bits.

Figure	1.3.	ANDing	Bits.

A	truth	table	can	be	drawn	for	two-operand	logical	operations.	You	find	the	result	of
ANDing	 two	bits	by	finding	 the	setting	of	one	bit	on	 the	 left	and	following	across	until
you’re	under	the	setting	of	the	other	bit.	Table	1.2	shows	the	truth	table	for	AND.

Table	1.2.	Truth	Table	for	AND.

Logical	Or
The	OR	operator	yields	a	one	or	true	value	if	either	(or	both)	of	the	operands	is	true.

Taking	the	same	values	as	before,	examine	the	result	of	the	logical	OR	operation	in	Figure

1.4.	The	truth	table	for	the	OR	function	is	shown	in	Table	1.3.

Figure	1.4.	ORing	Bits.

Logical	Exclusive	Or
The	exclusive	OR	 operator	 is	 similar	 to	 the	 previously-described	OR	 operation;	 in

this	case,	the	result	is	true	only	if	one	or	the	other	of	the	operands	is	true,	but	not	if	both
are	true	or	(as	with	OR)	neither	is	true.	That	is,	the	result	is	true	only	if	the	operands	are
different,	 as	 Figure	 1.5	 illustrates	 using	 the	 same	 values	 as	 before.	 The	 truth	 table	 for
exclusive	OR	is	shown	in	Table	1.4.

Table	1.3.	Truth	Table	for	OR.

Figure	1.5.	EXCLUSIVE	ORing	Bits.

Table	1.4.	Truth	Table	for	EXCLUSIVE	OR.

Logical	Complement
As	 Figure	 1.6	 shows,	 the	 logical	 complement	 of	 a	 value	 is	 its	 inverse:	 the

complement	of	true	is	false,	and	the	complement	of	false	is	true.

Figure	1.6.	COMPLEMENTing	Bits.

While	 the	 65x	 processors	 have	 no	 complement	 or	 not	 function	 built	 in,	 exclusive
ORing	a	value	with	a	string	of	ones	($FF	or	$FFFF)	produces	the	complement,	as	Figure
1.7	illustrates.

Figure	1.7.	COMPLEMENTing	Bits	Using	Exclusive	OR.

Since	complement	has	only	one	operand,	its	truth	table,	drawn	in	Table	1.5,	is	simpler
than	the	other	truth	tables.

Table	1.5.	Truth	Table
for	COMPLEMENT.

Signed	Numbers
Many	 programs	 need	 nothing	more	 than	 the	 whole	 numbers	 already	 discussed.But

others	need	to	store	and	perform	arithmetic	on	both	positive	and	negative	numbers.

Of	 the	 possible	 systems	 for	 representing	 signed	 numbers,	 most	 microprocessors,
among	 them	 those	 in	 the	 65x	 family,	 use	 two’s	 complement.	 Using	 two’s-complement
form,	positive	numbers	are	distinguished	from	negative	ones	by	the	most	significant	bit	of
the	number:	a	zero	means	the	number	is	positive;	a	one	means	it	is	negative.

To	negate	a	number	in	the	two’s-complement	system,	you	first	complement	each	of	its
bits,	then	add	one.	For	example,	to	negate	one	(to	turn	plus-one	into	minus-one):

So	 $FF	 is	 the	 two’s-complement	 representation	 of	 minus-one.	When	 converting	 to
two’s	complement	by	hand,	an	easier	technique	than	the	two-step	process	is	to	copy	zeroes
from	the	right	(least	significant	bit)	until	the	first	one	is	reached;	copy	that	one,	and	then
change	every	zero	to	a	one	and	every	one	to	a	zero	as	you	continue	to	the	left.	Try	it	on	the
example	above.

Now,	 instead	 of	 using	 eight	 bits	 to	 represent	 the	 integers	 from	 zero	 to	 255,	 two’s-
complement	 arithmetic	 uses	 eight	 bits	 to	 represent	 signed	 numbers	 from	 -128	 ($80)	 to
+127	($7F),	as	Table	1.6	shows.	There	is	always	one	more	negative	than	positive	number
in	a	two’s-complement	system.

Table	1.6.	The	Eight-Bit	Range	of	Two’s-Complement	Numbers.

Another	practical	way	to	think	of	negative	two’s-complement	numbers	is	to	think	of
negative	numbers	as	the	(unsigned)	value	that	must	be	added	to	the	corresponding	positive
number	 to	 produce	 zero	 as	 the	 result.	 For	 example,	 in	 an	 eight-bit	 number	 system,	 the
value	that	must	be	added	to	one	to	produce	zero	(disregarding	the	carry)	is	$FF;	1	+	$FF	=
$100,	or	0	if	only	the	low-order	eight	bits	is	considered.	$FF	must	therefore	be	the	two’s-
complement	value	for	minus	one.

The	 introduction	 of	 two’s-complement	 notation	 creates	 yet	 another	 possibility	 in
interpreting	 the	 data	 stored	 at	 an	 arbitrary	memory	 location.	 Since	 $FF	 could	 represent
either	 the	 unsigned	 number	 255	 or	 the	 negative	 integer	 minus-one,	 it’s	 important	 to
remember	that	it	is	only	the	way	in	which	a	program	interprets	the	data	stored	in	memory
that	gives	it	its	proper	value—signed	or	unsigned.

Storing	Numbers	in	Decimal	Form
Computers	use	numbers	in	binary	form	most	efficiently.	But	when	a	program	calls	for

decimal	numbers	to	be	entered	or	output	frequently,	storing	numbers	in	their	decimal	form
—rather	than	converting	them	to	binary	and	back—may	be	preferable.	Further,	converting
floating-point	 decimal	 numbers	 to	 a	 binary	 floating-point	 form	 and	 back	 can	 introduce
errors:	for	example,	8	minus	2.1	could	result	in	5.90000001	rather	than	the	correct	answer,
5.9.

As	 a	 result,	 some	 programs,	 such	 as	 accounting	 applications,	 store	 numbers	 in
decimal	form,	each	decimal	digit	represented	by	four	bits,	yielding	two	decimal	digits	per
byte,	as	Table	1.7	shows.	This	form	is	called	binary	coded	decimal,	or	BCD.	BCD	lies
somewhere	 between	 the	 machine’s	 native	 binary	 and	 abstractions	 such	 as	 the	 ASCII
character	codes	for	numbers.

Since	four	bits	can	represent	the	decimal	numbers	from	zero	to	fifteen,	using	the	same
number	 of	 bits	 to	 represent	 only	 the	 numbers	 from	 zero	 through	 nine	 wastes	 six

combinations	 of	 the	 binary	 digits.	 This	 less	 than	 optimal	 use	 of	 storage	 is	 the	 price	 of
decimal	accuracy	and	convenience.

Table	1.7.	The	First	16	BCD	Numbers.

The	65x	processors	have	a	special	decimal	mode	which	can	be	set	by	the	programmer.
When	decimal	mode	 is	 set,	 numbers	 are	 added	 and	 subtracted	with	 the	 assumption	 that
they	 are	BCD	numbers:	 in	BCD	mode,	 for	 example,	 1001	+	 1	 (9	 +	 1)	 yields	 the	BCD
result	 of	 0001	 0000	 rather	 than	 the	 binary	 result	 of	 1010	 (1010	 has	 no	meaning	 in	 the
context	of	BCD	number	representation).

Obviously,	in	different	contexts	0001	0000	could	represent	either	10	decimal	or	$10
hexadecimal	 (16	 decimal);	 in	 this	 case,	 the	 interpretation	 is	 dependent	 on	 whether	 the
processor	is	in	decimal	mode	or	not.

Computer	Arithmetic
Binary	 arithmetic	 is	 just	 like	 decimal	 arithmetic,	 except	 that	 the	 highest	 digit	 isn’t

nine,	it’s	one.	Thus	1	+	0	=	1,	while	1	+	1	=	0	with	a	carry	of	1,	or	binary	10.	Binary	10	is
the	equivalent	of	a	decimal	2.	And	1	-	0	=	1,	while	during	the	subtraction	of	binary	1	from
binary	10,	the	1	can’t	be	subtracted	from	the	0,	so	a	borrow	is	done,	getting	the	1	from	the
next	position	(leaving	it	0);	thus,	10	-	1	=	1.

Addition	 and	 subtraction	 are	 generally	 performed	 in	 one	 or	 more	 main	 processor
registers,	 called	 accumulators.	 On	 the	 65x	 processors,	 they	 can	 store	 either	 one	 or,
optionally	on	the	65802	and	65816,	two	bytes.	When	two	numbers	are	added	that	cause	a
carry	from	the	highest	bit	in	the	accumulator,	the	result	is	larger	than	the	accumulator	can
hold.	 To	 account	 for	 this,	 there	 is	 a	 special	 one-bit	 location,	 called	 a	 carry	 bit,	 which
holds	the	carry	out	of	the	high	bit	from	an	addition.	Very	large	numbers	can	be	added	by
adding	 the	 low-order	 eight	 or	 sixteen	 bits	 (whichever	 the	 accumulator	 holds)	 of	 the
numbers,	and	 then	adding	 the	next	 set	of	bits	plus	 the	carry	 from	 the	previous	addition,
and	so	on.	Figure	1.8	illustrates	this	concept	of	multiple-precision	arithmetic.

Microprocessor	Programming
You	have	 seen	how	various	kinds	of	 data	 are	 represented	 and,	 in	 general,	 how	 this

data	can	be	manipulated.	To	make	those	operations	take	place,	a	programmer	must	instruct
the	computer	on	the	steps	it	must	take	to	get	the	data,	the	operations	to	perform	on	it,	and
finally	the	steps	to	deliver	the	results	in	the	appropriate	manner.	Just	as	a	record	player	is
useless	without	a	record	to	play,	so	a	computer	is	useless	without	a	program	to	execute.

Machine	Language
The	microprocessor	 itself	 speaks	 only	 one	 language,	 its	machine	 language,	 which

inevitably	is	just	another	form	of	binary	data.	Each	chip	design	has	its	own	set	of	machine
language	 instructions,	 called	 its	 instruction	set,	 which	 defines	 the	 functions	 that	 it	 can
understand	and	execute.	Whether	you	program	in	machine	language,	in	its	corresponding
assembly	 language,	or	 in	a	higher	 level	 language	 like	BASIC	or	Pascal,	 the	 instructions
that	 the	 microprocessor	 ultimately	 executes	 are	 always	 machine	 language	 instructions.
Programs	in	assembly	and	higher-level	languages	are	translated	(by	assemblers,	compilers,
and	interpreters)	to	machine	language	before	the	processor	can	execute	them.

Figure	1.8.	Multiple-Precision	Arithmetic.

Each	machine	language	instruction	in	the	65x	series	of	microprocessors	is	one	to	four
bytes	 long.	 The	 first	 byte	 of	 each	 instruction	 is	 called	 the	operation	 code	 (opcode	 for
short);	 it	 specifies	 the	 operation	 the	 computer	 is	 to	 do.	 Any	 additional	 bytes	 in	 the
instruction	make	up	the	operand,	 typically	all	or	part	of	an	address	 to	be	accessed,	or	a
value	to	be	processed.

Assembly	Language
Writing	long	strings	of	hexadecimal	or	binary	instructions	to	program	a	computer	is

obviously	not	something	you	would	want	to	do	if	you	could	at	all	avoid	it.	The	65816’s

256	different	opcodes,	for	example,	would	be	difficult	to	remember	in	hexadecimal	form
—and	 even	 harder	 in	 binary	 form.	Assembly	 language,	 and	 programs	 which	 translate
assembly	language	to	machine	code	(called	assemblers)	were	devised	to	simplify	the	task
of	machine	programming.

Assembly	language	substitutes	a	short	word—known	as	a	mnemonic	 (which	means
memory	 aid)—for	 each	 binary	 machine	 code	 instruction.	 So	 while	 the	 machine	 code
instruction	1010	1010,	which	instructs	the	65x	processor	to	transfer	the	contents	of	the	A
accumulator	 to	 the	X	 index	 register,	may	be	hard	 to	 remember,	 its	assembler	mnemonic
TAX	(for	“Transfer	A	to	X”)	is	much	easier.

The	 entire	 set	 of	 65x	 opcodes	 are	 covered	 alphabetically	 by	 mnemonic	 label	 in
Chapter	 Eighteen,	 while	 Chapters	 Five	 through	 Thirteen	 discuss	 them	 in	 functional
groups,	introducing	each	of	them,	and	providing	examples	of	their	use.

To	write	an	assembly	language	program,	you	first	use	a	text	editing	program	to	create
a	file	containing	the	series	of	instruction	mnemonics	and	operands	that	comprise	it;	this	is
called	the	source	program,	source	code	or	just	source.	You	then	use	this	as	the	input	to
the	 assembler	 program,	 which	 translates	 the	 assembler	 statements	 into	 machine	 code,
storing	 the	 generated	 code	 in	 an	 output	 file.	 The	machine	 code	 is	 either	 in	 the	 form	of
executable	object	code,	which	 is	 ready	to	be	executed	by	 the	computer,	or	 (using	some
development	 systems)	 a	relocatable	object	module,	which	 can	 be	 linked	 together	with
other	assembled	object	modules	before	execution.

If	this	were	all	that	assembly	language	provided,	it	would	be	enough	to	make	machine
programming	 practical.	 But	 just	 as	 the	 assembler	 lets	 you	 substitute	 instruction
mnemonics	 for	 binary	 operation	 codes,	 it	 lets	 you	 use	 names	 for	 the	memory	 locations
specified	 in	 operands	 so	 you	 don’t	 have	 to	 remember	 or	 compute	 their	 addresses.	 By
naming	routines,	instructions	which	transfer	control	to	them	can	be	coded	without	having
to	know	their	addresses.	By	naming	constant	data,	the	value	of	each	constant	is	stated	only
in	 one	 place,	 the	 place	 where	 it	 is	 named.	 If	 a	 program	 modification	 requires	 you	 to
change	 the	 values	 of	 the	 constants,	 changing	 the	 definition	 of	 the	 constant	 in	 that	 one
place	changes	the	value	wherever	the	name	has	been	used	in	the	program.	These	symbolic
names	given	to	routines	and	data	are	known	as	labels.

As	your	source	program	changes	during	development,	the	assembler	will	resolve	each
label	 reference	 anew	each	 time	 an	 assembly	 is	 performed,	 allowing	 code	 insertions	 and
deletions	 to	 be	 made.	 If	 you	 hard-coded	 the	 addresses	 yourself,	 you	 would	 have	 to
recalculate	them	by	hand	each	time	you	inserted	or	deleted	a	line	of	code.

The	use	of	an	assembler	also	lets	you	comment	your	program	within	the	source	file
—that	is,	to	explain	in	English	what	it	is	you	intend	the	adjacent	assembly	statements	to
do	and	accomplish.

More	 sophisticated	 macro	 assemblers	 take	 symbol	 manipulation	 even	 further,
allowing	 special	 labels,	 called	 macro	 instructions	 (or	 just	 macros	 for	 short),	 to	 be
assigned	 to	 a	 whole	 series	 of	 instructions.	Macro	 is	 a	 Greek	word	meaning	 long,	 so	 a
macro	instruction	is	a	“long”	instruction.	Macros	usually	represent	a	series	of	instructions
which	will	appear	in	the	code	frequently	with	slight	variations.	When	you	need	the	series,
you	 can	 type	 in	 just	 the	 macro	 name,	 as	 though	 it	 were	 an	 instruction	 mnemonic;	 the

assembler	automatically	“expands”	the	macro	instruction	to	the	previously-defined	string
of	 instructions.	Slight	variations	 in	 the	expansion	are	provided	 for	by	a	mechanism	 that
allows	macro	instructions	to	have	operands.

Writing	in	Assembly	Language
In	addition	to	understanding	the	processor	you’re	working	with,	you	must	also	have	a

good	 knowledge	 of	 the	 particular	 assembler	 you	 are	 using	 to	 program	 in	 assembly
language.	While	 the	specific	opcodes	used	are	carved	 in	 the	silicon	die	of	 the	processor
itself,	 the	mnemonics	 for	 those	 opcodes	 are	 simply	 conventions	 and	may	 vary	 slightly
from	 one	 assembler	 to	 another	 (although	 the	 mnemonics	 proposed	 by	 a	 processor’s
manufacturer	 will	 tend	 to	 be	 seen	 as	 the	 standard).	 Varying	 even	 more	 widely	 are
assembler	directives—assembler	 options	 which	 can	 be	 specified	 in	 the	 midst	 of	 code.
These	options	 tell	 the	assembler	such	 things	as	where	 to	 locate	 the	program	in	memory,
which	portions	of	the	source	listing	to	print,	or	what	labels	to	assign	to	constants.

Nevertheless,	most	microcomputer	 assemblers	 have	 a	 great	 deal	 in	 common.	 They
generally	 provide	 four	 columns,	 or	 fields,	 for	 different	 types	 of	 information	 about	 an
operation:	a	label	which	can	be	used	to	symbolically	identify	the	location	of	the	code;	the
opcode;	 the	 operand;	 and	 space	 for	 comments.	 Figure	 1.9	 illustrates	 some	 typical
assembler	source	code,	with	the	different	fields	highlighted.

While	an	opcode	or	directive	appears	in	every	assembler	statement,	the	operand	field
may	 or	may	 not	 be	 required	 by	 any	 particular	 opcode,	 since	 there	 are	 several	 one-byte
instructions	which	consist	solely	of	an	opcode.	The	label	and	comment	field	are	optional,
added	to	make	the	program	easier	to	read,	write,	debug,	and	modify	later.

During	assembly,	 the	assembler	checks	the	fields	to	be	sure	the	information	there	is
complete,	of	the	proper	type,	and	not	out	of	order,	and	issues	error	messages	to	warn	you
of	problems.	It	also	checks	to	be	sure	you	have	not	 tried	to	define	the	same	label	 twice,
and	that	you	have	not	used	a	label	you	did	not	define.

Basic	Programming	Concepts
There	are	several	concepts	which,	in	general	terms,	characterize	the	different	ways	a

program	can	execute.

The	most	obvious	concept	is	that	of	straight-line	execution:	a	program	starts	in	low
memory	and	steps	a	few	bytes	higher	into	memory	with	execution	of	each	new	instruction
until	it	reaches	the	end,	never	doubling	back	or	jumping	forward.	Straight-line	execution	is
clean	and	clear:	it	begins	at	the	beginning,	executes	every	instruction	in	the	program	once,
and	 ends	 at	 the	 end.	 This	 type	 of	 execution	 is	 the	 default	 execution	 mode.	 The	 65x
processors	have	a	register	called	the	program	counter,	which	is	automatically	updated	at
the	 end	 of	 each	 instruction	 so	 that	 it	 contains	 the	 address	 of	 the	 next	 instruction	 to	 be
executed.

Figure	1.9.	Typical	Assembler	Source	Code.

Selection	Between	Paths
Real-life	 problems—the	 kind	 you	 want	 to	 write	 computer	 programs	 to	 solve—are

seldom	 straight	 and	 simple.	 A	 computer	 would	 be	 very	 limited	 with	 only	 straight-line
execution	 capability,	 that	 is,	 if	 it	 could	 not	 make	 choices	 between	 different	 courses	 of
action	 based	 on	 the	 conditions	 that	 exist	while	 it	 is	 executing.	 Selection	 between	 paths
provides	 computers	 with	 their	 decision-making	 capabilities.	 The	 65x	 microprocessors
carry	out	selection	between	paths	by	means	of	conditional	branch	instructions.

An	 example	 of	 selection	 between	 paths	 would	 be	 a	 tic-tac-toe	 program.	 Playing
second,	 the	 program	 must	 choose	 where	 to	 place	 its	 first	 token	 from	 eight	 different
squares.	If	the	opponent	has	taken	the	center	square,	the	program	must	respond	differently
than	if	a	side	square	were	taken.

Execution	still	begins	at	 the	beginning	and	ends	at	 the	end,	in	a	single	pass	through
the	code,	but	whole	groups	of	instructions	on	paths	not	taken	are	not	executed.

Looping
Let’s	say	you	write	a	program	to	convert	a	Fahrenheit	temperature	to	Celsius.	If	you

had	 only	 one	 temperature	 to	 convert,	 you	 wouldn’t	 spend	 the	 time	 writing	 a	 program.
What	you	want	 the	program	 to	do	 is	prompt	 for	 a	Fahrenheit	 temperature,	 convert	 it	 to
Celsius,	 print	 out	 the	 result,	 then	 loop	 back	 and	 prompt	 for	 another	 Fahrenheit
temperature,	and	so	on—until	you	run	out	of	temperatures	to	convert.	This	program	uses	a
program	concept	called	looping	or	iteration,	which	is	simply	the	idea	that	the	same	code

can	be	reexecuted	repeatedly—with	different	values	for	key	variables—until	a	given	exit
condition.	In	this	case	the	exit	condition	might	be	the	entry	of	a	null	or	empty	input	string.

Often,	 it’s	not	 the	whole	program	 that	 loops,	but	 just	a	portion	of	 it.	While	a	poker
program	could	deal	out	20	cards,	one	at	a	 time,	 to	 four	players,	 it	would	use	much	 less
program	memory	to	deal	out	one	card	to	each	of	the	players,	then	loop	back	to	do	the	same
thing	over	again	four	more	times,	before	going	on	to	take	bets	and	play	the	poker	hands
dealt.

Looping	saves	writing	repetitive	code	over	and	over	again,	which	is	both	tedious	and
uses	up	memory.	The	65x	microprocessors	execute	loops	by	means	of	branch	and	jump
instructions.

Looping	almost	always	uses	the	principle	of	selection	between	paths	to	handle	exiting
the	 loop.	 In	 the	 poker	 program,	 after	 each	 set	 of	 four	 cards	 has	 been	 dealt	 to	 the	 four
players,	the	program	must	decide	if	that	was	the	fifth	set	of	four	cards	or	if	there	are	more
to	deal.	Four	 times	 it	will	select	 to	 loop	back	and	deal	another	set;	 the	fifth	 time,	 it	will
select	another	path—to	break	out	of	the	loop	to	begin	prompting	for	bets.

Subroutines
Even	 with	 loops,	 programmers	 could	 find	 themselves	 writing	 the	 same	 section	 of

code	 over	 and	 over	 when	 it	 appears	 in	 a	 program	 not	 in	 quick	 succession	 but	 rather
recurring	at	irregular	intervals	throughout	the	program.	The	solution	is	to	make	the	section
of	 code	 a	 subroutine,	 which	 the	 program	 can	 call	 as	 many	 times	 and	 from	 as	 many
locations	as	it	needs	to	by	means	of	a	jump-to-subroutine	 instruction.	The	program,	on
encountering	 the	 subroutine	 call,	 makes	 note	 of	 its	 current	 location	 for	 purposes	 of
returning	 to	 it,	 then	 jumps	 to	 the	 beginning	 of	 the	 subroutine	 code.	 At	 the	 end	 of	 the
subroutine	code,	 a	return-from-subroutine	 instruction	 tells	 the	 program	 to	 return	 from
the	subroutine	to	the	instruction	after	the	subroutine	call.	There	are	several	different	types
of	calls	and	returns	available	on	the	different	65x	processors;	all	of	them	have	a	basic	call
and	return	instruction	in	common.

Programmers	 often	 build	 up	 large	 libraries	 of	 general	 subroutines	 that	 multiply,
divide,	 output	 messages,	 send	 bytes	 to	 and	 receive	 bytes	 from	 a	 communications	 line,
output	binary	numbers	in	ASCII,	translate	numbers	from	keyboard	ASCII	into	binary,	and
so	on.	Then	when	one	of	these	subroutines	is	needed,	the	programmer	can	get	a	copy	from
the	library	or	include	the	entire	library	as	part	of	his	program.

Part	II

Architecture

2

Architecture	of	the	6502
This	chapter,	and	the	two	which	follow,	provide	overviews	of	the	architecture	of	the

four	 65x	 family	 processors:	 the	 6502,	 the	 65C02,	 and	 the	 65802/65816.	 Each	 chapter
discusses	the	register	set	and	the	function	of	the	individual	registers,	the	memory	model,
the	addressing	modes,	and	the	kinds	of	operations	available	for	each	respective	processor.
Because	each	successive	processor	is	a	superset	of	the	previous	one,	each	of	the	next	two
chapters	 will	 build	 on	 the	material	 already	 covered.	Much	 of	 what	 is	 discussed	 in	 this
chapter	 will	 not	 be	 repeated	 in	 the	 next	 two	 chapters	 because	 it	 is	 true	 of	 all	 65x
processors.	As	the	original	65x	machine,	the	6502	architecture	is	particularly	fundamental,
since	it	describes	a	great	number	of	common	architectural	features.

Microprocessor	Architecture
The	number,	kinds,	and	sizes	of	registers,	and	the	types	of	operations	available	using

them,	 defines	 the	 architecture	 of	 a	 processor.	 This	 architecture	 determines	 the	 way	 in
which	 programming	 problems	 will	 be	 solved.	 An	 approach	 which	 is	 simple	 and
straightforward	 on	 one	 processor	may	 become	 clumsy	 and	 inefficient	 on	 another	 if	 the
architectures	are	radically	different.

A	 register	 is	 a	 special	 memory	 location	 within	 the	 processor	 itself,	 where
intermediate	results,	addresses,	and	other	information	which	must	be	accessed	quickly	are
stored.	 Since	 the	 registers	 are	 within	 the	 processor	 itself,	 they	 can	 be	 accessed	 and
manipulated	much	faster	than	external	memory.	Some	instructions	perform	operations	on
only	a	single	bit	within	a	register;	others	on	two	registers	at	once;	and	others	move	data
between	a	register	within	the	processor	and	external	memory.	(Although	the	registers	are
indeed	 a	 special	 kind	 of	 memory,	 the	 term	memory	 will	 be	 used	 only	 to	 refer	 to	 the
addressable	memory	external	to	the	microprocessor	registers.)

The	6502	is	not	a	register-oriented	machine.	As	you	will	see,	it	has	a	comparatively
small	set	of	registers,	each	dedicated	to	a	special	purpose.	The	6502	instead	relies	on	its
large	number	of	addressing	modes,	particularly	its	direct-page	indirect	addressing	modes,
to	give	it	power.

An	 addressing	 mode	 is	 a	 method,	 which	 may	 incorporate	 several	 intermediate
calculations	 involving	 index	 registers,	 offsets,	 and	 base	 addresses,	 for	 generating	 an
instruction’s	 effective	 address—the	 memory	 address	 at	 which	 data	 is	 read	 or	 written.
Many	 6502	 instructions,	 such	 as	 those	 for	 addition,	 have	 many	 alternate	 forms,	 each
specifying	a	different	addressing	mode.	The	selection	of	the	addressing	mode	by	you,	the
programmer,	determines	the	way	in	which	the	effective	address	will	be	calculated.

There	 are	 three	 aspects	 to	 learning	 how	 to	 program	 the	 6502	 or	 any	 processor.
Learning	 the	 different	 addressing	 modes	 available	 and	 how	 to	 use	 them	 is	 a	 big	 part.
Learning	the	available	instructions	and	operations,	such	as	addition,	subtraction,	branching

and	comparing,	is	another.	But	to	make	sense	of	either,	you	must	begin	by	understanding
what	each	of	the	different	registers	is	and	does,	and	how	the	memory	is	organized.

If	 you	 compare	 the	 different	 processors	 in	 the	 65x	 family—the	 eight-bit	 6502	 and
65C02	and	 the	 sixteen-bit	 65816	 and	65802—you	will	 find	 they	 all	 have	 a	basic	 set	 of
registers	and	a	basic	set	of	addressing	modes	in	common:	the	6502’s.

The	6502	Registers
The	6502	registers	are:

• The	 accumulator,	 or	 A	 register,	 is	 the	 primary	 user	 register	 and
generally	holds	one	of	 the	operands,	as	well	as	 the	result,	of	any	of	 the	basic
data-manipulation	instructions.

• The	X	 and	 Y	 index	 registers	 are	 used	 chiefly	 in	 forming	 effective
addresses	for	memory	accesses	and	as	loop	counters.

• The	 processor	 status,	 or	 P,	 register	 contains	 bit-fields	 to	 indicate
various	conditions,	modes,	and	results	within	the	processor.

• The	 stack	 pointer,	 or	 S	 register,	 is	 a	 pointer	 to	 the	 next	 available
location	 on	 the	 system	 stack,	 a	 special	 area	 of	 memory	 for	 temporary	 data
storage.	 In	addition	 to	being	available	 to	 the	user,	 the	stack	pointer	and	stack
are	 also	 used	 automatically	 every	 time	 a	 subroutine	 is	 called	 or	 an	 interrupt
occurs	to	store	return	information.

• Finally,	 the	 program	 counter,	 or	 PC,	 is	 a	 pointer	 to	 the	 memory
location	of	the	instruction	to	be	executed	next.

These	six	basic	6502	registers	are	depicted	in	the	programmer	model	diagrammed	in
Figure	2.1.	Notice	 that,	with	 the	exception	of	 the	program	counter	 (PC),	all	of	 them	are
eight-bit	registers.	Because	they	can	contain	only	eight	bits,	or	one	byte,	of	data	at	a	time,
they	can	only	perform	operations,	such	as	addition,	on	one	byte	at	a	time.	Hence	the	6502
is	characterized	as	an	“eight-bit”	processor.

Although	 the	user	 registers	of	 the	6502	are	only	eight	bits	wide,	 all	 of	 the	 external
addresses	generated	are	sixteen	bits.	This	gives	the	6502	an	address	space	of	64K	(216	=
65,536).	 In	 order	 to	 access	 data	 located	 anywhere	 in	 that	 64K	 space	 with	 an	 eight-bit
processor,	 one	 instruction	 operand	 in	 calculating	 effective	 addresses	 is	 almost	 always
found	 in	 memory—either	 in	 the	 code	 itself	 following	 an	 instruction,	 or	 at	 a	 specified
memory	 location—rather	 than	 in	 a	 register,	 because	 operands	 in	memory	 have	 no	 such
limits.	All	that	is	needed	to	make	a	memory	operand	sixteen	bits	are	two	adjacent	memory
locations	to	put	them	in.

To	allow	programs	longer	than	256	bytes,	the	program	counter,	which	always	points
to	 the	 location	of	 the	next	 instruction	 to	be	 executed,	 is	 necessarily	 sixteen	bits,	 or	 two
bytes,	wide.	You	may	therefore	 locate	a	6502	program	anywhere	within	 its	64K	address
space.

Now	each	of	the	6502	registers	will	be	described	in	more	detail.

The	Accumulator
The	accumulator	(A)	is	the	primary	register	in	a	65x	processor.	Almost	all	arithmetic

and	most	 logical	operations	are	performed	on	data	 in	 the	accumulator,	with	 the	result	of
the	operation	being	stored	in	the	accumulator.	For	example,	to	add	two	numbers	which	are
stored	in	memory,	you	must	first	load	one	of	them	into	the	accumulator.	Then	you	add	the
other	 to	 it	 and	 the	 result	 is	 automatically	 stored	 in	 the	 accumulator,	 replacing	 the	value
previously	loaded	there.

Figure	2.1.	6502	Programming	Model.

Because	 the	 accumulator	 is	 the	 primary	 user	 register,	 there	 are	 more	 addressing
modes	for	accumulator	operations	than	for	any	other	register.

The	 6502	 accumulator	 is	 an	 eight-bit	 register.	 Only	 one	 byte	 is	 ever	 fetched	 from
memory	when	 the	 accumulator	 is	 loaded,	 or	 for	 operations	which	 use	 two	 values—one
from	memory	and	the	other	in	the	accumulator	(as	in	the	addition	example	above).

The	X	and	Y	Index	Registers
The	 index	 registers	 are	 generally	 used	 either	 as	 components	 in	 generating	 effective

addresses	when	any	of	the	indexed	addressing	modes	are	used,	or	as	loop	counters.	They
can	be	easily	 incremented	or	decremented;	 that	is,	 the	value	in	the	index	registers	can,
by	means	of	a	single	instruction,	be	increased	or	decreased	by	the	number	one.	They	are,
therefore,	 useful	 in	 accessing	 successive	 table	 locations,	moving	memory,	 and	 counting

loop	 iterations.	 Unlike	 the	 accumulator,	 no	 logical	 or	 arithmetic	 operations	 (other	 than
incrementing,	decrementing,	and	comparing)	may	be	performed	upon	them.

The	use	of	 indexing	allows	easy	access	 to	a	continuous	series	of	memory	locations,
such	 as	 a	 multiple-byte,	 binary	 floating-point	 number,	 or	 an	 array	 of	 many	 single-	 or
multiple-byte	 objects.	 Indexing	 is	 performed	 by	 adding	 one	 of	 several	 forms	 of	 base
addresses,	 specified	 in	 the	 operand	 field	 of	 an	 instruction,	 to	 the	 contents	 of	 an	 index
register.	While	a	constant	operand	is	fixed	when	a	program	is	created,	the	index	registers
are	variable	and	their	contents	can	be	changed	readily	during	the	execution	of	a	program.
As	 a	 result,	 indexing	 provides	 an	 extremely	 flexible	 mechanism	 for	 accessing	 data	 in
memory.

Although	the	X	and	Y	index	registers	are	basically	similar,	 their	capabilities	are	not
identical.	Certain	 instructions	and	addressing	modes	work	only	with	one	or	 the	other	of
these	registers.	The	indirect	indexed	addressing	modes	require	the	Y	register.	And	while
the	 X	 register	 is	 primarily	 used	 with	 direct	 page	 indexed	 and	 absolute	 indexed
addressing,	it	has	its	own	unique	(though	infrequently	used)	indexed	indirect	addressing
mode.	 These	 differences	 will	 become	 clear	 as	 you	 learn	 more	 about	 the	 different
addressing	modes.

The	Status	Register
The	status	register	(also	called	the	P	register,	for	processor	status)	contains	a	number

of	flags	which	describe,	in	part,	the	status	of	the	microprocessor	and	its	operations.	A	flag
is,	in	this	case,	a	single	bit	within	the	status	register.	Its	value,	set	(a	one)	or	reset	(a	zero),
indicates	one	of	 two	conditions.	While	 the	6502’s	eight-bit	 status	 register	could	provide
eight	one-bit	flags,	only	seven	of	them	are	used.

Figure	 2.1	 showed	 the	 6502	 P	 status	 register;	 Tables	 2.1	 and	 2.2	 describe	 the
functions	of	its	flags.

Table	 2.1	 describes	 the	 five	 status	 register	 condition	 code	 flags—negative,	 zero,
overflow,	carry,	and	break.	Their	values	indicate	various	conditions	that	result	from	the
execution	of	many	6502	instructions.	Some	instructions	affect	none	of	the	condition	code
flags,	others	affect	only	some,	and	still	others	affect	all.	The	effect	that	an	instruction	has
on	the	condition	flags	is	an	important	part	of	describing	what	the	instruction	does.	These
condition	 code	 flags	 are	 used	 to	 determine	 the	 success	 or	 failure	 of	 the	 branch	 on
condition	instructions.

Notice	particularly	the	zero	flag	(z).	It	can	sometimes	confuse	assembly	programmers
because	a	zero	flag	setting	of	one	indicates	a	zero	result	while	a	zero	flag	setting	of	zero
indicates	a	non-zero	result.

Table	2.1.	Status	Register	Condition	Code	Flags.

In	connection	with	the	carry	flag,	it	is	important	to	know	that	the	6502	add	operation
has	been	designed	to	always	add	in	the	carry,	and	the	subtract	operation	to	always	use	the
carry	as	a	borrow	flag,	making	it	possible	to	do	multiple-precision	arithmetic	where	you
add	successively	higher	sets	of	bytes	plus	the	previous	add’s	carry	or	subtract	successively
higher	sets	of	bytes	taking	into	the	operation	the	previous	subtract’s	borrow.	The	drawback
to	 this	 scheme	 is	 that	 the	 carry	 must	 be	 zeroed	 before	 starting	 an	 add	 and	 set	 before
starting	a	subtraction.

In	the	case	of	subtraction,	the	6502’s	carry	flag	is	an	inverted	borrow,	unlike	that	of
most	other	microprocessors.	If	a	borrow	occurred	during	the	last	operation,	it	is	cleared;	if
a	borrow	did	not	result,	it	is	set.

Finally,	 notice	 that	 in	 the	 status	 register	 itself,	 the	 break	 bit	 has	 no	 function.	 Only
when	an	interrupt	pushes	the	status	register	onto	the	stack	is	the	break	bit	either	cleared	or
set	to	indicate	the	type	of	interrupt	responsible.

Table	2.2	describes	the	other	two	P	register	flags,	the	mode	select	flags:	by	explicitly
setting	or	clearing	them,	you	can	change	the	operational	modes	of	the	processor.

Table	2.2.	Status	Register	Mode	Select	Flags.

The	decimal	mode	 flag	 toggles	 add	 and	 subtract	 operations	 (but	 not	 increment	 or
decrement	 instructions)	 between	 binary	 and	 decimal	 (BCD).	Most	 processors	 require	 a
separate	decimal-adjust	operation	after	numbers	represented	in	decimal	format	have	been
added	 or	 subtracted.	 The	 65x	 processors	 do	 on-the-fly	 decimal	 adjustment	 when	 the
decimal	flag	is	set.

The	IRQ	disable	or	 interrupt	disable	 flag,	 toggles	between	enabling	and	disabling
interrupts.	Typically,	the	interrupt	mask	is	set	during	time-critical	loops,	during	certain	I/O
operations,	and	while	servicing	another	interrupt.

The	Stack	Pointer
The	 stack	 pointer	 (S)	 implements	 directly	 in	 hardware	 a	 data	 structure	 known	 as	 a

stack	or	push-down	stack.	The	stack	is	a	dedicated	area	of	memory	which	is	accessed	by
the	 user	 via	push	 and	pull	 instructions.	 Push	 stores	 the	 contents	 of	 a	 register	 onto	 the
stack;	pull	retrieves	a	data	item	from	the	stack,	storing	it	into	a	register.

The	6502’s	stack	is	limited	to	256	bytes	by	the	eight-bit	width	of	its	stack	pointer.	The
chip	confines	it	 in	memory	between	$100	and	$1FF	by	fixing	the	high-order	byte	of	the
stack	 address	 at	 $01.	 Software	 power-up	 routines	 generally	 initialize	 the	 6502	 stack
pointer	to	$FF,	resulting	in	an	initial	stack	location	of	$1FF	(see	Figure	2.2).

Initializing	the	Stack	Pointer	to	$FF:
Resulting	Initial	Stack	of	$1FF

Figure	2.2.	Initializing	the	Stack	Pointer	to	$FF.

The	push	and	pull	instructions	are	one-byte	instructions:	the	instruction	itself	specifies
the	register	affected,	and	 the	value	 in	 the	stack	pointer	 register,	added	 to	$100,	specifies
the	stack	memory	location	to	be	accessed.

When	a	push	instruction	is	executed,	data	is	moved	from	the	register	specified	by	the
instruction	 opcode	 to	 the	 stack	 address	 pointed	 to	 by	 the	 stack	 pointer.	 As	 Figure	 2.3
shows,	the	value	in	the	stack	pointer	is	then	decremented	so	that	it	points	to	the	next	lower
memory	location—the	location	to	which	the	next	push	instruction	encountered	will	store
its	data.

The	pull	 instruction	 reverses	 the	process	 and	 retrieves	data	 from	 the	 stack.	When	a
pull	 instruction	 is	 executed,	 first	 the	 stack	 pointer	 is	 incremented,	 then	 the	 register
specified	 in	 the	 instruction	 opcode	 is	 loaded	 with	 the	 data	 at	 the	 incremented	 address
pointed	to	by	SP.

In	addition	to	being	available	as	a	temporary	storage	area,	the	stack	is	also	used	by	the
system	itself	in	processing	interrupts,	subroutine	calls,	and	returns.	When	a	subroutine	is
called,	the	current	value	of	the	program	counter	is	pushed	automatically	onto	the	stack;	the
processor	executes	a	return	instruction	by	reloading	the	program	counter	with	the	value	on
the	top	of	the	stack.

After	Pushing	the	Accumulator

Figure	2.3.	After	Pushing	the	Accumulator.

While	data	 is	pushed	 into	subsequently	 lower	memory	 locations	on	 the	65x’s	stack,
the	location	of	the	last	data	pushed	is	nonetheless	referred	to	as	the	top	of	the	stack.

The	Program	Counter
The	 program	 counter	 (PC)	 contains	 the	 address	 of	 the	 next	 byte	 in	 the	 instruction

stream	 to	 fetch.	Execution	 of	 a	 program	begins	when	 the	 program	 counter	 is	 set	 to	 the
program’s	entry	point	(typically	the	address	at	which	it	was	loaded).	The	processor	fetches
an	instruction	opcode	from	that	 location,	and	proceeds	to	execute	 it.	Based	on	the	given
opcode,	 the	 processor	 will	 need	 to	 fetch	 zero,	 one,	 or	 two	 bytes	 of	 operand	 from	 the
successive	 locations	 following	 the	 instruction.	When	 the	 operand	 has	 been	 fetched,	 the
instruction	is	executed.	The	program	counter	is	normally	incremented	to	point	to	the	next
instruction	 in	memory,	 except	 in	 the	 case	 of	 jump,	 branch,	 and	 call	 instructions,	which
pass	 control	 to	 a	 new	 location	 within	 the	 program	 by	 storing	 the	 new	 location	 to	 the
program	counter.

The	6502	program	counter	is	sixteen	bits	wide,	allowing	for	programs	of	up	to	64K
bytes.	If	the	program	counter	is	incremented	past	$FFFF,	it	wraps	around	to	$0000.

Addressing	Modes
The	fourteen	different	addressing	modes	that	may	be	used	with	the	6502	are	shown	in

Table	2.3.	The	availability	of	 this	many	different	addressing	modes	on	 the	6502	gives	 it
much	of	its	power:	Each	one	allows	a	given	instruction	to	specify	its	effective	address—

the	source	of	the	data	it	will	reference—in	a	different	manner.

Table	2.3.	6502	Addressing	Modes.

Not	 all	 addressing	 modes	 are	 available	 for	 all	 instructions;	 but	 each	 instruction
provides	a	separate	opcode	for	each	of	the	addressing	modes	it	supports.

For	some	of	the	6502	addressing	modes,	the	entire	effective	address	is	provided	in	the
operand	 field	 of	 the	 instruction;	 for	many	 of	 them,	 however,	 formation	 of	 the	 effective
address	 involves	an	address	calculation,	 that	 is,	 the	addition	of	 two	or	more	values.	The
addressing	mode	 indicates	where	 these	values	are	 to	come	from	and	how	they	are	 to	be
added	together	to	form	the	effective	address.

Implied	 addressing	 instructions,	 such	 as	DEY	 and	 INX,	 need	 no	 operands.	 The
register	that	is	the	source	of	the	data	is	named	in	the	instruction	mnemonic	and	is	specified
to	the	processor	by	the	opcode.	Accumulator	addressing,	in	which	data	to	be	referenced
is	 in	 the	 accumulator,	 is	 specified	 to	 the	 assembler	 by	 the	 operand	 A.	 Immediate
addressing,	used	to	access	data	which	is	constant	throughout	the	execution	of	a	program,
causes	 the	 assembler	 to	 store	 the	 data	 right	 into	 the	 instruction	 stream.	 Relative
addressing	 provides	 the	 means	 for	 conditional	 branch	 instructions	 to	 require	 only	 two
bytes,	 one	 byte	 less	 than	 jump	 instructions	 take.	 The	 one-byte	 operand	 following	 the
branch	 instruction	 is	 an	 offset	 from	 the	 current	 contents	 of	 the	 program	 counter.	Stack
addressing	encompasses	all	instructions,	such	as	push	or	pull	instructions,	which	use	the
stack	pointer	register	to	access	memory.	And	absolute	addressing	allows	data	in	memory
to	be	accessed	by	means	of	its	address.

Like	the	6800	processor,	the	6502	treats	the	zero	page	of	memory	specially.	A	page	of
memory	 is	 an	 address	 range	 $100	 bytes	 (256	 decimal)	 long:	 the	 high	 bytes	 of	 the
addresses	in	a	given	page	are	all	the	same,	while	the	low	bytes	run	from	$00	through	$FF.
The	zero	page	is	the	first	page	of	memory,	from	$0000	through	$00FF	(the	high	byte	of
each	address	 in	 the	zero	page	 is	 zero).	Zero	page	addressing,	 a	 short	 form	of	 absolute
addressing,	 allows	 zero	 page	 operands	 to	 be	 referenced	 by	 just	 one	 byte,	 the	 low-order
byte,	resulting	both	in	fewer	code	bytes	and	in	fewer	clock	cycles.

While	most	other	processors	provide	for	some	form	of	 indexing,	 the	6502	provides

some	of	the	broadest	indexing	possibilities.	Indexed	effective	addresses	are	formed	from
the	addition	of	a	specified	base	address	and	an	index,	as	shown	in	Figure	2.4.	Because	the
6502’s	 index	registers	 (X	and	Y)	can	hold	only	eight	bits,	 they	are	seldom	used	 to	hold
index	 bases;	 rather,	 they	 are	 almost	 always	 used	 to	 hold	 the	 indexes	 themselves.	 The
6502’s	four	simplest	indexing	modes	add	the	contents	of	the	X	or	Y	register	to	an	absolute
or	zero	page	base.

Indirection	 (Figure	 2.5)	 is	 less	 commonly	 found	 in	 microprocessor	 repertoires,
particularly	 among	 those	microprocessors	 of	 the	 same	design	generation	 as	 the	6502.	 It
lets	the	operand	specify	an	address	at	which	another	address,	the	indirect	address,	can	be
found.	It	is	at	this	second	address	that	data	will	be	referenced.	The	6502	not	only	provides
indirection	for	 its	 jump	instruction,	allowing	jumps	to	be	vectored	and	revectored,	but	 it
also	 combines	 indirection	with	 indexing	 to	 give	 it	 real	 power	 in	 accessing	 data.	 It’s	 as
though	the	storage	cells	for	the	indirect	addresses	are	additional	6502	registers,	massively
extending	 the	 6502’s	 register	 set	 and	 possibilities.	 In	 one	 addressing	mode,	 indexing	 is
performed	before	indirection;	in	another,	after.	The	first	provides	indexing	into	an	array	of
indirect	addresses	and	the	second	provides	indexing	into	an	array	which	is	located	by	the
indirect	address.

Indexing:	Base	plus	Index

Figure	2.4.	Indexing:	Base	Plus	Index.

The	full	set	of	65x	addressing	modes	are	explained	in	detail	in	Chapters	7	and	11	and

are	reviewed	in	the	Reference	Section.

Instructions
The	6502	has	56	operation	mnemonics,	as	listed	in	Table	2.4,	which	combine	with	its

many	addressing	modes	to	make	151	instructions	available	to	6502	programmers.

Indirection:	Operand	Locates	Indirect	Address

For	example:	Zero	Page	Operand	= $20
Data	at	$20.21	(Indirect	Address)	= $3458

Effective	Address	=$3458

Figure	2.5.	Indirection:	Operand	Locates	Indirect	Address.

Arithmetic	 instructions	 are	 available,	 including	 comparisons,	 increment,	 and

decrement.	But	missing	are	addition	or	subtraction	instructions	which	do	not	 involve	the
carry;	 as	 a	 result,	 you	 must	 clear	 the	 carry	 before	 beginning	 an	 add	 and	 set	 it	 before
beginning	a	subtraction.

Table	2.4.	6502	Instructions.

Logic	instructions	available	include	shifts	and	rotates,	as	well	as	an	instruction	for	bit
comparing.

Branch	 instructions	 are	 entirely	 flag-based,	 not	 arithmetic-operation	 based,	 so	 there
are	 no	 single	 branch-on-greater-than,	 branch-on-less-than-or-equal,	 or	 signed	 arithmetic
branches.	 There	 is	 also	 no	 unconditional	 branch	 and	 no	 branch-to-subroutine.	 The
unconditional	branch	can	be	imitated	by	first	executing	one	of	the	6502’s	many	clear-	or
set-flag	instructions,	then	executing	a	branch-on-that-flag’s-condition	instruction.

All	 three	 of	 the	main	 user	 registers	 can	 be	 loaded	 from	 and	 stored	 to	memory,	 but
only	 the	 accumulator	 (not	 the	 index	 registers)	 can	 be	 pushed	 onto	 and	 pulled	 from	 the
stack	 (although	 the	 flags	 can	 also	 be	 pushed	 and	 pulled).	 On	 the	 other	 hand,	 single
instructions	let	the	accumulator	value	be	transferred	to	either	index	register	or	loaded	from
either	index	register.	One	more	transfer	instruction	is	provided	for	setting	the	value	of	the
stack	pointer	to	the	value	in	the	X	index	register.

The	6502	System	Design
There	are	a	number	of	other	features	of	the	6502’s	design	which	make	it	unique	and

make	 systems	 designed	 with	 it	 stand	 apart	 from	 systems	 designed	 with	 other
microprocessors.

Pipelining
The	65x	microprocessors	have	 the	capability	of	doing	 two	 things	at	once:	 the	6502

can	be	carrying	on	an	internal	activity	(like	an	arithmetic	or	logical	operation)	even	as	it’s
getting	the	next	instruction	byte	from	the	instruction	stream	or	accessing	data	in	memory.

A	 processor	 is	 driven	 by	 a	 clock	 signal	 which	 synchronizes	 events	 within	 the
processor	with	memory	accesses.	A	cycle	is	a	basic	unit	of	time	within	which	a	single	step
of	an	operation	can	be	performed.	The	speed	with	which	an	instruction	can	be	executed	is
expressed	in	the	number	of	cycles	required	to	complete	it.	The	actual	speed	of	execution	is

a	function	both	of	the	number	of	cycles	required	for	completion	and	the	number	of	timing
signals	provided	by	the	clock	every	second.	Typical	clock	values	for	65x	processors	start
at	one	million	cycles	per	second	and	go	up	from	there.

As	 a	 result	 of	 the	 6502’s	 capability	 of	 performing	 two	 different	 but	 overlapping
phases	of	a	task	within	a	single	cycle,	which	is	called	pipelining,	the	65x	processors	are
much	faster	than	non-pipelined	processors.

Take	 the	 addition	 of	 a	 constant	 to	 the	 6502’s	 eight-bit	 accumulator	 as	 an	 example.
This	requires	five	distinct	steps:

Step	1: Fetch	the	instruction	opcode	ADC.
Step	2: Interpret	the	opcode	to	be	ADC	of	a	constant.
Step	3: Fetch	the	operand,	the	constant	to	be	added.
Step	4: Add	the	constant	to	the	accumulator	contents.
Step	5: Store	the	result	back	to	the	accumulator.

Pipelining	allows	the	6502	to	execute	steps	two	and	three	in	a	single	cycle:	after	getting	an
opcode,	it	increments	the	program	counter,	puts	the	new	program	address	onto	the	address
bus,	 and	gets	 the	next	 program	byte,	while	 simultaneously	 interpreting	 the	opcode.	The
completion	of	steps	four	and	five	overlaps	the	next	instruction’s	step	one,	eliminating	the
need	for	two	additional	cycles.

So	the	6502’s	pipelining	reduces	the	operation	of	adding	a	constant	from	five	cycles
to	two!

The	clock	speed	of	a	microprocessor	has	often	been	 incorrectly	presumed	 to	be	 the
sole	 determinant	 of	 its	 speed.	What	 is	 most	 significant,	 however,	 is	 the	memory	 cycle
time.	The	 68000,	 for	 example,	which	 typically	 operates	 at	 6	 to	 12	megahertz	 (MHz,	 or
millions	of	cycles	per	second)	requires	four	clock	periods	to	read	or	write	data	to	and	from
memory.	 The	 65x	 processors	 require	 only	 one	 clock	 period.	 Because	 the	 6502	 requires
fewer	 machine	 cycles	 to	 perform	 the	 same	 functions,	 a	 one-megahertz	 6502	 has	 a
throughput	 unmatched	 by	 the	 8080	 and	Z80	 processors	 until	 their	 clock	 rates	 are	 up	 to
about	four	MHz.

The	true	measure	of	the	relative	speeds	of	various	microprocessors	can	only	be	made
by	 comparing	 how	 long	 each	 takes,	 in	 its	 own	 machine	 code,	 to	 complete	 the	 same
operation.

Memory	Order	of	Multiple-Byte	Values
Multiple-byte	values	could	be	stored	in	memory	in	one	of	two	ways:	low-order	byte

first,	 followed	 by	 successively	 higher	 order	 bytes;	 or	 high-order	 byte	 first,	 followed	 by
successively	 lower	order	bytes.	The	6502,	 like	 the	Intel	and	Zilog	chips	(the	8080,	Z80,
8086,	and	so	on),	but	unlike	the	Motorola	chips	(the	6800,	6809,	68000,	and	so	on),	puts
the	low-order	byte	first,	into	the	lower	memory	address.

This	seemingly	unnatural	order	of	the	placement	of	multiple-byte	values	in	memory
can	be	disconcerting	at	first.	The	sixteen-bit	value	stored	in	memory	as	a	$30	followed	by

$FE	is	not	$30FE	but	 rather	$FE30.	Multiple-byte	values	are	written	high-order	 first,	 to
read	from	left	 to	right;	 this	 is	 the	opposite	of	how	the	bytes	are	placed	 in	memory.	This
memory	order,	however,	contributes	 to	 the	success	and	speed	of	pipelining.	Consider,	as
an	example,	the	loading	of	the	accumulator	using	absolute	indexed	addressing	(two	lines
for	a	cycle	indicate	simultaneous	operations	due	to	pipelining):

Cycle	1: Fetch	the	instruction	opcode,	LDA.

Cycle	2: Fetch	an	operand	byte,	the	low	byte	of	an	array	base.	Interpret	the
opcode	to	be	LDA	absolute	indexed.

Cycle	3: Fetch	the	second	operand	byte,	the	high	array	base	byte.	Add	the
contents	of	the	index	register	to	the	low	byte.

Cycle	4:	Cycle
5:

Add	the	carry	from	the	low	address	add	to	the	high	byte.	Fetch	the
byte	at	the	new	effective	memory	address.

(NOTE:	The	6502	also	does	a	fetch	during	Cycle	4,	before	it	checks	to	see	if	there	was	any
carry;	if	there	is	no	carry	into	the	high	byte	of	the	address,	as	is	often	true,	then	the	address
fetched	from	was	correct	and	there	is	no	cycle	five;	the	operation	is	a	four-cycle	operation
in	this	case.	Absolute	indexed	writes,	however,	always	require	five	cycles.)

The	low-high	memory	order	means	that	the	first	operand	byte,	which	the	6502	fetches
before	it	even	knows	that	the	opcode	is	LDA	and	the	addressing	mode	is	absolute	indexed,
is	 the	 low	byte	of	 the	 address	base,	 the	byte	which	must	be	 added	 to	 the	 index	 register
value	first;	it	can	do	that	add	while	getting	the	high	byte.

Consider	how	high-low	memory	order	would	weaken	 the	benefits	of	pipelining	and
slow	the	process	down:

Cycle	1: Fetch	the	instruction	opcode,	LDA.

Cycle	2: Fetch	an	operand	byte,	the	high	byte	of	an	array	base.	Interpret	the
opcode	to	be	LDA	absolute	indexed.

Cycle	3: Fetch	the	second	operand	byte,	the	low	array	base	byte.	Store	the
high	byte	temporarily.

Cycle	4: Add	the	contents	of	the	index	register	to	the	low	byte.
Cycle	5: Add	the	carry	from	the	low	address	add	to	the	high	byte.
Cycle	6: Fetch	the	byte	at	the	new	effective	memory	address.

Memory-Mapped	Input/Output
The	 65x	 family	 (like	Motorola’s	 but	 unlike	Zilog’s	 and	 Intel’s)	 accomplishes	 input

and	output	not	with	special	opcodes,	but	by	assigning	each	input/output	device	a	memory
location,	and	by	reading	from	or	writing	to	that	location.	As	a	result,	there’s	virtually	no
limit	 to	 the	 number	 of	 I/O	 devices	 which	 may	 be	 connected	 to	 a	 65x	 system.	 The
disadvantage	 of	 this	 method	 is	 that	 memory	 in	 a	 system	 is	 reduced	 by	 the	 number	 of
locations	which	are	set	aside	for	I/O	functions.

Interrupts
Interrupts	 tell	 the	processor	 to	 stop	what	 it	 is	 doing	and	 to	 take	 care	of	 some	more

pressing	matter	instead,	before	returning	to	where	it	left	off	in	regular	program	code.	An
interrupt	is	much	like	a	doorbell:	having	one	means	you	don’t	have	to	keep	going	to	the
door	every	few	minutes	to	see	if	someone	is	there;	you	can	wait	for	it	to	ring	instead.

An	external	device	like	a	keyboard,	for	example,	might	cause	an	interrupt	to	present
input.	Or	a	clock	might	generate	interrupts	to	toggle	the	processor	back	and	forth	between
two	or	more	 routines,	 letting	 it	do	several	 tasks	“at	once.”	A	special	kind	of	 interrupt	 is
reset	(the	panic	button),	which	is	generally	used	out	of	frustration	to	force	the	processor
into	 reinitialization.	 Reset	 generally	 does	 not	 return	 to	 the	 interrupted	 code	 after	 it	 has
been	served,	however.

The	6502	has	three	interrupt	vectors—memory	addresses	that	hold	the	locations	of
routines	 which	 are	 automatically	 executed	 upon	 recognition	 of	 an	 interrupt	 by	 the
processor.	The	first	of	these	is	used	for	reset.

The	second	vector	is	used	both	by	maskable	interrupts—those	which	you	can	force
the	processor	to	ignore,	either	temporarily	or	permanently,	by	setting	the	i	interrupt	bit	in
the	 status	 register—and	by	software	 interrupts—which	 are	 caused	 by	 the	 execution	 of
the	 break	 instruction	 (BRK).	 If	 any	 hardware	 can	 cause	 a	 maskable	 interrupt,	 the
interrupt	 service	 routine	 pointed	 to	 by	 this	 vector	 must	 determine	 the	 source	 of	 the
interrupt.	It	must	poll	a	status	flag	on	each	possible	hardware	source	as	well	as	check	the
stacked	 status	 register’s	 b	 flag,	 which	 is	 set	 and	 pushed	 when	 a	 break	 instruction	 is
executed.	When	it	finds	the	source	of	the	interrupt,	it	must	then	branch	to	a	routine	which
will	respond	to	the	interrupt	in	a	way	appropriate	to	the	source	(getting	a	character	from	a
communications	port,	for	example).

The	third	vector	is	used	by	nonmaskable	interrupts,	those	which	interrupt	regardless
of	 the	 i	 bit	 in	 the	 status	 register.	 The	 non-maskable	 interrupt	 is	 usually	 reserved	 for	 a
single	high-priority	or	time-critical	interrupt,	such	as	refresh	of	a	CRT	screen	or	to	warn	of
impending	power	failure.

The	 6502	was	 designed	 to	 service	 interrupts	 as	 fast	 as	 possible.	Because	 interrupts
cannot	be	served	until	 the	current	 instruction	is	completed	(so	no	data	is	 lost),	 the	worst
case	is	the	longest	instruction	time	and	the	6502’s	instructions	each	take	very	few	cycles	to
execute.	As	a	 result,	 the	6502	and	 its	 successors	have	 the	 lowest	 interrupt	 latency—the
time	 between	 interrupt	 occurrence	 and	 interrupt-handling	 response—of	 any	 eight-bit	 or
sixteen-bit	processors.

NMOS	Process
The	 6502	 is	 fabricated	 using	 the	NMOS	 (pronounced	 “EN	moss”)	 process	 (for	N-

channel	Metal-Oxide	Semiconductor).	Still	one	of	 the	most	common	of	 the	technologies
used	 in	 large-scale	 and	 very-large-scale	 integrated	 circuits,	NMOS	was,	 at	 the	 time	 the
6502	 was	 designed	 and	 for	 many	 years	 after,	 the	 most	 cost-efficient	 of	 the	 MOS
technologies	 and	 the	 easiest	 process	 for	 implementation	 of	 relatively	 high-speed	 parts.
This	 made	 NMOS	 popular	 among	 designers	 of	 microcomputers	 and	 other	 devices	 in

which	hardware	cost	was	an	important	design	factor.

Most	 of	 the	 current	 generation	 of	 8-,	 16-,	 and	 32-bit	 processors	 were	 originally
implemented	 in	NMOS.	Some,	 like	 the	 6502,	 are	 still	 only	 available	 in	NMOS	process
versions.	Others,	like	all	of	the	recently	designed	members	of	the	65x	family	(the	65C02,
65802,	and	65816)	were	produced	exclusively	using	the	CMOS	process.

Bugs	and	Quirks
The	6502	has	a	number	of	 features	which	 the	 less	enthusiastic	might	be	 inclined	 to

call	bugs	or	quirks.

The	 one	 most	 clearly	 a	 bug	 involves	 using	 indirect	 addressing	 with	 the	 jump
instruction,	when	its	operand	ends	in	$FF.	To	use	an	example,	should	cause	the	program
counter	 to	get,	as	 its	new	low	byte,	 the	contents	of	$20FF,	and	as	 its	new	high	byte,	 the
contents	 of	 $2100.	 However,	 while	 the	 6502	 increments	 the	 low	 byte	 of	 the	 indirect
address	from	$FF	to	00,	it	fails	to	add	the	carry	into	the	high	byte,	and	as	a	result	gets	the
program	counter’s	new	high	byte	from	$2000	rather	than	$2100.

JMP ($20FF)

You	can	also	run	into	trouble	trying	to	execute	an	unused	opcode,	of	which	the	6502
has	many.	The	results	are	unpredictable,	but	can	include	causing	the	processor	to	“hang.”

Finally,	the	decimal	mode	is	not	as	easy	to	use	as	it	might	be.	The	negative,	overflow,
and	zero	flags	 in	 the	status	register	are	not	valid	 in	decimal	mode	and	 the	setting	of	 the
decimal	flag,	which	toggles	the	processor	between	binary	and	decimal	math,	is	unknown
after	the	processor	has	received	a	hardware	“reset”.

3

Architecture	the	65C02
The	65C02	microprocessor	is	an	enhanced	version	of	the	6502,	implemented	using	a

silicon-gate	CMOS	process.	The	65C02	was	designed	primarily	as	a	CMOS	replacement
for	 the	 6502.	As	 a	 result,	 the	 significant	 differences	 between	 the	 two	 products	 are	 few.
While	 the	 65C02	 adds	 27	 new	 opcodes	 and	 two	 new	 addressing	modes	 (in	 addition	 to
implementing	the	original	151	opcodes	of	the	6502),	its	register	set,	memory	model,	and
types	of	operations	remain	the	same.

The	65C02	is	used	in	the	Apple	//c	and,	since	early	1985,	in	the	Apple	//e,	and	it	has
been	provided	as	an	enhancement	kit	for	earlier	//e’s.

Remember	 that	 even	as	 the	65C02	 is	 a	 superset	of	 the	6502,	 the	65802	and	65816,
described	in	the	next	chapter,	are	supersets	of	the	65C02.	All	of	the	enhancements	found
in	 the	 65C02	 are	 additionally	 significant	 in	 that	 they	 are	 intermediate	 to	 the	 full	 65816
architecture.	The	next	 chapter	will	 continue	 to	 borrow	 from	 the	material	 covered	 in	 the
previous	 ones,	 and	 generally	 what	 is	 covered	 in	 the	 earlier	 of	 these	 three	 architecture
chapters	is	not	repeated	in	the	subsequent	ones,	since	it	is	true	for	all	65x	processors.

The	65C02	Architecture
Both	the	65C02	and	the	6502	are	eight-bit	processors,	with	a	64K	address	space	and

exactly	the	same	register	set.

The	65C02	features	some	small	but	highly	desirable	improvements	in	the	use	of	the
status	 register	 flags:	 it	 gives	 valid	 negative,	 overflow,	 and	 zero	 flags	 while	 in	 decimal
mode,	unlike	the	6502;	and	it	resets	the	decimal	flag	to	zero	after	reset	and	interrupt.

The	 65C02	 has	 slightly	 different	 cycle	 counts	 on	 a	 number	 of	 operations	 from	 the
6502,	some	shorter	and	a	few	longer.	The	longer	cycle	counts	are	generally	necessary	to
correct	or	improve	operations	from	the	6502.

Addressing	Modes
The	65C02	introduces	the	two	new	addressing	modes	shown	in	Table	3.1,	as	well	as

supporting	 all	 the	 6502	 addressing	 modes.	 All	 of	 them	 will	 be	 explained	 in	 detail	 in
Chapters	7	and	11,	and	will	be	reviewed	in	the	Reference	Section.

Table	3.1.	The	65C02’s	New	Addressing	Modes.

Zero	page	 indirect	 provides	 an	 indirect	 addressing	mode	 for	 accessing	data	which
requires	 no	 indexing	 (the	 6502’s	 absolute	 indirect	 mode	 is	 available	 only	 to	 the	 jump
instruction).	 6502	 programmers	 commonly	 simulate	 indirection	 by	 loading	 an	 index
register	with	zero	(losing	its	contents	and	taking	extra	steps),	then	using	the	preindexed	or
post-indexed	addressing	modes	to	indirectly	reference	the	data.

On	 the	 other	 hand,	 combining	 indexing	 and	 indirection	 proved	 so	 powerful	 for
accessing	 data	 on	 the	 6502	 that	 programmers	 wanted	 to	 see	 this	 combination	 made
available	 for	 tables	 of	 jump	vectors.	Absolute	 indexed	 indirect,	 available	 for	 the	 jump
instruction	 only,	 provides	 this	multi-directional	 branching	 capability,	which	 can	 be	 very
useful	for	case	or	switch	statements	common	to	many	languages.

Instructions
While	the	65C02	provides	27	new	opcodes,	there	are	only	eight	new	operations.	The

27	 opcodes	 result	 from	 providing	 four	 different	 addressing	 modes	 for	 one	 of	 the	 new
mnemonics	 and	 two	 for	 two	 others,	 and	 also	 from	 expanding	 the	 addressing	modes	 for
twelve	 6502	 instructions.	 The	 most	 significant	 expansion	 of	 a	 6502	 instruction	 by
combining	 it	 with	 a	 6502	 addressing	 mode	 it	 did	 not	 previously	 use	 is	 probably	 the
addition	of	accumulator	addressing	for	the	increment	and	decrement	instructions.

The	new	65C02	operations,	shown	in	Table	3.2,	answer	many	programmer’s	prayers:
an	unconditional	branch	instruction,	instructions	to	push	and	pull	the	index	registers,	and
instructions	to	zero	out	memory	cells.	These	may	be	small	enhancements,	but	they	make
programming	the	65C02	easier,	more	straightforward,	and	clearer	to	document.	Two	more
operations	allow	the	65C02	to	set	or	clear	any	or	all	of	the	bits	in	a	memory	cell	with	a
single	instruction.

Table	3.2.	New	65C02	Instructions.

CMOS	Process
Unlike	the	6502,	which	is	fabricated	in	NMOS,	the	65C02	is	a	CMOS	(pronounced

“SEE	moss”)	part.	CMOS	stands	for	Complementary	Metal-Oxide	Semiconductor.

The	most	exciting	feature	of	CMOS	is	its	 low	power	consumption,	which	has	made
portable,	 battery-operated	 computers	 possible.	 Its	 low	 power	 needs	 also	 result	 in	 lower
heat	generation,	which	means	parts	can	be	placed	closer	together	and	heat-dissipating	air

space	minimized	in	CMOS-based	computer	designs.

CMOS	technology	is	not	a	new	process.	It’s	been	around	for	about	as	 long	as	other
MOS	 technologies.	 But	 higher	 manufacturing	 costs	 during	 the	 early	 days	 of	 the
technology	 made	 CMOS	 impractical	 for	 the	 highly	 competitive	 microcomputer	 market
until	the	mid	1980s,	so	process	development	efforts	were	concentrated	on	NMOS	and	not
applied	to	CMOS	until	1980	or	1981.

CMOS	technology	has	reached	a	new	threshold	in	that	most	of	its	negative	qualities,
such	as	 the	difficulty	with	which	smaller	geometries	are	achieved	relative	 to	 the	NMOS
process,	 have	 been	 overcome.	 Price	 has	 become	 competitive	with	 the	more	 established
NMOS	as	well.

Bugs	and	Quirks
The	65C02	fixes	all	of	the	known	bugs	and	quirks	in	the	6502.	The	result	of	executing

unused	opcodes	 is	now	predictable—they	do	nothing	 (that	 is,	 they	act	 like	no-operation
instructions).	An	interesting	footnote	is	that,	depending	on	the	unimplemented	instruction
that	is	executed,	the	number	of	cycles	consumed	by	the	no-operation	is	variable	between
one	and	eight	cycles.	Also,	the	number	of	bytes	the	program	counter	is	incremented	by	is
variable.	 It	 is	 strongly	 recommended	 that	 this	 feature	 not	 be	 exploited,	 as	 its	 use	 will
produce	code	incompatible	with	the	next-generation	65802	and	65816.

The	 jump	 indirect	 instruction	 has	 been	 fixed	 to	 work	 correctly	 when	 its	 operand
crosses	 a	 page	 boundary	 (although	 at	 the	 cost	 of	 an	 execution	 cycle).	 The	 negative,
overflow,	and	zero	flags	have	been	implemented	to	work	in	decimal	mode	(also	at	the	cost
of	an	execution	cycle).	The	decimal	mode	is	now	reset	to	binary	after	a	hardware	reset	or
an	interrupt.

Finally,	a	fix	which	is	generally	transparent	to	the	programmer,	but	which	eliminates	a
possible	 cause	 of	 interference	 with	 memory-mapped	 I/O	 devices	 on	 the	 6502,	 is	 the
elimination	of	an	invalid	address	read	while	generating	an	indexed	effective	address	when
a	page	boundary	is	crossed.

The	quirk	unique	to	the	65C02	results	from	trying	to	eliminate	the	quirks	of	the	6502.
The	 timing	 improvements	 of	 a	 number	 of	 instructions	 and	 the	 bug	 fixes	 from	 the	 6502
make	the	65C02	an	improvement	over	the	6502,	but	not	quite	fully	compatible	on	a	cycle-
by-cycle	 basis.	 This	 is	 only	 a	 consideration	 during	 the	 execution	 of	 time-critical	 code,
such	as	software	timing	loops.	As	a	practical	example,	this	has	affected	very	little	software
being	ported	from	the	Apple	//e	to	the	//c.

4

Sixteen-Bit	Architecture:	The	65816	and
the	65802

While	 the	65C02	was	designed	more	as	a	CMOS	replacement	 for	 the	6502	 than	an
enhancement	of	it,	the	65802	and	65816	were	created	to	move	the	earlier	designs	into	the
world	of	sixteen-bit	processing.	And	although	the	eight-bit	6502	had	been	a	speed	demon
when	first	released,	its	competition	changed	over	the	years	as	processing	sixteen	bits	at	a
time	 became	 common,	 and	 as	 the	 memory	 new	 processors	 could	 address	 started	 at	 a
megabyte.

The	65816	and	 the	65802	were	designed	 to	bring	 the	65x	 family	 into	 line	with	 the
current	generation	of	advanced	processors.	First	produced	in	prototypes	in	the	second	half
of	 1984,	 they	were	 released	 simultaneously	 early	 in	 1985.	 The	 65816	 is	 a	 full-featured
realization	of	the	65x	concept	as	a	sixteen-bit	machine.	The	65802	is	its	little	brother,	with
the	65816’s	sixteen-bit	processing	packaged	with	the	6502’s	pinout	for	compatibility	with
existing	hardware.

The	two	processors	are	quite	similar.	They	are,	 in	fact,	 two	different	versions	of	the
same	basic	design.	In	the	early	stages	of	the	chip	fabrication	process	they	are	identical	and
only	 assume	 their	 distinct	 “personalities”	 during	 the	 final	 (metalization)	 phase	 of
manufacture.

The	 two	 processors	 provide	 a	 wealth	 of	 enhancements:	 another	 nine	 addressing
modes,	 78	 new	 opcodes,	 a	 “hidden”	 second	 accumulator	 in	 eight-bit	mode,	 and	 a	 zero
page	 which,	 renamed	 the	direct	 page,	 can	 be	 relocated	 to	 any	 contiguous	 set	 of	 $100
bytes	 anywhere	 within	 the	 first	 64K	 of	 memory	 (which	 in	 the	 case	 of	 the	 65802	 is
anywhere	 in	 its	 address	 space).	The	most	 dramatic	 of	 all	 the	 enhancements	 common	 to
both	 65802	 and	 65816,	 though,	 is	 the	 expansion	 of	 the	 primary	 user	 registers—the
accumulator,	index	registers,	and	stack	pointer—to	sixteen-bit	word	size.	The	accumulator
and	 index	 registers	 can	 be	 toggled	 to	 sixteen	 bits	 from	 eight,	 and	 back	 to	 eight	 when
needed.	 The	 stack,	 pointed	 to	 by	 an	 expanded-to-sixteen-bit	 stack	 register,	 can	 be
relocated	from	page	one	to	anywhere	in	a	64K	range.

The	 primary	 distinction	 between	 the	 two	 processors	 is	 the	 range	 of	 addressable
memory:	the	65816	can	address	up	to	sixteen	megabytes;	the	65802	is	constrained	by	its
6502	pinout	to	64K.

A	 secondary	 distinction	 between	 the	 two	processors	 is	 that	 the	 65816’s	 new	pinout
also	provides	several	significant	new	signals	for	the	hardware	designer.	While	outside	the
primary	 scope	of	 this	book,	 these	new	signals	 are	mentioned	 in	part	 in	 this	 chapter	 and
described	in	some	detail	in	Appendix	C.

It	is	important	to	remember	that	the	65802	is	in	fact	a	65816	that	has	been	coerced	to
live	 in	 the	 environment	 designed	 originally	 for	 the	 6502	 and	 65C02.	 Outside	 of	 the

memory	 and	 signal	 distinctions	 just	 listed,	 the	 65816	 and	 the	 65802	 are	 identical.	Both
have	a	native	mode,	 in	which	 their	 registers	can	be	used	 for	either	eight-	or	 sixteen-bit
operations.	 Both	 have	 a	 6502	 emulation	 mode,	 in	 which	 the	 6502’s	 register	 set	 and
instruction	timings	emulate	the	eight-bit	6502	(not	the	65C02)	exactly	(except	they	correct
a	 few	6502	bugs).	All	 existing	6502	 software	 can	be	 run	by	 the	new	processor—as	 can
virtually	all	65C02	software—even	as	most	of	the	native	mode’s	enhancements	(other	than
sixteen-bit	registers)	are	programmable	in	emulation	mode,	too.

To	access	sixteen	megabytes,	the	signals	assigned	to	the	various	pins	of	the	65816’s
40-pin	 package	 are	 different	 from	 the	 6502,	 the	 65C02	 and	 the	 65802,	 so	 it	 cannot	 be
installed	 in	 existing	 65x	 computers	 as	 a	 replacement	 upgrade.	 The	 65802,	 on	 the	 other
hand,	has	a	pinout	that	is	identical	to	that	of	the	6502	and	65C02	and	can	indeed	be	used
as	a	replacement	upgrade.

This	 makes	 the	 65802	 a	 unique,	 pin-compatible,	 software-compatible	 sixteen-bit
upgrade	 chip.	 You	 can	 pull	 a	 6502	 out	 of	 its	 socket	 in	 any	 existing	 6502	 system,	 and
replace	 it	 with	 a	 65802	 because	 it	 powers-on	 in	 the	 6502	 emulation	mode.	 It	 will	 run
existing	applications	exactly	the	same	as	the	6502	did.	Yet	new	software	can	be	written,
and	 6502	 programs	 rewritten,	 to	 take	 advantage	 of	 the	 65802’s	 sixteen-bit	 capabilities,
resulting	 in	 programs	 which	 take	 up	 much	 less	 code	 space	 and	 which	 run	 faster.
Unfortunately,	even	with	a	65802	installed,	an	older	system	will	remain	unable	to	address
memory	 beyond	 the	 original	 64K	 limits	 of	 the	 6502.	 This	 is	 the	 price	 of	 hardware
compatibility.

The	 information	 presented	 in	 this	 chapter	 builds	 directly	 on	 the	 information	 in	 the
previous	two	chapters;	it	should	be	considered	as	a	continuous	treatment	of	a	single	theme.
Even	 in	 native	mode	with	 sixteen-bit	 registers,	 the	 65802	 and	 65816	 processors	 utilize
many	of	 the	6502	 and	65C02	 instructions,	 registers,	 and	 addressing	modes	 in	 a	manner
which	differs	little	from	their	use	on	the	earlier	processors.	If	you	are	already	familiar	with
the	6502	or	 the	65C02,	you	will	discover	 that	 the	65802	and	65816	logically	expand	on
these	earlier	designs.

Power-On	Status:	6502	Emulation	Mode
When	 the	 65816	 and	 65802	 are	 powered	 on,	 they	 initialize	 themselves	 into	 6502

emulation	mode	 in	which,	with	 the	exception	of	 fixing	several	6502	bugs,	 they	exactly
emulate	the	6502.	The	stack	is	confined	to	page	one,	just	like	the	6502	stack	pointer.	The
registers	are	configured	to	eight	bits,	to	model	the	6502’s	registers.	Every	6502	instruction
is	 implemented	 identically.	The	 timing	of	each	 instruction	 is	exactly	 the	 same	as	on	 the
original	NMOS	6502.	The	direct	page	of	 the	65802	and	65816,	which	as	you	will	 learn
can	 be	 relocated	 using	 the	 sixteen-bit	 direct	 page	 register,	 is	 initialized	 to	 page	 zero,
making	 direct	 page	 addressing	 exactly	 equivalent	 to	 6502	 zero	 page	 addressing.	 The
program	and	data	bank	 registers,	which	as	you	will	 learn	provide	efficient	access	 in	 the
65816	to	any	one	or	two	64K	banks	of	memory	at	a	time,	are	initialized	to	the	zero	bank.

Unlike	the	NMOS	6502,	which	has	undefined	results	when	unimplemented	opcodes
are	executed,	and	the	65C02,	which	treats	unimplemented	opcodes	as	variously-timed	and
-sized	no-operations,	the	65802	instruction	set	implements	every	one	of	the	256	possible

one-byte	opcodes.	These	additional	instructions	are	available	in	emulation	mode	as	well	as
in	native	mode.

Among	 the	 newly	 implemented	 opcodes	 are	 ones	 that	 allow	 the	 processors	 to	 be
switched	 to	 their	 native	mode—sixteen-bit	 operation.	While	 there	 is	more	 to	 say	 about
6502	emulation	mode,	it	will	be	easier	to	understand	in	the	context	of	native	mode.

The	Full-Featured	65x	Processor:	The	65816	in
Native	Mode

The	 65816	 in	 its	native	mode	 (as	 opposed	 to	 its	 6502	 emulation	mode)	 has	 it	 all:
sixteen-bit	 registers,	 24-bit	 addressing,	 and	 all	 the	 rest.	 The	 65802’s	 native	 mode	 is	 a
subset	of	this,	as	are	the	emulation	modes	of	both	processors.

Figure	4.1	 shows	 the	programming	model	 for	 the	65816	 in	native	mode.	While	 the
accumulator	is	shown	as	a	sixteen-bit	register,	it	may	be	set	to	be	either	a	single	sixteen-bit
accumulator	 (A	 or	C)	 or	 two	 eight-bit	 accumulators,	 one	 accessible	 (A)	 and	 the	 other
hidden	but	exchangeable	(B).	While	the	index	registers	are	shown	as	sixteen-bit	registers,
they	may	 be	 set,	 as	 a	 pair,	 to	 be	 either	 sixteen-bit	 registers	 or	 eight-bit	 registers—their
high	bytes	are	zeroed	when	they	are	set	to	eight	bits.	The	obvious	advantage	of	switching
from	a	processor	with	eight-bit	registers	 to	one	with	sixteen-bit	registers	 is	 the	ability	to
write	programs	which	are	from	25	to	50	percent	shorter,	and	which	run	25	to	50	percent
faster	due	to	the	ease	with	which	sixteen-bit	data	is	manipulated.

The	 feature	 that	 most	 clearly	 distinguishes	 the	 current	 generation	 of	 advanced
microcomputer	 systems,	 however,	 is	 the	 ability	 to	 address	 lots	 of	 memory.	 It	 is	 this
increased	 memory	 addressability	 which	 has	 ushered	 in	 the	 new	 era	 of	 microcomputer
applications	 possibilities,	 such	 as	 large	 spreadsheets,	 integrated	 software,	 multi-user
systems,	and	more.	In	this	regard,	the	65816	stands	on	or	above	par	with	any	of	the	other
high-performance	microprocessors,	such	as	the	68000,	the	8086,	or	their	successors.

65816	Native	Mode	Programming	Model
(16-bit	accumulator	&	index	register	modes:	m=0	&	x=0)

Figure	4.1.	65816	Native	Mode	Programming	Model.

There	 are	 two	 new	 eight-bit	 registers	 called	 bank	 registers.	 One,	 called	 the	 data
bank	 register,	 is	 shown	 placed	 above	 the	 index	 registers	 and	 the	 other,	 called	 the
program	bank	 register,	 is	 appended	 to	 the	 program	 counter.	 The	 65816	 uses	 the	 two
bank	registers	to	provide	24-bit	addressing.

A	bank	of	memory	is	much	like	a	page;	just	as	a	page	is	a	range	of	memory	that	can
be	defined	by	eight	bits	(256	bytes),	a	bank	is	a	range	of	memory	that	can	be	defined	by
sixteen	 bits	 (64K	 bytes).	 For	 processors	 like	 the	 6502,	 which	 have	 only	 sixteen-bit
addressing,	 a	 64K	bank	 is	 not	 a	 relevant	 concept,	 since	 the	 only	 bank	 is	 the	 one	 being
currently	addressed.	The	65816,	on	the	other	hand,	partitions	its	memory	range	into	64K
banks	so	that	sixteen-bit	registers	and	addressing	modes	can	be	used	to	address	the	entire
range	of	memory.

Bank	zero,	for	example,	is	 that	64K	range	for	which,	when	addressed	using	24	bits,
the	highest	byte	(also	called	the	bank	byte)	is	zero.	Similarly,	a	highest	byte	of	nine	in	a
24-bit	 address	 would	 address	 a	 location	 somewhere	 in	 bank	 nine.	 This	 highest	 byte	 is
called	the	bank	byte	so	that	the	term	high	byte	can	still	be	used	to	refer	to	the	byte	that
determines	the	page	address.	In	other	words,	“high	byte”	is	used	on	the	65816	as	it	is	on

the	6502,	65C02	and	65802,	where	addresses	are	only	sixteen	bits.

Another	new	register	shown	in	Figure	4.1	is	the	direct	page	register.	Much	like	the
6800’s	special	zero	page	became	the	6809’s	direct	page,	the	6502’s	and	65C02’s	zero	page
has	 been	 transformed	 into	 the	 65802’s	 and	 65816’s	 direct	 page.	 This	 direct	 page	 is,	 as
Figure	4.1	shows,	limited	to	bank	zero,	shown	in	the	programming	model	by	the	implied
zero	as	its	bank	byte.	The	direct	page	register	can	be	set	to	any	256-byte	page	starting	on
any	 byte	 boundary	 within	 bank	 zero.	 All	 of	 the	 6502	 instructions	 that	 use	 zero	 page
addressing	use	an	expanded	form	called	direct	page	addressing	on	the	65816	and	65802;
however,	 when	 the	 direct	 page	 register	 value	 is	 zero,	 the	 two	modes	 are	 operationally
identical.

Figure	4.1	also	shows	that	the	stack	pointer	has	been	unbound	from	page	one	to	float
anywhere	in	bank	zero	by	making	it	a	sixteen-bit	register.

While	Figure	4.1	doesn’t	show	the	interrupt	vectors,	they	too	are	located	in	bank	zero,
and	they	point	to	interrupt	handling	routines	which	also	must	be	located	in	bank	zero.

Finally,	the	status	register	is	different	from	the	6502’s	and	65C02’s	(compare	Figure
4.1	with	Figure	2.1	in	Chapter	2).	The	first	obvious	difference	is	the	single	bit	labelled	e
for	emulation	hanging	off	the	top	of	the	carry	flag.	Accessible	only	through	the	carry	flag,
its	contents	determine	whether	the	processor	is	in	native	or	6502	emulation	mode.	Here	it
holds	a	zero	 to	 indicate	 the	processor	 is	 in	native	mode.	The	second	difference	 is	 the	m
and	 x	 flags	 replace	 the	 6502’s	 break	 and	 unused	 flags:	 m	 indicates	 the	 size	 of	 the
accumulator	(eight	or	sixteen	bits)	as	well	as	the	size	of	memory	accesses;	x	indicates	the
size	of	 the	 two	index	registers	 (eight	or	sixteen	bits).	Changing	 the	contents	of	either	of
these	two	new	flags	toggles	the	size	of	the	corresponding	registers.	The	b	flag	is	no	longer
necessary	 to	 distinguish	 the	BRK	 software	 interrupt	 from	 hardware	 interrupts	 because
native	 mode	 provides	 a	 new	 interrupt	 vector	 for	 software	 interrupts,	 separate	 from	 the
hardware	interrupt	vector.

Native	mode	also	provides	one	timing	improvement	over	the	6502:	one	cycle	is	saved
during	a	cross-page	branch.

The	Program	Bank	Register
The	 65816’s	 sixteen-bit	 program	 counter	 is	 concatenated	 to	 its	 eight-bit	 program

counter	 bank	 register	 (PBR,	 or	K	 when	 used	 in	 instruction	 mnemonics)	 to	 extend	 its
instruction-addressing	 capability	 to	 24	 bits.	 When	 the	 65816	 gets	 an	 instruction	 from
memory,	it	gets	it	from	the	location	pointed	to	by	the	concatenation	of	the	two	registers.	In
many	ways,	 the	 net	 effect	 is	 a	 24-bit	 program	 counter;	 for	 example,	when	 an	 interrupt
occurs,	all	24	bits	(program	counter	plus	program	counter	bank)	are	pushed	onto	the	stack.
Likewise,	when	a	return-from-interrupt	occurs,	24	bits	(both	registers)	are	pulled	from	the
stack.

All	previous	 instructions	 that	 jumped	 to	 sixteen-bit	absolute	addresses	 still	work	by
staying	within	the	same	bank.	Relative	branches	stay	in	the	same	bank;	that	is,	you	can’t
branch	across	bank	boundaries.	And	program	segments	cannot	cross	bank	boundaries;	 if
the	program	counter	 increments	past	$FFFF,	 it	 rolls	over	 to	$0000	without	 incrementing
the	program	counter	bank.

New	 instructions	 and	 addressing	 modes	 were	 added	 to	 let	 you	 transfer	 control
between	 banks:	 jump	 absolute	 long	 (jump	 to	 a	 specified	 24-bit	 address),	 jump	 indirect
long	(the	operand	is	an	absolute	address	in	bank	zero	pointing	to	a	24-bit	address	to	which
control	 is	 transferred),	 jump	 to	 subroutine	 long	 (to	 a	 specified	 24-bit	 address,	 with	 the
current	 program	 counter	 and	 program	 bank	 register	 pushed	 onto	 the	 stack	 first),	 and	 a
corresponding	return	from	subroutine	long,	which	re-loads	the	bank	register	as	well	as	the
program	 counter.	 (The	 addressing	 modes	 are	 among	 those	 listed	 in	 Table	 4.3,	 the
instructions	in	Table	4.4.)

These	instructions	that	specify	a	complete	24-bit	address	to	go	to,	along	with	native
mode’s	 software	 interrupt	 and	 return	 from	 interrupt	 instructions,	 are	 the	 only	 ones	 that
modify	the	value	in	the	program	bank	register.	The	program	bank	can	be	pushed	onto	the
stack	so	it	can	be	pulled	into	another	register	and	be	examined	or	tested.	But	there	is	no
instruction	for	pulling	the	program	bank	register	from	the	stack,	since	that	would	change
the	bank	the	next	instruction	would	come	from—certain	to	be	catastrophic.	To	avoid	such
“strange”	branches	across	banks,	the	program	counter	bank	register	can	only	be	changed
when	the	program	counter	is	changed	at	the	same	time.

The	Data	Bank	Register
The	data	 bank	 register	 (DBR	 or,	when	used	 as	 part	 of	 a	mnemonic,	B)	 defines	 the

default	bank	to	be	used	for	reading	or	writing	data	whenever	one	of	the	addressing	modes
that	specifies	(only)	a	sixteen-bit	address	is	used,	such	as	the	absolute,	indirect,	or	indexed
instructions	found	on	the	6502.	Such	sixteen-bit	effective	addresses	as	used	with	the	6502
are	concatenated	with	the	value	in	the	data	bank	register	to	form	a	24-bit	address,	much	as
the	 program	 counter	 is	 concatenated	 with	 the	 program	 bank	 register.	 An	 important
difference	is	that,	unlike	the	program	counter	bank	register,	the	data	bank	register	can	be
temporarily	 incremented	 by	 instructions	which	 use	 indexed	 addressing;	 in	 other	words,
bank	boundaries	do	not	confine	indexing,	which	crosses	them	into	the	next	bank.

As	 already	 mentioned,	 direct	 page	 and	 stack-based	 values	 are	 always	 accessed	 in
bank	zero,	since	the	implied	bank	used	with	the	direct	page	and	stack	is	zero.	But	indirect
addresses	pulled	out	of	the	direct	page	or	off	the	stack	(when	used	with	addressing	modes
that	do	not	further	specify	the	bank	value)	point	to	locations	in	the	current	data	bank.

The	existence	of	 the	data	bank	 register	on	 the	65816	provides	 a	 convenient	way	 to
access	a	large	range	of	data	memory	without	having	to	resort	to	24-bit	address	operands
for	every	operation.

The	Direct	Page	Register
The	 direct	 page	 register	 (D)	 points	 to	 the	 beginning	 of	 direct	 page	memory,	which

replaces	zero	page	memory	as	the	special	page	used	for	short-operand	addressing.	All	of
the	 6502	 instructions	 that	 use	 zero	 page	 addressing	 use	 an	 expanded	 form	 called	 direct
page	 addressing	on	 the	65816	and	65802.	 If	 the	direct	 page	 register	 is	 set	 to	 zero,	 then
direct	page	memory	is	the	zero	page,	and	direct	page	addressing	is	operationally	identical
to	zero	page	addressing.

One	effect	of	having	a	direct	page	register	is	that	you	can	set	up	and	alternate	between
multiple	direct	page	areas,	giving	each	subroutine	or	 task	 its	own	private	direct	page	of

memory,	which	can	prove	both	useful	and	efficient.

The	Stack	Pointer
The	native	mode	stack	pointer	holds	a	sixteen-bit	address	value.	This	means	it	can	be

set	 to	point	 to	any	 location	 in	bank	zero.	 It	also	means	 the	stack	 is	no	 longer	 limited	 in
length	to	just	$100	bytes,	nor	limited	to	page	one	($100	to	$1FF).	Page	one	therefore	loses
its	 character	 as	 a	 “special”	memory	 area	 and	may	 be	 treated	 like	 any	 other	 page	while
running	the	65802	or	65816	in	the	native	mode.

The	Accumulator	and	the	Index	Registers
The	key	difference	between	the	65816/65802	and	the	earlier	processors	in	the	series	is

that	 the	 65816’s	 three	 primary	 user	 registers—the	 accumulator	 and	 the	X	 and	Y	 index
registers—can	be	toggled	between	eight	and	sixteen	bits.	You	can	select	which	size	(eight
or	sixteen	bits)	you	wish	to	use	by	executing	special	control	instructions	that	modify	the
new	m	and	x	flags.

This	 enhances	 the	 basic	 processing	 power	 of	 the	 chip	 tremendously.	 A	 simple
subtraction	 of	 sixteen-bit	 numbers,	 for	 example,	 illustrates	 the	 difference.	 The	 eight-bit
6502	must	be	programmed	to	load	the	low	byte	of	the	first	sixteen-bit	number,	subtract	the
low	byte	 of	 the	 second	 number,	 then	 save	 the	 result,	 load	 the	 first	 number’s	 high	 byte,
subtract	the	second	number’s,	and	finally,	save	the	high	result.	The	sixteen-bit	processors,
on	the	other	hand,	can	load	one	sixteen-bit	value,	subtract	the	other,	then	save	the	sixteen-
bit	result.	Three	steps	replace	six.

With	 its	 ability	 to	 change	 register	 size,	 the	65816	 functions	 equally	well	with	 eight
bits	or	sixteen.	From	the	programmer’s	point	of	view,	it	is	a	dual	word-size	machine.	The
machine	word	 size—the	basic	 unit	 of	 data	 the	machine	processes	 in	 a	 given	 instruction
cycle—may	be	either	byte	or	double	byte,	that	is,	eight	or	sixteen	bits.

In	 the	 terminology	used	 in	describing	other	 sixteen-bit	processors,	 the	 term	word	 is
used	specifically	to	refer	to	sixteen-bit	data,	and	byte	to	refer	to	eight-bit	data.	But	other
sixteen-bit	 processors	 generally	 have	 different	mechanisms	 for	 selecting	 byte	 or	 double
byte	data	to	operate	upon.	The	terminology	appropriate	to	the	65802	and	65816	is	to	refer
to	 sixteen-bit	 data	 as	 double	 byte,	 rather	 than	 word,	 since	 their	 word	 size	 alternates
between	eight	bits	and	sixteen,	and	since	they	can	operate	in	either	byte	mode	or	double
byte	mode	with	equal	effectiveness.	They	are	hybrid	processors.

The	width	of	the	accumulator	and	the	width	of	the	index	registers	are	independently
controlled	by	setting	and	resetting	the	two	special	flag	bits	within	the	status	register,	 the
index	register	select	(x)	and	memory/accumulator	select	(m)	flags.	When	both	are	set,
the	 eight-bit	 register	 architecture	 of	 the	 6502	 is	 in	 force.	 While	 very	 similar	 to	 the
emulation	mode,	this	eight-bit	native	mode	is	subtly	different	in	important	ways:	a	BRK
vector	is	available	in	the	native	mode;	interrupt	processing	is	different	between	emulation
and	native	mode	in	general;	and	of	course	sixteen-bit	processing	can	be	called	up	with	a
single	 instruction.	 Yet	 the	 65802	 and	 65816	will	 execute	 a	 good	 deal	 of	 existing	 6502
programs	without	modification	in	this	mode.

When	either	or	both	the	index	register	select	or	memory	select	flags	are	cleared,	the
word	size	of	the	corresponding	register(s)	is	expanded	from	eight	bits	to	sixteen.

The	four	possible	modes	of	operation	are	shown	in	Table	4.1.

Table	4.1.	The	Four	Possible	Native	Mode	Register
Combinations.

When	 the	 opcode	 for	 a	 given	 instruction	 is	 fetched	 from	memory	 during	 program
execution,	 the	 processor	 may	 respond	 differently	 based	 upon	 the	 settings	 of	 the	 two
register	 select	 flags.	 Their	 settings	may	 be	 thought	 of	 as	 extensions	 to	 the	 opcode.	 For
example,	consider	the	following	instruction:

which	 loads	 the	accumulator	with	data	 from	the	effective	address	 formed	by	 the	sum	of
$B000	and	the	contents	of	the	X	register.	The	X	register	contents	can	be	either	eight	bits
or	 sixteen,	 depending	 upon	 the	 value	 of	 the	 index	 select	 flag.	 Furthermore,	 the
accumulator	will	be	loaded	from	the	effective	address	with	either	eight	or	sixteen	bits	of
data,	depending	upon	the	value	of	the	memory/accumulator	select	flag.

The	instruction	and	addressing	mode	used	in	the	example	are	found	also	on	the	6502
and	65C02;	 the	opcode	byte	 ($BD)	 is	 identical	on	all	 four	processors.	The	65816’s	new
mode	flags	greatly	expand	the	scope	of	the	6502’s	instructions.	For	programmers	already
familiar	with	 the	 6502,	 the	 understanding	 of	 this	 basic	 principle—how	one	 opcode	 can
have	up	to	four	different	effects	based	on	the	flag	settings—is	the	single	most	important
principle	to	grasp	in	moving	to	a	quick	mastery	of	the	65802	or	65816.

Switching	Registers	Between	Eight	and	Sixteen	Bits
The	two	register	select	flags	are	set	or	cleared	by	two	new	instructions	provided	for

modifying	the	status	register:	one	of	the	instructions,	SEP,	(set	P)	can	be	used	to	set	any
bit	or	bits	in	the	P	status	register;	the	other,	REP,	(reset	P)	can	be	used	to	reset	any	bit	or
bits	in	the	status	register.

Figure	4.2	shows	the	results	of	changing	the	index	registers	and	accumulator	between
eight	and	sixteen	bits.	When	a	sixteen-bit	index	register	is	switched	to	eight	bits,	the	high
byte	 is	 lost	 irretrievably	 and	 replaced	 by	 a	 zero.	 On	 the	 other	 hand,	 when	 an	 eight-bit
index	register	is	switched	to	sixteen	bits,	its	unsigned	value	is	retained	by	concatenating	it

to	a	zero	high	byte;	that	is,	the	eight-bit	unsigned	index	already	in	the	register	is	extended
to	sixteen	bits.

Unlike	 the	 index	 operations,	 switching	 the	 accumulator’s	 size	 in	 either	 direction	 is
reversible.	 The	 accumulator	 is	 treated	 differently	 due	 to	 its	 function,	 not	 as	 an	 index
register,	but	as	the	register	of	arithmetic	and	logic.	In	this	role,	 it	 is	often	called	upon	to
operate	on	eight-bit	values	with	sixteen-bit	ones	and	vice	versa.

When	the	sixteen-bit	A	accumulator	 is	switched	to	eight	bits,	 the	low	byte	becomes
the	 new	 eight-bit	A	 accumulator	while	 the	 high	 byte	 becomes	 the	 eight-bit	 “hidden”	B
accumulator.	B	may	be	seen	as	an	annex	to	the	A	accumulator,	accessible	only	through	a
new	instruction	which	exchanges	the	values	in	the	two	accumulators	(making	B	useful	for
temporarily	 storing	 off	 the	 eight-bit	 value	 in	A).	 Conversely,	 when	 the	 accumulator	 is
switched	from	eight	bits	to	sixteen,	the	new	sixteen-bit	A	accumulator	has,	as	its	low	byte,
the	 previous	 eight-bit	 A	 accumulator	 and,	 as	 its	 high	 byte,	 the	 previous	 hidden	 B
accumulator.

Certain	instructions	that	transfer	the	accumulator	to	or	from	other	sixteen-bit	registers
refer	 to	 the	 sixteen-bit	 accumulator	 as	C	 to	 emphasize	 that	 all	 sixteen	 accumulator	 bits
will	 be	 referenced	 regardless	 of	 whether	 the	 accumulator	 is	 set	 to	 eight-	 or	 sixteen-bit
mode.	Again,	this	is	illustrated	in	Figure	4.2.

The	Status	Register
Because	 the	 emulation	 bit	 is	 a	 “phantom”	 bit,	 it	 cannot	 be	 directly	 tested,	 set,	 or

cleared.	 The	 flag	 that	 it	 “phantoms”	 or	 overlays	 is	 the	 carry	 bit;	 there	 is	 a	 special
instruction,	XCE,	 that	 exchanges	 the	 contents	 of	 the	 two	 flags.	 This	 is	 the	 “trapdoor”
through	which	the	emulation	mode	is	entered	and	exited.

Two	 status	 register	 bits	 were	 required	 for	 the	 two-flag	 eight-or-sixteen-bit	 scheme.
While	the	6502’s	status	register	has	only	one	unused	status	register	bit	available,	its	break
flag	 is	used	only	 for	 interrupt	processing,	 not	 during	 regular	program	execution,	 to	 flag
whether	 an	 interrupt	 comes	 from	 a	 break	 instruction	 or	 from	 a	 hardware	 interrupt.	 By
giving	the	break	instruction	its	own	interrupt	vector	in	native	mode,	the	65816’s	designers
made	a	second	bit	available	for	the	m	and	x	register	select	flags.

Results	of	Switching	Register	Sizes
(L	=	bits	in	low	byte;	H	=	bits	in	high	byte)

Figure	4.2.	Results	of	Switching	Register	Sizes.

6502/65C02	Addressing	Modes	on	the	65816
All	of	 the	6502	and	65C02	addressing	modes	are	available	 to	 the	65816/65802,	but

native	mode’s	sixteen-bit	features	mean	you	need	to	expand	your	thinking	about	what	they
will	do.	For	example,	the	65816’s	direct	page,	which	can	be	located	anywhere	in	memory,
replaces	the	earlier	zero	page	as	the	special	page	for	short-operand	addressing	modes.	All
6502/65C02	zero	page	addressing	modes	become	direct	page	addressing	modes,	as	shown
in	Table	4.2.

Table	4.2.	Addressing	Modes:	Zero	Page	vs.	Direct	Page.

Notice	 in	Table	4.2	 that	 the	assembler	 syntax	 for	each	direct	page	addressing	mode

(not	to	mention	the	object	bytes	themselves)	is	the	same	as	its	zero	page	counterpart.	The
names	and	the	results	of	the	addressing	modes	are	what	differ.	Direct	page	addressing,	like
the	 6502/65C02	 zero	 page	 addressing,	 allows	 a	memory	 location	 to	 be	 addressed	 using
only	an	eight-bit	operand.	In	the	case	of	the	6502,	a	sixteen-bit	zero	page	effective	address
is	 formed	 from	 an	 eight-bit	 offset	 by	 concatenating	 a	 zero	 high	 byte	 to	 it.	 In	 the
65802/65816,	the	direct	page	effective	address	is	formed	by	adding	the	eight-bit	offset	to
the	 sixteen-bit	 value	 in	 the	 direct	 page	 register.	 This	 lets	 you	 relocate	 the	 direct	 page
anywhere	in	bank	zero,	on	any	byte	boundary.	Note,	however,	that	it	 is	most	efficient	to
start	the	direct	page	on	a	page	boundary	because	this	saves	one	cycle	for	every	direct	page
addressing	operation.

When	 considering	 the	 use	 of	 6502/65C02	 zero	 page	 instructions	 as	 65802/65816
direct	page	instructions,	remember	that	a	direct	page	address	of	$23	is	located	in	memory
at	location	$0023	only	if	the	direct	page	register	is	set	to	zero;	if	the	direct	page	register
holds	 $4600,	 for	 example,	 then	 direct	 page	 address	 $23	 is	 located	 at	 $4623.	The	 direct
page	is	essentially	an	array	which,	when	it	was	the	zero	page,	began	at	address	zero,	but
which	on	the	65816	and	65802	can	be	set	to	begin	at	any	location.

In	the	6502/65C02,	the	effective	address	formed	using	zero	page	indexed	addressing
from	 a	 zero	 page	 base	 address	 of	 $F0	 and	 an	 index	 of	 $20	 is	 $10;	 that	 is,	 zero	 page
indexed	 effective	 addresses	 wrap	 around	 to	 always	 remain	 in	 the	 zero	 page.	 In	 the
emulation	mode	this	is	also	true.	But	in	native	mode,	there	is	no	page	wraparound:	a	direct
page	starting	at	$2000	combined	with	a	direct	page	base	of	$20	and	a	 sixteen-bit	 index
holding	$300	results	in	an	effective	address	of	$2320.

The	 three	 main	 registers	 of	 the	 65802/65816	 can,	 in	 native	 mode,	 be	 set	 to	 hold
sixteen	 bits.	When	 a	 register	 is	 set	 to	 sixteen	 bits,	 then	 the	 data	 to	 be	 accessed	 by	 that
register	will	also	be	sixteen	bits.

For	 example,	 shifting	 the	 accumulator	 left	 one	 bit,	 an	 instruction	 which	 uses	 the
accumulator	addressing	mode,	shifts	sixteen	bits	left	rather	than	eight	if	the	accumulator	is
in	sixteen-bit	mode.	Loading	a	sixteen-bit	index	register	with	a	constant	using	immediate
addressing	 means	 that	 a	 sixteen-bit	 value	 follows	 the	 instruction	 opcode.	 Loading	 a
sixteen-bit	 accumulator	 by	 using	 absolute	 addressing	 means	 that	 the	 sixteen-bit	 value
stored	starting	at	the	absolute	address,	and	continuing	into	the	location	at	the	next	address,
is	loaded	into	the	accumulator.

Sixteen-bit	index	registers	give	new	power	to	the	indexed	addressing	modes.	Sixteen-
bit	index	registers	can	hold	values	ranging	up	to	64K;	no	longer	must	the	double-byte	base
of	an	array	be	specified	as	a	constant	with	the	index	register	used	for	the	index.	A	sixteen-
bit	 index	 can	 hold	 the	 array	 base	 with	 the	 double-byte	 constant	 specifying	 the	 (fixed)
index.

Finally,	the	65816	has	expanded	the	scope	of	6502	and	65C02	instructions	by	mixing
and	 matching	 many	 of	 them	 with	 more	 of	 the	 6502/65C02	 addressing	 modes.	 For
example,	 the	 jump-to-subroutine	 instruction	 can	 now	 perform	 absolute	 indexed	 indirect
addressing,	a	mode	introduced	on	the	65C02	solely	for	the	jump	instruction.

New	65816	Addressing	Modes

Not	only	do	the	65802	and	65816	provide	all	the	6502	and	65C02	addressing	modes,
but	they	also	offer	nine	new	addressing	modes	of	their	own,	in	both	emulation	and	native
modes.	They	are	shown	in	Table	4.3.

Table	4.3.	The	65816/65802’s	New	Addressing	Modes.

There	 are	 six	 new	 addressing	 modes	 that	 use	 the	 word	 “long”,	 but	 with	 two	 very
different	 meanings.	 Five	 of	 the	 “long”	 modes	 provide	 24-bit	 addressing	 for	 interbank
accesses.	Program	 counter	 relative	 long	 addressing,	 on	 the	 other	 hand,	 provides	 an
intrabank	sixteen-bit	form	of	relative	addressing	for	branching.	Like	all	 the	other	branch
instructions,	its	operand	is	an	offset	from	the	current	contents	of	the	program	counter,	but
branch	 long’s	operand	 is	 sixteen	bits	 instead	of	eight,	which	expands	 relative	branching
from	plus	127	or	minus	128	bytes	to	plus	32767	or	minus	32768.	This	and	other	features
greatly	ease	the	task	of	writing	position-independent	code.	The	use	of	the	word	“long”	in
the	description	of	this	addressing	mode	means	“longer	than	an	eight	bit	offset,”	whereas
the	word	 “long”	used	with	 the	other	 four	 addressing	modes	means	 “longer	 than	 sixteen
bits.”

Stack	relative	addressing	and	Stack	relative	 indirect	 indexed	with	Y	addressing
treat	the	stack	like	an	array	and	index	into	it.	The	stack	pointer	register	holds	the	base	of
the	 array,	 while	 a	 one-byte	 operand	 provides	 the	 index	 into	 it.	 Since	 the	 stack	 register
points	 to	 the	 next	 available	 location	 for	 data,	 a	 zero	 index	 is	 meaningless:	 data	 and
addresses	which	have	been	pushed	onto	the	stack	start	at	index	one.	For	stack	relative,	this
locates	 the	 data;	 for	 stack	 relative	 indirect	 indexed,	 this	 locates	 an	 indirect	 address	 that
points	 to	 the	 base	 of	 an	 array	 located	 elsewhere.	 Both	 give	 you	 the	 means	 to	 pass
parameters	 on	 the	 stack	 in	 a	 clean,	 efficient	 manner.	 Stack	 relative	 addressing	 is	 a
particularly	 useful	 capability,	 for	 example,	 in	 generating	 code	 for	 recursive	 high-level
languages	 such	 as	 Pascal	 or	 C,	which	 store	 local	 variables	 and	 parameters	 on	 a	 “stack
frame.”

Block	move	addressing	is	the	power	behind	two	new	instructions	that	move	a	block
of	 bytes—up	 to	 64K	 of	 them—from	 one	 memory	 location	 to	 another	 all	 at	 once.	 The
parameters	of	 the	move	are	held	 in	 the	accumulator	 (the	count),	 the	 index	 registers	 (the
source	 and	 destination	 addresses),	 and	 a	 unique	 double	 operand	 (the	 source	 and
destination	addresses	in	the	operand	specify	the	source	and	destination	banks	for	the	move
operation).

The	five	remaining	“long”	addressing	modes	provide	an	alternative	to	the	use	of	bank

registers	 for	 referencing	 the	 65816’s	 sixteen-megabyte	 address	 space.	 They	 let	 you
temporarily	override	the	data	bank	register	value	to	address	memory	anywhere	within	the
sixteen-megabyte	 address	 space.	 Absolute	 long	 addressing,	 for	 example,	 is	 just	 like
absolute	 addressing	 except	 that,	 instead	 of	 providing	 a	 two-byte	 absolute	 address	 to	 be
accessed	in	the	data	bank,	you	provide	a	three-byte	absolute	address	which	overrides	the
data	bank.	Absolute	long	indexed	with	X,	too,	is	four	bytes	instead	of	three.	On	the	other
hand,	it	is	the	memory	locations	specified	by	absolute	indirect	long,	direct	page	indirect
long,	 and	 direct	 page	 indirect	 long	 indexed	 with	 Y	 that	 hold	 three-byte	 indirect
addresses	 instead	 of	 two-byte	 ones.	 Three-byte	 addresses	 in	 memory	 appear	 in
conventional	65x	order;	that	is,	the	low	byte	is	in	the	lower	memory	location,	the	middle
byte	(still	referred	to	in	6502	fashion	as	the	“high”	byte)	is	in	the	next	higher	location,	and
the	highest	(bank)	byte	is	in	the	highest	location.

Instructions
There	are	78	new	opcodes	put	into	use	through	the	28	new	operations	listed	in	Table

4.4,	 as	well	 as	 through	 giving	 the	 previous	 processors’	 operations	 additional	 addressing
modes.

Table	4.4.	New	65816/65802	Instructions.

Five	of	the	new	push	and	pull	instructions	allow	the	new	registers	to	be	stored	on	the
stack;	 the	other	 three	 let	 you	push	 constants	 and	memory	values	onto	 the	 stack	without
having	 to	 first	 load	 them	 into	 a	 register.	PER	 is	 unique	 in	 that	 it	 lets	 data	 be	 accessed
relative	to	the	program	counter,	a	function	useful	when	writing	relocatable	code.

There	are	also	instructions	to	transfer	data	between	new	combinations	of	the	registers,
including	between	the	index	registers—a	long-wished-for	operation;	to	exchange	the	two
bytes	 of	 the	 sixteen-bit	 accumulator;	 and	 to	 exchange	 the	 carry	 and	 emulation	 bits,	 the
only	method	for	toggling	the	processor	between	emulation	and	native	modes.

There	are	new	 jump,	branch,	 return,	and	move	 instructions	already	described	 in	 the
section	 on	 addressing	 modes.	 There’s	 a	 new	 software	 interrupt	 provided	 for	 sharing	 a
system	with	a	co-processor.	There	are	two	instructions	for	putting	the	processor	to	“sleep”
in	 special	 low-power	 states.	 And	 finally,	 there’s	 a	 reserved	 opcode,	 called	WDM	 (the
initials	 of	 the	 65816’s	 designer,	 William	 D.	 Mensch,	 Jr.),	 reserved	 for	 some	 future
compatible	processor	as	the	first	byte	of	a	possible	256	two-byte	opcodes.

Interrupts
Native	mode	supplies	an	entire	set	of	interrupt	vectors	at	different	locations	from	the

emulation	 mode	 (and	 earlier	 6502/65C02)	 ones	 to	 service	 native	 mode	 and	 emulation
mode	 interrupts	 differently.	 Shown	 in	 Table	 4.5,	 all	 are	 in	 bank	 zero;	 in	 addition,	 the
sixteen-bit	contents	of	each	vector	points	to	a	handling	routine	which	must	be	located	in
bank	zero.

Table	4.5.	Interrupt	Vector	Locations.

As	 discussed	 earlier	 in	 this	 chapter,	 native	 mode	 frees	 up	 the	 b	 bit	 in	 the	 status
register	 by	 giving	 the	 break	 instruction	 its	 own	 vector.	When	 a	BRK	 is	 executed,	 the
program	counter	and	the	status	register	are	pushed	onto	the	stack	and	the	program	counter
is	loaded	with	the	address	at	$FFE6,	the	break	instruction	vector	location.

The	reset	vector	is	only	available	in	emulation	mode	because	reset	always	returns	the
processor	to	that	mode.

The	 65816/65802,	 in	 both	 emulation	 and	 native	 modes,	 also	 provides	 a	 new
coprocessor	interrupt	instruction	to	support	hardware	coprocessing,	such	as	by	a	floating
point	 processor.	 When	 the	 COP	 instruction	 is	 encountered,	 the	 65802’s	 interrupt
processing	routines	transfer	control	to	the	co-processor	vector	location.

Finally,	 the	 pinout	 on	 the	 65816	 provides	 a	 new	 abort	 signal.	 This	 lets	 external
hardware	 prevent	 the	 65816	 from	 updating	 memory	 or	 registers	 while	 completing	 the
current	 instruction,	 useful	 in	 sophisticated	memory-management	 schemes.	An	 interrupt-

like	operation	then	occurs,	transferring	control	through	the	special	abort	vector.

The	65802	Native	Mode
For	all	that	the	65816	is,	it	is	not	pin-compatible	with	the	6502	and	65C02.	You	can’t

just	replace	the	earlier	chips	with	it.	It	is	here	that	the	other	version	of	this	chip,	the	65802,
comes	 into	 its	glory.	The	price,	of	 course,	 is	 that	 the	65802	has	 the	 same	addressability
limitations	as	the	6502	and	65C02.

Figure	 4.3	 shows	 the	 programming	 model	 for	 the	 65802’s	 native	 mode.	 The	 bank
registers,	while	 they	 exist,	 do	 not	modify	 addressability,	 so	 they	 are	 shown	 as	 eight-bit
entities.	 All	 registers	 have	 been	 scaled	 back	 to	 sixteen	 bits.	 There	 is	 only	 one	 bank	 a
65802	 can	 address;	 since	 it	 holds	 the	 direct	 page,	 the	 stack	 pointer,	 and	 the	 interrupt
vectors	(bank-zero	features	on	the	65816),	you	can	consider	the	65802’s	bank	to	be	bank
zero.	Otherwise,	the	programming	model	is	identical	to	the	65816’s.

The	 bank	 registers	 are	 an	 anomaly.	 They	 have	 no	 function	 because	 the	 packaging
provides	no	pins	to	connect	them	to.	But	they	exist	because,	inside	the	packaging,	the	chip
itself	is	a	65816.	In	fact,	you	can	change	their	value	just	as	you	would	on	the	65816,	with
a	 pull	 instruction,	 a	 long	 jump	 or	 JSR,	 an	 interrupt,	 or	 a	 long	 return,	 either	 from
subroutine	or	from	interrupt.	Furthermore,	every	interrupt	and	return	from	interrupt	pushes
the	program	bank	byte	onto	the	stack	or	pulls	it	off,	just	like	the	65816	does.	But	the	bank
register	 values	 are	 ignored	 (stripped	 from	 24-bit	 addresses	 when	 they’re	 sent	 to	 the
sixteen-bit	output	pins).

The	 long	addressing	modes	also	seem	misplaced	here.	You	can	execute	 instructions
using	long	addressing	on	the	65802,	but	the	bank	addresses	are,	again,	ignored.	They	are
certainly	an	inefficient	method	for	undertaking	intrabank	accesses	and	transfers,	since	they
take	up	extra	bytes	for	the	bank	address,	and	use	up	extra	cycles	in	translation.	Still,	they
cause	the	65802	no	problems,	as	long	as	you	understand	that	the	bank	value	is	disregarded
and	only	the	remaining	sixteen	bits	of	address	are	effective	in	pointing	to	an	address	in	the
65802’s	single	addressable	bank	of	memory.

65802	Native	Mode	Programming	Model
(16-bit	accumulator	&	index	register	modes:	m=0	&	x=0)

Figure	4.3.	65802	Native	Mode	Programming	Model.

Finally,	 the	 bank	 bytes	 specified	 to	 the	 block	 move	 instructions	 are	 ignored,	 too.
Block	moves	are	by	necessity	entirely	intrabank	on	the	65802.

Because	 the	 abort	 signal	 was	 designed	 into	 the	 65816	 by	 virtue	 of	 its	 redesigned
pinout,	 its	vector	exists	on	 the	65802	but	has	no	connection	 to	 the	outside	world.	Since
there	is	no	way	to	abort	an	instruction	without	using	the	external	pin,	the	abort	operation
can	never	occur	on	the	65802.

In	all	other	respects,	the	65802	and	65816	are	identical,	so	the	65802	can	almost	be
thought	of	as	a	65816	in	a	system	with	only	64K	of	physical	memory	installed.	Table	4.6
summarizes	the	differences	between	the	65802	and	65816	native	modes	and	the	6502	and
65C02.

Emulation	Mode

That	 the	 65802	 provides	 a	 pinout	 the	 same	 as	 the	 6502’s	 and	 the	 65C02’s	 is	 not
enough	 to	 run	all	 the	 software	written	 for	 the	 earlier	 two	processors.	For	one	 thing,	 the
eight-bit	software	expects	interrupt	handlers	to	distinguish	break	instructions	by	checking
the	 stacked	break	 flag,	 and	 the	65802’s	native	mode	has	no	break	 flag,	having	 replaced
both	it	and	the	6502’s	unused	flag	with	the	m	and	x	flags.	For	another,	6502	instructions
that	use	eight-bit	registers	to	set	the	stack	would	set	only	half	of	the	sixteen-bit	stack.	The
native	mode	interrupt	vectors	are	different	from	their	6502/65C02	counterparts,	as	Table
4.5	showed.	There	are	also	little	differences;	for	example,	while	the	direct	page	can	be	set
to	the	zero	page,	direct	page	indexed	addresses	can	cross	pages	in	native	mode,	but	wrap
on	the	6502	and	65C02.

Reaching	 beyond	 hardware	 compatibility	 to	 software	 compatibility	 was	 clearly	 so
important	 that	 the	designers	of	 the	65802	and	65816	devised	 the	6502	emulation	mode
scheme.	 Both	 processors	 power-on	 in	 emulation	mode,	with	 the	 bank	 registers	 and	 the
direct	page	register	initialized	to	zero.	As	a	result	of	both	this	and	having	the	same	pinout,
a	 65802	 can	 be	 substituted	 for	 a	 6502	 in	 any	 application	 and	will	 execute	 the	 existing
software	the	same.	Furthermore,	it	is	possible	to	design	second-generation	65816	systems
compatible	with	 existing	 6502	 designs	which,	 provided	 the	 computer’s	 designers	 do	 as
good	 a	 job	 in	 providing	 compatibility	 as	 the	 65816’s	 designers	 have,	 could	 run	 all	 the
existing	software	of	the	first	generation	system	in	emulation	mode,	yet	switch	into	native
mode	for	sixteen-bit	power	and	24-bit	addressing.

It	 is	 important	 to	 realize,	 however,	 that	 6502	 emulation	 mode	 goes	 far	 beyond
emulating	the	6502.	It	embodies	all	the	addressing	mode	and	instruction	enhancements	of
both	 the	 65C02	 and	 the	 65802/65816;	 it	 has	 a	 fully	 relocatable	 direct	 page	 register;	 it
provides	the	stack	relative	addressing	modes;	and	in	 the	65816’s	emulation	mode,	 it	can
switch	between	banks	 to	use	24-bit	 addressing.	The	primary	differences	between	native
and	emulation	modes	are	limitations	placed	on	certain	emulation	mode	registers	and	flags
so	that	existing	programs	are	not	surprised	(and	crashed)	by	non-6502-like	results.	These
differences	are	summarized	in	Table	4.6.

Table	4.6	.	Major	Differences	Between	Processors	and	Modes.

The	pair	 of	 65816	 instructions	 that	 have	 little	 use	 in	 emulation	mode	 are	 the	block
move	instructions.	Because	the	source	and	destination	parameters	for	moves	are	passed	to
the	 instruction	 in	 the	 index	 registers,	 their	 eight-bit	 limits	 confine	 the	 instruction	 to	 the
zero	page:	a	block	can	only	be	moved	from	one	zero	page	location	to	another.

Only	 in	 emulation	mode	do	65802/65816	 interrupt	vectors	match	 their	 6502/65C02
counterparts.	Native	mode	interrupt	vectors	have	their	own	locations,	as	Table	4.5	showed.

Emulation	Mode	Registers
The	 65802/65816,	 under	 emulation	 mode,	 has	 the	 same	 six	 registers	 as	 the

6502/65C02.	In	addition,	all	of	the	new	65802/65816	registers	are	available	in	some	form,
although	some	of	these	on	a	limited	basis.	Figure	4.4	shows	the	result.

The	primary	accumulator	A	 is	always	limited	to	eight	bits	by	lack	of	an	m	 flag,	but
the	 hidden	 eight-bit	 accumulator	 B	 is	 available,	 as	 with	 the	 native	 mode	 eight-bit
accumulator	setting.	For	certain	register-transfer	operations,	the	two	are	combined	to	form
the	sixteen-bit	register	C,	 just	as	in	native	mode.	The	index	registers	are	limited	to	eight
bits	by	lack	of	an	x	flag.	The	direct	page	register	is	fully	functional,	although	direct	page
indexing	wraps	 rather	 than	crossing	 into	 the	next	page.	The	stack	pointer	 is	curtailed	 to
page	one,	as	on	the	6502	and	65C02;	if	a	sixteen-bit	value	is	used	to	set	it,	the	high	byte	is
ignored.	Finally,	there	are	the	two	bank	registers,	which	are	initialized	to	zero,	but	which
can	be	changed	to	point	to	other	banks.

Now	 look	 at	 the	 P	 status	 register.	 In	 addition	 to	 the	 eight	 bits	 of	 the	 standard
6502/65C02	 status	 register,	 you’ll	 see	 the	ninth	 “phantom”	e	 bit,	which	 contains	 a	 one;
this	setting	puts	the	processor	into	its	6502	emulation	mode.

The	 A	 and	 B	 registers,	 which	 together	 make	 up	 the	 native	 mode	 sixteen-bit
accumulator,	 are	used	 together	 in	emulation	mode	as	C	 solely	 for	 transferring	values	 to
and	from	the	direct	page	register	and	the	stack.

The	direct	 page	 register	 (D)	 points	 to	 the	 beginning	 of	 direct	 page	memory.	You’ll
probably	normally	set	it	to	zero	in	the	emulation	mode	to	make	the	direct	page	identical	to
6502	zero	page	memory.	This	is	particularly	true	if	your	65802	program	is	running	within
a	6502	or	65C02	operating	system.	The	operating	system	will	have	stored	values	to	zero
page	 memory;	 if	 you	 change	 the	 direct	 page	 to	 point	 to	 another	 page,	 then	 call	 an
operating	system	routine,	 the	operating	system	will	 load	 its	 information	 from	the	wrong
direct	page	(any	page	other	than	the	zero	page)	and	fail	miserably.

65816	Emulation	Mode	Programming	Model

(A)

Figure	4.4.	65816	Emulation	Mode	Programming	Model.

Switching	Between	6502	Emulation	and	Native
Modes

As	you’ve	seen,	the	native	mode	and	the	6502	emulation	mode	embody	a	number	of
significant	differences.	When	running	 the	65802	in	an	older	machine,	such	as	 the	Apple
//c,	 //e,	 or	 II	 Plus,	 you	will	 probably	 call	 your	 65802	 programs	 from	 a	 6502	 operating
system	 or	 program.	Your	 65802	 code	 can	 immediately	 switch	 the	 processor	 into	 native
mode,	so	you	can	take	advantage	of	the	additional	power.	You	must,	however,	switch	back
to	emulation	mode	to	use	any	I/O	routines,	or	to	call	the	6502-based	operating	system.

Understanding	 the	 transitions	 between	 the	 two	modes	 is	 critical,	 particularly	 in	 an
environment	where	you	are	switching	back	and	forth	between	6502	systems	programs	and
your	own	65802	code.

Switching	from	Emulation	to	Native	Mode
When	the	65802	 is	switched	from	emulation	 to	native	mode,	 the	value	 in	 the	status

register’s	carry	bit	winds	up	being	toggled.	Native	mode	is	set	by	swapping	a	cleared	carry
bit	with	 the	current	value	 in	 the	emulation	bit	 (which	was	a	one	 if	 the	processor	was	 in
emulation	 mode).	 The	 m	 and	 x	 flags	 in	 the	 status	 register	 are	 switched	 into	 place
(replacing	the	b	break	flag)	and	the	processor	automatically	forces	the	flags	to	one,	which
leaves	the	accumulator	and	index	registers	as	eight-bit	registers,	the	same	as	they	were	in
emulation	mode.	The	rest	of	the	bits	in	the	status	register	remain	the	same.

While	the	emulation	mode	stack	pointer	register	is	only	an	eight-bit	register,	it	can	be
thought	 of	 as	 a	 sixteen-bit	 register	 with	 its	 high	 byte	 hard-wired	 to	 one,	 so	 that	 the
emulation	 stack	 is	 always	 in	 page	 one.	When	 the	 65802	 is	 switched	 from	 emulation	 to
native	 mode,	 the	 sixteen-bit	 native	 mode	 stack	 pointer	 assumes	 the	 same	 value	 the
emulation	mode	stack	pointer	has	been	pointing	to—a	page	one	address.

All	other	registers	make	the	transition	unchanged.

Switching	from	Native	to	Emulation	Mode
Switching	from	native	to	emulation	mode	also	toggles	the	carry.	The	carry	bit	is	set,

then	exchanged	with	 the	emulation	bit	 to	force	 the	processor	back	 into	emulation	mode.
Provided	the	processor	was	previously	in	native	mode,	the	carry	flag	is	cleared.	The	status
register’s	m	and	x	bits	disappear,	forcing	the	accumulator	and	index	registers	back	to	eight
bits.	 If	 the	 index	registers	were	 in	sixteen-bit	mode,	 they	keep	 their	 low	bytes,	but	 their
high	bytes	are	permanently	lost.	If,	on	the	other	hand,	the	accumulator	was	in	sixteen-bit
mode,	 the	low	byte	remains	in	accumulator	A	while	 the	high	byte	 remains	accessible	as
the	hidden	accumulator	B.	The	m	bit	 (bit	 five)	 returns	 to	 its	emulation	role	as	 the	break
flag;	the	x	bit	(bit	four)	becomes	once	again	an	unused	flag.

The	stack	 is	 truncated	from	sixteen	 to	eight	bits,	with	 its	high	byte	forced	 to	a	one;
that	 is,	 the	 stack	 is	 forced	 to	 page	one.	Any	value	 in	 the	high	byte	 of	 the	 stack	pointer
register	 is	permanently	 lost,	which	means	you	must	be	very	careful	not	 to	“lose”	a	non-
page-one	stack.	Solving	this	and	other	sticky	problems	involved	with	calling	an	emulation
mode	routine	from	native	mode	is	the	goal	of	one	of	the	routines	in	Chapter	14.

All	other	registers	make	the	transition	unchanged.

65802/65816	Bugs	and	Quirks

As	 on	 the	 65C02,	 the	 6502’s	 bugs	 are	 corrected	 by	 the	 65802.	 Unlike	 the	 65C02,
however,	 the	 65802	 fixes	 the	 bug	 either	 only	 in	 native	mode	 or	without	modifying	 the
6502’s	cycle	counts	(as	the	65C02	in	some	cases	does).	There	are	no	unused	opcodes	on
the	65802,	although	there	is	an	opcode	which,	while	technically	“used,”	is	really	reserved.
If	executed,	it	acts	like	a	no-operation	instruction.

The	most	anomolous	feature	of	the	65816	is	the	behavior	of	new	opcodes	while	in	the
6502	emulation	mode.	While	strict	6502	compatability	is	enforced	for	all	6502	and	65C02
opcodes,	this	is	not	the	case	with	new	opcodes.	For	example,	although	the	high	byte	of	the
stack	register	is	always	set	to	one,	wrapping	of	the	stack	during	the	execution	of	a	single
non-6502	 instruction	 is	not	 supported.	These	 issues	are	discussed	more	 fully	 in	Chapter
16.

Because	the	65802	fixes	the	6502’s	bugs	and	quirks	while	leaving	that	chip’s	timing
cycles	untouched,	the	65802	is	in	fact	a	hair	more	compatible	as	an	upgrade	chip	than	is
the	65C02.

Part	III

Tutorial

5

SEP,	REP,	and	Other	Details
Part	Three	 is	devoted	 to	a	step	by	step	survey	of	all	92	different	65816	 instructions

and	 the	 25	 different	 types	 of	 addressing	 modes	 which,	 together,	 account	 for	 the	 256
operation	 codes	 of	 the	 65802	 and	 65816.	 As	 a	 matter	 of	 course,	 this	 survey	 naturally
embraces	the	instruction	sets	of	the	6502	and	65C02	as	well.

The	 instructions	 are	 grouped	 into	 six	 categories:	 data	 movement,	 flow	 of	 control,
arithmetic,	logical	and	bit	manipulation,	subroutine	calls,	and	system	control	instructions.
A	 separate	 chapter	 is	 devoted	 to	 each	 group,	 and	 all	 of	 the	 instructions	 in	 a	 group	 are
presented	in	their	respective	chapter.

The	addressing	modes	are	divided	into	two	classes,	simple	and	complex.	The	simple
addressing	 modes	 are	 those	 that	 form	 their	 effective	 address	 directly—that	 is,	 without
requiring	any,	or	only	minimal,	combination	or	addition	of	partial	addresses	from	several
sources.	The	complex	addressing	modes	are	those	that	combine	two	or	more	of	the	basic
addressing	 concepts,	 such	 as	 indirection	 and	 indexing,	 as	 part	 of	 the	 effective	 address
calculation.

Almost	all	of	the	examples	found	in	this	book	are	intended	to	be	executed	on	a	system
with	 either	 a	 65802	 or	 65816	 processor,	 and	most	 include	 65816	 instructions,	 although
there	 are	 some	 examples	 that	 are	 intentionally	 restricted	 to	 either	 the	 6502	 or	 65C02
instruction	set	for	purposes	of	comparison.

Because	of	the	easy	availability	of	the	pin-compatible	65802,	there	is	a	good	chance
that	 you	may,	 in	 fact,	 be	 executing	 your	 first	 sample	 programs	 on	 a	 system	 originally
designed	as	a	6502-based	 system,	with	 system	software	 such	as	machine-level	monitors
and	operating	systems	 that	naturally	 support	6502	code	only.	All	of	 the	 software	 in	 this
book	 was	 developed	 and	 tested	 on	 just	 such	 systems	 (Apple	 //	 computers	 with	 either
65802s	replacing	the	6502,	or	with	65816	processor	cards	installed).

It	 is	assumed	that	you	will	have	some	kind	of	support	environment	allowing	you	to
develop	programs	and	load	them	into	memory,	as	well	as	a	monitor	program	that	lets	you
examine	 and	modify	memory,	 such	 as	 that	 found	 in	 the	Apple	 //	 firmware.	 Since	 such
programs	 were	 originally	 designed	 to	 support	 6502	 code,	 the	 case	 of	 calling	 a	 65816
program	from	a	6502-based	system	program	must	be	given	special	attention.

A	 65802	 or	 65816	 system	 is	 in	 the	 6502	 emulation	 mode	 when	 first	 initialized	 at
power-up.	 This	 is	 quite	 appropriate	 if	 the	 system	 software	 you	 are	 using	 to	 load	 and
execute	the	sample	programs	is	6502-based,	as	it	would	probably	not	execute	correctly	in
the	native	65816	mode.

Even	though	almost	all	of	the	examples	are	for	the	65816	native	mode	of	operation,
the	early	examples	assume	that	the	direct	page	register,	program	counter	bank	register,	and
data	 bank	 register	 are	 all	 in	 their	 default	 condition—set	 to	 zero—in	 which	 case	 they
provide	 an	 environment	 that	 corresponds	 to	 the	64K	programming	 space	 and	 zero	page

addressing	of	 the	6502	and	65C02.	Aside	 from	keeping	 the	examples	 simple,	 it	permits
easy	 switching	 between	 the	 native	 mode	 and	 the	 emulation	 mode.	 If	 you	 have	 just
powered	 up	 your	 65816	 or	 65802	 system,	 nothing	 need	 be	 done	 to	 alter	 these	 default
values.

The	one	initialization	you	must	do	is	to	switch	from	the	emulation	to	the	native	mode.
To	switch	out	of	the	6502	emulation	mode,	which	is	the	default	condition	upon	powering
up	a	system,	the	code	in	Fragment	5.1	must	be	executed	once.

Fragment	5.1.

This	clears	the	special	e	flag,	putting	the	processor	into	the	65816	native	mode.

If	you	are	using	a	65802	processor	in	an	old	6502	system,	the	above	code	needs	to	be
executed	each	time	an	example	is	called.	Further,	before	exiting	a	65816	program	to	return
to	a	6502	calling	program,	the	opposite	sequence	in	Fragment	5.2	must	be	executed.

Fragment	5.2.

Even	 if	you	are	 running	your	 test	programs	 from	a	 fully	supported	65816	or	65802
environment,	 you	 should	 include	 the	 first	mode-switching	 fragment,	 since	 the	operating
mode	 may	 be	 undefined	 on	 entry	 to	 a	 program.	 Execution	 of	 the	 second	 should	 be
acceptable	 since	 the	 system	 program	 should	 reinitialize	 itself	 to	 the	 native	 mode	 upon
return	from	a	called	program.

A	further	 requirement	 to	successfully	execute	 the	example	programs	 is	 to	provide	a
means	 for	 returning	 control	 to	 the	 calling	monitor	 program.	 In	 the	 examples,	 the	RTS
(return	from	subroutine)	instruction	is	used.	The	RTS	instruction	is	not	explained	in	detail
until	Chapter	12;	however,	by	coding	it	at	the	end	of	each	example,	control	will	normally
return	to	the	system	program	that	called	the	example	program.	So	to	exit	a	program,	you
will	always	code	the	sequence	in	Fragment	5.3.

Fragment	5.3.

Some	systems	may	have	a	mechanism	other	than	RTS	to	return	control	to	the	system;
consult	your	system	documentation.

In	 addition	 to	 these	 two	 details,	 a	 final	 pair	 of	 housekeeping	 instructions	 must	 be

mastered	early	in	order	to	understand	the	examples.

These	two	instructions	are	SEP	and	REP	(set	P	and	reset	P).	Although	they	are	not
formally	 introduced	until	Chapter	13,	 their	use	 is	essential	 to	effective	use	of	 the	65802
and	65816.	The	SEP	and	REP	 instructions	have	many	uses,	 but	 their	 primary	use	 is	 to
change	the	value	of	the	m	and	x	flags	in	the	status	register.	As	you	recall	from	Chapter	4,
the	 m	 and	 x	 registers	 determine	 the	 size	 of	 the	 accumulator	 and	 index	 registers,
respectively.	When	a	 flag	 is	 set	 (has	a	value	of	one),	 the	corresponding	 register	 is	eight
bits;	when	a	flag	is	clear,	the	corresponding	register	is	sixteen	bits.	SEP,	which	sets	bits	in
the	status	register,	is	used	to	change	either	the	accumulator,	or	index	registers,	or	both,	to
eight	 bits;	 REP,	 which	 clears	 bits,	 is	 used	 to	 change	 either	 or	 both	 to	 sixteen	 bits.
Whenever	a	 register	changes	size,	all	of	 the	operations	 that	move	data	 in	and	out	of	 the
register	 are	 affected	 as	 well.	 In	 this	 sense,	 the	 flag	 bits	 are	 extensions	 to	 the	 opcode,
changing	their	interpretation	by	the	processor.

The	operand	following	the	SEP	and	REP	instructions	is	a	“mask”	of	the	flags	to	be
modified.	Since	bit	five	of	the	status	register	is	the	m	memory/accumulator	select	flag,	an
instruction	of	the	form;

REP #%	00100000

makes	the	accumulator	size	sixteen	bits;	a	SEP	instruction	with	the	same	argument	(or	its
hexadecimal	equivalent,	$20)	would	make	it	eight	bits.	The	binary	value	for	modifying	the
x	flag	is	%	00010000,	or	$10;	the	value	for	modifying	both	flags	at	once	is	%00110000,	or
$30.	The	sharp	(#)	preceding	the	operand	signifies	the	operand	is	immediate	data,	stored
in	the	byte	following	the	opcode	in	program	memory;	the	percent(%)	and	dollar	($)	signs
are	 special	 symbols	 signifying	 either	 binary	 or	 hexadecimal	 number	 representation,
respectively,	as	explained	in	Chapter	1.

Understanding	the	basic	operation	of	SEP	and	REP	 is	relatively	simple.	What	takes
more	skill	is	to	develop	a	sense	of	their	appropriate	use,	since	there	is	always	more	than
one	way	to	do	things.	Although	there	is	an	immediate	impulse	to	want	to	use	the	sixteen-
bit	modes	for	everything,	it	should	be	fairly	obvious	that	the	eight-bit	accumulator	mode
will,	for	example,	be	more	appropriate	to	applications	such	as	character	manipulation.	Old
6502	programmers	should	resist	the	feeling	that	if	they’re	not	using	the	sixteen-bit	modes
“all	the	time”	they’re	not	getting	full	advantage	from	their	65802	or	65816.	The	eight-bit
accumulator	and	index	register	size	modes,	which	correspond	to	the	6502	architecture,	can
be	 used	 to	 do	 some	 of	 the	 kinds	 of	 things	 the	 6502	was	 doing	 successfully	 before	 the
option	of	using	sixteen-bit	registers	was	provided	by	the	65816.	Even	in	eight-bit	mode,
the	65802	or	65816	will	provide	numerous	advantages	over	the	6502.

What	 is	 most	 important	 is	 to	 develop	 a	 sense	 of	 rhythm;	 it	 is	 undesirable	 to	 be
constantly	 switching	modes.	Since	 the	exact	order	 in	which	a	 short	 sequence	of	 loosely
related	 instructions	 is	executed	 is	 somewhat	arbitrary,	 try	 to	do	as	many	operations	 in	a
single	mode	as	possible	before	switching	modes.	At	the	same	time,	you	should	be	aware
that	the	point	at	which	an	efficiency	gain	is	made	by	switching	to	a	more	appropriate	mode
is	 reached	very	quickly.	By	examining	 the	various	possibilities,	 and	experimenting	with
them,	a	sense	that	translates	into	an	effective	rhythm	in	coding	can	be	developed.

Finally,	a	word	about	the	examples	as	they	appear	in	this	book.	Two	different	styles
are	used:	Code	Fragments,	and	complete	Code	Listings.

Code	Fragments	are	the	kinds	of	examples	used	so	far	in	this	chapter.	Code	Listings,
on	 the	 other	 hand,	 are	 self-contained	 programs,	 ready	 to	 be	 executed.	 Both	 appear	 in
boxes,	and	are	listed	with	the	generated	object	code	as	produced	by	the	assembler.	Single-
line	listings	are	included	in	the	text.

The	Assembler	Used	in	This	Book
The	assembly	syntax	used	in	 this	book	is	 that	recommended	by	the	Western	Design

Center	 in	their	data	sheet	(see	Appendix	F).	The	assembler	actually	used	 is	 the	ProDOS
ORCA/M	assembler	for	the	Apple	//	computer,	by	Byteworks,	Inc.	Before	learning	how	to
code	the	65816,	a	few	details	about	some	of	the	assembler	directives	need	to	be	explained.

Full-line	comments	are	indicated	by	starting	a	line	with	an	asterisk	or	a	semicolon.

If	no	starting	address	is	specified,	programs	begin	by	default	at	$2000.	That	address
can	 be	 changed	 by	 using	 the	 origin	 directive,	ORG.	 The	 statement	when	 included	 in	 a
source	 program,	 will	 cause	 the	 next	 byte	 of	 code	 generated	 to	 be	 located	 at	 memory
location	$7000,	with	subsequently	generated	bytes	following	it.

ORG $7000

Values	can	be	assigned	labels	with	the	global	equate	directive,	GEQU.	For	example,
in	a	card-playing	program,	spades	might	be	represented	by	the	value	$7F;	the	program	is
much	easier	to	code	(and	read)	if	you	can	use	the	label	SPADE	 instead	of	 remembering
which	of	four	values	goes	with	which	of	the	four	suits,	as	seen	in	Fragment	5.4.

Fragment	5.4.

Now	rather	than	loading	the	A	accumulator	by	specifying	a	hard-to-remember	value,

you	can	load	it	by	specifying	the	easier-to-remember	label:

Once	you	have	defined	a	label	using	GEQU,	 the	assembler	automatically	substitutes	 the
value	assigned	whenever	the	label	is	encountered.

The	#	sharp	or	pound	sign	is	used	to	indicate	that	the	accumulator	is	to	be	loaded	with
an	immediate	constant.

In	addition	 to	being	defined	by	GEQU	 statements,	 labels	 are	also	defined	by	being
coded	in	the	label	field—starting	in	the	first	column	of	a	source	line,	right	in	front	of	an
instruction	or	storage-defining	directive.	When	coded	in	front	of	an	instruction:

the	label	defines	an	entry	point	for	a	branch	or	jump	to	go	to;	when	an	instruction	such	as

is	 assembled,	 the	 assembler	 automatically	 calculates	 the	 value	 of	BEGIN	 and	 uses	 that
value	as	the	operand	of	the	JMP	instruction.

Variable	 and	 array	 space	 can	 be	 set	 aside	 and	 optionally	 labelled	 with	 the	 define
storage	directive,	DS.	In	the	example	in	Fragment	5.5,	the	first	DS	directive	sets	aside	one
byte	at	$1000	for	the	variable	FLAG1;	the	second	DS	directive	sets	aside	20	bytes	starting
at	$1001	for	ARRAY1.

Fragment	5.5.

The	 value	 stored	 at	 FLAG1	 can	 be	 loaded	 into	 the	 accumulator	 by	 specifying
FLAG1	as	the	operand	of	the	LDA	instruction:

Program	 constants,	 primarily	 default	 values	 for	 initializing	 variables,	 prompts,	 and
messages,	 are	 located	 in	 memory	 and	 optionally	 given	 a	 label	 by	 the	 declare	 constant
directive,	 DC.	 The	 first	 character(s)	 of	 its	 operand	 specifies	 a	 type	 (A	 for	 two-byte
addresses,	 I1	 for	 one-byte	 integers,	H	 for	 hex	 bytes	 and	 C	 for	 character	 strings,	 for
example)	 followed	 by	 the	 value	 or	 values	 to	 be	 stored,	 which	 are	 delimited	 by	 single
quotes.

Fragment	5.6	gives	an	example.	The	first	constant,	DFLAG1,	 is	a	default	value	for
code	 in	 the	 program	 to	 assign	 to	 the	 variable	FLAG1.	 You	may	 realize	 that	DFLAG1
could	be	used	as	a	variable;	with	a	label,	later	values	of	the	flag	could	be	stored	here	and
then	there	would	be	no	need	for	any	initialization	code.	But	good	programming	practice
suggests	 otherwise:	 once	 another	 value	 is	 stored	 into	DFLAG1,	 its	 initial	 value	 is	 lost,
which	keeps	the	program	from	being	restarted	from	memory.	On	the	other	hand,	using	a
GEQU	to	set	up	DFLAG1	would	prevent	you	from	patching	the	location	with	a	different
value	 should	 you	 change	 your	 mind	 about	 its	 initial	 value	 after	 the	 code	 has	 been
assembled.

Fragment	5.6.

Defining	COUNT	as	a	declared	constant	allows	it,	too,	to	be	patched	in	object	as	well
as	edited	in	source.

PROMPT	is	a	message	to	be	written	to	the	screen	when	the	program	is	running.	The
assembler	lists	only	the	first	four	object	bytes	generated	(‘496E7365’)	to	save	room,	but
generates	them	all.	The	zero	on	the	next	line	acts	as	a	string	terminator.

Sometimes	it	is	useful	to	define	a	label	at	a	given	point	in	the	code,	but	not	associate
it	with	a	particular	source	line;	the	ANOP	(assembler	no-operation)	instruction	does	this.
The	 value	 of	 the	 label	 will	 be	 the	 location	 of	 the	 code	 resulting	 from	 the	 next	 code-
generating	source	line.	One	use	of	this	feature	is	to	define	two	labels	with	the	same	value,
as	shown	in	Fragment	5.7.

Fragment	5.7.

The	two	bytes	of	variable	storage	reserved	may	now	be	referred	to	as	either	BLACK	or
WHITE;	their	value	is	the	same.

Address	Notation
The	 16-megabyte	 address	 space	 of	 the	 65816	 is	 divided	 into	 256	 64K	 banks.

Although	 it	 is	possible	 to	 treat	 the	address	space	 in	a	 linear	 fashion—the	range	of	bytes
from	$000000	to	$FFFFFF—it	is	often	desirable	and	almost	always	easier	to	read	if	you
distinguish	the	bank	component	of	a	24-bit	address	by	separating	it	with	a	colon:

In	these	examples,	 the	x	characters	 indicate	 that	 that	address	component	can	be	any
legal	value;	the	thing	of	interest	is	the	specified	component.

Similarly,	when	specifying	direct	page	addresses,	remember	that	a	direct	page	address
is	only	an	offset;	it	must	be	added	to	the	value	in	the	direct	page	register:

The	dp	in	the	first	example	is	used	to	simply	indicate	the	contents	of	the	direct	page

register,	whatever	 it	may	be;	 in	 the	 second	 case,	 the	value	 in	 the	direct	 page	 register	 is
given	as	$1000.	Note	that	this	notation	is	distinguished	from	the	previous	one	by	the	fact
that	 the	address	 to	 the	 left	of	 the	colon	 is	a	sixteen-bit	value,	 the	address	on	 the	right	 is
eight.	Twenty-four-bit	addresses	are	the	other	way	around.

A	 third	 notation	 used	 in	 this	 book	 describes	 ranges	 of	 address.	 Whenever	 two
addresses	appear	together	separated	by	a	single	dot,	the	entire	range	of	memory	location
between	and	 including	 the	 two	addresses	 is	being	 referred	 to.	For	example,	$2000.2001
refers	to	the	double-byte	starting	at	$2000.	If	high	bytes	of	the	second	address	are	omitted,
they	are	assumed	to	have	the	same	value	as	the	first	address.	Thus,	$2000.03	refers	to	the
addresses	between	$2000	and	$2003	inclusive.

6

First	Examples:	Moving	Data
Most	 people	 associate	 what	 a	 computer	 does	 with	 arithmetic	 calculations	 and

computations.	 That	 is	 only	 part	 of	 the	 story.	 A	 great	 deal	 of	 compute	 time	 in	 any
application	 is	 devoted	 to	 simply	moving	 data	 around	 the	 system:	 from	 here	 to	 there	 in
memory,	 from	 memory	 into	 the	 processor	 to	 perform	 some	 operation,	 and	 from	 the
processor	to	memory	to	store	a	result	or	to	temporarily	save	an	intermediate	value.	Data
movement	is	one	of	the	easiest	computer	operations	to	grasp	and	is	ideal	for	learning	the
various	 addressing	 modes	 (there	 are	 more	 addressing	 modes	 available	 to	 the	 data
movement	 operations	 than	 to	 any	 other	 class	 of	 instructions).	 It,	 therefore,	 presents	 a
natural	point	of	entry	for	learning	to	program	the	65x	instruction	set.

On	the	65x	series	of	processors—the	eight-bit	6502	and	65C02	and	their	sixteen-bit
successors,	 the	 65802	 and	 65816—you	 move	 data	 almost	 entirely	 using	 the
microprocessor	registers.

This	 chapter	 discusses	 how	 to	 load	 the	 registers	with	 data	 and	 store	 data	 from	 the
registers	 to	memory	 (using	one	of	 the	 simple	addressing	modes	as	an	example),	how	 to
transfer	and	exchange	data	between	registers,	how	to	move	information	onto	and	off	of	the
stack,	and	how	to	move	blocks	(or	strings)	of	data	from	one	memory	location	to	another
(see	Table	6-1).

Table	6.1.	Data	Movement	Instructions.

When	programming	the	6502,	whether	you’re	storing	a	constant	value	to	memory	or
moving	 data	 from	 one	 memory	 location	 to	 another,	 one	 of	 the	 registers	 is	 always
intermediate.	 The	 same	 is	 generally	 true	 for	 the	 other	 65x	 processors,	 with	 a	 few
exceptions:	the	65816’s	two	block	move	instructions,	three	of	its	push	instructions,	and	an
instruction	first	introduced	on	the	65C02	to	store	zero	to	memory.

As	 a	 result,	 two	 instructions	 are	 required	 for	 most	 data	 movement:	 one	 to	 load	 a
register	either	with	a	constant	value	from	program	memory	or	with	a	variable	value	from
data	memory;	the	second	to	store	the	value	to	a	new	memory	location.

Most	 data	 is	moved	via	 the	 accumulator.	This	 is	 true	 for	 several	 reasons.	 First,	 the
accumulator	 can	 access	 memory	 using	 more	 addressing	 modes	 than	 any	 of	 the	 other
registers.	 Second,	 with	 a	 few	 exceptions,	 it’s	 only	 in	 the	 accumulator	 that	 you	 can
arithmetically	or	 logically	operate	on	data	 (although	 the	 index	registers,	 in	keeping	with
their	 role	 as	 loop	 counters	 and	 array	 pointers,	 can	 be	 incremented,	 decremented,	 and
compared).	Third,	data	movement	often	takes	place	inside	of	loops,	program	structures	in
which	the	index	registers	are	often	dedicated	to	serving	as	counters	and	pointers.

Loading	and	Storing	Registers
To	provide	examples	of	the	six	basic	data-movement	instructions—LDA,	LDX,	LDY

(load	 accumulator	 or	 index	 registers)	 and	 STA,	 STX,	 and	 STY	 (store	 accumulator	 or
index	 registers)—requires	 introducing	 at	 least	 one	of	 the	65x	 addressing	modes.	Except
for	certain	instructions—such	as	push	and	pull,	which	use	forms	of	stack	addressing—the
absolute	 addressing	 mode	 will	 generally	 be	 used	 in	 this	 chapter.	 Absolute	 addressing,
available	 on	 all	 four	 65x	 processors,	 is	 one	 of	 the	 simplest	 modes	 to	 understand.	 It
accesses	data	at	a	known,	fixed	memory	location.

For	example,	 to	move	a	byte	 from	one	absolute	memory	 location	 to	another,	 load	a
register	from	the	first	location,	then	store	that	register	to	the	other	location.	In	Listing	6.1,
the	eight-bit	value	$77	stored	at	the	absolute	location	identified	by	the	label	SOURCE	is
first	loaded	into	the	accumulator,	then	saved	to	the	absolute	location	labeled	DEST.	Note
the	inclusion	of	the	mode-switching	code	described	in	the	previous	chapter.

The	 code	 generated	 by	 the	 assembler,	when	 linked,	will	 begin	 at	 the	 default	 origin
location,	$2000.	The	example	generates	13	($0D)	bytes	of	actual	code	(the	address	of	the
RTS	instruction	is	at	memory	location	$200C).	The	assembler	then	automatically	assigns
the	next	available	memory	location,	$200D,	to	the	label	on	the	following	line,	SOURCE.
This	 line	 contains	 a	 DC	 (define	 constant)	 assembler	 directive,	 which	 causes	 the
hexadecimal	value	$77	to	be	stored	at	 that	 location	in	 the	code	file	($200D).	Since	only
one	byte	of	storage	is	used,	the	data	storage	location	reserved	for	the	label	DEST	on	the
next	line	is	$200E.

The	syntax	for	absolute	addressing	lets	you	code,	as	an	instruction’s	operand,	either	a
symbolic	 label	 or	 an	 actual	 value.	 The	 assembler	 converts	 a	 symbolic	 operand	 to	 its
correct	 absolute	 value,	 determines	 from	 its	 context	 that	 absolute	 addressing	 is	 intended,
and	 generates	 the	 correct	 opcode	 for	 the	 instruction	 using	 absolute	 addressing.	 The
assembler-generated	hexadecimal	object	code	 listed	 to	 the	 left	of	 the	source	code	shows
that	the	assembler	filled	in	addresses	$000D	and	$000E	as	the	operands	for	the	LDA	and
STA	 instructions,	 respectively	 (they	are,	of	course,	 in	 the	65x’s	standard	 low-high	order
and	relative	to	the	$0000	start	address	the	assembler	assigns	to	its	relocatable	modules;	the
linker	will	modify	these	addresses	to	$200D	and	$200E	when	creating	the	final	loadable
object).

As	Chapter	4	explained,	 the	65816’s	accumulator	can	be	 toggled	 to	deal	with	either
eight-bit	or	sixteen-bit	quantities,	as	can	its	 index	registers,	by	setting	or	resetting	the	m
(memory/accumulator	 select)	 or	 x	 (index	 register	 select)	 flag	 bits	 of	 the	 status	 register.
You	 don’t	 need	 to	 execute	 a	SEP	 or	REP	 instruction	 before	 every	 instruction	 or	 every
memory	move,	provided	you	know	the	register	you	intend	to	use	is	already	set	correctly.
But	always	be	careful	to	avoid	making	invalid	assumptions	about	the	modes	currently	in
force,	particularly	when	transferring	control	from	code	in	one	location	to	code	in	another.

Listing	6.1.

The	 load	 and	 store	 instructions	 in	Listing	6.1	will	 as	 easily	move	 a	 double	 byte	 as
they	did	a	byte,	if	the	register	you	use	is	in	sixteen-bit	mode,	as	in	Listing	6.2.

Note	that	the	source	data	in	the	define	constant	statement	is	now	two	bytes	long,	as	is
storage	reserved	by	the	define	storage	statement	that	follows.	If	you	look	at	the	interlisted
hexadecimal	code	generated	by	 the	assembler,	you	will	 see	 that	 the	address	of	 the	 label
DEST	is	now	$200F.	The	assembler	has	automatically	adjusted	for	the	increase	in	the	size
of	the	data	at	SOURCE,	which	is	the	great	advantage	of	using	symbolic	labels	rather	than
fixed	addresses	in	writing	assembler	programs.

The	 load	 and	 store	 instructions	 are	 paired	 here	 to	 demonstrate	 that,	 when	 using
identical	addressing	modes,	the	load	and	store	operations	are	symmetrical.	In	many	cases,
though,	a	value	loaded	into	a	register	will	be	stored	many	instructions	later,	or	never	at	all,
or	stored	using	an	addressing	mode	different	from	that	of	the	load	instruction.

Listing	6.2.

Effect	of	Load	and	Store	Operations	on	Status	Flags
One	of	 the	results	of	 the	register	 load	operations—LDA,	LDY,	and	LDX	—is	 their

effect	on	certain	status	flags	in	the	status	register.	When	a	register	is	loaded,	the	n	and	z
flags	are	changed	to	reflect	two	conditions:	whether	the	value	loaded	has	its	high	bit	set	(is
negative	 when	 considered	 as	 a	 signed,	 two’s-complement	 number);	 and	 whether	 the
number	is	equal	to	zero.	The	n	flag	is	set	when	the	value	loaded	is	negative	and	cleared
otherwise.	The	z	flag	is	set	when	the	value	loaded	is	zero	and	cleared	otherwise.	How	you
use	these	status	flags	will	be	covered	in	detail	in	Chapter	8,	Flow	of	Control.

The	 store	 operation	 does	 not	 change	 any	 flags,	 unlike	 the	 Motorola	 68xx	 store
instructions.	On	the	other	hand,	Intel	808x	programmers	will	discover	the	65x	processors
use	load	and	store	instructions	instead	of	the	808x’s	all-encompassing	MOV	 instruction.
The	808x	move	instruction	changes	no	flags	whatsoever,	unlike	the	65x	load	instruction,
which	does.

Moving	Data	Using	the	Stack
All	 of	 the	 65x	 processors	 have	 a	 single	 stack	 pointer.	 (This	 is	 a	 typical	 processor

design,	 although	 there	 are	 designs	 that	 feature	 other	 stack	 implementations,	 such	 as
providing	separate	stack	pointers	for	the	system	supervisor	and	the	user.)	This	single	stack
is	therefore	used	both	by	the	system	for	automatic	storage	of	address	information	during
subroutine	 calls	 and	 of	 address	 and	 register	 information	 during	 interrupts,	 and	 by	 user
programs	for	temporary	storage	of	data.	Stack	use	by	the	system	will	be	covered	in	later
chapters.

As	the	architecture	chapters	in	Part	II	discussed,	the	S	register	(stack	pointer)	points

to	the	next	available	stack	location;	that	is,	S	holds	the	address	of	the	next	available	stack
location.	Instructions	using	stack	addressing	locate	their	data	storage	either	at	or	relative	to
the	next	available	stack	location.

The	stack	pointers	of	the	6502	and	65C02	are	only	eight	bits	wide;	the	eight-bit	value
in	the	stack	pointer	is	added	to	an	implied	base	of	$100,	giving	the	actual	stack	memory	of
$100	to	$1FF;	the	stack	is	confined	to	page	one.	The	65816’s	native	mode	stack	pointer,
on	 the	other	hand,	 is	 sixteen	bits	wide,	and	may	point	 to	any	 location	 in	bank	zero	 (the
first	64K	of	memory).	The	difference	is	illustrated	in	Figure	6.1.

Push
Push	instructions	store	data,	generally	located	in	a	register,	onto	the	stack.	Regardless

of	a	register’s	size,	the	instruction	that	pushes	it	takes	only	a	single	byte.

When	a	byte	 is	 pushed	onto	 the	 stack,	 it	 is	 stored	 to	 the	 location	pointed	 to	by	 the
stack	pointer,	 after	which	 the	 stack	pointer	 is	 automatically	decremented	 to	point	 to	 the
next	available	location.

When	double-byte	data	or	a	sixteen-bit	address	is	pushed	onto	the	stack,	first	its	high-
order	 byte	 is	 stored	 to	 the	 location	 pointed	 to	 by	 the	 stack	 pointer,	 the	 stack	 pointer	 is
decremented,	the	low	byte	is	stored	to	the	new	location	pointed	to	by	the	stack	pointer,	and
finally	 the	 stack	 pointer	 is	 decremented	 once	 again,	 pointing	past	 both	 bytes	 of	 pushed
data.	The	sixteen-bit	value	ends	up	on	the	stack	in	the	usual	65x	memory	order:	low	byte
in	the	lower	address,	high	byte	in	the	higher	address.

In	 both	 cases,	 the	 stack	 grows	 downward,	 and	 the	 stack	 pointer	 points	 to	 the	 next
available	(unused)	location	at	the	end	of	the	operation.

Figure	6.1.	Stack	Memory.

Pushing	the	Basic	65x	Registers
On	 the	 6502,	 only	 the	 contents	 of	 the	 accumulator	 and	 the	 status	 register	 can	 be

pushed	directly	onto	the	stack	in	a	single	operation,	using	the	PHA	and	PHP	instructions,
respectively.	The	65C02	adds	instructions	to	push	the	index	registers	onto	the	stack:	PHX
and	PHY.

The	65816	and	65802	let	double-byte	data	as	well	as	single	bytes	be	pushed	onto	the
stack.	 Figure	 6.2	 shows	 the	 results	 of	 both.	 In	 the	 case	 of	 the	 accumulator	 and	 index
registers,	 the	 size	 of	 the	 data	 pushed	 onto	 the	 stack	 depends	 on	 the	 settings	 of	 the	m
memory/accumulator	 select	 and	x	 index	 register	 select	 flags.	Since	 the	 accumulator	 and
index	 registers	 are	 of	 variable	 size	 (eight	 bits	 or	 sixteen),	 the	 PHA,	 PHX,	 and	 PHY
instructions	have	correspondingly	variable	effects.

Pull
Pull	instructions	reverse	the	effects	of	the	push	instructions,	but	there	are	fewer	pull

instructions,	 all	 of	 them	 single-byte	 instructions	 that	 pull	 a	 value	 off	 the	 stack	 into	 a
register.	 Unlike	 the	 Motorola	 and	 Intel	 processors	 (68xx	 and	 808x),	 the	 65x	 pull
instructions	set	the	n	and	z	flags.	So	programmers	used	to	using	pull	instructions	between

a	 test	 and	 a	 branch	 on	 the	 other	 processors	 should	 exercise	 caution	 with	 the	 65x	 pull
instructions.

Pulling	the	Basic	65x	Registers
The	 6502	 pull	 instructions	 completely	 complement	 its	 push	 instructions.	 PLP

increments	 the	stack	pointer,	 then	loads	the	processor	status	register	(the	flags)	from	the
page	one	address	pointed	to	by	the	offset	in	the	stack	pointer	(of	course,	this	destroys	the
previous	 contents	 of	 the	 status	 register).	 PLA	 pulls	 a	 byte	 from	 the	 stack	 into	 the
accumulator,	 which	 affects	 the	 n	 and	 z	 flags	 in	 the	 status	 register	 just	 as	 a	 load
accumulator	instruction	does.

As	 instructions	 for	 pushing	 the	 index	 registers	 were	 added	 to	 the	 65C02,
complementary	pull	instructions	were	added,	too—that	is,	PLX	and	PLY.	The	pull	index
register	instructions	also	affect	the	n	and	z	flags.

On	the	65802	and	65816,	the	push	and	pull	instructions	for	the	primary	user	registers
—A,	X,	 and	Y—have	 been	 augmented	 to	 handle	 sixteen-bit	 data	when	 the	 appropriate
select	 flag	 (memory/accumulator	 or	 index	 register)	 is	 clear.	 Code	 these	 three	 pull
instructions	carefully	since	the	stack	pointer	will	be	incremented	one	or	two	bytes	per	pull
depending	on	the	current	settings	of	the	m	and	x	flags.

Pushing	and	Pulling	the	65816’s	Additional	Registers
The	 65816	 adds	 one-byte	 push	 instructions	 for	 all	 its	 new	 registers,	 and	 pull

instructions	for	all	but	one	of	them.	In	fact,	the	bank	registers	can	only	be	accessed	using
the	stack.

PHB	 pushes	 the	 contents	 of	 the	 data	 bank	 register,	 an	 eight-bit	 register,	 onto	 the
stack.	PLB	 pulls	 an	 eight-bit	 value	 from	 the	 stack	 into	 the	 data	 bank	 register.	 The	 two
most	common	uses	for	PHB	are,	first,	to	let	a	program	determine	the	currently	active	data
bank,	and	second,	to	save	the	current	data	bank	prior	to	switching	to	another	bank.

Figure	6.2.	Push.

Fragment	 6.1	 is	 a	 65816	 code	 fragment	 which	 switches	 between	 two	 data	 banks.
While	OTHBNK	is	declared	just	once,	it	represents	two	different	memory	cells,	both	with
the	same	sixteen-bit	address	of	$FFF3,	but	in	two	different	64K	banks:	one	is	in	the	data
bank	 that	 is	 current	when	 the	 code	 fragment	 is	 entered;	 the	 second	 is	 in	 the	 data	 bank
switched	to	by	the	code	fragment.	The	code	fragment	could	be	executed	a	second	time	and

the	data	bank	would	be	switched	back	to	the	original	bank.

Fragment	6.1.

Similar	 to	 PHB,	 the	 PHK	 instruction	 pushes	 the	 value	 in	 the	 eight-bit	 program
counter	bank	register	onto	the	stack.	Again,	 the	instruction	can	be	used	to	let	you	locate
the	current	bank;	this	is	useful	in	writing	bank-independent	code,	which	can	be	executed
out	of	any	arbitrarily	assigned	bank.

You’re	less	 likely	to	use	PHK	 to	preserve	 the	current	bank	prior	 to	changing	banks
(as	 in	 the	 case	 of	 PHB	 above)	 because	 the	 jump	 to	 subroutine	 long	 instruction
automatically	pushes	 the	program	counter	bank	as	 it	changes	 it,	and	because	 there	 is	no
complementary	pull	instruction.	The	only	way	to	change	the	value	in	the	program	counter
bank	 register	 is	 to	 execute	 a	 long	 jump	 instruction,	 an	 interrupt,	 or	 a	 return	 from
subroutine	or	interrupt.	However,	you	can	use	PHK	to	synthesize	more	complex	call	and
return	sequences,	or	to	set	the	data	bank	equal	to	the	program	bank.

Finally,	the	PHD	instruction	pushes	the	sixteen-bit	direct	page	register	onto	the	stack,
and	PLD	 pulls	 a	 sixteen-bit	 value	 from	 the	 stack	 into	 the	 direct	 page	 register.	PHD	 is
useful	primarily	for	preserving	the	direct	page	location	before	changing	it,	while	PLD	is
an	easy	way	to	change	or	restore	it.	Note	that	PLB	and	PLD	also	affect	the	n	and	z	flags.

Pushing	Effective	Addresses
The	65816	also	provides	three	instructions	which	can	push	data	onto	the	stack	without

altering	 any	 registers.	 These	 three	 push	 effective	 address	 instructions—PEA,	 PEI,	 and
PER	—push	absolute,	indirect,	and	relative	sixteen-bit	addresses	or	data	directly	onto	the
stack	 from	 memory.	 Their	 use	 will	 be	 explained	 when	 their	 addressing	 modes	 are
presented	in	detail	in	Chapter	11	(Complex	Addressing	Modes).

Other	Attributes	of	Push	and	Pull
The	types	of	data	that	can	be	pushed	but	not	pulled	are	effective	addresses	and	the	K

(or	more	commonly	PBR)	program	bank	register.

PLD	and	PLB	are	typically	used	to	restore	values	from	a	previous	state.

Finally,	 you	 should	 note	 that	 even	 though	 the	 push	 and	 pull	 operations	 are	 largely
symmetrical,	 data	 that	 is	 pushed	 onto	 the	 stack	 from	 one	 register	 does	 not	 need	 to	 be
pulled	off	the	stack	into	the	same	register.	As	far	as	the	processor	is	concerned,	data	pulled
off	the	stack	does	not	have	to	be	the	same	size	as	was	pushed	onto	it.	But	needless	to	say,
the	stack	can	quickly	become	garbled	if	you	are	not	extremely	careful.

Moving	Data	Between	Registers
Transfers

The	 accumulator	 is	 the	most	 powerful	 of	 the	 user	 registers,	 both	 in	 the	 addressing
modes	available	to	accumulator	operations	and	in	its	arithmetic	and	logic	capabilities.	As
a	result,	addresses	and	indexes	that	must	be	used	in	one	of	the	index	registers	must	often
be	calculated	 in	 the	accumulator.	A	 typical	problem	on	 the	6502	and	65C02,	 since	 their
registers	 are	 only	 eight	 bits	 wide,	 is	 that	 sixteen-bit	 values	 such	 as	 addresses	 must	 be
added	or	otherwise	manipulated	eight	bits	at	a	time.	The	other	half	of	the	value,	the	high
or	 low	 byte,	 must	 meanwhile	 be	 stored	 away	 for	 easy	 retrieval	 and	 quick	 temporary
storage	of	register	contents	in	a	currently	unused	register	is	desirable.

For	 these	 reasons	 as	 well	 as	 to	 transfer	 a	 value	 to	 a	 register	 where	 a	 different
operation	or	addressing	mode	is	available,	all	65x	processors	implement	a	set	of	one-byte
implied	operand	instructions	which	transfer	data	from	one	register	to	another:

TAX transfers	the	contents	of	the	accumulator	to	the	X	index	register
TAY transfers	the	contents	of	the	accumulator	to	the	Y	index	register
TSX transfers	the	contents	of	the	stack	pointer	to	the	X	index	register
TXS transfers	the	contents	of	the	X	index	register	to	the	stack	pointer
TXA transfers	the	contents	of	the	X	index	register	to	the	accumulator
TYA transfers	the	contents	of	the	Y	index	register	to	the	accumulator

Like	the	load	instructions,	all	of	these	transfer	operations	except	TXS	set	both	the	n
and	 z	 flags.	 (TXS	 does	 not	 affect	 the	 flags	 because	 setting	 the	 stack	 is	 considered	 an
operation	 in	 which	 the	 data	 transferred	 is	 fully	 known	 and	 will	 not	 be	 further
manipulated.)

The	 availability	 of	 these	 instructions	 on	 the	 65802/65816,	 with	 its	 dual-word-size
architecture,	naturally	leads	to	some	questions	when	you	consider	transfer	of	data	between
registers	of	different	sizes.	For	example,	you	may	have	set	the	accumulator	word	size	to
sixteen	bits,	and	the	index	register	size	to	eight.	What	happens	when	you	execute	a	TAY
(transfer	A	to	Y)	instruction?

The	 first	 rule	 to	 remember	 is	 that	 the	 nature	 of	 the	 transfer	 is	 determined	 by	 the
destination	register.	In	this	case,	only	the	low-order	eight	bits	of	the	accumulator	will	be
transferred	 to	 the	 eight-bit	 Y	 register.	 A	 second	 rule	 also	 applies	 here:	 when	 the	 index

registers	are	eight	bits	(because	the	index	register	select	flag	is	set),	the	high	byte	of	each
index	register	 is	always	forced	to	zero	upon	return	to	sixteen-bit	size,	and	the	low-order
value	of	each	sixteen-bit	index	register	contains	its	previous	eight-bit	value.

Listing	6.3	 illustrates	 these	rules	with	TAY.	 In	 this	example,	 the	value	stored	at	 the
location	 DATA2	 is	 $0033;	 only	 the	 low	 order	 byte	 has	 been	 transferred	 from	 the
accumulator,	while	the	high	byte	has	been	zeroed.

The	accumulator,	on	the	other	hand,	operates	differently.	When	the	accumulator	word
size	is	switched	from	sixteen	bits	to	eight,	the	high-order	byte	is	preserved	in	a	“hidden”
accumulator,	B.	 It	can	even	be	accessed	without	changing	modes	back	 to	 the	sixteen-bit
accumulator	size	by	executing	the	XBA	(exchange	B	with	A)	instruction,	described	in	the
following	section.	Listing	6.4	 illustrates	 this	 persistence	of	 the	 accumulator’s	 high	byte.
After	running	it,	 the	contents	of	locations	RESULT.	RESULT	+	1	will	be	$7F33,	or	33
7F,	in	low-high	memory	order.	In	other	words,	the	value	in	the	high	byte	of	the	sixteen-bit
accumulator,	$7F,	was	preserved	across	the	mode	switch	to	eight-bit	word	size.

Listing	6.3.

Now	consider	 the	case	where	 the	sixteen-bit	Y	 register	 is	 transferred	 to	an	eight-bit
accumulator,	as	shown	in	Listing	6.5.	The	result	in	this	case	is	$33FF,	making	it	clear	that
the	high	byte	of	the	Y	register	has	not	been	transferred	into	the	inactive	high-order	byte	of
the	accumulator.	The	rule	is	that	operations	on	the	eight-bit	A	accumulator	affect	only	the
low-order	byte	in	A,	not	the	hidden	high	byte	in	B.	Transfers	into	the	A	accumulator	fall
within	the	rule.

Figure	6.3	summarizes	the	effects	of	transfers	between	registers	of	different	sizes.

There	are	also	rules	for	transfers	from	an	eight-bit	to	a	sixteen-bit	register.	Transfers
out	 of	 the	 eight-bit	 accumulator	 into	 a	 sixteen-bit	 index	 register	 transfer	 both	 eight-bit
accumulators.

In	Listing	6.6,	 the	 value	 saved	 to	RESULT	 is	 $7FFF,	 showing	 that	 not	 only	 is	 the
eight-bit	 A	 accumulator	 transferred	 to	 become	 the	 low	 byte	 of	 the	 sixteen-bit	 index
register,	but	the	hidden	B	accumulator	is	transferred	to	become	the	high	byte	of	the	index
register.	This	means	you	can	form	a	sixteen-bit	index	in	the	eight-bit	accumulator	one	byte
at	a	time,	then	transfer	the	whole	thing	to	the	index	register	without	having	to	switch	the
accumulator	 to	 sixteen	 bits	 first.	 However,	 take	 care	 not	 to	 inadvertently	 transfer	 an
unknown	hidden	value	when	doing	transfers	from	the	eight-bit	accumulator	to	a	sixteen-
bit	index	register.

Listing	6.4.

Transfers	from	an	eight-bit	index	register	to	the	sixteen-bit	accumulator	result	in	the
index	register	being	 transferred	 into	 the	accumulator’s	 low	byte	while	 the	accumulator’s
high	 byte	 is	 zeroed.	This	 is	 consistent	with	 the	 zeroing	 of	 the	 high	 byte	when	 eight-bit
index	registers	are	switched	to	sixteen	bits.

In	Listing	6.7,	the	result	is	$0033,	demonstrating	that	when	an	eight-bit	index	register
is	transferred	to	the	sixteen-bit	accumulator,	a	zero	is	concatenated	as	the	high	byte	of	the
new	accumulator	value.

Listing	6.5.

In	 the	 65816,	 transfers	 between	 index	 registers	 and	 the	 stack	 also	 depend	 on	 the
setting	 of	 the	 destination	 register.	 For	 example,	 transferring	 the	 sixteen-bit	 stack	 to	 an
eight-bit	 index	 register,	 as	 in	 Fragment	 6.2,	 results	 in	 the	 transfer	 of	 just	 the	 low	 byte.
Obviously,	though,	you’ll	find	few	reasons	to	transfer	only	the	low	byte	of	the	sixteen-bit
stack	pointer.	As	always,	you	need	to	be	watchful	of	the	current	modes	in	force	in	each
of	your	routines.

The	65816	also	adds	new	transfer	operations	to	accommodate	direct	transfer	of	data
to	and	from	the	new	65816	environment-setting	registers	(the	direct	page	register	and	the
sixteen-bit	 stack	 register),	 and	 also	 to	 complete	 the	 set	 of	 possible	 register	 transfer
instructions	for	the	basic	65x	user	register	set:

Figure	6.3.	Register	Transfers	Between	Different-Sized	Registers.

TCD

transfers	the	contents	of	the	sixteen-bit	accumulator	C	to	the	D	direct
page	register.	The	use	of	the	letter	C	in	this	instruction’s	mnemonic	to
refer	to	the	accumulator	indicates	that	this	operation	is	always	a
sixteen-bit	transfer,	regardless	of	the	setting	of	the	memory	select
flag.	For	such	a	transfer	to	be	meaningful,	of	course,	the	high-order
byte	of	the	accumulator	must	contain	a	valid	value.

TDC transfers	the	contents	of	the	D	direct	page	register	to	the	sixteen-bit
accumulator.	Again,	the	use	of	the	letter	C	in	the
mnemonic	to	name	the	accumulator	indicates	that	the	sixteen-bit
accumulator	is	always	used,	regardless	of	the	setting	of	the	memory
select	flag.	Thus,	sixteen	bits	are	always	transferred,	even	if	the
accumulator	size	is	eight	bits,	in	which	case	the	high	byte	is	stored	to
the	hidden	B	accumulator.

TCS

transfers	the	contents	of	the	sixteen-bit	C	accumulator	to	the	S	stack
pointer	register,	thereby	relocating	the	stack.	Since	sixteen	bits	will	be
transferred	regardless	of	the	accumulator	word	size,	the	high	byte	of

the	accumulator	must	contain	valid	data.

TSC transfers	the	contents	of	the	sixteen-bit	S	stack	pointer	register	to	the
sixteen-bit	accumulator,	C,	regardless	of	the	accumulator	word	size.

Listing	6.6.

Listing	6.7.

Fragment	6.2.

TXY
transfers	the	contents	of	the	X	index	register	to	the	Y	index	register.
Since	X	and	Y	will	always	have	the	same	register	size,	there	is	no
ambiguity.

TYX transfers	the	contents	of	the	Y	index	register	to	the	X	index	register.
Both	will	always	be	the	same	size.

Transfer	 instructions	 take	 only	 one	 byte,	 with	 the	 source	 and	 destination	 both
specified	 in	 the	 opcode	 itself.	 In	 all	 transfers,	 the	 data	 remains	 intact	 in	 the	 original
register	as	well	as	being	copied	into	the	new	register.

Using	TCS	and	TCD	can	be	dangerous	when	 the	accumulator	 is	 in	eight-bit	mode,
unless	 the	 accumulator	 was	 recently	 loaded	 in	 sixteen-bit	 mode	 so	 that	 the	 high	 byte,
hidden	 when	 the	 switch	 was	 made	 to	 eight-bit	 mode,	 is	 still	 known.	 Transferring	 an

indeterminate	hidden	high	byte	of	 the	accumulator	along	with	its	known	low	byte	into	a
sixteen-bit	environment	register	such	as	the	stack	pointer	will	generally	result	in	disaster.

As	always,	you	need	to	be	watchful	of	the	modes	currently	in	force	in	each	of	your
routines.

Exchanges
The	65802	and	65816	also	implement	two	exchange	instructions,	neither	available	on

the	6502	or	65C02.	An	exchange	differs	from	a	transfer	in	that	 two	values	are	swapped,
rather	than	one	value	being	copied	to	a	new	location.

The	first	of	the	two	exchange	instructions,	XBA,	swaps	the	high	and	low	bytes	of	the
sixteen-bit	accumulator	(the	C	accumulator).

The	terminology	used	to	describe	the	various	components	of	 the	eight-or-sixteen	bit
accumulator	is:	to	use	A	to	name	the	accumulator	as	a	register	that	may	be	optionally	eight
or	sixteen	bits	wide	(depending	on	the	m	memory/accumulator	select	flag);	to	use	C	when
the	accumulator	is	considered	to	be	sixteen	bits	regardless	of	the	setting	of	the	m	flag;	and,
when	A	 is	used	in	eight-bit	mode	to	describe	the	low	byte	only,	to	use	B	 to	describe	the
hidden	high	byte	of	the	sixteen-bit	accumulator.	In	the	latter	case,	when	the	accumulator
size	is	set	to	eight	bits,	only	the	XBA	instruction	can	directly	access	the	high	byte	of	the
sixteen-bit	“double	accumulator”,	B.	This	replacement	of	A	for	B	and	B	for	A	can	be	used
to	simulate	two	eight-bit	accumulators,	each	of	which,	by	swapping,	“shares”	the	actual	A
accumulator.	It	can	also	be	used	in	the	sixteen-bit	mode	for	inverting	a	double-byte	value.
The	XBA	instruction	is	exceptional	in	that	the	n	flag	is	always	set	on	the	basis	of	bit	seven
of	the	resulting	accumulator	A,	even	if	the	accumulator	is	sixteen	bits.

The	 second	 exchange	 instruction,	 XCE,	 is	 the	 65816’s	 only	 method	 for	 toggling
between	6502	emulation	mode	and	65816	native	mode.	Rather	 than	exchanging	 register
values,	it	exchanges	two	bits—the	carry	flag,	which	is	bit	zero	of	the	status	register,	and
the	e	bit,	which	should	be	considered	a	kind	of	appendage	to	the	status	register	and	which
determines	the	use	of	several	of	the	other	flags.

Fragment	6.3	 sets	 the	 processor	 to	 6502	 emulation	mode.	Conversely,	 native	mode
can	be	set	by	replacing	the	SEC	with	a	CLC	clear	carry	instruction.

Fragment	6.3.

Because	the	exchange	stores	the	previous	emulation	flag	setting	into	the	carry,	it	can
be	 saved	 and	 restored	 later.	 It	 can	 also	 be	 evaluated	 with	 the	 branch-on-condition
instructions	to	be	discussed	in	Chapter	8	(Flow	of	Control)	to	determine	which	mode	the
processor	 was	 just	 in.	 A	 device	 driver	 routine	 that	 needs	 to	 set	 the	 emulation	 bit,	 for
example,	can	save	its	previous	value	for	restoration	before	returning.

The	 selection	 of	 the	 carry	 flag	 for	 the	 e	 bit	 exchange	 instruction	 is	 in	 no	 way
connected	 to	 the	 normal	 use	 of	 the	 carry	 flag	 in	 arithmetic	 operations.	 It	 was	 selected

because	it	 is	easy	to	set	and	reset,	 it	 is	 less	frequently	used	than	the	sign	and	zero	flags,
and	there	are	branch-on-condition	instructions	which	test	it.	The	primary	use	of	the	SEC
and	CLC	instructions	for	arithmetic	will	be	covered	in	upcoming	chapters.

Storing	Zero	to	Memory
The	STZ	instruction,	introduced	on	the	65C02,	lets	you	clear	either	a	single	or	double

byte	memory	word	to	zero,	depending,	as	usual,	on	the	current	memory/accumulator	select
flag	word	size.	Zero	has	long	been	recognized	as	one	of	the	most	commonly	stored	values,
so	a	“dedicated”	instruction	to	store	zero	to	memory	can	improve	the	efficiency	of	many
65x	programs.	Furthermore,	the	STZ	instruction	lets	you	clear	memory	without	having	to
first	load	one	of	the	registers	with	zero.	Using	STZ	results	in	fewer	bytes	of	code,	faster
execution,	and	undisturbed	registers.

Block	Moves
The	 two	 block	 move	 instructions,	 available	 only	 on	 the	 65802	 and	 the	 65816,	 let

entire	blocks	(or	strings)	of	memory	be	moved	at	once.

Before	using	either	instruction,	all	three	user	registers	(C,	X,	and	Y)	must	be	set	up
with	values	which	serve	as	parameters.

The	C	accumulator	holds	the	count	of	the	number	of	bytes	to	be	moved,	minus	one.	It
may	 take	some	getting	used	 to,	but	 this	“count”	 is	numbered	from	zero	 rather	 than	one.
The	C	accumulator	is	always	sixteen	bits:	if	the	m	mode	flag	is	set	to	eight	bits,	the	count
is	still	the	sixteen-bit	value	in	C,	the	concatenation	of	B	and	A.

X	and	Y	specify	either	the	top	or	the	bottom	addresses	of	the	two	blocks,	depending
on	which	of	the	two	versions	of	the	instruction	you	choose.	In	Listing	6.8,	$2000	bytes	of
data	are	moved	from	location	$2000	to	$4000.

Listing	6.8.

The	MVN	instruction	uses	X	and	Y	to	specify	the	bottom	(or	beginning)	addresses	of
the	two	blocks	of	memory.	The	first	byte	is	moved	from	the	address	in	X	to	the	address	in
Y;	then	X	and	Y	are	incremented,	C	 is	decremented,	and	the	next	byte	is	moved,	and	so
on,	until	the	number	of	bytes	specified	by	the	value	in	C	is	moved	(that	is,	until	C	reaches
$FFFF).	If	C	is	zero,	a	single	first	byte	is	moved,	X	and	Y	are	each	incremented	once,	and
C	is	decremented	to	$FFFF.

The	MVP	 instruction	assumes	X	and	Y	specify	 the	top	(or	ending)	addresses	of	 the
two	blocks	of	memory.	The	first	byte	is	moved	from	the	address	in	X	to	the	address	in	Y;
then	X,	Y	and	C	are	decremented,	the	next	byte	is	moved,	and	so	on,	until	the	number	of
bytes	specified	by	the	value	in	C	is	moved	(until	C	reaches	$FFFF).

The	 need	 for	 two	 distinct	 block	 move	 instructions	 becomes	 apparent	 when	 the
problem	of	memory	overlap	is	considered.	Typically,	when	a	block	of	memory	starting	at
location	X	is	to	be	moved	to	location	Y,	the	intention	is	to	replace	the	memory	locations
from	Y	to	Y	+	C	with	the	identical	contents	of	 the	range	X	through	X	+	C.	However,	 if
these	two	ranges	overlap,	it	is	possible	that	as	the	processor	blindly	transfers	memory	one
byte	 at	 a	 time,	 it	may	overwrite	 a	 value	 in	 the	 source	 range	 before	 that	 value	 has	 been
transferred.

The	rule	of	thumb	is,	when	the	destination	range	is	a	lower	memory	address	than	the
source	 range,	 the	 MVN	 instruction	 should	 be	 used	 (thus	 “Move	 Next”)	 to	 avoid
overwriting	 source	 bytes	 before	 they	 have	 been	 copied	 to	 the	 destination.	 When	 the
destination	range	is	a	higher	memory	location	than	the	source	range,	the	MVP	instruction

should	be	used	(“Move	Previous”).

While	you	could	conceivably	move	blocks	with	 the	 index	 registers	 set	 to	 eight	bits
(your	only	option	in	emulation	mode),	you	could	only	move	blocks	in	page	zero	to	other
page	zero	locations.	For	all	practical	purposes,	you	must	reset	the	x	mode	flag	to	sixteen
bits	before	setting	up	and	executing	a	block	move.

Notice	 that	assembling	an	MVN	or	MVP	 instruction	generates	not	only	an	opcode,
but	also	two	bytes	of	operand.	The	operand	bytes	specify	the	64K	bank	from	which	and	to
which	 data	 is	moved.	When	 operating	 in	 the	 65816’s	 sixteen-megabyte	memory	 space,
this	supports	the	transfer	of	up	to	64K	of	memory	from	one	bank	to	another.	In	the	object
code,	 the	 first	 byte	 following	 the	 opcode	 is	 the	 bank	 address	 of	 the	 destination	 and	 the
second	byte	is	the	bank	address	of	the	source.

But	while	this	order	provides	microprocessor	efficiency,	assembler	syntax	has	always
been	the	more	logical	left	to	right,	source	to	destination	(TAY,	for	example,	transfers	the
accumulator	to	the	Y	index	register).	As	a	result,	the	recommended	assembler	syntax	is	to
follow	 the	 mnemonic	 first	 with	 a	 24-bit	 source	 address	 then	 with	 a	 24-bit	 destination
address—or	 more	 commonly	 with	 labels	 representing	 code	 or	 data	 addresses.	 The
assembler	strips	the	bank	byte	from	each	address	(ignoring	the	rest)	and	inserts	them	in	the
correct	object	code	sequence.	(Destination	bank,	source	bank.)	For	example:

The	bank	byte	of	the	label	SOURCE	is	02	while	the	bank	byte	of	the	label	DEST	is	01.
As	always,	the	assembler	does	the	work	of	converting	the	more	human-friendly	assembly
code	to	the	correct	object	code	format	for	the	processor.

If	the	source	and	destination	banks	are	not	specified,	some	assemblers	will	provide	a
user-specified	default	bank	value.

The	assembler	will	translate	the	opcode	to	object	code,	then	supply	its	bank	value	for
both	of	the	operand	bytes:

440000 MVP

If	either	bank	is	different	from	the	default	value,	both	must	be	specified.

7

The	Simple	Addressing	Modes
The	term	addressing	mode	 refers	 to	 the	method	by	which	the	processor	determines

where	 it	 is	 to	get	 the	data	needed	 to	perform	a	given	operation.	The	data	used	by	a	65x
processor	 may	 come	 either	 from	 memory	 or	 from	 one	 or	 another	 of	 the	 processor’s
registers.	Data	for	certain	operations	may	optionally	come	from	either	location,	some	from
only	one	or	the	other.	For	those	operations	which	take	one	of	their	operands	from	memory,
there	may	be	several	ways	of	specifying	a	given	memory	location.	The	method	best	suited
in	a	particular	 instance	is	a	function	of	 the	overall	 implementation	of	a	chosen	problem-
solving	 algorithm.	 Indeed,	 there	 are	 so	 many	 addressing	 modes	 available	 on	 the	 65x
processors	 that	 there	 is	 not	 necessarily	 a	 single	 “correct”	 addressing	 mode	 in	 each
situation.

This	 chapter	 deals	 with	 those	 addressing	 modes	 which	 may	 be	 described	 as	 the
“simple”	addressing	modes.	You	have	already	seen	some	of	these	used	in	the	examples	of
the	previous	chapter;	 the	simple	addressing	modes	are	 listed	 in	Table	7.1.	Each	of	 these
addressing	modes	 is	 straightforward.	 Those	 addressing	modes	 that	 require	more	 than	 a
simple	combination	of	values	from	several	memory	locations	or	registers	are	described	as
“complex	modes”	in	Chapter	11.

Table	7.1.	List	of	Simple	Addressing	Modes.

In	addition	 to	solving	a	given	problem,	 the	processor	must	spend	a	great	deal	of	 its
time	simply	calculating	effective	addresses.	The	simple	addressing	modes	require	little	or
no	effective	address	computation,	and	therefore	tend	to	be	the	fastest	executing.	However,
the	 problem-solving	 and	memory	 efficiencies	 of	 the	 complex	 addressing	modes,	 which

will	 be	 described	 in	 subsequent	 chapters,	 can	 make	 up	 for	 their	 effective	 address
calculation	overhead.	In	each	case,	the	nature	of	the	problem	at	hand	determines	the	best
addressing	mode	to	use.

Immediate	Addressing
Immediate	data	is	data	found	embedded	in	the	instruction	stream	of	a	program	itself,

immediately	following	the	opcode	which	uses	the	data.	Because	it	is	part	of	the	program
itself,	it	is	always	a	constant	value,	known	at	assembly	time	and	specified	when	you	create
the	 program.	Typically,	 small	 amounts	 of	 constant	 data	 are	 handled	most	 efficiently	 by
using	the	immediate	addressing	mode	to	load	either	the	accumulator	or	an	index	register
with	a	specific	value.	Note	that	the	immediate	addressing	mode	is	not	available	with	any
of	the	store	instructions	(STA,	STX,	or	STY),	since	it	makes	no	sense	to	store	a	value	to
the	operand	location	within	the	code	stream.

To	 specify	 the	 immediate	 addressing	mode	 to	 a	 65x	 assembler,	 prefix	 the	 operand
with	a	#	(pound	or	sharp)	sign.	The	constant	operand	may	be	either	data	or	an	address.

For	example,

loads	the	hexadecimal	value	$12	into	the	accumulator.

The	6502	and	65C02,	their	registers	limited	to	only	eight	bits,	permit	only	an	eight-bit
operand	to	follow	the	load	register	immediate	opcodes.	When	the	constant	in	an	assembly
source	 line	 is	 a	 sixteen-bit	 value,	 greater-than	 and	 less-than	 signs	 are	 used	 to	 specify
whether	the	high-	or	low-order	byte	of	the	double-byte	value	are	to	be	used.	A	less-than
indicates	 that	 the	 low	byte	 is	 to	be	used,	and	 thus:	causes	 the	assembler	 to	generate	 the
LDX	opcode	followed	by	a	one-byte	operand,	the	low	byte	of	the	source	operand,	which
is	$34.	It’s	equivalent	to:

The	use	of	a	greater-than	sign	would	cause	the	value	$12	to	be	loaded.	If	neither	the
less-than	 nor	 greater-than	 operator	 is	 specified,	most	 assemblers	will	 default	 to	 the	 low
byte	when	confronted	with	a	double-byte	value.

When	 assembling	 65816	 source	 code,	 the	 problem	becomes	 trickier.	 The	 6502	 and
65C02	neither	have	nor	need	an	instruction	to	set	up	the	eight-bit	mode	because	they	are
always	 in	 it.	 But	 the	 65816’s	 accumulator	may	 be	 toggled	 to	 deal	with	 either	 eight-	 or
sixteen-bit	 quantities,	 as	 can	 its	 index	 registers,	 by	 setting	 or	 resetting	 the	 m
(memory/accumulator	select)	or	x	(index	select)	flag	bits	of	the	status	register.	Setting	the
m	 bit	 puts	 the	 accumulator	 in	 eight-bit	 mode;	 resetting	 it	 puts	 it	 in	 sixteen-bit	 mode.
Setting	 the	 x	 bit	 puts	 the	 index	 registers	 in	 eight-bit	 mode;	 resetting	 it	 puts	 them	 in
sixteen-bit	mode.

The	m	and	x	flags	may	be	set	and	reset	many	times	throughout	a	65816	program.	But
while	 assembly	 code	 is	 assembled	 from	 beginning	 to	 end,	 it	 rarely	 executes	 in	 that

fashion.	More	commonly,	 it	 follows	a	circuitous	route	of	execution	filled	with	branches,
jumps,	and	subroutine	calls.	Except	for	right	after	the	m	or	x	flag	has	been	explicitly	set	or
reset,	the	assembler	has	no	way	of	knowing	the	correct	value	of	either:	your	program	may
branch	 somewhere,	 and	 reenter	 with	 either	 flag	 having	 either	 value,	 quite	 possibly	 an
incorrect	one.

While	the	programmer	must	always	be	aware	of	the	proper	values	of	these	two	flags,
for	most	instructions	the	assembler	doesn’t	need	to	know	their	status	in	order	to	generate
code.	 Most	 instructions	 generated	 are	 the	 same	 in	 both	 eight-	 or	 sixteen-bit	 mode.
Assembling	a	 load	accumulator	absolute	 instruction,	 for	example,	puts	 the	 same	opcode
value	and	the	same	absolute	address	into	the	code	stream	regardless	of	accumulator	size;	it
is	 at	 execution	 time	 that	 the	 m	 bit	 setting	 makes	 a	 difference	 between	 whether	 the
accumulator	is	loaded	with	one	or	two	bytes	from	the	absolute	address.

But	a	load	register	immediate	instruction	is	followed	by	the	constant	to	be	loaded.	As
Figure	 7.1	 shows,	 if	 the	 register	 is	 set	 to	 eight-bit	 mode	 at	 the	 point	 the	 instruction	 is
encountered,	 the	 65816	 expects	 a	 one-byte	 constant	 to	 follow	before	 it	 fetches	 the	 next
opcode.	 On	 the	 other	 hand,	 if	 the	 register	 is	 set	 to	 sixteen-bit	 mode	 at	 the	 point	 the
instruction	 is	 encountered,	 the	65816	 expects	 a	 double-byte	 constant	 to	 follow	before	 it
fetches	 the	next	opcode.	The	assembler	must	put	either	a	one-byte	or	 two-byte	constant
operand	into	the	code	following	the	load	register	immediate	opcode	based	on	the	status	of
a	flag	which	it	doesn’t	know.

Immediate	Addressing:	8	bits	vs.	16

8	-Bit	Data	(all	processors):	Data:	Operand	byte.

16-Bit	Data	(65802/65816.	native	mode,	applicable	mode	flag	m	or	x	=	0):

Data	High:	Second	operand	byte.

Data	Low	:	First	operand	byte.

Figure	7.1.	Immediate	Addressing:	8	vs.	16	bits.

Two	assembler	directives	have	been	designed	to	tell	the	assembler	which	way	to	go:
LONGA	and	LONGI,	each	followed	with	the	value	ON	or	OFF.	LONGA	ON	 indicates
the	accumulator	is	in	sixteen-bit	mode,	LONGA	OFF	in	eight-bit	mode.	LONGI	ON	tells
the	assembler	that	the	index	registers	are	in	sixteen-bit	mode,	LONGI	OFF	that	they	are
in	eight-bit	mode.	Load	register	immediate	instructions	are	assembled	on	the	basis	of	the
last	 LONGA	 or	 LONGI	 directive	 the	 assembler	 has	 seen—that	 is,	 the	 one	 most
immediately	 preceding	 it	 in	 the	 source	 file.	 For	 example,	 tells	 the	 assembler	 that	 both
accumulator	 and	 index	 registers	 are	 set	 to	 sixteen	 bits.	 Now,	 if	 it	 next	 encounters	 the

following	 two	 instructions	 then	 the	 first	puts	a	LDA	 immediate	opcode	followed	by	 the
constant	$1234	into	the	code,	and	the	second	a	LDY	 immediate	opcode	followed	by	the
constant	$0056,	again	two	bytes	of	operand,	the	high	byte	padded	with	zero.

LONGA ON
LONGI ON

On	the	other	hand,	 tells	 the	assembler	 that	both	accumulator	and	index	registers	are
set	 to	eight	bits.	Now,	puts	a	LDA	 immediate	opcode	followed	by	the	constant	$34	into
the	code,	and	the	second	a	LDY	immediate	opcode	followed	by	the	constant	$56,	each	one
byte	of	operand.

LONGA OFF
LONGI OFF

Like	the	flags	themselves,	of	course,	one	directive	may	be	ON	and	the	other	OFF	at
any	time.	They	also	do	not	need	to	both	be	specified	at	the	same	time.

The	 settings	 of	 the	LONGA	 and	LONGI	 directives	 to	 either	ON	 or	OFF	 simply
represent	a	promise	by	you,	the	programmer,	that	the	flags	will,	in	fact,	have	these	values
at	execution	time.	The	directives	do	nothing	by	themselves	 to	change	the	settings	of	 the
actual	m	 and	 x	 flags;	 this	 is	 typically	 done	 by	 using	 the	 SEP	 and	REP	 instructions,
explained	earlier.	(Note,	incidentally,	that	these	two	instructions	use	a	special	form	of	the
immediate	addressing	mode,	where	the	operand	is	always	eight	bits.)	Nor	does	setting	the
flags	change	the	settings	of	the	directives.	You	must	therefore	exercise	caution	to	set	the
LONGA	and	LONGI	flags	to	correctly	represent	the	settings	of	the	m	and	x	flags,	and	to
be	sure	never	to	branch	into	the	code	with	the	m	or	x	flag	set	differently.	If,	for	example,
the	assembler	generated	a	LDA	#$1234	instruction	with	LONGA	set	ON,	only	to	have	the
m	accumulator	flag	set	to	eight	bits	when	the	code	is	executed,	the	processor	would	load
the	accumulator	with	$34,	 then	see	 the	$12	which	follows	as	 the	next	opcode	and	try	 to
execute	it,	resulting	in	program	failure.

Absolute	Addressing
There	are	two	categories	of	simple	addressing	modes	available	for	accessing	data	in	a

known	memory	location:	absolute	and	direct	page.	The	first	of	these,	absolute	addressing,
is	used	to	load	or	store	a	byte	to	or	from	a	fixed	memory	location	(within	the	current	64K
data	 bank	 on	 the	 65816,	 which	 defaults	 to	 bank	 zero	 on	 power	 up).	 You	 specify	 the
sixteen-bit	memory	location	in	the	operand	field	(following	the	opcode)	in	your	assembly
language	source	line,	as	Figure	7.2	shows.

For	example,	Fragment	7.1	loads	the	eight-bit	constant	$34	into	the	accumulator,	then

stores	it	to	memory	location	$B100	in	the	current	data	bank.

Fragment	7.1.

The	same	memory	move	could	be	done	with	either	of	the	index	registers,	as	shown	in
Fragment	7.2	 using	 the	X	 register.	 Symbolic	 labels	 in	 the	 operand	 fields	 provide	 better
self-documentation	and	easier	program	modification.

Fragment	7.2.

As	you	have	seen,	the	65816’s	accumulator	may	be	toggled	to	deal	with	either	eight-
or	sixteen-bit	quantities,	as	can	its	index	registers,	by	setting	or	resetting	the	m	or	x	 flag
bits	of	the	status	register.	Naturally,	you	don’t	need	to	execute	a	SEP	or	REP	instruction
nor	a	LONGA	or	LONGI	assembler	directive	before	every	routine,	provided	you	know
the	register	you	intend	to	use	is	already	set	correctly,	and	the	assembler	correctly	knows
that	setting.	But	you	must	always	exercise	extreme	care	when	developing	65816	programs
to	 avoid	 making	 invalid	 assumptions	 about	 the	 modes	 currently	 in	 force	 or	 taking
unintentional	branches	from	code	in	one	mode	to	code	in	another.

Figure	7.2.	Absolute	Addressing.

As	 Fragment	 7.3	 shows,	 the	 load	 and	 store	 instructions	 above	will	 as	 easily	move
sixteen	bits	of	data	as	they	did	eight	bits;	all	that’s	needed	is	to	be	sure	the	register	used	is
in	sixteen-bit	mode,	and	that	the	assembler	has	been	alerted	to	the	setting.

Fragment	7.3.

As	indicated,	absolute	addresses	are	sixteen-bit	addresses.	On	the	6502,	65C02,	and
65802,	 with	memory	 space	 limited	 to	 64K,	 sixteen	 bits	 can	 specify	 any	 fixed	 location
within	the	entire	address	space	of	the	processor.	Therefore,	the	term	absolute	addressing
was	appropriate.

The	 65816,	 on	 the	 other	 hand,	with	 its	 segmentation	 into	 256	 possible	 64K	 banks,
requires	a	24-bit	address	to	specify	any	fixed	location	within	its	address	space.	However,
the	 same	 opcodes	 that	 generated	 sixteen-bit	 absolute	 addresses	 on	 the	 6502	 and	 65C02
generate	 24-bit	 addresses	 on	 the	 65816	 by	 concatenating	 the	 value	 of	 the	 data	 bank
register	with	the	sixteen-bit	value	in	the	operand	field	of	the	instruction.	(Instructions	that
transfer	control,	 to	be	discussed	in	Chapter	8,	substitute	 the	program	bank	register	value
for	the	data	bank	register	value.)

Absolute	addressing	on	the	65816	is	therefore	actually	an	offset	from	the	base	of	the
current	 bank;	 nevertheless,	 the	 use	 of	 the	 term	 absolute	 addressing	 has	 survived	 on	 the
65816	to	refer	to	sixteen-bit	fixed	addresses	within	the	current	64K	data	bank.

So	long	as	the	programmer	needs	to	access	only	the	contents	of	the	current	data	bank,
(sixteen-bit)	absolute	addressing	is	 the	best	way	to	access	data	at	any	known	location	in
that	bank.

Direct	Page	Addressing
One	of	 the	most	powerful	 and	useful	 features	of	 the	6502	and	65C02	processors	 is

their	zero	page	addressing	modes.	A	page	of	memory	on	a	65x	processor	consists	of	256
memory	 locations,	 starting	 at	 an	 address	 which	 is	 an	 integer	 multiple	 of	 $100
hexadecimal,	 that	 is,	$0000,	$0100,	$0200,	and	so	on.	Generally,	pages	are	numbered	in
hexadecimal,	so	their	range	within	a	64K	bank	is	$00	through	$FF.	Zero	page	addressing
is	made	even	more	powerful	and	generalized	as	direct	page	addressing	on	the	65802	and
65816.

The	zero	page	is	the	first	of	the	256	pages	found	within	the	64K	address	space	of	the
6502	and	65C02—memory	addresses	$0000	to	$00FF.	These	addresses	may	be	accessed
one	byte	cheaper	than	absolute	memory	accesses.	Whereas	loading	or	storing	data	from	an
absolute	 location	will	 require	 three	bytes	of	code,	 loading	or	 storing	a	byte	 from	a	zero
page	location	requires	only	two	bytes,	as	Figure	7.3	shows.

Figure	7.3.	Zero	Page	Addressing.

Since	 all	 of	 the	 addresses	 in	 the	 zero	page	 are	 less	 than	$0100	 (such	 as	 $003F,	 for
example)	it	follows	that,	if	the	computer	knew	enough	to	assume	two	leading	hexadecimal
zeroes,	a	zero	page	address	could	be	represented	in	only	one	byte,	saving	both	space	and
time.	But	if	absolute	addressing	is	used,	the	processor	has	to	assume	that	two	bytes	follow
an	instruction	to	represent	the	operand,	regardless	of	whether	the	high-order	byte	is	zero	or
not.

This	 concept	 of	 expressing	 a	 zero	 page	 address	 with	 a	 single-byte	 operand	 was
implemented	 on	 the	 6502	 and	 65C02	 by	 reserving	 separate	 opcodes	 for	 the	 various
instructions	using	zero	page	addressing.	Since	an	instruction’s	opcode	for	using	zero	page
addressing	is	unique	(as	opcodes	are	for	all	of	the	different	addressing	modes	of	a	given
instruction),	the	processor	will	fetch	only	one	operand	byte	from	the	code	stream,	using	it
in	effect	as	a	displacement	from	a	known	base	($0000,	in	the	case	of	the	6502	and	65C02).
Since	only	one	byte	need	be	fetched	from	the	instruction	stream	to	determine	the	effective
address,	the	execution	time	is	faster	by	one	cycle.	The	result	is	a	form	of	addressing	that	is
shorter,	 both	 in	 memory	 use	 and	 execution	 time,	 than	 regular	 sixteen-bit	 absolute
addressing.

Clearly,	 locating	your	most	often	accessed	variables	 in	zero	page	memory	results	 in
considerably	shorter	code	and	faster	execution	time.

The	 limitation	 of	 having	 this	 special	 area	 of	 memory	 available	 to	 the	 zero	 page
addressing	mode	instructions	is	that	there	are	only	256	bytes	of	memory	available	for	use
in	 connection	with	 it.	 That	 is,	 there	 are	 only	 256	 zero	 page	 addresses.	Resident	 system
programs,	such	as	operating	systems	and	language	interpreters,	typically	grab	large	chunks
of	page	zero	for	 their	own	variable	space;	applications	programmers	must	carefully	step
around	the	operating	system’s	variables,	limiting	assignment	of	their	own	program’s	zero
page	variables	to	some	fraction	of	the	zero	page.

This	problem	is	overcome	on	the	65816	by	letting	its	direct	page	be	set	up	anywhere
within	 the	 first	 64K	 of	 system	memory	 (bank	 zero),	 under	 program	 control.	 No	 longer
limited	to	page	zero,	it	is	referred	to	as	direct	page	addressing.	The	result	is,	potentially,
multiple	areas	of	256	($100)	bytes	each,	which	can	be	accessed	one	byte	and	one	cycle
cheaper	than	absolute	memory.	Setting	the	direct	page	anywhere	is	made	possible	by	the
65816’s	direct	page	register,	which	serves	as	the	base	pointer	for	the	direct	page	area	of
memory.	Expressed	in	terms	of	the	65816’s	direct	page	concept,	it	can	be	said	that	on	the

6502	(and	65C02),	the	direct	page	is	fixed	in	memory	to	be	the	zero	page.

So	6502	and	65C02	zero	page	addressing	opcodes	become	direct	page	opcodes	on	the
65802	and	65816;	and	when	they	are	executed,	the	“zero	page	address”—the	single	byte
that	 the	processor	fetches	immediately	after	 the	opcode	fetch—becomes	instead	a	direct
page	offset.	This	means	that	instead	of	simply	pointing	to	a	location	in	the	range	$0000	to
$00FF	as	it	would	on	the	6502	and	65C02,	the	direct	page	offset	is	added	to	the	sixteen-bit
value	in	the	direct	page	register	to	form	the	effective	direct	page	address,	which	can	be
anywhere	in	the	range	$00:0000	to	$00:FFFF.

For	purposes	of	this	chapter,	however,	the	discussion	of	direct	page	addressing	will	be
limited	 to	 the	default	case,	where	 the	value	 in	 the	direct	page	register	 is	zero,	making	 it
functionally	identical	to	the	6502	and	65C02	zero	page	addressing	mode.	Since	it	requires
the	effective	address	to	be	computed,	relocation	of	the	direct	page	will	be	considered	as	a
form	of	complex	addressing,	and	will	be	covered	 in	 future	chapters.	While	“direct	page
offset”	 is	 more	 correct,	 it	 is	 also	more	 abstract;	 the	 term	direct	 page	 address	 is	 most
commonly	used.	However,	it	is	essential	to	remember	that	it	is,	in	fact,	an	offset	relative	to
a	previously	established	direct	page	value	(again,	as	used	in	this	chapter,	$0000).

An	example	of	the	use	of	direct	page	addressing	to	store	a	constant	value	to	memory
is	as	follows:

This	stores	the	one-byte	value	$F0	at	address	$0012.	Note	that	the	object	code	generated
for	the	store	requires	only	one	byte	for	the	opcode	and	one	for	operand.
stores	the	same	one-byte	value	at	 the	address	$B100.	In	this	case,	 the	store	requires	one
byte	for	the	opcode	and	two	bytes	for	the	operand.

Notice	how	the	assembler	automatically	assumes	that	if	the	value	of	the	operand	can
be	expressed	in	eight	bits—if	it	is	a	value	less	than	$100,	whether	coded	as	$34	or	$0034
or	$000034—the	address	is	a	direct	page	address.	It	therefore	generates	the	opcode	for	the
direct	page	addressing	form	of	the	instruction,	and	puts	only	a	one-byte	operand	into	the
object	code.	For	example,	in	the	first	of	the	two	examples	above,	the	direct	page	address	to
store	 to	 is	$12.	One	 result	of	 the	assembler’s	 assumption	 that	values	 less	 than	$100	are
direct	page	offsets	is	that	physical	addresses	in	the	range	$xx:0000	to	$xx:00FF	cannot	be
referenced	 normally	 when	 either	 the	 bank	 (the	 “xx”)	 register	 is	 other	 than	 zero	 or	 the
direct	page	register	is	set	to	other	than	$0000.	For	example,	assembler	syntax	like:

is	direct	page	syntax.	It	will	not	access	absolute	address	direct	page	register	holds	a	value
other	than	zero;	nor	will	it	access	$00F0	in	another	bank,	even	if	the	data	bank	register	is
set	to	the	other	bank.	Both	are	evaluated	to	the	same	$F0	offset	in	the	direct	page.	Instead,
to	 access	 physical	 address	 $xx:00F0,	 you	 must	 force	 absolute	 addressing	 by	 using	 the

vertical	bar	or	exclamation	point	in	your	assembler	source	line:

Indexing
An	array	is	a	table	or	list	in	memory	of	sequentially	stored	data	items	of	the	same	type

and	size.	Accessing	any	particular	item	of	data	in	an	array	requires	that	you	specify	both
the	 location	 of	 the	 base	 of	 the	 array	 and	 the	 item	number	within	 the	 array.	Either	 your
program	or	the	processor	must	translate	the	item	number	into	the	byte	number	within	the
array	(they	are	the	same	if	the	items	are	bytes)	and	add	it	to	the	base	location	to	find	the
address	of	the	item	to	be	accessed	(see	Figure	7.4).

Sometimes	an	array	might	be	a	table	of	addresses,	either	of	data	to	be	accessed	or	of
the	locations	of	routines	to	be	executed.	In	this	case,	the	size	of	each	item	is	two	bytes;	the
first	address	is	at	locations	zero	and	one	within	the	array,	the	second	at	locations	two	and
three,	 the	 third	at	 locations	four	and	five,	and	so	on.	You	must	double	 the	 item	number,
resulting	in	the	values	0,	2,	4,	…	from	the	array	indices	0,	1,	2,	…,	and	so	on,	to	create	an
index	into	this	array	of	two-byte	data	items.

Figure	7.4.	Indexing.

The	65x	processors	provide	a	wide	range	of	indexed	addressing	modes	that	provide
automatic	 indexing	 capability.	 In	 all	 of	 them,	 a	 value	 in	 one	 of	 the	 two	 index	 registers
specifies	 the	 unsigned	 (positive	 integer)	 index	 into	 the	 array,	 while	 the	 instruction’s
operand	specifies	either	the	base	of	the	array	or	a	pointer	to	an	indirect	address	at	which
the	 base	 may	 be	 found.	 Each	 addressing	 mode	 has	 a	 special	 operand	 field	 syntax	 for

specifying	the	addressing	mode	to	the	assembler.	It	selects	the	opcode	that	will	correctly
instruct	the	processor	where	to	find	both	the	base	and	index.

Some	early	processors	(the	6800,	for	example)	had	only	one	 index	register;	moving
data	from	one	array	to	another	required	saving	off	the	first	index	and	loading	the	second
before	accessing	the	second	array,	then	incrementing	the	second	index	and	saving	it	before
reloading	the	first	index	to	again	access	the	first	array.	The	65x	processors	were	designed
with	two	index	registers	so	data	can	be	quickly	moved	from	an	array	indexed	by	one	to	a
second	array	indexed	by	the	other.

Often,	the	index	registers	are	used	simultaneously	as	indexes	and	as	counters	within
loops	in	which	consecutive	memory	locations	are	accessed.

The	65802	and	65816	index	registers	can	optionally	specify	sixteen-bit	offsets	into	an
array,	 rather	 than	 eight-bit	 offsets,	 if	 the	 x	 index	 register	 select	 flag	 is	 clear	 when	 an
indexed	addressing	mode	is	encountered.	This	lets	simple	arrays	and	other	structured	data
elements	be	as	large	as	64K.

On	 the	 6502,	 65C02,	 and	 65802,	 if	 an	 index	 plus	 its	 base	would	 exceed	 $FFFF,	 it
wraps	to	continue	from	the	beginning	of	the	64K	bank	zero;	that	is,	when	index	is	added
to	base,	any	carry	out	of	the	low-order	sixteen	bits	is	lost.	(See	Figure	7.5.)

Figure	7.5.	Indexing	Beyond	the	End	of	the	Bank.

On	 the	 65816,	 the	 same	 is	 true	 of	 direct	 page	 indexing:	 because	 the	 direct	 page	 is
always	located	in	bank	zero,	any	time	the	direct	page,	plus	an	offset	into	the	direct	page,
plus	an	index	exceeds	$FFFF,	the	address	wraps	to	remain	in	bank	zero.

But	 as	 Figure	 7.5	 shows,	 whenever	 a	 65816	 base	 is	 specified	 by	 a	 24-bit	 (long)
address,	 or	 the	 base	 is	 specified	 by	 sixteen	 bits	 and	 assumes	 the	 data	 bank	 as	 its	 bank,
then,	 if	 an	 index	 plus	 the	 low-order	 sixteen	 bits	 of	 its	 base	 exceeds	 $FFFF,	 it	 will
temporarily	(just	for	the	current	instruction)	increment	the	bank.	The	65816	assumes	that
the	array	being	accessed	extends	into	the	next	bank.

Absolute	Indexed	with	X	and	Absolute	Indexed

with	Y	Addressing
Absolute	 addresses	 can	 be	 indexed	 with	 either	 the	X	 (referred	 to	 as	 Absolute,	X

addressing)	or	the	Y	(referred	to	as	Absolute,	Y	addressing)	index	register;	but	 indexing
with	X	is	available	to	half	again	as	many	instructions	as	indexing	with	Y.

The	base	in	these	modes	is	specified	by	the	operand,	a	sixteen-bit	absolute	address	in
the	 current	 data	 bank	 (Figure	 7.6).	 The	 index	 is	 specified	 by	 the	 value	 in	 the	 X	 or	 Y
register;	 the	assembler	picks	 the	correct	opcode	on	 the	basis	of	which	 index	register	 the
syntax	specifies.

In	Fragment	7.4,	the	X	register	is	used	to	load	the	accumulator	from	$2200	plus	5,	or
$2205.	 If	 run	on	 the	65816	 in	native	mode,	 then	 if	 the	 accumulator	 is	 set	 to	 sixteen-bit
mode,	two	bytes	will	be	loaded	from	$2205	and	$2206	in	the	current	data	bank.

Fragment	7.4.

If	 the	 65816	 is	 in	 native	mode	 and	 the	 index	 registers	 are	 set	 to	 sixteen-bit	mode,
indexes	greater	than	$FF	can	be	used,	as	Fragment	7.5	illustrates.

Fragment	7.5.

If	 the	 index	 register	 plus	 the	 constant	 base	 exceeds	 $FFFF,	 the	 result	will	 continue
beyond	the	end	of	the	current	64K	data	bank	into	the	next	bank	(the	bank	byte	of	the	24-
bit	 address	 is	 temporarily	 incremented	 by	 one).	 So	 an	 array	 of	 any	 length	 (up	 to	 64K
bytes)	can	be	started	at	any	location	and	absolute	indexed	addressing	will	correctly	index
into	 the	 array,	 even	 across	 a	 bank	 boundary.	 65802	 arrays,	 however,	 wrap	 at	 the	 64K
boundary,	since	effectively	there	is	only	the	single	64K	bank	zero.

Loading	 the	 index	 register	 with	 an	 immediate	 constant,	 as	 in	 the	 previous	 two
examples,	is	of	limited	use:	if,	when	writing	a	program,	you	know	that	you	want	to	load
the	 accumulator	 from	 $2305,	 you	 will	 generate	 far	 fewer	 bytes	 by	 using	 absolute
addressing:

Figure	7.6.	Absolute	Indexing	with	a	Generic	Index	Register.

The	 usefulness	 of	 indexed	 addressing	 becomes	 clear	when	 you	 don’t	 know,	 as	 you
write	 a	 program,	what	 the	 index	 into	 the	 array	will	 be.	Perhaps	 the	 program	will	 select
among	indexes,	or	calculate	one,	or	retrieve	it	from	a	variable,	as	in	Fragment	7.6.

Fragment	7.6.

It	can	be	useful	to	be	able	to	put	the	base	of	an	array	into	the	index	register	and	let	it
vary,	while	 keeping	 the	 index	 into	 the	 array	 constant.	 This	 is	 seldom	 possible	with	 the
eight	bits	of	 the	6502’s	and	65C02’s	 index	 registers,	 since	 they	 limit	 the	base	addresses
they	can	hold	to	the	zero	page,	but	it	is	a	useful	capability	of	the	65802	and	65816.

For	example,	suppose,	as	in	Fragment	7.7,	you’re	dealing	with	dozens	(or	hundreds)
of	records	in	memory.	You	need	to	be	able	to	update	the	fifth	byte	(which	is	a	status	field)
of	 an	 arbitrary	 record.	 By	 loading	 the	 base	 address	 of	 the	 desired	 record	 into	 an	 index
register,	you	can	use	a	constant	to	access	the	status	field.	The	index	into	the	array,	five,	is
fixed;	the	array	base	varies.

Because	 the	 index	 is	 less	 than	 $100,	 the	 assembler	would	 normally	 generate	 direct
page	 indexing.	 To	 force	 the	 assembler	 to	 generate	 absolute	 indexing,	 not	 direct	 page
indexing,	 you	 must	 use	 the	 vertical	 bar	 (or	 exclamation	 point)	 in	 front	 of	 the	 five,	 as

Fragment	7.7	shows.	That	way,	the	five	is	generated	as	the	double-byte	operand	$0005,	an
absolute	address	to	which	the	address	in	the	index	register	is	added	to	form	the	absolute
effective	address.

Had	 the	Y	 index	 register	 been	 used	 instead	 of	X	 in	 Fragment	 7.7,	 the	 vertical	 bar
would	have	been	acceptable	but	not	necessary;	direct	page,Y	addressing,	as	you	will	learn
in	the	next	section,	can	only	be	used	with	the	LDX	and	STX	instructions,	so	the	assembler
would	have	been	forced	to	use	absolute,	Y	addressing	regardless.

Both	absolute,	X	and	absolute,	Y	 can	be	used	by	what	are	called	 the	eight	Group	 I
instructions,	 the	 memory-to-accumulator	 instructions	 which	 can	 use	 more	 addressing
modes	 than	 any	 others:	 LDA,	 STA,	 ADC,	 SBC,	 CMP,	 AND,	 ORA,	 and	 EOR.	 In
addition,	 absolute,	 X	 can	 be	 used	 for	 shifting	 data	 in	 memory,	 incrementing	 and
decrementing	 data	 in	 memory,	 loading	 the	 Y	 register,	 and	 for	 other	 instructions;	 but
absolute,	Y	has	only	one	other	use—to	load	the	X	register.

Fragment	7.7.

Direct	Page	Indexed	with	X	and	Direct	Page
Indexed	with	y	Addressing

Arrays	based	in	the	direct	page	(the	zero	page	on	the	6502	and	65C02)	can	be	indexed
with	 either	 the	X1	 register	 (called	Direct	 Page,X	 addressing)	 or	 the	Y	 register	 (called
Direct	Page,Y	 addressing).	However,	 direct	 page,Y	addressing	 is	 available	 only	 for	 the
purpose	of	loading	and	storing	the	X	register,	while	direct	page,X	is	full-featured.

As	 is	 standard	with	 indexed	addressing	modes,	 the	 index,	which	 is	 specified	by	 the
index	 register,	 is	 added	 to	 the	 array	 base	 specified	 by	 the	 operand.	Unlike	 the	 absolute

indexed	modes,	the	array	always	starts	in	the	direct	page.	So	the	array	base,	a	direct	page
offset,	can	be	specified	with	a	single	byte.	The	sum	of	the	base	and	the	index,	a	direct	page
offset,	must	be	added	to	the	value	in	the	direct	page	register	to	find	its	absolute	address,	as
shown	in	Figure	7.7.

In	Fragment	7.8,	the	accumulator	is	loaded	from	a	direct	page	offset	base	of	$32	plus
index	of	$10,	or	an	offset	of	$42	from	the	direct	page	register’s	setting.

Fragment	7.8.

Remember	that	the	effective	address	is	an	offset	of	$42	from	the	direct	page	register
and	is	always	in	bank	zero.	It	will	correspond	to	an	absolute	address	of	$0042	only	when
the	direct	page	register	is	equal	to	zero	(the	default	here	in	this	chapter).	Chapter	11,	which
covers	the	complex	addressing	modes,	details	relocation	of	the	direct	page.

When	the	 index	registers	are	set	 to	eight	bits,	you	can	code	 the	 index	and	 the	array
base	interchangeably—they	are	both	the	same	size.	So	the	index,	if	it	is	a	constant,	may	be
specified	as	the	operand,	with	the	array	base	in	the	index	register.	Using	the	last	example,
the	$10	in	the	index	register	could	be	the	direct	page	base	of	the	array;	the	operand,	$32,
would	then	be	 the	 index	into	an	array	in	 the	direct	page	which	begins	at	 the	direct	page
offset	$10.

On	the	6502	and	the	65C02,	and	in	the	6502	emulation	modes	of	the	two	sixteen-bit
processors,	 indexing	past	 the	end	of	 the	direct	page	wraps	 to	 the	beginning	of	 the	direct
page,	as	Fragment	7.9	shows.	The	index	and	the	direct	page	array	base	are	added,	but	only
the	low	eight	bits	of	the	sum	specify	the	direct	page	offset	of	the	effective	address.	So	in
Fragment	7.9,	while	 the	base	of	$32	plus	 the	 index	of	$F0	equals	$122,	only	 the	$22	 is
kept,	and	the	accumulator	is	loaded	from	dp:$22.

Fragment	7.9.

In	65802	and	65816	native	mode,	however,	indexes	can	be	sixteen	bits,	so	direct	page
indexing	was	freed	of	 the	restriction	that	 the	effective	address	be	within	 the	direct	page.
Arrays	always	start	in	the	direct	page,	but	indexing	past	the	end	of	the	direct	page	extends
on	through	bank	zero,	except	that	it	wraps	when	the	result	is	greater	than	$FFFF	to	remain
in	 bank	 zero	 (unlike	 absolute	 indexing,	 which	 temporarily	 allows	 access	 into	 the	 next
higher	bank).

Figure	7.7.	Direct	Page	Indexing	with	a	Generic	Index	Register.

In	Fragment	7.10,	the	accumulator	is	loaded	from	the	value	in	the	direct	page	register
plus	 the	direct	page	base	of	$12	plus	 index	of	$FFF0,	or	dp:$0002.	Note	 this	 is	 in	bank
zero,	not	bank	one.

Fragment	7.10.

If	the	index	registers	are	set	to	sixteen	bits	and	the	array	indexes	you	need	to	use	are
all	known	constants	less	than	$100,	then	you	can	use	direct	page	indexing	to	access	arrays
beginning,	not	just	in	the	direct	page,	but	anywhere	in	bank	zero	memory:	load	the	index
register	with	 the	sixteen-bit	base	of	 the	array	and	specify	 the	 index	 into	 the	array	as	 the
operand	constant.	This	technique	would	generally	only	be	useful	if	the	direct	page	register
has	its	default	value	of	zero.

Accumulator	Addressing
Accumulator	addressing	is	only	available	for	the	read-modify-write	instructions	such

as	shifts	and	rotates.	The	instructions	themselves	will	be	explained	in	subsequent	chapters,
and	the	use	of	accumulator	addressing	with	them	will	be	reviewed	in	detail.

As	a	simple	addressing	mode,	accumulator	addressing	is	included	in	this	chapter	for
the	 sake	 of	 completeness	 even	 though	 the	 instructions	 which	 use	 it	 have	 not	 yet	 been
introduced.

Generally,	most	operations	 take	place	upon	 two	operands,	one	of	which	 is	stored	 in
the	 accumulator,	 the	 other	 in	memory,	 with	 the	 result	 being	 stored	 in	 the	 accumulator.
Read-modify-write	instructions,	such	as	the	shifts	and	rotates,	are	“unary”	operations;	that
is,	 they	 have	 only	 a	 single	 operand,	 which	 in	 the	 case	 of	 accumulator	 addressing,	 is
located	in	the	accumulator.	There	is	no	reference	to	external	memory	in	the	accumulator
addressing	modes.	As	usual,	the	result	is	stored	in	the	accumulator.

The	 syntax	 for	 accumulator	 addressing,	 using	 the	 ASL	 (arithmetic	 shift	 left)
instruction	as	an	example,	is:

Implied	Addressing
In	implied	addressing,	the	operand	of	the	instruction	is	implicit	in	the	operation	code

itself;	when	 the	operand	 is	 a	 register,	 it	 is	 specified	 in	 the	opcode’s	mnemonic.	 Implied
operand	 instructions	 are	 therefore	 single-byte	 instructions	 consisting	 of	 opcode	 only,
unlike	instructions	that	reference	external	memory	and	as	a	result	must	have	operands	in
subsequent	bytes	of	the	instruction.

You	have	already	encountered	implied	addressing	in	the	previous	chapter	in	the	form
of	 the	 register	 transfer	 instructions	 and	 exchanges.	 Since	 there	 are	 a	 small	 number	 of
registers,	 it	 is	possible	 to	dedicate	an	opcode	to	each	specific	register	 transfer	operation.
Other	instructions	that	use	implied	addressing	are	the	register	increments	and	decrements.

As	one-byte	instructions,	there	is	no	assembler	operand	field	to	be	coded:	You	simply
code	the	assembler	mnemonic	for	the	given	instruction,	as	below:

Stack
Stack	 addressing	 references	 the	 memory	 location	 pointed	 to	 by	 the	 stack	 register.

Typical	use	of	the	stack	addressing	mode	is	via	the	push	and	pull	instructions,	which	add
or	remove	data	to	or	from	the	stack	area	of	memory	and	which	automatically	decrement	or
increment	the	stack	pointer.	Examples	of	the	use	of	push	and	pull	instructions	were	given
in	the	previous	chapter.

Additionally,	 the	 stack	 is	 used	 by	 the	 jump	 to	 subroutine,	 return	 from	 subroutine,
interrupt,	and	return	from	interrupt	instructions	to	automatically	store	and	retrieve	return
addresses	and	in	some	cases	also	the	status	register.	This	form	of	stack	addressing	will	be
covered	in	Chapter	12,	Subroutines,	and	Chapter	13,	System	Control.

The	assembler	 syntax	of	 the	push	and	pull	 instructions	 is	 similar	 to	 that	of	 implied

instructions;	no	operand	field	is	coded,	since	the	operation	will	always	access	memory	at
the	stack	pointer	location.

Direct	Page	Indirect	Addressing
Direct	page	indirect	addressing,	or,	as	it	is	known	on	the	65C02,	zero	page	indirect,

is	unavailable	on	the	6502;	it	was	first	introduced	on	the	65C02.

Indirect	addressing	was	designed	for	the	65C02	as	a	simplification	of	two	often-used
complex	forms	of	addressing	available	on	the	6502	known	as	zero	page	indirect	indexed
and	zero	page	indexed	indirect	addressing	(these	forms	of	addressing	on	the	65816	are	of
course	direct	page	 indirect	 indexed	or	 indexed	indirect	addressing;	 they	are	explained	in
Chapter	11,	Complex	Addressing	Modes).	It	was	found	that	programmers	were	tolerating
the	 overhead	 inherent	 in	 these	 two	 complex	 addressing	 modes	 to	 simulate	 simple
indirection.

The	concept	of	simple	indirect	addressing	lies	on	the	borderline	between	the	simple
and	complex	addressing	modes.	An	understanding	of	it	forms	the	basis	for	understanding
several	of	the	more	complex	indexed	modes	which	use	indirection	as	well.

An	 indirect	address	 is	an	address	stored	 in	memory	which	points	 to	 the	data	 to	be
accessed;	 it	 is	 located	by	means	of	 the	operand,	 an	address	which	points	 to	 the	 indirect
address,	as	shown	in	Figure	7.8.	Except	in	the	case	of	indirect	jump	instructions,	explained
in	Chapter	8,	Flow	of	Control,	this	pointer	is	always	a	direct	page	address.

The	 use	 of	 indirect	 addresses	 brings	 great	 flexibility	 to	 the	 addressing	 options
available	to	you.	There	is,	however,	a	penalty	in	execution	speed,	imposed	by	the	fact	that,
in	addition	 to	 the	operand	 fetch	 from	 the	code	stream,	 the	actual	effective	address	must
also	be	fetched	from	memory	before	the	data	itself	can	be	accessed.	For	this	reason,	direct
page	 addresses	 are	 used	 as	 the	 pointers	 to	 the	 indirect	 addresses	 since,	 as	 you	 will
remember	from	the	discussion	of	direct	page	addressing,	 the	direct	page	offset	 itself	can
be	determined	with	only	a	single	memory	fetch.

The	 syntax	 for	 indirect	 addressing	 is	 to	 enclose	 in	 parentheses,	 as	 the	 operand,	 the
direct	page	pointer	to	the	indirect	address.

This	means,	 as	 Figure	 7.8	 illustrates,	 “go	 to	 the	 direct	 page	 address	 $80	 and	 fetch	 the
absolute	(sixteen-bit)	address	stored	there,	and	then	load	the	accumulator	with	the	data	at
that	address.”	The	low-order	byte	of	the	indirect	address	is	stored	at	dp:$80,	the	high-order
byte	at	dp:$81—typical	65x	 low/high	 fashion.	Remember,	 in	 the	default	case	where	DP
equals	$0000,	the	direct	page	address	equals	the	zero	page	address,	namely	$00:0080.

As	explained	above,	the	indirect	address	stored	at	the	direct	page	location	(pointed	to
by	the	instruction	operand)	is	a	sixteen-bit	address.	The	general	rule	for	the	65816	is	that
when	 an	 addressing	mode	only	 specifies	 sixteen	bits	 of	 the	 address,	 then	 the	bank	byte
(bits	16-23)	of	the	address	is	provided	by	the	data	bank	register.	This	rule	applies	here;	but
you	must	first	note	that	the	direct	page	offset	which	points	to	the	indirect	address	is	itself
always	located	in	bank	zero	because	the	direct	page	itself	is	always	located	in	bank	zero.

The	examples,	however,	were	simplified	to	assume	both	the	data	bank	and	the	direct	page
register	to	be	zero.

Figure	7.8.	Direct	Page	Indirect	Addressing.

The	use	of	 indirect	 addressing	 allows	 an	 address	 that	 is	 referenced	numerous	 times
throughout	 a	 routine	 and	 is	 subject	 to	 modification—for	 example,	 a	 pointer	 to	 a	 data
region—to	be	modified	 in	only	one	 location	and	yet	alter	 the	effective	address	of	many
instructions.

In	Listing	7.1,	the	data	$1234	is	moved	from	location	VAR1	to	VAR2.	Note	that	the
load	and	store	instructions	had	the	same	operand:	the	symbol	DPA,	which	had	been	given
a	 value	 of	 $80.	 The	 indirect	 address	 stored	 at	 that	 location	was	 different	 in	 each	 case,
however,	 resulting	 in	 the	 data	 being	 copied	 from	 one	 location	 to	 another.	 While	 this
example	in	itself	is	an	inefficient	way	to	move	a	double-byte	word	to	another	location,	it
does	illustrate	the	basic	method	of	indirect	addressing,	which	will	become	quite	useful	as
looping	and	counting	instructions	are	added	to	your	working	set	of	65x	instructions.

Absolute	Long	Addressing
This	is	the	first	of	the	simple	addressing	modes	that	are	available	only	on	the	65816

and	65802	processors.

Absolute	long	addressing	is	an	extension	of	(sixteen-bit)	absolute	addressing—that	is,
addressing	at	a	known	location.	Remember	that	on	the	6502	and	65C02,	address	space	is
limited	to	64K,	and	any	location	within	the	entire	memory	range	can	be	specified	with	a
sixteen-bit	address.	This	is	not	the	case	with	the	65816,	which	can	address	up	to	sixteen
megabytes	of	memory.	Thus	24	bits	are	required	to	specify	a	given	memory	location.

In	general,	there	are	two	ways	by	which	a	24-bit	data	address	is	generated.	In	the	case
of	sixteen-bit	absolute	addressing,	a	64K	memory	context	 is	defined	by	 the	value	of	 the
data	bank	register;	the	bank	byte	of	the	24-bit	address	is	derived	directly	from	that	register
via	simple	concatenation	(connecting	together)	of	the	data	bank	value	and	the	sixteen-bit
address.	 The	 alternative	method	 is	 to	 specify	 a	 complete	 24-bit	 effective	 address	 for	 a
given	instruction.	The	absolute	long	addressing	mode	is	one	of	the	means	for	doing	this.

As	 the	 name	 should	 imply,	 this	 addressing	mode	 specifies	 a	 known,	 fixed	 location
within	 the	 sixteen-megabyte	 addressing	 space	 of	 the	 65816,	 just	 as	 sixteen-bit	 absolute
addressing	 specifies	 a	 known,	 fixed	 location	 within	 either	 the	 64K	 space	 of	 the	 6502,
65C02,	or	65802,	or	else	the	64K	data	space	determined	by	the	65816’s	data	bank	register.
Just	as	the	sixteen-bit	absolute	addressing	operations	are	three-byte	instructions,	consisting
of	opcode,	address	low,	and	address	high,	the	instructions	that	use	the	24-bit	absolute	long
addressing	mode	 are	 four-byte	 instructions,	 comprised	 of	 opcode,	 low	 byte	 of	 address,
high	byte	of	address,	and	bank	byte	of	address,	as	shown	in	Figure	7.9.	The	value	in	bits
8-15	of	 the	 effective	 address	 is	 described	 as	 the	high	byte,	 and	16-23	as	 the	bank	byte,
because	 this	 most	 clearly	 reflects	 both	 the	 parallels	 with	 the	 6502	 and	 65C02	 and	 the
bank-oriented	memory	segmentation	of	the	65816	architecture.

Listing	7.1.

When	 absolute	 long	 addressing	 is	 used,	 the	 bank	 address	 in	 the	 operand	 of	 the
instruction	temporarily	overrides	the	value	in	the	data	bank	register	for	the	duration	of	a
single	instruction.	Thus,	it	is	possible	to	directly	address	any	memory	location	within	the
entire	sixteen-megabyte	address	space.

You	will	likely	find,	however,	that	this	form	of	addressing	is	one	of	the	less	frequently
used.	There	are	two	reasons	for	this:	first,	it	is	more	efficient	to	use	the	shorter	sixteen-bit
addressing	modes,	provided	that	the	data	bank	register	has	been	appropriately	set;	second,
it	is	generally	undesirable	to	hard	code	fixed	24-bit	addresses	into	an	application,	as	this
tends	 to	make	 the	application	dependent	on	being	 run	 in	a	 fixed	 location	within	a	 fixed
bank.	 (An	exception	 to	 this	 is	 the	 case	where	 the	 address	 referenced	 is	 an	 I/O	 location,
which	is	fixed	by	the	given	system	hardware	configuration.)

The	65x	processors,	 in	general,	do	not	 lend	 themselves	 to	writing	entirely	position-
independent	code,	although	the	65816	certainly	eases	this	task	compared	to	the	6502	and
65C02.	There	 is,	however,	no	 reason	why	code	should	not	be	written	on	 the	65816	and
65802	 to	 be	 bank-independent—that	 is,	 capable	 of	 being	 executed	 from	 an	 arbitrary
memory	bank.	But	using	absolute	 long	addressing	will	 tend	 to	make	 this	difficult	 if	not
impossible.

If	you	are	using	a	65802	in	an	existing	system,	it	is	important	to	note	that	although	the
address	space	of	the	65802	is	limited	to	64K	at	the	hardware	level,	internally	the	processor
still	works	with	24-bit	addresses.	One	 thing	 this	means	 is	 that	 it	 is	 legal	 to	use	 the	 long
addressing	modes	such	as	absolute	long.	But	using	them	is	futile,	even	wasteful:	an	extra
address	byte	is	required	for	the	bank,	but	the	bank	address	generated	is	ignored.	There	are
cases	where	use	of	 forms	of	 long	addressing	other	 than	absolute	 long	 should	be	used	 if
you	are	targeting	your	code	for	both	the	65802	and	the	65816.	But	generally	there	is	little
reason	 to	use	 the	absolute	 long	addressing	mode	on	 the	65802,	except	perhaps	 for	 fine-
tuning	a	timing	loop	(the	absolute	long	addressing	mode	requires	an	extra	cycle	to	execute
in	order	to	fetch	the	bank	address	in	the	fourth	byte	of	the	instruction).

The	assembler	syntax	to	indicate	the	absolute	long	addressing	mode	is	simply	to	code
a	value	 in	 the	operand	field	greater	 than	$FFFF.	To	force	 long	addressing	for	bank	zero
addresses	($00:0000	to	$00:FFFF),	use	the	greater-than	sign	(>)	as	a	prefix	to	the	operand
(similar	to	the	use	of	the	vertical	bar	to	force	sixteen-bit	absolute	addressing)	as	shown	in
Fragment	7.11.

Note	that	the	first	STA	instruction	in	Fragment	7.11	generates	a	four-byte	instruction
to	 store	 the	 accumulator	 to	 a	 bank	 zero	 address,	 while	 the	 second	 STA	 instruction
generates	 a	 three-byte	 instruction	 to	 store	 the	 accumulator	 to	 the	 same	 sixteen-bit
displacement	but	within	bank	two,	the	current	data	bank.	Also	note	that	for	both	the	load
and	 the	 first	 store	 instructions,	 absolute	 long	 addressing	 causes	 the	 current	 data	 bank
register,	which	is	set	to	two,	to	be	overridden.

Figure	7.9.	Absolute	Long	Addressing.

Fragment	7.11.

Absolute	Long	Indexed	with	X	Addressing
Absolute	long	indexed	with	X,	or	absolute	long	indexed,	uses	the	X	register	for	its

index,	and	an	absolute	long	address	as	its	base.	It	lets	you	index	into	an	array	located	in	a
bank	other	than	the	data	bank.

Instructions	 using	 absolute	 long	 indexed	 addressing	 are	 four	 bytes	 in	 length,	 since
three	bytes	are	needed	to	express	24-bit	absolute-long	operands.	The	bank	byte,	being	the
highest	 byte	 in	 the	operand,	 is	 the	 fourth	byte	of	 the	 instruction.	The	 contents	of	 the	X
index	register	are	added	to	the	absolute-long	operand	to	form	the	24-bit	effective	address
at	which	data	will	be	accessed.

For	example,	Fragment	7.12	gets	a	character	 from	a	 text	buffer	starting	at	$3000	 in
bank	zero	and	stores	 it	 into	buffers	starting	at	$1000	 in	bank	 two	and	at	$E000	 in	bank
three.	Because	the	character	to	be	loaded	is	in	bank	zero,	its	long	address	is	expressed	in
sixteen	bits.	You	must	preface	a	reference	to	it	with	the	greater-than	sign	to	override	the
assembler	 assumption	 that	 a	 sixteen-bit	 operand	 is	 in	 the	 data	 bank,	 and	 force	 the
assembler	 to	 instead	 use	 long	 addressing.	 The	 next	 instruction	 stores	 to	 the	 data	 bank,
requiring	only	absolute	 indexing;	 the	assembler	assumes	simple	sixteen-bit	operands	are
located	in	the	data	bank.	Finally,	storing	into	bank	three	requires	no	special	specification:
since	$03E000	cannot	be	expressed	in	sixteen	bits,	long	addressing	is	assumed.

Fragment	7.12.

Direct	Page	Indirect	Long
Direct	 page	 indirect	 long	 is	 another	 case	 of	 long	 (24-bit)	 addressing,	 where	 the

effective	 address	 generated	 temporarily	 overrides	 the	 current	 value	 in	 the	 data	 bank
register.	Unlike	 the	previous	 two	 long	addressing	modes,	however,	 the	24-bit	 address	 is
not	contained	 in	 the	operand	 itself.	The	 instruction	 is	 two	bytes	 long,	much	 like	 regular
direct	 page	 indirect	 addressing.	 The	 operand	 of	 the	 instruction	 is,	 like	 its	 non-long
counterpart,	a	direct	page	offset	acting	as	an	indirect	pointer;	the	difference	in	this	case	is
that	 rather	 than	 pointing	 to	 a	 sixteen-bit	 address	 in	 the	 data	 bank,	 it	 points	 to	 a	 24-bit
address.	 If,	 for	example,	 the	direct	page	address	 is	$80,	as	 in	Figure	7.10,	 the	processor
will	 fetch	the	 low	byte	of	 the	effective	address	from	dp:$80,	 the	high	byte	from	dp:$81,
and	the	bank	byte	from	dp:$82.	The	bank	byte	temporarily	overrides	the	value	in	the	data
bank	register.

Fragment	7.13	shows	the	use	of	both	direct	page	indirect	addressing	and	direct	page
indirect	 long,	using	 the	 latter	 to	access	 the	data	as	set	up	 in	Figure	7.10.	The	syntax	for
indirect	 long	 addressing	 is	 similar	 to	 that	 for	 direct	 page	 indirect,	 except	 left	 and	 right
square	 brackets	 rather	 than	 parentheses	 enclose	 the	 direct	 page	 address	 to	 indicate	 the
indirect	address	is	long.

In	this	example,	a	sixteen-bit	accumulator	size	is	used	with	eight-bit	index	registers.
The	simultaneous	availability	of	both	an	eight-bit	and	a	sixteen-bit	 register	 in	 this	mode
simplifies	the	manipulation	of	long	addresses.	First,	a	value	of	$04	is	loaded	into	the	eight-
bit	Y	 register	 using	 immediate	 addressing.	 Since	 the	LONGI	OFF	 directive	 has	 been
coded,	the	assembler	automatically	generates	an	eight-bit	operand	for	this	instruction.	This
is	pushed	onto	 the	 stack,	 and	 then	pulled	 into	 the	bank	 register.	Next,	Y	 is	 loaded	with
#$02,	 the	 bank	 component	 of	 the	 indirect	 long	 address,	which	 is	 stored	 to	 dp:$82.	 The
sixteen-bit	accumulator	is	then	used	to	load	an	immediate	$2000	(high/low	of	the	indirect
and	 the	 indirect	 long	addresses),	which	 is	stored	at	dp:$80.	This	results	 in	 the	following
values	in	memory:	at	dp:$80	is	$00,	at	dp:$81	is	$20,	and	at	dp:$82	is	$02.	The	data	bank
register	 contains	 $04.	 The	memory	 at	 locations	 dp:$80.81	 contains	 the	 indirect	 address
$2000,	 while	 the	 memory	 at	 locations	 dp:$80.82	 contains	 the	 indirect	 long	 address
$02:2000.	 The	 load	 indirect	 instruction	 uses	 the	 data	 bank	 register	 to	 form	 the	 bank

address,	and	so	loads	double-byte	data	from	$04:2000.	The	store	indirect	long	stores	the
double-byte	data	at	$02:2000.	The	overlapping	of	 the	 low	and	high	bytes	of	 the	 indirect
address	in	locations	dp:$80	and	dp:$81	highlights	the	difference	in	the	source	of	the	bank
byte	using	the	two	addressing	modes.

Figure	7.10.	Direct	Page	Indirect	Long	Addressing.

Fragment	7.13.

Block	Move
Block	 move	 addressing	 is	 a	 dedicated	 addressing	 mode,	 available	 only	 for	 two

instructions,	MVN	and	MVP,	which	have	no	other	addressing	modes	available	 to	 them.
These	operations	were	explained	in	the	previous	chapter.

8

The	Flow	of	Control
Flow	 of	 control	 refers	 to	 the	way	 in	which	 a	 processor,	 as	 it	 executes	 a	 program,

makes	its	way	through	the	various	sections	of	code.	Chapter	1	discussed	four	basic	types
of	execution:	straight-line,	selection	between	paths,	looping,	and	subroutines.	This	chapter
deals	with	those	instructions	that	cause	the	processor	to	jump	or	branch	to	other	areas	of
code,	rather	than	continuing	the	default	straight-line	flow	of	execution.	Such	instructions
are	essential	to	selection	and	looping.

The	 jump	 and	 branch	 instructions	 alter	 the	 default	 flow	 of	 control	 by	 causing	 the
program	counter	to	be	loaded	with	an	entirely	new	value.	In	sequential	execution,	on	the
other	 hand,	 the	 program	 counter	 is	 incremented	 as	 each	 byte	 from	 the	 code	 stream—
opcode	or	operand—is	fetched.

The	65x	processors	have	a	variety	of	branch	and	jump	instructions,	as	shown	in	Table
8.1.	 Of	 these,	 when	 coding	 in	 the	 larger-than-64K	 environment	 of	 the	 65816,	 only	 the
three	 jump-long	 instructions	 (jump	 indirect	 long,	 jump	 absolute	 long,	 and	 jump	 to
subroutine	long)	and	the	return	from	subroutine	long	instruction	are	capable	of	changing
the	program	bank	register—that	is,	of	jumping	to	a	segment	of	code	in	another	bank.	All
of	 the	other	branch	or	 jump	instructions	simply	transfer	within	 the	current	bank.	In	fact,
the	 interrupt	 instructions	 (break,	 return	 from	 interrupt,	 and	 coprocessor	 instructions)	 are
the	only	others	which	can	change	the	program	bank;	there	is	no	direct	way	to	modify	the
program	counter	bank	without	 at	 the	 same	 time	modifying	 the	program	counter	 register
because	the	program	counter	would	still	point	to	the	next	instruction	in	the	old	bank.

Table	8.1.	Branch	and	Jump	Instructions.

As	 you	may	 have	 noticed,	 all	 of	 the	 flow-of-control	 instructions	 (except	 the	 return
instructions)	 can	be	divided	 into	 two	categories:	 jump-type	 instructions	and	branch-type
instructions.	This	division	is	based	on	addressing	modes:	branch	instructions	use	program
counter	relative	addressing	modes;	jump	instructions	don’t.

Jump	instructions	can	be	further	split	into	two	groups:	those	which	transfer	control	to
another	 section	of	code,	 irreversibly,	 and	 those	which	 transfer	control	 to	a	 subroutine,	 a
section	of	code	which	is	meant	to	eventually	return	control	to	the	original	(calling)	section
of	code,	at	the	instruction	following	the	jump-to-subroutine	instruction.

The	jump	instructions	will	be	covered	in	this	chapter	first,	then	the	branches;	jump-to-
subroutine	instructions	will	be	discussed	in	Chapter	12,	which	deals	with	subroutines.

Jump	Instructions
The	 jump	 instruction	 (JMP)	 can	 be	 used	 with	 any	 one	 of	 five	 different	 65816

addressing	modes	(only	two	of	these	are	available	on	the	6502,	a	third	is	available	on	the
65C02)	 to	 form	 an	 effective	 address;	 control	 then	 passes	 to	 that	 address	 when	 the
processor	 loads	 the	 program	 counter	 with	 it.	 For	 example,	 uses	 absolute	 addressing,	 a
mode	available	 to	all	65x	processors,	 to	pass	control	 to	 the	code	located	at	$2000	in	the
current	 program	 bank.	 (Notice	 that	 using	 absolute	 addressing	 to	 access	 data	 in	 the	 last
chapter	used	the	data	bank	in	place	of	the	program	bank.)

In	 addition	 to	 absolute	 addressing,	 all	 of	 the	 65x	 processors	 provide	 a	 jump
instruction	 with	 absolute	 indirect	 addressing.	While	 this	 form	 of	 indirect	 addressing	 is
unique	 to	 the	 jump	 instruction,	 it	 is	 quite	 similar	 to	 the	 direct	 page	 indirect	 addressing
mode	 described	 in	 Chapter	 7.	 In	 this	 case,	 the	 sixteen-bit	 operand	 is	 the	 address	 of	 a
double-byte	variable	 located	 in	bank	 zero	 containing	 the	 effective	 address;	 the	 effective
address	is	loaded	into	the	program	counter.	As	with	absolute	addressing,	the	program	bank
remains	unchanged	(Figure	8.1).

For	example,	 the	 jump	 instruction	 in	Fragment	8.1	causes	 the	processor	 to	 load	 the
program	counter	with	 the	value	 in	 the	double-byte	variable	 located	 at	 $00:2000.	Unlike
direct	page	indirect	addressing,	the	operand	is	an	absolute	address	rather	than	a	direct	page
offset.	Furthermore,	this	form	of	absolute	addressing	is	unusual	in	that	it	always	references
a	location	in	bank	zero,	not	the	current	data	bank.

Fragment	8.1.

The	65C02	added	the	absolute	indexed	indirect	addressing	mode	to	those	available	to
the	 jump	 instruction.	 This	 mode	 is	 discussed	 further	 in	 Chapter	 12,	 The	 Complex

Addressing	Modes.	Although	its	effective	address	calculation	is	not	as	simple	as	the	jump
absolute	 or	 jump	 absolute	 indirect,	 its	 result	 is	 the	 same:	 a	 transfer	 of	 control	 to	 a	 new
location.

The	 65802	 and	 65816	 added	 long	 (24-bit)	 versions	 of	 the	 absolute	 and	 indirect
addressing	modes.	The	absolute	long	addressing	mode	has	a	three-byte	operand;	the	first
two	bytes	are	loaded	into	the	program	counter	as	before,	while	the	third	byte	is	loaded	into
the	 program	bank	 register,	 giving	 the	 jump	 instruction	 a	 full	 24-bit	 absolute	 addressing
mode.	For	example,	causes	the	program	counter	to	be	loaded	with	$2344	and	the	program
bank	counter	with	$FF.	Note	that	on	the	65802,	even	though	the	bank	register	is	modified
by	 the	 long	 jump	 instruction,	 the	bank	address	 is	effectively	 ignored;	 the	 jump	 is	 to	 the
same	location	as	the	equivalent	(sixteen-bit)	absolute	jump.

Figure	8.1.	Jump’s	Absolute	Indirect	Addressing	Mode.

When	the	target	of	a	long	jump	is	in	bank	zero,	say	to	$00A030,	then	the	assembler
has	a	problem.	It	assumes	a	jump	to	any	address	between	zero	and	SFFFF	(regardless	of
whether	it’s	written	as	$A030	or	$00A030)	is	a	jump	within	the	current	program	bank,	not
to	 another	 bank,	 so	 it	 will	 generate	 an	 absolute	 jump,	 not	 a	 long	 jump.	 There	 are	 two
solutions.	One	is	to	use	the	greater-than	sign	(>)	in	front	of	the	operand,	which	forces	the
assembler	to	override	its	assumptions	and	use	long	addressing:

The	alternative	is	to	use	the	JML	alias,	or	alternate	mnemonic,	which	also	forces	a	jump
to	be	long,	even	if	the	value	of	the	operand	is	less	than	$10000:

The	final	form	of	the	jump	instruction	is	a	24-bit	(long)	jump	using	absolute	indirect
addressing.	 In	 the	 instruction,	 the	 operand	 is	 the	 bank	 zero	 double-byte	 address	 $2000,
which	 locates	 a	 triple-byte	 value;	 the	 program	 counter	 low	 is	 loaded	 with	 the	 byte	 at

$2000	and	the	program	counter	high	with	the	byte	at	$2001;	the	program	bank	register	is
loaded	with	the	byte	at	$2002.	A	standard	assembler	will	allow	the	JML	(jump	long)	alias
here	as	well.

Notice	 that	 absolute	 indirect	 long	 jumps	 are	 differentiated	 from	 absolute	 indirect
jumps	within	the	same	bank	by	using	parentheses	for	absolute	indirect	and	square	brackets
for	 absolute	 indirect	 long.	 In	 both	 cases	 the	 operand,	 an	 absolute	 address,	 points	 to	 a
location	in	bank	zero.

The	jump	instructions	change	no	flags	and	affect	no	registers	other	than	the	program
counter.

Conditional	Branching
While	 the	 jump	 instructions	 provide	 the	 tools	 for	 executing	 a	 program	made	 up	 of

disjoined	code	segments	or	for	looping,	they	provide	no	way	to	conditionally	break	out	of
a	loop	or	to	select	between	paths.	These	are	the	jobs	of	the	conditional	branch	instructions.

The	jump	instruction	requires	a	minimum	three	bytes	to	transfer	control	anywhere	in
a	64K	range.	But	selection	between	paths	is	needed	so	frequently	and	for	the	most	part	for
such	short	hops	that	using	three	bytes	per	branch	would	tend	to	be	unnecessarily	costly	in
memory	usage.	To	save	memory,	branches	use	an	addressing	mode	called	program	counter
relative,	 which	 requires	 just	 two	 bytes;	 the	 branch	 opcode	 is	 followed	 by	 a	 one-byte
operand—a	signed,	two’s-complement	offset	from	the	current	program	location.

When	 a	 conditional	 branch	 instruction	 is	 encountered,	 the	 processor	 first	 tests	 the
value	 of	 a	 status	 register	 flag	 for	 the	 condition	 specified	 by	 the	 branch	 opcode.	 If	 the
branch	condition	is	false,	the	processor	ignores	the	branch	instruction	and	goes	on	to	fetch
and	execute	the	next	instruction	from	the	next	sequential	program	location.	If,	on	the	other
hand,	 the	 branch	 condition	 is	 true,	 then	 the	 processor	 transfers	 control	 to	 the	 effective
address	 formed	 by	 adding	 the	 one-byte	 signed	 operand	 to	 the	 value	 currently	 in	 the
program	counter	(Figure	8.2).

As	Chapter	 1	 notes,	 positive	 numbers	 are	 indicated	 by	 a	 zero	 in	 the	 high	 bit	 (bit
seven),	negative	numbers	by	a	one	in	the	high	bit.	Branching	is	limited	by	the	signed	one-
byte	operands	to	127	bytes	forward	or	128	bytes	backward,	counting	from	the	end	of	the
instruction.	Because	a	new	value	for	the	program	counter	must	be	calculated	if	the	branch
is	taken,	an	extra	execution	cycle	is	required.	Further,	the	6502	and	65C02	(and	65802	and
65816	 in	 emulation	 mode)	 require	 an	 additional	 cycle	 if	 the	 branch	 crosses	 a	 page
boundary.	The	native	mode	65802	and	65816	do	not	require	the	second	additional	cycle,
because	they	use	a	sixteen-bit	(rather	than	eight-bit)	adder	to	make	the	calculation.

The	program	counter	value	 to	which	 the	operand	 is	 added	 is	not	 the	 address	 of	 the
branch	 instruction	but	 rather	 the	address	of	 the	opcode	 following	 the	branch	 instruction.
Thus,	measured	from	the	branch	opcode	itself,	branching	is	limited	to	129	bytes	forward
and	 126	 bytes	 backward.	A	 conditional	 branch	 instruction	with	 an	 operand	 of	 zero	will
continue	 with	 the	 next	 instruction	 regardless	 of	 whether	 the	 condition	 tested	 is	 true	 or
false.	A	branch	with	an	operand	of	zero	is	thus	a	two-byte	no-operation	instruction,	with	a

variable	(by	one	cycle)	execution	time,	depending	on	whether	the	branch	is	or	isn’t	taken.

The	65x	processors	have	eight	instructions	which	let	your	programs	branch	based	on
the	settings	of	four	of	the	condition	code	flag	bits	in	the	status	register:	the	zero	flag,	the
carry	flag,	the	negative	flag,	and	the	overflow	flag.

None	of	the	conditional	branch	instructions	change	any	of	the	flags,	nor	do	they	affect
any	registers	other	than	the	program	counter,	which	they	affect	only	if	the	condition	being
tested	 for	 is	 true.	 The	most	 recent	 flag	 value	 always	 remains	 valid	 until	 the	 next	 flag-
modifying	instruction	is	executed.

Figure	8.2.	Relative	Branch	Calculation.

Branching	Based	on	the	Zero	Flag
The	zero	bit	in	the	status	register	indicates	whether	or	not	the	result	of	an	arithmetic,

logical,	 load,	pull,	 or	 transfer	operation	 is	 zero.	A	zero	 result	 causes	 the	bit	 to	be	 set;	 a
non-zero	result	causes	the	bit	to	be	reset.

The	BEQ	instruction	is	used	to	branch	when	a	result	is	zero—that	is,	when	the	zero
bit	 is	 set.	 Its	mnemonic	meaning,	 that	of	branch	 if	 equal	 (to	 zero),	 describes	what	 the
processor	 does.	 Alternatively,	 it	 may	 be	 considered	 a	 mnemonic	 for	 branch	 if
(comparison)	equal	because	it	is	often	used	after	two	values	are	compared	or	subtracted;
if	 the	 two	 values	 are	 equal,	 then	 the	 result	 of	 the	 comparison	 (subtraction)	 is	 zero	 (no
difference),	and	the	branch	is	taken.

The	BNE	instruction	is	used	to	branch	when	a	result	is	not	zero.	Also,	any	non-zero
value	which	is	loaded	into	a	register	will	clear	the	zero	flag.	It	is	a	mnemonic	for	branch
if	not	equal;	it	too	is	used	to	branch	after	a	comparison	or	subtraction	if	the	two	values	are
not	equal.

Zero	is	often	used	as	a	terminator,	indicating	the	end	of	a	list,	or	that	a	loop	counter
has	counted	down	to	the	end	of	the	loop.	Fragment	8.2	is	a	short	routine	to	search	for	the
end	of,	a	linked	list	of	records,	and	then	insert	a	new	element	at	the	end.	Each	element	in
the	list	contains	a	pointer	to	the	next	element	in	the	chain.	The	last	element	in	the	chain
contains	a	zero	in	its	link	field,	indicating	that	the	end	of	the	list	has	been	reached.

Fragment	8.2.

The	routine	hinges	on	the	BNE	instruction	found	half-way	through	the	code;	until	the
zero	element	is	reached,	the	processor	continues	looping	through	as	many	linked	records
as	exist.	Notice	that	the	routine	has	no	need	to	know	how	many	elements	there	are	or	to
count	them	as	it	adds	a	new	element.	Figure	8.3	pictures	such	a	linked	list.

Figure	8.3.	Linked	List.

The	 two	conditional	branch	 instructions	 that	 check	 the	zero	 flag	are	also	 frequently
used	following	a	subtraction	or	comparison	 to	evaluate	 the	equality	or	 inequality	of	 two
values.	Their	use	in	arithmetic,	logical,	and	relational	expressions	will	be	covered	in	more
detail,	with	examples,	in	the	next	few	chapters.

Branching	Based	on	the	Carry	Flag

The	 carry	 flag	 in	 the	 status	 register	 is	 affected	 by	 addition,	 subtraction,	 and	 shift
instructions,	as	well	as	by	two	implied-addressing	instructions	that	explicitly	set	or	clear
the	carry	(SEC	and	CLC)	and,	on	the	65802/65816,	by	the	emulation	and	carry	swapping
XCE	instruction,	and	the	SEP	and	REP	instructions.

The	BCC	instruction	(branch	on	carry	clear)	is	used	to	branch	when	the	carry	flag	is	a
zero.	The	BCS	instruction	(branch	on	carry	set)	is	used	to	branch	when	the	carry	flag	is	a
one.

The	 carry	 flag	 bit	 is	 the	 only	 condition	 code	 flag	 for	 which	 there	 are	 explicit
instructions	both	to	clear	and	to	set	it.	(The	decimal	flag,	which	can	also	be	set	and	cleared
explicitly,	 is	a	mode-setting	flag;	 there	are	no	 instructions	 to	branch	on	 the	status	of	 the
decimal	 flag.)	 This	 can	 come	 in	 handy	 on	 the	 6502,	 which	 has	 no	 branch-always
instruction	 (only	 the	 non-relocatable	 absolute	 jump):	 branch-always	 can	 be	 faked	 by
setting	the	carry,	then	branching	on	carry	set:

Since	the	code	which	follows	this	use	of	the	BCS	instruction	will	never	be	executed	due	to
failure	 of	 the	 condition	 test,	 it	 should	 be	 documented	 as	 acting	 like	 a	 branch-always
instruction.

The	6502	emulation	mode	of	the	65802	and	65816	can	be	toggled	on	or	off	only	by
exchanging	the	carry	bit	with	the	emulation	bit;	so	the	only	means	of	testing	whether	the
processor	is	in	emulation	mode	or	native	mode	is	to	exchange	the	emulation	flag	with	the
carry	 flag	 and	 test	 the	 carry	 flag,	 as	 in	 Fragment	8.3.	Note	 that	CLC,	XCE,	 and	BCS
instructions	themselves	always	behave	the	same	regardless	of	mode.

Fragment	8.3.

Arithmetic	and	logical	uses	of	branching	based	on	the	carry	flag	will	be	discussed	in
the	next	two	chapters.

Branching	Based	on	the	Negative	Flag
The	 negative	 flag	 bit	 in	 the	 status	 register	 indicates	 whether	 the	 result	 of	 an

arithmetic,	logical,	load,	pull,	or	transfer	operation	is	negative	or	positive	when	considered
as	 a	 two’s-complement	 number.	 A	 negative	 result	 causes	 the	 flag	 to	 be	 set;	 a	 zero	 or
positive	result	causes	the	flag	to	be	cleared.	The	processor	determines	the	sign	of	a	result
by	checking	to	see	if	the	high-order	bit	is	set	or	not.	A	two’s-complement	negative	number

will	always	have	its	high-order	bit	set,	a	positive	number	always	has	it	clear.

The	BMI	 (branch-minus)	 instruction	 is	used	 to	branch	when	a	 result	 is	negative,	or
whenever	a	specific	action	needs	to	be	taken	if	the	high-order	(sign)	bit	of	a	value	is	set.
Execution	of	the	BPL	 (branch-plus)	 instruction	will	cause	a	branch	whenever	a	result	 is
positive	or	zero—that	is,	when	the	high-order	bit	is	clear.

The	ease	with	which	these	instructions	can	check	the	status	of	the	high	order-bit	has
not	 been	 lost	 on	 hardware	 designers.	 For	 example,	 the	 Apple	 //	 keyboard	 is	 read	 by
checking	a	specific	memory	location	(remember,	the	65x	processors	use	memory-mapped
I/O).	Like	most	computer	I/O	devices,	the	keyboard	generates	ASCII	codes	in	response	to
keypresses.	The	 code	 returned	 by	 the	 keyboard	 only	 uses	 the	 low-order	 seven	 bits;	 this
leaves	the	eighth	bit	free	to	be	used	as	a	special	flag	to	determine	if	a	key	has	been	pressed
since	the	last	time	a	key	was	retrieved.	To	wait	for	a	keypress,	a	routine	(see	Fragment	8.4)
loops	until	the	high-order	bit	of	the	keyboard	I/O	location	is	set.

Fragment	8.4.

The	STA	KSTRB	 instruction	 that	 follows	a	successful	 fetch	 is	necessary	 to	 tell	 the
hardware	that	a	key	has	been	read;	it	clears	the	high-order	bit	at	the	KEYBD	location	so
that	the	next	time	the	routine	is	called,	it	will	again	loop	until	the	next	key	is	pressed.

Remember	that	the	high-order	or	sign	bit	is	always	bit	seven	on	a	6502	or	65C02	or,
on	the	65802	or	65816,	if	the	register	loaded	is	set	to	an	eight-bit	mode.	If	a	register	being
used	on	the	65802	or	65816	is	set	to	sixteen-bit	mode,	however,	then	the	high	bit—the	bit
that	affects	the	negative	flag—is	bit	fifteen.

Branching	Based	on	the	Overflow	Flag
Only	 four	 instructions	 affect	 the	overflow	 (v)	 flag	on	 the	6502	and	65C02:	 adding,

subtracting,	 bit-testing,	 and	 an	 instruction	 dedicated	 to	 explicitly	 clearing	 it.	 The
65802/65816’s	SEP	and	REP	instructions	can	set	and	clear	the	overflow	flag	as	well.	The
next	chapter	will	discuss	the	conditions	under	which	the	flag	is	set	or	cleared.

The	BVS	instruction	is	used	to	branch	when	a	result	sets	the	overflow	flag.	The	BVC
instruction	is	used	to	branch	when	a	result	clears	the	overflow	flag.

Additionally,	there	is	a	hardware	input	on	the	6502,	65C02,	and	65802	that	causes	the

overflow	flag	 to	be	set	 in	 response	 to	a	hardware	signal.	This	 input	pin	 is	generally	 left
unconnected	in	most	personal	computer	systems.	It	is	more	likely	to	be	useful	in	dedicated
control	applications.

Limitations	of	Conditional	Branches
If	you	attempt	to	exceed	the	limits	(+	1	2	7	and	—128)	of	the	conditional	branches	by

coding	a	target	operand	that	is	out	of	range,	an	error	will	result	when	you	try	to	assemble
it.	If	you	should	need	a	conditional	branch	with	a	longer	reach,	one	solution	is	to	use	the
inverse	branch;	if	you	would	have	used	BNE,	test	it	instead	for	equal	to	zero	using	BEQ.
If	 the	 condition	 is	 true,	 target	 the	 next	 location	 past	 a	 jump	 to	 your	 real	 target.	 For
example,	 Fragment	 8.5	 shows	 the	 end	 of	 a	 fairly	 large	 section	 of	 code,	 at	 the	 point	 at
which	it	is	necessary	to	loop	back	to	the	top	(TOP)	of	the	section	if	the	value	in	location
CONTROL	 is	 not	 equal	 to	 zero.	You	would	use	 the	 code	 like	Fragment	8.5	 if	TOP	 is
more	than	128	bytes	back.

Fragment	8.5.

The	price	of	having	efficient	two-byte	short	branches	is	that	you	must	use	five	bytes
to	simulate	a	long	conditional	branch.

Many	 times	 it	 is	 possible	 and	 sensible	 to	 branch	 to	 another	 nearby	 flow	of	 control
statement	 and	 use	 it	 to	 puddle-jump	 to	 your	 final	 target.	 Sometimes	 you	 will	 find	 the
branch	or	jump	statement	you	need	for	puddle	jumping	already	within	your	code	because
it’s	 not	 unusual	 for	 two	 or	more	 segments	 of	 code	 to	 conditionally	 branch	 to	 the	 same
place.	 This	 method	 costs	 you	 no	 additional	 code,	 but	 you	 should	 document	 the
intermediate	branch,	noting	 that	 it’s	being	used	as	a	puddle-jump.	Should	you	change	 it
later,	you	won’t	inadvertently	alter	its	use	by	the	other	branch.

Each	of	 the	65x	branch	 instructions	 is	based	on	a	single	status	bit.	Some	arithmetic
conditions,	however,	are	based	on	more	than	one	flag	being	changed.	There	are	no	branch
instructions	available	for	the	relations	of	unsigned	greater	than	and	unsigned	less	than	or
equal	 to;	 these	 relations	 can	 only	 be	 determined	 by	 examining	more	 than	 one	 flag	 bit.
There	are	also	no	branch	instructions	available	for	signed	comparisons,	other	 than	equal
and	not	equal.	How	to	synthesize	these	operations	is	described	in	the	following	chapter.

Unconditional	Branching
The	65C02	introduced	the	BRA	branch	always	(or	unconditional	branch)	instruction,

to	 the	 relief	 of	 6502	 programmers;	 they	 had	 found	 that	 a	 good	 percentage	 of	 the	 jump
instructions	coded	were	for	short	distances	within	the	range	of	a	branch	instruction.

Having	 an	 unconditional	 branch	 available	 makes	 creating	 relocatable	 code	 easier.
Every	program	must	have	a	starting	address,	or	origin,	specified,	which	tells	the	assembler
where	in	memory	the	program	will	be	loaded.	This	is	necessary	so	that	the	assembler	will
be	able	to	generate	the	correct	values	for	locations	defined	by	labels	in	the	source	code.

Consider	Fragment	8.6,	the	beginning	of	a	program	that	specifies	an	origin	of	$2000.
In	 order	 to	 make	 patching	 certain	 variables	 easier,	 they	 have	 been	 located	 right	 at	 the
beginning	of	the	program.	When	this	program	is	assembled,	location	$2000	holds	a	jump
instruction,	and	the	assembler	gives	its	operand	the	value	of	the	location	of	BEGCODE,
that	 is,	 $2005.	 If	 this	 program	 were	 then	 loaded	 at	 $2200,	 instead	 of	 $2000	 as	 was
“promised”	by	the	ORG	directive,	it	would	fail	because	the	very	first	instruction	executed,
at	$2200,	would	be	the	jump	to	$2005.	Since	the	program	has	now	been	loaded	at	$2200,
the	contents	of	$2005	are	no	longer	as	expected,	and	the	program	is	in	deep	trouble.

By	substituting	an	unconditional	branch	instruction	for	the	jump,	as	in	Fragment	8.7,
the	operand	of	the	branch	is	now	a	relative	displacement	(the	value	two),	and	the	branch
instruction	 will	 cause	 two	 to	 be	 added	 to	 the	 current	 value	 of	 the	 program	 counter,
whatever	 it	 may	 be.	 The	 result	 is	 that	 execution	 continues	 at	 BEGCODE,	 the	 same
relative	location	the	jump	instruction	transferred	control	to	in	the	fixed-position	version.

The	 code	 is	 now	 one	 byte	 shorter.	 Most	 importantly,	 though,	 this	 section	 of	 the
program	 is	 now	 position-independent.	 If	 executed	 at	 $2000,	 the	 branch	 is	 located	 at
$2000;	 the	 program	 counter	 value	 before	 the	 branch’s	 operand	 is	 added	 is	 $2002;	 the
result	of	the	addition	is	$2004,	the	location	of	BEGCODE.	Load	and	execute	the	program
instead	at	$2200,	and	the	branch	is	located	at	$2200;	the	program	counter	value	before	the
branch	operand	 is	added	 is	$2202;	 the	 result	of	 the	addition	 is	$2204,	which	 is	 the	new
location	of	BEGCODE.

Fragment	8.6.

Fragment	8.7.

Because	the	operand	of	a	branch	instruction	is	always	relative	to	the	program	counter,
its	effective	address	can	only	be	formed	by	using	the	program	counter.	Programs	that	use
branches	rather	than	jumps	may	be	located	anywhere	in	memory.

6502	programmers	 in	need	of	 relocatability	get	around	 the	 lack	of	an	unconditional
branch	 instruction	by	using	 the	 technique	described	 earlier	 of	 setting	 a	 flag	 to	 a	 known
value	prior	to	executing	a	branch-on-that-condition	instruction.

Even	with	 the	unconditional	branch	instruction,	however,	 repeatability	can	still	be	a
problem	 if	 the	 need	 for	 branching	 extends	 beyond	 the	 limits	 imposed	 by	 its	 eight-bit
operand.	There	is	some	help	available	on	the	6502	and	65C02	in	the	form	of	the	absolute
indirect	jump,	which	can	be	loaded	with	a	target	that	is	calculated	at	run	time.

The	65802	and	65816	introduce	the	BRL	unconditional	branch	long	instruction.	This
is	the	only	65x	branch	instruction	which	does	not	take	an	eight-bit	operand:	its	operand,
being	sixteen	bits,	lets	it	specify	a	target	anywhere	within	the	current	64K	program	bank.
It	is	coded	like	any	other	branch,	except	that	the	target	label	can	be	outside	the	range	of
the	 other	 branches.	 Obviously,	 a	 two-byte	 displacement	 is	 generated	 by	 the	 assembler,
making	this	branch	a	three-byte	instruction.	If	the	effective	address	that	results	when	the
sixteen-bit	displacement	is	added	to	the	current	program	counter	would	extend	beyond	the
64K	limit	of	the	current	program	bank,	then	it	wraps	around	to	remain	within	the	current
program	bank.

The	 BRL	 instruction	 can	 replace	 entirely	 the	 absolute	 JMP	 instruction	 in	 a
relocatable	program;	the	price	is	an	extra	execution	cycle	per	branch.

9

Built-In	Arithmetic	Functions
With	this	chapter	you	make	your	first	approach	to	the	heart	of	the	beast:	the	computer

as	 automated	 calculator.	 Although	 their	 applications	 cover	 a	 broad	 range	 of	 functions,
computers	 are	 generally	 associated	 first	 and	 foremost	 with	 their	 prodigious	 calculating
abilities.	 Not	 without	 reason,	 for	 even	 in	 character-oriented	 applications	 such	 as	 word
processing,	 the	 computer	 is	 constantly	 calculating.	 At	 the	 level	 of	 the	 processor	 itself,
everything	 from	 instruction	 decoding	 to	 effective	 address	 generation	 is	 permeated	 by
arithmetic	 or	 arithmetic-like	 operations.	 At	 the	 software	 implementation	 level,	 the
program	 is	 constantly	 calculating	 horizontal	 and	 vertical	 cursor	 location,	 buffer	 pointer
locations,	indents,	page	numbers,	and	more.

But	 unlike	 dedicated	 machines,	 such	 as	 desk-top	 or	 pocket	 calculators,	 which	 are
merely	 calculators,	 a	 computer	 is	 a	 flexible	 and	 generalized	 system	 which	 can	 be
programmed	and	reprogrammed	to	perform	an	unlimited	variety	of	functions.	One	of	the
keys	to	this	ability	lies	in	the	computer’s	ability	to	implement	control	structures,	such	as
loops,	and	to	perform	comparisons	and	select	an	action	based	on	the	result.	Because	this
chapter	 introduces	comparison,	 the	elements	necessary	 to	demonstrate	 these	 features	are
complete.	The	other	key	element,	the	ability	to	branch	on	condition,	was	presented	in	the
previous	 chapter.	 This	 chapter	 therefore	 contains	 the	 first	 examples	 of	 these	 control
structures,	as	they	are	implemented	on	the	65x	processors.

Armed	with	the	material	presented	in	Chapter	1	about	positional	notation	as	it	applies
to	 the	 binary	 and	 hexadecimal	 number	 systems,	 as	 well	 as	 the	 facts	 concerning	 two’s-
complement	 binary	 numbers	 and	 binary	 arithmetic,	 you	 should	 possess	 the	 background
required	to	study	the	arithmetic	instructions	available	on	the	65x	series	of	processors.

Consistent	 with	 the	 simple	 design	 approach	 of	 the	 65x	 family,	 only	 elementary
arithmetic	functions	are	provided,	as	listed	in	Table	9.1,	leaving	the	rest	to	be	synthesized
in	software.	There	are,	for	example,	no	built-in	integer	multiply	or	divide.	More	advanced
examples	 presented	 in	 later	 chapters	 will	 show	 how	 to	 synthesize	 these	more	 complex
operations.

Table	9.1.	Arithmetic	Instructions.

Increment	and	Decrement
The	simplest	of	the	65x	arithmetic	instructions	are	increment	and	decrement.	In	the

case	of	the	65x	processors,	all	of	the	increment	and	decrement	operations	add	or	subtract
one	 to	 a	 number.	 (Some	other	 processors	 allow	you	 to	 increment	 or	 decrement	 by	 one,
two,	or	more.)

There	are	several	 reasons	 for	having	special	 instructions	 to	add	or	subtract	one	 to	a
number,	but	the	most	general	explanation	says	it	all:	 the	number	one	tends	to	be,	by	far,
the	most	frequently	added	number	in	virtually	any	computer	application.	One	reason	for
this	 is	 that	 indexing	 is	 used	 so	 frequently	 to	 access	multi-byte	 data	 structures,	 such	 as
address	 tables,	 character	 strings,	multiple-precision	 numbers,	 and	most	 forms	 of	 record
structures.	Since	the	items	in	a	great	percentage	of	such	data	structures	are	byte	or	double-
byte	wide,	the	index	counter	step	value	(the	number	of	bytes	from	one	array	item	to	the
next)	 is	 usually	 one	 or	 two.	 The	 65x	 processors,	 in	 particular,	 have	 many	 addressing
modes	that	feature	indexing;	that	is,	they	use	a	value	in	one	of	the	index	registers	as	part	of
the	effective	address.

All	 65x	 processors	 have	 four	 instructions	 to	 increment	 and	 decrement	 the	 index
registers:	INX,	INY,	DEX,	and	DEY.	They	are	single-byte	 implied	operand	 instructions
and	either	add	one	to,	or	subtract	one	from,	the	X	or	Y	register.	They	execute	quite	quickly
—in	two	cycles—because	they	access	no	memory	and	affect	only	a	single	register.

All	65x	processors	also	have	a	set	of	instructions	for	incrementing	and	decrementing
memory,	 the	 INC	 and	DEC	 instructions,	 which	 operate	 similarly.	 They	 too	 are	 unary
operations,	 the	 operand	 being	 the	 data	 stored	 at	 the	 effective	 address	 specified	 in	 the
operand	field	of	the	instruction.	There	are	several	addressing	modes	available	to	these	two
instructions.	Note	that,	unlike	the	register	increment	and	decrement	instructions,	the	INC
and	DEC	 instructions	are	among	the	slowest-executing	65x	instructions.	That	is	because
they	are	Read-Modify-Write	operations:	 the	number	 to	be	 incremented	or	decremented

must	 first	 be	 fetched	 from	memory;	 then	 it	 is	 operated	 upon	within	 the	 processor;	 and,
finally,	the	modified	value	is	written	back	to	memory.	Compare	this	with	some	of	the	more
typical	operations,	where	the	result	is	left	in	the	accumulator.	Although	read-modify-write
instructions	require	many	cycles	to	execute,	each	is	much	more	efficient,	both	byte-	and
cycle-wise,	than	the	three	instructions	it	replaces—load,	modify,	and	store.

In	Chapter	6,	you	saw	how	the	load	operations	affected	the	n	and	z	flags	depending
on	whether	the	loaded	number	was	negative	(that	is,	had	its	high	bit	set),	or	was	zero.	The
65x	arithmetic	functions,	including	the	increment	and	decrement	operations,	also	set	the	n
and	z	status	flags	to	reflect	the	result	of	the	operation.

In	 Fragment	 9.1,	 one	 is	 added	 to	 the	 value	 in	 the	Y	 register,	 $7FFF.	 The	 result	 is
$8000,	 which,	 since	 the	 high-order	 bit	 is	 turned	 on,	 may	 be	 interpreted	 as	 a	 negative
two’s-complement	number.	Therefore	the	n	flag	is	set.

Fragment	9.1.

In	a	similar	example,	Fragment	9.2,	the	Y	register	is	loaded	with	the	highest	possible
value	which	can	be	represented	in	sixteen	bits	(all	bits	turned	on).

Fragment	9.2.

If	one	is	added	to	the	unsigned	value	$FFFF,	the	result	is	$10000:

Since	there	are	no	longer	any	extra	bits	available	in	the	sixteen-bit	register,	however,
the	low-order	sixteen	bits	of	the	number	in	Y	(that	is,	zero)	does	not	represent	the	actual
result.	As	 you	will	 see	 later,	 addition	 and	 subtraction	 instructions	 use	 the	carry	 flag	 to
reflect	a	carry	out	of	the	register,	indicating	that	a	number	larger	than	can	be	represented
using	the	current	word	size	(sixteen	bits	in	the	above	example)	has	been	generated.	While
increment	and	decrement	instructions	do	not	affect	the	carry,	a	zero	result	in	the	Y	register
after	an	 increment	 (indicated	by	 the	z	 status	 flag	being	set)	 shows	 that	a	carry	has	been
generated,	even	though	the	carry	flag	itself	does	not	indicate	this.

A	classic	example	of	this	usage	is	found	in	Fragment	9.3,	which	shows	the	technique
commonly	 used	 on	 the	 eight-bit	 6502	 and	 65C02	 to	 increment	 a	 sixteen-bit	 value	 in
memory.	 Note	 the	 branch-on-condition	 instruction,	BNE,	 which	 was	 introduced	 in	 the
previous	chapter,	is	being	used	to	indicate	if	any	overflow	from	the	low	byte	requires	the
high	byte	 to	be	 incremented,	 too.	As	long	as	 the	value	stored	at	 the	direct	page	location
ABC	is	non-zero	following	the	increment	operation,	processing	continues	at	the	location
SKIP.	 If	ABC	 is	zero	as	a	 result	of	 the	 increment	operation,	a	page	boundary	has	been
crossed,	 and	 the	high	order	byte	of	 the	value	must	 be	 incremented	 as	well.	 If	 the	high-
order	 byte	were	 not	 incremented,	 the	 sixteen-bit	 value	would	 “wrap	 around”	within	 the
low	byte.

Fragment	9.3.

Such	 use	 of	 the	 z	 flag	 to	 detect	 carry	 (or	 borrow)	 is	 peculiar	 to	 the	 increment	 and
decrement	operations:	if	you	could	increment	or	decrement	by	values	other	than	one,	this
technique	would	not	work	consistently,	since	it	would	be	possible	to	cross	the	“threshold”
(zero)	without	actually	“landing”	on	it	(you	might,	for	example,	go	from	$FFFF	to	$0001
if	the	step	value	was	2).

A	zero	 result	 following	a	decrement	operation,	on	 the	other	hand,	 indicates	 that	 the
next	 decrement	 operation	will	 cause	 a	 borrow	 to	 be	 generated.	 In	 Fragment	 9.4,	 the	Y
register	is	loaded	with	one,	and	then	one	is	subtracted	from	it	by	the	DEY	instruction.	The
result	 is	clearly	zero;	however,	 if	Y	 is	decremented	again,	$FFFF	will	 result.	 If	you	are
treating	the	number	as	a	signed,	two’s-complement	number,	this	is	just	fine,	as	$FFFF	is
equivalent	to	a	sixteen-bit,	negative	one.	But	if	it	is	an	unsigned	number,	a	borrow	exists.

Fragment	9.4.

Together	with	the	branch-on-condition	instructions	introduced	in	the	previous	chapter,
you	can	now	efficiently	implement	one	of	the	most	commonly	used	control	structures	in
computer	programming,	the’	program	loop.

A	rudimentary	loop	would	be	a	zero-fill	loop;	that	is,	a	piece	of	code	to	fill	a	range	of
memory	with	zeroes.	Suppose,	as	in	Listing	9.1,	 the	memory	area	from	$4000	 to	$5FFF
was	to	be	zeroed	(for	example,	to	clear	hi-res	page	two	graphics	memory	in	the	Apple	//).

By	loading	an	 index	register	with	 the	size	of	 the	area	 to	be	cleared,	 the	memory	can	be
easily	accessed	by	indexing	from	an	absolute	base	of	$4000.

The	two	lines	at	BASE	and	COUNT	assign	symbolic	names	 to	 the	starting	address
and	length	of	the	fill	area.	The	REP	instruction	puts	the	processor	into	the	long	index/long
accumulator	mode.	The	long	index	allows	the	range	of	memory	being	zeroed	to	be	greater
than	256	bytes;	 the	long	accumulator	provides	for	faster	zeroing	of	memory,	by	clearing
two	bytes	with	a	single	instruction.

The	loop	is	initialized	by	loading	the	X	register	with	the	value	COUNT,	which	is	the
number	of	bytes	to	be	zeroed.	The	assembler	is	instructed	to	subtract	two	from	the	total	to
allow	 for	 the	 fact	 that	 the	array	 starts	 at	 zero,	 rather	 than	one,	 and	 for	 the	 fact	 that	 two
bytes	are	cleared	at	a	time.

Listing	9.1.

The	 loop	 itself	 is	 then	entered	 for	 the	 first	 time,	and	 the	STZ	 instruction	 is	used	 to
clear	 the	memory	 location	 formed	 by	 adding	 the	 index	 register	 to	 the	 constant	BASE.
Next	come	two	decrement	instructions;	two	are	needed	because	the	STZ	instruction	stored
a	double-byte	zero.	By	starting	at	the	end	of	the	memory	range	and	indexing	down,	it	 is
possible	 to	 use	 a	 single	 register	 for	 both	 address	 generation	 and	 loop	 control.	A	 simple
comparison,	checking	to	see	that	the	index	register	is	still	positive,	is	all	that	is	needed	to
control	the	loop.

Another	concrete	example	of	a	program	loop	is	provided	in	Listing	9.2,	which	toggles
the	built-in	speaker	in	an	Apple	/	/	computer	with	increasing	frequency,	resulting	in	a	tone
of	increasing	pitch.	It	features	an	outer	driving	loop	(TOP),	an	inner	loop	that	produces	a
tone	of	a	given	pitch,	and	an	inner-most	delay	loop.	The	pitch	of	the	tone	can	be	varied	by
using	different	initial	values	for	the	loop	indices.

Listing	9.2.

Addition	and	Subtraction:	Unsigned	Arithmetic
The	65x	processors	have	only	two	dedicated	general	purpose	arithmetic	instructions:

add	with	carry,	ADC,	and	subtract	with	carry,	SBC.	Aswill	be	seen	later,	it	is	possible	to
synthesize	all	other	arithmetic	functions	using	these	and	other	65x	instructions.

As	the	names	of	 these	instructions	indicate,	 the	carry	flag	from	the	status	register	 is
involved	with	 the	 two	 operations.	 The	 role	 of	 the	 carry	 flag	 is	 to	 “link”	 the	 individual
additions	 and	 subtractions	 that	 make	 up	 multiple-precision	 arithmetic	 operations.	 The
earlier	 example	 of	 the	 6502	 sixteen-bit	 increment	 was	 a	 special	 case	 of	 the	 multiple-
precision	arithmetic	technique	used	on	the	65x	processors,	the	link	provided	in	that	case

by	the	BNE	instruction.

Consider	the	addition	of	two	decimal	numbers,	56	and	72.	You	begin	your	calculation
by	adding	six	to	two.	If	you	are	working	the	calculation	out	on	paper,	you	place	the	result,
eight,	in	the	right-most	column,	the	one’s	place:

Next	you	add	the	ten’s	column;	5	plus	7	equals	12.	The	two	is	placed	in	the	tens	place	of
the	sum,	and	the	one	is	a	carry	 into	the	100’s	place.	Normally,	since	you	have	plenty	of
room	on	your	worksheet,	you	simply	pencil	in	the	one	to	the	left	of	the	two,	and	you	have
the	answer.

The	situation	within	the	processor	when	it	adds	two	numbers	is	basically	similar,	but
with	 a	 few	 differences.	 First,	 the	 numbers	 added	 and	 subtracted	 in	 a	 65x	 processor	 are
normally	binary	numbers	(although	there	is	also	a	special	on-the-fly	decimal	adjust	mode
for	adding	and	subtracting	numbers	 in	binary-coded	decimal	 format).	 Just	 as	you	began
adding,	the	processor	starts	in	the	right-most	column,	or	one’s	place,	and	continues	adding
columns	to	the	left.	The	augend	(the	number	added	to)	is	always	in	the	accumulator;	the
location	of	the	addend	is	specified	in	the	operand	field	of	the	instruction.	Since	a	binary
digit	 can	only	be	a	zero	or	a	one,	 the	addition	of	2	ones	 results	 in	a	zero	 in	 the	current
column	 and	 a	 carry	 into	 the	 next	 column.	 This	 process	 of	 addition	 continues	 until	 the
highest	bit	of	 the	accumulator	has	been	added	 (the	highest	bit	being	either	bit	 seven	or,
alternatively	on	 the	65802/65816,	bit	 fifteen,	 if	 the	m	 flag	 is	 cleared).	But	 suppose	 that
$82	is	added	to	$AB	in	the	eight-bit	accumulator:

If	you	begin	by	adding	 the	binary	digits	 from	 the	 right	and	marking	 the	sum	 in	 the
proper	column,	and	then	placing	any	carry	that	results	at	the	top	of	the	next	column	to	the
left,	you	will	find	that	a	carry	results	when	the	ones	in	column	seven	are	added	together.
However,	 since	 the	 accumulator	 is	 only	 eight	 bits	 wide,	 there	 is	 no	 place	 to	 store	 this
value;	the	result	has	“overflowed”	the	space	allocated	to	it.	In	this	case,	the	final	carry	is
stored	in	the	carry	flag	after	the	operation.	If	there	had	been	no	carry,	the	carry	flag	would
be	reset	to	zero.

The	automatic	generation	of	a	carry	flag	at	the	end	of	an	addition	is	complemented	by
a	second	feature	of	this	instruction	that	is	executed	at	the	beginning	of	the	instruction:	the
ADC	instruction	itself	always	adds	the	previously	generated	one-bit	carry	flag	value	with
the	right-most	column	of	binary	digits.	Therefore,	it	is	always	necessary	to	explicitly	clear
the	 carry	 flag	before	 adding	 two	numbers	 together,	 unless	 the	numbers	being	added	are
succeeding	words	 of	 a	multi-word	 arithmetic	 operation.	 By	 adding	 in	 a	 previous	 value
held	 in	 the	carry	flag,	and	storing	a	resulting	carry	 there,	 it	 is	possible	 to	chain	 together
several	limited-precision	(each	only	eight	or	sixteen	bits)	arithmetic	operations.

First,	 consider	 how	 you	 would	 represent	 an	 unsigned	 binary	 number	 greater	 than
$FFFF	(decimal	65,536)—that	 is,	one	 that	cannot	be	stored	 in	a	single	double-byte	cell.

Suppose	 the	 number	 is	 $023A8EFl.	 This	 would	 simply	 be	 stored	 in	 memory	 in	 four
successive	bytes,	from	low	to	high	order,	as	follows,	beginning	at	$1000:

1000 -	F1
1001 -	8E
1002 -	3A
1003 -	02

Since	the	number	is	greater	than	the	largest	available	word	size	of	the	processor	(double
byte),	 any	 arithmetic	 operations	 performed	 on	 this	 number	 will	 have	 to	 be	 treated	 as
multiple-precision	 operations,	 where	 only	 one	 part	 of	 a	 number	 is	 added	 to	 the
corresponding	part	of	another	number	at	a	 time.	As	each	part	 is	added,	 the	 intermediate
result	 is	 stored;	 and	 then	 the	 next	 part	 is	 added,	 and	 so	 on,	 until	 all	 of	 the	 parts	 of	 the
number	have	been	added.

Multiple-precision	operations	always	proceed	from	low-order	part	to	high-order	part
because	the	carry	is	generated	from	low	to	high,	as	seen	in	our	original	addition	of	decimal
56	to	72.

Listing	 9.3	 is	 an	 assembly	 language	 example	 of	 the	 addition	 of	 multiple-precision
numbers	 $023A8EFl	 to	 $0000A2C1.	 This	 example	 begins	 by	 setting	 the	 accumulator
word	size	to	sixteen	bits,	which	lets	you	process	half	of	the	four-byte	addition	in	a	single
operation.	The	carry	 flag	 is	 then	cleared	because	 there	must	be	no	 initial	carry	when	an
add	operation	begins.	The	 two	bytes	 stored	at	BIGNUM	and	BIGNUM	+	1	 are	 loaded
into	the	double-byte	accumulator.	Note	that	the	DC	14	assembler	directive	automatically
stores	 the	 four-byte	 integer	 constant	 value	 in	 memory	 in	 low-to-high	 order.	 The	ADC
instruction	is	then	executed,	adding	$8EFl	to	$A2Cl.

Listing	9.3.

Examine	the	equivalent	binary	addition:

The	 sixteen-bit	 result	 found	 in	 the	 accumulator	 after	 the	ADC	 is	 executed	 is	 $31B2;
however,	this	is	clearly	incorrect.	The	correct	answer,	$131B2,	requires	seventeen	bits	to
represent	it,	so	an	additional	result	of	the	ADC	operation	in	this	case	is	that	the	carry	flag
in	the	status	register	is	set.	Meanwhile,	since	the	value	in	the	accumulator	consists	of	the
correct	low-order	sixteen	bits,	the	accumulator	is	stored	at	RESULT	and	RESULT	+	1.

With	 the	 partial	 sum	 of	 the	 last	 operation	 saved,	 the	 high-order	 sixteen	 bits	 of
BIGNUM	are	 loaded	(from	BIGNUM	+	2)	 into	 the	accumulator,	 followed	 immediately
by	the	ADC	NEXTNUM	+	2	instruction,	which	is	not	preceded	by	CLC	this	time.	For	all
but	the	first	addition	of	a	multiple-precision	operation,	the	carry	flag	is	not	cleared;	rather,
the	 setting	 of	 the	 carry	 flag	 from	 the	 previous	 addition	 is	 allowed	 to	 be	 automatically
added	 into	 the	 next	 addition.	 You	will	 note	 in	 the	 present	 example	 that	 the	 high-order
sixteen	 bits	 of	NEXTNUM	 are	 zero;	 it	 almost	 seems	 unnecessary	 to	 add	 them.	At	 the
same	 time,	 remember	 that	 there	was	 a	 carry	 left	 over	 from	 the	 first	 addition;	when	 the
ADC	NEXTNUM	+	2	instruction	is	executed,	this	carry	is	automatically	added	in;	that	is,
the	resulting	value	in	the	accumulator	is	equal	to	the	carry	flag	(1)	plus	the	original	value
in	 the	 accumulator	 ($023A)	 plus	 the	 value	 at	 the	 address	NEXTNUM	+	2	 ($0000),	 or
$023B.	 This	 is	 then	 stored	 in	 the	 high-order	 bytes	 of	 RESULT,	 which	 leaves	 the
complete,	correct	value	stored	 in	 locations	RESULT	 through	RESULT	+	3	 in	 low-high
order:

RESULT - B2
RESULT+1 - 31
RESULT+2 - 3B
RESULT+3 - 02

Reading	from	high	to	low,	the	sum	is	$023B31B2.

This	 type	of	multiple	precision	addition	 is	 required	constantly	on	 the	eight-bit	6502
and	65C02	processors	 in	order	 to	manipulate	addresses,	which	are	sixteen-bit	quantities.
Since	 the	65816	and	65802	provide	sixteen-bit	arithmetic	operations	when	the	m	 flag	 is
cleared,	this	burden	is	greatly	reduced.	If	you	wish,	however,	to	manipulate	long	addresses
on	 the	 65816,	 that	 is,	 24-bit	 addresses,	 you	 will	 similarly	 have	 to	 resort	 to	 multiple
precision.	Otherwise,	 it	 is	 likely	that	multiple-precision	arithmetic	generally	will	only	be
required	on	 the	 65802	or	 65816	 in	math	 routines	 to	 perform	number-crunching	on	user
data,	rather	than	for	internal	address	manipulation.

An	 interesting	footnote	 to	 the	multiple-precision	arithmetic	comparison	between	 the
6502	 and	 the	 65816	 is	 to	 observe	 that	 since	 the	 6502	 only	 has	 an	 eight-bit	 adder,	 even
those	 instructions	 that	 automatically	 perform	 sixteen-bit	 arithmetic	 (such	 as	 branch

calculation	 and	 effective	 address	 generation)	 require	 an	 additional	 cycle	 to	 perform	 the
addition	of	the	high-order	byte	of	the	address.	The	presence	of	a	sixteen-bit	adder	within
the	65802	and	65816	explains	how	it	is	able	to	shave	cycles	off	certain	operations	while	in
native	mode,	 such	 as	 branching	 across	 page	 boundaries,	 where	 an	 eight-bit	 quantity	 is
added	to	a	sixteen-bit	value.	On	the	6502,	if	a	page	boundary	isn’t	crossed,	the	high	byte
of	the	sixteen-bit	operand	is	used	as-is;	if	a	carry	is	generated	by	adding	the	two	low	bytes,
a	second	eight-bit	add	must	be	performed,	requiring	an	additional	machine	cycle.	On	the
65816,	the	addition	is	treated	as	a	single	operation.

Subtraction	on	the	65x	processors	is	analogous	to	addition,	with	the	borrow	serving	a
similar	role	in	handling	multiple-precision	subtractions.	On	the	65x	processors,	the	carry
flag	is	also	used	to	store	a	subtraction’s	borrow.	In	the	case	of	the	addition	operation,	a	one
stored	in	the	carry	flag	indicates	that	a	carry	exists,	and	the	value	in	the	carry	flag	will	be
added	 into	 the	 next	 add	 operation.	 The	 borrow	 stored	 in	 the	 carry	 flag	 is	 actually	 an
inverted	borrow:	that	is,	the	carry	flag	cleared	to	zero	means	that	there	is	a	borrow,	while
carry	 set	means	 that	 there	 is	 none.	Thus	prior	 to	beginning	a	 subtraction,	 the	 carry	 flag
should	be	set	so	that	no	borrow	is	subtracted	by	the	SBC	instruction.

Although	you	can	simply	accept	this	rule	at	face	value,	the	explanation	is	interesting.
The	simplest	way	to	understand	the	inverted	borrow	of	the	65x	series	is	to	realize	that,	like
most	computers,	a	65x	processor	has	no	separate	subtraction	circuits	as	such;	all	it	has	is
an	adder,	which	serves	for	both	addition	and	subtraction.	Obviously,	addition	of	a	negative
number	 is	 the	 same	 as	 subtraction	 of	 a	 positive.	 To	 subtract	 a	 number,	 then,	 the	 value
which	is	being	subtracted	is	inverted,	yielding	a	one’s-complement	negative	number.	This
is	 then	added	 to	 the	other	value	and,	as	 is	usual	with	addition	on	 the	65x	machines,	 the
carry	is	added	in	as	well.

Since	 the	 add	 operation	 automatically	 adds	 in	 the	 carry,	 if	 the	 carry	 is	 set	 prior	 to
subtraction,	 this	 simply	 converts	 the	 inverted	 value	 to	 two’s	 complement	 form.
(Remember,	 two’s	complement	 is	 formed	by	 inverting	a	number	and	adding	one;	 in	 this
case	the	added	one	is	the	carry	flag.)	If,	on	the	other	hand,	the	carry	was	clear,	this	has	the
effect	 of	 subtracting	 one	 by	 creating	 a	 two’s-complement	 number	which	 is	 one	 greater
than	 if	 the	 carry	 had	 been	 present.	 (Assuming	 a	 negative	 number	 is	 being	 formed,
remember	that	the	more	negative	a	number	is,	the	greater	its	value	as	an	unsigned	number,
for	 example,	 $FFFF	=	 -1,	 $8000	 =	 -32767.)	 Thus,	 if	 a	 borrow	 exists,	 a	 value	which	 is
more	 negative	 by	 one	 is	 created,	 which	 is	 added	 to	 the	 other	 operand,	 effectively
subtracting	a	carry.

Comparison
The	 comparison	 operation—is	 VALUE1	 equal	 to	 VALUE2,	 for	 example—is

implemented	 on	 the	 65x,	 as	 on	most	 processors,	 as	 an	 implied	 subtraction.	 In	 order	 to
compare	VALUE1	to	VALUE2,	one	of	the	values	is	subtracted	from	the	other.	Clearly,	if
the	result	is	zero,	then	the	numbers	are	equal.

This	 kind	 of	 comparison	 can	 be	made	 using	 the	 instructions	 you	 already	 know,	 as
Fragment	9.5	 illustrates.	 In	 this	 fragment,	you	can	see	 that	 the	branch	 to	TRUE	will	be
taken,	and	the	INC	VAL	 instruction	never	executed,	because	$1234	minus	$1234	equals

zero.	 Since	 the	 results	 of	 subtractions	 condition	 the	 z	 flag,	 the	BEQ	 instruction	 (which
literally	 means	 “branch	 if	 result	 equal	 to	 zero”),	 in	 this	 case,	 means	 “branch	 if	 the
compared	values	are	equal.”

Fragment	9.5.

There	are	two	undesirable	aspects	of	this	technique,	however,	if	comparison	is	all	that
is	 desired	 rather	 than	 actual	 subtraction.	 First,	 because	 the	 65x	 subtraction	 instruction
expects	the	carry	flag	to	be	set	for	single	precision	subtractions,	the	SEC	instruction	must
be	executed	before	each	comparison	using	SBC.	Second,	it	is	not	always	desirable	to	have
the	original	value	in	the	accumulator	lost	when	the	result	of	the	subtraction	is	stored	there.

Because	 comparison	 is	 such	 a	 common	 programming	 operation,	 there	 is	 a	 separate
compare	instruction,	CMP.	Compare	subtracts	the	value	specified	in	the	operand	field	of
the	 instruction	 from	 the	value	 in	 the	accumulator	without	 storing	 the	 result;	 the	original
accumulator	value	 remains	 intact.	Status	 flags	normally	affected	by	a	 subtraction—z,	n,
and	 c—are	 set	 to	 reflect	 the	 result	 of	 the	 subtraction	 just	 performed.	 Additionally,	 the
carry	 flag	 is	 automatically	 set	 before	 the	 instruction	 is	 executed,	 as	 it	 should	 be	 for	 a
single-precision	 subtraction.	 (Unlike	 the	ADC	and	SBC	 instructions,	CMP	 does	not	 set
the	overflow	flag,	complicating	signed	comparisons	somewhat,	a	problem	which	will	be
covered	later	in	this	chapter.)

Given	 the	 flags	 that	 are	 set	 by	 the	 CMP	 instruction,	 and	 the	 set	 of	 branch-on-
condition	 instructions,	 the	 relations	 shown	 in	 Table	 9.2	 can	 be	 easily	 tested	 for.	 A
represents	the	value	in	the	accumulator,	DATA	is	the	value	specified	in	the	operand	field
of	the	instruction,	and	Bxx	is	the	branch-on-condition	instruction	that	causes	a	branch	to
be	 taken	 (to	 the	 code	 labelled	 TRUE)	 if	 the	 indicated	 relationship	 is	 true	 after	 a
comparison.

Because	the	action	taken	after	a	comparison	by	the	BCC	and	BCS	is	not	immediately
obvious	from	their	mnemonic	names,	the	recommended	assembler	syntax	standard	allows
the	alternate	mnemonics

Table	9.2.	Equalities.

BLT,	for	“branch	on	less	than,”	and	BGE,	for	“branch	if	greater	or	equal,”	respectively,
which	generate	the	identical	object	code.

Other	 comparisons	 can	 be	 synthesized	 using	 combinations	 of	 branch-on-condition
instructions.	 Fragment	 9.6	 shows	 how	 the	 operation	 “branch	 on	 greater	 than”	 can	 be
synthesized.

Fragment	9.6.

Fragment	9.7	shows	“branch	on	less	or	equal.”

Fragment	9.7.

Listing	 9.4	 features	 the	 use	 of	 the	 compare	 instruction	 to	 count	 the	 number	 of
elements	in	a	list	which	are	less	than,	equal	to,	and	greater	than	a	given	value.	While	of
little	utility	by	 itself,	 this	 type	of	 comparison	operation	 is	 just	 a	 few	 steps	 away	 from	a
simple	sort	routine.	The	value	the	list	will	be	compared	against	is	assumed	to	be	stored	in
memory	 locations	$88.89,	which	 are	given	 the	 symbolic	name	VALUE	 in	 the	example.
The	list,	called	TABLE,	uses	the	DC	I	directive,	which	stores	each	number	as	a	sixteen-
bit	integer.

Listing	9.4.

Listing	9.4.

After	setting	the	mode	to	sixteen-bit	word/index	size,	the	locations	that	will	hold	the
number	of	occurrences	of	each	of	the	three	possible	relationships	are	zeroed.	The	length	of
the	list	is	loaded	into	the	Y	register.	The	accumulator	is	loaded	with	the	comparison	value.

The	 loop	 itself	 is	entered,	with	a	comparison	 to	 the	first	 item	in	 the	 list;	 in	 this	and
each	 succeeding	 case,	 control	 is	 transferred	 to	 counter-incrementing	 code	 depending	 on
the	 relationship	 that	 exists.	Note	 that	 equality	and	 less-than	are	 tested	 first,	 and	greater-
than	 is	 assumed	 if	 control	 falls	 through.	 This	 is	 necessary	 since	 there	 is	 no	 branch	 on
greater-than	 (only	 branch	 on	 greater-than-or-equal).	 Following	 the	 incrementing	 of	 the

selected	relation-counter,	control	passes	either	via	an	unconditional	branch,	or	by	falling
through,	to	the	loop-control	code,	which	decrements	Y	 twice	(since	double-byte	integers
are	being	compared).	Control	resumes	at	the	top	of	the	loop	unless	all	of	the	elements	have
been	compared,	at	which	point	Y	is	negative,	and	the	routine	ends.

In	 addition	 to	 comparing	 the	 accumulator	 with	 memory,	 there	 are	 instructions	 for
comparing	 the	 values	 in	 the	 two	 index	 registers	 with	 memory,	CPX	 and	CPY.	 These
instructions	come	in	especially	handy	when	it	is	not	convenient	or	possible	to	decrement
an	index	to	zero—if	instead	you	must	increment	or	decrement	it	until	a	particular	value	is
reached.	The	appropriate	compare	index	register	instruction	is	inserted	before	the	branch-
on-condition	instruction	either	loops	or	breaks	out	of	the	loop.	Fragment	9.8	shows	a	loop
that	continues	until	the	value	in	X	reaches	$A0.

Fragment	9.8.

Signed	Arithmetic
The	 examples	 so	 far	 have	 dealt	 with	 unsigned	 arithmetic—that	 is,	 addition	 and

subtraction	of	binary	numbers	of	the	same	sign.	What	about	signed	numbers?

As	 you	 saw	 in	 Chapter	 1,	 signed	 numbers	 can	 be	 represented	 using	 two’s-
complement	notation.	The	two’s	complement	of	a	number	is	formed	by	inverting	it	(one
bits	become	zeroes,	 zeroes	become	ones)	and	 then	adding	one.	For	example,	 a	negative
one	is	represented	by	forming	the	two’s	complement	of	one:

Minus	one	is	therefore	equivalent	to	a	hexadecimal	$FFFF.	But	as	far	as	the	processor
is	concerned,	the	unsigned	value	$FFFF	(65,535	decimal)	and	the	signed	value	minus-one
are	equivalent.	They	both	amount	 to	 the	same	stream	of	bits	stored	in	a	register.	 It’s	 the
interpretation	 of	 them	 given	 by	 the	 programmer	which	 is	 significant—an	 interpretation
that	 must	 be	 consistently	 applied	 across	 each	 of	 the	 steps	 that	 perform	 a	 multi-step
function.

Consider	 all	 of	 the	 possible	 signed	 and	 unsigned	 numbers	 that	 can	 be	 represented
using	 a	 sixteen-bit	 register.	 The	 two’s	 complement	 of	 $0002	 is	 $FFFE—as	 the	 positive
numbers	 increase,	 the	 two’s-complement	 (negative)	 numbers	 decrease	 (in	 the	 unsigned

sense).	 Increasing	 the	 positive	 value	 to	 $7FFF	 (%0111	 1111	 1111	 1111),	 the	 two’s
complement	 is	 $8001	 (%1000	 0000	 0000	 0001);	 except	 for	 $8000,	 all	 of	 the	 possible
values	have	been	used	to	represent	the	respective	positive	and	negative	numbers	between
$0001	and	$7FFF.

Since	 their	point	of	 intersection,	$8000,	determines	 the	maximum	range	of	a	signed
number,	the	high-order	bit	(bit	fifteen)	will	always	be	one	if	the	number	is	negative,	and
zero	if	the	number	is	positive.	Thus	the	range	of	possible	binary	values	(%0000	0000	0000
0000	through	%1111	1111	1111	1111,	or	$0000	…	$FFFF),	using	two’s-complement	form,
is	divided	evenly	between	representations	of	positive	numbers,	and	representations	of	the
corresponding	range	of	negative	numbers.	Since	$8000	is	also	negative,	there	seems	to	be
one	more	possible	negative	number	than	positive;	for	the	purposes	here,	however,	zero	is
considered	positive.

The	high-order	bit	is	therefore	referred	to	as	the	sign	bit.	On	the	6502,	with	its	eight-
bit	word	size	(or	the	65816	in	an	eight-bit	register	mode),	bit	seven	is	the	sign	bit.	With
sixteen-bit	registers,	bit	fifteen	is	the	sign	bit.	The	n	or	negative	flag	in	the	status	register
reflects	whether	or	not	the	high-order	bit	of	a	given	register	is	set	or	clear	after	execution
of	operations	which	affect	that	register,	allowing	easy	determination	of	the	sign	of	a	signed
number	by	using	either	the	BPL	(branch	on	plus)	or	BMI	 (branch	 if	minus)	 instructions
introduced	in	the	last	chapter.

Using	 the	high-order	bit	as	 the	sign	bit	sacrifices	 the	carry	flag’s	normal	(unsigned)
function.	If	the	high-order	bit	is	used	to	represent	the	sign,	then	the	addition	or	subtraction
of	the	sign	bits	(plus	a	possible	carry	out	of	the	next-to-highest	bit)	results	in	a	sign	bit	that
may	be	invalid	and	that	will	erroneously	affect	the	carry	flag.

To	 deal	 with	 this	 situation,	 the	 status	 register	 provides	 another	 flag	 bit,	 the	 v	 or
overflow	 flag,	which	 is	 set	 or	 reset	 as	 the	 result	 of	 the	ADC	 and	SBC	 operations.	The
overflow	bit	indicates	whether	a	signed	result	is	too	large	(or	too	small)	to	be	represented
in	the	precision	available,	just	as	the	carry	flag	does	for	unsigned	arithmetic.

Since	the	high-order	bit	is	used	to	store	the	sign,	the	penultimate	bit	(the	next-highest
bit)	 is	 the	high-order	bit	as	far	as	magnitude	representation	is	concerned.	If	you	knew	if
there	was	a	carry	out	of	this	bit,	it	would	obviously	be	helpful	in	determining	overflow	or
underflow.

However,	the	overflow	flag	is	not	simply	the	carry	out	of	bit	six	(if	m	=	1	for	eight-bit
mode)	or	bit	fourteen	(if	m	=	0	for	sixteen-bit	mode).	Signed	generation	of	the	v	flag	is	not
as	straightforward	as	unsigned	generation	of	the	carry	flag.	It	is	not	automatically	true	that
if	there	is	a	carry	out	of	the	penultimate	bits	that	overflow	has	occurred,	because	it	could
also	mean	that	the	sign	has	changed.	This	is	because	of	the	circular	or	wraparound	nature
of	two’s-complement	representation.

Consider	Fragment	9.9.	Decimal	values	with	sign	prefixes	are	used	for	emphasis	(and
convenience)	as	the	immediate	operands	in	the	source	program;	their	hexadecimal	values
appear	 in	 the	 left-hand	 column	which	 interlists	 the	 generated	 object	 code	 (opcode	 first,
low	byte,	high	byte).	You	can	see	that	-10	is	equivalent	to	$FFF6	hexadecimal,	while	20	is
hexadecimal	$0014.	Examine	this	addition	operation	in	binary:

Fragment	9.9.

Two	things	should	become	clear:	that	the	magnitude	of	the	result	(10	decimal)	is	such	that
it	will	easily	fit	within	the	number	of	bits	available	for	its	representation,	and	that	there	is
a	carry	out	of	bit	fourteen:

In	 this	 case,	 the	 overflow	 flag	 is	 not	 set,	 because	 the	 carry	 out	 of	 the	 penultimate	 bit
indicates	wraparound	 rather	 than	overflow	(or	underflow).	Whenever	 the	 two	operands
are	 of	 different	 signs,	 a	 carry	 out	 of	 the	 next-to-highest	 bit	 indicates	 wraparound;	 the
addition	of	a	positive	and	a	negative	number	(or	vice	versa)	can	never	result	in	a	number
too	large	(try	it),	but	it	may	result	in	wraparound.

Conversely,	 overflow	 exists	 in	 the	 addition	 of	 two	 negative	 numbers	 if	 no	 carry
results	from	the	addition	of	the	next-to-highest	(penultimate)	bits.	If	two	negative	numbers
are	added	without	overflow,	they	will	always	wrap	around,	resulting	in	a	carry	out	of	the
next-to-highest	bit.	When	wraparound	has	occurred,	the	sign	bit	is	set	due	to	the	carry	out
of	 the	penultimate	bit.	 In	 the	 case	of	 two	negative	numbers	being	added	 (which	always
produces	a	negative	 result),	 this	 setting	of	 the	 sign	bit	 results	 in	 the	correct	 sign.	 In	 the
case	of	the	addition	of	two	positive	numbers,	wraparound	never	occurs,	so	a	carry	out	of
the	penultimate	bit	always	means	that	the	overflow	flag	will	be	set.

These	 rules	 likewise	 apply	 for	 subtraction;	 however,	 you	 must	 consider	 that
subtraction	is	really	an	addition	with	 the	sign	of	 the	addend	inverted,	and	apply	them	in
this	sense.

In	order	for	the	processor	to	determine	the	correct	overflow	flag	value,	it	exclusive-
or’s	the	carry	out	of	the	penultimate	bit	with	the	carry	out	of	the	high-order	bit	(the	value
that	winds	up	in	the	carry	flag),	and	sets	or	resets	the	overflow	according	to	the	result.	By
taking	the	exclusive-or	of	these	two	values,	the	overflow	flag	is	set	according	to	the	rules
above.

Consider	the	possible	results:

• If	 both	 values	 are	 positive,	 the	 carry	 will	 be	 clear;	 if	 there	 is	 no
penultimate	carry,	the	overflow	flag,	too,	will	be	clear,	because	0	XOR	0	equals
0;	the	value	in	the	sign	bit	is	zero,	which	is	correct	because	a	positive	number
plus	a	positive	number	always	equals	a	positive	number.	On	the	other	hand,	if
there	is	a	penultimate	carry,	the	sign	bit	will	change.	While	there	is	still	no	final

carry,	overflow	is	set.	The	final	carry	(clear)	xor	penultimate	carry	(set)	equals
one.	Whenever	overflow	is	set,	the	sign	bit	of	the	result	has	the	wrong	value.

• If	the	signs	are	different,	and	there	is	a	penultimate	carry	(which	means
wraparound	in	this	case),	there	will	be	a	final	carry.	But	when	this	is	exclusive-
or’d	with	the	penultimate	carry,	it	is	canceled	out,	resulting	in	overflow	being
cleared.	 If,	 though,	 there	were	 no	 penultimate	 carry,	 there	would	 be	 no	 final
carry;	again,	0	XOR	0	=	0,	or	overflow	clear.	If	 the	sign	bit	 is	cleared	by	the
addition	 of	 a	 penultimate	 carry	 and	 the	 single	 negative	 sign	 bit,	 since
wraparound	 in	 this	 case	 implies	 the	 transition	 from	 a	 negative	 to	 a	 positive
number,	 the	 sign	 (clear)	 is	 correct.	 If	 there	was	 no	wraparound,	 the	 result	 is
negative,	and	the	sign	bit	is	also	correct	(set).

• Finally,	if	both	signs	are	negative,	 there	will	always	be	a	carry	out	of
the	 sign	 bit.	 A	 carry	 out	 of	 the	 penultimate	 bit	 means	 wraparound	 (with	 a
correctly	 negative	 result),	 so	 carry	 (set)	XOR	 penultimate	 carry	 (set)	 equals
zero	and	the	overflow	flag	is	clear.	If,	however,	there	is	no	carry,	overflow	(or
rather,	underflow)	has	occurred,	and	the	overflow	is	set	because	carry	XOR	no
carry	equals	one.

The	net	result	of	this	analysis	is	that,	with	the	exception	of	overflow	detection,	signed
arithmetic	is	performed	in	the	same	way	as	unsigned	arithmetic.	Multiple-precision	signed
arithmetic	is	also	done	in	the	same	way	as	unsigned	multiple-precision	arithmetic;	the	sign
of	the	two	numbers	is	only	significant	when	the	high-order	word	is	added.

When	overflow	is	detected,	 it	can	be	handled	in	three	ways:	treated	as	an	error,	and
reported;	 ignored;	 or	 responded	 to	 by	 attempting	 to	 extend	 the	 precision	 of	 the	 result.
Although	this	latter	case	is	not	generally	practical,	you	must	remember	that,	in	this	case,
the	value	in	the	sign	bit	will	have	been	inverted.	Having	determined	the	correct	sign,	the
precision	 may	 be	 expanded	 using	 sign	 extension,	 if	 there	 is	 an	 extra	 byte	 of	 storage
available	 and	 your	 arithmetic	 routines	 can	 work	 with	 a	 higher-precision	 variable.	 The
method	 for	 extending	 the	 sign	 of	 a	 number	 involves	 the	 bit	 manipulation	 instructions
described	in	the	next	chapter;	an	example	of	it	is	found	there.

Signed	Comparisons
The	principle	of	signed	comparisons	 is	similar	 to	 that	of	unsigned	comparisons:	 the

relation	 of	 one	 operand	 to	 another	 is	 determined	 by	 subtracting	 one	 from	 the	 other.
However,	 the	65x	CMP	 instruction,	unlike	SBC,	does	not	affect	 the	v	 flag,	 so	does	not
reflect	 signed	 overflow/underflow.	 Therefore,	 signed	 comparisons	 must	 be	 performed
using	 the	 SBC	 instruction.	 This	 means	 that	 the	 carry	 flag	 must	 be	 set	 prior	 to	 the
comparison	(subtraction),	and	that	 the	original	value	in	the	accumulator	will	be	replaced
by	the	difference.	Although	the	value	of	 the	difference	is	not	relevant	 to	the	comparison
operation,	 the	 sign	 is.	 If	 the	 sign	 of	 the	 result	 (now	 in	 the	 accumulator)	 is	 positive	 (as
determined	according	to	rules	outlined	above	for	proper	determination	of	the	sign	of	the
result	of	a	signed	operation),	then	the	value	in	memory	is	less	than	the	original	value	in	the
accumulator;	if	the	sign	is	negative,	it	is	greater.	If,	though,	the	result	of	the	subtraction	is
zero,	then	the	values	were	equal,	so	this	should	be	checked	for	first.

The	 code	 for	 signed	 comparisons	 is	 similar	 to	 that	 for	 signed	 subtraction.	 Since	 a
correct	result	need	not	be	completely	formed,	however,	overflow	can	be	tolerated	since	the
goal	 of	 the	 subtraction	 is	 not	 to	 generate	 a	 result	 that	 can	 be	 represented	 in	 a	 given
precision,	but	only	to	determine	the	relationship	of	one	value	to	another.	Overflow	must
still	be	taken	into	account	in	correctly	determining	the	sign.	The	value	of	the	sign	bit	(the
high-order	bit)	will	be	the	correct	sign	of	the	result	unless	overflow	has	occurred.	In	that
case,	it	is	the	inverted	sign.

Listing	9.5	does	a	signed	comparison	of	the	number	stored	in	VAL1	with	the	number
stored	in	VAL2,	and	sets	RELATION	to	minus	one,	zero,	or	one,	depending	on	whether
VAL1	<	VAL2,	VAL1	=	VAL2	or	VAL1	>	VAL2,	respectively:

Listing	9.5.

Decimal	Mode
All	 of	 the	 examples	 in	 this	 chapter	 have	 dealt	 with	 binary	 numbers.	 In	 certain

applications,	 however,	 such	 as	 numeric	 I/O	 programming,	 where	 conversion	 between
ASCII	 and	 binary	 representation	 of	 decimal	 strings	 is	 inconvenient,	 and	 business
applications,	 in	 which	 conversion	 of	 binary	 fractions	 to	 decimal	 fractions	 results	 in

approximation	 errors,	 it	 is	 convenient	 to	 represent	 numbers	 in	 decimal	 form	 and,	 if
possible,	perform	arithmetic	operations	on	them	directly	in	this	form.

Like	most	processors,	the	65x	series	provides	a	way	to	handle	decimal	representations
of	numbers.	Unlike	most	processors,	it	does	this	by	providing	a	special	decimal	mode	that
causes	the	processor	to	use	decimal	arithmetic	for	ADC,	SBC,	and	CMP	operations,	with
automatic	“on	the	fly”	decimal	adjustment.	Most	other	microprocessors,	on	the	other	hand,
do	all	arithmetic	the	same,	requiring	a	second	“decimal	adjust”	operation	to	convert	back
to	 decimal	 form	 the	 binary	 result	 of	 arithmetic	 performed	on	 decimal	 numbers.	As	 you
remember	from	Chapter	1,	binary-coded-decimal	(BCD)	digits	are	represented	in	four	bits
as	binary	values	 from	zero	 to	nine.	Although	values	 from	$A	 to	$F	 (ten	 to	 fifteen)	may
also	be	 represented	 in	 four	bits,	 these	bit	patterns	are	 illegal	 in	decimal	mode.	So	when
$03	is	added	to	$09,	the	result	is	$12,	not	$0C	as	in	binary	mode.

Each	 four-bit	 field	 in	 a	BCD	number	 is	 a	binary	 representation	of	 a	 single	decimal
digit,	the	rightmost	being	the	one’s	place,	the	second	the	ten’s,	and	so	on.	Thus,	the	eight-
bit	accumulator	can	represent	numbers	in	the	range	0	through	99	decimal,	and	the	sixteen-
bit	 accumulator	 can	 represent	 numbers	 in	 the	 range	 0	 through	 9999.	 Larger	 decimal
numbers	 can	 be	 represented	 in	multiple-precision,	 using	memory	 variables	 to	 store	 the
partial	results	and	the	carry	flag	to	link	the	component	fields	of	the	number	together,	just
as	multiple-precision	binary	numbers	are.

Decimal	mode	is	set	via	execution	of	the	SED	instruction	(or	a	SEP	instruction	with
bit	 three	 set).	 This	 sets	 the	 d	 or	 decimal	 flag	 in	 the	 status	 register,	 causing	 all	 future
additions	and	subtractions	to	be	performed	in	decimal	mode	until	the	flag	is	cleared.

The	 default	 mode	 of	 the	 65x	 processors	 is	 the	 binary	mode	 with	 the	 decimal	 flag
clear.	It	is	important	to	remember	that	the	decimal	flag	may	accidentally	be	set	by	a	wild
branch,	and	on	the	NMOS	6502,	it	is	not	cleared	on	reset.	The	65C02,	65802,	and	65816
do	clear	the	decimal	flag	on	reset,	so	this	is	of	slightly	less	concern.	Arithmetic	operations
intended	to	be	executed	in	binary	mode,	such	as	address	calculations,	can	produce	totally
unpredictable	results	if	they	are	accidentally	executed	in	decimal	mode.

Finally,	although	the	carry	flag	is	set	correctly	in	the	decimal	mode	allowing	unsigned
multiple-precision	operations,	the	overflow	flag	is	not,	making	signed	decimal	arithmetic,
while	 possible,	 difficult.	 You	 must	 create	 your	 own	 sign	 representation	 and	 logic	 for
handling	arithmetic	based	on	the	signs	of	the	operands.	Borrowing	from	the	binary	two’s-
complement	 representation,	 you	 could	 represent	 negative	 numbers	 as	 those	 (unsigned)
values	which,	when	added	to	a	positive	number	result	in	zero	if	overflow	is	ignored.	For
example,	 99	 would	 equal	 -1,	 since	 1	 plus	 99	 equals	 100,	 or	 zero	 within	 a	 two-digit
precision.	 98	 would	 be	 -2,	 and	 so	 on.	 The	 different	 nature	 of	 decimal	 representation,
however,	does	not	lend	itself	to	signed	operation	quite	as	conveniently	as	does	the	binary
two’s-complement	form.

10

Logic	and	Bit	Manipulation	Operations
The	 logical	 operations	 found	 in	 this	 chapter	 are	 the	 very	 essence	 of	 computer

processing;	 even	 the	 arithmetic	 functions,	 at	 the	 lowest	 level,	 are	 implemented	 as
combinations	of	logic	gates.	Logic,	or	more	accurately,	boolean	logic,	 is	concerned	with
the	determination	of	“true”	and	“false.”

Computers	 can	 represent	 simple	 logical	 propositions	 and	 relationships	 as	 binary
states:	the	bit-value	used	to	represent	“1”	in	a	given	computer	is	considered	equivalent	to
true;	the	bit-value	which	stands	for	“0”	is	considered	equivalent	to	false.	This	designation
is	in	fact	arbitrary,	and	the	values	could	easily	be	reversed.	What	matters	is	the	consistent
application	of	 the	 convention.	Alternative	 terms	 are	 “set”	 and	 “reset”	 (or	 “clear”),	 “on”
and	“off,”	“high”	and	“low,”	“asserted”	and	“negated.”	There	is	a	tendency	to	equate	all	of
these	 terms;	 this	 is	generally	acceptable	except	when	you	are	concerned	with	 the	actual
hardware	implementation	of	these	values,	in	which	case	the	issue	of	positive	logic	(“on”
means	 “true”)	 vs.	 negative	 logic	 (“off”	means	 “true”)	 becomes	 a	 consideration.	But	 the
intuitive	assumption	of	a	positive	logic	system	(“1”	equals	“on”	equals	“true”)	seems	the
most	natural,	and	may	be	considered	conventional,	so	the	terms	listed	above	as	equivalent
will	be	used	interchangeably,	as	appropriate	for	a	given	context.

Before	 discussing	 these	 functions,	 it	 is	 important	 to	 remember	 the	 bit-numbering
scheme	described	 in	Chapter	1:	 bits	 are	 numbered	 right	 to	 left	 from	 least	 significant	 to
most	significant,	starting	with	zero.	So	a	single	byte	contains	bits	zero	through	seven,	and
a	 double	 byte	 contains	 bits	 zero	 through	 fifteen.	 Bit	 zero	 always	 stands	 for	 the	 “one’s
place.”	Bit	 seven	 stands	 for	 the	 “128ths	 place”	 and	 bit	 fifteen	 stands	 for	 the	 “32768ths
place,”	except	that	the	high	bit	of	a	signed	number	is,	instead,	the	sign	bit.	A	single	bit	(or
string	of	bits	smaller	than	a	byte	or	double	byte)	is	sometimes	called	a	bit-field,	implying
that	the	bits	are	just	a	part	of	a	larger	data	element	like	a	byte	or	double	byte.

You’ll	 find	 two	 types	 of	 instructions	 discussed	 in	 this	 chapter;	 the	 basic	 logic
functions,	and	the	shifts	and	rotates.	They’re	listed	in	Table	10.1.

Table	10.1.	Logic	Instructions.

Logic	Functions
The	 fundamental	 logical	 operations	 implemented	 on	 the	 65x	 processor	 are	 and,

inclusive	 or,	 and	 exclusive	 or.	 These	 are	 implemented	 as	 the	AND,	ORA,	 and	EOR
machine	 instructions.	 These	 three	 logical	 operators	 have	 two	 operands,	 one	 in	 the
accumulator	 and	 the	 second	 in	 memory.	 All	 of	 the	 addressing	modes	 available	 for	 the
LDA,	STA,	ADC,	SBC,	and	CMP	instructions	are	also	available	to	the	logical	operations.
The	truth	tables	for	these	operations	are	found	in	Chapter	1	and	are	repeated	again	in	the
descriptions	of	the	individual	instructions	in	Chapter	18.

In	 addition	 to	 these	 instructions,	 there	 are	 also	 bit	 testing	 instructions	 that	 perform
logical	operations;	these	are	the	BIT	(test	memory	bits),	TSB	(test	and	set	bits),	and	TRB
(test	and	reset	bits)	instructions.	These	three	instructions	set	status	flags	or	memory	values
based	on	the	result	of	logical	operations,	rather	than	affecting	the	accumulator.

The	 logical	 and	 bit	 manipulation	 instructions	 are	 broadly	 useful:	 for	 testing	 for	 a
condition	using	boolean	logic	(for	example,	if	this	is	true	and	that	is	true	then	do	this);	for
masking	bit	fields	in	a	word,	forcing	them	to	be	on	or	off;	for	performing	quick,	simple
multiplication	and	division	functions,	such	as	multiplying	by	two	or	taking	the	modulus	of
a	power	of	two	(finding	the	remainder	of	a	division	by	a	power	of	two);	for	controlling	I/O
devices;	and	for	a	number	of	other	functions.

The	most	typical	usage	of	the	boolean	or	logical	operators	is	probably	where	one	of
the	two	operands	is	an	immediate	value.	Immediate	values	will	generally	be	used	in	these
examples.	Additionally,	operands	will	usually	be	represented	in	binary	form	(prefixed	by	a
percent	 sign—%),	 since	 it	 makes	 the	 bit-pattern	 more	 obvious.	 All	 of	 the	 logical
operations	are	performed	bitwise;	that	is,	the	result	is	determined	by	applying	the	logical
operation	to	each	of	the	respective	bits	of	the	operands.

Logical	AND
Consider,	for	example,	the	eight-bit	AND	operation	illustrated	in	Figure	10.1.

Figure	10.1.	The	AND	Operation.

The	result,	$42	or	%0100	0010,	is	formed	by	ANDing	bit	zero	of	the	first	operand	with	bit
zero	of	the	second	to	form	bit	zero	of	the	result;	bit	one	with	bit	one;	and	so	on.	In	each
bit,	 a	 one	 results	 only	 if	 there	 is	 a	 one	 in	 the	 corresponding	 bit-fields	 of	 both	 the	 first
operand	and	the	second	operand;	otherwise	zero	results.

An	example	of	the	use	of	the	AND	instruction	would	be	to	mask	bits	out	of	a	double-
byte	word	to	isolate	a	character	(single-byte)	value.	A	mask	is	a	string	of	bits,	typically	a
constant,	used	as	an	operand	to	a	 logic	 instruction	to	single	out	of	 the	second	operand	a
given	bit	or	bit-field	by	forcing	the	other	bits	to	zeroes	or	ones.	Masking	characters	out	of
double	 bytes	 is	 common	 in	 65802	 and	 65816	 applications	 where	 a	 “default”	 mode	 of
sixteen-bit	 accumulator	 and	 sixteen-bit	 index	 registers	 has	 been	 selected	 by	 the
programmer,	but	character	data	needs	to	be	accessed	as	well.	For	some	types	of	character
manipulation,	it	is	quicker	to	simply	mask	out	the	extraneous	data	in	the	high-order	byte
than	 to	switch	 into	eight-bit	mode.	The	code	 in	Listing	10.1	 is	 fragmentary	 in	 the	 sense
that	 it	 is	 assumed	 that	 the	 core	 routine	 is	 inserted	 in	 the	middle	of	other	 code,	with	 the
sixteen-bit	accumulator	size	already	selected.

It	 may	 seem	 to	 be	 splitting	 hairs,	 but	 this	 routine,	 which	 compares	 the	 value	 in	 a
string	 of	 characters	 pointed	 to	 by	 the	 value	 in	 the	memory	 variable	CHARDEX	 to	 the
letter	 ‘e’	 is	 two	machine	 cycles	 faster	 than	 the	 alternative	 approach,	which	would	be	 to
switch	the	processor	into	the	eight-bit	accumulator	mode,	compare	the	character,	and	then
switch	back	into	the	sixteen-bit	mode.

Listing	10.1.

Each	time	the	program	is	executed	with	a	different	value	for	CHARDEX,	a	different
adjacent	character	will	also	be	loaded	into	the	high	byte	of	the	accumulator.	Suppose	the
value	 in	CHARDEX	were	four;	when	 the	LDA	STRING,Y	 instruction	 is	 executed,	 the
value	in	the	low	byte	of	the	accumulator	is	$65,	the	ASCII	value	for	a	lower-case	‘e’.The
value	in	the	high	byte	is	$20,	the	ASCII	value	for	the	space	character	(the	space	between
“These”	and	“characters”).	Even	though	the	low	bytes	match,	a	comparison	to	‘e’	would
fail,	because	the	high	byte	of	the	CMP	 instruction’s	 immediate	operand	is	zero,	not	$20
(the	 assembler	 having	 automatically	 generated	 a	 zero	 as	 the	 high	 byte	 for	 the	 single-
character	operand	‘e’).

However,	 by	 ANDing	 the	 value	 in	 the	 accumulator	 with	 %0000000011111	 111
($00FF),	 no	 matter	 what	 the	 original	 value	 in	 the	 accumulator,	 the	 high	 byte	 of	 the
accumulator	is	zeroed	(since	none	of	the	corresponding	bits	in	the	immediate	operand	are
set).	Therefore	the	comparison	in	this	case	will	succeed,	as	it	will	for	CHARDEX	values
of	 2,	 13,	 18,	 28,	 32,	 38,	 and	 46,	 even	 though	 their	 adjacent	 characters,	 automatically

loaded	into	the	high	byte	of	the	accumulator,	are	different.

The	AND	instruction	is	also	useful	in	performing	certain	multiplication	and	division
functions.	For	example,	it	may	be	used	to	calculate	the	modulus	of	a	power	of	two.	(The
modulus	operation	 returns	 the	 remainder	of	 an	 integer	division;	 for	 example,	 13	mod	5
equals	3,	which	is	the	remainder	of	13	divided	by	5.)	This	is	done	simply	by	ANDing	with
ones	all	of	the	bits	to	the	right	of	the	power	of	two	you	wish	the	modulus	of	and	masking
out	 the	 rest.	A	 program	 fragment	 illustrating	 this	will	 be	 provided	 later	 in	 this	 chapter,
where	an	example	of	the	use	of	the	LSR	instruction	to	perform	division	by	powers	of	two
will	also	be	given.

In	 general,	 the	 AND	 operation	 is	 found	 in	 two	 types	 of	 applications:	 selectively
turning	bits	 off	 (by	ANDing	with	 zero),	 and	 determining	 if	 two	 logical	 values	 are	 both
true.

Logical	OR
The	ORA	instruction	is	used	to	selectively	turn	bits	on	by	ORing	them	with	ones,	and

to	 determine	 if	 either	 (or	 both)	 of	 two	 logical	 values	 is	 true.	 A	 character-manipulation
example	(Listing	10.2)	 is	 used—this	 time	writing	 a	 string	 of	 characters,	 the	 high	 bit	 of
each	of	which	must	be	set,	to	the	Apple	//	screen	memory—to	demonstrate	a	typical	use	of
the	ORA	instruction.

Since	 the	 video	 screen	 is	memory-mapped,	 outputting	 a	 string	 is	 basically	 a	 string
move.	 Since	 normal	Apple	 video	 characters	must	 be	 stored	 in	memory	with	 their	 high-
order	bit	turned	on,	however,	the	ORA	#%	10000000	instruction	is	required	to	do	this	if
the	character	 string,	 as	 in	 the	example,	was	originally	 stored	 in	normal	ASCII,	with	 the
high-order	bit	turned	off.	Note	that	it	clearly	does	no	harm	to	OR	a	character	with	$80	(%
10000000)	 even	 if	 its	 high	 bit	 is	 already	 set,	 so	 the	 output	 routine	 does	 not	 check
characters	 to	see	 if	 they	need	to	have	set	 the	high	bit,	but	rather	routinely	ORs	them	all
with	$80	before	writing	 them	to	 the	screen.	When	each	character	 is	 first	 loaded	 into	 the
eight-bit	 accumulator	 from	 STRING,	 its	 high	 bit	 is	 off	 (zero);	 the	 ORA	 instruction
converts	each	of	the	values—$48,	$65,	$6C,	$6C,	$6F—into	the	corresponding	high-bit-
set	ASCII	values—$C8,	$E5,	$EC,	SEC,	and	$EF,	before	storing	them	to	screen	memory,
where	they	will	be	displayed	as	normal,	non-inverse	characters	on	the	video	screen.	In	this
case,	 the	same	effect	 (the	setting	of	 the	high-order	bit)	could	have	been	achieved	 if	$80
had	been	added	to	each	of	the	characters	instead;	however,	the	OR	operation	differs	from
addition	in	that	even	if	the	high	bit	of	the	character	already	had	a	value	of	one,	the	result
would	still	be	one,	rather	than	zero	plus	a	carry	as	would	be	the	case	if	addition	were	used.
(Further	 a	CLC	 operation	would	 also	 have	 been	 required	 prior	 to	 the	 addition,	making
ORA	a	more	efficient	choice	as	well.)

Listing	10.2.

Logical	Exclusive-OR
The	third	logical	operation,	Exclusive-OR,	is	used	to	invert	bits.	Just	as	inclusive-OR

(ORA)	will	yield	a	true	result	if	either	or	both	of	the	operands	are	true,	exclusive-or	yields
true	only	if	one	operand	is	true	and	the	other	is	false;	if	both	are	true	or	both	are	false,	the
result	 is	 false.	 This	 means	 that	 by	 setting	 a	 bit	 in	 the	 memory	 operand	 of	 an	 EOR
instruction,	you	can	 invert	 the	corresponding	bit	of	 the	 accumulator	operand	 (where	 the
result	is	stored).	In	the	preceding	example,	where	the	character	constants	were	stored	with
their	 high	 bits	 off,	 an	EOR	 #$80	 instruction	would	 have	 had	 the	 same	 effect	 as	ORA
#$80;	but	like	addition,	if	some	of	the	characters	to	be	converted	already	had	their	high-
order	bits	set,	the	EOR	operation	would	clear	them.

Two	 good	 examples	 of	 the	 application	 of	 the	 EOR	 operation	 apply	 to	 signed
arithmetic.	Consider	the	multiplication	of	two	signed	numbers.	As	you	know,	the	sign	of
the	product	is	determined	by	the	signs	of	the	multiplier	and	multiplicand	according	to	the
following	rule:	if	both	operands	have	the	same	sign,	either	positive	or	negative,	the	result
is	always	positive;	if	the	two	operands	have	different	signs,	the	result	is	always	negative.
You	 perform	 signed	 multiplication	 by	 determining	 the	 sign	 of	 the	 result,	 and	 then

multiplying	the	absolute	values	of	both	operands	using	the	same	technique	as	for	unsigned
arithmetic.	Finally,	you	consider	the	sign	of	the	result:	if	it	is	positive,	your	unsigned	result
is	 the	 final	 result;	 if	 it	 is	 negative,	 you	 form	 the	 final	 result	 by	 taking	 the	 two’s
complement	of	the	unsigned	result.	Because	the	actual	multiplication	code	is	not	included,
this	example	is	given	as	two	fragments,	10.1	and	10.2.

Fragment	10.1	begins	by	clearing	the	memory	location	SIGN,	which	will	be	used	to
store	the	sign	of	the	result.	Then	the	two	values	to	be	multiplied	are	exclusive-OR’d,	and
the	 sign	 of	 the	 result	 is	 tested	with	 the	BPL	 instruction.	 If	 the	 sign	 bit	 of	 the	 result	 is
negative,	you	know	that	the	sign	bits	of	the	two	operands	were	different,	and	therefore	the
result	will	be	negative;	a	negative	result	is	preserved	by	decrementing	the	variable	SIGN,
making	its	value	$FFFF.

Next,	 the	 two	 operands	 are	 converted	 to	 their	 absolute	 values	 by	 two’s
complementing	 them	 if	 they	 are	 negative.	 The	 technique	 for	 forming	 the	 two’s
complement	 of	 a	 number	 is	 to	 invert	 it,	 and	 then	 add	 one.	The	EOR	 operation	 is	 used
again	to	perform	the	inversion;	the	instruction	EOR	#$FFFF	will	invert	all	of	the	bits	in
the	 accumulator:	 ones	 become	 zeroes,	 and	 zeroes	 become	 ones.	 An	 INC	A	 instruction
adds	 one.	 In	 the	 case	 of	 NUM2,	 this	 result	 must	 be	 saved	 to	 memory	 before	 the
accumulator	is	reloaded	with	NUM1,	which	is	also	two’s	complemented	if	negative.

Fragment	10.1.

At	 this	 point,	 the	 unsigned	 multiplication	 of	 the	 accumulator	 and	 NUM2	 can	 be
performed.	 The	 code	 for	 the	 multiplication	 itself	 is	 omitted	 from	 these	 fragments;
however,	 an	 example	 of	 unsigned	multiplication	 is	 found	 in	Chapter	14.	 The	 important
fact	 for	 the	 moment	 is	 that	 the	 multiplication	 code	 is	 assumed	 to	 return	 the	 unsigned
product	in	the	accumulator.

Fragment	10.2.

What	remains	is	to	adjust	the	sign	of	the	result;	this	code	is	found	in	Fragment	10.2.
By	testing	the	sign	of	SIGN,	it	can	be	determined	whether	or	not	the	result	is	negative;	if
it	is	negative,	the	actual	result	is	the	two’s	complement	of	the	unsigned	product,	which	is
formed	as	described	above.

Bit	Manipulation
You	have	now	been	introduced	to	the	three	principal	logical	operators,	AND,	ORA,

and	EOR.	In	addition,	there	are	three	more	specialized	bit-manipulating	instructions	that
use	the	same	logical	operations.

The	 first	 of	 these	 is	 the	BIT	 instruction.	 The	BIT	 instruction	 really	 performs	 two
distinct	 operations.	 First,	 it	 directly	 transfers	 the	 highest	 and	 next	 to	 highest	 bits	 of	 the
memory	operand	(that	is,	seven	and	six	if	m	=	1,	or	fifteen	and	fourteen	if	m	=	0)	to	the	n
and	v	flags.	It	does	this	without	modifying	the	value	in	the	accumulator,	making	it	useful
for	testing	the	sign	of	a	value	in	memory	without	loading	it	into	one	of	the	registers.	An
exception	to	this	is	the	case	where	the	immediate	addressing	mode	is	used	with	the	BIT
instruction:	since	it	serves	no	purpose	to	test	the	bits	of	a	constant	value,	the	n	and	v	flags
are	left	unchanged	in	this	one	case.

BIT‘s	 second	operation	 is	 to	 logically	AND	the	value	of	 the	memory	operand	with
the	 value	 in	 the	 accumulator,	 conditioning	 the	 z	 flag	 in	 the	 status	 register	 to	 reflect
whether	or	not	the	result	of	the	ANDing	was	zero	or	not,	but	without	storing	the	result	in
the	accumulator	(as	is	the	case	with	the	AND	instruction)	or	saving	the	result	in	any	other
way.	This	provides	the	ability	to	test	if	a	given	bit	(or	one	or	more	bits	in	a	bit-field)	is	set
by	 first	 loading	 the	 accumulator	 with	 a	 mask	 of	 the	 desired	 bit	 patterns,	 and	 then
performing	the	BIT	operation.	The	result	will	be	non-zero	only	if	at	least	one	of	the	bits
set	in	the	accumulator	is	likewise	set	in	the	memory	operand.	Actually,	you	can	write	your
programs	 to	 use	 either	 operand	 as	 the	 mask	 to	 test	 the	 other,	 except	 when	 immediate
addressing	is	used,	in	which	case	the	immediate	operand	is	the	mask,	and	the	value	in	the
accumulator	is	tested.

A	 problem	 that	 remained	 from	 the	 previous	 chapter	 was	 sign	 extension,	 which	 is
necessary	when	mixed-precision	arithmetic	is	performed—that	is,	when	the	operands	are
of	 different	 sizes.	 It	 might	 also	 be	 used	 when	 converting	 to	 a	 higher	 precision	 due	 to
overflow.	 The	most	 typical	 example	 of	 this	 is	 the	 addition	 (or	 subtraction)	 of	 a	 signed
eight-bit	 and	 a	 signed	 sixteen-bit	 value.	 In	 order	 for	 the	 lesser-precision	 number	 to	 be
converted	to	a	signed	number	of	the	same	precision	as	the	larger	number,	it	must	be	sign-
extended	first,	by	setting	or	clearing	all	of	the	high-order	bits	of	the	expanded-precision

number	to	the	same	value	as	the	sign	bit	of	the	original,	lesser-precision	number.

In	other	words,	$7F	would	become	$007F	when	sign-extended	to	sixteen	bits,	while
$8F	would	become	$FF8F.	A	sign-extended	number	evaluates	to	the	same	number	as	its
lesser	precision	form.	For	example,	$FF	and	$FFFF	both	evaluate	to	-1.

You	can	use	 the	BIT	 instruction	 to	determine	 if	 the	high-order	bit	of	 the	 low-order
byte	 of	 the	 accumulator	 is	 set,	 even	while	 in	 the	 sixteen-bit	 accumulator	mode.	This	 is
used	 to	 sign	extend	an	eight-bit	value	 in	 the	accumulator	 to	a	 sixteen-bit	one	 in	Listing
10.3.

Listing	10.3.

The	 pair	 of	 “test-and-set”	 instructions,	 TSB	 and	 TRB,	 are	 similar	 to	 the	 BIT
instruction	 in	 that	 they	 set	 the	 zero	 flag	 to	 represent	 the	 result	 of	 ANDing	 the	 two
operands.	They	are	dissimilar	in	that	they	do	not	affect	the	n	and	v	flags.	Importantly,	they
also	set	(in	the	case	of	TSB)	or	reset	(in	the	case	of	TRB)	the	bits	of	the	memory	operand
according	to	the	bits	that	are	set	in	the	accumulator	(the	accumulator	value	is	a	mask).	You
should	recognize	that	the	mechanics	of	this	involve	the	logical	functions	described	above:
the	TSB	instruction	ORs	the	accumulator	with	the	memory	operand,	and	stores	the	result
to	memory;	 the	TRB	 inverts	 the	 value	 in	 the	 accumulator,	 and	 then	 ANDs	 it	 with	 the
memory	operand.	Unlike	the	BIT	instruction,	both	of	the	test-and-set	operations	are	read-
modify-write	 instructions;	 that	 is,	 in	addition	to	performing	an	operation	on	the	memory
value	specified	in	the	operand	field	of	the	instruction,	they	also	store	a	result	to	the	same
location.

The	test-and-set	instructions	are	highly	specialized	instructions	intended	primarily	for
control	of	memory-mapped	I/O	devices.	This	is	evidenced	by	the	availability	of	only	two

addressing	 modes,	 direct	 and	 absolute,	 for	 these	 instructions;	 this	 is	 sufficient	 when
dealing	with	memory-mapped	 I/O,	 since	 I/O	devices	 are	 always	 found	at	 fixed	memory
locations.

Shifts	and	Rotates
The	second	class	of	bit-manipulating	 instructions	 to	be	presented	 in	 this	chapter	are

the	 shift	 and	 rotate	 instructions:	ASL,	LSR,	ROL	 and	ROR.	 These	 instructions	 copy
each	bit	value	of	a	given	word	into	the	adjacent	bit	to	the	“left”	or	“right.”	A	shift	to	the
left	means	that	the	bits	are	shifted	into	the	next-higher-order	bit;	a	shift	to	the	right	means
that	each	is	shifted	into	the	next-lower-order	bit.	The	bit	shifted	out	of	the	end—that	is,	the
original	 high-order	 bit	 for	 a	 left	 shift,	 or	 the	 original	 low-order	 bit	 for	 a	 right	 shift—is
copied	into	the	carry	flag.

Shift	and	rotate	instructions	differ	in	the	value	chosen	for	the	origin	bit	of	the	shift	or
rotate.	The	shift	instructions	write	a	zero	into	the	origin	bit	of	the	shift—the	low-order	bit
for	a	shift	left	or	the	high-order	bit	for	a	shift	right.	The	rotates,	on	the	other	hand,	copy
the	original	value	of	the	carry	flag	into	the	origin	bit	of	the	shift.	Figure	10.2a.	and	Figure
10.2b.	illustrate	the	operation	of	the	shift	and	rotate	instructions.

The	 carry	 flag,	 as	 Fragment	 10.3	 illustrates,	 is	 used	 by	 the	 combination	 of	 a	 shift
followed	by	one	or	more	rotate	instructions	to	allow	multiple-precision	shifts,	much	as	it	is
used	by	ADC	and	SBC	instructions	to	enable	multiple-precision	arithmetic	operations.

In	this	code	fragment,	the	high-order	bit	in	LOCI	is	shifted	into	the	carry	flag	in	the
first	ASL	instruction	and	a	zero	is	shifted	into	the	low-order	bit	of	LOCI;	its	binary	value
changes	from

The	next	instruction,	ROL,	 shifts	 the	value	 in	 the	carry	flag	(the	old	high	bit	of	LOCI)
into	the	low	bit	of	LOC2.	The	high	bit	of	LOC2	is	shifted	into	the	carry.

Figure	10.2a.	Shift	and	Rotate	Left.

Fragment	10.3.

Figure	10.2b.	Shift	and	Rotate	Right.

A	double-precision	shift	left	has	been	performed.

What	 is	 the	 application	 of	 the	 shift	 and	 rotate	 instructions?	 There	 are	 two	 distinct
categories:	 multiplication	 and	 division	 by	 powers	 of	 two,	 and	 generalized	 bit-
manipulation.

Left	shifts	multiply	the	original	value	by	two.	Right	shifts	divide	the	original	value	by
two.	This	principal	is	inherent	in	the	concept	of	positional	notation;	when	you	multiply	a
value	by	ten	by	adding	a	zero	to	the	end	of	it,	you	are	in	effect	shifting	it	left	one	position;
likewise	 when	 you	 divide	 by	 ten	 by	 taking	 away	 the	 right-most	 digit,	 you	 are	 shifting
right.	The	only	difference	is	the	number	base	of	the	digits,	which	in	this	case	is	base	two.

Shifting	is	also	useful,	for	the	same	reason,	in	a	generalized	multiply	routine,	where	a
combination	 of	 shift	 and	 add	 operations	 are	 performed	 iteratively	 to	 accomplish	 the
multiplication.	Sometimes,	however,	it	is	useful	to	have	a	dedicated	multiplication	routine,
as	when	a	quick	multiplication	by	a	 constant	value	 is	needed.	 If	 the	 constant	value	 is	 a

power	 of	 two—such	 as	 four,	 the	 constant	 multiplier	 in	 Fragment	 10.4—the	 solution	 is
simple:	shift	left	a	number	of	times	equal	to	the	constant’s	power	of	two	(four	is	two	to	the
two	power,	so	two	left	shifts	are	equivalent	to	multiplying	by	four).

Fragment	10.4.

The	 result	 in	 the	 accumulator	 is	 $2334	 times	 four,	 or	 $8CD0.	Other	 “quickie”	multiply
routines	can	be	easily	devised	for	multiplication	by	constants	that	are	not	a	power	of	two.
Fragment	10.5	illustrates	multiplication	by	ten:	the	problem	is	reduced	to	a	multiplication
by	eight	plus	a	multiplication	by	two.

Fragment	10.5.

After	the	first	shift	left,	which	multiplies	the	original	value	by	two,	the	 intermediate
result	(1234	*	2	=	2468)	is	stored	at	location	TEMP.	Two	more	shifts	are	applied	to	the
value	in	the	accumulator,	which	equals	9872	at	the	end	of	the	third	shift.	This	is	added	to
the	 intermediate	 result	 of	 1234	 times	2,	which	was	 earlier	 stored	 at	 location	TEMP,	 to
give	the	result	12,340,	or	1234	*	10.

Division	using	the	shift	right	instructions	is	similar.	Since	bits	are	lost	during	a	shift
right	operation,	just	as	there	is	often	a	remainder	when	an	integer	division	is	performed,	it
would	be	useful	 if	 there	were	an	easy	way	 to	calculate	 the	 remainder	 (or	modulus)	of	a
division	by	a	power	of	two.	This	is	where	the	use	of	the	AND	instruction	alluded	to	earlier
comes	into	play.

Fragment	10.6.

Consider	 Fragment	 10.6.	 In	 this	 case,	 $E21F	 is	 to	 be	 divided	 by	 four.	 As	 with

multiplication,	 so	with	division:	 two	 shifts	 are	 applied,	 one	 for	 each	power	of	 two,	 this
time	 to	 the	 right.	By	 the	end	of	 the	second	shift,	 the	value	 in	 the	accumulator	 is	$3887,
which	 is	 the	 correct	 answer.	 However,	 two	 bits	 have	 been	 shifted	 off	 to	 the	 right.	 The
original	value	 in	 the	accumulator	 is	 recovered	 from	 the	stack	and	 then	ANDed	with	 the
divisor	minus	 one,	 or	 three.	 This	masks	 out	 all	 but	 the	 bits	 that	 are	 shifted	 out	 during
division	by	four,	the	bits	which	correspond	to	the	remainder	or	modulus;	in	other	words,
the	original	value	can	be	 reconstructed	by	multiplying	 the	quotient	 times	 four,	 and	 then
adding	the	remainder.

The	second	use	for	the	shift	instructions	is	for	general	bit	manipulation.	Since	the	bit
shifted	out	of	the	word	always	ends	up	in	the	carry	flag,	this	is	an	easy	way	to	quickly	test
the	value	of	the	high-	or	low-order	bit	of	a	word.	Listing	10.4	gives	a	particularly	useful
example:	a	short	routine	to	display	the	value	of	each	of	the	flags	in	the	status	register.	This
routine	will,	one	by	one,	print	the	letter-name	of	each	of	the	status	register	flags	if	the	flag
is	set	(as	tested	by	the	BCS	instruction),	or	else	print	a	dash	if	it	is	clear.

Listing	10.4.

Listing	10.4.

11

The	Complex	Addressing	Modes
Chapter	7	 defined	 the	 term	addressing	mode	 and	 introduced	 the	 set	 of	 simple	 65x

addressing	 modes,	 those	 which	 involve	 at	 most	 a	 minimum	 of	 calculating	 combined
values	from	multiple	locations.

This	chapter	continues	and	expands	the	discussion	of	one	of	those	modes,	the	direct
page	addressing	mode,	 for	 those	cases	where	 the	direct	page	register	value	 is	other	 than
zero.	It	discusses	the	basis	for	selection	by	the	assembler	among	the	direct	page,	absolute,
and	long	addressing	modes,	and	how	you	can	explicitly	override	those	assumptions.	And	it
discusses	 the	 set	 of	 complex	 addressing	 modes	 available	 on	 the	 6502,	 the	 65C02,	 the
65802,	 and	 the	 65816,	 those	 which	 require	 the	 effective	 address	 to	 be	 calculated	 from
several	sources	(Table	11.1).	The	understanding	of	these	modes	also	provides	the	context
within	 which	 to	 discuss	 several	 more	 complex	 push	 instructions	 that	 were	 previously
deferred	to	this	chapter	(Table	11.2).

Table	11.1.	Complex	Addressing	Modes.

Table	11.2.	Complex	Push	Instructions.

Relocating	the	Direct	Page

Chapter	 7	 discussed	 zero	 page	 addressing	 as	 found	 on	 the	 6502	 and	 65C02	 and
introduced	direct	page	addressing,	the	65816’s	enhancement	to	zero	page	addressing.	The
65816	 lets	 the	 zero	 page	 addressing	 modes	 use	 a	 direct	 page	 that	 can	 be	 located	 and
relocated	anywhere	in	the	first	64K	of	memory.	But	Chapter	7	 left	 the	direct	page	set	 to
page	zero	so	it	could	be	discussed	as	a	simple	addressing	mode—that	is,	so	no	calculation
of	direct	page	register	base	plus	direct	page	offset	needed	to	be	done	and	so	the	operand,	a
direct	page	offset,	 could	be	 thought	of	 as	 an	absolute	 address	with	 a	high-order	byte	of
zero.

Relocating	the	direct	page	from	page	zero,	to	which	it	is	initialized	on	power-up,	can
be	accomplished	in	either	of	two	ways.	The	first	would	let	a	new	value	be	pulled	off	the
stack	into	the	direct	page	register	with	the	PLD	instruction,	as	found	in	Fragment	11.1.

Fragment	11.1.

Fragment	11.2	illustrates	the	second	method.	The	direct	page	register	can	be	set	to	the
value	 in	 the	 sixteen-bit	 C	 accumulator	 by	 use	 of	 the	TCD	 instruction,	 which	 transfers
sixteen	bits	from	accumulator	to	direct	page	register.

Fragment	11.2.

Both	 methods	 of	 setting	 the	 direct	 page	 register	 give	 it	 a	 sixteen-bit	 value.	 Since
sixteen	 bits	 are	 only	 capable	 of	 specifying	 an	 address	 within	 a	 64K	 range,	 its	 bank
component	must	be	provided	in	another	manner;	this	has	been	done	by	limiting	the	direct
page	to	bank	zero.	The	direct	page	can	be	located	anywhere	in	64K	but	the	bank	address
of	the	direct	page	is	always	bank	zero.

Chapter	7,	which	 limited	 the	use	of	 the	direct	page	 to	page	zero,	used	 the	 example
shown	in	Fragment	11.3	 to	 store	 the	one-byte	value	$F0	at	 address	$0012,	which	 is	 the
direct	page	offset	of	$12	added	to	a	direct	page	register	value	of	zero.	If	instead	the	direct
page	register	is	set	to	$FE00,	then	$F0	is	stored	to	$FE12;	the	direct	page	offset	of	$12	is
added	to	the	direct	page	register	value	of	$FE00.

Fragment	11.3.

While	it	is	common	to	speak	of	a	direct	page	address	of	$12,	$12	is	really	an	offset
from	the	base	value	in	the	direct	page	register	($FE00	in	the	last	example).	The	two	values
are	added	to	form	the	effective	direct	page	address	of	$FE12.

But	while	Chapter	7	defined	a	page	of	memory	as	$100	locations	starting	from	a	page
boundary	 (any	 multiple	 of	 $100),	 the	 direct	 page	 does	 not	 have	 to	 start	 on	 a	 page
boundary;	the	direct	page	register	can	hold	any	sixteen-bit	value.	If	the	code	in	Fragment
11.4	 is	 executed,	 running	 the	 code	 in	 Fragment	 11.3	 stores	 the	 one-byte	 value	 $F0	 at
address	$1025;	$1013	plus	$12.

Fragment	11.4.

You	will	 for	 the	most	part,	however,	want	 to	set	 the	direct	page	 to	begin	on	a	page
boundary:	 it	 saves	one	cycle	 for	every	direct	page	addressing	operation.	This	 is	because
the	processor	design	includes	logic	that,	when	the	direct	page	register’s	low	byte	is	zero,
concatenates	 the	 direct	 page	 register’s	 high	 byte	 to	 the	 direct	 page	 offset—instead	 of
adding	 the	 offset	 to	 the	 entire	 direct	 page	 register—to	 form	 the	 effective	 direct	 page
address;	concatenation	saves	a	cycle	over	addition.

One	 of	 the	 benefits	 of	 the	 direct	 page	 concept	 is	 that	 programs,	 and	 even	 parts	 of
programs,	can	have	their	own	$100-byte	direct	pages	of	variable	space	separate	from	the
operating	 system’s	 direct	 page	 of	 variable	 space.	A	 routine	might	 set	 up	 its	 own	 direct
page	with	the	code	in	Fragment	11.5.

Fragment	11.5.

To	end	 the	 routine	 and	 restore	 the	direct	page	 register	 to	 its	previous	value,	 simply
execute	a	PLD	instruction.

As	discussed	in	Chapter	7,	having	a	direct	page	makes	accessing	zero	page	addresses
in	 any	 bank	 require	 special	 assembler	 syntax.	 Since	 the	 zero	 page	 is	 no	 longer	 special,
absolute	 addressing	must	 be	 used;	 but	 since	 the	 assembler	 normally	 selects	 direct	 page
addressing	 for	 operands	 less	 than	 $100,	 the	 standard	 syntax	 requires	 that	 you	 prefix	 a
vertical	 bar	 or	 exclamation	 point	 to	 the	 operand	 to	 force	 the	 assembler	 to	 use	 absolute
addressing.	This	is	just	one	of	the	potential	assembler	misassumptions	covered	in	the	next
section.

Assembler	Addressing	Mode	Assumptions

When	 the	assembler	 encounters	 an	address	 in	 the	operand	 field	of	 an	 instruction,	 it
must	decide	whether	the	address	is	a	direct	page	offset,	a	sixteen-bit	absolute	address,	or	a
24-bit	 long	 address	 and	 generate	 opcode	 and	 operand	 values	which	 are	 appropriate.	 Its
decision	 is	 based	 on	 the	 operand’s	 size—not	 the	 number	 of	 digits	 in	 the	 operand,	 but
whether	the	value	of	the	operand	is	greater	than	$FF	or	greater	than	$FFFF.	For	example,
the	 assembler	 will	 interpret	 the	 operand	 $3F	 to	 be	 a	 direct	 page	 offset	 regardless	 of
whether	it	is	written	as	$3F,	$003F,	or	$00003F,	because	its	value	is	less	than	100	hex.

As	a	result,	 there	are	several	areas	of	memory	in	65802	and	65816	systems	that	 the
assembler	 will	 not	 access	 without	 entering	 the	 special	 syntax	 shown	 in	 Table	 11.3	 to
override	the	assembler’s	assumptions.

Table	11.3.	Assembler	Syntax	for	Complete	Memory	Access.

The	 first	 is	zero	page	memory.	Page	zero	has	no	special	meaning	 in	 the	65802	and
65816:	its	special	attributes	have	been	usurped	by	the	direct	page,	so	accessing	it	requires
use	of	absolute	addressing	just	like	any	other	absolute	location.	But	the	assembler	assumes
addresses	 less	 than	 $100	 are	 direct	 page	 offsets,	 not	 zero	 page	 addresses;	 it	 will	 not
generate	code	to	access	the	zero	page	(unless	the	direct	page	is	set	to	the	zero	page	so	that

the	two	are	one	and	the	same)	without	explicit	direction.	And	even	if	the	direct	page	is	set
to	the	zero	page,	65816	systems	have	a	zero	page	not	only	in	bank	zero	but	also	in	every
other	bank,	and	 those	other	page	zeroes	cannot	ever	be	accessed	by	absolute	addressing
without	special	direction.

The	syntax	to	force	the	assembler	to	use	absolute	addressing	is	to	precede	an	operand
with	a	vertical	bar	or	exclamation	point	as	shown	in	Fragment	11.6.

Fragment	11.6.

Notice	the	use	of	another	symbol,	the	greater-than	sign	(>),	to	force	long	addressing.
This	 solves	 another	 problem:	The	 assembler	 assumes	 absolute	 addresses	 are	 in	 the	data
bank;	 if	 the	value	 in	 the	data	bank	 is	other	 than	zero,	 then	 it	 similarly	will	not	generate
code	 to	 access	 bank	 zero	 without	 special	 direction.	 The	 greater-than	 sign	 forces	 the
assembler	 to	use	a	 long	addressing	mode,	concatenating	zero	high	bits	onto	 the	operand
until	it’s	24	bits	in	length.	This	usage	is	shown	in	Fragment	11.7,	where	 the	greater-than
sign	 forces	 absolute	 long	 addressing,	 resulting	 in	 the	 assembler	 generating	 an	 opcode
using	 absolute	 long	 addressing	 to	 store	 the	 accumulator,	 followed	 by	 the	 three	 absolute
long	address	bytes	for	$00:0127,	which	are,	in	65x	order,	$27,	then	$01,	then	$00.

The	ASL	 instruction	 in	 Fragment	 11.7	 makes	 use	 of	 the	 third	 assembler	 override
syntax:	prefixing	an	operand	with	the	less-than	sign	(<)	forces	direct	page	addressing.	It’s
not	likely	you’ll	use	this	last	syntax	often,	but	it	may	come	in	handy	when	you’ve	assigned
a	label	to	a	value	that	you	need	the	assembler	to	truncate	to	its	low-order	eight	bits	so	it
will	be	used	as	a	direct	page	offset.

Note	 that	 this	 override	 syntax	 is	 the	 recommended	 standard	 syntax.	 As	 Chapter	 1
(Basic	Concepts)	pointed	out,	even	mnemonics	can	vary	from	one	assembler	to	another,	so
assembler	syntax	such	as	this	can	differ	as	well.

Fragment	11.7.

Direct	Page	Indirect	Indexed	with	y	Addressing
Direct	page	indirect	indexed	addressing	or	postindexing,	which	uses	the	Y	register,

is	one	of	two	ways	indirect	addressing	can	be	combined	with	indexing	(the	other	will	be
described	in	the	next	section).	In	postindexing,	the	processor	goes	to	the	location	the	direct
page	operand	specifies	and	adds	the	index	to	the	indirect	address	found	there.

Like	direct	page	indirect	addressing,	which	was	discussed	in	Chapter	7	 (The	Simple
Addressing	Modes),	 postindexing	 gives	 you	 the	 freedom	 to	 access	 a	 memory	 location
which	is	not	determined	until	the	program	is	executing.	As	you	also	learned	from	Chapter
7,	direct	page	indirect	lets	your	program	store	the	absolute	address	of	a	data	bank	location
you	want	 to	access	 (this	address	 is	called	 the	 indirect	address)	 into	any	 two	consecutive
bytes	in	the	direct	page.	This	makes	those	two	bytes	perform	as	though	they	are	an	extra
sixteen-bit	register	in	the	microprocessor	itself.	Further,	it	leaves	the	processor’s	registers
unobstructed,	and	 it	allows	data	at	 the	 location	stored	 in	 the	direct	page	“register”	 to	be
accessed	at	any	time.

Postindexing	 differs	 in	 that	 the	 absolute	 address	 you	 store	 into	 the	 direct	 page
“register”	is	not	one	location	but	the	base	of	an	array;	you	can	then	access	a	particular	byte
in	the	array	by	loading	its	array	index	into	the	Y	register	and	specifying,	as	your	operand,
the	direct	page	“register”	 (the	 location	of	 the	 indirect	base	of	 the	array).	As	Figure	 11.1
shows,	 the	 processor	 goes	 to	 the	 direct	 page	 offset,	 gets	 the	 absolute	memory	 location
stored	there,	then	adds	the	contents	of	the	Y	register	to	get	the	absolute	memory	location	it
will	access.	The	direct	page	offset,	being	in	the	direct	page,	is	in	bank	zero	on	the	65816;
the	array,	on	the	other	hand,	is	in	the	data	bank.

Figure	11.1.	Postindexing.

This	 addressing	mode	 is	 called	 postindexing	 because	 the	Y	 index	 register	 is	 added
after	the	indirect	address	is	retrieved	from	the	direct	page.

For	example,	suppose	that	your	program	needs	to	write	a	dash	(hyphen)	character	to	a
location	on	the	Apple	//‘s	40-column	screen	that	will	be	determined	while	the	program	is
running.	 Further	 suppose	 your	 program	 picks	 a	 screen	 location	 at	 column	 nine	 on	 line
seven.	The	Apple	 //	 has	 a	 firmware	 routine	 (called	BASCALC)	which,	when	presented
with	the	number	of	a	line	on	the	screen,	calculates	the	address	of	the	leftmost	position	in
the	line	and	returns	it	in	zero	page	location	BASL,	located	at	memory	locations	$0028	and
$0029.

If	you	wanted	to	write	your	hyphen	to	the	first	position	on	the	line,	you	could,	after
calling	 BASCALC	 and	 loading	 the	 character	 to	 print	 into	 the	 accumulator,	 use	 the
65C02’s	indirect	addressing	mode:

The	6502	has	no	simple	indirect	addressing	mode,	but	Fragment	11.8	illustrates	what
6502	 programmers	 long	 ago	 learned:	 you	 can	 use	 postindexing	 to	 the	 same	 effect	 as
simple	indirect	by	loading	the	Y	register	with	zero.

Fragment	11.8.

But	 you	 want	 to	 write	 the	 hyphen	 character	 to	 column	 nine	 (the	 leftmost	 position
being	column	zero),	not	column	zero.	After	calling	BASCALC,	you	 load	 the	Y	 register
with	nine	 and	write	 your	 character	 indirect	 through	BASL	 indexed	by	 the	nine	 in	Y	as
seen	 in	 Fragment	 11.9.	 If	 BASCALC	 calculates	 line	 seven	 on	 the	 screen	 to	 start	 at
location	$780,	and	as	a	result	stores	that	address	at	BASL,	 then	the	routine	in	Fragment
11.9	will	write	a	dash	to	location	$789	(column	nine	on	line	seven).

Fragment	11.9.

You	could	write	a	line	of	dashes	from	column	nine	through	column	sixteen	simply	by
creating	the	loop	coded	in	Listing	11.1.	This	kind	of	routine	has	been	used	for	years	on	the
6502-based	Apple	//.

Listing	11.1.

Finally,	note	that,	like	absolute	indexed	addressing,	the	array	of	memory	accessible	to
the	indirect	 indexed	addressing	mode	can	extend	beyond	the	current	64K	data	bank	into
the	next	64K	bank,	if	the	index	plus	the	array	base	exceeds	$FFFF.

Direct	Page	Indexing	Indirect	Addressing
As	 the	 introduction	 to	 the	 last	 section	 pointed	 out,	 you	 can	 combine	 indexing	with

indirection	 in	 two	ways.	Postindexing,	discussed	 in	 the	 last	 section,	 is	one.	The	other	 is
called	direct	page	indexed	indirect	addressing	or	preindexing	and	uses	the	X	register.	It
adds	the	index	to	the	operand	(a	direct	page	base)	to	form	a	direct	page	offset	at	which	the
indirect	address	(the	address	of	the	data	to	be	accessed)	is	located.

In	 effect,	 preindexing	 lets	 you	 index	 into	 a	 double-byte	 array	 of	 absolute	 memory
addresses	 based	 in	 the	 direct	 page	 to	 choose	 the	memory	 location	 to	 access;	 the	 array
begins	at	the	direct	page	offset	specified	by	the	operand.

Since	 the	 array	base	 is	 a	 direct	 page	 location,	 adding	 the	direct	 page	 register	 value
yields	 the	 absolute	 location	 in	 bank	 zero.	 The	 processor	 then	 adds	 the	 value	 in	 the	 X
register,	which	is	the	index	into	the	array	of	memory	locations.	Now	the	processor	finally
has	an	address	that	holds	the	memory	location	you	want	to	access;	it	now	gets	the	location
and	accesses	the	data	at	that	location.	This	is	shown	in	Figure	11.2.	Since	indexing	is	done
in	order	to	find	the	indirect	address,	this	addressing	mode	is	also	called	preindexing.

You’ll	 find	 preindexing	 useful	 for	 writing	 routines	 which	 need	 to	 access	 data	 in	 a
number	 of	 different	 locations	 in	 exactly	 the	 same	way.	 For	 example,	 a	 tic-tac-toe	 game
drawn	on	the	screen	has	nine	boxes	to	which	an	‘O’	or	an	‘X’	might	be	written.	The	tic-
tac-toe	program	might	keep	internal	arrays	of	information	about	the	content	of	each	of	the
nine	boxes,	as	well	as	arrays	of	data	for	working	its	win-seeking	algorithms,	using	indexes
from	0	to	8	to	represent	the	locations.

When	it	comes	time	for	the	program	to	write	an	‘X’	to	a	chosen	square,	you	could,	of
course,	write	nine	nearly	identical	routines	which	differ	only	in	the	address	to	which	the
‘X’	will	be	written;	you	would	also	have	to	write	a	tenth	routine	to	select	which	one	of	the
routines	needs	to	be	called,	based	on	the	value	of	the	box	index	(from	zero	to	eight).

A	faster	and	less	wasteful	method	of	writing	the	‘X’	would	be	to	use	preindexing.	In
the	section	of	code	which	initially	draws	the	tic-tac-toe	grid,	you	would	determine	the	nine
addresses	 where	 characters	 are	 to	 be	 written	 and	 store	 them	 into	 a	 direct	 page	 array,
perhaps	starting	at	direct	page	offset	$50;	this	puts	the	0	location	at	$50	and	$51	(stored,	in
65x	fashion,	low	byte	in	$50	and	high	byte	in	$51),	the	1	location	at	$52	and	53,	and	so
on.	The	nine	addresses	use	18	bytes	of	memory.

When	an	‘X’	 is	 to	be	stored	 to	one	of	 the	nine	screen	 locations,	only	one	routine	 is
necessary:	you	multiply	the	box	number	by	two	(using	the	ASL	 instruction).	Remember
that	each	indirect	address	takes	up	two	bytes	in	the	direct	page	array.	Transfer	it	to	the	X
register.	Then	 load	 an	 ‘X’	 character	 into	 the	 accumulator	 and	write	 it	 to	 the	box	on	 the
screen	using	preindexing	as	Fragment	11.10	shows.

Fragment	11.10.

Figure	11.2.	Preindexing.

Notice	the	differing	syntax:	postindexing	looked	like	this:

In	postindexed,	the	operand	locates	the	indirect	address,	so	it’s	in	parentheses	to	indicate
indirection.	The	“,Y”	is	not	in	parentheses,	since	the	index	register	is	not	part	of	finding
the	indirect	address—it’s	added	to	the	indirect	address	once	it	is	found.

On	the	other	hand,	with	preindexing:

both	 the	operand	and	 the	 index	 register	 are	 involved	 in	 locating	 the	 indirect	 address,	 so
both	are	in	parentheses.

A	very	different	application	for	preindexing	enables	the	65x	to	read	from	(or	write	to)
several	 I/O	 peripherals	 “at	 once.”	Obviously,	 a	microprocessor	 can	 only	 read	 from	 one
device	at	a	time,	so	it	polls	each	device:	provided	each	device	uses	the	same	I/O	controller
chip	(so	that	a	single	routine	can	check	the	status	of	all	devices	and	read	a	character	from
each	 of	 them	 identically),	 your	 program	 can	 poll	 the	 various	 status	 locations	 using
preindexing.	Begin	by	storing	an	array	of	all	the	status	locations	in	the	direct	page.	Specify
the	base	of	the	array	as	the	operand	to	a	preindexed	instruction.	Load	the	X	index	with	0
and	increment	it	by	two	until	you’ve	checked	the	last	device.	Finally,	restore	it	to	zero	and
cycle	through	again	and	again.

If	a	status	check	reveals	a	character	waiting	to	be	read,	your	program	can	branch	to
code	that	actually	reads	the	character	from	the	device.	This	time,	you’ll	use	preindexing	to

access	a	second	direct	page	array	of	the	character-reading	addresses	for	each	device;	 the
index	 in	 the	 X	 register	 from	 the	 status-checking	 routine	 provides	 the	 index	 into	 the
character-reading	routine.

On	 the	6502,	 the	65C02,	and	 the	6502	emulation	modes,	 the	entire	array	set	up	 for
preindexing	must	 be	 in	 the	 direct	 page.	 (On	 the	 6502	 and	 65C02,	 this	means	 the	 array
must	 be	 entirely	 in	 the	 zero	 page	 which,	 unfortunately,	 severely	 limits	 the	 use	 of
preindexing	due	 to	 the	competition	 for	zero	page	 locations.)	 If	 the	 specified	direct	page
offset	 plus	 the	 index	 in	 X	 exceeds	 $FF,	 the	 array	wraps	 around	within	 the	 direct	 page
rather	 than	 extending	 beyond	 it.	 That	 is,	 would	 load	 the	 accumulator	 from	 the	 indirect
address	in	location	$0A,	not	$10A.

On	the	65802	and	65816	(in	native	mode),	the	array	must	still	start	in	the	direct	page
but	wraps,	not	at	 the	end	of	the	direct	page,	but	at	 the	end	of	bank	zero,	when	the	array
base	plus	the	D	direct	page	setting	plus	the	X	index	exceeds	$00:FFFF.

On	the	65816,	the	data	that	is	ultimately	accessed	(after	the	indirection)	is	always	in
the	data	bank.

Absolute	Indexed	Indirect	Addressing
The	 65C02	 introduced	 a	 new	 addressing	 mode,	 absolute	 indexed	 indirect

addressing,	which	 is	quite	similar	 to	direct	page	 indexed	 indirect.	 (It	 is	also	preindexed
using	 the	X	 index	 register,	 but	 indexes	 into	 absolute	 addressed	memory	 rather	 than	 the
direct	page	 to	 find	 the	 indirect	 address.)	This	new	addressing	mode	 is	used	only	by	 the
jump	instruction	and,	on	the	65802	and	65816,	the	jump-to-subroutine	instruction.

Absolute	indexed	indirect	provides	a	method	for	your	program,	not	to	access	data	in
scattered	locations	by	putting	the	locations	of	the	data	into	a	table	and	indexing	into	it,	but
to	 jump	 to	 routines	at	various	 locations	by	putting	 those	 locations	 into	a	 table,	 indexing
into	it,	and	jumping	to	the	location	stored	in	the	table	at	the	index.	Figure	11.3	shows	what
happens.

A	 menu-driven	 program,	 for	 example,	 could	 ask	 users	 to	 respond	 to	 a	 prompt	 by
pressing	a	number	key	from	‘0’	through	‘7’.	Your	program	would	convert	the	key’s	value
to	an	 index	by	subtracting	 the	ASCII	value	of	 ‘0’	and	doubling	 the	 result	 (to	 reflect	 the
fact	 that	each	 table	entry	 is	an	address	and	 thus	 takes	 two	bytes	 in	 the	 table)	 (Fragment
11.11).	It	would	then	jump	indexed	indirect	to	a	routine	appropriate	to	the	menu	choice.

Fragment	11.11.

Figure	11.3.	Absolute	Indexed	Indirect.

Because	 both	 the	 operand	 (the	 absolute	 address	 of	 the	 base	 of	 the	 table)	 and	 the	 index
register	are	involved	in	determining	the	indirect	address,	both	are	within	the	parentheses.

On	 the	65816,	a	 jump-indirect	operand	 is	 in	bank	zero,	but	a	 jump-indexed-indirect
operand	 is	 in	 the	program	 bank.	 There	 is	 a	 different	 assumption	 for	 each	mode.	 Jump
indirect	assumes	that	the	indirect	address	to	be	jumped	to	was	stored	by	the	program	in	a
variable	memory	cell;	such	variables	are	generally	in	bank	zero.	Jump	indexed	indirect,	on
the	other	hand,	assumes	that	a	table	of	locations	of	routines	would	be	part	of	the	program
itself	 and	 would	 be	 loaded,	 right	 along	 with	 the	 routines,	 into	 the	 bank	 holding	 the
program.	So,	assumes	$1234	is	in	a	double-byte	cell	in	bank	zero.	But	assumes	$1234	is	in
the	program	bank,	the	bank	in	which	the	code	currently	being	executed	resides.

The	indirect	addresses	stored	in	the	table	are	absolute	addresses	also	assumed	to	be	in
the	current	program	bank.

Direct	Page	Indirect	Long	Indexed	with	Y
Addressing

The	65816	can	access	 sixteen	megabytes	of	memory,	yet	 lets	you	access	most	data
(data	 located	in	 the	current	data	bank)	with	 just	 two	bytes.	Nevertheless,	 there	are	 times
when	data	must	be	accessed	in	a	bank	other	than	the	current	data	bank	when	it	would	be
inconvenient	to	change	the	data	bank,	then	change	it	back.	As	Chapter	7	pointed	out,	this
problem	is	solved	by	the	“long”	addressing	modes,	which	allow	three	bytes	(the	bank	in
addition	to	the	address	within	the	bank)	to	specify	a	full	24-bit	address.	This	solution	lets
you	access	the	65816’s	full	sixteen-megabyte	address	space.	Probably	the	most	useful	way
to	 reference	 data	 outside	 of	 the	 current	 data	 bank	 is	 via	 the	direct	 page	 indirect	 long
indexed	with	Y,	or	postindexed	long,	addressing	mode.	This	is	the	long	version	of	direct
page	indirect	indexed	addressing,	discussed	earlier	in	this	chapter.

Instructions	are	two	bytes	in	length,	as	shown	in	Figure	11.4:	The	opcode	is	followed
by	a	single	byte,	which	is	a	direct	page	offset	in	bank	zero.	The	indirect	address	stored	in
the	direct	page	(to	which	the	operand	points)	is,	in	the	long	version,	three	bytes	(a	full	24-
bit	address);	the	byte	at	the	direct	page	offset	is	the	low	byte	of	the	24-bit	address,	the	byte
in	the	next	direct	page	location	the	middle	byte	of	the	24-bit	address,	and	the	byte	in	the
third	location	the	bank	byte	of	the	24-bit	address.	The	contents	of	the	Y	index	register	are
added	 to	 this	 24-bit	 address	 to	 form	 the	 24-bit	 effective	 address	 at	 which	 data	 will	 be
accessed.

The	syntax	for	postindexed	long	is:

The	square	brackets	are	used	to	indicate	the	indirect	address	is	long.

So,	 like	 its	 sixteen-bit	 counterpart,	 indirect	 long	 indexed	 addressing	 allows	 you	 to
index	into	an	array	of	which	neither	the	base	nor	the	index	need	be	determined	until	 the
program	is	executing.	Unlike	its	sixteen-bit	counterpart,	it	allows	you	to	access	an	array	in
any	bank,	not	just	the	current	data	bank.

Stack	Relative	Addressing
Possibly	 the	 most	 exciting	 new	 addressing	 method	 introduced	 by	 the	 65802	 and

65816	 is	 stack	 relative.	 This	 is	 the	 first	 65x	method	 for	 directly	 accessing	 a	 stack	 byte
other	than	the	last	data	item	pushed.

Stack	 relative	 addressing	 lets	 you	 easily	 access	 any	byte	 or	 address	 in	 the	 last	 $FF
bytes	stacked.	Instructions	using	stack	relative	addressing	are	two	bytes	long,	the	operand
a	single	byte	that	is	an	index	into	the	stack.	As	Figure	11.5	shows,	the	stack	is	treated	as	an
array	 with	 its	 base	 the	 address	 in	 the	 stack	 pointer.	 The	 operand	 is	 added	 to	 the	 stack

pointer	value	to	form	the	bank	zero	effective	address	which	will	be	accessed.

This	 can	 be	 especially	 useful	 when	 one	 part	 of	 a	 program	 needs	 to	 send	 data	 to
another	part	of	the	program,	such	as	a	multiply	routine.	The	two	sixteen-bit	values	to	be
multiplied	are	pushed	onto	the	stack	in	one	part	of	the	program.	Later,	the	multiply	routine
loads	one	of	the	operands	using	stack	relative	addressing,	leaving	both	the	other	operand
and	the	stack	pointer	undisturbed:

Notice	 that	accessing	 the	 last	data	put	on	 the	stack	requires	an	 index	of	1,	not	of	0.
This	is	because	the	stack	pointer	always	points	to	the	next	available	location,	which	is	one
byte	 below	 the	 last	 byte	 pushed	 onto	 the	 stack.	 An	 index	 of	 zero	 would	 generally	 be
meaningless,	except	perhaps	to	re-read	the	last	byte	pulled	off	the	stack!	(The	latter	would
also	be	extremely	dangerous	since,	should	an	interrupt	occur,	 the	left-behind	byte	would
be	overwritten	by	interrupt-stacked	bytes.)

Figure	11.4.	Postindexed	Long.

Figure	11.5.	Stack	Relative.

Stack	Relative	Indirect	Indexed	Addressing
While	the	stack	relative	addressing	mode	serves	to	access	data	on	the	stack,	the	stack

relative	 indirect	 indexed	 addressing	 mode	 lets	 you	 access	 data	 indirectly	 through
addresses	that	have	been	pushed	onto	the	stack.

Change	 the	 previous	 example:	 Instead	 of	 stacking	 the	 two	 sixteen-bit	 values	 to	 be
multiplied,	 the	 values	 are	 found	 in	 memory	 cells	 in	 the	 data	 bank,	 one	 after	 the	 other
(occupying	four	consecutive	bytes),	and	it’s	the	address	of	the	first	that	is	pushed	onto	the
stack.	 Now,	 as	 Fragment	 11.12	 shows,	 either	 value	 can	 be	 loaded	 using	 the	 stacked
indirect	address:

Fragment	11.12.

The	1,S	 is	 the	 stack	 location	where	 the	 indirect	 address	was	 pushed.	 (Actually,	 1,S
points	to	the	stack	location	of	the	low	byte	of	the	indirect	address;	the	high	byte	is	in	2,S,
the	 next	 higher	 stack	 location.)	 To	 this	 indirect	 address,	 the	 value	 in	Y	 is	 added:	 the
indirect	address	plus	0	locates	the	first	value	to	be	multiplied;	the	indirect	address	plus	2
locates	 the	second.	Finally	 the	accumulator	 is	 loaded	from	this	 indirect	 indexed	address.
Figure	11.6	illustrates	the	sequence.

This	mode,	 very	 similar	 to	 direct	 page	 indirect	 indexing	 (also	 called	 postindexing),
might	be	called	“stack	postindexing.”	The	operand	which	 indexes	 into	 the	 stack	 is	very
similar	 to	 a	 direct	 page	 address;	 both	 are	 limited	 to	 eight	 bits	 and	 both	 are	 added	 to	 a
sixteen-bit	base	register	(D	or	S).	In	both	cases,	the	indirect	address	points	to	a	cell	or	an
array	in	the	data	bank.	In	both	cases,	Y	must	be	the	index	register.	And	in	both	cases	in	the

65816,	the	postindexed	indirect	address	about	to	be	accessed	may	extend	out	of	the	data
bank	and	 into	 the	next	bank	 if	 index	plus	address	exceeds	$FFFF;	 that	 is,	 if	 the	 indirect
address	is	the	base	of	an	array,	the	array	can	extend	into	the	next	bank.

Push	Effective	Instructions
The	 65802	 and	 the	 65816	 provide	 three	 instructions	which	 push,	 not	 registers,	 but

absolute,	 indirect,	and	relative	addresses	straight	onto	 the	stack.	These	 three	 instructions
are	PEA,	PEI,	 and	PER,	 the	 apush	 effective	 address	 instructions.	Addresses	 so	pushed
might	be	accessed,	for	example,	using	the	stack	relative	indirect	indexed	addressing	mode
just	 discussed.	Chapter	6,	which	 introduced	 the	 push	 instructions	 in	 the	 context	 of	 data
movement,	deferred	discussion	of	 these	 three	 instructions	 to	 this	chapter.	Except	 for	 the
block	move	instructions,	these	are	the	only	instructions	that	move	data	directly	from	one
memory	location	to	another.

Figure	11.6.	Stack	Relative	Indirect	Indexed.

As	Figure	11.7	shows,	 the	PEA	 (push	effective	absolute	address)	 instruction	pushes
the	 operand,	 a	 16-bit	 absolute	 address	 or	 immediate	 data	 word,	 onto	 the	 stack.	 For
example,	 pushes	what	may	be	 either	 sixteen-bit	 immediate	 data	 or	 a	 sixteen-bit	 address
onto	the	stack.	The	operand	pushed	by	the	PEA	instruction	is	always	16	bits	regardless	of
the	settings	of	the	m	memory/accumulator	and	x	index	mode	select	flags.

The	PEI	(push	effective	indirect	address)	instruction	has,	as	an	operand,	a	direct	page
location:	 it’s	 the	 sixteen-bit	 value	 stored	 at	 the	 location	 that	 is	 pushed	 onto	 the	 stack.
Figure	11.8	shows	that	this	has	the	effect	of	pushing	either	an	indirect	address	or	sixteen
bits	of	direct	page	data	onto	the	stack.	For	example,	if	you	had	stored	the	value	or	indirect
address	$5678	at	direct	page	location	$21,	then	would	get	the	$5678	from	the	direct	page
location	and	push	it	onto	the	stack.	Like	the	PEA	instruction,	the	PEI	instruction	always
pushes	sixteen	bits	 regardless	of	 the	settings	of	 the	m	memory/accumulator	and	x	 index
mode	select	flags.

The	PER	 (push	 effective	 relative)	 instruction	 pushes	 an	 effective	 program	 counter
relative	 address	 onto	 the	 stack,	 a	 capability	 helpful	 in	 writing	 relocatable	 code.	 The
operand	you	specify	to	the	assembler	is	a	location	in	the	program,	for	example,	of	a	data
area;	 the	 operand	 the	 assembler	 generates	 is	 a	 sixteen-bit	 relative	 displacement,	 the
difference	 between	 the	 next	 instruction’s	 address	 and	 the	 operand	 address.	 Figure	 11.9
shows	 that	 when	 the	 instruction	 is	 executed,	 the	 displacement	 is	 added	 to	 the	 next
instruction’s	run-time	address	 to	 form	the	address	at	which	 the	data	 is	now	located;	 it	 is
this	 address	 which	 is	 pushed	 onto	 the	 stack.	 If	 the	 data	 location	 precedes	 the	 PER
instruction,	 the	 assembler	 generates	 a	 very	 large	 sixteen-bit	 displacement	 which,	 when
added	to	the	program	counter	value,	will	wrap	around	within	the	program	bank	to	reach
the	data.

The	operation	of	the	PER	instruction	is	similar	to	the	operation	of	the	BRL	 (branch
long)	instruction:	the	branch	long	operand	you	specify	to	the	assembler	is	also	a	location
in	the	program;	the	operand	the	assembler	generates	is	also	a	sixteen-bit	displacement;	and
when	the	instruction	is	executed,	the	displacement	is	added	to	the	next	instruction’s	run-
time	address	to	form	the	address	to	which	the	program	will	branch.

Figure	11.7.	PEA	Addressing.

Figure	11.8.	PEI	Addressing.

Figure	11.9.	PER	Addressing.

To	understand	the	use	of	the	PER	instruction,	together	with	the	relative	branches,	in
writing	a	program	that	will	 run	at	any	address,	suppose	that	your	relocatable	program	is
assembled	starting	at	location	$2000.	There’s	a	data	area	starting	at	location	$2500	called
DATA0.	 A	 section	 of	 program	 code	 at	 $2200	 needs	 to	 access	 a	 byte	 three	 bytes	 past,
called	DATA1.	A	simple	LDA	$2503	would	work,	but	only	if	the	program	were	intended
to	 always	 begin	 at	 location	 $2000.	 If	 it’s	 meant	 to	 be	 relocatable,	 you	 might	 load	 the
program	 at	 $3000,	 in	 which	 case	 the	 data	 is	 at	 $3503	 and	 a	 LDA	 $2503	 loads	 the
accumulator	with	random	information	from	what	is	now	a	non-program	address.	Using	the
instruction

in	your	source	program	causes	the	assembler	to	calculate	the	offset	from	$2203	(from	the
instruction	 following	 the	 PER	 instruction	 at	 $2200)	 to	DATA1	 at	 $2503,	 an	 offset	 of
$300.	So	the	assembler	generates	object	code	of	a	PER	opcode	followed	by	$300.	Now	if
the	 code	 is	 loaded	 at	 $3000,	 execution	 of	 the	PER	 instruction	 causes	 the	 processor	 to
calculate	and	stack	the	current	absolute	address	of	DATA1	by	adding	the	operand,	$300,
to	the	current	program	counter	 location;	 the	result	 is	$3503,	so	it’s	$3503	that’s	stacked.
Once	 on	 the	 stack,	 provided	 the	 program	 and	 data	 banks	 are	 the	 same,	 the	 data	 can	 be
accessed	 using	 stack	 relative	 indirect	 indexed	 addressing.	 Fragment	 11.13	 contains	 the
example	code.

Once	the	address	of	DATA1	is	on	the	stack,	the	values	at	DATA2	and	DATA3	can	be
accessed	 as	 well	 simply	 by	 using	 values	 of	 one	 and	 two,	 respectively,	 in	 the	 Y	 index
register.

Fragment	11.13.

12

The	Basic	Building	Block:	The	Subroutine
The	feature	essential	 to	any	processor	 to	support	efficient,	compact	code,	as	well	as

modular	 or	 top-down	 programming	 methods,	 is	 a	 means	 of	 defining	 a	 subroutine.	 A
subroutine	is	a	block	of	code	that	can	be	entered	(called)	repeatedly	from	various	parts	of
a	main	program,	and	that	can	automatically	return	control	to	the	instruction	following	the
calling	instruction,	wherever	it	may	be.	The	65x	jump-to-subroutine	instruction	provides
just	such	a	capability.

When	 a	 jump-to-subroutine,	 or	 JSR,	 instruction	 is	 encountered,	 the	 processor	 first
pushes	 its	 current	 location	 onto	 the	 stack	 for	 purposes	 of	 returning,	 then	 jumps	 to	 the
beginning	 of	 the	 subroutine	 code.	 At	 the	 end	 of	 the	 subroutine	 code,	 a	 return-from-
subroutine	 (RTS)	 instruction	 tells	 the	 processor	 to	 return	 from	 the	 subroutine	 to	 the
instruction	after	the	subroutine	call,	which	it	locates	by	pulling	the	previously	saved	return
location	from	the	stack.

Because	subroutines	let	you	write	a	recurring	section	of	program	code	just	once	and
call	 it	 from	 each	 place	 that	 it’s	 needed,	 they	 are	 the	 basis	 of	 top-down,	 structured
programming.	Common	subroutines	are	often	collected	together	by	programmers	to	form
a	library,	from	which	they	can	be	selected	and	reused	as	needed.

Chapter	 8,	 Flow	 of	 Control,	 introduced	 the	 65x	 jump	 instructions—those	 flow-of-
control	instructions	which	do	not	use	the	stack	for	return	purposes.	But	discussion	of	the
jump-to-subroutine	instructions	was	put	off	to	this	chapter.

Table	 12.1	 lists	 the	 instructions	 to	 be	 explained	 in	 this	 chapter.	 In	 addition,	 this
chapter	will	use	the	simple	example	of	a	negation	routine	to	illustrate	how	library	routines
(and	 routines	 in	 general)	 are	 written	 and	 documented,	 and	 it	 examines	 the	 question	 of
when	 to	 code	 a	 subroutine	 and	 when	 to	 use	 in-line	 code.	 Finally,	 methods	 of	 passing
information	(or	parameters)	to	and	from	subroutines	are	compared	and	illustrated.

Table	12.1.	Subroutine	Instructions.

The	Jump-to-Subroutine	Instruction
There	 is	 just	one	addressing	mode	available	 to	 the	JSR	 instruction	on	the	6502	and

65C02—absolute	 addressing.	 This	 mode	 lets	 you	 code	 a	 subroutine	 call	 to	 a	 known

location.	When	used	on	the	65816,	that	location	must	be	within	the	current	program	bank.
It	uses	the	absolute	addressing	syntax	introduced	earlier:

In	the	second	case,	the	assembler	determines	the	address	of	subroutine	SUBR1.

The	 processor,	 upon	 encountering	 a	 jump-to-subroutine	 instruction,	 first	 saves	 a
return	address.	The	address	saved	is	the	address	of	the	last	byte	of	the	JSR	instruction	(the
address	of	 the	 last	byte	of	 the	operand),	not	 the	address	of	 the	next	 instruction	as	 is	 the
case	with	 some	 other	 processors.	 The	 address	 is	 pushed	 onto	 the	 stack	 in	 standard	 65x
order—the	low	byte	in	the	lower	address,	the	high	byte	in	the	higher	address—and	done	in
standard	 65x	 fashion—the	 first	 byte	 is	 stored	 at	 the	 location	 pointed	 to	 by	 the	 stack
pointer,	the	stack	pointer	is	decremented,	the	second	byte	is	stored,	and	the	stack	pointer	is
decremented	again.	Once	the	return	address	has	been	saved	onto	the	stack,	the	processor
loads	the	program	counter	with	the	operand	value,	thus	jumping	to	the	operand	location,
as	shown	in	Figure	12.1.	Jumping	to	a	subroutine	has	no	effect	on	the	status	register	flags.

The	Return-from-Subroutine	Instruction
At	 the	 end	 of	 each	 subroutine	 you	 write,	 the	 one-byte	 RTS,	 or	 return-from-

subroutine,	 instruction	 must	 be	 coded.	When	 the	 return-from-subroutine	 instruction	 is
executed,	 the	 processor	 pulls	 the	 stored	 address	 from	 the	 stack,	 incrementing	 the	 stack
pointer	by	one	before	 retrieving	each	of	 the	 two	bytes	 to	which	 it	points.	But	 the	return
address	 that	 was	 stored	 on	 the	 stack	 was	 the	 address	 of	 the	 third	 byte	 of	 the	 JSR
instruction.	When	 the	 processor	 pulls	 the	 return	 address	 off	 the	 stack,	 it	 automatically
increments	 the	 address	 by	 one	 so	 that	 it	 points	 to	 the	 instruction	 following	 the	 JSR
instruction	which	 should	be	 executed	when	 the	 subroutine	 is	 done.	The	processor	 loads
this	incremented	return	address	into	the	program	counter	and	continues	execution	from	the
instruction	following	the	original	JSR	instruction,	as	Figure	12.2	shows.

Figure	12.1.	JSR.

The	processor	assumes	that	the	two	bytes	at	the	top	of	the	stack	are	a	return	address
stored	by	a	JSR	instruction	and	that	these	bytes	got	there	as	the	result	of	a	previous	JSR.
But	as	a	result,	if	the	subroutine	used	the	stack	and	left	it	pointing	to	data	other	than	the
return	address,	 the	RTS	 instruction	will	 pull	 two	 irrelevant	 data	 bytes	 as	 the	 address	 to
return	to.	Cleaning	up	the	stack	after	using	it	within	a	subroutine	is	therefore	imperative.

The	useful	side	of	the	processor’s	inability	to	discern	whether	the	address	at	the	top	of
the	stack	was	pushed	there	by	a	JSR	instruction	is	that	you	can	write	a	reentrant	indirect
jump	 using	 the	 RTS	 instruction.	 First	 formulate	 the	 address	 to	 be	 jumped	 to,	 then
decrement	it	by	one	(or	better,	start	with	an	already-decremented	address),	push	it	onto	the
stack	(pushing	first	high	byte,	then	low	byte,	so	that	it	is	in	correct	65x	order	on	the	stack)
and,	finally,	code	an	RTS	 instruction.	The	return-from-subroutine	pulls	 the	address	back
off	the	stack,	increments	it,	and	loads	the	result	into	the	program	counter	to	cause	a	jump
to	the	location,	as	Fragment	12.1	illustrates.

Fragment	12.1.

Reentrancy	is	the	ability	of	a	section	of	code	to	be	interrupted,	then	executed	by	the
interrupting	routine,	and	still	execute	properly	both	for	the	interrupting	routine	and	for	the
original	 routine	 when	 control	 is	 returned	 to	 it.	 The	 interruption	 may	 be	 a	 result	 of	 a
hardware	 interrupt	 (as	described	 in	 the	next	chapter),	or	 the	 result	of	 the	 routine	calling
itself,	in	which	case	the	routine	is	said	to	be	recursive.	The	keys	to	reentrancy	are,	first,	to
be	 sure	 you	 save	 all	 important	 registers	 before	 reentering	 and,	 second,	 to	 use	 no	 fixed
memory	locations	in	the	reentrant	code.	(There	will	be	more	on	interrupts	and	reentrancy
in	the	next	chapters.)

Figure	12.2.	RTS.

The	 indirect	 jump	 using	RTS	 qualifies	 for	 reentrancy:	While	 normally	 you	 would
code	 an	 indirect	 jump	 by	 forming	 the	 address	 to	 jump	 to	 and	 storing	 it	 to	 an	 absolute
address,	 then	 jumping	 indirect	 through	 the	 address,	 this	 jump	by	use	 of	RTS	 uses	 only
registers	and	stack.

A	subroutine	can	have	more	than	one	RTS	instruction.	It’s	common	for	subroutines	to
return	from	internal	loops	upon	certain	error	conditions,	in	addition	to	returning	normally
from	one	 or	more	 locations.	 Some	 structured	 programming	 purists	would	 object	 to	 this
practice,	but	the	efficiency	of	having	multiple	exit	points	is	unquestionable.

Returning	from	a	subroutine	does	not	affect	the	status	flags.

JSR	Using	Absolute	Indexed	Indirect	Addressing
The	 65802/65816	 gives	 JSR	 another	 addressing	 mode—absolute	 indexed	 indirect

(covered	in	the	last	chapter)	which	lets	your	program	select,	on	the	basis	of	the	index	in
the	X	register,	a	subroutine	location	from	a	table	of	such	locations	and	call	it:

The	array	TABLE	must	be	 located	 in	 the	program	bank.	The	addressing	mode	assumes
that	 a	 table	 of	 locations	 of	 routines	 would	 be	 part	 of	 the	 program	 itself	 and	 would	 be
loaded,	 right	 along	 with	 the	 routines,	 into	 the	 bank	 holding	 the	 program.	 The	 indirect
address	(the	address	with	which	the	program	counter	will	be	loaded),	a	sixteen-bit	value,
is	concatenated	with	 the	program	bank	register,	 resulting	 in	a	 transfer	within	 the	current
program	 bank.	 If	 the	 addition	 of	 X	 causes	 a	 result	 greater	 than	 $FFFF,	 the	 effective
address	 will	 wrap,	 remaining	 in	 the	 current	 program	 bank,	 unlike	 the	 indexing	 across
banks	that	occurs	for	data	accesses.

This	addressing	mode	also	lets	you	do	an	indirect	jump-to-subroutine	through	a	single
double-byte	cell	by	first	loading	the	X	 register	with	zero.	You	must	remember	in	coding
this	use	for	the	65816,	however,	that	the	cell	holding	the	indirect	address	is	in	the	program
bank,	not	bank	zero	as	with	absolute	indirect	jumps.

The	indexed	indirect	jump-to-subroutine	is	executed	in	virtually	the	same	manner	as
the	absolute	jump-to-subroutine:	the	processor	pushes	the	address	of	the	final	byte	of	the
instruction	 onto	 the	 stack	 as	 a	 return	 address;	 then	 the	 address	 in	 the	 double-byte	 cell
pointed	to	by	the	sum	of	the	operand	and	the	X	index	register	is	loaded	into	the	program
counter.

There	is	no	difference	between	returning	from	a	subroutine	called	by	this	instruction
and	returning	from	a	subroutine	called	by	an	absolute	JSR.	You	code	an	RTS	 instruction
which,	 when	 executed,	 causes	 the	 address	 on	 the	 top	 of	 the	 stack	 to	 be	 pulled	 and
incremented	 to	 point	 to	 the	 instruction	 following	 the	 JSR,	 then	 to	 be	 loaded	 into	 the
program	counter	to	give	control	to	that	instruction.

The	Long	Jump	to	Subroutine
A	third	jump-to-subroutine	addressing	mode	is	provided	for	programming	in	the	16-

megabyte	 address	 space	 of	 the	 65816—absolute	 long	 addressing.	 Jump-to-subroutine
absolute	long	is	a	four-byte	instruction,	the	operand	a	24-bit	address	in	standard	65x	order
(the	 low	 byte	 of	 the	 24-bit	 address	 is	 in	 the	 lowest	 memory	 location	 immediately
following	the	opcode	and	the	high	byte	is	next,	followed	by	the	bank	byte):

This	time	a	three-byte	(long)	return	address	is	pushed	onto	the	stack.	Again	it	is	not
the	 address	 of	 the	 next	 instruction	 but	 rather	 the	 address	 of	 the	 last	 byte	 of	 the	 JSR
instruction	 which	 is	 pushed	 onto	 the	 stack	 (the	 address	 of	 the	 fourth	 byte	 of	 the	 JSR
instruction	 in	 this	 case).	As	Figure	12.3	 shows,	 the	 address	 is	 pushed	 onto	 the	 stack	 in
standard	65x	order:	 low	byte	in	the	lower	address,	high	byte	in	the	higher	address,	bank
byte	in	the	highest	address	(which	also	means	the	bank	byte	is	the	first	of	the	three	pushed,
the	low	byte	last).

Jumping	 long	 to	 a	 bank	 zero	 subroutine	 requires	 the	 greater-than	 (>)	 sign,	 as
explained	in	the	last	chapter:

The	 greater-than	 sign	 forces	 long	 addressing	 to	 bank	 zero,	 voiding	 the	 assembler’s
normal	 assumption	 to	 use	 absolute	 addressing	 to	 jump	 to	 a	 subroutine	 at	 $3456	 in	 the
current	program	bank.

To	 avoid	 this	 confusion	 altogether,	 there	 is	 an	 equivalent	 standard	 mnemonic	 for
jump-to-subroutine	long—JSL:

Using	an	alternate	mnemonic	is	particularly	appropriate	for	jump-to-subroutine	long,
since	 this	 instruction	 requires	 you	 to	 use	 an	 entirely	 different	 return-from-subroutine
instruction—RTL,	or	return-from-subroutine	long.

Figure	12.3.	JSL.

Return	from	Subroutine	Long
The	 return	 from	 subroutine	 instruction	 pops	 two	 bytes	 off	 the	 stack	 as	 an	 absolute

address,	increments	it,	and	jumps	there.	But	the	jump	to	subroutine	long	instruction	pushes
a	three-byte	address	onto	the	stack—a	long	return	address	that	points	to	the	original	code,
and	is	typically	in	a	bank	different	from	the	subroutine	bank.

So	 the	 65816	provides	 a	 return	 from	 subroutine	 long	 instruction,	RTL.	 This	 return
instruction	first	pulls,	increments,	and	loads	the	program	counter,	just	as	RTS	does;	then	it
pulls	and	loads	a	third	byte,	the	program	bank	register,	to	jump	long	to	the	return	address.
This	is	illustrated	in	Figure	12.4.

Branch	to	Subroutine
One	 of	 the	 glaring	 deficiencies	 of	 the	 6502	 was	 its	 lack	 of	 support	 for	 writing

relocatable	code;	the	65802	and	65816	address	this	deficiency,	but	still	lack	the	branch-to-
subroutine	instruction	some	other	processors	provide.	There	is	no	instruction	that	lets	you
call	a	subroutine	with	an	operand	that	is	program	counter	relative,	not	an	absolute	address.
Yet,	to	write	relocatable	code	easily,	a	BSR	instruction	is	required:	suppose	a	relocatable
program	assembled	at	$0	has	an	often-called	multiply	subroutine	at	$07FE;	if	the	program
is	later	loaded	at	$7000,	that	subroutine	is	at	$77FE;	obviously,	a	JSR	to	$07FE	will	fail.

The	65802	and	65816	can	synthesize	the	BSR	function	using	their	PER	 instruction.
You	use	PER	to	compute	and	push	the	current	run-time	return	address;	since	its	operand	is
the	return	address’	relative	offset	(from	the	current	address	of	the	PER	instruction),	PER
provides	relocatability.	As	Fragment	12.2	shows,	once	the	correct	return	address	is	on	the
stack,	a	BRA	or	BRL	completes	the	synthesized	BSR	operation.

Figure	12.4.	RTL.

Fragment	12.2.

In	this	case,	you	specify	as	the	assembler	operand	the	symbolic	location	of	the	routine
you	want	to	return	to	minus	one.	Remember	that	the	return	address	on	the	stack	is	pulled,
then	incremented,	before	control	is	passed	to	it.	The	assembler	transforms	the	source	code
operand,	RETURN-1,	 into	the	instruction’s	object	code	operand,	a	relative	displacement
from	 the	 next	 instruction	 to	RETURN-1.	 In	 this	 case,	 the	 displacement	 is	 $0002,	 the
difference	 between	 the	 first	 byte	 of	 the	BRL	 instruction	 and	 its	 last	 byte.	 (Remember,
PER	 works	 the	 same	 as	 the	 BRL	 instruction;	 in	 both	 cases,	 the	 assembler	 turns	 the
location	 you	 specify	 into	 a	 relative	 displacement	 from	 the	 program	 counter.)	When	 the
instruction	 is	 executed,	 the	processor	 adds	 the	displacement	 ($0002,	 in	 this	 case)	 to	 the
current	program	counter	address	(the	address	of	the	BRL	instruction);	the	resulting	sum	is
the	current	absolute	address	of	RETURN-1,	which	is	what	is	pushed	onto	the	stack.

If	 at	 run-time	 the	PER	 instruction	 is	 at	 $1000,	 then	 the	BRL	 instruction	will	 be	 at
$1003,	and	RETURN	at	$1006.	Execution	of	PER	pushes	$1005	onto	the	stack,	and	the
program	branches	to	SUBR1.	The	RTS	at	the	end	of	the	subroutine	causes	the	$1005	to	be
pulled	from	the	stack,	incremented	to	$1006	(the	address	of	RETURN),	and	loaded	into
the	program	counter.

If,	on	the	other	hand,	the	instructions	are	at	$2000,	$2003,	and	$2006,	then	$2005	is
pushed	 onto	 the	 stack	 by	 execution	 of	 PER,	 then	 pulled	 off	 again	 when	 RTS	 is
encountered,	incremented	to	$2006	(the	current	runtime	address	of	RETURN),	and	loaded
into	the	program	counter.

If	 a	macro	 assembler	 is	 available,	 synthetic	 instructions	 such	 as	 this	 are	 best	 dealt
with	by	burying	this	code	in	a	single	macro	call.

Coding	a	Subroutine:	How	and	When
The	uses	of	 subroutines	 are	many.	At	 the	 simplest	 level,	 they	 let	 you	 compact	 in	 a

single	 location	 instructions	 that	 would	 otherwise	 be	 repeated	 if	 coded	 in-line.
Programmers	often	build	up	libraries	of	general	subroutines	from	which	they	can	pluck	the
routine	they	want	for	use	in	a	particular	program;	even	if	the	routine	is	only	called	once,
this	allows	quick	coding	of	commonly	used	functions.

The	 next	 few	 pages	 will	 look	 at	 a	 simple	 logic	 function	 for	 the	 65x	 processors—
forming	 the	 negation	 (two’s	 complement)	 of	 eight-	 and	 sixteen-bit	 numbers—and	 how
such	a	routine	is	written.	Also	covered	is	how	subroutines	in	general	(and	library	routines
in	particular)	should	be	documented.

The	65x	processors	have	no	negate	instruction,	so	the	two’s	complement	is	formed	by
complementing	the	number	(one’s	complement)	and	adding	one.

6502	Eight-Bit	Negation—A	Library	Example
If	the	value	to	be	negated	is	an	eight-bit	value,	the	routine	in	Listing	12.1	will	yield

the	desired	result.

Listing	12.1.

It	 is	 extremely	 important	 to	 clearly	 document	 library	 routines.	 Perhaps	 the	 best
approach	is	to	begin	with	a	block	comment	at	the	head	of	the	routine,	describing	its	name,
what	the	routine	does,	what	it	expects	as	input,	what	direct	page	locations	it	uses	during
execution,	 if	 the	contents	of	any	registers	or	any	memory	special	 locations	are	modified
during	execution,	and	how	and	where	results	are	returned.

By	documenting	the	entry	and	exit	conditions	as	part	of	the	header,	as	in	the	example,
when	 the	 routine	 is	 used	 from	 a	 library	 you	 won’t	 have	 to	 reread	 the	 code	 to	 get	 this
information.	Although	this	example	is	quite	simple,	when	applied	to	larger,	more	complex
subroutines,	 the	 principle	 is	 the	 same:	 Document	 the	 entry	 and	 exit	 conditions,	 the

function	performed,	and	any	side	effects.

As	 a	 subroutine,	 this	 code	 to	 negate	 the	 accumulator	 takes	 six	 bytes.	 Each	 JSR
instruction	takes	three.	So	calling	it	twice	from	a	single	program	requires	12	bytes	of	code;
if	called	three	times,	15	bytes;	if	four,	18	bytes.

On	the	other	hand,	 if	 this	code	were	 in-line	once,	 it	would	take	only	five	bytes,	but
each	additional	time	it	is	needed	would	require	another	five	bytes,	so	using	it	twice	takes
10	bytes,	three	times	takes	15,	and	four	times	takes	20.	You	can	see	that	only	if	you	need
to	negate	the	accumulator	four	or	more	times	does	calling	this	code	as	a	subroutine	make
sense	in	view	of	object	byte	economy.

65C02,	65802,	and	65816	Eight-Bit	Negation
The	addition	of	 the	accumulator	addressing	mode	for	 the	INC	increment	instruction

on	the	65C02,	65802,	and	65816	means	no	subroutine	is	required	for	negating	an	eight-bit
value	in	the	accumulator	on	these	processors:	the	in-line	code	in	Fragment	12.3	takes	only
three	bytes.

Fragment	12.3.

Since	the	in-line	code	takes	the	same	number	of	bytes	as	the	JSR	instruction,	you	would
lose	four	bytes	(the	number	in	the	subroutine	itself)	by	calling	it	as	a	subroutine.

6502	Sixteen-Bit	Negation
Negating	sixteen-bit	values	makes	even	more	sense	as	a	subroutine	on	the	6502.	One

method,	given	the	previously-coded	routine	NEGACC,	is	shown	in	Listing	12.2.

Listing	12.2.

Here,	 one	 subroutine	 (NEGXA)	 calls	 another	 (the	 subroutine	 described	 previously
that	negates	eight	bits).

65802	and	65816	Sixteen-Bit	Negation
Fragment	12.4	shows	that	on	the	65802	and	65816,	the	sixteen-bit	accumulator	can	be

negated	 in-line	 in	 only	 four	 bytes.	 As	 a	 result,	 a	 subroutine	 to	 negate	 the	 sixteen-bit
accumulator	 would	 be	 inefficient,	 requiring	 five	 calls	 to	 catch	 up	 with	 the	 one-byte
difference;	 in	 addition,	 you	 should	 note	 that	 there	 is	 a	 speed	 penalty	 associated	 with
calling	a	subroutine—the	time	required	to	execute	the	JSR	and	RTS	instructions.

Fragment	12.4.

Parameter	Passing
When	dealing	with	 subroutines,	which	 by	 definition	 are	 generalized	 pieces	 of	 code

used	 over	 and	 over	 again,	 the	 question	 of	 how	 to	 give	 the	 subroutine	 the	 information
needed	to	perform	its	function	must	be	considered.	Values	passed	to	or	from	subroutines
are	referred	to	as	the	parameters	of	the	subroutine.	Parameters	can	include	values	to	be
acted	upon,	such	as	two	numbers	to	be	multiplied,	or	may	be	information	that	defines	the
context	or	range	of	activity	of	the	subroutine.	For	example,	a	subroutine	parameter	could
be	the	address	of	a	region	of	memory	to	work	on	or	in,	rather	than	the	actual	data	itself.

The	 preceding	 examples	 demonstrated	 one	 of	 the	 simplest	 methods	 of	 parameter-
passing,	by	using	the	registers.	Since	many	of	the	operations	that	are	coded	as	subroutines
in	 assembly	 language	 are	 primitives	 that	 operate	 on	 a	 single	 element,	 like	 “print	 a
character	on	 the	output	device”	or	 “convert	 this	 character	 from	binary	 to	hexadecimal,”
passing	parameters	in	registers	is	probably	the	approach	most	commonly	found.

A	natural	extension	of	this	approach,	which	is	particularly	appropriate	for	the	65802
and	65816,	but	also	possible	on	the	6502	and	65C02,	is	to	pass	the	address	of	a	parameter
list	 in	 a	 register	 (or,	 on	 the	 6502	 and	 65C02,	 in	 two	 registers).	 Listing	 12.3	 gives	 an
example.

Listing	12.3.

By	 loading	 the	 X	 register	 with	 the	 address	 of	 a	 string	 constant,	 the	 subroutine
PRSTRNG	has	all	the	information	it	needs	to	print	the	string	at	that	address	each	time	it	is
called.	 The	 data	 at	 the	 address	 passed	 in	 a	 register	 could	 also	 be	 a	more	 complex	 data
structure	than	a	string	constant.

On	 the	 6502	 and	 65C02,	 a	 sixteen-bit	 address	 has	 to	 be	 passed	 in	 two	 registers.
Because	of	 this,	parameters	are	often	passed	in	fixed	memory	locations.	Typically,	 these
might	be	direct	page	addresses.	Listing	12.4	gives	an	example	of	this	method.

Listing	12.4.

Unfortunately,	it	takes	eight	bytes	to	set	up	PARAM	each	time	PRSTRNG	is	called.
As	a	result,	a	frequently	used	method	of	passing	parameters	to	a	subroutine	is	to	code	the
data	 in-line,	 immediately	 following	 the	 subroutine	 call.	 This	 technique	 (see	 Fragment
12.5)	uses	no	registers	and	no	data	memory,	only	program	memory.

Fragment	12.5.

This	method	looks,	at	first	glance,	bizarre.	Normally,	when	a	subroutine	returns	to	the
calling	 section	 of	 code,	 the	 instruction	 immediately	 following	 the	 JSR	 is	 executed.
Obviously,	 in	 this	 example,	 the	 data	 stored	 at	 that	 location	 is	 not	 executable	 code,	 but
string	data.	Execution	should	resume	instead	at	the	label	RETURN,	which	is	exactly	what
happens	using	the	PRSTRNG	coded	in	Listing	12.5.	The	return	address	pushed	onto	the
stack	by	the	JSR	is	not	a	return	address	at	all;	it	is,	rather,	the	parameter	to	PRSTRNG.

Listing	12.5.

The	parameter	address	on	 the	stack	need	only	be	pulled	and	 incremented	once,	and
the	data	can	then	be	accessed	in	the	same	manner	as	in	the	foregoing	example.	Since	the
loop	terminates	when	the	zero	end-of-string	marker	is	reached,	pushing	its	address	in	the
X	register	onto	the	stack	gives	RTS	a	correct	return	value—RETURN-1—the	byte	before
the	location	where	execution	should	resume.	Note	that	the	data	bank	is	assumed	to	equal
the	program	bank.

The	 advantage	 of	 this	 method	 is	 in	 bytes	 used:	 there	 is	 no	 need	 for	 any	 explicit
parameter-passing	 by	 the	 calling	 code,	 and	 the	 JSR	 mechanism	 makes	 the	 required
information	available	to	the	subroutine	automatically.	In	fact,	for	most	applications	on	all
four	 65x	microprocessors,	 this	method	 uses	 fewer	 bytes	 for	 passing	 a	 single	 parameter
than	any	other.

One	slight	disadvantage	of	this	method	is	that	if	the	string	is	to	be	output	more	than
once,	it	and	its	preceding	JSR	must	be	made	into	a	subroutine	that	is	called	to	output	the
string.

A	second	disadvantage	to	this	method	comes	in	calling	routines	to	which	more	than
one	 parameter	 must	 be	 passed.	 This	 last	 example	 demonstrated	 how	 a	 parameter	 (the
address	of	the	string)	can	be	implicitly	passed	on	the	stack.	But	there	is	no	way	to	extend
the	principle	so	two	parameters	could	be	implicitly	passed,	for	instance,	to	a	routine	that
compares	two	strings.	On	the	other	hand,	parameters	can	also	be	explicitly	passed	on	the
stack.	The	push	effective	address	 instructions	and	stack-relative	addressing	modes	make

this	all	the	easier,	as	Fragment	12.6	and	Listing	12.6	show.

Fragment	12.6.

Listing	12.6.

This	example,	which	compares	two	strings	to	see	if	they	are	equal	up	to	the	length	of
the	 shorter	 of	 the	 two	 strings,	 uses	 parameters	 that	 have	 been	 explicitly	 passed	 on	 the

stack.	This	approach,	 since	 it	 explicitly	passes	 the	addresses	of	 the	 strings,	 lets	 them	be
located	 anywhere	 and	 referred	 to	 any	 number	 of	 times.	 Its	 problem	 is	 that	 when	 the
subroutine	 returns,	 the	 parameters	 are	 left	 on	 the	 stack.	 Clearly,	 the	 subroutine	 should
clean	 up	 the	 stack	 before	 returning;	 however,	 it	 can’t	 simply	 pull	 the	 parameters	 off,
because	the	return	address	is	sitting	on	top	of	the	stack	(which	explains	why	stack	offsets
of	three	and	five,	rather	than	one	and	three,	are	used).

Perhaps	the	cleanest	way	to	pass	parameters	on	the	stack	prior	to	a	subroutine	call	is
to	decompose	 the	JSR	 instruction	 into	 two:	one	 to	push	 the	 return	address,	 the	other	 to
transfer	 to	 the	 subroutine.	The	push	 effective	 address	 instructions	 again	 come	 in	 handy.
Fragment	12.7	shows	how	the	parameters	to	the	routine	in	Listing	12.7	are	passed.

Fragment	12.7.

Listing	12.7.

Since	 the	 return	 address	was	 pushed	 first,	 the	 parameter	 addresses	 on	 the	 stack	 are
accessed	 via	 offsets	 of	 one	 and	 three.	 Before	 returning,	 two	 pull	 instructions	 pop	 the
parameters	 off	 the	 stack,	 then	 the	RTS	 is	 executed,	 which	 returns	 control	 to	 the	 main
program	with	the	stack	in	order.

Passing	parameters	on	the	stack	is	particularly	well-suited	for	both	recursive	routines
(routines	that	call	themselves)	and	reentrant	routines	(routines	that	can	be	interrupted	and
used	successfully	both	by	the	interrupting	code	and	the	original	call)	because	new	memory
is	automatically	allocated	for	parameters	for	each	invocation	of	the	subroutine.	This	is	the
method	generally	used	by	most	high-level	languages	that	support	recursion.

Fragment	12.8	sets	up	multiple	parameters	 implicitly	passed	on	 the	stack	by	coding
after	the	JSR,	not	data,	but	pointers	to	data.	The	routine	called	is	in	Listing	12.8.

Fragment	12.8.

While	 this	subroutine,	unlike	the	previous	one,	uses	a	dozen	bytes	 just	getting	itself
ready	to	start,	each	call	requires	only	seven	bytes	(three	for	the	JSR,	and	two	each	for	the
parameters),	while	each	call	to	the	previous	routine	required	twelve	bytes	(three	PERs	at
three	bytes	each	plus	three	for	the	JMP).

Apple	 Computer’s	 ProDOS	 operating	 system	 takes	 this	 method	 a	 step	 further:	 all
operating	system	routines	are	called	via	a	JSR	to	a	single	ProDOS	entry	point.	One	of	the
parameters	 that	 follows	 the	JSR	 specifies	 the	routine	 to	be	called,	 the	second	parameter
specifies	the	address	of	the	routine’s	parameter	block.	This	method	allows	the	entry	points
of	the	internal	ProDOS	routines	to	“float”	from	one	version	of	ProDOS	to	the	next;	user
programs	don’t	need	to	know	where	any	given	routine	is	located.

Listing	12.8.

13

Interrupts	and	System	Control
Instructions

This	 is	 the	 last	 chapter	 that	 introduces	 new	 instructions;	 almost	 the	 entire	 65816
instruction	 set,	 and	 all	 of	 the	 addressing	 modes,	 have	 been	 presented.	 The	 only
instructions	 remaining	 are	 the	 interrupt	 and	 status	 register	 control	 instructions,	 listed	 in
Table	13.1.	This	chapter	introduces	interrupt	processing,	as	well.

Most	of	the	system	control	functions	described	are	of	practical	interest	only	if	you	are
implementing	 systems	 programs	 for	 the	 65x	 processors,	 such	 as	 operating	 systems	 or
device	handling	routines.	It	 is	quite	possible	 that	 if	you	are	programming	on	an	existing
machine,	with	full	operating	system	support,	you	will	have	little	cause	to	use	many	of	the
system	control	instructions.

Table	13.1.	Interrupt	and	System	Control	Instructions.

Interrupts
An	 interrupt,	as	 the	name	 implies,	 is	a	disruption	of	 the	normal	sequential	 flow	of

control,	 as	 modified	 by	 the	 flow-altering	 statements	 such	 as	 branches	 and	 jump
instructions	encountered	in	the	stream	of	code.

Hardware	 interrupts	 are	 generated	 when	 an	 external	 device	 causes	 one	 of	 the
interrupt	 pins,	 usually	 the	 IRQ’	 or	 interrupt	request	 pin,	 to	 be	 electrically	 pulled	 low
from	 its	 normally	 high	 signal	 level.	 The	 typical	 application	 of	 65x	 interrupts	 is	 the

implementation	of	an	interrupt-driven	I/O	system,	where	input-output	devices	are	allowed
to	 operate	 asynchronously	 from	 the	 processor.	 This	 type	 of	 system	 is	 generally
considered	to	be	superior	to	the	alternative	type	of	I/O	management	system,	where	devices
are	polled	at	regular	intervals	to	determine	whether	or	not	they	are	ready	to	send	or	receive
data;	 in	an	 interrupt-driven	system,	 I/O	service	only	claims	processor	 time	when	an	 I/O
operation	 is	 ready	 for	 service.	Figure	13.1	 illustrates	how	processor	 time	 is	 spent	under
either	system.

I/O	Requested	at	Times	A	and	B

Figure	13.1.	I/O	Management:	Interrupts	vs.	Polling.

Software	 interrupts	 are	 special	 instructions	 that	 trigger	 the	 same	 type	 of	 system
behavior	as	occurs	during	a	hardware	interrupt.

When	an	interrupt	signal	is	received,	the	processor	loads	the	program	counter	with	the
address	 stored	 in	 one	 of	 the	 sixteen-bit	 interrupt	 vectors	 in	 page	 $FF	 of	 bank	 zero
memory,	jumping	to	the	(bank	zero)	routine	whose	address	is	stored	there.	(In	the	case	of
the	 6502,	 65C02,	 and	 65802,	 “bank	 zero”	 refers	 to	 the	 lone	 64K	 bank	 of	 memory
addressable	by	these	processors.)	The	routine	that	it	finds	there	must	determine	the	nature
of	the	interrupt	and	handle	it	accordingly.

When	 an	 interrupt	 is	 first	 received,	 the	 processor	 finishes	 the	 currently	 executing
instruction	 and	 pushes	 the	 double-byte	 program	 counter	 (which	 now	 points	 to	 the
instruction	 following	 the	 one	 being	 executed	 when	 the	 interrupt	 was	 received)	 and	 the
status	flag	byte	onto	the	stack.	Since	the	6502	and	65C02	have	only	a	sixteen-bit	program
counter,	only	a	sixteen-bit	program	counter	address	is	pushed	onto	the	stack;	naturally,	this
is	the	way	the	65802	and	65816	behave	when	in	emulation	mode	as	well.	The	native-mode
65802	and	65816	must	 (and	do)	also	push	 the	program	counter	bank	register,	 since	 it	 is
changed	to	zero	when	control	is	transferred	through	the	bank	zero	interrupt	vectors.

As	Figure	13.2	shows,	in	native	mode	the	program	bank	is	pushed	onto	the	stack	first,
before	the	program	counter	and	the	status	register;	but	in	emulation	mode	it	is	lost.	This
means	 that	 if	 a	65816	program	 is	 running	 in	 emulation	mode	 in	 a	bank	other	 than	zero
when	 an	 interrupt	 occurs,	 there	will	 be	no	way	of	 knowing	where	 to	 return	 to	 after	 the
interrupt	is	processed	because	the	original	bank	will	have	been	lost.

This	unavoidable	but	fairly	esoteric	problem	can	be	dealt	with	in	two	ways.	The	first
is	simply	never	to	run	in	emulation	mode	outside	bank	zero.	The	second	solution,	which	is
to	store	the	value	of	the	program	counter	bank	register	in	a	known	location	before	entering
the	emulation	mode	with	a	non-zero	program	counter	bank	register,	 is	described	 later	 in
this	chapter.

In	addition	to	pushing	the	status	and	program	counter	information	onto	the	stack,	the
d	decimal	flag	in	the	status	register	is	cleared	(except	on	the	6502),	returning	arithmetic	to
binary	mode.	The	 i	 interrupt	 disable	 flag	 is	 set,	 preventing	 further	 interrupts	 until	 your
interrupt-service	 routine	 resets	 it	 (it	 may	 do	 this	 as	 soon	 as	 it	 is	 finished	 saving	 the
previous	context)	or	the	routine	is	exited	(with	an	RTI	return-from-interrupt	instruction).
Indeed,	 if	 the	 interrupt	 flag	 had	 already	 been	 set,	 the	 first	 interrupt	 would	 have	 been
ignored	as	well.

This	last	feature	of	disabling	interrupts,	however,	does	not	apply	to	a	second	type	of
hardware	interrupt,	called	the	non-maskable	interrupt	(or	NMI’)	for	the	very	reason	that	it
cannot	be	ignored,	even	if	the	i	flag	is	set.	NMI’	 is	 triggered	by	a	separate	pin	on	a	65x
processor;	 its	 use	 is	 usually	 reserved	 for	 a	 single	 high	 priority	 interrupt,	 such	 as	 power
failure	detection.

Figure	13.2.	Interrupt	Processing.

Just	as	the	two	types	of	interrupt	have	their	own	signals	and	pins,	they	also	have	their
own	vectors—locations	where	 the	address	of	 the	 interrupt-handling	routine	 is	stored.	As
Table	13.2	shows,	on	the	65802	and	65816	there	are	two	sets	of	interrupt	vectors:	one	set
for	when	 the	 processor	 is	 in	 emulation	mode,	 and	 one	 set	 for	when	 the	 processor	 is	 in
native	mode.	Needless	to	say,	the	locations	of	the	emulation	mode	vectors	are	identical	to
the	locations	of	the	6502	and	65C02	vectors.

Table	13.2.	Interrupt	Vectors.

As	 you	 can	 see	 in	 Table	 13.2,	 there	 are	 several	 other	 vector	 locations	 named	 in
addition	to	IRQ’	and	NMI’.	Note	that	there	is	no	native	mode	RESET’	vector:	RESET’
always	forces	the	processor	to	emulation	mode.	Also	note	that	the	IRQ’	vector	among	the
6502	vectors	is	listed	as	IRQ’/BRK,	while	in	the	65802/65816	native	mode	list,	each	has
a	separate	vector.

The	 BRK	 and	 COP	 vectors	 are	 for	 handling	 software	 interrupts.	 A	 software
interrupt	is	an	instruction	that	imitates	the	behavior	of	a	hardware	interrupt	by	stacking	the
program	counter	and	the	status	register,	and	then	branching	through	a	vector	location.	On
the	 6502	 and	 65C02,	 the	 location	 jumped	 to	 in	 response	 to	 the	 execution	 of	 a	BRK	 (a
software	 interrupt)	 and	 the	 location	 to	 which	 control	 is	 transferred	 after	 an	 IRQ’	 (a
hardware	 interrupt)	 is	 the	same;	 the	 interrupt	routine	 itself	must	determine	 the	source	of
the	interrupt	(that	is,	either	software	or	hardware)	by	checking	the	value	of	bit	five	of	the
processor	 status	 register	 pushed	 onto	 the	 stack.	On	 the	 6502	 and	 65C02	 (and	 the	 6502
emulation	mode	of	the	65802	and	65816),	bit	five	is	the	b	break	flag.	Note	first	that	this	is
not	 true	of	 the	65816	native	mode,	 since	bit	 five	of	 its	 status	 register	 is	 the	m	memory
select	flag.	Secondly,	notice	that	it	is	the	stacked	status	byte	which	must	be	checked,	not
the	current	status	byte.

Suppose,	 for	 example,	 that	 the	 IRQ’/BRK	 vector	 at	 $00:FFFE.FF	 contains	 the
address	$B100	(naturally,	 in	 the	 low-high	order	all	65x	addresses	are	stored	 in),	and	 the
code	in	Fragment	13.1	is	stored	starting	at	$B100.	When	a	BRK	 instruction	is	executed,
this	routine	distinguishes	it	from	a	hardware	interrupt	and	handles	each	uniquely.

Fragment	13.1.

The	RTI,	 or	return-from-interrupt	 instruction	 is	 similar	 to	 the	RTS	 (return-from-
subroutine)	instruction.	RTI	 returns	control	 to	 the	 location	following	 the	 instruction	 that
was	 interrupted	by	pulling	 the	 return	 address	 off	 the	 stack.	Unlike	 the	RTS	 instruction,
however,	 since	 the	 status	 register	 was	 also	 pushed	 onto	 the	 stack	 in	 response	 to	 the
interrupt,	 it	 too	 is	 restored,	 returning	 the	 system	 to	 its	 prior	 state.	 Further,	 in	 the
65802/65816	 native	 mode	 the	 RTI	 instruction	 behaves	 like	 an	 RTL	 (return	 from
subroutine	 long),	 in	 that	 the	 program	 counter	 bank	 register	 is	 also	 pulled	 off	 the	 stack.
This	difference	makes	it	critical	 that	 the	processor	always	be	in	the	same	state	when	the
RTI	instruction	is	executed	as	it	was	when	it	was	interrupted.	The	fact	that	the	65816	has
separate	vector	groups	for	native	and	emulation	modes	makes	this	easier	to	achieve.

There	 is	 another	 key	 difference	 between	 the	RTI	 and	 the	RTS	 or	RTL:	RTS	 and
RTL	 increment	the	return	address	after	pulling	it	off	the	stack	and	before	loading	it	into
the	program	counter;	RTI	on	the	other	hand	loads	the	program	counter	with	the	stacked
return	address	unchanged.

RTI	 will	 probably	 not	 function	 correctly	 in	 the	 special	 case	 where	 an	 interrupt
occurred	while	code	was	executing	in	 the	emulation	mode	in	a	non-zero	bank:	RTI	will
try	 to	 return	 control	 to	 an	 address	 within	 the	 bank	 the	RTI	 is	 executed	 in,	 which	 will
probably	not	be	the	correct	bank	because	(as	on	the	6502	and	65C02)	the	bank	address	is
not	 stacked.	 As	 mentioned	 earlier,	 the	 only	 way	 to	 deal	 with	 this	 is	 to	 save	 the	 bank
address	prior	to	entering	emulation	mode.	When	the	interrupt	handler	returns,	it	should	use
this	saved	bank	address	 to	execute	a	 long	jump	to	an	RTI	 instruction	stored	somewhere

within	the	return	bank;	the	long	jump	will	preset	the	program	bank	address	to	the	correct
value	before	the	RTI	is	executed.

The	 interrupt	 handler	 itself	 should	 enter	 the	 native	 mode	 if	 interrupts	 are	 to	 be
reenabled	 before	 exiting	 in	 order	 to	 avoid	 the	 same	 problem,	 then	 return	 to	 emulation
mode	before	exiting	via	the	long	jump	to	the	RTI	instruction.

Concerning	the	BRK	instruction,	you	should	also	note	that	although	its	second	byte	is
basically	 a	 “don’t	 care”	 byte—that	 is,	 it	 can	 have	 any	 value—the	 BRK	 (and	 COP
instruction	 as	 well)	 is	 a	 two-byte	 instruction;	 the	 second	 byte	 sometimes	 is	 used	 as	 a
signature	 byte	 to	 determine	 the	 nature	 of	 the	 BRK	 being	 executed.	 When	 an	 RTI
instruction	 is	executed,	control	always	returns	 to	 the	second	byte	past	 the	BRK	opcode.
Figure	13.3	illustrates	a	stream	of	instructions	in	hexadecimal	form,	the	BRK	instruction,
its	 signature	 byte,	 and	 the	 location	 an	RTI	 returns	 to.	 The	BRK	 instruction	 has	 been
inserted	in	the	middle;	after	the	BRK	is	processed	by	a	routine	(such	as	the	skeleton	of	a
routine	described	above),	control	will	return	to	the	BCC	 instruction,	which	is	the	second
byte	past	the	BRK	opcode.

The	fact	that	the	opcode	for	the	BRK	instruction	is	00	is	directly	related	to	one	of	its
uses:	patching	existing	programs.	Patching	is	the	process	of	inserting	instruction	data	in
the	middle	of	an	existing	program	in	memory	to	modify	(usually	to	correct)	the	program
without	reassembling	it.	This	is	a	favored	method	of	some	programmers	in	debugging	and
testing	assembly	language	programs,	and	is	quite	simple	if	you	have	a	good	machine-level
monitor	 program	 that	 allows	 easy	 examination	 and	 modification	 of	 memory	 locations.
However,	 if	 the	 program	 to	 be	 patched	 is	 stored	 in	 PROM	 (programmable	 read-only
memory),	 the	 only	 way	 to	 modify	 a	 program	 that	 has	 already	 been	 “burned-in”	 is	 to
change	any	remaining	one	bits	to	zeroes.	Once	a	PROM	bit	has	been	“blown”	to	zero,	it
cannot	be	restored	to	a	one.	The	only	way	to	modify	the	flow	of	control	is	to	insert	BRK
instructions—all	zeroes—at	the	patch	location	and	to	have	the	BRK	handling	routine	take
control	from	there.

Figure	13.3.	Break	Signature	Byte	Illustration.

Processing	Interrupts
Before	 an	 interrupt	 handling	 routine	 can	 perform	 a	 useful	 task,	 it	 must	 first	 know

what	is	expected	of	it.	The	example	of	distinguishing	a	BRK	from	an	IRQ	is	just	a	special

case	of	the	general	problem	of	identifying	the	source	of	an	interrupt.	The	fact	that	different
vectors	 exist	 for	 different	 types	 of	 interrupts—for	 example,	 NMI	 would	 usually	 be
reserved	 for	 some	 catastrophic	 type	 of	 interrupt,	 like	 “power	 failure	 imminent”,	 which
demanded	immediate	response—solves	the	problem	somewhat.	Typically,	however,	in	an
interrupt-driven	system	there	will	be	multiple	sources	of	interrupts	through	a	single	vector.
The	65802	and	65816,	when	in	native	mode,	eliminate	the	need	for	a	routine	to	distinguish
between	IRQ	and	BRK,	such	as	the	one	above,	by	providing	a	separate	BRK	vector,	as
indicated	in	Table	13.2.	Although	this	does	simplify	interrupt	processing	somewhat,	it	was
done	primarily	to	free	up	bit	five	in	the	status	register	to	serve	as	the	native	mode	memory
select	flag,	which	determines	the	size	of	the	accumulator.

The	interrupt	source	is	generally	determined	by	a	software	technique	called	polling:
when	 an	 interrupt	 occurs,	 all	 of	 the	 devices	 that	 are	 known	 to	 be	 possible	 sources	 of
interrupts	 are	 checked	 for	 an	 indication	 that	 they	were	 the	 source	 of	 the	 interrupt.	 (I/O
devices	typically	have	a	status	bit	for	this	purpose.)	A	hardware	solution	also	exists,	which
is	 to	 externally	 modify	 the	 value	 that	 is	 apparently	 contained	 in	 the	 vector	 location
depending	on	the	source	of	interrupt.	The	65816	aids	the	implementation	of	such	systems
by	providing	a	VECTOR	PULL	signal,	which	 is	asserted	whenever	 the	 interrupt	vector
memory	locations	are	being	accessed	in	response	to	an	interrupt.

A	simple	example	of	the	polling	method	could	be	found	in	a	system	that	includes	the
6522	Versatile	 Interface	Adapter	 as	 one	 of	 its	 I/O	 controllers.	 The	 6522	 is	 a	 peripheral
control	IC	designed	for	hardware	compatibility	with	the	65x	processor	family.	The	6522
includes	two	parallel	I/O	ports	and	two	timer/counters.	It	can	be	programmed	to	generate
interrupts	in	response	to	events	such	as	hardware	handshaking	signals,	indicating	that	data
has	 been	 read	 or	written	 to	 its	 I/O	 ports,	 or	 to	 respond	 to	 one	 of	 its	 countdown	 timers
reaching	zero.	The	6522	contains	sixteen	different	control	and	I/O	registers,	each	of	which
is	 typically	mapped	 to	an	adjacent	address	 in	 the	65x	memory	space.	When	an	 interrupt
occurs,	 the	 processor	 must	 poll	 the	 interrupt	 flag	 register,	 shown	 in	 Figure	 13.4,	 to
determine	the	cause	of	the	interrupt.

Figure	13.4.	6522	VIA	Interrupt	Flag	Register.

If	 register	zero	of	 the	6522	 is	mapped	 to	 location	$FF:B080	of	a	65816	system,	for

example,	 the	 interrupt	 flag	 register	would	normally	be	 found	at	 $FF:B08D.	The	polling
routine	 in	Fragment	13.2	would	be	needed	whenever	 an	 interrupt	occurred.	To	keep	 the
example	simple,	assume	that	only	the	two	timer	interrupts	are	enabled	(for	example,	timer
1	 to	 indicate,	 in	a	multi-tasking	system,	 that	a	given	process’	 time-slice	has	expired	and
the	next	process	must	be	activated;	timer	2,	on	the	other	hand,	to	maintain	a	time-of-day
clock).

Fragment	13.2.

When	the	interrupt	flag	register	is	loaded	into	the	accumulator,	the	first	thing	checked

is	whether	or	not	bit	seven	is	set;	bit	seven	is	set	if	any	6522	interrupt	is	enabled.	If	it	is
clear,	then	the	interrupt	handler	branches	to	the	location	NEXTDEV,	which	polls	all	other
connected	I/O	devices	looking	for	the	source	of	the	interrupt.

If	the	6522	was	the	source	of	the	interrupt,	then	two	shifts	move	the	flag	register’s	bit
six	into	the	carry	and	bit	five	into	bit	seven	of	the	accumulator.	Since	bit	five	is	set	by	the
time-out	of	timer	2,	if	the	high-order	bit	of	the	accumulator	is	set	(minus),	then	the	source
of	the	interrupt	must	be	timer	2.	If	timer	2	did	not	cause	the	interrupt,	then	the	carry	flag	is
checked;	if	it’s	set,	then	timer	1	caused	the	interrupt;	if	it’s	clear,	then	timer	1	didn’t	cause
it	either,	so	there	has	been	some	kind	of	error.

Control	 is	 thus	 assigned	 to	 the	 correct	 routine	 to	 handle	 the	 specific	 source	 of
interrupt.

It	 is	 important	 to	 note	 that	 in	 both	 examples	 in	 this	 chapter,	 the	 accumulator	 was
saved	in	memory	prior	to	its	use	within	the	interrupt-handling	routine.	You	should	further
note	that	in	the	second	example,	which	is	specific	to	the	65816,	only	the	low-order	byte	of
the	accumulator	was	stored,	because	the	STA	SAVEA	 instruction	was	executed	after	 the
SEP	 #$20	 instruction,	 which	 set	 the	 accumulator	 size	 to	 eight	 bits.	 When	 the	 RTI
instruction	is	executed	at	the	end	of	the	interrupt	service	routine,	the	m	status	flag	will	be
restored	to	whatever	value	it	had	prior	to	the	interrupt.	If	m	was	clear	and	the	accumulator
was	 in	 sixteen-bit	 mode,	 the	 high-order	 byte	 will	 have	 been	 preserved	 throughout	 the
interrupt	routine	provided	that	none	of	the	interrupt	handling	routines	switch	into	sixteen-
bit	 mode;	 if	 they	 do,	 the	 high-order	 part	 of	 the	 accumulator	 must	 be	 saved	 first,	 then
restored	before	execution	of	the	RTI.

An	important	concept	related	to	interrupt	handling	is	that	of	reentrancy;	a	reentrant
program	can	be	 interrupted	 and	 literally	 reentered	by	 the	 interrupt	 handling	 routine	 and
return	 correct	 values	 for	 both	 the	 original	 invocation	 and	 the	 reentrant	 call	 from	 the
interrupt	 handler.	 Reentrancy	 is	 normally	 achieved	 by	 using	 no	 addressable	memory—
only	 registers,	 which	 may	 be	 saved	 and	 restored	 on	 the	 stack	 on	 entry	 and	 exit,	 and
variable	storage	dynamically	allocated	on	the	stack	each	time	the	routine	is	entered.	The
stack	relative	addressing	modes	simplify	the	writing	of	reentrant	routines	considerably.

Interrupt	Response	Time
By	 saving	 only	 the	 essentials—the	 program	 counter,	 program	 counter	 bank	 in

65802/65816	 native	 mode,	 and	 status	 register—and	 shifting	 the	 burden	 of	 saving	 and
restoring	user	registers	(those	that	are	actually	used)	 to	 the	programmer	of	 the	 interrupt-
handier,	 the	 65x	 processors	 provide	 maximum	 flexibility	 and	 efficiency.	 It	 is	 quite
possible	 for	 an	 interrupt	 routine	 to	 do	 useful	 work—such	 as	 checking	 the	 status	 of
something	within	the	system	at	periodic	intervals—without	using	any	registers.

At	either	seven	or	eight	cycles	per	interrupt—the	time	required	to	stack	the	program
counter,	 pc	 bank,	 and	 status	 register,	 and	 then	 jump	 through	 the	 interrupt	 vectors—the
interrupt	 response	 cycle	 is	 among	 the	 longest-executing	 65x	 instructions.	 Since	 an
interrupt	always	lets	the	current	instruction	complete	execution,	there	is	a	possible	seven-
cycle	delay	between	the	receipt	of	an	interrupt	and	the	servicing	of	one;	this	delay	is	called
the	interrupt	latency.	Small	as	the	delay	is,	it	can	be	significant	in	the	servicing	of	data
acquisition	and	control	devices	operating	in	real	time,	systems	in	which	it	is	important	that

interrupts	be	disabled	as	little	as	possible.

It	has	been	 the	goal	of	 the	designers	of	 the	65x	series	 to	keep	 interrupt	 latency	 to	a
minimum.	To	further	reduce	interrupt	 latency,	 the	65802	and	65816	introduced	a	special
new	instruction,	the	WAI	or	wait	for	interrupt	instruction.	In	an	environment	where	the
processor	 can	 be	 dedicated	 to	 serving	 interrupts—that	 is,	 where	 the	 interrupts	 provide
timing	or	synchronization	information,	rather	than	being	used	to	allow	asynchronous	I/O
operations	to	be	performed—the	processor	can	be	put	into	a	special	state	where	it	sits	and
waits	 for	 an	 interrupt	 to	 happen.	This	 lets	 any	of	 the	 user	 registers	 be	 saved	before	 the
interrupt	occurs,	and	eliminates	 the	 latency	 required	 to	complete	an	existing	 instruction.
Upon	 execution	 of	 a	WAI	 instruction,	 the	 processor	 goes	 into	 a	 very	 low-power	 state,
signals	the	outside	world	that	 it	 is	waiting	by	pulling	the	bi-directional	RDY	signal	low,
and	sits	idle	until	an	interrupt	is	received.	When	that	occurs,	response	is	immediate	since
no	cycles	are	wasted	completing	an	executing	instruction.

There	 are	 two	 responses	 to	 an	 interrupt	 after	 the	WAI	 instruction	 is	 executed.	 The
first,	 as	you	might	expect,	 is	 to	 release	 the	waiting	condition	and	 transfer	control	 to	 the
appropriate	interrupt	vector,	as	normally	takes	place	whenever	interrupts	are	serviced.	The
second	response	is	if	maskable	interrupts	(on	the	IRQ’	line)	have	been	disabled,	in	which
case	the	normal	interrupt	processing	does	not	occur.	However,	since	the	waiting	condition
is	 released,	 execution	 continues	 with	 the	 instruction	 following	 the	WAI	 opcode.	 This
means	 that	 specialized	 interrupt-synchronization	 routines	can	be	coded	with	a	one-cycle
latency	between	receipt	of	interrupt	and	response.

A	second,	similar	65802/65816	instruction	is	 the	STP	or	stop	the	clock	 instruction.
The	STP	instruction	reduces	on-chip	power	consumption	to	a	very	low	level	by	stopping
the	 phase	 two	 clock	 input.	 Since	 power	 consumption	 of	 CMOS	 circuits	 increases	 with
operating	frequency,	by	halting	the	clock	input	 the	STP	 instruction	 is	able	 to	 reduce	 the
power	consumption	of	 the	65816	to	 its	 lowest	possible	value.	Like	 the	WAI	 instruction,
the	STP	 idles	 the	 processor	 after	 being	 executed.	 Further,	 the	 processor	 I/O	buffers	 are
disabled,	making	 the	 bus	 available.	 The	 processor	 is	 powered	 back	 up	 in	 response	 to	 a
RESET’	signal	being	asserted.

The	RESET’	 pin	 is	 an	 input	 similar	 to	 the	 IRQ’	 and	NMI’	 inputs.	 It	 is	 used	 to
perform	system	 initialization	or	 reinitialization.	When	a	65x	system	 is	 first	powered	up,
RESET’	must	 be	 asserted	by	 external	 power-up	 circuitry.	 It	 can	 also	 be	 used	 to	 let	 the
user	force	the	system	into	a	known	state,	for	example,	to	break	out	of	an	infinite	loop.

When	 RESET’	 is	 asserted,	 the	 processor	 is	 forced	 to	 emulation	 mode	 and	 the
registers	and	status	flags	are	initialized	as	shown	in	Table	13.3.	Note	that	the	initialization
of	the	index	register	high	bytes	to	zero	is	really	a	function	of	x	being	forced	to	one;	x	=	1
always	clears	the	high	byte	of	the	index	registers.

Table	13.3.	Reset	Initialization.

In	addition	to	the	BRK,	IRQ’,	RESET’	and	NMI’	vectors	discussed,	 there	are	 two
remaining	interrupt-like	vectors.	These	are	the	COP	(co-processor)	and	ABORT’	vectors.
The	COP	vector	is	essentially	a	second	software	interrupt,	similar	to	BRK,	with	its	own
vector.	Although	it	can	be	used	in	a	manner	similar	to	BRK,	it	is	intended	particularly	for
use	 with	 co-processors,	 such	 as	 floating-point	 processors.	 Like	BRK,	 it	 is	 a	 two-byte
instruction	with	the	second	available	as	a	signature	byte.

The	ABORT’	vector	contains	the	address	of	the	routine	which	gains	control	when	the
65816	ABORT’	 signal	 is	 asserted.	 Prior	 to	 transferring	 control	 through	 the	ABORT’
vector,	 the	 current	 instruction	 is	 completed	 but	no	 registers	 are	modified.	 The	 pc	 bank,
program	counter,	and	status	register	are	pushed	onto	the	stack	in	the	same	manner	as	an
interrupt.	The	ABORT’	 signal	 itself	 is	only	available	on	 the	65816;	although	 the	65802
has	 an	 ABORT’	 vector,	 it	 is	 ineffective	 since	 no	 ABORT’	 signal	 can	 be	 generated
because	of	the	need	for	the	65802	to	be	pin-compatible	with	the	6502.	Typical	application
of	 the	 abort	 instruction	 feature	 is	 the	 implementation	of	hardware	memory-management
schemes	in	more	sophisticated	65816	systems.	When	a	memory-bounds	violation	of	some
kind	 is	 detected	 by	 external	 logic,	 the	ABORT’	 signal	 is	 asserted,	 letting	 the	 operating
system	attempt	to	correct	the	memory-management	anomaly	before	resuming	execution.

Status	Register	Control	Instructions
There	are	nine	instructions	that	directly	modify	the	flags	of	the	status	register;	two	of

them	are	available	only	on	 the	65802	and	65816.	These	 last	 two	are	 the	SEP	 (set	 the	P
status	register)	and	REP	(reset	P)	instructions,	which	you	are	already	familiar	with	from
their	use	in	the	examples	to	set	or	reset	the	m	and	x	flags	in	the	status	register.	They	can	be
used	 to	 set	or	clear	any	of	 the	 flags	 in	 the	status	 register.	For	each	bit	 in	 the	 immediate
byte	that	follows	the	opcode,	the	corresponding	bit	in	the	status	register	is	set	or	cleared
(depending	on	whether	SEP	or	REP,	respectively,	was	used).

The	other	seven	flag	instructions	set	or	clear	individual	flags	in	the	status	register.	The
pair	SEC	and	CLC	set	and	clear	the	carry	flag	when	executed.	These	should	be	familiar	to
you	 from	 the	chapter	on	arithmetic,	where	 the	CLC	 is	always	used	before	 the	 first	of	a
series	 of	ADC	 instructions,	 and	 SEC	 before	 the	 first	 of	 a	 series	 of	 SBC	 instructions.
Likewise,	 the	 SED	 and	CLD	 modes	 should	 also	 be	 familiar	 from	 the	 same	 chapter’s
discussion	 of	 decimal-mode	 arithmetic;	 these	 two	 instructions	 set	 or	 clear	 the	 decimal
mode.	Note	 that	 reset	can	also	affect	 the	decimal	flag:	 it	 is	always	 initialized	 to	zero	on
reset	on	the	65C02,	65802,	and	65816;	on	the	other	hand,	its	value	is	indeterminate	after
reset	on	the	6502.

The	SEI	(set	interrupt	disable	flag)	and	CLI	(clear	interrupt	disable	flag)	instructions
are	 new	 to	 this	 chapter:	 they	 are	 used	 to	 enable	 or	 disable	 the	 processor’s	 response	 to
interrupt	requests	via	the	IRQ’	signal.	If	the	SEI	instruction	has	been	executed,	interrupts
are	disabled;	a	CLI	interrupt	instruction	may	be	used	to	reenable	interrupts.	Note	that	the
interrupt	 disable	 flag	 is	 set	 automatically	 in	 response	 to	 an	 interrupt	 request,	whether	 a
software	 interrupt	 or	 IRQ’,	NMI’,	 or	RESET’;	 this	 “locks	 out”	 other	 interrupts	 from
occurring	until	 the	current	one	has	been	 serviced.	Similarly,	 the	 interrupt	disable	 flag	 is
cleared	 automatically	 upon	 return	 from	 an	 interrupt	 via	 RTI	 due	 to	 reloading	 of	 the
stacked	status	register,	which	was	pushed	with	i	clear.

The	SEI	 lets	 interrupts	 be	 locked	 out	 during	 critical	 routines	 which	 should	 not	 be
interrupted.	An	example	would	be	a	device	controller	 that	depended	on	software	 timing
loops	 for	 correct	operation;	 interrupts	must	be	 locked	out	 for	 the	duration	of	 the	 timing
loop.	 It	 is	 important	 in	 an	 environment	where	 interrupts	 are	 supported	 that	 they	 not	 be
locked	out	for	long	periods	of	time.	Although	the	CLI	instruction	will	explicitly	clear	the
interrupt	 disable	 flag,	 it	 is	 rarely	 used	 because	 typically	 the	 processor	 status	 is	 saved
before	execution	of	an	SEI	instruction	as	in

Fragment	13.3,	which	reclears	the	flag	by	restoring	the	entire	processor	status	register.

Fragment	13.3.

Since	 the	 interrupt	 disable	 flag	 was	 clear	 when	 the	PHP	 instruction	was	 executed,	 the
PLP	instruction	restores	the	cleared	flag.	This	same	technique	is	also	useful	when	mixing
subroutine	 calls	 to	 routines	 with	 different	 default	 modes	 for	 accumulator	 and	 index
register	sizes;	since	saving	the	status	with	PHP	is	a	common	operation	between	subroutine
calls	anyway,	the	PLP	instruction	can	be	used	to	conveniently	restore	operating	modes	as
well	as	status	flags.

Finally,	there	is	a	CLV	(clear	overflow	flag).	There	is	no	corresponding	set	overflow
instruction,	and,	as	you	will	recall	from	the	chapter	on	arithmetic,	the	overflow	flag	does
not	 need	 to	 be	 explicitly	 cleared	 before	 a	 signed	 operation.	 The	 arithmetic	 operations
always	change	the	overflow	status	to	correctly	reflect	the	result.	The	reason	for	including
an	explicit	CLV	instruction	in	the	65x	repertoire	is	that	the	6502,	65C02,	and	65802	have
a	SET	OVERFLOW	input	signal;	external	hardware	logic	can	set	the	overflow	flag	of	the
status	 register	 by	 pulling	 the	 SET	 OVERFLOW	 input	 low.	 Since	 there	 is	 no
corresponding	 clear	 overflow	 input	 signal,	 the	 overflow	must	 be	 cleared	 in	 software	 in
order	to	regain	susceptibility	to	the	SET	OVERFLOW	signal.

The	 practical	 application	 of	 the	 SET	OVERFLOW	 signal	 is	 generally	 limited	 to
dedicated	 control	 applications;	 it	 is	 rarely	 connected	 on	 general-purpose,	 6502-based
computer	systems.	On	the	65816,	there	is	no	SET	OVERFLOW	input;	it	was	sacrificed

to	make	room	for	some	of	the	more	generally	useful	new	signals	available	on	the	65816
pin	configuration.

No	Operation	Instructions
The	final	two	instructions	to	complete	the	65816	instruction	set	are	the	no	operation

instructions.	 These	 do	 exactly	 what	 they	 sound	 like:	 nothing.	 They	 are	 used	 as	 place
holders,	 or	 time-wasters;	 often	 they	 are	 used	 to	 patch	 out	 code	 during	 debugging.	 The
NOP	instruction—with	a	hexadecimal	value	of	SEA—is	the	standard	no	operation.

As	mentioned	in	the	earlier	architecture	chapters,	the	6502	and	65C02	have	a	number
of	 unimplemented	 instructions—the	 same	 opcodes	 which,	 on	 the	 65802	 and	 65816,
correspond	to	the	new	instructions.	On	the	6502,	the	operation	of	the	processor	when	these
“instructions”	are	executed	is	undefined;	some	of	them	cause	the	processor	to	“hang	up.”
On	 the	 65C02,	 these	 are	 all	 “well-behaved”	 no-operations	 of	 either	 one,	 two,	 or	 more
cycles.	On	the	65802	and	65816,	there	is	only	one	unimplemented	instruction,	defined	as
WDM;	this	is	reserved	for	future	systems	as	an	escape	prefix	to	expand	the	instruction	set
with	sixteen-bit	opcodes.	For	this	reason,	it	should	not	be	used	in	your	current	programs,
as	it	will	tend	to	make	them	incompatible	with	future	generations	of	the	65816.

Part	IV

Applications

14

Selected	Code	Samples
This	chapter	contains	five	different	types	of	example	programs,	which	are	examined

in	 detail.	 Each	 focuses	 on	 a	 different	 topic	 of	 interest	 to	 the	 65x	 programmer:
multiplication	and	division	algorithms;	a	65802-to-6502	mode-switching	tour	de	force;	a
quick	utility	routine	to	determine	which	65x	processor	a	program	is	running	under;	high-
level	languages;	and	a	popular	performance	benchmark.

Multiplication
Probably	 the	most	 common	multiply	 routine	written	 for	 eight-bit	 applications	 is	 to

multiply	 one	 sixteen-bit	 number	 by	 another,	 returning	 a	 sixteen-bit	 result.	 While
multiplying	 two	 large	 sixteen-bit	 numbers	would	yield	 a	 32-bit	 result,	much	of	 systems
programming	 is	 done	 with	 positive	 integers	 limited	 to	 sixteen	 bits,	 which	 is	 why	 this
multiply	 example	 is	 so	 common.	 Be	 aware	 that	 a	 result	 over	 sixteen	 bits	 cannot	 be
generated	by	 the	examples	as	coded—you’ll	have	 to	extend	 them	 if	you	need	 to	handle
larger	numbers.

There	are	several	methods	for	the	sixteen-by-sixteen	multiply,	but	all	are	based	on	the
multiplication	 principles	 for	 multi-digit	 numbers	 you	 were	 taught	 in	 grade	 school:
multiply	the	top	number	by	the	right-most	digit	of	the	bottom	number;	move	left,	digit	by
digit,	through	the	bottom	number,	multiplying	it	by	the	top	number,	each	time	shifting	the
resulting	product	left	one	more	space	and	adding	it	to	the	sum	of	the	previous	products:

Or	to	better	match	the	description:

Binary	multiplication	 is	 no	 different,	 except	 that,	 since	 each	 single-digit	multiply	 is	 by
either	zero	or	one,	each	resulting	single-digit	product	is	either	the	top	number	itself	or	all
zeroes.

To	have	the	computer	do	it,	you	have	it	shift	the	bottom	operand	right;	if	it	shifts	out	a
zero,	you	need	do	nothing,	but	if	it	shifts	out	a	one,	you	add	the	top	number	to	the	partial
product	(which	is	initialized	at	zero).	Then	you	shift	the	top	number	left	for	the	possible
add	during	 the	next	 time	 through	 this	 loop.	When	 there	are	no	more	ones	 in	 the	bottom
number,	you	are	done.

6502	Multiplication
With	 only	 three	 eight-bit	 registers,	 you	 can’t	 pass	 two	 sixteen-bit	 operands	 to	 your

multiply	routine	in	registers.	One	solution,	the	one	used	below,	is	to	pass	one	operand	in
two	 direct	 page	 (zero	 page)	 bytes,	 while	 passing	 the	 other	 in	 two	 more;	 the	 result	 is
returned	in	two	of	the	6502’s	registers.	All	 this	is	carefully	documented	in	the	header	of
the	routine	in	Listing	14.1.

This	6502	multiply	routine	takes	33	bytes.

65C02	Multiplication
With	 the	 same	 three	 eight-bit	 registers	 as	 the	 6502,	 and	 an	 instruction	 set	 only

somewhat	enhanced,	the	65C02	multiply	routine	is	virtually	the	same	as	the	6502s.	Only
one	byte	can	be	saved	by	 the	substitution	of	an	unconditional	branch	 instruction	 for	 the
jump	instruction,	for	a	total	byte	count	of	32.

65802	and	65816	Multiplication
The	65802	and	65816,	when	running	in	native	mode,	have	three	registers,	all	of	which

can	 be	 set	 to	 sixteen	 bits,	 in	 addition	 to	 having	many	more	 addressing	modes.	As	 you
might	expect,	a	multiply	routine	for	these	processors	is	considerably	shorter	than	the	6502

and	 65C02.	 What	 you	 might	 not	 expect	 is	 how	 much	 shorter:	 the	 multiply	 routine	 in
Listing	 14.2	 for	 the	 65802	 and	 65816	 takes	 only	 19	 bytes—its	 length	 is	 less	 than	 60
percent	of	each	of	the	other	two	routines!

Notice	 the	 additional	 documentation	 at	 the	 beginning	 of	 the	 routine.	 The	 processor
must	have	both	its	index	registers	and	its	accumulator	in	sixteen-bit	modes	before	calling
this	routine.

Listing	14.1.

Listing	14.2.

Along	 the	 same	 lines,	notice	 that	 the	 first	 two	 lines	of	 the	 subroutine	are	 the	mode
directives—LONGA	ON	 and	LONGI	ON—which	 inform	 the	 assembler	 that	 all	 three
registers	 have	 been	 set	 to	 sixteen	 bits.	 That	way,	when	 the	 accumulator	 is	 loaded	with
immediate	zero,	the	assembler	will	generate	a	sixteen-bit	operand	rather	than	an	incorrect
eight-bit	one,	which	would	cause	program	failure	when	executed.

The	RTS	instruction	is	the	intra-bank	return	instruction.	An	RTL	instruction	could	be
substituted	 if	 the	subroutine	were	 intended	 to	be	called	only	 by	 long	 jump-to-subroutine
instructions,	whether	by	code	outside	the	bank	or	by	code	within	it.	You	should	document
such	a	requirement	in	the	routine’s	introductory	comments.

Division
Probably	 the	most	 common	division	 routine	written	 for	 eight-bit	 applications	 is	 the

converse	 of	 the	 multiply	 routine	 just	 covered—to	 divide	 one	 sixteen-bit	 number	 by

another	 sixteen-bit	 number,	 returning	 both	 a	 sixteen-bit	 quotient	 and	 a	 sixteen-bit
remainder.

There	are	several	methods	for	doing	this,	but	all	are	based	on	the	division	principles
for	multi-digit	 numbers	 that	 you	 learned	 in	 grade	 school.	Line	 up	 the	 divisor	 under	 the
left-most	 set	 of	 digits	 of	 the	 dividend,	 appending	 an	 imaginary	 set	 of	 zeroes	 out	 to	 the
right,	 and	 subtract	 as	 many	 times	 as	 possible.	 Record	 the	 number	 of	 successful
subtractions;	 then	shift	 the	divisor	 right	one	place	and	continue	until	 the	divisor	 is	 flush
right	with	the	dividend,	and	no	more	subtractions	are	possible.	Any	unsubtractable	value
remaining	is	called	the	remainder.

Binary	division	is	even	easier	since,	with	only	ones	and	zeroes,	subtraction	is	possible
at	each	digit	position	either	only	once	or	not	at	all:

Many	programs	calling	 this	division	 routine	will	need	only	 the	quotient	or	only	 the
remainder,	although	some	will	require	both.	The	routines	here	return	both.

6502	Division
The	6502,	with	its	three	eight-bit	registers,	handles	passing	parameters	to	and	from	a

division	routine	even	less	smoothly	than	to	and	from	a	multiplication	routine:	not	only	do
you	need	to	pass	it	two	sixteen-bit	values,	but	it	needs	to	pass	back	two	sixteen-bit	results.

The	solution	used	in	Listing	14.3	is	to	pass	the	dividend	and	the	divisor	in	two	direct
page	 double	 bytes,	 then	 pass	 back	 the	 remainder	 in	 a	 direct	 page	 double	 byte	 and	 the
quotient	in	two	registers.

Listing	14.3.

The	label	DONE	is	not	needed	(there	is	no	branch	to	the	location),	but	was	added	for
clarity.

The	 routine	 at	DIV2	 may	 seem	 curious.	 The	 6502	 has	 no	 sixteen-bit	 compare;	 to
compare	two	sixteen-bit	numbers,	you	must	actually	subtract	them	(setting	the	carry	first,
as	is	required	before	a	subtract	using	the	65x	SBC	instruction).	So	the	divisor	is	subtracted
from	the	dividend,	with	the	low	result	saved	on	the	stack.	If	the	carry	is	clear,	the	divisor
is	too	large	to	be	subtracted	from	the	dividend.	Thus	a	branch	is	taken	to	DIV3,	where	the
low	 result	 is	 pulled	 but	 not	 used	 and	 the	 cleared	 carry	 is	 rolled	 into	 the	 quotient	 to
acknowledge	the	unsuccessful	subtraction.	If	the	carry	is	set,	then	the	high	result,	still	in
the	 accumulator,	 is	 stored,	 and	 the	 low	 result	 is	 pulled	 from	 the	 stack,	 stored,	 then
restacked	to	be	repulled	at	DIV3;	since	the	carry	is	known	to	be	set,	it	does	not	need	to	be
explicitly	set	before	rolling	it	into	the	quotient	to	acknowledge	the	successful	subtraction.

The	quotient	is	returned	in	registers	X	and	A.

This	6502	divide	routine	takes	55	bytes.

65C02	Division
The	 65C02	 routine	 is	 virtually	 the	 same;	 only	 three	 early	 instructions	 (shown	 in

Fragment	14.1)	 in	 the	6502	routine	are	changed	 to	 the	code	 in	Fragment	14.2,	 for	 a	net
savings	of	one	byte,	because	the	65C02	has	instructions	to	push	the	index	registers.	This
65C02	divide	routine	takes	54	bytes,	one	byte	fewer	than	the	6502	divide	routine	takes.

Fragment	14.1.

Fragment	14.2.

65802/65816	Division
The	65802	and	65816	processors,	with	their	registers	extendable	to	sixteen	bits,	can

handle	 sixteen-bit	division	with	ease.	 In	 the	divide	 routine	 in	Listing	14.4,	 the	dividend
and	 the	 divisor	 are	 passed	 in	 sixteen-bit	 registers	X	 and	A	 respectively;	 the	 quotient	 is
passed	back	in	a	sixteen-bit	direct	page	location	and	the	remainder	in	X.

Listing	14.4.

This	divide	routine	for	the	65802	and	65816	generates	only	31	bytes,	little	more	than
half	the	bytes	the	6502	and	65C02	divide	routines	generate.

As	the	introductory	comments	note,	it	requires	the	processor	to	be	in	native	mode	and
the	m	and	x	memory	select	 flags	 to	be	 in	sixteen-bit	modes	before	 the	 routine	 is	called;
these	requirements	become	doubly	obvious	when	you	see	in	another	of	the	comments	that
the	values	passed	in	the	accumulator	and	an	index	register	are	sixteen	bits,	with	one	of	the
two	 sixteen-bit	 results	 being	 passed	 back	 in	 one	 of	 the	 same	 registers.	 Assemblers,
however,	 do	 not	 read	 comments;	 they	 only	 read	 instructions	 and	 directives.	 That’s	 the
reason	for	the	LONGA	ON	and	LONGI	ON	directives	at	the	beginning	of	the	routine.

Calling	an	Arbitrary	6502	Routine
Particularly	during	 the	early	phases	of	 the	processor’s	 life	cycle,	you	might	wish	 to

mix	 existing	 6502	 code	 with	 your	 65816	 applications.	 The	 routine	 provided	 below
provides	 a	 general	 purpose	 way	 of	 doing	 this.	 Additionally,	 the	 context-saving	 code
illustrated	 here	 could	 prove	 useful	 in	 other	 applications.	You’ll	 find	 similar	 code	 in	 the
debugger	in	the	next	chapter,	where	it	is	needed	to	save	the	context	between	instructions
of	the	user	program	being	traced.

The	 simplest	 way	 to	 call	 a	 6502	 routine	 from	 the	 65802	 or	 65816	 is	 found	 in
Fragment	14.3.

Fragment	14.3.

Although	 this	will	work	 fine	 in	 some	 cases,	 it	 is	 not	 guaranteed	 to.	 In	 order	 to	 be
assured	of	correct	functioning	of	an	existing	6502	routine,	the	direct	page	register	must	be
reset	 to	 zero	 and	 the	 stack	 pointer	 must	 be	 relocated	 to	 page	 one.	 Although	 a	 6502
program	 that	 uses	 zero	 page	 addressing	will	 technically	 function	 correctly	 if	 the	 direct
page	has	been	relocated,	the	possibility	that	the	zero	page	may	be	addressed	using	some
form	of	absolute	addressing,	not	to	mention	the	probability	that	an	existing	6502	monitor
or	operating	system	routine	would	expect	to	use	values	previously	initialized	and	stored	in
the	zero	page,	requires	that	this	register	be	given	its	default	6502	value.

If	 the	 stack	 has	 been	 relocated	 from	 page	 one,	 it	 will	 be	 lost	 when	 the	 switch	 to
emulation	mode	substitutes	the	mandatory	stack	high	byte	of	one.	So	first,	the	sixteen-bit
stack	pointer	must	be	saved.	Second,	if	the	65802/65816	program	was	called	from	a	6502
environment,	then	there	may	be	6502	values	on	the	original	6502	page-one	stack;	such	a
program	must	squirrel	away	the	6502	stack	pointer	on	entry	so	it	can	be	restored	on	exit,
as	 well	 as	 used	 during	 temporary	 incursions,	 such	 as	 this	 routine,	 into	 the	 6502
environment.

The	goal,	then,	is	this:	provide	a	mechanism	whereby	a	programmer	may	simply	pass
the	address	of	a	 resident	6502	 routine	and	any	 registers	 required	 for	 the	call	 to	a	utility
which	will	transfer	control	to	the	6502	routine;	the	registers	should	be	returned	with	their
original	(potentially	sixteen-bit)	values	intact,	except	as	modified	by	the	6502	routine;	and
finally	the	operating	mode	must	be	restored	to	its	state	before	the	call.

When	 loading	 the	 registers	with	any	needed	parameters,	keep	 in	mind	 that	only	 the
low-order	 values	will	 be	 passed	 to	 a	 6502	 subroutine,	 even	 though	 this	 routine	may	 be
entered	from	either	eight-	or	sixteen-bit	modes.

The	call	itself	is	simple;	you	push	the	address	of	the	routine	to	be	called,	minus	one,
onto	 the	 stack,	 typically	 using	 the	 PEA	 instruction.	 Then	 you	 call	 the	 routine,	 which
executes	 the	 subroutine	 call	 and	manages	 all	 of	 the	 necessary	 housekeeping.	 Fragment
14.4	gives	an	example	of	calling	the	routine.

Fragment	14.4.

$FDED	is	the	address	of	an	existing	Apple	//	routine	to	print	characters,	and	JSR6502	is
the	routine	described	in	Listing	14.5.

Listing	14.5.

The	routine	 is	entered	with	 the	return	address	on	the	 top	of	 the	stack,	and	the	go-to
address	of	the	6502	routine	at	the	next	location	on	the	stack.	Since	you	want	to	be	able	to
restore	the	m	and	x	mode	flags,	the	first	thing	the	routine	does	is	push	the	status	register
onto	the	stack.	The	REP	#$30	instruction,	which	follows,	puts	the	processor	into	a	known
state,	since	the	routine	can	be	called	from	any	of	the	four	possible	register-size	modes.	The
long	accumulator,	 long	index	mode	is	the	obvious	choice	because	it	encompasses	all	 the
others.	The	user	 registers,	 including	 the	direct	page	 register,	are	saved	on	 the	stack,	and
then	the	stack	pointer	itself	 is	saved	to	the	direct	page	register	via	the	accumulator.	This
has	two	benefits:	it	preserves	the	value	of	the	old	stack	pointer	across	a	relocation	of	the
stack,	and	provides	a	means	of	accessing	all	of	the	data	on	the	old	stack	after	it	has	been
relocated.	 This	 technique	 is	 of	 general	 usefulness,	 and	 should	 be	 understood	 clearly.
Figure	14.1,	which	 shows	 the	 state	of	 the	machine	after	 line	0034	 (the	PEI	 instruction),
helps	make	this	clear.

The	 stack	 must	 be	 relocated	 to	 page	 one	 only	 if	 it	 is	 not	 already	 there.	 If	 it	 is
elsewhere,	then	the	last	6502	page-one	stack	pointer	should	be	restored	from	where	it	was
cubbyholed	when	the	65802/65816	program	took	control	and	moved	the	stack	elsewhere.
If	 there	 is	 no	 previous	 6502	 stack	 to	 avoid,	 any	 page	 one	 address	 could	 be	 used	 to
initialize	the	temporary	6502	stack	needed.

The	first	item	that	goes	onto	the	new	stack	is	the	value	of	the	old	stack	pointer,	now
found	in	the	direct	page	register.	Next,	a	local	return	address	must	be	pushed	on	the	stack
for	when	the	called	6502	routine	executes	an	RTS.

While	the	direct	page	register	was	pushed	onto	the	new	stack,	it	retains	its	value,	and
still	points	to	the	old	stack;	so	although	the	stack	pointer	has	been	relocated,	you	still	have
access	to	the	values	on	the	old	stack	via	direct	page	addressing.	One	of	the	needed	items	is
the	go-to	address,	the	address	of	the	6502	routine	to	be	called.	Since	the	size	of	all	of	the
elements	pushed	on	 the	 stack	 is	 known,	by	 referencing	 the	direct	 page	 location	12,	 this
value	 is	 retrieved.	A	PEI	 (push	 indirect)	 instruction	 is	used	 to	 transfer	 the	 routine	 to	be
called	from	the	old	stack	(now	being	referenced	via	the	direct	page)	to	the	new	stack.	This
frees	 up	 the	 double	 byte	 on	 the	 old	 stack	 at	 dp:12.13,	 the	 bottom	 of	 the	 old	 stack;	 the
return	address	is	shuffled	in	from	dp:10.11,	freeing	those	two	bytes.

Figure	14.1.	Stack	Snapshot	after	PEI	(12)	Instruction.

The	accumulator	was	used	during	 these	operations,	and	must	be	 restored	because	 it
may	contain	one	of	 the	parameters	required	by	the	6502	routine.	Like	the	go-to	address,
the	accumulator	is	loaded	from	the	old	stack	using	direct	page	addressing.

Having	restored	the	accumulator,	all	that	remains	is	to	set	the	direct	page	register	to
zero;	since	no	registers	can	be	modified	at	 this	point,	 this	 is	accomplished	by	pushing	a
zero	onto	the	stack,	and	then	pulling	it	into	the	direct	page	register.

When	you	switch	the	processor	into	emulation	mode,	the	environment	is	as	it	should
be;	the	new	stack	is	now	set	up	to	transfer	control	to	the	6502	subroutine	via	the	execution
of	an	RTS	instruction	which,	rather	than	exiting	the	JSR6502	routine,	performs	a	kind	of
jump	indirect	 to	 the	value	on	top	of	 the	stack,	 the	go-to	address.	The	use	of	 the	RTS	 to
transfer	control	to	the	6502	routine	is	the	reason	the	address	minus	one	is	put	on	the	stack
to	begin	with.	This	requirement	could	be	eliminated	if	the	go-to	address	was	decremented
before	being	pushed	on	 the	page	one	stack;	but	 this	would	 require	 the	execution	of	 two
additional	instructions,	one	to	load	it	into	a	register,	and	one	to	decrement.	PEI	moves	the
value	directly	onto	the	stack	from	the	direct	page.

When	control	returns	from	the	6502	routine,	the	flags,	representing	the	6502	routine’s
results,	are	pushed,	 then	pulled	 into	 the	eight-bit	A	 accumulator	after	 its	value	has	been
saved	by	transferring	it	to	the	B	accumulator	with	an	XBA.	The	only	other	item	left	on	the
new	 stack	 is	 the	 old	 stack	 pointer.	 This	 is	 pulled	 into	 the	 direct	 page	 register,	 which
immediately	restores	access	to	all	of	the	values	pushed	onto	the	old	stack.

The	condition	code	bits	in	the	returned	status	register	are	merged	with	the	mode	flags
in	 the	 original	 status	 register.	 The	 eight-bit	 result	 is	 stored	 in	 the	 location	 immediately
below	the	return	address.

The	register	values	upon	return	are	saved	into	the	locations	where	the	registers	were
originally	pushed	on	the	stack.	Since	the	processor	is	still	in	emulation	mode,	only	the	low
bytes	are	stored;	the	high	bytes	of	any	of	the	65802/65816	registers	are	always	preserved
(which	 means	 that	 if	 a	 low	 byte	 is	 unchanged,	 then	 the	 entire	 double-byte	 value	 is
preserved).

The	 native	 mode	 is	 restored.	 The	 registers	 are	 extended	 to	 sixteen	 bits.	 The	 stack
pointer	is	restored	from	the	direct	page	register.

There	remains	a	gap	on	the	stack;	 the	value	of	 the	accumulator	 is	copied	there.	The
registers	are	now	restored,	with	the	accumulator	being	pulled	a	second	time	from	its	new
location.

Control	is	now	back	with	the	calling	65816	program,	the	processor	never	the	wiser	for
having	been	transformed	into	a	6502.

This	 coding	 presumes	 that	 the	 calling	 code,	 the	 switching	 routine,	 and	 the	 6502
routine	are	all	 located	in	 the	same	bank,	bank	zero.	It	also	assumes	a	data	bank	of	zero.
Should	the	6502	routine	be	in	a	non-zero	bank,	then	you	should	save	its	program	bank	to	a
safe	 location	 prior	 to	 the	 switch	 to	 emulation	mode	 so	 that	 it	 cannot	 be	 lost	 in	 case	 of
interrupt.	You	should	also	check	your	emulation	mode	interrupt	service	routines	to	be	sure
they	restore	the	program	bank	from	the	safe	location	prior	to	returning.

Finally,	should	 the	calling	code	be	 in	a	bank	different	 from	the	6502	routine,	you’ll
have	to	locate	the	switching	code	in	the	same	bank	with	the	6502	routine	(its	return	will	be
an	RTS);	call	 the	switching	code	with	a	JSL;	move	 the	pushed	program	bank	down	two
bytes	 to	 the	 bottom	 of	 the	 stack	 before	 relocating	 the	 return	 address;	 and	 return	 to	 the
calling	code	via	an	RTL.

Testing	Processor	Type
A	 related	 utility	 routine	 (Listing	 14.6)	 checks	 the	 processor	 type,	 allowing	 code

targeted	for	the	large	6502	installed-base	to	take	advantage	of	a	65C02	or	65802/65816	if
available.	The	processor	is	assumed	to	be	in	emulation	mode	if	it	is	a	65816	or	65802.

This	 routine	 takes	advantage	of	 the	 fact	 that	 the	65C02	and	65816	set	 the	 sign	 flag
correctly	in	the	decimal	mode,	while	the	6502	does	not.	The	sign	flag	is	set	(minus)	after
loading	$99	(a	negative	two’s-complement	number).	When	one	is	added	to	BCD	99,	 the
result	is	BCD	0,	a	positive	two’s-complement	number.	On	the	6502,	adding	one	in	decimal
mode	does	not	affect	 the	sign	flag.	On	 the	65C02	and	65816,	 the	sign	flag	 is	cleared	 to

reflect	that	adding	one	results	in	a	positive	value	(zero).

Having	distinguished	between	the	65C02	and	the	6502,	the	code	further	distinguishes
between	the	65C02	and	65816	by	trying	to	execute	one	of	the	new	65816	instructions—
specifically,	 the	XCE	 instruction.	 If	 a	 65C02	 is	 in	 use,	 the	 execution	 of	XCE	 has	 no
effect;	 it	 simply	 performs	 a	 no-op,	 and	 the	 carry	 flag	 remains	 clear.	 On	 a	 65816	 in
emulation	mode,	the	carry	flag	would	be	set	after	exchanging.

Listing	14.6.

Compiler-Generated	65816	Code	for	a	Recursive
Program

Although	it	is	not	directly	relevant	to	assembly-language	programming	per	se,	a	look
at	how	a	compiler	might	generate	65816	code	provides	another	angle	on	65816	program
design.	You	may	also	find	it	helpful	when	you	are	writing	in	a	high-level	language	to	have
some	idea	as	to	what	kind	of	code	your	compiler	might	be	generating.

For	 the	brief	 example	presented	here,	 an	 integer-only	 subset	of	 the	C	programming
language—such	 as	 the	 dialect	 known	 as	 “small	 C”—is	 used.	 To	 understand	 C,	 it	 is
important	to	understand	the	concept	of	the	pointer.	Effectively,	a	pointer	is	a	variable	that
holds	 the	 address	 of	 another	 data	 structure.	 C	 programmers	 are	 particularly	 known	 for
their	liberal	use	of	pointers,	primarily	because	they	provide	a	method	to	manipulate	data

structures	that	is	very	close	to	the	machine	level.	The	concept	of	the	variable	itself	is	an
abstraction	which	generally	results	in	additional	overhead.

The	 most	 notable	 thing	 about	 the	 use	 of	 pointers	 in	 the	 example	 is	 that	 they	 are
limited	to	sixteen	bits,	even	though	the	65816	has	an	address	space	of	sixteen	megabytes.
The	sixteen-bit	machine	word	size	was	chosen	both	for	pointers	and	for	the	storage	type
int;	this	lets	many	operations	be	implemented	using	one	or	two	65816	instructions.	As	a
consequence,	 the	 memory	 model	 used	 with	 this	 compiler	 limits	 data	 storage	 to	 64K;
program	 storage	 is	 also	 limited	 to	 64K.	 If	 the	 loader	 for	 this	 hypothetical	 compiler
supports	loading	of	constant	data	and	program	code	into	separate	banks,	a	total	of	128K
memory	would	be	available	to	the	program.

The	first	line	of	the	program,	shown	in	Listing	14.7,	is	the	declaration	of	the	function
main.	By	convention,	the	function	main	is	always	called	as	the	entry	point	to	a	program;
it	typically	(but	not	necessarily)	is	the	first	routine	coded,	as	it	is	in	this	example.

The	 curly	 braces	 define	 the	 function	 block;	 the	 first	 statement	 in	 the	 block	 is	 the
declaration	of	y,	which	is	a	pointer	to	a	character;	an	asterisk	before	an	identifier	indicates
that	it	is	a	pointer	variable.	In	C,	pointers	are	typed	by	the	type	of	the	data	object	to	which
they	point.

Listing	14.7.

The	 first	 executable	 statement	 is	 the	 assignment	 of	 the	 string	 constant	“A	 string	 to
invert”	 to	 the	variable	y.	 In	 this	context,	 the	y	appears	without	 the	 asterisk,	 because	 the
variable	 is	 being	 given	 a	 value—an	 address—rather	 than	 the	 string	 it	 points	 to.	 The	C
compiler	always	returns	the	address	of	a	string	and	zero-terminates	it	when	it	encounters	a
string	constant.

The	next	statement	is	a	call	to	the	function	invert	with	a	parameter	of	y	(which	is	the
variable	that	just	received	a	value	in	the	preceding	statement).	Invert	is	 the	function	that
actually	does	the	work	of	this	program,	which,	as	you	may	have	guessed	by	now,	prints	an
inverted	(backwards)	string.

After	the	closing	brace	for	main	comes	the	declaration	of	the	function	invert.	Invert
takes	a	parameter—a	pointer	to	a	character.	When	invert	is	called	from	main	with	y	as	the

parameter,	yy	assumes	the	value	of	y.

The	code	of	invert	tests	the	value	pointed	to	by	yy;	the	first	time	invert	is	called,	this
will	be	the	letter	“A”,	the	first	character	in	the	string	constant.	The	test	is	whether	or	not
the	value	“at	yy”	is	non-zero	or	not;	if	it	is	non-zero,	the	statements	within	the	braces	will
be	executed.	If	(or	when)	the	value	is	equal	to	zero,	the	code	within	the	braces	is	skipped.

Looking	at	the	first	of	the	pair	of	lines	contained	within	the	braces,	you	will	find	that
it	is	a	call	to	invert—the	same	function	presently	being	defined.	This	calling	of	a	routine
from	within	 itself	 is	 called	 recursion,	 and	 programming	 languages	 such	 a	 C	 or	 Pascal,
which	allocate	their	local	variables	on	the	stack,	make	it	easy	to	write	recursive	programs
such	as	this	one.	The	merits	of	using	recursion	for	any	given	problem	are	the	subject	for
another	discussion;	however,	as	seen	in	the	example,	it	seems	quite	useful	for	the	task	at
hand.	What	happens	when	this	function	calls	 itself	will	be	explored	in	a	moment,	as	 the
generated	code	itself	is	discussed.

The	last	executable	line	of	the	program	calls	the	routine	putchar,	an	I/O	routine	that
outputs	the	value	passed	it	as	a	character	on	the	standard	(default)	output	device.

Returning	 to	 the	 top	of	 the	program,	Listing	14.8	 shows	 the	 code	 generated	 by	 the
compiler	 to	 execute	 the	C	program;	 it	 is	 inter-listed	with	 the	 source	 code—each	 line	of
compiler	source	appears	as	an	assembler-source	comment.

Before	the	first	statement	is	compiled,	the	compiler	has	already	generated	some	code:
a	 jump	 to	 a	 routine	 labeled	CCMAIN.	CCMAIN	 is	 a	 library	 routine	 that	 performs	 the
“housekeeping”	necessary	to	provide	the	right	environment	for	the	generated	code	to	run
in.	At	the	very	least,	CCMAIN	must	make	sure	the	processor	is	in	the	native	mode,	and
switch	into	the	default	(for	the	compiler)	sixteen-bit	index	and	accumulator	word	sizes.	If
the	 operating	 system	 supports	 it,	 it	 should	 also	 initialize	 the	 variables	 argc	 and	 argv,
which	allow	 the	programmer	access	 to	 command-line	parameters,	 although	 they	are	not
used	 in	 this	 example.	 Finally,	CCMAIN	will	 call	main	 to	 begin	 execution	 of	 the	 user-
written	code	itself.

Listing	14.8.

The	 declaration	 of	main	 causes	 an	 assembler	START	 statement	 to	 be	 output;	 this
simply	defines	 the	beginning	of	 the	subroutine	or	 function.	The	declaration	char	*y	will
cause	 the	 PHX	 instruction	 to	 be	 generated	 after	 the	 first	 line	 of	 executable	 code	 is
generated;	 this	 reserves	 space	 for	 one	 variable	 (the	 pointer	 y)	 on	 the	 stack.	 That	 first
executable	code	line	is	the	assignment	y	=	“A	string	to	invert”.	This	causes	the	address
of	 the	 string	 constant,	 which	 will	 be	 temporarily	 stored	 at	 the	 end	 of	 the	 generated
program,	to	be	loaded	into	the	accumulator.	The	address	just	loaded	into	the	accumulator
is	now	stored	on	the	stack	in	the	memory	reserved	for	it	by	the	PHX	instruction;	the	value
of	X	that	was	pushed	onto	the	stack	was	meaningless	in	itself.

The	next	statement	to	be	compiled	is	a	call	to	the	function	invert	with	the	variable	y
as	 the	 parameter.	 This	 causes	 the	 value	 stored	 on	 the	 stack	 to	 be	 loaded	 back	 into	 the
accumulator,	where	 it	 is	 then	pushed	onto	 the	stack.	All	parameters	 to	function	calls	are
passed	on	the	stack.

Note	that	the	accumulator	already	contained	the	value	stored	on	the	top	of	the	stack;
the	 LDA	 1,S	 instruction	 was	 redundant.	 However,	 the	 hypothetical	 compiler	 in	 this
example	does	not	optimize	across	statements,	so	 the	potential	optimization—elimination
of	the	load	instruction—cannot	be	realized.	Once	the	parameter	is	on	the	top	of	the	stack,
the	 function	 itself	 is	called	via	a	JSR	 instruction.	Since	 the	program	space	 is	 limited	 to
64K,	only	a	sixteen-bit	subroutine	call	is	used.	After	the	call	returns,	the	PLX	instruction
removes	the	no-longer-needed	parameter	from	the	stack.	The	right	bracket	indicating	the
end	 of	 the	 function	main	 causes	 the	 compiler	 to	 generate	 another	PLX	 to	 remove	 the
variable	storage,	an	RTS	instruction,	and	an	assembler	END	statement.

Invert	is	defined	as	having	one	parameter,	the	character	pointer	yy.	By	declaring	the
function	in	this	way,	the	compiler	knows	to	generate	code	to	look	for	the	variable	yy	on
top	 of	 the	 stack	whenever	 a	 reference	 to	 it	 is	 made.	 You	 can	 see	 how	 this	 is	 done	 by
looking	at	the	code	generated	for	the	first	line,	which	tests	the	value	at	yy	(rather	than	the
value	of	yy)	to	see	whether	it	is	true,	that	is,	not	equal	to	zero.	To	get	this	value,	the	stack
relative	indirect	indexed	addressing	mode	is	used.	First	the	Y	register	is	loaded	with	zero,
so	that	the	first	element	pointed	to	by	the	indirect	value	on	the	stack	is	accessed.	The	stack
offset	used	is	three,	rather	than	one,	because	when	the	subroutine	call	was	made,	after	the
parameter	was	pushed	onto	the	stack,	the	return	address	was	pushed	onto	the	stack,	on	top
of	the	parameter.

After	 the	 value	 is	 loaded,	 it	must	 be	ANDed	with	 $FF	 to	mask	 out	 the	 high-order
contents,	since	this	is	a	character	(one-byte)	type	of	variable.

If	the	character	is	not	equal	to	zero,	as	it	is	not	the	first	time	through,	the	JMP	CC3
instruction	is	skipped,	and	execution	continues	with	 the	code	generated	for	 the	C	source
statements	inside	the	braces.

The	 first	 statement	 is	 the	 recursive	 call	 to	 invert.	 Similar	 to	 the	 call	 from	main,	a
parameter	is	pushed	onto	the	stack.	Since	an	expression	(yy	+	1)	is	being	passed,	however,
it	must	first	be	evaluated.	First	 the	value	of	yy	is	loaded	from	the	stack,	and	then	one	is
added	 to	 it.	Although	 this	 hypothetical	 compiler	 does	not	 optimize	 across	 statements,	 it
apparently	does	a	pretty	good	job	within	them,	for	it	has	optimized	the	addition	of	one	to	a

single	increment	instruction.

Invert	is	then	called	again.	If	you	start	counting	them,	you	will	find	that	more	pushes
than	pulls	will	have	been	made	at	this	point;	in	other	words,	the	stack	is	growing.	When
invert	is	reentered,	the	value	it	finds	on	the	stack	is	the	starting	address	of	the	string	literal
plus	 one;	 in	 other	words,	 the	 second	 element	 is	 being	 addressed.	As	 long	 as	 the	 value
pointed	to	by	the	parameter	passed	to	invert	is	non-zero,	invert	will	continue	to	be	called
recursively,	and	the	stack	will	continue	to	grow.	When	the	last	element	(with	the	value	of
zero)	is	reached,	the	recursive	function	“bottoms	out”;	the	jump	to	CC3	that	occurs	when
the	value	at	yy	is	equal	to	zero	jumps	directly	to	an	RTS	instruction.	This	causes	control	to
return	to	the	next	statement	after	the	call	to	invert.	The	value	of	yy	in	the	most	recently
called	invocation	(the	value	at	3,S)	will	be	a	pointer	to	the	last	character	in	the	string;	it	is
this	character	that	is	first	loaded	into	the	accumulator,	then	pushed,	output	via	a	call	to	the
routine	putchar,	then	pulled	again.

Upon	return	from	putchar,	control	falls	through	to	the	RTS	instruction,	and	the	next
set	of	values	on	the	stack	are	processed.	This	continues	until	all	of	the	characters	pointed
to	by	the	values	on	the	stack	have	been	printed,	 in	the	reverse	order	in	which	they	were
found.	Finally,	the	last	return	executed	pulls	the	address	of	the	return	address	in	main	off
the	stack,	and	the	program	terminates.

The	Same	Example	Hand-Coded	in	Assembly	Language
A	 distinctive	 characteristic	 of	 the	 preceding	 high-level	 language	 programming	 example
was	that	the	algorithm	employed	involved	recursion.	Consider	Listing	14.9,	which	 is	 the
same	 algorithm	 hand-coded	 in	 assembly	 language;	 it	 is	 much	 more	 efficient	 than	 the
compiler-generated	example.

Listing	14.9.

Because	 the	more	 elaborate	 parameter-passing	 and	 variable-allocation	 requirements
of	 the	C	language	can	be	bypassed,	 the	example	here	 is	much	more	efficient.	 (Although
some	further	optimization	of	the	compiler-generated	code,	as	noted,	is	possible,	the	code
in	the	example	would	probably	be	a	typical	result.)

To	start	with,	a	more	intelligent	decision	about	the	mode	flags	is	made	right	from	the
start,	rather	than	coping	with	the	default	sixteen-bit	accumulator	size	of	the	compiler	code
by	masking	out	the	high-order	byte	whenever	a	character	is	loaded.

Secondly,	 full	 use	 of	 the	 index	 register	 is	made,	 both	 to	 access	 the	 data	 and	 as	 the
parameter-passing	 mechanism.	 Rather	 than	 push	 successive	 pointers	 to	 the	 inverted
character	string	on	the	stack,	the	character	itself	is	stored.

If	 this	 routine	will	 be	 used	 to	 invert	 a	 single,	 known	 string	 (as	 opposed	 to	making
INVERT	a	subroutine	for	inverting	any	string,	the	beginning	character	of	which	is	pointed
to	 by	 the	X	 register),	 then	 any	 assembly	 language	 programmer	would	 simply	write	 the
code	 found	 in	 Listing	 14.10.	 When	 the	 assembler	 evaluates	 the	 LDX	 instruction’s
operand,	the	“L:”	function	determines	the	length	of	STRING.

The	Sieve	of	Eratosthenes	Benchmark
With	all	of	the	different	factors	that	affect	system	performance,	it	is	difficult	to	find	a

clear	criterion	by	which	to	judge	a	processor’s	performance.	Rightly	or	wrongly,	the	speed
with	which	a	processor	runs	a	standard	“benchmark”	program	is	often	used	in	forming	a
judgement	of	it.	One	of	the	most	commonly	used	(and	cited)	benchmarks	is	the	Sieve	of
Eratosthenes	algorithm.	The	use	of	the	Sieve	program	first	gained	popularity	as	the	result
of	 articles	 written	 by	 Jim	 Gilbreath	 and	 Gary	 Gilbreath,	 appearing	 in	 BYTE	 magazine
(September	1980,	page	180),	and	updated	in	January	1983	(page	283).

Listing	14.10.

The	Sieve	program	calculates	the	prime	numbers	between	3	and	16,381;	it	is	based	on
an	 algorithm	 originally	 attributed	 to	 the	 Greek	 mathematician	 Eratosthenes.	 The	 basic
procedure	is	to	eliminate	every	nth	number	after	a	given	number	n,	up	to	the	limit	of	range
within	which	primes	are	desired.	Presumably	the	range	of	primes	is	itself	infinite.

As	well	as	providing	a	common	yardstick	with	which	to	gauge	the	65816,	the	Sieve
program	 in	 Listing	 14.11	 provides	 an	 opportunity	 to	 examine	 performance-oriented
programming;	since	the	name	of	the	game	is	performance,	any	and	all	techniques	are	valid
in	coding	an	assembly-language	version	of	a	benchmark.

Four	variable	locations	are	defined	for	the	program.	ITER	counts	down	the	number
of	 times	 the	 routine	 is	 executed;	 to	 time	 it	 accurately,	 the	 test	 is	 repeated	 100	 times.
COUNT	holds	the	count	of	primes	discovered.	K	is	a	temporary	variable.	And	PRIME	is
the	value	of	the	current	prime	number.

The	variable	I	has	no	storage	 reserved	 for	 it	because	 the	Y	register	 is	used;	 it	 is	an
index	 counter.	 Y	 is	 used	 instead	 of	 X	 because	 certain	 indexed	 operations	 need	 the
absolute,X	addressing	mode.

The	 constant	SIZE	 is	 equal	 to	 one-half	 of	 the	 range	 of	 numbers	within	which	 the
primes	are	to	be	discovered;	this	algorithm	ignores	all	even	numbers	(even	numbers	being
non-prime).	The	first	element	 in	 the	array	represents	3,	 the	second	5,	 the	third	7,	and	so
on.

Listing	14.11.

The	program	begins	by	entering	the	native	mode	and	extending	the	user	registers	to
sixteen	 bits.	 ITER	 is	 initialized	 for	 100	 iterations.	 An	 array	 (starting	 at	 FLAGS)	 of
memory	of	size	SIZE	is	initialized	to	SFF’s,	two	bytes	at	a	time.

The	 routine	proper	now	begins.	Y	 is	 initialized	with	zero,	 and	control	 falls	 into	 the
main	loop.	The	high-order	bit	of	each	cell	of	the	array	FLAGS	is	tested.	Initially,	they	are
all	 set,	 but	 the	 algorithm	 iteratively	 clears	 succeeding	 non-prime	values	 before	 they	 are
tested	by	this	code.	If	the	high	bit	is	clear,	this	number	has	already	been	eliminated	by	the
algorithm;	it	is	non-prime.	Notice	that	the	high-order	bit	of	the	FLAG[I]	(or	FLAG[Y])
array	is	desired;	however,	since	the	processor	is	in	sixteen-bit	mode,	the	high	bit	will	be
loaded	from	the	memory	location	at	the	effective	address	plus	one.	To	overcome	this,	the
base	of	the	array	is	specified	as	the	actual	base	minus	one;	this	calculation	is	performed	by
the	assembler	during	generation	of	the	object	code.

If	the	current	value	has	not	been	cleared,	the	algorithm	calls	for	the	number	which	is
two	times	the	current	index	value	plus	three	(this	converts	the	index	to	the	array	values	of
3,	5,	7…)	to	be	the	next	value	for	PRIME.	This	prime	number	is	generated	quickly	by
transferring	the	Y	index	register	into	the	accumulator,	shifting	it	left	once	to	multiply	by
two,	and	incrementing	it	three	times.	Remember,	this	number	is	generated	from	the	current
index	only	if	the	index	value	has	not	already	been	eliminated	as	being	non-prime.

This	prime	number	is	then	added	to	the	current	index,	and	the	array	elements	at	this
offset,	 and	 at	 all	 succeeding	 indices	 every	PRIME	 value	 apart	 are	 eliminated	 from	 the
array	as	being	non-prime.	They	have	the	current	prime	number	as	one	of	their	factors.	The
most	 significant	 thing	 to	note	here	 in	 the	code	 is	 that	only	one	byte	can	be	cleared;	 the
accumulator	 must	 temporarily	 be	 switched	 into	 the	 eight-bit	 mode	 to	 accomplish	 this.
However,	 since	 the	 next	 operation	 is	 an	 addition,	 an	 optimization	 is	 available:	 both	 the
sixteen-bit	mode	can	be	restored	and	the	carry	cleared	in	a	single	REP	operation.

The	program	now	loops,	checking	to	see	if	the	next	index	value	has	been	eliminated;
this	process	continues	until	the	index	reaches	the	limit	of	SIZE.

You	may	be	wondering	what	the	result	is:	at	4	MHz,	ten	iterations	are	completed	in

1.56	 seconds,	which	 is	 twice	as	 fast	 as	 a	4	MHz	6502.	The	 January,	1983	BYTE	article
cites	results	of	4.0	seconds	for	a	5	MHz	8088,	1.90	seconds	for	an	8	MHz	8086,	and	.49
seconds	for	an	8	MHz	68000;	an	8	MHz	65816	would	yield	.78	seconds.

15

DEBUG	16—A	65816	Programming	Tool
This	 chapter	 consists	 of	 a	 complete	 65816	 application	 example	 and	 a	 detailed

discussion	of	its	dozen	or	so	routines.	Where	possible,	different	programming	techniques
have	been	employed	in	an	effort	to	illustrate	some	of	the	different	methods	of	coding	that
are	available.

The	program,	DEBUG16,	is	a	rudimentary	step-and-trace	debugger.	A	debugger	is	a
tool	 used	 during	 software	 development	 to	 isolate	 and	 reveal	 sources	 of	 error	 in	 the
program	 being	 tested.	 In	 other	words,	 it	 helps	 the	 programmer	 eliminate	 the	bugs	 in	 a
program,	hence	the	name.	A	step-and-trace	function	lets	the	program	be	halted	after	the
execution	of	each	single	instruction	and	the	registers	and	possibly	other	memory	locations
to	be	examined.	This	effectively	provides	a	“view”	into	the	otherwise	invisible	internals	of
the	processor.

The	 ability	 to	 trace	 programs	 in	 this	manner	 can	 be	 extremely	 useful:	 uninitialized
variables,	wild	branches,	infinite	loops—all	of	the	common	flaws	that	normally	result	in
your	program	going	away	to	never-never	land	with	little	clue	to	their	reasons	for	departure
—are	made	visible.	In	addition	to	displaying	the	register	contents,	a	tracer	will	also	list	the
opcode	mnemonic	and	display	the	operand	using	the	same	syntax	as	originally	specified	in
the	source	program.	This	process	is	called	disassembly.	Although	the	tracing	program	can
accurately	 regenerate	 an	 approximation	 of	 the	 source	 line	 that	 resulted	 in	 a	 given
instruction,	it	cannot	determine	any	of	the	symbolic	labels	that	might	have	been	given	to
the	 addresses	 found	 by	 the	 tracer	 in	 the	 assembler	 source	 program.	More	 sophisticated
debuggers	 called	 symbolic	debuggers	 let	 you	 load	 a	 program’s	 symbol	 table	 created	 by
either	 the	 link	 editor	 or	 assembler;	 the	 debugger’s	 disassembly	 routine	 looks	 up	 each
address	 in	 a	 disassembly	 in	 the	 symbol	 table	 and	 inserts	 labels	 in	 place	 of	 addresses
wherever	a	correspondence	is	found.

DEBUG16	also	has	a	LIST	entry	point,	at	which	its	disassembler	can	be	used	apart
from	 its	 tracer;	 this	 lets	 you	 re-create	 a	 listing	 of	 a	 program	without	 having	 the	 source
code	 available.	Again,	 there	 is	 no	 symbolic	 information	 (labels)	 available.	Additionally,
the	 disassembler	 in	 its	 current	 form	 does	 not	 deal	 with	 variable	 lengths	 of	 immediate
operands	when	in	the	LIST	mode.

The	 tracer	 can	 display	 the	 disassembled	 instruction	 and	 register	 values	 either	 one
instruction	at	a	time,	or	allow	the	trace	to	execute	in	free-running	mode.	When	only	one
instruction	 is	disassembled	at	a	 time,	 the	 tracer	 is	said	 to	be	single-stepping;	pressing	a
key	lets	the	next	instruction	be	executed.	Pressing	RETURN	toggles	the	tracer	into	free-
running	mode.	While	 free-running,	a	 single	key	press	will	pause	 the	 trace.	Pressing	any
key	except	RETURN	resumes	tracing;	RETURN	switches	back	to	single-stepping.

The	basic	theory	of	operation	of	the	tracer	is	simple.	Starting	with	the	first	program
instruction,	 the	 tracer	 calculates	 the	 length	 of	 the	 instruction	 by	 first	 determining	 the
addressing	mode	associated	with	 the	opcode,	and	 then	referring	 to	a	 table	 that	gives	 the

instruction	 lengths	 for	 the	 different	 addressing	 modes.	 It	 can	 therefore	 determine	 the
location	of	the	next	instruction	that	follows	the	current	one.	It	places	a	BRK	instruction	at
that	 location,	 having	 first	 saved	 the	 original	 value	 stored	 there.	Next,	 it	 executes	 (via	 a
JMP	 instruction)	 the	 current	 instruction.	 As	 soon	 as	 that	 instruction	 completes,	 the
program	counter	increments	to	the	next	instruction,	where	it	encounters	the	inserted	BRK.
BRK	initiates	an	interrupt	cycle	that	returns	control	back	to	the	tracer,	saves	copies	of	all
of	the	processor’s	register	contents	to	memory,	then	calls	a	routine	which	displays	them,
along	with	the	disassembled	instruction.

When	 the	 next	 step	 (next	 instruction)	 is	 to	 be	 executed,	 the	 BRK	 instruction	 is
replaced	with	its	original	value,	and	the	cycle	is	repeated.	In	this	way	the	program	is	able
to	gain	control	of	the	processor	“in	between”	the	execution	of	each	instruction.

The	exception	to	this	method	is	whenever	an	instruction	(such	as	a	branch	or	jump)	is
encountered	which	can	change	the	flow	of	control;	in	these	cases,	the	target	location	must
be	determined	(by	examining	the	operand	of	the	instruction),	and	a	BRK	 inserted	at	that
location	instead.

The	disassembly	output	looks	like	Figure	15.1.

Figure	15.1.	Disassembly	Output.

And	the	tracer	output	looks	like	Figure	15.2.

Figure	15.2.	Tracer	Output.

This	 example	was	developed	and	 tested	using	an	Apple	 //e	with	 a	65816	processor
card	installed;	the	calls	to	machine-dependent	locations	have	been	isolated	and	are	clearly
identified	as	such.	DEBUG16	uses	the	native	BRK	vector.	On	an	Apple	//,	this	location
($FFE6.FFE7)	 normally	 contains	 ROM	 data,	 which	 varies	 between	 monitor	 ROM
versions.	 Since	 there	 is	 no	 way	 to	 patch	 ROM,	 the	 solution	 opted	 for	 here	 is	 for
DEBUG16	 to	 try	 to	 patch	 the	 location	 pointed	 to	 by	 the	 data	 that	 is	 stored	 there.	 For
current	ROMs,	these	are	RAM	locations	that	happen	to	be	more	or	less	livable.	Check	the
location	 pointed	 to	 by	 your	 ROMs,	 and	make	 sure	 that	 neither	 your	 own	 code	 nor	 the
debugger	are	 loaded	into	that	area.	DEBUG16	will	automatically	read	whatever	value	is
stored	there	and	store	a	vector	to	that	address	to	regain	control	after	a	BRK.

Both	programs	 are	 executed	by	putting	 the	 starting	 address	 of	 the	 routine	 to	 list	 or
trace	(which	has	been	loaded	into	memory)	at	DPAGE	+	80.82	($380.82)	in	low	-	high	-
bank	order,	and	then	calling	either	the	TRACE	entry	point	at	$2000,	or	the	LIST	entry	at
$2003.

Declarations
The	listing	begins	with	the	declaration	of	global	values	by	way	of	GEQU	statements.

Almost	all	of	these	are	addresses	of	direct	page	memory	locations	that	will	be	used;	one
notable	exception	is	the	label	DPAGE,	a	sixteen-bit	value	that	defines	the	beginning	of	the
direct	 page	 memory	 to	 be	 used	 by	 this	 program.	 Because	 a	 65816	 debugger	 is	 by
definition	a	6502	debugger,	 it	 is	wise	 to	 relocate	 the	direct	page	out	of	 the	default	 zero
page,	since	it	will	be	used	by	6502	programs,	and	you	want	to	avoid	conflicting	memory
usage	between	 the	debugger	and	 the	program	being	debugged.	 In	 the	 listing,	 a	value	of
$300	 is	 used;	 on	 an	 Apple	 //,	 this	 relocates	 the	 direct	 page	 to	 page	 three,	 which	 is	 a
convenient	page	to	use.

Many	of	 the	direct	page	 locations	are	used	 to	store	 the	 register	contents	of	 the	user
program	when	the	debugger	is	executing.	All	of	the	registers	are	represented.	As	you	will
see	in	the	code,	the	adjacent	positioning	of	some	of	the	registers	is	important	and	must	be
maintained.

In	addition	to	the	direct	page	locations	used	for	register	storage,	one	general-purpose
temporary	variable	is	used,	called	TEMP.	Three	other	variables—ADDRMODE,	MNX,
and	OPLEN	 (for	address	mode,	mnemonic	 index,	 and	operation	 length,	 respectively)—
are	used	primarily	to	access	the	tables	used	in	disassembling	an	instruction.

The	variable	CODE	contains	 the	 instruction	opcode	currently	being	executed	in	 the
user	program.	The	variable	NCODE	contains	the	next	instruction	opcode	to	be	executed,
saved	 there	 before	 being	 replaced	 with	 the	 BRK	 instruction	 inserted	 in	 the	 code.
OPRNDL,	OPRNDH,	and	OPRNDB	contain	 the	 three	(possible)	values	of	 the	operand
of	a	given	instruction.

LIST
The	 program	 has	 two	 entry	 points,	 defined	 in	 the	 first	 routine.	 One	 is	 for	 listing

(disassembling)	 a	 program,	 the	 other	 for	 tracing.	The	 first	 entry	 point,	 at	 the	 program’s
origin	(default	$8000),	is	a	jump	to	the	actual	entry	point	of	the	trace	routine;	the	second,
immediately	past	it	(at	$8003),	is	the	beginning	of	the	code	for	the	disassembler.

Since	 this	 is	 a	 bare-bones	 disassembler,	 intended	 to	 be	 expanded	 and	 perhaps
integrated	with	a	general	purpose	machine	language	monitor,	parameters	such	as	the	start

address	of	 the	program	 to	be	 traced	 are	 entered	by	modifying	 the	values	of	 the	 register
variables;	for	example,	to	begin	disassembly	of	a	program	stored	at	$800,	the	values	$00,
$08,	 and	 $00	 are	 stored	 starting	 at	PCREG.	 Since	 the	 direct	 page	 is	 relocated	 to	 page
three,	the	absolute	location	of	this	variable	is	$380.

Starting	at	 the	LIST	 entry,	 some	basic	 initialization	 is	 performed:	 saving	 the	 status
register,	 switching	 to	 native	 mode,	 and	 then	 saving	 the	 previous	 operating	 mode
(emulation/native)	 by	 pushing	 the	 status	 register	 a	 second	 time	 (the	 carry	 flag	 now
containing	the	previous	contents	of	the	e	bit).	Thus	this	program	may	be	called	from	either
native	or	emulation	mode.

The	current	value	of	 the	direct	page	is	saved	in	program	memory,	and	then	the	new
value—DPAGE—is	stored	to	the	direct	page	register.	The	native	mode	is	entered.

Control	now	continues	at	TOP,	 the	beginning	of	 the	main	 loop	of	 the	disassembler.
The	 mode	 is	 set	 to	 long	 accumulator,	 short	 index.	 This	 combination	 allows	 simple
manipulation	 of	 both	 byte	 and	 double-byte	 values.	 The	 value	 of	PCREG	 is	 copied	 to
OPCREG	 (old	 pcreg).	 OPCREG	 will	 contain	 the	 starting	 location	 of	 the	 current
instruction	throughout	the	loop;	PCREG	will	be	modified	to	point	to	the	next	instruction.
However,	it	hasn’t	been	modified	yet,	so	it	is	used	to	load	the	accumulator	with	the	opcode
byte.	 Indirect	 long	 addressing	 is	 used,	 so	 code	 anywhere	 within	 the	 sixteen-megabyte
address	space	may	be	disassembled.	Since	the	accumulator	is	sixteen	bits,	a	second	byte	is
fetched	as	well,	but	ignored;	the	next	instruction	transfers	the	opcode	to	the	X	register	and
then	stores	it	at	the	location	CODE.

The	utility	routine	UPDATE	is	called	next.	This	is	common	to	both	the	disassembler
and	the	tracer,	and	determines	the	attributes	of	this	instruction	by	looking	the	instruction
up	in	a	table;	it	also	increments	the	program	counter	to	point	to	the	next	instruction.

The	routines	FLIST,	FRMOPRND,	and	PRINTLN	form	the	disassembled	line	and
display	it.	After	each	line	is	printed,	the	routine	PAUSE	is	called	to	check	the	keyboard	to
see	if	a	key	has	been	pressed,	signalling	a	pause.	If	PAUSE	returns	with	the	carry	clear,	it
means	 the	 user	 has	 signalled	 to	 quit,	 and	 control	 falls	 through	 to	QUIT;	 otherwise,	 the
program	loops	to	TOP	again,	where	it	repeats	the	process	for	the	next	instruction.

FLIST
FLIST	 is	 called	 by	 both	 the	 disassembler	 and	 the	 tracer.	 This	 routine	 displays	 the

current	 program	counter	 value,	 the	object	 code	of	 the	 instruction	being	disassembled	 in
hexadecimal,	and	the	mnemonic	for	the	opcode.	The	code	required	to	do	this	is	basically
the	same	for	any	instruction,	the	only	difference	being	the	length	of	the	instruction,	which
has	already	been	determined	by	UPDATE.

The	 first	 thing	 the	 code	 does	 is	 to	 blank	 the	 output	 buffer	 by	 calling	 CLRLN.
Particularly	since	6502	emulation-mode	I/O	routines	are	used,	it	is	more	efficient	to	build
an	 output	 line	 first,	 then	 display	 it	 all	 at	 once,	 rather	 than	 output	 the	 line	 “on	 the	 fly.”
Characters	 are	 stored	 in	 the	output	buffer	LINE	 via	 indexed	absolute	 addressing;	 the	Y
register	 contains	 a	 pointer	 to	 the	 current	 character	 position	 within	 the	 line,	 and	 is
incremented	every	time	a	character	is	stored.	Since	character	manipulation	is	the	primary
activity	in	this	routine,	the	accumulator	is	set	to	eight	bits	for	most	of	the	routine.

The	 flow	 of	 the	 program	 proceeds	 to	 generate	 the	 line	 from	 left	 to	 right,	 as	 it	 is
printed;	the	first	characters	stored	are	therefore	the	current	program	counter	values.	Since
UPDATE	has	already	modified	the	program	counter	variable	to	load	the	operands	of	the
instruction,	 the	 value	 in	 the	 variable	OPCREG	 is	 used.	 The	 hex	 conversion	 routine,
PUTHEX,	 converts	 the	 data	 in	 the	 accumulator	 into	 the	 two	 ASCII	 characters	 that
represent	 the	 number’s	 two	 hexadecimal	 digits,	 storing	 each	 character	 at	 the	 location
pointed	to	by	LINE,Y,	and	then	incrementing	Y	to	point	to	the	next	character.	A	colon	is
printed	 between	 the	 bank	 byte	 and	 the	 sixteen-bit	 program	 counter	 display	 to	 aid
readability.

Next,	some	spaces	are	skipped	by	loading	the	Y	register	with	a	higher	value,	and	the
object	code	bytes	are	displayed	in	hexadecimal.	These	values	have	already	been	stored	in
direct	page	memory	 locations	CODE	and	OPRNDL,	OPRNDH,	 and	OPRNDB	 by	 the
UPDATE	 routine,	 which	 also	 determined	 the	 length	 of	 the	 instruction	 and	 stored	 it	 at
OPLEN.	 The	 length	 of	 the	 operand	 controls	 a	 loop	 that	 outputs	 the	 bytes;	 note	 that	 a
negative	 displacement	 of	 one	 is	 calculated	 by	 the	 assembler	 so	 that	 the	 loop	 is	 not
executed	when	OPLEN	is	equal	to	one.

All	 that	 remains	 is	 to	 print	 the	 instruction	mnemonic.	 The	 characters	 for	 all	 of	 the
mnemonics	are	stored	in	a	table	called	MN;	at	 three	characters	per	mnemonic	(which	as
you	may	have	noticed	is	the	standard	length	for	all	65x	mnemonics),	the	mnemonic	index
(MNX)	determined	by	UPDATE	from	the	instruction	attribute	table	must	be	multiplied	by
three.	This	is	done	by	shifting	left	once	(to	multiply	by	two),	and	adding	the	result	to	the
original	 value	 of	MNX.	Note	 that	 this	 type	 of	 “custom”	multiplication	 routine	 is	much
more	 efficient	 than	 the	 generalized	 multiplication	 routines	 described	 in	 the	 previous
chapter.	The	 characters	 in	 the	mnemonic	 table	 are	 copied	 into	 the	output	 line	using	 the
MVN	instruction;	the	result	just	calculated	is	transferred	into	the	X	register	as	the	source
of	the	move.	It	 is	 the	line-buffered	output	 that	allows	use	of	 the	block-move	instruction;
on-the-fly	output	would	have	 required	each	character	 to	be	copied	out	of	 the	mnemonic
table	in	a	loop.

FRMOPRND
This	routine	is	 the	second	part	of	 the	line-disassembly	pair.	It	performs	the	address-

mode	 specific	 generation	 of	 the	 disassembled	 operand	 field;	 the	 result	 is	 similar	 to	 the
address	mode	specification	syntax	of	a	line	of	65x	source	code.

The	Y	register	is	loaded	with	the	starting	destination	in	LINE,	and	the	attribute	stored
at	ADDRMODE	 is	 multiplied	 by	 two	 to	 form	 an	 index	 into	 a	 jump	 table.	 There	 is	 a
separate	routine	for	each	addressing	mode;	the	address	of	that	routine	is	stored	in	a	table
called	MODES	 in	 the	 order	 that	 corresponds	 to	 the	 attributes	 given	 them	 from	 the
attribute	table.

The	JMP	 indirect	 indexed	 instruction	 is	 used	 to	 transfer	 control	 through	 the	 jump
table	MODES	to	the	appropriate	routine,	whose	index,	times	two,	has	been	loaded	into	the
X	register.

Each	of	the	routines	is	basically	similar;	they	output	any	special	characters	and	print
the	address	of	the	operand	found	in	the	instruction	stream.	There	are	three	related	routines,
POB,	PODB,	and	POTB	(for	put	operand	byte,	put	operand	double	byte,	and	put	operand
triple	byte)	which	output	direct	page,	absolute,	and	absolute	long	addresses.

The	 two	 routines	 FPCR	 and	FPCRL,	 which	 handle	 the	 program	 counter	 relative
instructions,	 however,	 must	 first	 calculate	 the	 destination	 address	 (which	 is	 how	 an
assembler	would	specify	the	operand,	so	this	is	how	they	are	disassembled)	by	adding	the
actual	 operand,	 a	 displacement,	 to	 the	 current	 program	 counter.	 The	 operand	 of	 a	 short
program	counter	relative	instruction	is	sign-extended	before	adding,	resulting	in	a	sixteen-

bit	 signed	 displacement	 which	 is	 added	 to	 the	 program	 counter	 to	 find	 the	 destination
address.

POB
This	 routine	 (put	 operand	 byte),	 with	 three	 entry	 points,	 outputs	 a	 dollar	 sign,

followed	 by	 either	 one,	 two,	 or	 three	 operand	 bytes	 in	 hexadecimal	 form;	 it	 calls	 the
routine	PUTHEX	to	output	the	operand	bytes.	It	is	called	by	FRMOPRND.

Depending	on	the	entry	point,	the	X	register	is	loaded	with	0,	1,	or	2,	controlling	the
number	of	times	the	loop	at	MORE	is	executed;	on	each	iteration	of	the	loop,	an	operand

byte	is	loaded	by	indexing	into	OPRNDL	and	then	printed	by	PUTHEX.

STEP
This	routine	also	contains	the	PAUSE	entry	point	called	by	LIST;	STEP	waits	until	a

keypress,	PAUSE	simply	checks	to	see	if	a	key	has	been	pressed,	and	waits	only	if	there
has	been	an	initial	keypress.	In	both	cases,	the	wait	loop	continues	until	the	next	keypress.

If	 the	 keypress	 that	 exits	 the	 wait	 loop	 was	 the	 ESCAPE	 key,	 the	 carry	 is	 cleared,
signalling	 the	calling	program	 that	 the	user	wants	 to	quit	 rather	 than	continue.	 If	 it	was
RETURN,	 the	 overflow	 flag	 is	 cleared;	 the	 tracer	 uses	 this	 toggle	 between	 tracing	 and
single	stepping.	Any	other	keypress	causes	the	routine	to	return	with	both	flags	set.

The	code	in	this	listing	is	machine-dependent;	it	checks	the	keyboard	locations	of	the
Apple	//.	Since	this	is	a	relatively	trivial	task,	in-line	code	is	used	rather	than	a	call	to	one
of	the	existing	6502	monitor	routines;	therefore,	the	processor	remains	in	the	native	mode
while	it	performs	this	I/O	operation.

Like	all	utility	routines,	STEP	saves	and	restores	the	status	on	entry	and	exit.

PUTHEX
This	utility	 routine,	 already	 referred	 to	 in	 several	descriptions,	 is	 called	whenever	a

hexadecimal	 value	 needs	 to	 be	 output.	 It	 converts	 the	 character	 in	 the	 low	 byte	 of	 the
accumulator	into	two	hexadecimal	characters,	and	stores	them	in	the	buffer	LINE	at	 the
position	pointed	to	by	the	Y	register.

PUTHEX	 calls	 an	 internal	 subroutine,	 MAKEHEX,	 which	 does	 the	 actual
conversion.	This	call	(rather	than	in-line	code)	allows	MAKEHEX	 to	first	call,	then	fall
through	into,	an	internal	routine,	FORMNIB.

When	MAKEHEX	 returns,	 it	 contains	 the	 two	 characters	 to	 be	printed	 in	 the	high

and	low	bytes	of	the	accumulator;	MAKEHEX	was	processed	with	the	accumulator	eight
bits	 wide,	 so	 the	 sixteen-bit	 mode	 is	 switched	 to,	 letting	 both	 bytes	 be	 stored	 in	 one
instruction.	The	Y	register	is	incremented	twice,	pointing	it	to	the	space	immediately	past
the	second	character	printed.

FORMNIB	 is	 both	 called	 (for	 processing	 the	 first	 nibble)	 and	 fallen	 into	 (for
processing	 the	 second).	Thus	 the	RTS	 that	 exits	FORMNIB	 returns	 variously	 to	 either
MAKEHEX	 or	 PUTHEX.	 This	 technique	 results	 in	 more	 compact	 code	 than	 if
FORMNIB	were	called	twice.

The	 conversion	 itself	 is	 done	 by	 isolating	 the	 respective	 bits,	 and	 then	 adding	 the
appropriate	 offset	 to	 form	 either	 the	 correct	 decimal	 or	 alphabetic	 (A-F)	 hexadecimal
character.

Like	all	utility	routines,	the	status	is	saved	and	restored	on	entry	and	exit.

CLRLN
CLRLN	performs	the	very	straightforward	task	of	clearing	the	output	buffer,	LINE,

to	blanks.	It	also	contains	the	global	storage	reserved	for	LINE.

Like	the	other	utility	routines,	CLRLN	saves	and	restores	the	status.

UPDATE
This	 routine,	 common	 to	both	 the	disassembler	 and	 the	 tracer,	updates	 the	program

counter	and	other	direct	page	variables—the	address	mode	attribute	(ADDRMODE)	and
the	 length	 (OPLEN)—and,	 using	 the	 length,	 reads	 the	 instruction	 operands	 into	 direct
page	memory.

The	 address	mode	 and	 length	 attributes	 are	 stored	 in	 a	 table	 called	ATRIBL,	 two
bytes	per	instruction.	Since	there	are	256	different	opcodes,	the	table	size	is	512	bytes.	The
current	opcode	itself,	fetched	previously,	is	used	as	the	index	into	the	table.	Since	the	table
entries	are	two	bytes	each,	the	index	is	first	multiplied	by	two	by	shifting	left.	Since	the
sixteen-bit	accumulator	was	used	to	calculate	the	index,	both	attribute	bytes	can	be	loaded
in	a	single	operation;	since	their	location	in	direct	page	memory	is	adjacent,	they	can	be
stored	in	a	single	operation	as	well.

Normally,	the	value	of	OPLEN	 loaded	from	the	attribute	table	is	the	correct	one;	in
the	case	of	the	immediate	addressing	mode,	however,	the	length	varies	with	the	setting	of
the	m	and	x	flags.	The	opcodes	for	the	immediate	instructions	are	trapped	using	just	three
comparisons,	an	AND,	and	four	branches	to	test	the	opcode	bits.	Note	that	the	immediate
operands	are	multiplied	times	two	because	the	opcode	already	happens	to	be	shifted	left
once.	 If	 the	current	 instruction	uses	 immediate	addressing,	 the	stored	value	of	 the	status
register	 is	 checked	 for	 the	 relevant	 flag	 setting;	 if	m	 or	x,	 as	 appropriate,	 is	 clear,	 then
OPLEN	 is	 incremented.	The	 routines	 that	output	 the	 immediate	operand	now	know	 the
correct	number	of	operand	bytes	to	print,	and	the	tracer	knows	where	the	next	instruction
begins.

The	status	is	saved	on	entry	and	restored	on	exit.

PRINTLN
This	 is	 the	output	 routine.	 In	 this	version,	an	existing	6502	output	 routine	 is	called,

necessitating	a	reversion	to	the	emulation	mode.	Since	this	is	the	only	place	a	6502	routine
is	 called,	 a	 simpler	 mode-switching	 routine	 than	 the	 generalized	 one	 of	 the	 previous
chapter	 is	 used.	 The	 user	 registers	 do	 not	 need	 to	 be	 preserved,	 but	 zero	 needs	 to	 be
swapped	into	the	direct	page	to	make	it	address	page	zero.

The	 main	 loop	 is	 in	 the	 emulation	 mode	 until	 the	 null	 terminal	 byte	 of	LINE	 is
encountered;	on	exit,	the	native	mode,	direct	page,	and	status	are	restored.

TRACE
This	is	the	actual	entry	to	the	trace	routine.	It	performs	initialization	similar	to	LIST,

and	additionally	sets	up	the	BRK	vectors,	so	they	can	point	to	locations	within	the	tracer.

The	e	 flag,	direct	page	 register	and	data	bank	 register	are	all	given	 initial	values	of
zero.	 The	 program	 counter	 and	 program	 counter	 bank	 are	 presumed	 to	 have	 been
initialized	by	the	user.	The	first	byte	of	the	program	to	be	traced	is	loaded;	since	indirect
long	 addressing	 is	 used,	 this	 program	 can	 be	 used	 with	 the	 65816	 to	 debug	 programs
located	in	any	bank.	It	can,	of	course,	also	be	used	with	the	65802.

The	 jump	 to	TBEGIN	 enters	 the	main	 loop	 of	 the	 trace	 routine	 in	 the	middle—in
other	words,	“between	instructions.”

EBRKIN
This	 is	 the	 main	 loop	 of	 the	 tracer.	 It	 has	 three	 entry	 points:	 one	 each	 for	 the

emulation	 and	 native	mode	BRK	 vectors	 to	 point	 to,	 and	 a	 third	 (TBEGIN)	 which	 is
entered	 when	 the	 program	 starts	 tracing	 and	 there	 is	 no	 “last	 instruction.”	 This	 entry
provides	the	logical	point	to	begin	examining	the	tracing	process.

TRACE	 has	 performed	 some	 initialization,	 having	 loaded	 the	 opcode	 of	 the	 first
instruction	to	be	traced	into	the	accumulator.	As	with	FLIST,	UPDATE	is	called	to	update
the	 program	 counter	 and	 copy	 the	 instruction	 attributes	 and	 operand	 into	 direct	 page
memory.	The	routine	CHKSPCL	is	then	called	to	handle	the	flow-altering	instructions;	in
these	cases,	it	will	modify	PCREG	to	reflect	the	target	address.	In	either	case,	the	opcode

of	 the	 next	 instruction	 is	 loaded,	 and	 a	BRK	 instruction	 (a	 zero)	 is	 stored	 in	 its	 place,
providing	 a	 means	 to	 regain	 control	 immediately	 after	 the	 execution	 of	 the	 current
instruction.

The	 contents	 of	 the	 RAM	 pointed	 to	 by	 the	 (arbitrary)	 ROM	 values	 in	 the	 native
mode	BRK	vector	are	 temporarily	saved,	and	the	 location	is	patched	with	a	 jump	to	 the
NBRKIN	entry	point.

The	 registers	 are	 then	 loaded	with	 their	 user	 program	 values:	 these	will	 have	 been
preinitialized	by	TRACE,	or	will	contain	the	values	saved	at	the	end	of	the	execution	of
the	previous	instruction.	Note	the	order	in	which	the	registers	are	loaded;	some	with	direct
page	 locations,	 others	 pushed	 onto	 the	 stack	 directly	 from	 direct	 page	 locations,	 then
pulled	 into	 the	 various	 registers.	 Once	 the	 user	 registers	 have	 been	 loaded	 with	 their
values,	they	cannot	be	used	for	data	movement.	The	P	status	register	must	be	pulled	last,
to	prevent	any	other	instructions	from	modifying	the	flags.

The	 e	 bit	 is	 restored	 by	 loading	 the	P	 register	 with	 a	 mask	 reflecting	 the	 value	 it
should	 have;	 e	 is	 exchanged	with	 the	 carry,	 and	 a	 second	PLP	 instruction	 restores	 the
correct	status	register	values.

The	 routine	 exits	 via	 a	 jump	 indirect	 long	 through	 the	 “old”	 pcreg	 variable,	which
points	 to	 the	 current	 instruction.	 It	 will	 be	 reentered	 (at	 either	EBRKIN	 or	NBRKIN)
when	the	BRK	instruction	that	immediately	follows	the	current	instruction	is	executed.

Before	 this,	 however,	 the	 single	 instruction	will	 be	 executed	 by	 the	 processor;	 any
memory	to	be	loaded	or	stored,	or	any	registers	to	be	changed	by	the	instruction,	will	be
modified.

After	the	BRK	is	executed,	control	returns	to	the	tracer	either	at	EBRKIN,	if	the	user
program	was	in	emulation	mode,	or	at	NBRKIN	if	the	user	program	was	in	native	mode.
The	first	thing	that	must	be	done	is	preserve	the	state	of	the	machine	as	it	was	at	the	end	of
the	instruction.

The	BRK	 instruction	 has	 put	 the	 program	 counter	 bank	 (only	 in	 native	mode),	 the
program	 counter,	 and	 the	 status	 register	 on	 the	 stack.	 The	 program	 already	 knows	 the
address	of	 the	next	 instruction,	 so	 the	value	on	 the	 stack	can	be	disregarded.	The	status
register	is	needed,	however.

Entry	 to	EBRKIN	 is	 from	 the	Apple	 //	monitor	 user	 vector	 at	 $3F0	and	$3Fl.	The
Apple	//	monitor	handles	emulation	mode	BRK	instructions	by	storing	the	register	values
to	 its	own	zero	page	 locations;	 it	pulls	 the	program	counter	and	status	 register	 from	 the
stack	and	stores	them,	too.	The	code	at	EBRKIN	dummies	up	a	native	mode	post-BRK
stack	by	 first	pushing	 three	place-holder	bytes,	 then	 loading	 the	 status	 register	 the	 from
where	the	Apple	Monitor	stored	it,	and	pushing	it.	The	accumulator	and	X	registers	are	re-
loaded	from	monitor	 locations;	Y	has	been	 left	 intact.	A	one	 is	stored	 to	variable	EBIT,
which	will	 be	 used	 to	 restore	 the	 emulation	mode	when	EBRKIN	 exits.	 The	 processor
switches	to	native	mode,	and	control	falls	through	into	NBRKIN,	the	native	mode	break
handler.

With	the	stack	in	the	correct	state	for	both	emulation	mode	and	native	mode	entries,
the	routine	proceeds	to	save	the	entire	machine	context.	The	register	sizes	are	extended	to

sixteen	bits	to	provide	a	standard	size	which	encompasses	the	maximum	size	possible.	The
data	bank	and	direct	page	registers	are	pushed	onto	the	stack;	the	DPAGE	value	is	pushed
on	 immediately	 after,	 and	pulled	 into	 the	direct	page,	 establishing	 the	 local	direct	page.
With	this	in	place,	the	A,	X,	and	Y	 registers	can	be	stored	at	 their	direct	page	locations.
The	 register	 values	 pushed	 on	 the	 stack	 are	 picked	 off	 using	 stack-relative	 addressing.
Since	control	is	not	returned	by	execution	of	an	RTI	(as	is	usual	for	interrupt	processing),
but	 instead	 is	 returned	 by	means	 of	 a	JMP,	 the	 stack	must	 be	 cleaned	 up.	 Since	 seven
bytes	have	been	pushed,	seven	is	added	to	the	current	stack	pointer,	and	then	saved	at	the
direct	page	variable	STACK.	This	being	done,	a	small	local	stack	region	at	$140	can	be
allocated.

The	memory	borrowed	as	a	RAM	native-mode	BRK	vector	is	restored.

The	 current	 line	 is	 then	 disassembled	 in	 the	 same	 manner	 as	 LIST.	 The	 register
values	just	stored	into	memory	are	also	displayed	via	the	routine	DUMPREGS.

Once	 this	 is	 done,	 the	 effect	 has	 been	 achieved	 and	 the	 contents	 of	 the	 registers
between	 instructions	 has	 been	made	 visible.	Before	 resuming	 execution	 of	 the	 program
being	 traced,	 a	 check	 is	made	 to	 see	 if	 the	user	wishes	 to	quit,	 pause	or	 step,	or	 toggle
between	tracing	and	stepping.

Before	returning	to	the	TBEGIN	entry,	the	BRK	instruction	stored	at	the	location	of
the	 new	 “current”	 instruction	 is	 replaced	 with	 the	 saved	 opcode,	 the	 current	 program
counter	is	moved	to	the	old	program	counter,	and	the	cycle	begins	again	at	TBEGIN.

CHKSPCL
This	routine	checks	the	opcode	about	to	be	executed	to	see	if	it	will	cause	a	transfer	of

control.	 Is	 it	 a	branch,	 a	 jump,	or	 a	 call?	 If	 it	 is	 any	of	 the	 three,	 the	destination	of	 the
transfer	must	be	calculated	and	stored	at	PCREG	so	that	a	BRK	instruction	can	be	stored
there	to	maintain	control	after	the	current	instruction	is	executed.

A	table	that	contains	all	of	the	opcodes	which	can	cause	a	branch	or	jump	(SCODES)
is	 scanned.	 If	 a	 match	 with	 the	 current	 instruction	 is	 not	 found,	 the	 routine	 exits	 and
tracing	resumes.

If	a	match	is	found,	the	value	of	the	index	into	the	table	is	checked.	The	opcodes	for
all	the	branches	are	stored	at	the	beginning	of	SCODES,	so	if	the	value	of	the	index	is	less
than	9,	the	opcode	was	a	branch	and	can	be	handled	by	the	same	general	routine.

The	first	thing	that	must	be	determined	if	the	opcode	is	a	branch	is	whether	or	not	the
branch	will	be	taken.	By	shifting	the	index	right	(dividing	by	two),	an	index	for	each	pair
of	different	types	of	branches	is	obtained.	This	index	is	used	to	get	a	mask	for	the	bit	in	the
status	 register	 to	 be	 checked.	 The	 value	 shifted	 into	 the	 carry	 determines	 whether	 the
branch	is	taken	if	the	status	bit	is	set	or	clear.

If	 a	 branch	 is	 not	 taken,	 the	 routine	 exits.	 If,	 however,	 a	 branch	 is	 taken,	 the	 new
program	counter	value	must	be	calculated	by	sign	extending	the	operand	and	adding	it	to
the	current	program	counter.

Each	 of	 the	 other	 opcodes	 (jumps	 and	 calls)	 are	 dispatched	 to	 handler	 routines
through	 a	 jump	 table.	 Since	 only	 the	 new	 program	 counter	 values	 must	 be	 calculated,
jumps	and	calls	with	the	same	addressing	mode	can	be	handled	by	the	same	routine.

Breaks,	 co-processor	 calls,	 and	RTIs	 are	 not	 handled	 at	 all;	 a	 more	 robust	 tracer
would	 handle	 BRKs	 by	 letting	 breakpoints	 be	 set	 and	 cleared.	 Since	 the	 software
interrupts	are	not	implemented,	and	software	tracing	of	hardware	interrupts	is	impractical,
RTI	 is	 left	 unimplemented.	 The	 program	 counter	 is	 incremented	 by	 one,	 causing	 these

instructions	to	be	bypassed	completely.

All	of	 the	 jumps	and	calls	are	straightforward.	Long	addressing	 is	used	 to	 force	 the
stack	 and	 indirect	 addressing	modes	 to	 access	 bank	 zero.	Also	 notice	 the	way	 the	 data
bank	 register	 is	 copied	 to	 the	 program	 counter	 bank	 for	 indirect	 indexed	 addressing.
Finally,	 note	 how	 the	 long	 addressing	modes	 call	 their	 absolute	 analogs	 as	 subroutines,
then	handle	the	bank	byte.

DUMPREGS
This	 routine	 forms	 an	 output	 line	 that	 will	 display	 the	 contents	 of	 the	 various

registers.	 The	 routine	 is	 driven	 in	 a	 loop	 by	 a	 table	 containing	 single-character	 register
names	(“A,”	“X,”	and	so	on)	and	the	address	of	the	direct	page	variable	that	contains	the
corresponding	register	value.	It	is	interesting	in	that	a	direct	page	pointer	to	a	direct	page
address	is	used,	since	the	two	index	registers	are	occupied	with	accessing	the	table	entries
and	pointing	to	the	next	available	location	in	the	output	buffer.

PUTREG8
This	routine,	along	with	PUTREG16,	is	called	by	DUMPREGS	to	actually	output	a

register	 value	 once	 its	 label	 and	 storage	 location	 have	 been	 loaded	 from	 the	 table.
Naturally,	it	calls	PUTHEX	to	convert	the	register	values	to	hexadecimal.

Tables
The	 next	 several	 pages	 list	 the	 tables	 used	 by	 the	 program—SPJMP,	 PMASK,

SCODES,	MN,	MODES,	LENS,	and	ATRIBL.

SPJMP	 is	 a	 jump	 table	 of	 entry	 points	 to	 the	 trace	 handlers	 for	 those	 instructions
which	modify	the	flow	of	control.

PMASK	 contains	 the	 masks	 used	 to	 check	 the	 status	 of	 individual	 flag	 bits	 to
determine	if	a	branch	will	be	taken.

SCODS	is	a	table	containing	the	opcodes	of	the	special	(flow-altering)	instructions.

ATRBL	is	the	attribute	table	for	all	256	opcodes.	Each	table	entry	is	two	bytes,	one	is
an	index	into	the	mnemonic	table,	the	other	the	address	mode.	This	information	is	the	key

to	 the	 other	 tables,	 all	 used	 by	 the	UPDATE	 routine,	 which	 puts	 a	 description	 of	 the
current	instruction’s	attributes	into	the	respective	direct	page	variables.	MN	is	the	table	of
instruction	mnemonics	that	the	‘mnemonic	index’	attribute	points	into.	MODES	is	a	jump
table	 with	 addresses	 of	 the	 disassembly	 routine	 for	 each	 addressing	 mode,	 and	LENS
contains	 the	 length	 of	 instructions	 for	 each	 addressing	 mode.	 Both	 of	 these	 tables	 are
indexed	into	directly	with	the	‘address	mode’	attribute.

16

Design	and	Debugging
Design	 and	 debugging	 stand	 on	 either	 side	 of	 the	 central	 coding	 phase	 of	 the

development	cycle.	Good	 techniques	 for	both	are	as	 important	 as	 skill	 in	 actual	 coding.
This	chapter	provides	a	checklist	of	some	commonly	encountered	bugs—ones	you	should
immediately	 suspect—as	well	 as	 some	words	of	advice	about	program	design	and	good
coding	practice,	which	may	help	you	avoid	some	of	the	bugs	to	begin	with.

Debugging	Checklist
Program	bugs	fall	into	two	categories:	those	specific	to	the	particular	processor	you’re

writing	assembly	code	for,	and	those	that	are	generic	problems	which	can	crop	up	in	any
assembly	 program	 for	 almost	 any	 processor.	 This	 chapter	 will	 primarily	 consider	 bugs
specific	to	the	65x	processors,	but	will	also	discuss	some	generic	bugs	as	they	specifically
apply	in	65x	assembly	programs.

You	may	want	to	put	a	checkmark	beside	the	bugs	listed	here	each	time	you	find	them
in	your	programs,	giving	you	a	personalized	checklist	of	problems	to	 look	for.	You	may
also	want	to	add	to	the	list	other	bugs	that	you	write	frequently.

Decimal	Flag
Seldom	does	the	d	decimal	flag	get	misset,	but	when	it	does,	arithmetic	results	may

seem	to	inexplicably	go	south.	This	can	be	the	result	of	a	typo,	attempting	to	execute	data,
or	 some	other	 execution	error.	Or	 it	 can	 result	 from	coding	errors	 in	which	 the	decimal
flag	 is	 set	 to	enable	decimal	arithmetic,	 then	never	 reset.	 If	branching	occurs	before	 the
decimal	flag	is	reset,	be	sure	all	paths	ultimately	result	in	the	flag	being	cleared.	Branching
while	 in	decimal	mode	 is	 almost	 as	dangerous	as	branching	after	 temporarily	pushing	a
value	onto	the	stack;	equal	care	must	be	taken	to	clear	d	and	clean	the	stack.

This	bug	may	be	doubly	hard	to	find	on	the	6502,	which	does	not	clear	d	on	interrupt
or,	worse,	on	reset.	An	instruction	inadvertently	or	mistakenly	executed	which	sets	d	(only
SED,	RTI,	 or	PLP	 have	 the	 capability	 on	 the	 6502)	would	 require	 you	 to	 specifically
reclear	the	decimal	flag	or	to	power	off	and	power	back	on	again.	As	a	result,	it	is	always
a	good	idea	to	clear	the	decimal	flag	at	the	beginning	of	every	6502	program.

Adjusting	Carry	Prior	to	Add/Subtract
If	you’re	not	used	to	65x	processors	(and	even	for	many	programmers	who	are),	you

may	 tend	 to	write	 an	ADC	 instruction	without	 first	writing	a	CLC,	 or	 an	SBC	 without
first	 an	SEC.	 After	 all,	 other	 processors	 have	 add	 and	 subtract	 instructions	 that	 do	 not
involve	 the	 carry.	 But	 the	 65x	 processors	 do	 not;	 so	 notice	 the	 “C”	 in	 each	 of	 the
instructions	each	time	you	code	them	and	be	sure	the	carry	has	the	appropriate	value.

65x	Left-to-Right	Syntax

Unlike	 some	 other	 processors’	 instructions,	 65x	mnemonics	 read	 from	 left	 to	 right,
just	like	English:	TAX,	for	example,	means	to	transfer	the	A	accumulator	to	the	X	index
register,	not	the	opposite.

65x	Branches
There	are	eight	65x	conditional	branches,	each	based	on	one	of	the	two	states	of	four

condition	code	flags.	Remembering	how	to	use	 them	for	arithmetic	 is	necessary	 to	code
branches	that	work.

Keep	in	mind	that	compare	instructions	cannot	be	used	for	signed	comparisons:	they
don’t	affect	 the	overflow	flag.	Only	the	subtract	 instruction	can	be	used	to	compare	two
signed	numbers	directly	(except	for	the	relationships	equal	and	not	equal).

Remember	that	if	the	z	flag	is	set	(one),	then	the	result	was	zero;	and	if	the	zero	flag	is
clear	(zero),	then	the	result	was	other	than	zero—the	opposite	of	most	first	guesses	about
it.

A	common	code	sequence	is	to	test	a	value,	then	branch	on	the	basis	of	the	result	of
the	test.	A	common	mistake	is	to	code	an	instruction	between	the	test	and	the	branch	that
also	affects	the	very	flag	your	branch	is	based	on	(often	because	an	instruction	you	don’t
expect	to	affect	the	flags	does	indeed	do	so).

Note	 that	 65x	 pull	 instructions	 set	 the	 negative	 and	 zero	 flags,	 unlike	 68xx	 and
8088/8086	processors;	that	store	instructions	do	not	set	any	flags,	unlike	68xx	processors;
that	transfer	and	exchange	instructions	do	set	flags,	unlike	Motorola	and	Intel	processors;
that	 load	 instructions	 do	 set	 flags,	 unlike	 the	 8088;	 and	 increment	 and	 decrement
instructions	do	not	affect	the	carry	flag.

Also,	 in	 decimal	mode	 on	 the	 6502,	 the	 negative,	 overflow	 and	 zero	 flags	 are	 not
valid.

6502	Jump	Bug
There’s	a	hardware	bug	on	the	6502	that	causes	jump	indirect,	with	an	operand	which

ends	 in	 $FF	 (such	 as	 $11FF),	 to	 bomb:	 the	 new	 high	 program	 counter	 value	 is	 taken
incorrectly	from	$1100,	not	the	correct	$1200.

Interrupt-Handling	Code
To	 correctly	 handle	 65x	 interrupts,	 you	 should	 generally,	 at	 the	 outset,	 save	 all

registers	 and,	 on	 the	 6502	 and	 in	 emulation	mode,	 clear	 the	 decimal	 flag	 (to	 provide	 a
consistent	 binary	 approach	 to	 arithmetic	 in	 the	 interrupt	 handler).	 Returning	 from	 the
interrupt	restores	the	status	register,	including	the	previous	state	of	the	decimal	flag.

During	interrupt	handling,	once	the	previous	environment	has	been	saved	and	the	new
one	is	solid,	interrupts	may	be	reenabled.

At	the	end	of	handling	interrupts,	restore	the	registers	 in	the	correct	order.	RTI	will
pull	 the	 program	 counter	 and	 status	 register	 from	 the	 stack,	 finishing	 the	 return	 to	 the
previous	environment,	except	that	 in	65802/65816	native	mode	it	also	pulls	 the	program
bank	register	from	the	stack.	This	means	you	must	restore	the	mode	in	which	the	interrupt
occurred	(native	or	emulation)	before	executing	an	RTI.

65802/65816:	Emulation	Versus	Native	Mode
Emulation	mode	 has	 been	 provided	 on	 the	 65802	 and	 65816	 to	 provide	 continuity

with	 existing	 applications.	Native	mode	provides	 the	powerful	 sixteen-bit	 data	 handling
registers.	But	mixing	emulation	and	native	modes	requires	careful	attention	to	detail.	You
should	deal	with	modes	systematically.

Will	 you	 limit	 subroutines	 to	be	 called	only	 from	a	 certain	mode?	All	 subroutines?
You	must	carefully	document	each	for	which	mode	it	expects.

You	must	be	in	emulation	mode	on	the	Apple	//or	other	6502-based	system	to	use	the
monitor	and	operating	system	6502	routines.	Furthermore,	you	must	put	0000	into	D	(the
direct	page	register)	before	return	to	the	monitor	or	operating	system,	because	zero	page
addressing	now	addresses	the	direct	page,	but	the	6502	firmware	left	its	variables	in	page
zero	before	your	program	switched	to	native	mode.

Any	high	bytes	in	the	index	registers	are	lost	in	the	switch	to	emulation	mode.

While	native	mode	lets	you	set	the	stack	anywhere,	a	non-page-one	stack	location	is
lost	on	return	to	emulation	mode	(the	high	byte	is	thrown	away,	replaced	by	the	obligatory
page	one	high	byte	of	emulation	mode).	Furthermore,	when	setting	the	stack	with	the	TCS
instruction,	only	the	low	accumulator	byte	is	transferred	to	the	stack	pointer	in	emulation
mode,	but	in	native	mode,	the	high	accumulator	byte,	even	if	it	is	hidden,	is	transferred	to
the	high	stack	pointer	byte.

65802/65816:	Eight-Bit	Versus	Sixteen-Bit	Registers
Almost	 as	 potentially	 confusing	 as	 mixing	 emulation	 and	 native	 modes	 is	 mixing

eight-bit	and	sixteen-bit	modes.	Again,	you	should	deal	with	modes	systematically.

Will	you	 limit	subroutines	 to	be	called	only	from	a	certain	mode	setting?	You	must
carefully	document	each	for	the	mode	it	expects.

Because	 instructions	 using	 immediate	 addressing	 are	 different	 lengths	 in	 eight-	 and
sixteen-bit	modes,	being	 in	 the	wrong	mode	will	 cause	 the	processor	 to	grab	 the	wrong
number	of	operand	bytes,	followed	by	a	fetch	for	the	next	opcode	which	will	miss	by	one
and	cause	 it	 to	execute,	as	 though	 it	were	an	opcode,	either	 the	 last	operand	byte	of	 the
immediate	instruction,	or	the	first	operand	byte	of	the	next	instruction.	Either	way	is	sure
program	failure.

65802/65816:	The	Direct	Page
Avoid	 inadvertently	 branching	 from	code	written	 to	 access	 one	 direct	 page	 to	 code

written	to	access	another	without	executing	an	instruction	to	reset	the	direct	page	register
to	 the	 second	 location	 first	 (and	 resetting	 it	 to	 the	 original	 location	 before	 returning).
Remember,	 too,	 that	 programs	 run	 faster	when	 the	 direct	 page	 register	 is	 set	 to	 a	 page
boundary.

Pay	particular	attention	to	the	peculiarities	of	the	direct	page	in	the	emulation	mode:
as	with	 the	 6502	 and	 65C02,	 instructions	which	 use	 direct	 page	 addressing	modes	will
“wrap”	 to	 stay	within	 the	 zero	 page,	but	 only	when	 the	 direct	 page	 register	 is	 equal	 to
zero.	Opcodes	which	are	not	found	on	the	6502	or	65C02	will	not	wrap	at	all,	even	when

the	direct	page	is	equal	to	zero	in	the	emulation	mode.

65802/65816:	Stack	Overruns	Program	or	Data
No	longer	limited	to	a	single	page,	the	native-mode	stack	will	grow	downward	as	far

as	your	program	pushes	bytes	onto	 it.	Large	programs	 should	 either	 retrieve	 every	byte
pushed	 on	 or	 reset	 the	 stack	 periodically	 (using	TCS	 or	TXS).	 The	 potential	 danger	 is
when	 a	 stack	 grows	 uncontrollably	 until	 it	 overwrites	 variables,	 your	 program,	 or	 the
operating	system.

In	this	connection	it	is	important	to	be	aware	that,	although	the	high	byte	of	the	stack
register	is	consistently	forced	to	one,	new	65816	opcodes	executed	in	the	emulation	mode
will	 not	 wrap	 the	 stack	 if	 the	 low	 byte	 over-	 or	 underflowed	 in	 the	 middle	 of	 an
instruction.	For	example,	if	the	stack	pointer	is	equal	to	$101,	and	a	JSL	is	executed,	the
final	byte	of	 the	 three	bytes	pushed	on	 the	stack	will	be	at	$FF,	not	$1FF;	but	 the	stack
pointer	 at	 the	 end	 of	 the	 instruction	 will	 point	 to	 $1FE.	 However,	 if	 JSR	 (a	 6502
instruction)	 is	executed	 in	 the	emulation	mode	with	 the	stack	pointer	equal	 to	$100,	 the
second	of	the	two	bytes	pushed	will	be	stored	at	$1FF.

65802/65816:	JSR/JSL	and	RTS/RTL
RTL	 pulls	 one	more	 byte	 off	 the	 stack	 than	RTS:	 it	 requires	 that	 a	 long	 jump-to-

subroutine	(JSL)	or	its	equivalent	pushed	a	full	24-bit	return	address,	not	just	a	sixteen-bit
one.	Equally	important	is	that	a	JSL	not	be	made	to	a	subroutine	ended	by	an	RTS,	which
pulls	only	sixteen	of	the	24	bits	of	return	address	pushed.

65802/65816:	MVN/MVP
MVN	 and	MVP	 require	 two	 operands,	 usually	 code	 or	 data	 labels	 from	which	 the

assembler	strips	 the	bank	bytes,	 in	sourcebank,destbank	order	 (opposite	of	object	code
order).	Eight-bit	index	registers	will	cause	these	two	instructions	to	move	only	zero	page
memory.	But	eight-bit	accumulator	mode	is	irrelevant	to	the	count	value;	the	accumulator
is	expanded	to	sixteen	bits	using	the	hidden	B	accumulator	as	the	high	byte	of	the	count.
Finally,	the	count	in	the	accumulator	is	one	less	than	the	count	of	bytes	to	be	moved:	five
in	the	accumulator	means	six	bytes	will	be	moved.

Return	Address
If	your	program	removes	the	return	address	from	the	stack	in	order	to	use	it	in	some

fashion	other	 than	using	an	RTS	or	RTL	 instruction	 to	 return,	 remember	 that	you	must
add	one	to	the	stacked	value	to	form	the	true	return	address	(an	operation	the	return-from-
subroutine	instructions	execute	automatically).

Inconsistent	Assembler	Syntax
6502	 assemblers	 have	 been	 wildly	 inconsistent	 in	 their	 syntax,	 and	 early	 65802

assemblers	have	not	set	standards	either.	This	book	describes	syntax	recommended	by	the
designers	 of	 the	 65816,	 the	 Western	 Design	 Center,	 as	 implemented	 in	 the	 ORCA/M
assembler.	Others,	however,	do	and	will	differ.	For	example,	while	many	assemblers	use
the	syntax	of	a	pound	sign	(#)	in	front	of	a	sixteen-bit	immediate	value	to	specify	that	the
low	byte	be	accessed,	with	the	greater-than	sign	(>)	being	used	to	represent	the	high	byte,

at	least	one	6502	assembler	uses	the	same	two	signs	to	mean	just	the	opposite.	Syntax	for
the	new	block	move	instructions	will	undoubtedly	vary	from	the	recommended	standard	in
many	assemblers.	Beware	and	keep	your	assembler’s	manual	handy.

Generic	Bugs:	They	Can	Happen	Anywhere
Uninitialized	Variables

Failing	 to	 initialize	 variables	 may	 be	 the	 most	 common	 bug	 committed	 by
programmers.	Its	symptom	is	often	a	program	which	operates	strangely	only	the	first	time
it	 is	 run	 (after	which	 the	 variable	 has	 at	 some	 point	 been	 given	 a	 suitable	 value	which
remains	 in	memory	 for	 the	 program’s	 second	 try),	 or	 only	 after	 running	 a	 certain	 other
program.	Sometimes	the	symptom	appears	only	on	computers	with	one	brand	of	memory
chips,	and	not	another;	they	happen	to	power	up	with	different	initial	values.

Missing	Code
The	code	you	wrote	on	paper	is	perfect.	The	problem	is	one	or	more	lines	that	never

got	typed	in,	or	were	typed	in	wrong.	The	solution	is	to	compare	your	original	handwritten
code	with	the	typed-in	version,	or	compare	a	disassembly	with	your	original	code.

More	 enigmatically,	 a	 line	 may	 be	 accidentally	 deleted	 or	 an	 opcode	 or	 operand
inadvertently	changed	by	a	keypress	during	a	subsequent	edit	(usually	in	a	section	of	code
which	has	 just	been	proven	 to	work	 flawlessly).	Regular	 source	backups	and	a	program
that	can	compare	text	to	spot	changes	will	often	solve	the	problem.	Or	you	can	compare	a
disassembly	with	the	previous	source	listing.

Failure	to	Increment	the	Index	in	a	Loop
The	 symptom	 are:	 everything	 stops,	 and	 typing	 at	 the	 keyboard	 has	 no	 effect.	 The

problem	is	an	endless	loop—your	branch	out	of	the	loop	is	waiting	for	an	index	to	reach
some	specified	value,	but	 the	index	is	never	decremented	or	incremented	and	thus	never
reaches	the	target	value.

Failure	to	Clean	Up	Stack
This	problem	is	typically	found	in	code	in	which	first	a	value	is	pushed,	then	there	is

a	conditional	branch,	but	all	paths	do	not	pull	the	value	still	on	the	stack.	It	may	result	in	a
return	address	being	pulled	off	the	stack	which	is	not	really	a	return	address	(one	or	more
bytes	of	it	are	really	previously	pushed	data	bytes).

Immediate	Data	Versus	Memory	Location
Failure	to	use	the	‘#‘	sign	to	signify	a	constant	(or	whatever	other	syntax	a	particular

assembler	requires)	will	 instruct	 the	assembler	 to	 load,	not	 the	constant,	but	data	from	a
memory	 location	 that	 it	 assumes	 the	 constant	 specifies.	 That	 is,	 #VAR	means	 access	 a
constant	(or	the	address	of	a	variable);	VAR,	on	the	other	hand,	means	access	its	contents.

Initializing	the	Stack	Pointer	from	a	Subroutine
It	won’t	take	much	thought	to	realize	that	you	can’t	just	reset	the	stack	pointer	from

within	a	subroutine	and	expect	the	return-from-subroutine	instruction	to	work.	The	return
address	was	pointed	to	by	the	previous	stack	pointer.	Who	knows	where	it	is	in	relation	to
the	newly	set	one?

Top-Down	Design	and	Structured	Programming
It’s	wise	to	carefully	consider	the	design	of	a	program	before	beginning	to	write	any

of	it.	The	goals	of	design	are	to	minimize	program	errors,	or	bugs;	to	reduce	complexity;
to	maximize	readability;	and	to	increase	the	speed	and	ease	of	coding	and	testing	and	thus
the	productivity	of	programmers.

The	 top-down	 approach	 to	 structured	 programming	 combines	 two	 major	 design
concepts.	 This	 approach	 is	 generally	 recognized	 as	 the	 method	 of	 design	 which	 best
achieves	these	goals,	particularly	when	coding	large	programs.	Top-down	design	suggests
that	programs	should	be	broken	into	levels:	at	the	top	level	is	a	statement	of	the	goal	of	the
program;	beneath	it	are	second-level	modules,	which	are	the	main	control	sections	of	the
program;	the	sections	can	be	broken	into	their	parts;	and	so	on.

A	blackjack	game	(twenty-one),	for	example,	might	be	broken	down	into	four	second-
level	modules,	the	goals	of	which	are	to	deal	the	cards,	take	and	place	bets	on	the	hands
dealt,	respond	to	requests	for	more	cards,	and	finally	compare	each	player’s	hand	with	the
dealer’s	to	determine	winnings.	The	dealing	module	might	be	broken	down	into	two	third-
level	modules,	 the	goals	of	which	are	 to	shuffle	 the	cards,	and	 to	deliver	a	card	 to	each
player	(executed	twice	so	that	each	player	gets	two	cards).	The	shuffling	module	might	be
broken	into	two	fourth-level	modules	which	assign	a	number	to	each	card	and	then	create
a	random	order	to	the	numbers.

The	makeup	of	each	level	is	clear.	At	the	top	level,	the	makeup	describes	the	program
itself.	At	lower	levels,	the	makeup	describes	the	subprocess.	At	the	lowest	levels,	the	work
is	actually	done.

A	 top-down	 design	 is	 then	 implemented	 using	 subroutines.	 The	 top	 level	 of	 the
program	is	a	very	short	straight-line	execution	routine	(or	loop	in	the	case	of	programs	that
start	over	when	they	reach	the	end),	that	does	nothing	more	than	call	a	set	of	subroutines,
one	for	each	second-level	module	of	the	program.	The	second-level	subroutines	may	call
third-level	subroutines	which	may	call	fourth-level	subroutines,	and	so	on.

Structured	programming	is	a	design	concept	which	calls	for	modules	to	have	only	one
entry	point;	jumping	into	the	middle	of	a	module	is	not	permitted.	(A	structured	approach
to	the	problem	of	needing	an	entry	point	to	the	middle	of	a	module	is	to	make	that	portion
of	 the	module	a	sub-module	with	 its	own	single	entry	and	exit	points.)	A	second	rule	 is
that	all	exits	return	control	to	the	calling	module;	all	branches	(selections)	are	internal;	no
branches	are	permitted	to	code	outside	the	module.

One	of	 the	 side	 benefits	 of	modular	 programming	 is	 the	 ability	 to	 reuse	 previously
coded	modules	 in	 other	 programs:	 th?	 dealing	module	 could	 be	 dropped	 into	 any	 card
game	program	that	calls	for	shuffling	followed	by	the	dealing	of	one	card	at	a	time	to	each
player.	And	 its	 shuffling	 sub-module	 could	 be	 borrowed	 for	 other	 card	 game	 programs
which	only	need	 shuffling.	This	use	of	 the	modularity	principle	 should	not	be	 confused

with	 the	 top-down	 structured	 design;	 they	 are	 distinct	 but	 related	 concepts.	 Modular
programming	in	itself	is	not	the	same	as	top-down	design.

A	 software	 development	 team	 could,	 using	 top-down	 design,	 readily	 assign	 one
programmer	the	task	of	coding	the	deck-shuffling	routine,	another	programmer	the	betting
module,	another	responsibility	for	the	dealing	routines,	and	a	fourth	with	writing	the	code
for	the	end-of-game	comparison	of	hands	and	determination	of	the	winner.

A	new	programmer	trying	to	understand	a	top-down	program	avoids	becoming	mired
in	detail	while	 trying	 to	get	an	understanding	of	 the	structure,	yet	can	very	easily	figure
how	to	get	to	the	degree	of	detail	which	interests	him.

Finally	debugging,	 the	 process	 of	 finding	 and	 removing	 programming	mistakes,	 is
exceptionally	straightforward	with	top-down	design:	on	seeing	that,	after	shuffling,	one	of
the	 52	 cards	 seems	 to	 be	 missing,	 the	 programmer	 can	 go	 directly	 to	 the	 shuffling
subroutines	to	fix	the	problem.

Top-down	design	sometimes	seems	 like	a	waste	of	 time	 to	programmers	anxious	 to
get	 the	bytes	flying;	complex	programs	can	 take	days	or	weeks	of	concerted	 thinking	 to
break	 down	 into	 the	 subparts	 which	 fit	 together	most	 logically	 and	 efficiently.	 But	 the
savings	in	time	spent	coding—and	recoding—and	in	being	able	to	understand,	debug,	and
modify	the	program	later	well	justify	the	time	spent	on	design.

Documentation
One	 of	 the	 most	 important	 elements	 of	 good	 programming	 practice	 is

documentation.	It	is	remarkable	how	little	one	can	recall	about	the	nitty-gritty	details	of	a
program	written	 just	 last	 month	 (or	 sometimes	 even	 yesterday)—the	 names	 of	 the	 key
variables,	 their	various	settings	and	what	each	means	and	how	each	 interacts	with	other
variables	 in	 various	 routines,	 and	 so	 on.	 “Clever”	 programmers,	 those	 who	 bend
programming	principles	to	ends	never	anticipated,	too	often	find	they	(not	to	mention	their
co-workers)	 can	no	 longer	 discover	 the	meaning	behind	 their	 cleverness	when	 it	 comes
time	to	debug	or	modify	that	code.

The	first	principle	of	documentation	is	to	make	the	program	document	itself.	Choose
labels	which	are	meaningful:	DEALLOOP	 is	a	much	better	 label	for	 the	beginning	of	a
loop	which	deals	cards	in	a	card	game	than	is	LAB137.	Substitute	a	label	for	all	constants:
branching	 if	 there’s	 a	 1	 in	 some	 register	 after	 writing	 a	 byte	 to	 disk	 is,	 by	 itself,
meaningless;	 branching	 because	 there’s	 a	 constant	 named	 DISKFULL	 in	 the	 register
provides	clear	documentation.	When	your	program	needs	to	determine	if	an	ASCII	value
is	an	upper-‘case	 letter,	 it’s	much	clearer	 to	compare	with	“greater	 than	or	equal	 to	‘A’”
than	with	“greater	than	‘@’”,	Who	remembers	that	‘@’	precedes	‘A’	in	the	ASCII	chart?

Variables	 should	 be	 commented	 when	 they’re	 declared	 with	 a	 description	 of	 their
purpose,	 their	 potential	 settings,	 and	 any	 default	 states.	 And	 if	 any	 of	 that	 information
changes	 during	 the	 development	 of	 the	 program,	 the	 comment	 should	 be	 changed	 to
match.

Routines	should	be	commented	when	they’re	written:	Note	the	purpose	of	the	routine,
the	 variables	 or	 parameters	which	 need	 to	 be	 set	 before	 entry	 into	 the	 routine,	 and	 the

variables	or	parameters	which	will	be	passed	back.	If	other	data	structures	will	be	affected
by	the	routine,	this,	too,	should	be	commented.

Nothing	is	as	important	both	to	debugging	of	code	and	to	continuing	development	of
programs	 as	 documentation:	 self-documentation;	 a	 comment	 on	 every	 important	 line	 of
code	that	explains	and	expands	it;	a	comment	header	on	every	routine;	and	a	comment	on
every	variable.	While	some	languages	are	said	to	be	automatically	“self-documenting,”	no
language	can	create	documentation	which	is	half	adequate	compared	to	what	the	original
programmer	can	provide	while	the	program	is	being	written.

Part	V

Reference

17

The	Addressing	Modes
There	are	fourteen	addressing	modes	available	to	the	6502,	all	of	those	plus	two	more

on	the	65C02,	and	another	nine	categories	available	on	the	65802	and	65816.	Each	mode
allows	the	location	of	the	data	being	referenced	by	a	given	instruction	to	be	specified	in	a
different	 manner.	 The	 availability	 of	 many	 different	 addressing	 modes	 on	 the	 65x
processors	is	one	key	to	their	power.

The	 data	 found	 in	 operand	 bytes	 of	 an	 instruction	 is	 only	 one	 part	 of	 the	 effective
address	 specification;	 the	 addressing	 modes,	 expressed	 using	 the	 correct	 address-mode
syntax	 in	 the	 operand	 field	 of	 an	 assembly-language	 statement,	 cause	 the	 assembler	 to
choose	 from	among	 the	 instruction’s	 possible	 opcodes	 to	 one	 specific	 to	 the	 addressing
mode.	Not	all	addressing	modes	are	available	for	all	instructions;	but	there	is	one	unique
opcode	for	each	combination	of	addressing	mode	and	operation.

The	addressing	mode	is	the	determinant	of	the	effective	address	for	an	operation—the
memory	address	 that	 the	 instruction	will	access	for	data	or	 to	 transfer	control	within	the
program.	For	a	few	of	the	65x	addressing	modes,	the	effective	address	is	provided	in	the
operand	field	of	the	instruction.	But	for	most	of	them,	formation	of	the	effective	address
involves	an	address	calculation,	that	is,	the	addition	of	two	or	more	values.	The	addressing
mode	 used	with	 a	 given	 instruction	 indicates	where	 these	 values	 are	 to	 come	 from	 and
how	 they	 are	 to	 be	 added	 together	 to	 form	 the	 effective	 address.	This	 effective	 address
calculation	has	as	many	forms	as	there	are	addressing	modes.

An	 important	aspect	of	effective	address	calculation	on	 the	65802	and	65816,	 to	be
considered	 in	 addition	 to	 the	 addressing	modes	 themselves,	 is	 the	 state	 of	 the	 x	 index-
register	select	flag	and,	to	a	lesser	extent,	the	m	memory/accumulator	select	flag,	both	in
the	 status	 register.	 In	 a	 sense,	 the	 x	 flag,	 for	 example,	 extends	 the	 addressing	 mode
specification	 part	 of	 an	 instruction,	 which	 uses	 an	 indexed	 addressing	 mode,	 by
determining	whether	 or	 not	 an	 eight-bit	 or	 sixteen-bit	 index	 register	 is	 to	 be	 used.	 For
every	one	of	the	indexed	addressing	modes,	there	are	two	similar	methods	of	forming	an
effective	 address,	 depending	 on	 the	 setting	 of	 the	 index-register	 select	 flag.	 Pay	 special
attention	to	the	status	and	effects	of	the	select	flags.

In	the	following	pages	are	graphic	and	written	presentations	of	each	of	the	addressing
modes,	 illustrating	 the	 effective	 address	 formation,	 complete	 with	 a	 listing	 of	 the
processors	on	which,	and	the	instructions	to	which,	each	addressing	mode	is	available.	A
sample	of	the	assembler	syntax	used	to	invoke	each	one	is	included	as	well.

The	descriptions	are	the	complete	set	available	on	the	65816.	The	differences	between
the	four	processors,	with	their	various	modes,	are	graphically	noted	whenever	possible.

The	65816’s	native	mode	features	index	registers	and	an	accumulator	which	may	be
either	eight	bits	or	sixteen,	depending	on	the	settings	of	two	mode	select	flags	(x	sets	the
index	 registers	 to	 eight	 or	 sixteen	 bits;	m	 sets	 the	 accumulator	 and	memory	 to	 eight	 or

sixteen).

The	65802’s	native	mode	differs	in	that,	while	the	bank	registers	are	part	of	effective
address	formation,	bank	values	are	not	propagated	 to	 the	bus,	so	 long	addressing	modes
have	no	bank	effect.	The	bank	accessed	 is	 always	bank	zero,	 so	 there	 is,	 essentially,	no
bank	portion	to	the	effective	address	generated.

The	6502	emulation	mode	on	the	65802	and	65816	processors	(e	=	1)	differs	in	that
the	stack	pointer’s	high	byte	is	always	$01;	direct	page	indexed	addressing	always	wraps
around	 to	 remain	 in	 the	direct	page	 rather	 than	crossing	over	 into	 the	next	page	 (so	 the
high	 direct	 page	 byte	 remains	 the	 high	 byte	 of	 all	 direct	 page	 addresses	 formed).	 The
exception	 to	 this	 is	 that	zero	page	stack	wrapping	 is	only	enforced	 for	6502	and	65C02
instructions,	and	only	when	DP	=	0	in	the	case	of	page	zero	wrapping.	New	opcodes	will
cause	effective	addresses	to	be	generated	outside	of	the	zero	page	or	the	emulation	mode
stack	page	if	an	effective	address	calculation	overflows	the	low	byte.

Additionally,	 the	 index	 registers	 and	 the	 A	 accumulator	 are	 limited	 to	 eight	 bits.
(There	 remains,	 however,	 a	 hidden	 eight-bit	 B	 accumulator,	 as	 well	 as	 a	 16-bit	 C
accumulator	which	is	the	concatenation	of	B	and	A	but	which	is	generally	not	accessible
except	to	special	instructions.)

The	65C02	and	6502	differ	 from	6502	emulation	 in	 that	 there	are	no	bank	registers
whatsoever;	 direct	 page	 addressing	 is,	 instead,	 zero	 page	 addressing	 ($0000	 is	 the	 zero
page	base	to	which	offsets	and,	sometimes,	index	values	are	added;	there	is	no	direct	page
register);	and	there	is	no	hidden	B	accumulator	nor	concatenated	C	accumulator.

The	symbols	 in	Table	17.1	are	used	 to	describe	 the	kinds	of	operands	 that	are	used
with	the	various	addressing	modes.

Figures	17.1	through	17.4	repeat	the	illustrations	of	the	programming	models	for	the
four	 possible	 processor	 configurations:	 6502/65C02,	 65802	 native	 mode,	 65816	 native
mode,	and	65816	emulation	mode.	The	programming	model	for	the	native	mode	65816	is
used	 in	 the	 addressing	 mode	 figures	 that	 follow;	 for	 different	 processors	 or	 modes,
compare	 the	 addressing	 mode	 figure	 with	 the	 processor-mode	 programming	 model	 for
clarification	of	the	operation	of	the	addressing	mode	for	that	model.

Table	17.1.	Operand	Symbols.

Figure	17.1.	6502/65C02	Programming	Model.

Figure	17.2.	65802	Native	Mode	Programming	Model.

Figure	17.3.	65816	Native	Mode	Programming	Model.

Figure	17.4.	65816	Emulation	Mode	Programming	Model.

Absolute	Addressing
Effective	Address:

Bank: Data	Bank	Register	(DBR)	if	locating	data;	Program	Bank	Register	(PBR)	if	transferring
control.

High: Second	operand	byte.

Low: First	operand	byte.

Absolute	Indexed,	X	Addressing
Effective	Address:	The	Data	Bank	Register	is	concatenated	with	the	16-bit	Operand:	the	24-bit	result	is	added	to	X	(16
bits	if	65802/65816	native	mode,	x	=	0;	else	8).

Absolute	Indexed,	Y	Addressing
Effective	Address:	The	Data	Bank	Register	is	concatenated	to	the	16-bit	Operand:	the	24-bit	result	is	added	to	Y	(16
bits	if	65802/65816	native	mode,	x	=	0;	else	8).

Absolute	Indexed	Indirect	Addressing
Effective	Address:

Bank: Program	Bank	Register	(PBR).

High/Low: The	Indirect	Address.

Indirect	Address: Located	in	the	Program	Bank	at	the	sum	of	the	Operand	double	byte	and	X	(16	bits
if	65802/65816	native	mode,	x	=	0	;	else	8	bits).

Absolute	Indirect	Addressing
Effective	Address:

Bank: Program	Bank	Register	(PBR).

High/Low: The	Indirect	Address.

Indirect	Address: Located	in	Bank	Zero,	at	the	Operand	double	byte.

Absolute	Indirect	Long	Addressing
Effective	Address:

Bank/High/Low: The	24-bit	Indirect	Address.

Indirect	Address: Located	in	Bank	Zero,	at	the	Operand	double	byte.

Absolute	Long	Addressing
Effective	Address:

Bank: Third	operand	byte.

High: Second	operand	byte.

Low: First	operand	byte.

Absolute	Long	Indexed,	X	Addressing
Effective	Address:	The	24-bit	Operand	is	added	to	X	(16	bits	if	65802/65816	native	mode,	x	=	0;	else	8	bits)

Accumulator	Addressing
8-Bit	Data	(all	processors):	Data:	Byte	in	accumulator	A.

16-Bit	Data	(65802/65816,	native	mode.	16-bit	accumulator	(m	=	0):

Data	High:	High	byte	in	accumulator	A.
Data	Low:	Low	byte	in	accumulator	A.

Block	Move	Addressing
Source	Effective	Address:

Bank: Second	operand	byte.

High	Low: The	16-bit	value	in	X;	if	X	is	only	8	bits	(mode	flag	x=	1),	the	high	byte	is	0.

Destination	Effective	Address:

Bank: First	operand	byte.

High	Low: The	16-bit	value	in	Y;	if	Y	is	only	8	bits	(mode	flag	x	=	l)	,	the	high	byte	is	0.

Count:

Number	of	bytes	to	be	moved:	16-bit	value	in	Accumulator	C	plus	1.

Direct	Page	Addressing
Effective	Address:

Bank: Zero

High/Low: Direct	Page	Register	plus	Operand	byte.

Direct	Page	Indexed,	X	Addressing
Effective	Address:

Bank: Zero

High/Low: Direct	Page	Register	plus	Operand	byte	plus	X	(16	bits	if	65802/65816	native	mode,	x	=
0;	else	8	bits).

Direct	Page	Indexed,	Y	Addressing
Effective	Address:

Bank: Zero

High/Low: Direct	Page	Register	plus	Operand	byte	plus	Y	(16	bits	if	65802/65816	native	mode,	x	=
0;	else	8	bits).

Direct	Page	Indexed	Indirect,	X	Addressing
Effective	Address:

Bank: Data	bank	register

High/Low: The	indirect	address

Indirect	Address: Located	in	the	direct	page	at	the	sum	of	the	direct	page	register,	the	operand	byte,
and	X	(16	bits	if	65802/65816	native	mode,	x	=	0;	else	8),	in	bank	0.

Direct	Page	Indirect	Addressing
Effective	Address:

Bank: Data	Bank	Register	(DBR)

High/Low: The	16-bit	Indirect	Address

Indirect	Address: The	Operand	byte	plus	the	Direct	Page	Register,	in	Bank	Zero

Direct	Page	Indirect	Long	Addressing
Effective	Address:

Bank/High/Low: The	24-bit	Indirect	Address

Indirect	Address: The	Operand	byte	plus	the	Direct	Page	Register,	in	Bank	Zero

Direct	Page	Indirect	Indexed,	Y	Addressing

Effective	Address: Found	 by	 concatenating	 the	 data	 bank	 to	 the	 double-byte	 indirect	 address,	 then
adding	Y	(16	bits	if	65802/65816	native	mode,	x	=	0;	else	8).

Indirect	Address: Located	 in	 the	Direct	Page	at	 the	sum	of	 the	direct	page	 register	and	 the	operand
byte,	in	bank	zero.

Direct	Page	Indirect	Long	Indexed,	Y	Addressing

Effective	Address: Found	by	adding	to	the	triple-byte	indirect	address	Y	(16	bits	if	65802/65816	native
mode,	x	=	0;	else	8	bits).

Indirect	Address: Located	 in	 the	Direct	Page	at	 the	sum	of	 the	direct	page	 register	and	 the	operand
byte	in	bank	zero.

Immediate	Addressing
8-Bit	Data	(all	processors):	Data	Operand	byte

16-Bit	Data	(65802/65816,	native	mode,	applicable	mode	flag	m	or	x	=	0):

Data	High: Second	operand	byte.

Data	Low: First	operand	byte.

Implied	Addressing
Type	1:	Mnemonic	specifies	register(s)	to	be	operated	on

Type	2:	Mnemonic	specifies	flag	bit(s)	to	be	operated	on

Type	3:	Mnemonic	specifies	operation;	no	data	involved

Program	Counter	Relative	Addressing
Effective	Address:

Bank: Program	Bank	Register	(PBR).

High/Low: The	Operand	 byte,	 a	 two’s	 complement	 signed	 value,	 is	 sign-extended	 to	 16	 bits,	 then
added	to	the	Program	Counter	(its	value	is	the	address	of	the	opcode	following	this	one).

Program	Counter	Relative	Long	Addressing’
Effective	Address:

Bank: Program	Bank	Register	(PBR).

High/Low: The	 Operand	 double	 byte,	 a	 two’s	 complement	 signed	 value,	 is	 added	 to	 the	 Program
Counter	(its	value	is	the	address	of	the	opcode	following	this	one).

Stack	(Absolute)	Addressing
Source	of	data	to	be	pushed:	The	16-bit	operand,	which	can	be	either	an	absolute	address	or	immediate	data.

Destination	effective	address:	Provided	by	Stack	Pointer.

Stack	(Direct	Page	Indirect)	Addressing
Source	of	data	to	be	pushed:	The	16-bit	indirect	address	(or	double-byte	data)	located	at	the	sum	of	the	Operand	byte
plus	the	Direct	Page	Register,	in	Bank	Zero.

Destination	effective	address:	Provided	by	Stack	Pointer.

Stack	(Interrupt)	Addressing
Effective	 Address:	 After	 pushing	 the	 Program	 Bank	 (65802/816	 native	 mode	 only),
followed	by	the	Program	Counter	and	the	Status	Register,	the	Effective	Address	is	loaded
into	the	Program	Counter	and	Program	Bank	Register,	transferring	control	there.

Bank: Zero

High/Low: The	contents	of	the	instruction-	and	processor-specific	interrupt	vector.

Data:	Source:	Program	Bank,	Program	Counter	and	Status	Register.

Destination	Effective	Address:	Provided	by	Stack	Pointer.

Stack	(Program	Counter	Relative)	Addressing
Source	of	data	to	be	pushed:	The	16-bit	sum	of	the	16-bit	Operand	plus	the	16-bit	Program	Counter.	(Note	that	the	16-
bit	Operand	which	 is	added	 is	 the	object	code	operand;	 the	operand	used	 in	 the	 instruction’s	syntax	required	by	most
assemblers	is	a	label	which	is	converted	to	the	object	operand.)

Destination	Effective	Address:	Provided	by	Stack	Pointer.

Stack	(Pull)	Addressing
Source	Effective	Address:	Provided	by	Stack	Pointer.

Destination	of	data	to	be	pulled:	Register	specified	by	the	opcode.

The	Stack	Pointer	(S)	is	incremented,	specifying	the	location	from	which	an	8-bit	register—or	the	low	byte	of	a	16-bit
register—will	be	loaded.	If	the	register	is	16	bits,	the	Stack	Pointer	will	be	incremented	a	second	time,	and	the	register’s
high	byte	will	be	loaded	from	this	second	new	Stack	Pointer	location.

Stack	(Push)	Addressing
Source	of	data	to	be	pushed:	Register	specified	by	the	opcode.

Destination	Effective	Address:	Provided	by	Stack	Pointer.

The	Stack	Pointer	 (S)	 specifies	 the	 location	 to	which	an	8-bit	 register—or	 the	high	byte	of	a	16-bit	 register—will	be
stored.	The	low	byte	of	a	16-bit	register	will	be	stored	to	the	Stack	Pointer	location	minus	one.	After	storage	of	an	8-bit
register,	S	is	decremented	by	1;	after	a	16-bit	register,	S	is	decremented	by	2.

Stack	(RTI)	Addressing
Source	Effective	Address:	Provided	by	Stack	Pointer.

Destination	 of	 values	 to	 be	 pulled:	 First	 the	 Status	 Register,	 then	 the	 Program	 Counter	 is	 pulled,	 followed
(65802/65816	native	mode	only)	by	the	Program	Bank.

Control	is	transferred	to	the	new	Program	Counter	(and	Program	Bank)	value(s).

Stack	(RTL)	Addressing
Source	Effective	Address:	Provided	by	Stack	Pointer.

Destination	of	values	 to	be	pulled:	First	 the	Program	Counter	 is	pulled	and	 incremented	by	one.	Then	 the	Program
Bank	is	pulled.

Control	is	transferred	to	the	new	Program	Counter	and	Program	Bank	values.

Stack	(RTS)	Addressing
Source	Effective	Address:	Provided	by	Stack	Pointer.

Destination	of	values	to	be	pulled:	The	Program	Counter	is	pulled	and	incremented	by	one.	The	Program	Bank	remains
unchanged.

Control	is	transferred	to	the	new	Program	Counter	value.

Stack	Relative	Addressing
Effective	Address:

Bank: Zero

High:Low: The	16-bit	sum	of	the	8-bit	Operand	and	the	16-bit	Stack	Pointer.

Stack	Relative	Indirected	Indexed,	Y	Addressing
Effective	Address:	The	Data	Bank	Register	is	concatenated	to	the	Indirect	Address:	the	24-bit	result	is	added	to	Y	(16
bits	if	65802/65816	native	mode,	x	=	0;	else	8	bits).
Indirect	Address:	Located	at	the	16-bit	sum	of	the	8-bit	Operand	and	the	16-bit	Stack	Pointer.

18

The	Instruction	Sets
This	 chapter	 devotes	 a	 page	 to	 each	 of	 the	 94	 different	 65816	 operations.	 Each

operation	may	have	more	than	one	addressing	mode	available	to	it;	these	are	detailed	for
each	 instruction.	 The	 symbols	 in	 Table	 18.1	 are	 used	 to	 express	 the	 different	 kinds	 of
values	that	instruction	operands	may	have.	The	effect	of	each	operation	on	the	status	flags
varies.	The	symbols	in	Table	18.2	are	used	to	indicate	the	flags	that	are	affected	by	a	given
operation.

Table	18.1.	Operand	Symbols.

Table	18.2.	65x	Flags.

Add	With	Carry ADC
Add	the	data	located	at	the	effective	address	specified	by	the	operand	to	the	contents

of	the	accumulator;	add	one	to	the	result	if	the	carry	flag	is	set,	and	store	the	final	result	in
the	accumulator.

The	 65x	 processors	 have	 no	 add	 instruction	 which	 does	 not	 involve	 the	 carry.	 To
avoid	adding	the	carry	flag	to	the	result,	you	must	either	be	sure	that	it	is	already	clear,	or
you	must	explicitly	clear	it	(using	CLC)	prior	to	executing	the	ADC	instruction.

In	a	multi-precision	(multi-word)	addition,	the	carry	should	be	cleared	before	the	low-
order	words	are	added;	the	addition	of	the	low	word	will	generate	a	new	carry	flag	value
based	on	 that	 addition.	This	new	value	 in	 the	carry	 flag	 is	 added	 into	 the	next	 (middle-
order	or	high-order)	addition;	each	intermediate	result	will	correctly	reflect	the	carry	from
the	previous	addition.

d	flag	clear;	Binary	addition	is	performed.

d	flag	set;	Binary	coded	decimal	(BCD)	addition	is	performed.

8-bit	accumulator	(all	processors):	Data	added	from	memory	is	eight-bit.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Data	added	from	memory	is	sixteen-
bit:	 the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order	eight	bits
are	located	at	the	effective	address	plus	one.

Flags	Affected: n	v	–––-	zc
n		Set	if	most-significant	bit	of	result	is	set;	else	cleared.
v		Set	if	signed	overflow;	cleared	if	valid	signed	result,
z		Set	if	result	is	zero;	else	cleared.
c		Set	if	unsigned	overflow;	cleared	if	valid	unsigned	result.

Codes:

+	+	ADC,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

4	Add	1	cycle	if	65C02	and	d	=	1	(decimal	mode,	65C02)

And	Accumulator	with	Memory AND
Bitwise	logical	AND	the	data	located	at	the	effective	address	specified	by	the	operand

with	 the	 contents	 of	 the	 accumulator.	 Each	 bit	 in	 the	 accumulator	 is	 ANDed	 with	 the
corresponding	bit	 in	memory,	with	 the	 result	being	 stored	 in	 the	 respective	accumulator
bit.

The	truth	table	for	the	logical	AND	operation	is:

Figure	18.1.	AND	Truth	Table.

That	is,	a	1	or	logical	true	results	in	a	given	bit	being	true	only	if	both	elements	of	the
respective	bits	being	ANDed	are	Is,	or	logically	true.

8-bit	accumulator	(all	processors):	Data	ANDed	from	memory	is	eight-bit.

16-bit	 accumulator	 (65802/65816	 only,	 m	 =	 0):	 Data	 ANDed	 from	 memory	 is
sixteen-bit:	 the	 low-order	byte	 is	 located	 at	 the	 effective	 address;	 the	high-order	 byte	 is
located	at	the	effective	address	plus	one.

Flags	Affected: n	––––z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

+	+	AND,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

Shift	Memory	or	Accumulator	Left ASL
Shift	the	contents	of	the	location	specified	by	the	operand	left	one	bit.	That	is,	bit	one

takes	on	the	value	originally	found	in	bit	zero,	bit	two	takes	the	value	originally	in	bit	one,
and	so	on;	the	leftmost	bit	(bit	7	on	the	6502	and	65C02	or	if	m	=	1	on	the	65802/65816,
or	bit	15	if	m	=	0)	is	transferred	into	the	carry	flag;	the	rightmost	bit,	bit	zero,	is	cleared.
The	arithmetic	result	of	the	operation	is	an	unsigned	multiplication	by	two.

Figure	18.2.	ASL.

8-bit	accumulator/memory	(all	processors):	Data	shifted	is	eight	bits.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Data	shifted	is	sixteen	bits:
if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order
eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—zc
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	High	bit	becomes	carry:	set	if	high	bit	was	set;	cleared	if
high	bit	was	zero.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

BCC Branch	if	Carry	Clear
The	carry	flag	in	the	P	status	register	is	tested.	If	it	is	clear,	a	branch	is	taken;	if	it	is

set,	the	instruction	immediately	following	the	two-byte	BCC	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—	 128	 to	 +127	 (from	 the	 instruction
immediately	following	the	branch).

BCC	 may	 be	 used	 in	 several	 ways:	 to	 test	 the	 result	 of	 a	 shift	 into	 the	 carry;	 to
determine	if	the	result	of	a	comparison	is	either	less	than	(in	which	case	a	branch	will	be
taken),	 or	 greater	 than	 or	 equal	 (which	 causes	 control	 to	 fall	 through	 the	 branch
instruction);	or	to	determine	if	further	operations	are	needed	in	multi-precision	arithmetic.

Because	 the	 BCC	 instruction	 causes	 a	 branch	 to	 be	 taken	 after	 a	 comparison	 or
subtraction	if	 the	accumulator	is	less	than	the	memory	operand	(since	the	carry	flag	will
always	be	cleared	as	a	result),	many	assemblers	allow	an	alternate	mnemonic	for	the	BCC
instruction:	BLT,	or	Branch	if	Less	Than.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

Branch	if	Carry	Set BCS
The	carry	flag	in	the	P	 status	register	 is	 tested.	 If	 it	 is	set,	a	branch	 is	 taken;	 if	 it	 is

clear,	the	instruction	immediately	following	the	two-byte	BCS	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—	 128	 to	 +	 127	 (from	 the	 instruction
immediately	following	the	branch).

BCS	is	used	in	several	ways:	to	test	the	result	of	a	shift	into	the	carry;	to	determine	if
the	result	of	a	comparison	is	either	greater	than	or	equal	(which	causes	the	branch	to	be
taken)	 or	 less	 than;	 or	 to	 determine	 if	 further	 operations	 are	 needed	 in	multi-precision
arithmetic	operations.

Because	 the	 BCS	 instruction	 causes	 a	 branch	 to	 be	 taken	 after	 a	 comparison	 or
subtraction	if	 the	accumulator	 is	greater	 than	or	equal	 to	 the	memory	operand	(since	the
carry	flag	will	always	be	set	as	a	result),	many	assemblers	allow	an	alternate	mnemonic
for	the	BCS	instruction:	BGE	or	Branch	if	Greater	or	Equal.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

BEQ Branch	if	Equal
The	zero	flag	in	the	P	status	register	is	tested.	If	it	is	set,	meaning	that	the	last	value

tested	(which	affected	the	zero	flag)	was	zero,	a	branch	is	taken;	if	it	is	clear,	meaning	the
value	 tested	 was	 non-zero,	 the	 instruction	 immediately	 following	 the	 two-byte	 BEQ
instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—	 128	 to	 +127	 (from	 the	 instruction
immediately	following	the	branch).

BEQ	may	be	used	in	several	ways:	to	determine	if	the	result	of	a	comparison	is	zero
(the	two	values	compared	are	equal),	for	example,	or	if	a	value	just	loaded,	pulled,	shifted,
incremented	or	 decremented	 is	 zero;	 or	 to	determine	 if	 further	 operations	 are	needed	 in
multi-precision	arithmetic	operations.	Because	testing	for	equality	to	zero	does	not	require
a	previous	comparison	with	zero,	it	is	generally	most	efficient	for	loop	counters	to	count
downwards,	exiting	when	zero	is	reached.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

Test	Memory	Bits	against	Accumulator BIT
BIT	 sets	 the	P	 status	 register	 flags	 based	 on	 the	 result	 of	 two	 different	 operations,

making	it	a	dual-purpose	instruction:

First,	it	sets	or	clears	the	n	flag	to	reflect	the	value	of	the	high	bit	of	the	data	located
at	the	effective	address	specified	by	the	operand,	and	sets	or	clears	the	v	flag	to	reflect	the
contents	of	the	next-to-highest	bit	of	the	data	addressed.

Second,	it	logically	ANDs	the	data	located	at	the	effective	address	with	the	contents
of	 the	 accumulator;	 it	 changes	 neither	 value,	 but	 sets	 the	 z	 flag	 if	 the	 result	 is	 zero,	 or
clears	it	if	the	result	is	non-zero.

BIT	is	usually	used	immediately	preceding	a	conditional	branch	instruction:	to	test	a
memory	value’s	highest	or	next-to-highest	bits;	with	a	mask	in	the	accumulator,	to	test	any
bits	of	the	memory	operand;	or	with	a	constant	as	the	mask	(using	immediate	addressing)
or	 a	 mask	 in	 memory,	 to	 test	 any	 bits	 in	 the	 accumulator.	 All	 of	 these	 tests	 are	 non-
destructive	of	the	data	in	the	accumulator	or	in	memory.	When	the	BIT	instruction	is	used
with	the	immediate	addressing	mode,	the	n	and	v	flags	are	unaffected.

8-bit	 accumulator/memory	 (all	 processors):	Data	 in	memory	 is	 eight-bit;	 bit	 7	 is
moved	into	the	n	flag;	bit	6	is	moved	into	the	v	flag.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Data	in	memory	is	sixteen-
bit:	 the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order	eight	bits
are	 located	 at	 the	 effective	 address	 plus	 one.	Bit	 15	 is	moved	 into	 the	 n	 flag;	 bit	 14	 is
moved	into	the	v	flag.

Flags	Affected: n	v	-	-	-	-	z	-	(Other	than	immediate	addressing)
-	-	-	-	-	-	z	-	(Immediate	addressing	only)
n	Takes	value	of	most	significant	bit	of	memory	data,
v	Takes	value	of	next-to-highest	bit	of	memory	data,
z	Set	if	logical	AND	of	memory	and	accumulator	is	zero;
else	cleared.

Codes:

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

BMI Branch	if	Minus
The	negative	flag	in	the	P	status	register	is	tested.	If	it	is	set,	the	high	bit	of	the	value

which	most	recently	affected	the	n	flag	was	set,	and	a	branch	is	taken.	A	number	with	its
high	bit	set	may	be	interpreted	as	a	negative	two’s-complement	number,	so	this	instruction
tests,	among	other	things,	for	the	sign	of	two’s-complement	numbers.	If	the	negative	flag
is	clear,	the	high	bit	of	the	value	which	most	recently	affected	the	flag	was	clear,	or,	in	the
two’s-complement	 system,	 was	 a	 positive	 number,	 and	 the	 instruction	 immediately
following	the	two-byte	BMI	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	 -	 128	 to	 +	 127	 (from	 the	 instruction
immediately	following	the	branch).

BMI	is	primarily	used	to	either	determine,	in	two’s-complement	arithmetic,	if	a	value
is	 negative	or,	 in	 logic	 situations,	 if	 the	high	bit	 of	 the	value	 is	 set.	 It	 can	 also	be	used
when	looping	down	through	zero	(the	loop	counter	must	have	a	positive	initial	value)	to
determine	if	zero	has	been	passed	and	to	effect	an	exit	from	the	loop.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

Branch	if	Not	Equal BNE
The	zero	 flag	 in	 the	P	 status	 register	 is	 tested.	 If	 it	 is	 clear	 (meaning	 the	value	 just

tested	 is	 non-zero),	 a	branch	 is	 taken;	 if	 it	 is	 set	 (meaning	 the	value	 tested	 is	 zero),	 the
instruction	immediately	following	the	two-byte	BNE	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—128	 to	 +1	 2	 7	 (from	 the	 instruction
immediately	following	the	branch).

BNE	may	be	used	in	several	ways:	to	determine	if	the	result	of	a	comparison	is	non-
zero	(the	two	values	compared	are	not	equal),	for	example,	or	if	the	value	just	loaded	or
pulled	from	the	stack	is	non-zero,	or	to	determine	if	further	operations	are	needed	in	multi-
precision	arithmetic	operations.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

BPL Branch	if	Plus
The	negative	flag	in	the	P	status	register	is	tested.	If	it	is	clear—meaning	that	the	last

value	which	affected	the	zero	flag	had	its	high	bit	clear—a	branch	is	taken.	In	the	two’s-
complement	system,	values	with	their	high	bit	clear	are	interpreted	as	positive	numbers.	If
the	flag	is	set,	meaning	the	high	bit	of	the	last	value	was	set,	the	branch	is	not	taken;	it	is	a
two’s-complement	negative	number,	 and	 the	 instruction	 immediately	 following	 the	 two-
byte	BPL	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—128	 to	 -I-127	 (from	 the	 instruction
immediately	following	the	branch).

BPL	 is	 used	 primarily	 to	 determine,	 in	 two’s-complement	 arithmetic,	 if	 a	 value	 is
positive	or	not	or,	in	logic	situations,	if	the	high	bit	of	the	value	is	clear.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

Branch	Always BRA
A	branch	is	always	taken,	and	no	testing	is	done:	in	effect,	an	unconditional	JMP	 is

executed,	but	since	signed	displacements	are	used,	the	instruction	is	only	two	bytes,	rather
than	 the	 three	 bytes	 of	 a	 JMP.	 Additionally,	 using	 displacements	 from	 the	 program
counter	makes	 the	BRA	 instruction	 relocatable.	Unlike	 a	JMP	 instruction,	 the	BRA	 is
limited	 to	 targets	 that	 lie	 within	 the	 range	 of	 the	 one-byte	 signed	 displacement	 of	 the
conditional	 branches:	 —	 128	 to	 +	 127	 bytes	 from	 the	 first	 byte	 following	 the	 BRA
instruction.

To	 branch,	 a	 one-byte	 signed	 displacement,	 fetched	 from	 the	 second	 byte	 of	 the
instruction,	 is	 sign-extended	 to	 sixteen	bits	 and	added	 to	 the	program	counter.	Once	 the
branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	crosses	page	boundary	on	65C02	or	in	65816/65802’s	6502	emulation	mode	(e	=	1)

BRK Software	Break
Force	a	software	interrupt.	BRK	is	unaffected	by	the	i	interrupt	disable	flag.

Although	BRK	is	a	one-byte	instruction,	the	program	counter	(which	is	pushed	onto
the	 stack	 by	 the	 instruction)	 is	 incremented	 by	 two;	 this	 lets	 you	 follow	 the	 break
instruction	 with	 a	 one-byte	 signature	 byte	 indicating	 which	 break	 caused	 the	 interrupt.
Even	if	a	signature	byte	is	not	needed,	either	the	byte	following	the	BRK	instruction	must
be	 padded	 with	 some	 value	 or	 the	 break-handling	 routine	 must	 decrement	 the	 return
address	on	the	stack	to	let	an	RTI	(return	from	interrupt)	instruction	execute	correctly.

6502,	65C02,	and	Emulation	Mode	(e	=	1):	The	program	counter	is	incremented	by
two,	 then	pushed	onto	 the	 stack;	 the	 status	 register,	with	 the	b	break	 flag	 set,	 is	pushed
onto	the	stack;	the	interrupt	disable	flag	is	set;	and	the	program	counter	is	loaded	from	the
interrupt	vector	at	$FFFE-FFFF.	It	is	up	to	the	interrupt	handling	routine	at	this	address	to
check	the	b	flag	in	the	stacked	status	register	to	determine	if	the	interrupt	was	caused	by	a
software	interrupt	(BRK)	or	by	a	hardware	IRQ,	which	shares	the	BRK	vector	but	pushes
the	status	register	onto	the	stack	with	the	b	break	flag	clear.	For	example,

Fragment	18.1.

65802/65816	Native	Mode	(e	=	0):	The	program	counter	bank	register	is	pushed	onto
the	stack;	the	program	counter	is	incremented	by	two	and	pushed	onto	the	stack;	the	status
register	is	pushed	onto	the	stack;	the	interrupt	disable	flag	is	set;	the	program	bank	register
is	cleared	to	zero;	and	the	program	counter	is	loaded	from	the	break	vector	at	$OOFFE6-
OOFFE7.

6502:	The	d	decimal	flag	is	not	modified	after	a	break	is	executed.

65C02	and	65816/65802:	The	d	decimal	flag	is	reset	to	0	after	a	break	is	executed.

Figure	18.3.	65802/65816	Stack	After	BRK.

Codes:

*	BRK	is	1	byte,	but	program	counter	value	pushed	onto	stack	is	incremented	by	2	allowing	for	optional	signature	byte

1	Add	1	cycle	for	65802/65816	native	mode	(e	=	0)

BRL Branch	Always	Long
A	branch	is	always	taken,	similar	to	the	BRA	instruction.	However,	BRL	 is	a	three-

byte	instruction;	the	two	bytes	immediately	following	the	opcode	form	a	sixteen-bit	signed
displacement	from	the	program	counter.	Once	the	branch	address	has	been	calculated,	the
result	is	loaded	into	the	program	counter,	transferring	control	to	that	location.

The	allowable	range	of	the	displacement	is	anywhere	within	the	current	64K	program
bank.

The	 long	 branch	 provides	 an	 unconditional	 transfer	 of	 control	 similar	 to	 the	 JMP
instruction,	with	 one	major	 advantage:	 the	 branch	 instruction	 is	 relocatable	while	 jump
instructions	 are	 not.	 However,	 the	 (non-relocatable)	 jump	 absolute	 instruction	 executes
one	cycle	faster.

Flags	Affected:	––––––-

Codes:

Branch	if	Overflow	Clear BVC
The	overflow	flag	in	the	P	status	register	is	tested.	If	it	is	clear,	a	branch	is	taken;	if	it

is	set,	the	instruction	immediately	following	the	two-byte	BVC	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—128	 to	 -1-127	 (from	 the	 instruction
immediately	following	the	branch).

The	 overflow	 flag	 is	 altered	 by	 only	 four	 instructions	 on	 the	 6502	 and	 65C02—
addition,	 subtraction,	 the	 CLV	 clear-the-flag	 instruction,	 and	 the	 BIT	 bit-testing
instruction.	 In	 addition,	 all	 the	 flags	 are	 restored	 from	 the	 stack	 by	 the	PLP	 and	RTI
instructions.	 On	 the	 65802/65816,	 however,	 the	 SEP	 and	 REP	 instructions	 can	 also
modify	the	v	flag.

BVC	 is	 used	 almost	 exclusively	 to	 check	 that	 a	 two’s-complement	 arithmetic
calculation	 has	 not	 overflowed,	much	 as	 the	 carry	 is	 used	 to	 determine	 if	 an	 unsigned
arithmetic	 calculation	has	 overflowed.	 (Note,	 however,	 that	 the	 compare	 instructions	do
not	affect	 the	overflow	flag.)	You	can	also	use	BVC	 to	 test	 the	second—highest	bit	 in	a
value	 by	 using	 it	 after	 the	BIT	 instruction,	 which	moves	 the	 second-highest	 bit	 of	 the
tested	value	into	the	v	flag.

The	overflow	flag	can	also	be	set	by	the	Set	Overflow	hardware	signal	on	the	6502,
65C02,	and	65802;	on	many	systems,	however,	there	is	no	connection	to	this	pin.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

BVS Branch	if	Overflow	Set
The	overflow	flag	in	the	P	status	register	is	tested.	If	it	is	set,	a	branch	is	taken;	if	it	is

clear,	the	instruction	immediately	following	the	two-byte	BVS	instruction	is	executed.

If	the	branch	is	taken,	a	one-byte	signed	displacement,	fetched	from	the	second	byte
of	the	instruction,	is	sign-extended	to	sixteen	bits	and	added	to	the	program	counter.	Once
the	 branch	 address	 has	 been	 calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,
transferring	control	to	that	location.

The	 allowable	 range	 of	 the	 displacement	 is	—128	 to	 +	 127	 (from	 the	 instruction
immediately	following	the	branch).

The	 overflow	 flag	 is	 altered	 by	 only	 four	 instructions	 on	 the	 6502	 and	 65C02—
addition,	 subtraction,	 the	 CLV	 clear-the-flag	 instruction,	 and	 the	 BIT	 bit-testing
instruction.	 In	 addition,	 all	 the	 flags	 are	 restored	 from	 the	 stack	 by	 the	PLP	 and	RTI
instructions.	On	 the	65802/65816,	 the	SEP	and	REP	 instructions	can	also	modify	 the	v
flag.

BVS	 is	 used	 almost	 exclusively	 to	 determine	 if	 a	 two’s-complement	 arithmetic
calculation	 has	 overflowed,	 much	 as	 the	 carry	 is	 used	 to	 determine	 if	 an	 unsigned
arithmetic	 calculation	has	 overflowed.	 (Note,	 however,	 that	 the	 compare	 instructions	do
not	 affect	 the	 overflow	 flag.)	You	 can	 also	 use	BVS	 to	 test	 the	 second-highest	 bit	 in	 a
value	 by	 using	 it	 after	 the	BIT	 instruction,	 which	moves	 the	 second-highest	 bit	 of	 the
tested	value	into	the	v	flag.

The	overflow	flag	can	also	be	set	by	the	Set	Overflow	hardware	signal	on	the	6502,
65C02,	 and	65802;	 on	many	 systems,	 however,	 there	 is	 no	hardware	 connection	 to	 this
signal.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	branch	is	taken

2	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

Clear	Carry	Flag CLC
Clear	the	carry	flag	in	the	status	register.

CLC	is	used	prior	to	addition	(using	the	65x’s	ADC	instruction)	to	keep	the	carry	flag
from	affecting	the	result;	prior	to	a	BCC	(branch	on	carry	clear)	instruction	on	the	6502	to
force	 a	 branch-always;	 and	 prior	 to	 an	XCE	 (exchange	 carry	 flag	 with	 emulation	 bit)
instruction	to	put	the	65802	or	65816	into	native	mode.

Flags	Affected: –––––—c
c	carry	flag	cleared	always.

Codes:

CLD Clear	Decimal	Mode	Flag
Clear	the	decimal	mode	flag	in	the	status	register.

CLD	 is	used	 to	shift	65x	processors	back	 into	binary	mode	from	decimal	mode,	so
that	the	ADC	and	SBC	instructions	will	correctly	operate	on	binary	rather	than	BCD	data.

Flags	Affected: ––-	d	––-
d	decimal	mode	flag	cleared	always.

Codes:

Clear	Interrupt	Disable	Flag CLI
Clear	the	interrupt	disable	flag	in	the	status	register.

CLI	is	used	to	re-enable	hardware	interrupt	(IRQ)	processing.	(When	the	i	bit	is	set,
hardware	 interrupts	 are	 ignored.)	 The	 processor	 itself	 sets	 the	 i	 flag	 when	 it	 begins
servicing	an	interrupt,	so	interrupt	handling	routines	must	re-enable	interrupts	with	CLI	if
the	 interrupt-service	routine	 is	designed	 to	service	 interrupts	 that	occur	while	a	previous
interrupt	 is	 still	 being	handled;	 otherwise,	 the	RTI	 instruction	will	 restore	 a	 clear	 i	 flag
from	the	stack,	and	CLI	is	not	necessary.	CLI	is	also	used	to	re-enable	interrupts	if	they
have	 been	 disabled	 during	 the	 execution	 of	 time-critical	 or	 other	 code	which	 cannot	 be
interrupted.

Flags	Affected:– i–-
i	interrupt	disable	flag	cleared	always.

Codes:

CLV Clear	Overflow	Flag
Clear	the	overflow	flag	in	the	status	register.

CLV	is	sometimes	used	prior	to	a	BVC	(branch	on	overflow	clear)	to	force	a	branch-
always	on	 the	6502.	Unlike	 the	other	 clear	 flag	 instructions,	 there	 is	no	 complementary
“set	 flag”	 instruction	 to	 set	 the	 overflow	 flag,	 although	 the	 overflow	 flag	 can	be	 set	 by
hardware	via	the	Set	Overflow	input	pin	on	the	processor.	This	signal,	however,	 is	often
unconnected.	The	65802/65816	REP	instruction	can,	of	course,	clear	the	overflow	flag;	on
the	6502	and	65C02,	a	BIT	 instruction	with	a	mask	in	memory	that	has	bit	6	set	can	be
used	to	set	the	overflow	flag.

Flags	Affected: -	v	–––––
v	overflow	flag	cleared	always.

Codes:

Compare	Accumulator	with	Memory CMP
Subtract	 the	data	 located	 at	 the	 effective	 address	 specified	by	 the	operand	 from	 the

contents	of	the	accumulator,	setting	the	carry,	zero,	and	negative	flags	based	on	the	result,
but	without	altering	the	contents	of	either	the	memory	location	or	the	accumulator.	That	is,
the	result	is	not	saved.	The	comparison	is	of	unsigned	binary	values	only.

The	CMP	 instruction	 differs	 from	 the	 SBC	 instruction	 in	 several	 ways.	 First,	 the
result	is	not	saved.	Second,	the	value	in	the	carry	prior	to	the	operation	is	irrelevant	to	the
operation;	 that	 is,	 the	carry	does	not	have	 to	be	set	prior	 to	a	compare	as	 it	 is	with	65x
subtractions.	Third,	the	compare	instruction	does	not	set	the	overflow	flag,	so	it	cannot	be
used	 for	 signed	 comparisons.	 Although	 decimal	 mode	 does	 not	 affect	 the	 CMP
instruction,	decimal	comparisons	are	effective,	since	the	equivalent	binary	values	maintain
the	same	magnitude	relationships	as	the	decimal	values	have,	for	example,	$99	>	$04	just
as	99	>	4.

The	primary	use	 for	 the	compare	 instruction	 is	 to	set	 the	 flags	so	 that	a	conditional
branch	can	then	be	executed.

8-bit	accumulator	(all	processors);	Data	compared	is	eight-bit.

16-bit	 accumulator	 (65802/65816	 only,	m	=	 0):	Data	 compared	 is	 sixteen-bit:	 the
low-order	eight	bits	of	the	data	in	memory	are	located	at	the	effective	address;	the	high-
order	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	–––—	zc
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	Set	if	no	borrow	required	(accumulator	value	higher	or
same);	cleared	if	borrow	required	(accumulator	value
lower).

Codes:

+	+	CMP,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

Co-Processor	Enable COP
Execution	 of	COP	 causes	 a	 software	 interrupt,	 similarly	 to	BRK,	 but	 through	 the

separate	COP	 vector.	Alternatively,	COP	may	 be	 trapped	 by	 a	 co-processor,	 such	 as	 a
floating	point	or	graphics	processor,	to	call	a	co-processor	function.	COP	is	unaffected	by
the	i	interrupt	disable	flag.

COP	 is	much	like	BRK,	with	the	program	counter	value	pushed	on	the	stack	being
incremented	by	two;	this	lets	you	follow	the	co-processor	instruction	with	a	signature	byte
to	 indicate	 to	 the	 co-processor	 or	 co-processor	 handling	 routine	 which	 operation	 to
execute.	Unlike	 the	BRK	 instruction,	 65816	 assemblers	 require	you	 to	 follow	 the	COP
instruction	with	such	a	signature	byte.	Signature	bytes	in	the	range	$80	-	$FF	are	reserved
by	 the	Western	Design	Center	 for	 implementation	of	 co-processor	 control;	 signatures	 in
the	range	$00	-	$7F	are	available	for	use	with	software-implemented	COP	handlers.

6502	Emulation	Mode	(65802/65816,	e=	1):	The	program	counter	is	incremented	by
two	and	pushed	onto	 the	stack;	 the	status	 register	 is	pushed	onto	 the	stack;	 the	 interrupt
disable	 flag	 is	 set;	 and	 the	 program	 counter	 is	 loaded	 from	 the	 emulation	 mode	 co-
processor	vector	at	$FFF4-FFF5.	The	d	decimal	flag	is	cleared	after	a	COP	is	executed.

65802/65816	Native	Mode	(e	=	0):	The	program	counter	bank	register	is	pushed	onto
the	stack;	the	program	counter	is	incremented	by	two	and	pushed	onto	the	stack;	the	status
register	is	pushed	onto	the	stack;	the	interrupt	disable	flag	is	set;	the	program	bank	register
is	cleared	to	zero;	and	the	program	counter	is	loaded	from	the	native	mode	co-processor
vector	at	$00FFE4-00FFE5.	The	d	decimal	flag	is	reset	to	0	after	a	COP	is	executed.

Figure	18.4.	Stack	after	COP.

Flags	Affected: -	-	-	-	d	i	-	-
d	d	is	reset	to	0.
i	The	interrupt	disable	flag	is	set,	disabling	hardware

interrupts.

Codes:

*	COP	is	1	byte,	but	program	counter	value	pushed	onto	stack	is	incremented	by	2	allowing	for	optional	code	byte

1	Add	1	cycle	for	65816/65802	native	mode	(e	=	0)

Compare	Index	Register	X	with	Memory CPX
Subtract	 the	data	 located	 at	 the	 effective	 address	 specified	by	 the	operand	 from	 the

contents	of	the	X	 register,	 setting	 the	carry,	zero,	and	negative	flags	based	on	 the	result,
but	without	altering	the	contents	of	either	the	memory	location	or	the	register.	The	result	is
not	saved.	The	comparison	is	of	unsigned	values	only	(except	for	signed	comparison	for
equality).

The	primary	use	for	 the	CPX	 instruction	 is	 to	 test	 the	value	of	 the	X	 index	register
against	loop	boundaries,	setting	the	flags	so	that	a	conditional	branch	can	be	executed.

8-bit	index	registers	(all	processors):	Data	compared	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	compared	is	sixteen-bit:	the
low-order	eight	bits	of	the	data	in	memory	are	located	at	the	effective	address;	the	high-
order	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—z	c
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	Set	if	no	borrow	required	(X	register	value	higher	or
same);	cleared	if	borrow	required	(X	register	value	lower).

Codes:

*	Add	1	byte	if	x	=	0	(16-bit	index	registers)

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

CPY Compare	Index	Register	Y	with	Memory
Subtract	 the	data	 located	 at	 the	 effective	 address	 specified	by	 the	operand	 from	 the

contents	of	the	Y	 register,	 setting	 the	carry,	zero,	and	negative	flags	based	on	 the	result,
but	 without	 altering	 the	 contents	 of	 either	 the	 memory	 location	 or	 the	 register.	 The
comparison	is	of	unsigned	values	only	(except	for	signed	comparison	for	equality).

The	primary	use	for	 the	CPY	 instruction	 is	 to	 test	 the	value	of	 the	Y	 index	register
against	loop	boundaries,	setting	the	flags	so	that	a	conditional	branch	can	be	executed.

8-bit	index	registers	(all	processors):	Data	compared	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	compared	is	sixteen-bit:	the
low-order	 eight	bits	of	 the	data	 in	memory	 is	 located	 at	 the	 effective	 address;	 the	high-
order	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—zc
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	Set	if	no	borrow	required	(Y	register	value	higher	or
same);	cleared	if	borrow	required	(Y	register	value	lower).

Codes:

*	Add	1	byte	if	x	=	0	(16-bit	index	registers)

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

Decrement DEC
Decrement	by	one	the	contents	of	the	location	specified	by	the	operand	(subtract	one

from	the	value).

Unlike	 subtracting	 a	 one	 using	 the	 SBC	 instruction,	 the	 decrement	 instruction	 is
neither	affected	by	nor	affects	the	carry	flag.	You	can	test	for	wraparound	only	by	testing
after	every	decrement	to	see	if	the	value	is	zero	or	negative.	On	the	other	hand,	you	don’t
need	to	set	the	carry	before	decrementing.

DEC	is	unaffected	by	the	setting	of	the	d	(decimal)	flag.

8-bit	accumulator/memory	(all	processors):	Data	decremented	is	eight-bit.

16-bit	 accumulator/memory	 (65802/65816	 only,	 m	 =	 0):	 Data	 decremented	 is
sixteen-bit:	if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the
high-order	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––	z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

DEX Decrement	Index	Register	X
Decrement	by	one	the	contents	of	index	register	X	(subtract	one	from	the	value).	This

is	a	special	purpose,	implied	addressing	form	of	the	DEC	instruction.

Unlike	using	SBC	 to	 subtract	 a	 one	 from	 the	 value,	 the	DEX	 instruction	 does	 not
affect	the	carry	flag;	you	can	test	for	wraparound	only	by	testing	after	every	decrement	to
see	 if	 the	 value	 is	 zero	 or	 negative.	On	 the	 other	 hand,	 you	 don’t	 need	 to	 set	 the	 carry
before	decrementing.

DEX	is	unaffected	by	the	setting	of	the	d	(decimal)	flag.

8-bit	index	registers	(all	processors):	Data	decremented	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	decremented	is	sixteen-bit.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

Decrement	Index	Register	Y DEY
Decrement	by	one	the	contents	of	index	register	Y	(subtract	one	from	the	value).	This

is	a	special	purpose,	implied	addressing	form	of	the	DEC	instruction.

Unlike	using	SBC	 to	 subtract	 a	 one	 from	 the	 value,	 the	DEY	 instruction	 does	 not
affect	the	carry	flag;	you	can	test	for	wraparound	only	by	testing	after	every	decrement	to
see	 if	 the	 value	 is	 zero	 or	 negative.	On	 the	 other	 hand,	 you	 don’t	 need	 to	 set	 the	 carry
before	decrementing.

DEY	is	unaffected	by	the	setting	of	the	d	(decimal)	flag.

8-bit	index	registers	(all	processors):	Data	decremented	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	decremented	is	sixteen-bit.

Flags	Affected: n––––—	z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

EOR Exclusive-OR	Accumulator	with	Memory
Bitwise	logical	Exclusive-OR	the	data	located	at	the	effective	address	specified	by	the

operand	with	 the	 contents	of	 the	 accumulator.	Each	bit	 in	 the	 accumulator	 is	 exclusive-
ORed	 with	 the	 corresponding	 bit	 in	 memory,	 and	 the	 result	 is	 stored	 into	 the	 same
accumulator	bit.

The	truth	table	for	the	logical	exclusive-OR	operation	is:

Figure	18.5.	Exclusive	OR	Truth	Table.

A	1	or	logical	true	results	only	if	the	two	elements	of	the	Exclusive-OR	operation	are
different.

8-bit	accumulator	(all	processors):	Data	exclusive-ORed	from	memory	is	eight-bit.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Data	exclusive-ORed	from	memory
is	sixteen-bit:	the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order
eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

+	+	EOR,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>	0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

INC Increment
Increment	by	one	the	contents	of	the	location	specified	by	the	operand	(add	one	to	the

value).

Unlike	adding	a	one	with	the	ADC	instruction,	however,	the	increment	instruction	is
neither	affected	by	nor	affects	the	carry	flag.	You	can	test	for	wraparound	only	by	testing
after	every	increment	to	see	if	the	result	is	zero	or	positive.	On	the	other	hand,	you	don’t
have	to	clear	the	carry	before	incrementing.

The	INC	instruction	is	unaffected	by	the	d	(decimal)	flag.

8-bit	accumulator/memory	(all	processors):	Data	incremented	is	eight-bit.

16-bit	 accumulator/memory	 (65802/65816	 only,	 m	 =	 0):	 Data	 incremented	 is
sixteen-bit:	if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the
high-order	eight-bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

Increment	Index	Register	X INX
Increment	by	one	 the	contents	of	 index	 register	X	 (add	one	 to	 the	value).	This	 is	 a

special	purpose,	implied	addressing	form	of	the	INC	instruction.

Unlike	using	ADC	to	add	a	one	to	the	value,	the	INX	instruction	does	not	affect	the
carry	 flag.	 You	 can	 execute	 it	 without	 first	 clearing	 the	 carry.	 But	 you	 can	 test	 for
wraparound	only	by	 testing	after	every	 increment	 to	see	 if	 the	 result	 is	zero	or	positive.
The	INX	instruction	is	unaffected	by	the	d	(decimal)	flag.

8-bit	index	registers	(all	processors):	Data	incremented	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	incremented	is	sixteen-bit.

Flags	Affected: n	––––-z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

INY Increment	Index	Register	Y
Increment	by	one	 the	contents	of	 index	 register	Y	 (add	one	 to	 the	value).	This	 is	 a

special	purpose,	implied	addressing	form	of	the	INC	instruction.

Unlike	using	ADC	 to	 add	one	 to	 the	value,	 the	 INY	 instruction	does	not	 affect	 the
carry	 flag.	 You	 can	 execute	 it	 without	 first	 clearing	 the	 carry.	 But	 you	 can	 test	 for
wraparound	only	by	 testing	after	every	 increment	 to	 see	 if	 the	value	 is	zero	or	positive.
The	INY	instruction	is	unaffected	by	the	d	(decimal)	flag.

8-bit	index	registers	(all	processors):	Data	incremented	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	incremented	is	sixteen-bit.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

Jump JMP
Transfer	control	to	the	address	specified	by	the	operand	field.

The	program	counter	is	loaded	with	the	target	address.	If	a	long	JMP	is	executed,	the
program	counter	bank	is	loaded	from	the	third	byte	of	the	target	address	specified	by	the
operand.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	65C02

2	6502:	If	low	byte	of	addr	is	$FF	(i.e.,	addr	is	SxxFF):	yields	incorrect	result

JSL Jump	to	Subroutine	Long	(Inter-Bank)
Jump-to-subroutine	with	long	(24-bit)	addressing:	transfer	control	to	the	subroutine	at

the	24-bit	address	which	is	the	operand,	after	first	pushing	a	24-bit	(long)	return	address
onto	 the	 stack.	This	 return	 address	 is	 the	 address	of	 the	 last	 instruction	byte	 (the	 fourth
instruction	byte,	or	the	third	operand	byte),	not	the	address	of	the	next	instruction;	it	is	the
return	address	minus	one.

The	current	program	counter	bank	is	pushed	onto	the	stack	first,	then	the	high-order
byte	of	 the	 return	address	and	 then	 the	 low-order	byte	of	 the	address	are	pushed	on	 the
stack	 in	 standard	 65x	 order	 (low	 byte	 in	 the	 lowest	 address,	 bank	 byte	 in	 the	 highest
address).	The	stack	pointer	is	adjusted	after	each	byte	is	pushed	to	point	to	the	next	lower
byte	(the	next	available	stack	 location).	The	program	counter	bank	register	and	program
counter	are	then	loaded	with	the	operand	values,	and	control	is	transferred	to	the	specified
location.

Flags	Affected:	––––––-

Codes:

Jump	to	Subroutine JSR
Transfer	control	to	the	subroutine	at	the	location	specified	by	the	operand,	after	first

pushing	onto	the	stack,	as	a	return	address,	the	current	program	counter	value,	that	is,	the
address	of	 the	 last	 instruction	byte	 (the	 third	byte	of	 a	 three-byte	 instruction,	 the	 fourth
byte	of	a	four-byte	instruction),	not	the	address	of	the	next	instruction.

If	 an	 absolute	 operand	 is	 coded	 and	 is	 less	 than	 or	 equal	 to	 $FFFF,	 absolute
addressing	is	assumed	by	the	assembler;	if	the	value	is	greater	than	$FFFF,	absolute	long
addressing	is	used.

If	long	addressing	is	used,	the	current	program	counter	bank	is	pushed	onto	the	stack
first.	Next—or	first	in	the	more	normal	case	of	intra-bank	addressing—the	high	order	byte
of	the	return	address	is	pushed,	followed	by	the	low	order	byte.	This	leaves	it	on	the	stack
in	 standard	 65x	 order	 (lowest	 byte	 at	 the	 lowest	 address,	 highest	 byte	 at	 the	 highest
address).	After	the	return	address	is	pushed,	the	stack	pointer	points	to	the	next	available
location	(next	lower	byte)	on	the	stack.	Finally,	the	program	counter	(and,	in	the	case	of
long	addressing,	the	program	counter	bank	register)	is	loaded	with	the	values	specified	by
the	operand,	and	control	is	transferred	to	the	target	location.

Flags	Affected:	––––––-

Codes:

LDA Load	Accumulator	from	Memory
Load	the	accumulator	with	 the	data	 located	at	 the	effective	address	specified	by	 the

operand.

8-bit	accumulator	(all	processors):	Data	is	eight-bit.

16-bit	 accumulator	 (65802/65816	 only,	m	=	 0):	Data	 is	 sixteen-bit;	 the	 low-order
eight	bits	are	 located	at	 the	effective	address;	 the	high-order	eight	bits	are	 located	at	 the
effective	address	plus	one.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	loaded	value	is	set;	else
cleared.
z	Set	if	value	loaded	is	zero;	else	cleared.

Codes:

+	+	LDA,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

Load	Index	Register	X	from	Memory LDX
Load	index	register	X	with	the	data	 located	at	 the	effective	address	specified	by	the

operand.

8-bit	index	registers	(all	processors):	Data	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	is	sixteen-bit:	the	low-order
eight	bits	are	 located	at	 the	effective	address;	 the	high-order	eight	bits	are	 located	at	 the
effective	address	plus	one.

Flags	Affected: n	-	-	-	-	z	-
n	Set	if	most	significant	bit	of	loaded	value	is	set;	else
cleared.
z	Set	if	value	loaded	is	zero;	else	cleared.

Codes:

*	Add	1	byte	if	x	=	0	(16-bit	index	registers)

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL	<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

LDY Load	Index	Register	Y	from	Memory
Load	index	register	Y	with	the	data	 located	at	 the	effective	address	specified	by	the

operand.

8-bit	index	registers	(all	processors):	Data	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Data	is	sixteen-bit:	the	low-order
eight	bits	are	 located	at	 the	effective	address;	 the	high-order	eight	bits	are	 located	at	 the
effective	address	plus	one.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	loaded	value	is	set;	else
cleared.
z	Set	if	value	loaded	is	zero;	else	cleared.

Codes:

*	Add	1	byte	if	x	=	0	(16-bit	index	registers)

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

Logical	Shift	Memory	or	Accumulator	Right LSR
Logical	shift	the	contents	of	the	location	specified	by	the	operand	right	one	bit.	That

is,	bit	zero	takes	on	the	value	originally	found	in	bit	one,	bit	one	takes	the	value	originally
found	in	bit	two,	and	so	on;	the	leftmost	bit	(bit	7	if	the	m	memory	select	flag	is	one	when
the	instruction	is	executed	or	bit	15	if	it	is	zero)	is	cleared;	the	rightmost	bit,	bit	zero,	is
transferred	to	the	carry	flag.	This	is	the	arithmetic	equivalent	of	unsigned	division	by	two.

Figure	18.6.	LSR.

8-bit	accumulator/memory	(all	processors):	Data	shifted	is	eight-bit.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Data	shifted	is	sixteen-bit:
if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order
eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—z	c
n	Cleared.
z	Set	if	result	is	zero;	else	cleared.
c	Low	bit	becomes	carry:	set	if	low	bit	was	set;	cleared	if
low	bit	was	zero.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

MVN Block	Move	Next
Moves	 (copies)	 a	 block	 of	memory	 to	 a	 new	 location.	 The	 source,	 destination	 and

length	operands	of	this	instruction	are	taken	from	the	X,	Y,	and	C	 (double	accumulator)
registers;	 these	 should	 be	 loaded	 with	 the	 correct	 values	 before	 executing	 the	MVN
instruction.

The	 source	 address	 for	MVN,	 taken	 from	 the	 X	 register,	 should	 be	 the	 starting
address	(lowest	in	memory)	of	the	block	to	be	moved.	The	destination	address,	 in	the	Y
register,	should	be	the	new	starting	address	for	the	moved	block.	The	length,	loaded	into
the	double	accumulator	(the	value	in	C	is	always	used,	regardless	of	the	setting	of	the	m
flag)	should	be	the	length	of	the	block	to	be	moved	minus	one;	if	C	contains	$0005,	six
bytes	will	 be	moved.	The	 two	operand	bytes	of	 the	MVN	 instruction	 specify	 the	banks
holding	 the	 two	blocks	of	memory:	 the	 first	 operand	byte	 (of	object	 code)	 specifies	 the
destination	bank;	the	second	operand	byte	specifies	the	source	bank.

The	 execution	 sequence	 is:	 the	 first	 byte	 is	 moved	 from	 the	 address	 in	X	 to	 the
address	 in	 Y;	 then	X	 and	Y	 are	 incremented,	C	 is	 decremented,	 and	 the	 next	 byte	 is
moved;	this	process	continues	until	the	number	of	bytes	specified	by	the	value	in	C	plus
one	is	moved.	In	other	words,	until	the	value	in	C	is	$FFFF.

If	 the	 source	 and	 destination	 blocks	 do	 not	 overlap,	 then	 the	 source	 block	 remains
intact	after	it	has	been	copied	to	the	destination.

If	the	source	and	destination	blocks	do	overlap,	then	MVN	should	be	used	only	if	the
destination	is	lower	than	the	source	to	avoid	overwriting	source	bytes	before	they’ve	been
copied	to	the	destination.	If	the	destination	is	higher,	then	the	MVP	instruction	should	be
used	instead.

When	execution	is	complete,	 the	value	in	C	 is	$FFFF,	registers	X	and	Y	each	point
one	byte	past	the	end	of	the	blocks	to	which	they	were	pointing,	and	the	data	bank	register
holds	the	destination	bank	value	(the	first	operand	byte).

Assembler	syntax	 for	 the	 block	move	 instruction	 calls	 for	 the	 operand	 field	 to	 be
coded	as	two	addresses,	source	first,	then	destination—the	more	intuitive	ordering,	but	the
opposite	 of	 the	 actual	 operand	 order	 in	 the	 object	 code.	 The	 assembler	 strips	 the	 bank
bytes	 from	the	addresses	 (ignoring	 the	rest)	and	reverses	 them	to	object	code	order.	 If	a
block	move	instruction	is	interrupted,	it	may	be	resumed	automatically	via	execution	of	an
RTI	if	all	of	the	registers	are	restored	or	intact.	The	value	pushed	onto	the	stack	when	a
block	move	is	interrupted	is	the	address	of	the	block	move	instruction.	The	current	byte-
move	is	completed	before	the	interrupt	is	serviced.

If	 the	 index	 registers	 are	 in	 eight-bit	 mode	 (x	 =	 1),	 or	 the	 processor	 is	 in	 6502
emulation	mode	(e	=	1),	then	the	blocks	being	specified	must	necessarily	be	in	page	zero
since	the	high	bytes	of	the	index	registers	will	contain	zeroes.

Flags	Affected:

Codes:

*	7	cycles	per	byte	moved

MVP Block	Move	Previous
Moves	 (copies)	 a	 block	 of	memory	 to	 a	 new	 location.	 The	 source,	 destination	 and

length	operands	of	this	instruction	are	taken	from	the	X,	Y,	and	C	 (double	accumulator)
registers;	 these	 should	 be	 loaded	 with	 the	 correct	 values	 before	 executing	 the	MVP
instruction.

The	source	address	for	MVP,	taken	from	the	X	register,	should	be	the	ending	address
(highest	in	memory)	of	the	block	to	be	moved.	The	destination	address,	in	the	Y	 register,
should	be	the	new	ending	address	for	the	moved	block.	The	length,	loaded	into	the	double
accumulator	(the	value	in	C	is	always	used,	regardless	of	the	setting	of	the	m	flag)	should
be	the	length	of	the	block	to	be	moved	minus	one;	if	C	contains	$0005,	six	bytes	will	be
moved.	The	two	operand	bytes	of	the	MVP	instruction	specify	the	banks	holding	the	two
blocks	of	memory:	the	first	operand	byte	(of	object	code)	specifies	the	destination	bank;
the	second	operand	byte	specifies	the	source	bank.

The	 execution	 sequence	 is:	 the	 first	 byte	 is	 moved	 from	 the	 address	 in	X	 to	 the
address	in	Y;	then	X	and	Y	are	decremented,	C	 is	decremented,	and	the	previous	byte	is
moved;	this	process	continues	until	the	number	of	bytes	specified	by	the	value	in	C	plus
one	is	moved.	In	other	words,	until	the	value	in	C	is	$FFFF.

If	 the	 source	 and	 destination	 blocks	 do	 not	 overlap,	 then	 the	 source	 block	 remains
intact	after	it	has	been	copied	to	the	destination.

If	the	source	and	destination	blocks	do	overlap,	then	MVP	should	be	used	only	if	the
destination	is	higher	than	the	source	to	avoid	overwriting	source	bytes	before	they’ve	been
copied	to	the	destination.	If	the	destination	is	lower,	then	the	MVN	instruction	should	be
used	instead.

When	execution	is	complete,	 the	value	in	C	is	SFFFF,	registers	X	and	Y	each	point
one	byte	past	the	beginning	of	the	blocks	to	which	they	were	pointing,	and	the	data	bank
register	holds	the	destination	bank	value	(the	first	operand	byte).

Assembler	syntax	 for	 the	 block	move	 instruction	 calls	 for	 the	 operand	 field	 to	 be
coded	as	two	addresses,	source	first,	then	destination—the	more	intuitive	ordering,	but	the
opposite	 of	 the	 actual	 operand	 order	 in	 the	 object	 code.	 The	 assembler	 strips	 the	 bank
bytes	 from	the	addresses	 (ignoring	 the	rest)	and	reverses	 them	to	object	code	order.	 If	a
block	move	instruction	is	interrupted,	it	may	be	resumed	automatically	via	execution	of	an
RTI	if	all	of	the	registers	are	restored	or	intact.	The	value	pushed	onto	the	stack	when	a
block	move	is	interrupted	is	the	address	of	the	block	move	instruction.	The	current	byte-
move	is	completed	before	the	interrupt	is	serviced.

If	 the	 index	 registers	 are	 in	 eight-bit	 mode	 (x	 =	 1),	 or	 the	 processor	 is	 in	 6502
emulation	mode	(e	=	1),	then	the	blocks	being	specified	must	necessarily	be	in	page	zero
since	the	high	bytes	of	the	index	registers	will	contain	zeroes.

Flags	Affected:

Codes:

*	7	cycles	per	byte	moved

NOP No	Operation
Executing	a	NOP	 takes	no	action;	 it	has	no	effect	on	any	65x	registers	or	memory,

except	the	program	counter,	which	is	incremented	once	to	point	to	the	next	instruction.

Its	primary	uses	are	during	debugging,	where	it	is	used	to	“patch	out”	unwanted	code,
or	as	a	place-holder,	included	in	the	assembler	source,	where	you	anticipate	you	may	have
to	“patch	in”	instructions,	and	want	to	leave	a	“hole”	for	the	patch.

NOP	 may	 also	 be	 used	 to	 expand	 timing	 loops—each	NOP	 instruction	 takes	 two
cycles	to	execute,	so	adding	one	or	more	may	help	fine	tune	a	timing	loop.

Flags	Affected:	––––––-

Codes:

OR	Accumulator	with	Memory ORA
Bitwise	logical	OR	the	data	located	at	the	effective	address	specified	by	the	operand

with	 the	 contents	 of	 the	 accumulator.	 Each	 bit	 in	 the	 accumulator	 is	 ORed	 with	 the
corresponding	bit	in	memory.	The	result	is	stored	into	the	same	accumulator	bit.

The	truth	table	for	the	logical	OR	operation	is:

Figure	18.7.	Logical	OR	Truth	Table.

A	1	or	logical	true	results	if	either	of	the	two	operands	of	the	OR	operation	is	true.

8-bit	accumulator	(all	processors):	Data	ORed	from	memory	is	eight-bit.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Data	ORed	from	memory	is	sixteen-
bit:	 the	low-order	eight	bits	are	located	at	the	effective	address;	the	high-order	eight	bits
are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.

Codes:

+	+	ORA,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

Push	Effective	Absolute	Address PEA
Push	the	sixteen-bit	operand	(typically	an	absolute	address)	onto	the	stack.	The	stack

pointer	 is	 decremented	 twice.	 This	 operation	 always	 pushes	 sixteen	 bits	 of	 data,
irrespective	of	the	settings	of	the	m	and	x	mode	select	flags.

Although	 the	mnemonic	 suggests	 that	 the	 sixteen-bit	 value	 pushed	 on	 the	 stack	 be
considered	 an	 address,	 the	 instruction	 may	 also	 be	 considered	 a	 “push	 sixteen-bit
immediate	data”	instruction,	although	the	syntax	of	immediate	addressing	is	not	used.	The
assembler	 syntax	 is	 that	 of	 the	 absolute	 addressing	mode,	 that	 is,	 a	 label	 or	 sixteen-bit
value	in	the	operand	field.	Unlike	all	other	instructions	that	use	this	assembler	syntax,	the
effective	 address	 itself,	 rather	 than	 the	 data	 stored	 at	 the	 effective	 address,	 is	 what	 is
accessed	(and	in	this	case,	pushed	onto	the	stack).

Flags	Affected:	––––––-

Codes:

PEI Push	Effective	Indirect	Address
Push	 the	 sixteen-bit	 value	 located	 at	 the	 address	 formed	 by	 adding	 the	 direct	 page

offset	specified	by	the	operand	to	the	direct	page	register.	The	mnemonic	implies	that	the
sixteen-bit	data	pushed	is	considered	an	address,	although	it	can	be	any	sixteen-bit	data.
This	operation	always	pushes	sixteen	bits	of	data,	irrespective	of	the	settings	of	the	m	and
x	mode	select	flags.

The	first	byte	pushed	is	the	byte	at	the	direct	page	offset	plus	one	(the	high	byte	of	the
double	byte	stored	at	the	direct	page	offset).	The	byte	at	the	direct	page	offset	itself	(the
low	byte)	is	pushed	next.	The	stack	pointer	now	points	to	the	next	available	stack	location,
directly	below	the	last	byte	pushed.

The	assembler	syntax	is	that	of	direct	page	indirect;	however,	unlike	other	instructions
which	use	this	assembler	syntax,	the	effective	indirect	address,	rather	than	the	data	stored
at	that	address,	is	what	is	accessed	and	pushed	onto	the	stack.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

Push	Effective	PC	Relative	Indirect	Address PER
Add	the	current	value	of	the	program	counter	to	the	sixteen-bit	signed	displacement	in

the	operand,	and	push	the	result	on	the	stack.	This	operation	always	pushes	sixteen	bits	of
data,	irrespective	of	the	settings	of	the	m	and	x	mode	select	flags.

The	 high	 byte	 of	 the	 sum	 is	 pushed	 first,	 then	 the	 low	 byte	 is	 pushed.	 After	 the
instruction	 is	 completed,	 the	 stack	 pointer	 points	 to	 the	 next	 available	 stack	 location,
immediately	below	the	last	byte	pushed.

Because	PER’s	operand	is	a	displacement	relative	to	the	current	value	of	the	program
counter	 (as	 with	 the	 branch	 instructions),	 this	 instruction	 is	 helpful	 in	 writing	 self-
relocatable	code	in	which	an	address	within	the	program	(typically	of	a	data	area)	must	be
accessed.	The	address	pushed	onto	the	stack	will	be	the	run-time	address	of	the	data	area,
regardless	of	where	the	program	was	loaded	in	memory;	it	may	be	pulled	into	a	register,
stored	in	an	indirect	pointer,	or	used	on	the	stack	with	the	stack	relative	indirect	indexed
addressing	mode	to	access	the	data	at	that	location.

As	 is	 the	 case	 with	 the	 branch	 instructions,	 the	 syntax	 used	 is	 to	 specify	 as	 the
operand	 the	 label	 of	 the	 data	 area	 you	want	 to	 reference.	 This	 location	must	 be	 in	 the
program	bank,	since	the	displacement	is	relative	to	the	program	counter.	The	assembler
converts	 the	assembly-time	 label	 into	a	displacement	 from	the	assembly-time	address	of
the	next	instruction.

The	 value	 of	 the	 program	 counter	 used	 in	 the	 addition	 is	 the	 address	 of	 the	 next
instruction,	that	is,	the	instruction	following	the	PER	instruction.

PER	 may	 also	 be	 used	 to	 push	 return	 addresses	 on	 the	 stack,	 either	 as	 part	 of	 a
simulated	 branch-to-subroutine	 or	 to	 place	 the	 return	 address	 beneath	 the	 stacked
parameters	to	a	subroutine	call;	always	remember	that	a	pushed	return	address	should	be
the	desired	return	address	minus	one.

Flags	Affected:	––––––-

Codes:

PHA Push	Accumulator
Push	the	accumulator	onto	the	stack.	The	accumulator	itself	is	unchanged.

8-bit	accumulator	(all	processors):	The	single	byte	contents	of	the	accumulator	are
pushed—they	 are	 stored	 to	 the	 location	 pointed	 to	 by	 the	 stack	 pointer	 and	 the	 stack
pointer	is	decremented.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Both	accumulator	bytes	are	pushed.
The	high	byte	is	pushed	first,	then	the	low	byte.	The	stack	pointer	now	points	to	the	next
available	stack	location,	directly	below	the	last	byte	pushed.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

Push	Data	Bank	Register PHB
Push	the	contents	of	the	data	bank	register	onto	the	stack.

The	single-byte	contents	of	the	data	bank	register	are	pushed	onto	the	stack;	the	stack
pointer	 now	points	 to	 the	 next	 available	 stack	 location,	 directly	 below	 the	 byte	 pushed.
The	 data	 bank	 register	 itself	 is	 unchanged.	 Since	 the	 data	 bank	 register	 is	 an	 eight-bit
register,	only	one	byte	is	pushed	onto	the	stack,	regardless	of	the	settings	of	the	m	and	x
mode	select	flags.

While	 the	 65816	 always	 generates	 24-bit	 addresses,	 most	 memory	 references	 are
specified	by	a	sixteen-bit	address.	These	addresses	are	concatenated	with	the	contents	of
the	data	bank	register	to	form	a	full	24-bit	address.	This	instruction	lets	the	current	value
of	the	data	bank	register	be	saved	prior	to	loading	a	new	value.

Flags	Affected:	––––––-

Codes:

PHD Push	Direct	Page	Register
Push	the	contents	of	the	direct	page	register	D	onto	the	stack.

Since	the	direct	page	register	is	always	a	sixteen-bit	register,	this	is	always	a	sixteen-
bit	operation,	regardless	of	the	settings	of	the	m	and	x	mode	select	flags.	The	high	byte	of
the	direct	page	register	is	pushed	first,	then	the	low	byte.	The	direct	page	register	itself	is
unchanged.	 The	 stack	 pointer	 now	 points	 to	 the	 next	 available	 stack	 location,	 directly
below	the	last	byte	pushed.

By	pushing	the	D	register	onto	the	stack,	the	local	environment	of	a	calling	subroutine
may	 easily	 be	 saved	 by	 a	 called	 subroutine	 before	modifying	 the	D	 register	 to	 provide
itself	with	its	own	direct	page	memory.

Flags	Affected:	––––––-

Codes:

Push	Program	Bank	Register PHK
Push	the	program	bank	register	onto	the	stack.

The	single-byte	contents	of	the	program	bank	register	are	pushed.	The	program	bank
register	 itself	 is	 unchanged.	 The	 stack	 pointer	 now	 points	 to	 the	 next	 available	 stack
location,	directly	below	the	byte	pushed.	Since	 the	program	bank	register	 is	an	eight-bit
register,	only	one	byte	is	pushed	onto	the	stack,	regardless	of	the	settings	of	the	m	and	x
mode	select	flags.

While	the	65816	always	generates	24-bit	addresses,	most	jumps	and	branches	specify
only	 a	 sixteen-bit	 address.	 These	 addresses	 are	 concatenated	 with	 the	 contents	 of	 the
program	bank	register	to	form	a	full	24-bit	address.	This	instruction	lets	you	determine	the
current	value	of	the	program	bank	register—for	example,	if	you	want	the	data	bank	to	be
set	to	the	same	value	as	the	program	bank.

Flags	Affected:	––––––-

Codes:

PHP Push	Processr	Status	Register
Push	the	contents	of	the	processor	status	register	P	onto	the	stack.

Since	 the	 status	 register	 is	 always	 an	 eight-bit	 register,	 this	 is	 always	 an	 eight-bit
operation,	regardless	of	the	settings	of	the	m	and	x	mode	select	flags	on	the	65802/65816.
The	status	register	contents	are	not	changed	by	the	operation.	The	stack	pointer	now	points
to	the	next	available	stack	location,	directly	below	the	byte	pushed.

This	provides	the	means	for	saving	either	the	current	mode	settings	or	a	particular	set
of	status	flags	so	they	may	be	restored	or	in	some	other	way	used	later.

Note,	however,	that	the	e	bit	(the	6502	emulation	mode	flag	on	the	65802/65816)	is
not	pushed	onto	the	stack	or	otherwise	accessed	or	saved.	The	only	access	to	the	e	flag	is
via	the	XCE	instruction.

Flags	Affected:	––––––-

Codes:

Push	Index	Register PHX
Push	 the	 contents	 of	 the	 X	 index	 register	 onto	 the	 stack.	 The	 register	 itself	 is

unchanged.

8-bit	index	registers	(all	processors):	The	eight-bit	contents	of	the	index	register	are
pushed	onto	the	stack.	The	stack	pointer	now	points	 to	the	next	available	stack	location,
directly	below	the	byte	pushed.

16-bit	 index	 registers	 (65802/65816	 only,	 x	 =	 0):	 The	 sixteen-bit	 contents	 of	 the
index	 register	 are	 pushed.	 The	 high	 byte	 is	 pushed	 first,	 then	 the	 low	 byte.	 The	 stack
pointer	now	points	to	the	next	available	stack	location,	directly	below	the	last	byte	pushed.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

PHY Push	Index	Register
Push	 the	 contents	 of	 the	 Y	 index	 register	 onto	 the	 stack.	 The	 register	 itself	 is

unchanged.

8-bit	index	registers	(all	processors):	The	eight-bit	contents	of	the	index	register	are
pushed	onto	the	stack.	The	stack	pointer	now	points	 to	the	next	available	stack	location,
directly	below	the	byte	pushed.

16-bit	 index	 registers	 (65802/65816	 only,	 x	 =	 0):	 The	 sixteen-bit	 contents	 of	 the
index	 register	 are	 pushed.	 The	 high	 byte	 is	 pushed	 first,	 then	 the	 low	 byte.	 The	 stack
pointer	now	points	to	the	next	available	stack	location,	directly	below	the	last	byte	pushed.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

Pull	Accumulator PLA
Pull	the	value	on	the	top	of	the	stack	into	the	accumulator.	The	previous	contents	of

the	accumulator	are	destroyed.

8-bit	accumulator	(all	processors):	The	stack	pointer	is	first	incremented.	Then	the
byte	pointed	to	by	the	stack	pointer	is	loaded	into	the	accumulator.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Both	accumulator	bytes	are	pulled.
The	accumulator’s	low	byte	is	pulled	first,	then	the	high	byte	is	pulled.

Note	 that	 unlike	 some	 other	 microprocessors,	 the	 65x	 pull	 instructions	 set	 the
negative	and	zero	flags.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	pulled	value	is	set;	else
cleared.
z	Set	if	value	pulled	is	zero;	else	cleared.

Codes:

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

PLB Pull	Data	Bank	Register
Pull	the	eight-bit	value	on	top	of	the	stack	into	the	data	bank	register	B,	switching	the

data	bank	to	that	value.	All	instructions	which	reference	data	that	specify	only	sixteen-bit
addresses	will	get	their	bank	address	from	the	value	pulled	into	the	data	bank	register.	This
is	the	only	instruction	that	can	modify	the	data	bank	register.

Since	the	bank	register	is	an	eight-bit	register,	only	one	byte	is	pulled	from	the	stack,
regardless	 of	 the	 settings	 of	 the	m	 and	 x	 mode	 select	 flags.	 The	 stack	 pointer	 is	 first
incremented.	Then	the	byte	pointed	to	by	the	stack	pointer	is	loaded	into	the	register.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	pulled	value	is	set;	else
cleared.
z	Set	if	value	pulled	is	zero;	else	cleared.

Codes:

Pull	Direct	Page	Register PLD
Pull	the	sixteen-bit	value	on	top	of	the	stack	into	the	direct	page	register	D,	switching

the	direct	page	to	that	value.

PLD	is	typically	used	to	restore	the	direct	page	register	to	a	previous	value.

Since	 the	direct	page	register	 is	a	sixteen-bit	 register,	 two	bytes	are	pulled	from	the
stack,	 regardless	 of	 the	 settings	 of	 the	m	 and	x	mode	 select	 flags.	 The	 low	 byte	 of	 the
direct	 page	 register	 is	 pulled	 first,	 then	 the	 high	 byte.	 The	 stack	 pointer	 now	 points	 to
where	the	high	byte	just	pulled	was	stored;	this	is	now	the	next	available	stack	location.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	pulled	value	is	set;	else
cleared,
z	Set	if	value	pulled	is	zero;	else	cleared.

Codes:

PLP Pull	Status	Flags
Pull	 the	 eight-bit	 value	 on	 the	 top	 of	 the	 stack	 into	 the	 processor	 status	 register	P,

switching	the	status	byte	to	that	value.

Since	the	status	register	is	an	eight-bit	register,	only	one	byte	is	pulled	from	the	stack,
regardless	of	the	settings	of	the	m	and	x	mode	select	flags	on	the	65802/65816.	The	stack
pointer	is	first	incremented.	Then	the	byte	pointed	to	by	the	stack	pointer	is	loaded	into	the
status	register.

This	provides	the	means	for	restoring	either	previous	mode	settings	or	a	particular	set
of	status	flags	that	reflect	the	result	of	a	previous	operation.

Note,	however,	that	the	e	flag—the	6502	emulation	mode	flag	on	the	65802/65816—
is	not	on	the	stack	so	cannot	be	pulled	from	it.	The	only	means	of	setting	the	e	flag	is	the
XCE	instruction.

Flags	Affected: n	v	-	b	d	i	z	c	(6502,	65C02,
65802/65816	emulation	mode	e	=	1)
n	v	m	x	d	i	z	c	(65802/65816	native	mode	e	=	0)
All	flags	are	replaced	by	the	values	in	the	byte	pulled	from
the	stack.

Codes:

Pull	Index	Register	X	from	Stack PLX
Pull	the	value	on	the	top	of	the	stack	into	the	X	index	register.	The	previous	contents

of	the	register	are	destroyed.

8-bit	 index	registers	 (all	processors):	The	 stack	pointer	 is	 first	 incremented.	Then
the	byte	pointed	to	by	the	stack	pointer	is	loaded	into	the	register.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Both	bytes	of	the	index	register	are
pulled.	First	the	low-order	byte	of	the	index	register	is	pulled,	then	the	high-order	byte	of
the	index	register	is	pulled.

Unlike	 some	 other	 microprocessors,	 the	 65x	 instructions	 to	 pull	 an	 index	 register
affect	the	negative	and	zero	flags.

Flags	Affected: n	––––-z	-
n	Set	if	most	significant	bit	of	pulled	value	is	set;	else
cleared.
z	Set	if	value	pulled	is	zero;	else	cleared.

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

PLY Pull	Index	Register	Y	from	Stack
Pull	the	value	on	the	top	of	the	stack	into	the	Y	index	register.	The	previous	contents

of	the	register	are	destroyed.

8-bit	 index	registers	 (all	processors):	The	 stack	pointer	 is	 first	 incremented.	Then
the	byte	pointed	to	by	the	stack	pointer	is	loaded	into	the	register.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Both	bytes	of	the	index	register	are
pulled.	First	the	low-order	byte	of	the	index	register	is	pulled,	then	the	high-order	byte	of
the	index	register	is	pulled.

Unlike	 some	 other	 microprocessors,	 the	 65x	 instructions	 to	 pull	 an	 index	 register
affect	the	negative	and	zero	flags.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	pulled	value	is	set;	else
cleared.
z	Set	if	value	pulled	is	zero;	else	cleared.

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

Reset	Status	Bits REP
For	each	bit	set	 to	one	 in	 the	operand	byte,	 reset	 the	corresponding	bit	 in	 the	status

register	to	zero.	For	example,	if	bit	three	is	set	in	the	operand	byte,	bit	three	in	the	status
register	(the	decimal	flag)	is	reset	 to	zero	by	this	instruction.	Zeroes	in	the	operand	byte
cause	no	change	to	their	corresponding	status	register	bits.

This	instruction	lets	you	reset	any	flag	or	flags	in	the	status	register	with	a	single	two-
byte	 instruction.	 Further,	 it	 is	 the	 only	 direct	 means	 of	 resetting	 several	 of	 the	 flags,
including	 the	m	 and	 x	 mode	 select	 flags	 (although	 instructions	 that	 pull	 the	 P	 status
register	affect	the	m	and	x	mode	select	flags).

6502	emulation	mode	(65802/65816,	e	=	1):	Neither	the	break	flag	nor	bit	five	(the
6502’s	undefined	flag	bit)	are	affected	by	REP.

Flags	Affected: n	v	-	-	d	i	z	c	(65802/65816	emulation	mode	e	=	1)
n	v	m	x	d	i	z	c	(65802/65816	native	mode	e	=	0)
All	flags	for	which	an	operand	bit	is	set	are	reset	to	zero.
All	other	flags	are	unaffected	by	the	instruction.

Codes:

ROL Rotate	Memory	or	Accumulator	Left
Rotate	the	contents	of	the	location	specified	by	the	operand	left	one	bit.	Bit	one	takes

on	the	value	originally	found	in	bit	zero,	bit	two	takes	the	value	originally	in	bit	one,	and
so	on;	the	rightmost	bit,	bit	zero,	takes	the	value	in	the	carry	flag;	the	leftmost	bit	(bit	7	on
the	6502	and	65C02	or	if	m	=	1	on	the	65802/65816,	or	bit	15	if	m	=	0)	is	transferred	into
the	carry	flag.

Figure	18.8.	ROL.

8-bit	accumulator/memory	(all	processors):	Data	rotated	is	eight	bits,	plus	carry.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Data	rotated	is	sixteen	bits,
plus	carry:	if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the
high	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—zc
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	High	bit	becomes	carry:	set	if	high	bit	was	set;	cleared	if
high	bit	was	clear.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

Rotate	Memory	or	Accumulator	Right ROR
Rotate	 the	 contents	 of	 the	 location	 specified	 by	 the	 operand	 right	 one	 bit.	Bit	 zero

takes	on	the	value	originally	found	in	bit	one,	bit	one	takes	the	value	originally	in	bit	two,
and	so	on;	the	leftmost	bit	(bit	7	on	the	6502	and	65C02	or	if	m	=	1	on	the	65802/65816,
or	 bit	 15	 if	 m	 =	 0)	 takes	 the	 value	 in	 the	 carry	 flag;	 the	 rightmost	 bit,	 bit	 zero,	 is
transferred	into	the	carry	flag.

Figure	18.9.	ROR.

8-bit	accumulator/memory	(all	processors):	Data	rotated	is	eight	bits,	plus	carry.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Data	rotated	is	sixteen	bits,
plus	carry:	if	in	memory,	the	low-order	eight	bits	are	located	at	the	effective	address;	the
high-order	eight	bits	are	located	at	the	effective	address	plus	one.

Flags	Affected: n	––––—z	c
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
z	Set	if	result	is	zero;	else	cleared.
c	Low	bit	becomes	carry:	set	if	low	bit	was	set;	cleared	if
low	bit	was	clear.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

RTI Return	from	Interrupt
Pull	the	status	register	and	the	program	counter	from	the	stack.	If	the	65802/65816	is

set	to	native	mode	(e	=	0),	also	pull	the	program	bank	register	from	the	stack.

RTI	 pulls	 values	 off	 the	 stack	 in	 the	 reverse	 order	 they	 were	 pushed	 onto	 it	 by
hardware	or	 software	 interrupts.	The	RTI	 instruction,	 however,	 has	no	way	of	knowing
whether	the	values	pulled	off	the	stack	into	the	status	register	and	the	program	counter	are
valid—or	even,	for	that	matter,	that	an	interrupt	has	ever	occurred.	It	blindly	pulls	the	first
three	(or	four)	bytes	off	the	top	of	the	stack	and	stores	them	into	the	various	registers.

Unlike	 the	RTS	 instruction,	 the	program	counter	 address	pulled	off	 the	 stack	 is	 the
exact	 address	 to	 return	 to;	 the	 value	 on	 the	 stack	 is	 the	 value	 loaded	 into	 the	 program
counter.	It	does	not	need	to	be	incremented	as	a	subroutine’s	return	address	does.

Pulling	the	status	register	gives	the	status	flags	the	values	they	had	immediately	prior
to	the	start	of	interrupt-processing.

One	extra	byte	is	pulled	in	the	65802/65816	native	mode	than	in	emulation	mode,	the
same	extra	byte	that	is	pushed	by	interrupts	in	native	mode,	the	program	bank	register.	It	is
therefore	essential	that	the	return	from	interrupt	be	executed	in	the	same	mode	(emulation
or	native)	as	the	original	interrupt.

6502,	65C02,	and	Emulation	Mode	 (e	=	1):	The	 status	 register	 is	pulled	 from	 the
stack,	then	the	program	counter	is	pulled	from	the	stack	(three	bytes	are	pulled).

65802/65816	Native	Mode	(e	=	0):	The	status	register	is	pulled	from	the	stack,	then
the	 program	 counter	 is	 pulled	 from	 the	 stack,	 then	 the	 program	 bank	 register	 is	 pulled
from	the	stack	(four	bytes	are	pulled).

Figure	18.10.	Native	Mode	Stack	before	RTI.

Flags	Affected: n	v	-	-	d	i	z	c	(6502,	65C02,	65802/65816	emulation	mode
e	=	1)
n	v	m	x	d	i	z	c	(65802/65816	native	mode	e	=	0)
All	flags	are	restored	to	their	values	prior	to	interrupt	(each
flag	takes	the	value	of	its	corresponding	bit	in	the	stacked
status	byte,	except	that	the	Break	flag	is	ignored).

RTL Return	from	Subroutine	Long
Pull	 the	program	counter	 (incrementing	 the	stacked,	sixteen-bit	value	by	one	before

loading	the	program	counter	with	it),	then	the	program	bank	register	from	the	stack.

When	 a	 subroutine	 in	 another	 bank	 is	 called	 (via	 a	 jump	 to	 subroutine	 long
instruction),	 the	 current	 bank	 address	 is	 pushed	 onto	 the	 stack	 along	 with	 the	 return
address.	To	return	to	the	calling	bank,	a	long	return	instruction	must	be	executed,	which
first	pulls	the	return	address	from	the	stack,	increments	it,	and	loads	the	program	counter
with	 it,	 then	 pulls	 the	 calling	 bank	 from	 the	 stack	 and	 loads	 the	 program	bank	 register.
This	 transfers	 control	 to	 the	 instruction	 immediately	 following	 the	 original	 jump	 to
subroutine	long.

Figure	18.11.	Stack	before	RTL.

Flags	Affected:

Codes:

RTS Return	from	Subroutine
Pull	 the	program	counter,	 incrementing	 the	 stacked,	 sixteen-bit	value	by	one	before

loading	the	program	counter	with	it.

When	a	subroutine	is	called	(via	a	jump	to	subroutine	instruction),	the	current	return
address	 is	 pushed	 onto	 the	 stack.	To	 return	 to	 the	 code	 following	 the	 subroutine	 call,	 a
return	 instruction	 must	 be	 executed,	 which	 pulls	 the	 return	 address	 from	 the	 stack,
increments	it,	and	loads	the	program	counter	with	it,	transferring	control	to	the	instruction
immediately	following	the	jump	to	subroutine.

Figure	18.12.	Stack	before	RTS.

Flags	Affected:	––––––-

Codes:

Subtract	with	Borrow	from	Accumulator SBC
Subtract	 the	data	 located	 at	 the	 effective	 address	 specified	by	 the	operand	 from	 the

contents	of	the	accumulator;	subtract	one	more	if	the	carry	flag	is	clear,	and	store	the	result
in	the	accumulator.

The	65x	processors	have	no	 subtract	 instruction	 that	does	not	 involve	 the	 carry.	To
avoid	 subtracting	 the	carry	 flag	 from	 the	 result,	 either	you	must	be	 sure	 it	 is	 set	or	you
must	explicitly	set	it	(using	SEC)	prior	to	executing	the	SBC	instruction.

In	a	multi-precision	(multi-word)	subtract,	you	set	the	carry	before	the	low	words	are
subtracted.	 The	 low	 word	 subtraction	 generates	 a	 new	 carry	 flag	 value	 based	 on	 the
subtraction.	The	carry	is	set	if	no	borrow	was	required	and	cleared	if	borrow	was	required.
The	complement	of	the	new	carry	flag	(one	if	the	carry	is	clear)	is	subtracted	during	the
next	 subtraction,	 and	 so	 on.	 Each	 result	 thus	 correctly	 reflects	 the	 borrow	 from	 the
previous	subtraction.

Note	that	this	use	of	the	carry	flag	is	the	opposite	of	the	way	the	borrow	flag	is	used
by	some	other	processors,	which	clear	(not	set)	the	carry	if	no	borrow	was	required.

d	flag	clear:	Binary	subtraction	is	performed.

d	flag	set:	Binary	coded	decimal	(BCD)	subtraction	is	performed.

8-bit	accumulator	(all	processors):	Data	subtracted	from	memory	is	eight-bit.

16-bit	 accumulator	 (65802/65816	 only,	m	 =	 0):	 Data	 subtracted	 from	memory	 is
sixteen-bit:	 the	 low	 eight	 bits	 is	 located	 at	 the	 effective	 address;	 the	 high	 eight	 bits	 is
located	at	the	effective	address	plus	one.

Flags	Affected: n	v	–––-	zc
n	Set	if	most	significant	bit	of	result	is	set;	else	cleared.
v	Set	if	signed	overflow;	cleared	if	valid	signed	result.
z	Set	if	result	is	zero;	else	cleared.
c	Set	if	unsigned	borrow	not	required;	cleared	if	unsigned
borrow.

Codes:

+	+	SBC,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

4	Add	1	cycle	if	65C02	and	d	=	1	(decimal	mode,	65C02)

Set	Carry	Flag SEC
Set	the	carry	flag	in	the	status	register.

SEC	is	used	prior	to	subtraction	(using	the	65x’s	SBC	 instruction)	to	keep	the	carry
flag	from	affecting	 the	result,	and	prior	 to	an	XCE	 (exchange	carry	flag	with	emulation
bit)	instruction	to	put	the	65802	or	65816	into	6502	emulation	mode.

Flags	Affected: -	-	-	-	-	-	c
c	Carry	flag	set	always.

Codes:

SED Set	Decimal	Mode	Flag
Set	the	decimal	mode	flag	in	the	status	register.

SED	is	used	to	shift	65x	processors	into	decimal	mode	from	binary	mode,	so	that	the
ADC	 and	 SBC	 instructions	 will	 operate	 correctly	 on	 BCD	 data,	 performing	 automatic
decimal	adjustment.

Flags	Affected: –––d	––-
d	Decimal	mode	flag	set	always.

Codes:

Set	Interrupt	Disable	Flag SEI
Set	the	interrupt	disable	flag	in	the	status	register.

SEI	is	used	to	disable	hardware	interrupt	processing.	When	the	i	bit	is	set,	mask-able
hardware	interrupts	(IRQ’)	are	ignored.	The	processor	itself	sets	the	i	flag	when	it	begins
servicing	an	interrupt,	so	interrupt	handling	routines	that	are	intended	to	be	interruptable
must	reenable	interrupts	with	CLI.	If	interrupts	are	to	remain	blocked	during	the	interrupt
service,	exiting	the	routine	via	RTI	will	automatically	restore	the	status	register	with	the	i
flag	clear,	re-enabling	interrupts.

Flags	Affected: –––—	i–-
i	Interrupt	disable	flag	set	always.

Codes:

SEP Set	Status	Bits
For	each	one-bit	in	the	operand	byte,	set	the	corresponding	bit	in	the	status	register	to

one.	For	example,	if	bit	three	is	set	in	the	operand	byte,	bit	three	in	the	status	register	(the
decimal	flag)	is	set	to	one	by	this	instruction.	Zeroes	in	the	operand	byte	cause	no	change
to	their	corresponding	status	register	bits.

This	instruction	lets	you	set	any	flag	or	flags	in	the	status	register	with	a	single	two-
byte	 instruction.	 Furthermore,	 it	 is	 the	 only	 direct	means	 of	 setting	 the	m	 and	 x	mode
select	flags.	(Instructions	that	pull	the	P	status	register	indirectly	affect	the	m	and	x	mode
select	flags).

6502	emulation	mode	(65802/65816,	e	=	1):	Neither	the	break	flag	nor	bit	five	(the
6502’s	non-flag	bit)	is	affected	by	SEP.

Flags	Affected: n	v	-	-	d	i	z	c	(65802/65816	emulation	e	=	1)
n	v	m	x	d	i	z	c	(65802/65816	native	mode	e	=	0)
All	flags	for	which	an	operand	bit	is	set	are	set	to	one.
All	other	flags	are	unaffected	by	the	instruction.

Codes:

Store	Accumulator	to	Memory STA
Store	the	value	in	the	accumulator	to	the	effective	address	specified	by	the	operand.

8-bit	accumulator	(all	processors):	Value	is	eight-bit.

16-bit	accumulator	(65802/65816	only,	m	=	0):	Value	 is	sixteen-bit:	 the	 low-order
eight	 bits	 are	 stored	 to	 the	 effective	 address;	 the	 high-order	 eight	 bits	 are	 stored	 to	 the
effective	address	plus	one.

The	65x	flags	are	unaffected	by	store	instructions.

Flags	Affected:	––––––-

Codes:

+	+STA,	a	Primary	Group	Instruction,	has	available	all	of	the	Primary	Group	addressing	modes	and	bit	patterns

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL	<	>0)

STP Stop	the	Processor
During	the	processor’s	next	phase	2	clock	cycle,	stop	the	processor’s	oscillator	input;

the	processor	 is	 effectively	 shut	down	until	 a	 reset	 occurs	 (until	 the	RES’	 pin	 is	 pulled
low).

STP	is	designed	to	put	the	processor	to	sleep	while	it’s	not	(actively)	in	use	in	order
to	reduce	power	consumption.	Since	power	consumption	is	a	function	of	frequency	with
CMOS	circuits,	stopping	the	clock	cuts	power	to	almost	nil.

Your	reset	handling	routine	(pointed	to	by	the	reset	vector,	$00:FFFC-FD)	should	be
designed	to	either	reinitialize	the	system	or	resume	control	through	a	previously-installed
reset	handler.

Remember	that	reset	is	an	interrupt-like	signal	that	causes	the	emulation	bit	to	be	set
to	one.	It	also	causes	the	direct	page	register	to	be	reset	to	zero;	stack	high	to	be	set	to	one
(forcing	the	stack	pointer	to	page	one);	and	the	mode	select	flags	to	be	set	to	one	(eight-bit
registers;	 a	 side	 effect	 is	 that	 the	 high	 bytes	 of	 the	 index	 registers	 are	 zeroed).	STP	 is
useful	only	in	hardware	systems	(such	as	battery-powered	systems)	specifically	designed
to	support	a	low-power	mode.

Flags	Affected;	––––––-

Codes:

1	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	reset	to	restart	it

Store	Index	Register	X	to	Memory STX
Store	the	value	in	index	register	X	to	the	effective	address	specified	by	the	operand.

8-bit	index	registers	(all	processors):	Value	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Value	is	sixteen-bit:	the	low-order
eight	 bits	 are	 stored	 to	 the	 effective	 address;	 the	 high-order	 eight	 bits	 are	 stored	 to	 the
effective	address	plus	one.

The	65x	flags	are	unaffected	by	store	instructions.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

STY Store	Index	Register	Y	to	Memory
Store	the	value	in	index	register	Y	to	the	effective	address	specified	by	the	operand.

8-bit	index	registers	(all	processors):	Value	is	eight-bit.

16-bit	index	registers	(65802/65816	only,	x	=	0):	Value	is	sixteen-bit:	the	low-order
eight	 bits	 are	 stored	 to	 the	 effective	 address;	 the	 high-order	 eight	 bits	 are	 stored	 to	 the
effective	address	plus	one.

The	65x	flags	are	unaffected	by	store	instructions.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

Store	Zero	to	Memory STZ
Store	zero	to	the	effective	address	specified	by	the	operand.

8-bit	accumulator	(all	processors):	Zero	is	stored	at	the	effective	address.

16-bit	 accumulator/memory	 (65802/65816	 only,	 m	 =	 0):	 Zero	 is	 stored	 at	 the
effective	address	and	at	the	effective	address	plus	one.

The	65x	store	zero	instruction	does	not	affect	the	flags.

Flags	Affected:	––––––-

Codes:

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

TAX Transfer	Accumulator	to	Index	Register	X
Transfer	the	value	in	the	accumulator	to	index	register	X.	If	the	registers	are	different

sizes,	the	nature	of	the	transfer	is	determined	by	the	destination	register.	The	value	in	the
accumulator	is	not	changed	by	the	operation.

8-bit	accumulator,	8-bit	index	registers	(all	processors):	Value	transferred	is	eight-
bit.

8-bit	accumulator,	16-bit	index	registers	(65802/65816	only,	m	=	1,	x	=	0):	Value
transferred	is	sixteen-bit;	the	eight-bit	A	accumulator	becomes	the	low	byte	of	the	index
register;	the	hidden	eight-bit	B	accumulator	becomes	the	high	byte	of	the	index	register.

16-bit	accumulator,	8-bit	index	registers	(65802/65816	only,	m	=	0,	x	=	1):	Value
transferred	to	the	eight-bit	index	register	is	eight-bit,	the	low	byte	of	the	accumulator.

16-bit	accumulator,	16-bit	index	registers	(65802/65816	only,	m	=	0,	x	=	0):	Value
transferred	to	the	sixteen-bit	index	register	is	sixteen-bit,	the	full	sixteen-bit	accumulator.

Flags	Affected: n	––––	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

Transfer	Accumulator	to	Index	Register	Y TAY
Transfer	the	value	in	the	accumulator	to	index	register	Y.	If	the	registers	are	different

sizes,	the	nature	of	the	transfer	is	determined	by	the	destination	register.	The	value	in	the
accumulator	is	not	changed	by	the	operation.

8-bit	accumulator,	8-bit	index	registers	(all	processors):	Value	transferred	is	eight-
bit.

8-bit	accumulator,	16-bit	index	registers	(65802/65816	only,	m	=	1,	x	=	0):	Value
transferred	is	sixteen-bit;	the	eight-bit	A	accumulator	becomes	the	low	byte	of	the	index
register;	the	hidden	eight-bit	B	accumulator	becomes	the	high	byte	of	the	index	register.

16-bit	accumulator,	8-bit	index	registers	(65802/65816	only,	m	=	0,	x	=	1):	Value
transferred	to	the	eight-bit	index	register	is	eight-bit,	the	low	byte	of	the	accumulator.

16-bit	accumulator,	16-bit	index	registers	(65802/65816	only,	m	=	0,	x	=	0):	Value
transferred	to	the	sixteen-bit	index	register	is	sixteen-bit,	the	full	sixteen-bit	accumulator.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

TCD Transfer	16-Bit	Accumulator	to	Direct	Page	Register
Transfer	 the	 value	 in	 the	 sixteen-bit	 accumulator	C	 to	 the	 direct	 page	 register	D,

regardless	of	the	setting	of	the	accumulator/memory	mode	flag.

An	alternate	mnemonic	is	TAD,	(transfer	the	value	in	the	A	accumulator	to	the	direct
page	register).

In	TCD,	the	“C”	is	used	to	indicate	that	sixteen	bits	are	transferred	regardless	of	the
m	flag.	If	the	A	accumulator	is	set	to	just	eight	bits	(whether	because	the	m	flag	is	set,	or
because	the	processor	is	in	6502	emulation	mode),	then	its	value	becomes	the	low	byte	of
the	direct	page	register	and	the	value	in	the	hidden	B	accumulator	becomes	the	high	byte
of	the	direct	page	register.

The	accumulator’s	sixteen-bit	value	is	unchanged	by	the	operation.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

Transfer	Accumulator	to	Stack	Pointer TCS
Transfer	the	value	in	the	accumulator	to	the	stack	pointer	S.	The	accumulator’s	value

is	unchanged	by	the	operation.

An	alternate	mnemonic	is	TAS	(transfer	the	value	in	the	A	accumulator	to	the	stack
pointer).

In	TCS,	the	“C”	is	used	to	indicate	that,	 in	native	mode,	sixteen	bits	are	transferred
regardless	of	the	m	flag.	If	the	A	accumulator	is	set	to	just	eight	bits	(because	the	m	flag	is
set),	then	its	value	is	transferred	to	the	low	byte	of	the	stack	pointer	and	the	value	in	the
hidden	B	 accumulator	 is	 transferred	 to	 the	 high	 byte	 of	 the	 stack	 pointer.	 In	 emulation
mode,	only	the	eight-bit	A	accumulator	is	transferred,	since	the	high	stack	pointer	byte	is
forced	to	one	(the	stack	is	confined	to	page	one).

TCS,	 along	with	TXS,	 are	 the	 only	 two	 instructions	 for	 changing	 the	 value	 in	 the
stack	pointer.	The	two	are	also	the	only	two	transfer	instructions	not	to	alter	the	flags.

Flags	Affected:	––––––-

Codes:

TDC Transfer	Direct	Page	Register	to	16-Bit	Accumulator
Transfer	 the	 value	 in	 the	 sixteen-bit	 direct	 page	 register	 D	 to	 the	 sixteen-bit

accumulator	C,	regardless	of	the	setting	of	the	accumulator/memory	mode	flag.

An	alternate	mnemonic	is	TDA	(transfer	the	value	in	the	direct	page	register	to	the	A
accumulator).

In	TDC,	the	“C”	is	used	to	indicate	that	sixteen	bits	are	transferred	regardless	of	the
m	flag.	If	the	A	accumulator	is	set	to	just	eight	bits	(whether	because	the	m	flag	is	set,	or
because	the	processor	is	in	6502	emulation	mode),	then	it	takes	the	value	of	the	low	byte
of	the	direct	page	register	and	the	hidden	B	accumulator	takes	the	value	of	the	high	byte	of
the	direct	page	register.

The	direct	page	register’s	sixteen-bit	value	is	unchanged	by	the	operation.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

Test	and	Reset	Memory	Bits	Against	Accumulator TRB
Logically	AND	together	the	complement	of	the	value	in	the	accumulator	with	the	data

at	the	effective	address	specified	by	the	operand.	Store	the	result	at	the	memory	location.

This	 has	 the	 effect	 of	 clearing	 each	 memory	 bit	 for	 which	 the	 corresponding
accumulator	 bit	 is	 set,	 while	 leaving	 unchanged	 all	 memory	 bits	 in	 which	 the
corresponding	accumulator	bits	are	zeroes.

Unlike	 the	 BIT	 instruction,	 TRB	 is	 a	 read-modify-write	 instruction,	 not	 only
calculating	a	result	and	modifying	a	flag,	but	also	storing	the	result	to	memory	as	well.

The	z	zero	flag	is	set	based	on	a	second	and	different	operation,	 the	ANDing	of	 the
accumulator	value	 (not	 its	 complement)	with	 the	memory	value	 (the	 same	way	 the	BIT
instruction	affects	the	zero	flag).	The	result	of	this	second	operation	is	not	saved;	only	the
zero	flag	is	affected	by	it.

8-bit	 accumulator/memory	 (65C02;	65802/65816,	m	 =	1):	 Values	 in	 accumulator
and	memory	are	eight-bit.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0):	Values	in	accumulator	and
memory	are	 sixteen-bit:	 the	 low-order	eight	bits	are	 located	at	 the	effective	address;	 the
high-order	eight	bits	are	at	the	effective	address	plus	one.

Flags	Affected: ––––—z	-
z	Set	if	memory	value	AND’ed	with	accumulator	value	is
zero;	else	cleared.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

TSB Test	and	Set	Memory	Bits	Against	Accumulator
Logically	 OR	 together	 the	 value	 in	 the	 accumulator	 with	 the	 data	 at	 the	 effective

address	specified	by	the	operand.	Store	the	result	at	the	memory	location.

This	 has	 the	 effect	 of	 setting	 each	 memory	 bit	 for	 which	 the	 corresponding
accumulator	 bit	 is	 set,	 while	 leaving	 unchanged	 all	 memory	 bits	 in	 which	 the
corresponding	accumulator	bits	are	zeroes.

Unlike	 the	 BIT	 instruction,	 TSB	 is	 a	 read-modify-write	 instruction,	 not	 only
calculating	a	result	and	modifying	a	flag,	but	storing	the	result	to	memory	as	well.

The	 z	 zero	 flag	 is	 set	 based	 on	 a	 second	 different	 operation,	 the	 ANDing	 of	 the
accumulator	value	with	the	memory	value	(the	same	way	the	BIT	 instruction	affects	the
zero	flag).	The	result	of	this	second	operation	is	not	saved;	only	the	zero	flag	is	affected	by
it.

8-bit	 accumulator/memory	 (65C02;	65802/65816,	m	 =	1):	 Values	 in	 accumulator
and	memory	are	eight-bit.

16-bit	accumulator/memory	(65802/65816	only,	m	=	0);	Values	in	accumulator	and
memory	are	 sixteen-bit:	 the	 low-order	eight	bits	are	 located	at	 the	effective	address;	 the
high-order	eight	bits	are	at	the	effective	address	plus	one.

Flags	Affected: –––-	z	-
z	Set	if	memory	value	AND’ed	with	accumulator	value	is
zero;	else	cleared.

Codes:

1	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

Transfer	Stack	Pointer	to	16-Bit	Accumulator TSC
Transfer	the	value	in	the	sixteen-bit	stack	pointer	S	to	the	sixteen-bit	accumulator	C,

regardless	of	the	setting	of	the	accumulator/memory	mode	flag.

An	 alternate	 mnemonic	 is	 TSA	 (transfer	 the	 value	 in	 the	 stack	 pointer	 to	 the	 A
accumulator).

In	TSC,	the	“C”	is	used	to	indicate	that	sixteen	bits	are	transferred	regardless	of	the
m	flag.	If	the	A	accumulator	is	set	to	just	eight	bits	(whether	because	the	m	flag	is	set,	or
because	the	processor	is	in	6502	emulation	mode),	then	it	takes	the	value	of	the	low	byte
of	the	stack	pointer	and	the	hidden	B	accumulator	takes	the	value	of	the	high	byte	of	the
stack	pointer.	 (In	emulation	mode,	B	will	 always	 take	a	value	of	one,	 since	 the	 stack	 is
confined	to	page	one.)

The	stack	pointer’s	value	is	unchanged	by	the	operation.

Flags	Affected: n	––––—z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

TSX Transfer	Stack	Pointer	to	Index	Register	X
Transfer	the	value	in	the	stack	pointer	S	to	index	register	X.	The	stack	pointer’s	value

is	not	changed	by	the	operation.

8-bit	 index	 registers	 (all	processors):	Only	 the	 low	byte	 of	 the	 value	 in	 the	 stack
pointer	 is	 transferred	 to	 the	X	 register.	 In	 the	6502,	 the	65C02,	 and	 the	6502	emulation
mode,	the	stack	pointer	and	the	index	registers	are	only	a	single	byte	each,	so	the	byte	in
the	stack	pointer	is	transferred	to	the	eight-bit	X	register.	In	65802/65816	native	mode,	the
stack	 pointer	 is	 sixteen	 bits,	 so	 its	 most	 significant	 byte	 is	 not	 transferred	 if	 the	 index
registers	are	in	eight-bit	mode.

16-bit	 index	registers	 (65802/65816	only,	 x	=	0):	The	 full	 sixteen-bit	 value	 in	 the
stack	pointer	is	transferred	to	the	X	register.

Flags	Affected: n	–––-	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

Transfer	Index	Register	X	to	Accumulator TXA
Transfer	the	value	in	index	register	X	to	the	accumulator.	If	the	registers	are	different

sizes,	 the	 nature	 of	 the	 transfer	 is	 determined	by	 the	 destination	 (the	 accumulator).	The
value	in	the	index	register	is	not	changed	by	the	operation.

8-bit	index	registers,	8-bit	accumulator	(all	processors):	Value	transferred	is	eight-
bit.

16-bit	index	registers,	8-bit	accumulator	(65802/65816	only,	x	=	0,	m	=	1):	Value
transferred	to	the	eight-bit	accumulator	is	eight-bit,	the	low	byte	of	the	index	register;	the
hidden	eight-bit	accumulator	B	is	not	affected	by	the	transfer.

8-bit	 index	 registers,	 16-bit	 accumulator	 (65802/65816	only,	 x	=	1,	m	=	0):	The
eight-bit	 index	 register	 becomes	 the	 low	byte	 of	 the	 accumulator;	 the	 high	 accumulator
byte	is	zeroed.

16-bit	index	registers,	16-bit	accumulator	(65802/65816	only,	x	=	0,	m	=	0):Value
transferred	to	the	sixteen-bit	accumulator	is	sixteen-bit,	the	full	sixteen-bit	index	register.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

TXS Transfer	Index	Register	X	to	Stack	Pointer
Transfer	 the	 value	 in	 index	 register	X	 to	 the	 stack	 pointer,	 S.	 The	 index	 register’s

value	is	not	changed	by	the	operation.

TXS,	 along	with	TCS,	 are	 the	 only	 two	 instructions	 for	 changing	 the	 value	 in	 the
stack	pointer.	The	two	are	also	the	only	two	transfer	instructions	that	do	not	alter	the	flags.

6502,	65C02,	and	6502	emulation	mode(65802/65816,	e	=	1):	The	stack	pointer	is
only	eight	bits	(it	is	concatenated	to	a	high	byte	of	one,	confining	the	stack	to	page	one),
and	 the	 index	 registers	 are	 only	 eight	 bits.	 The	 byte	 in	X	 is	 transferred	 to	 the	 eight-bit
stack	pointer.

8-bit	index	registers	(65802/65816	native	mode,	x	=	1):	The	stack	pointer	is	sixteen
bits	but	the	index	registers	are	only	eight	bits.	A	copy	of	the	byte	in	X	is	transferred	to	the
low	stack	pointer	byte	and	the	high	stack	pointer	byte	is	zeroed.

16-bit	index	registers	(65802/65816	native	mode,	x	=	0):	The	full	sixteen-bit	value
in	X	is	transferred	to	the	sixteen-bit	stack	pointer.

Flags	Affected:	––––––-

Codes:

Transfer	Index	Registers	X	to	Y TXY
Transfer	the	value	in	index	register	X	to	index	register	Y.	The	value	in	index	register

X	is	not	changed	by	the	operation.	Note	that	the	two	registers	are	never	different	sizes.

8-bit	index	registers	(x	=	1):	Value	transferred	is	eight-bit.

16-bit	index	registers	(x	=	0):	Value	transferred	is	sixteen-bit.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

TYA Transfer	Index	Register	Y	to	Accumulator
Transfer	the	value	in	index	register	Y	to	the	accumulator.	If	the	registers	are	different

sizes,	 the	 nature	 of	 the	 transfer	 is	 determined	by	 the	 destination	 (the	 accumulator).	The
value	in	the	index	register	is	not	changed	by	the	operation.

8-bit	index	registers,	8-bit	accumulator	(all	processors):	Value	transferred	is	eight-
bit.

16-bit	index	registers,	8-bit	accumulator	(65802/65816	only,	x	=	0,	m	=	1):	Value
transferred	to	the	eight-bit	accumulator	is	eight-bit,	the	low	byte	of	the	index	register;	the
hidden	eight-bit	accumulator	B	is	not	affected	by	the	transfer.

8-bit	 index	 registers,	 16-bit	 accumulator	 (65802/65816	only,	 x	=	1,	m	=	0):	The
eight-bit	 index	 register	 becomes	 the	 low	byte	 of	 the	 accumulator;	 the	 high	 accumulator
byte	is	zeroed.

16-bit	index	registers,	16-bit	accumulator	(65802/65816	only,	x	=	0,	m	=	0):	Value
transferred	to	the	sixteen-bit	accumulator	is	sixteen-bit,	the	full	sixteen-bit	index	register.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

Transfer	Index	Registers	Y	to	X TYX
Transfer	the	value	in	index	register	Y	to	index	register	X.	The	value	in	index	register

Y	is	not	changed	by	the	operation.	Note	that	the	two	registers	are	never	different	sizes.

8-bit	index	registers	(x	=	1):	Value	transferred	is	eight-bit.

16-bit	index	registers	(x	=	0):	Value	transferred	is	sixteen-bit.

Flags	Affected: n	––––—	z	-
n	Set	if	most	significant	bit	of	transferred	value	is	set;	else
cleared.
z	Set	if	value	transferred	is	zero;	else	cleared.

Codes:

WAI Wait	for	Interrupt
Pull	the	RDY	pin	low.	Power	consumption	is	reduced	and	RDY	remains	low	until	an

external	hardware	interrupt	(NMI,	IRQ,	ABORT,	or	RESET)	is	received.

WAI	 is	designed	to	put	the	processor	to	sleep	during	an	external	event	to	reduce	its
power	 consumption,	 to	 allow	 it	 to	 be	 synchronized	 with	 an	 external	 event,	 and/or	 to
reduce	 interrupt	 latency	(an	 interrupt	occurring	during	 execution	of	an	 instruction	 is	not
acted	upon	until	execution	of	the	instruction	is	complete,	perhaps	many	cycles	later;	WAI
ensures	that	an	interrupt	is	recognized	immediately).

Once	 an	 interrupt	 is	 received,	 control	 is	 vectored	 through	 one	 of	 the	 hardware
interrupt	 vectors;	 an	RTI	 from	 the	 interrupt	 handling	 routine	 will	 return	 control	 to	 the
instruction	following	the	original	WAI.	However,	 if	by	setting	the	i	flag,	 interrupts	have
been	 disabled	 prior	 to	 the	 execution	 of	 the	WAI	 instruction,	 and	 IRQ‘	 is	 asserted,	 the
“wait”	condition	 is	 terminated	and	control	 resumes	with	 the	next	 instruction,	 rather	 than
through	the	interrupt	vectors.	This	provides	the	quickest	response	to	an	interrupt,	allowing
synchronization	with	external	events.	WAI	also	frees	up	the	bus;	since	RDY	is	pulled	low
in	the	third	instruction	cycle,	the	processor	may	be	disconnected	from	the	bus	if	BE	is	also
pulled	low.

Flags	Affected:	––––––-

Codes:

1	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	interrupt	to	restart	it

Reserved	for	Future	Expansion WDM
The	 65802	 and	 65816	 use	 255	 of	 the	 256	 possible	 eight-bit	 opcodes.	 One	 was

reserved;	 it	 provides	 an	 “escape	 hatch”	 for	 future	 65x	 processors	 to	 expand	 their
instruction	 set	 to	 sixteen	 bit	 opcodes;	 this	 opcode	would	 signal	 that	 the	 next	 byte	 is	 an
opcode	 in	 the	 expanded	 instruction	 set.	 This	 reserved	 byte	 for	 future	 two-byte	 opcodes
was	 given	 a	 temporary	 mnemonic,	 WDM,	 which	 happen	 to	 be	 the	 initials	 of	 the
processors’	designer—William	D.	Mensch,	Jr.

WDM	should	never	be	used	in	a	program,	since	it	would	render	the	object	program
incompatible	with	any	future	65x	processors.

If	the	65802/65816	WDM	instruction	is	accidentally	executed,	it	will	act	like	a	two-
byte	NOP	instruction.

Flags	Affected*: ––––––-
‘F	lags	will	be	affected	variously	by	future	two-byte
instructions.

Codes;

*Byte	 and	 cycle	 counts	 subject	 to	 change	 in	 future	 processors	 which	 expand	WDM	 into	 2-byte	 opcode	 portions	 of
instructions	of	varying	lengths

XBA Exchange	the	B	and	A	Accumulators
B	represents	the	high-order	byte	of	the	sixteen-bit	C	accumulator,	and	A	in	this	case

represents	 the	 low-order	byte.	XBA	 swaps	 the	contents	of	 the	 low-order	and	high-order
bytes	of	C.

An	 alternate	mnemonic	 is	SWA	 (swap	 the	 high	 and	 low	 bytes	 of	 the	 sixteen-bit	A
accumulator).

XBA	 can	 be	 used	 to	 invert	 the	 low-order,	 high-order	 arrangement	 of	 a	 sixteen-bit
value,	or	to	temporarily	store	an	eight-bit	value	from	the	A	accumulator	into	B.	Since	it	is
an	 exchange,	 the	 previous	 contents	 of	 both	 accumulators	 are	 changed,	 replaced	 by	 the
previous	contents	of	the	other.

Neither	the	mode	select	flags	nor	the	emulation	mode	flag	affects	this	operation.

The	 flags	 are	 changed	 based	 on	 the	 new	value	 of	 the	 low	byte,	 the	A	 accumulator
(that	 is,	 on	 the	 former	 value	 of	 the	 high	 byte,	 the	B	 accumulator),	 even	 in	 sixteen-bit
accumulator	mode.

Flags	Affected: n	––––-z	-
n	Set	if	most	significant	bit	of	new	8-bit	value	in	A
accumulator	is	set;	else	cleared.
z	Set	if	new	8-bit	value	in	A	accumulator	is	zero;	else
cleared.

Codes:

Exchange	Carry	and	Emulation	Bits XCE
This	instruction	is	the	only	means	provided	by	the	65802	and	65816	to	shift	between

6502	emulation	mode	and	the	full,	sixteen-bit	native	mode.

The	emulation	mode	is	used	to	provide	hardware	and	software	compatibility	between
the	6502	and	65802/65816.

If	 the	processor	 is	 in	emulation	mode,	 then	 to	switch	 to	native	mode,	 first	clear	 the
carry	 bit,	 then	 execute	 an	XCE.	 Since	 it	 is	 an	 exchange	 operation,	 the	 carry	 flag	 will
reflect	the	previous	state	of	the	emulation	bit.	Switching	to	native	mode	causes	bit	five	to
stop	functioning	as	the	break	flag,	and	function	instead	as	the	x	mode	select	flag.	A	second
mode	select	flag,	m,	uses	bit	six,	which	was	unused	in	emulation	mode.	Both	mode	select
flags	are	initially	set	to	one	(eight-bit	modes).	There	are	also	other	differences	described	in
the	text.

If	the	processor	is	in	native	mode,	then	to	switch	to	emulation	mode,	you	first	set	the
carry	bit,	then	execute	an	XCE.	Switching	to	emulation	mode	causes	the	mode	select	flags
(m	 and	 x)	 to	 be	 lost	 from	 the	 status	 register,	with	 x	 replaced	 by	 the	b	 break	 flag.	This
forces	 the	 accumulator	 to	 eight	 bits,	 but	 the	 high	 accumulator	 byte	 is	 preserved	 in	 the
hidden	B	accumulator.	 It	also	forces	 the	 index	registers	 to	eight	bits,	causing	 the	 loss	of
values	in	their	high	bytes,	and	the	stack	to	page	one,	causing	the	loss	of	the	high	byte	of
the	previous	stack	address.	There	are	also	other	differences	described	in	the	text.

e
Flags	Affected: —	mb/x–-	c

e	Takes	carry’s	previous	value:	set	if	carry	was	set;	else
cleared.
c	Takes	emulation’s	previous	value:	set	if	previous	mode
was	emulation;	else	cleared.
m	m	is	a	native	mode	flag	only;	switching	to	native	mode
sets	it	to	1.
x	x	is	a	native	mode	flag	only;	it	becomes	the	b	flag	in
emulation.
b	b	is	an	emulation	mode	flag	only;	it	is	set	to	1	to	become
the	x	flag	in	native.

Codes:

19

Instruction	Lists

*	Add	1	byte	if	m	=	0	(16-bit	memory/accumulator)

*	*	opcode	is	1	byte,	but	program	counter	value	pushed	onto	stack	is	incremented	by	2	allowing	for	optional	signature
byte

+	Add	1	byte	if	x	=	0	(16-bit	index	registers)

1	Add	1	cycle	if	m	=	0	(16-bit	memory/accumulafor)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(DL<	>0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

4	Add	1	cycle	if	65C02	and	d	=	1	(decimal	mode,	65C02)

5	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

6	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

7	Add	1	cycle	if	branch	is	taken

8	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e	=
1)

9	Add	1	cycle	for	65802/65816	native	mode	(e	=	0)

10	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

11	Add	1	cycle	if	65C02

12	6502:	If	low	byte	of	operand	is	$FF	(i.e.,	operand	is	SxxFF):	yields	incorrect	result

13	7	cycles	per	byte	moved

14	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	reset	to	restart	it

15	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	interrupt	to	restart	it

10	Byte	and	cycle	counts	 subject	 to	change	 in	 future	processors	which	expand	WDM	into	2-byte	opcode	portions	of
instructions	of	varying	lengths

Opcodes	Reference	Chart

Processor

*	Opcode	or	instruction	first	introduced	on	the	65C02

*	Opcode	or	instruction	first	introduced	on	the	65816/65802	(not	marked:	first	introduced	on	the	NMOS	6502)

Addressing	mode	box:

Operation	column:

A Accumulator
X Index	register	X
Y Index	register	Y
M Contents	of	memory	location	specified	by	effective	address
M(d) Contents	of	direct	page	memory	location	pointed	to	by	operand
M(s) Contents	of	memory	location	pointed	to	by	stack	pointer
M(pc) Current	opcode	pointed	to	by	the	program	counter
PC Memory	location	of	current	opcode	pointed	to	by	the	program	counter
rl Two-byte	operand	of	relative	long	addressing	mode	instruction
+ Add
— Subtract
∧ And

Or
∨ Exclusive	Or

— Logical	complement	of	a	value	or	status	bit	(A	indicates	the	complement	of
the	value	in	the	accumulator)

Φ2 Phase	2	clock	(hardware	signal)
RDY Ready	(hardware	signal)

Bytes,	cycles,	and	status	codes:

*	Add	1	byte	if	M	=	0	(16-bit	memory	accumulator)

**	opcode	is	1	byte,	but	program	counter	value	pushed	onto	stack	is	incremented	by	2	allowing	for	optional	signature
byte

+	Add	1	byte	if	x	=	0	(16-bit	index	registers)

n	number	of	bytes	moved

1	Add	1	cycle	if	m	=	0	(16-bit	memory	accumulator)

2	Add	1	cycle	if	low	byte	of	Direct	Page	register	is	other	than	zero	(D	L	<>	0)

3	Add	1	cycle	if	adding	index	crosses	a	page	boundary

4	Add	1	cycle	if	65C02	and	d	=	1	(decimal	mode,	65C02)

5	Add	2	cycles	if	m	=	0	(16-bit	memory/accumulator)

6	Subtract	1	cycle	if	65C02	and	no	page	boundary	crossed

7	Add	1	cycle	if	branch	is	taken

8	Add	1	more	cycle	if	branch	taken	crosses	page	boundary	on	6502,	65C02,	or	65816/65802’s	6502	emulation	mode	(e=
1)

9	Add	1	cycle	for	65802	65816	native	mode	(e=	0)

10	Add	1	cycle	if	x	=	0	(16-bit	index	registers)

11	Add	1	cycle	if	65C02

12	6502:	If	low	byte	of	addr	is	$FF	(i.e.,	addr	is	$xxFF):	yields	incorrect	result

13	7	cycles	per	byte	moved

14	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	reset	to	restart	it

15	Uses	3	cycles	to	shut	the	processor	down;	additional	cycles	are	required	by	interrupt	to	restart	it

16	Byte	and	cycle	counts	 subject	 to	change	 in	 future	processors	which	expand	WDM	into	2-byte	opcode	portions	of
instructions	of	varying	lengths

17	BIT:	immediate	n	and	v	flags	not	affected;	if	m	=	0,	m(15)	—»n	and	M(14)	—>v;	if	m	=	1,	M(7)	—>n	and	M(6)	—
*v

18	BRK:	if	b	=	1	in	pushed	status	register	(6502,	65C02	and	emulation	mode	e	=	1),	then	interrupt	was	caused	by

software	BRK;

if	6502,	d	is	unaffected	by	BRK;	if	65C02	or	65816/65802,	d	is	0	after	BRK

Appendices

A

65x	Signal	Description
The	 four	 standard	65x	parts	 considered	 in	 this	book—the	6502,	65C02,	65802,	and

65816—are	 each	 housed	 in	 a	 40-pin	 dual	 in-line	 package.	 There	 are	 also	 a	 number	 of
special	versions	of	the	basic	parts,	versions	with	external	clocks,	fewer	address	pins,	one-
chip	computers	with	on-board	RAM	and	ROM,	and	with	quadrature	clocks.	These	are	not
considered	here;	 refer	 to	 the	appropriate	manufacturer’s	 literature	 for	details	about	 these
special	chips.

This	appendix	 describes	 the	 pin	 signals	 found	 on	 the	 four	 standard	 parts—the	 pins
that	 connect	 the	 processor	 to	 the	 external	 system.	 Many	 of	 them	 are	 common	 to	 all
processors,	some	are	unique	to	each.

The	descriptions	 are	meant	 to	 satisfy	 the	programmer	with	 a	 general	 interest	 in	 the
system	 implementation;	 the	 engineer	 implementing	 a	 65x	 system	 should	 consult	 the
manufacturer’s	data	sheets	for	more	detailed	information.

To	begin	with,	refer	to	Figure	A.1,	which	illustrates	the	pin	configurations	of	the	four
different	processors.

Figure	A.I.	65x	Pinouts.

6502	Signals
The	6502	defines	the	basic	set	of	signals.

Address	Bus
Pins	A0	 -	A15	 are	 the	address	 lines.	 Every	 time	 an	 address	 is	 generated—opcode

fetch,	operand	read,	intermediate	address,	or	effective	address	of	a	read	or	write	operation
—the	binary	value	of	the	address	appears	on	these	pins,	A0	representing	the	low-order	bit
of	 the	 address,	 and	 A15	 representing	 the	 high-order	 bit.	 These	 outputs	 are	 TTL
compatible.

Clock	Signals
All	 of	 the	 65x	 series	 processors	 operate	 on	 a	 two-phase	 external	 cycle;	 a	 65x

processor’s	frequency,	expressed	in	Megahertz,	or	millions	of	cycles	per	second,	is	also
its	 memory-access	 cycle	 time.	 The	 6502	 has	 an	 internal	 clock	 generator	 based	 on	 the
phase	zero	 input	 signal,	 a	 time	base	 typically	 provided	by	 a	 crystal	 oscillator.	The	 two
output	 signals,	phase	one	 and	phase	two,	 are	 derived	 from	 this	 signal.	 Phase	 one	 goes
high	when	phase	zero	is	low;	phase	two	goes	low	on	the	rising	edge	of	phase	one.

Data	Bus
Pins	D0-D7	are	the	data	lines;	these	eight	pins	form	a	bi-directional	data	bus	to	read

and	write	 data	 between	 the	 processor	 and	memory	 and	 the	 peripheral	 devices.	Like	 the
address	lines,	the	outputs	can	drive	one	standard	TTL	load.

Data	Bus	Enable
This	controls	the	three-state	output	buffers	of	the	processor;	it	normally	is	enabled	by

the	phase	two	output,	effectively	disabling	the	output	buffers	during	phase	one;	this	frees
the	bus	 for	 access	by	other	devices	during	phase	one.	By	pulling	DBE	 low,	 the	 buffers
may	be	disabled	externally.

Read/Write
R/W’	is	high	when	data	is	being	read	from	memory	or	peripherals	into	the	processor,

low	when	the	processor	is	writing	data.	When	in	the	low	state,	data	and	address	lines	have
valid	data	and	addresses.

Ready
The	RDY	signal	enables	the	processor	to	be	single-stepped	on	all	cycles	except	write

cycles.	 When	 enabled	 during	 phase	 one,	 the	 processor	 is	 halted	 and	 the	 address	 lines
maintain	the	current	address;	this	lets	the	processor	interface	with	lower-speed	read-only
memory	devices,	and	can	also	be	used	in	direct	memory	access	implementations.

Interrupt	Request
The	IRQ’	 signal	 requests	 that	 an	 interrupt-service	 cycle	 be	 initiated.	 This	 signal	 is

connected	 to	 peripheral	 devices	 that	 are	 designed	 to	 be	 interrupt-driven.	 This	 is	 the
maskable	interrupt	signal,	so	the	interrupt	disable	flag	in	the	status	register	must	be	zero
for	 the	 interrupt	 to	 be	 effective.	 The	 RDY	 signal	 must	 be	 high	 for	 an	 interrupt	 to	 be
recognized.	IRQ’	is	sampled	during	phase	2.

Non-maskable	Interrupt
NMI’	 is	basically	 identical	 to	 IRQ’,	except	 that	 it	causes	an	unconditional	 interrupt

when	it	is	asserted,	and	control	vectors	through	the	NMI’	vector	rather	than	IRQ’.

Set	Overflow
When	 this	 line	goes	 low	on	 the	 trailing	edge	of	phase	one,	 the	overflow	flag	 in	 the

processor	status	register	is	set.

Sync
This	 line	goes	high	during	phase	one	of	 those	cycles	 that	are	opcode	fetches.	When

used	 with	 the	 RDY	 signal,	 this	 allows	 hardware	 implementation	 of	 a	 single-step
debugging	capability.

Reset
RESET’	reinitializes	the	processor,	either	at	power-up	or	to	restart	the	system	from	a

known	state.	RESET’	must	be	held	low	for	at	least	two	cycles	after	a	power	down.	When
it	 is	 asserted,	 an	 interrupt-like	 service	 routine	 begins	 (although	 the	 status	 and	 program
counter	 are	 not	 stacked),	with	 the	 result	 that	 control	 is	 transferred	 through	 the	RESET’
vector.

65C02	Signals
The	65C02	pinout	 is	 identical	 to	 the	6502,	with	 the	 exception	of	memory	 lock	 and

notes	described	below.

Memory	Lock

The	ML’	 output	 signal	 assures	 the	 integrity	 of	 read-modify-write	 instructions	 by
signaling	 other	 devices,	 for	 example,	 other	 processors	 in	 a	multiprocessor	 environment,
that	the	bus	may	not	be	claimed	until	completion	of	the	read-modify-write	operation.	This
signal	 goes	 low	 during	 the	 execution	 of	 the	memory-referencing	 (non-register	 operand)
ASL,	DEC,	INC,	LSR,	ROL,	ROR,	TRB,	and	TSB	instructions.

Notes
The	65C02,	unlike	the	6502,	responds	to	RDY	during	a	write	cycle	as	well	as	a	read,

halting	the	processor.

Response	 of	 the	 65C02	 to	 a	 reset	 is	 different	 from	 the	 6502	 in	 that	 the	 65C02’s
program	 counter	 and	 status	 register	 are	 written	 to	 the	 stack.	 Additionally,	 the	 65C02
decimal	flag	is	cleared	after	reset	or	interrupt;	its	value	is	indeterminate	after	reset	and	not
modified	after	interrupt	on	the	6502.

When	 an	 interrupt	 occurs	 immediately	 after	 the	 fetch	 of	 a	BRK	 instruction	 on	 the
6502,	 the	BRK	 is	 ignored;	 on	 the	 65C02,	 the	BRK	 is	 executed,	 then	 the	 interrupt	 is
executed.

Finally,	 the	65C02	R/W’	line	is	high	during	the	modify	(internal	operation)	cycle	of
the	read-modify-write	operations;	on	the	6502,	it	is	low.

65802	Signals
The	65802	signals	are	by	definition	6502	pin-compatible.	The	65C02	ML’	(memory

lock)	signal	is	not	on	the	standard	pin-out,	although	it	is	available	as	a	special-order	mask
option.	Like	the	6502,	and	unlike	the	65C02,	the	65802	does	not	write	to	the	stack	during
a	reset.

Some	 of	 the	 enhancements	 of	 the	 65C02	 are	 available	 on	 the	 65802	 in	 the	 native
mode,	while	 in	 emulation	mode	 the	 system	behaves	 as	 a	 6502.	R/W’	 is	 low	during	 the
modify	cycle	of	read-modify-write	cycles	in	the	emulation	mode;	high	in	the	native	mode.

65816	Signals
Most	of	the	signals	behave	as	on	the	65802,	with	the	following	additions	and	changes:

Bank	Address
The	most	 important	difference	on	the	65816	is	 the	multiplexing	of	the	bank	address

(BA0-BA7)	with	the	data	pins	(D0-D7).	During	phase	two	low,	the	bank	address	is	valid;
during	phase	two	high,	data	is	read	or	written	on	the	same	pins.	The	bank	address	must	be
latched	 during	 phase	 one	 to	 provide	 a	 valid	 twenty-four	 bit	 address	when	 concatenated
with	A0-A15.

Vector	Pull
The	VP’	 signal	 is	 asserted	whenever	 any	 of	 the	 vector	 addresses	 ($00:FFE4-FFEF,

$00:FFF4-FFFF)	 are	 being	 accessed	 as	 part	 of	 an	 interrupt-type	 service	 cycle.	This	 lets
external	hardware	modify	 the	 interrupt	vector,	 eliminating	 the	need	 for	 software	polling

for	interrupt	sources.

Abort
The	 ABORT’	 input	 pin,	 when	 it	 is	 asserted,	 causes	 the	 current	 instruction	 to	 be

aborted.	Unlike	 an	 interrupt,	 none	 of	 the	 registers	 are	 updated	 and	 the	 instruction	 quits
execution	 from	 the	 cycle	 where	 the	 ABORT’	 signal	 was	 received.	 No	 registers	 are
modified.	In	other	words,	the	processor	is	left	in	the	state	it	was	in	before	the	instruction
that	was	aborted.	Control	is	shifted	to	the	ABORT’	vector	after	an	interrupt-like	context-
saving	cycle.

The	 ABORT’	 signal	 lets	 external	 hardware	 abort	 instructions	 on	 the	 basis	 of
undesirable	address	bus	conditions;	memory	protection	and	paged	virtual	memory	systems
can	be	fully	implemented	using	this	signal.

ABORT’	 should	 be	 held	 low	 for	 only	 one	 cycle;	 if	 held	 low	 during	 the	 ABORT
interrupt	sequence,	the	ABORT	interrupt	will	be	aborted.

Valid	Program	Address	and	Valid	Data	Address
The	VPA	 and	VDAsignals	 extend	 the	 concept	of	 the	SYNC	signal.	Together,	 these

two	 pins	 encode	 one	 of	 four	 possible	 internal	 processor	 states,	 based	 on	 the	 type	 of
memory	being	accessed:

During	 internal	 operations,	 the	 output	 buffers	 may	 be	 disabled	 by	 external	 logic,
making	 the	 address	 bus	 available	 for	 transparent	 direct	memory	 access.	Also,	 since	 the
65816	 sometimes	 generates	 a	 false	 read	 during	 instructions	 that	 cross	 page	 boundaries,
these	 may	 be	 trapped	 via	 these	 two	 signals	 if	 this	 is	 desirable.	 Note,	 however,	 that
addresses	should	not	be	qualified	in	emulation	mode	if	hardware	such	as	the	Apple	//	disk
controller	is	used,	which	requires	false	read	to	operate.

The	other	states	may	be	used	for	virtual	memory	implementation	and	high-speed	data
or	 instruction	 cache	 control.	 VPA	 and	 VDA	 high	 together	 are	 equivalent	 to	 the	 6502
SYNC	output.

Memory	and	Index
These	 two	 signals	 are	multiplexed	 on	 pin	 38.	M	 is	 available	 during	 phase	 zero,	X

during	phase	one.	These	signals	reflect	 the	contents	of	 the	status	register	m	and	x	 flags,
allowing	(along	with	E	described	below)	external	logic	to	fully	decode	opcode	fetches.

As	 a	 mask	 option,	 the	 65816	 may	 be	 specified	 with	 the	 6502	 SET	 OVERFLOW
signal	instead	of	the	M/X	signal.

M	 and	X	 are	 invalid	 for	 the	 instruction	 cycle	 following	 the	REP,	 SEP,	 and	 PLP
instruction	execution;	this	cycle	is	the	opcode	fetch	cycle	of	the	next	instruction.

Emulation
The	E	signal	reflects	the	state	of	the	processor’s	e	flag;	depending	on	whether	or	not

the	processor	is	in	emulation	mode	or	not,	external	system	compatibility	features	(such	as
memory	mapping	or	system	speed)	could	be	enabled	or	disabled.

Bus	Enable
This	signal	replaces	the	data	bus	enable	signal	of	the	6502;	when	asserted,	it	disables

the	address	buffers	and	R/W’	as	well	as	the	data	buffers.

B

65x	Series	Support	Chips
There	 are	 a	 plethora	 of	 companion	 chips	 for	 the	 65x	 processors.	 The	 ones	 every

assembly	 language	 programmer	 runs	 into	 eventually	 are	 serial	 and	 parallel	 input/output
(I/O)	 chips.	 The	 65x	 family	 serial	 I/O	 controller	 is	 the	 6551	 Asynchronous
Communication	Interface	Adapter	(ACIA),	while	the	the	simplest	parallel	I/O	controller	is
the	6521	Peripheral	Interface	Adapter	(PIA).

As	 the	architecture	 section	of	 this	book	has	already	noted,	 the	65x	microprocessors
have	memory-mapped	 I/O,	not	 special	 I/O	opcodes.	That	 is,	 they	assign	each	 input	 and
each	output	device	one	or	more	memory	locations.	An	output	device’s	status	registers	can
be	tested	 to	determine	if	 the	device	 is	ready	to	send	a	unit	of	data.	Conversely,	an	 input
device’s	status	registers	can	be	tested	to	determine	if	a	unit	of	data	has	arrived	and	can	be
read.	Writing	 data	 is	 accomplished	 by	 storing	 it	 to	 one	 of	 the	 output	 device’s	memory
locations;	reading	it	is	accomplished	with	a	load-register	instruction,	with	its	operand	one
of	the	input	device’s	memory	locations.

One	caution:	Don’t	attempt	to	use	any	peripheral	chips	without	calling	or	writing	the
chip’s	manufacturer	for	a	data	sheet,	usually	provided	for	 little	or	no	charge.	While	data
sheets	are	no	joy	to	read,	 they	contain	enough	information	to	sooner	or	 later	explain	the
programming	problems	you	will	run	into,	if	not	on	your	current	project,	then	on	the	next
one.

The	6551	Serial	Chip
You	may	already	be	familiar	with	the	6551	ACIA.	There	is	one	controlling	the	serial

port	on	every	Apple	//c,	and	one	on	the	plug-in	Apple	//e	Super	Serial	Card.

The	6551	features	an	on-chip	baud-rate	generator,	which	lets	your	program	set	any	of
fifteen	baud	rates	from	50	to	19,200.	Like	most	other	serial	chips,	word	length,	number	of
stop	bits,	and	parity	bit	generation	and	detection	can	also	be	set	under	program	control.

As	an	example,	if	the	Super	Serial	Card	were	located,	as	it	commonly	is,	in	the	Apple
//e’s	port	 two,	four	consecutive	memory	locations	are	allocated	to	 the	6551	beginning	at
$C0A8.	 The	 6551’s	 Transmit/Receive	 Data	 Register	 is	 located	 at	 $C0A8.	 The	 current
status	of	the	chip	(for	example,	indicating	it	has	received	a	byte	of	data)	is	indicated	in	the
Status	Register,	located	at	$C0A9	{see	Figure	B.1).	Two	registers	are	used	to	initialize	the
chip.	The	Command	Register,	located	at	SCOAA,	is	used	to	set	up	parity	and	several	other
parameters.	 As	 Figure	B.2	 indicates,	 writing	 $0B	 to	 the	 Command	 Register	 sets	 up	 a
commonly	 used	 set	 of	 parameters—no	 parity,	 and	 both	 the	 RTS	 and	 the	 DTR	 lines
enabled.	The	Control	Register,	located	at	SCOAB,	is	used	to	set	up	stop	bits,	word	length,
and	 baud	 rate;	 as	 Figure	 B.3	 indicates,	 writing	 $1E	 to	 the	 Control	 Register	 sets	 up	 a
commonly	 used	 set	 of	 parameters—one	 stop	 bit,	 eight-bit	 data,	 and	 communications
running	at	9600	baud.

So	the	6551	is	initialized	by	the	65816	code	shown	in	Fragment	B.1.

Fragment	B.1.

Actually,	any	value	can	be	written	to	the	status	register	to	cause	a	programmed	reset;
this	 operation	 is	 done	 to	 reinitialize	 the	 I/O	 registers—the	 three	 figures	 each	 show	 the
effects	on	the	non-data	registers	on	each	of	their	status	bits.

Figure	B.l.	6551	Status	Register.

Figure	B.2.	6551	Command	Register.

Figure	B.3.	6551	Control	Register.

When	the	6551	connects	a	computer	to	a	communications	line—whether	twisted-pair
wire	at	9600	baud	or	a	modem	at	300	baud—reading	a	byte	from	the	communications	line
is	a	matter	of	(once	the	6551	has	been	initialized)	waiting	until	the	status	register	bit	three
(receiver	data	register	full)	is	set,	then	reading	the	byte	from	the	data	register,	as	shown	in
Fragment	B.2.

Fragment	B.2.

Similarly,	as	Fragment	B.3	shows,	writing	a	byte	out	to	the	communications	line	is	a
matter	 of	 (once	 the	 6551	 has	 been	 initialized)	 waiting	 until	 the	 status	 register	 bit	 four
(transmitter	data	register	empty)	is	set,	then	writing	the	byte	to	the	data	register.

Neither	routine	does	any	error	checking	using	the	other	status	register	bits.

The	6521	Parallel	Chip
The	 6521	 parallel	 I/O	 peripheral	 interface	 adapter	 is	 used	 to	 interface	 65x

microprocessors	with	printers,	matrix-type	keyboards,	 and	other	devices.	 It	 features	 two
programmable	eight-bit	bidirectional	parallel	I/O	ports	(Ports	A	and	B),	any	lines	of	which
can	 be	 individually	 set	 for	 either	 reading	 or	 writing	 via	 a	 Data	 Direction	 Register.
Provided	all	eight	lines	are	set	one	way,	you	can	either	read	or	write	a	byte	at	a	time	(as
opposed	to	a	bit	at	a	time	via	a	serial	chip)	through	the	port.	For	fancy	I/O,	the	6521	has
several	“handshake”	lines	for	greater	control	of	I/O.

Like	 the	 6551,	 the	 6521	 occupies	 four	 address	 locations	 (those	 dependent	 on	 the
hardwiring	of	the	two	Register	Select	lines).	But	it	has	six	registers,	three	for	each	port:	a
control	register,	a	data	register,	and	a	data	direction	register.	Each	port’s	data	register	and
data	 direction	 register	 are	 addressed	 at	 the	 same	 location.	 Bit	 two	 of	 the	 port’s	 control
register	determines	which	register	is	connected	to	that	address	at	any	one	time:	if	control
register	bit	two	is	set,	the	data	register	is	connected;	if	control	register	bit	two	is	clear,	the
data	direction	register	is	connected.

Fragment	B.3.

The	data	direction	register	is	generally	initialized	for	an	application	just	once;	then	the
data	register	is	selected.	Each	data	direction	register	bit	controls	the	same-numbered	bit	in
the	data	register:	 if	a	data	direction	register	bit	 is	set,	 the	corresponding	data	register	bit
becomes	 an	 output	 line;	 if	 a	 data	 direction	 register	 bit	 is	 clear,	 the	 corresponding	 data
register	bit	becomes	an	input	line.

Imagine	an	application	 in	which	a	printer	 is	wired	 through	a	Centronics-compatible
printer	port	 to	a	6521’s	port	A:	 the	6521’s	eight	Port	A	bits	are	connected	to	Centronics
pins	 two	 through	 nine.	 Port	 B	 is	 used	 to	 control	 the	 interface	 between	 computer	 and

printer:	the	6521’s	Port	B	bit	zero	is	connected	to	the	printer’s	Data	Strobe	(Centronics	pin
one);	 the	6521’s	Port	B	bit	 seven	 is	 connected	 to	 the	printer	Busy	Line	 (Centronics	pin
11).

The	6521	PIA	is	automatically	initialized	on	power-up	and	reset	to	all	be	inputs	(all
registers	are	cleared).	So	every	program	should	initialize	all	the	lines	it	will	use,	either	as
inputs	or	as	outputs,	every	time	it	is	run.	In	this	case,	setting	up	output	to	the	printer	means
all	of	Port	A	needs	to	be	set	up	as	inputs,	while	Port	B	bit	zero	must	be	initialized	as	an
output	and	bit	seven	as	an	input.	Setting	up	the	rest	of	Port	B	as	inputs	is	a	good	habit	to
protect	outside	peripherals,	as	seen	in	Fragment	B.4.

Fragment	B.4.

PORTACTRL,	PORTA,	PORTBCTRL,	and	PORTB	must	be	elsewhere	equated	to	the
addresses	at	which	each	is	located.	The	value	in	the	control	register	is	loaded	and	bit	two
is	ANDed	out	with	the	mask,	then	stored	back	to	choose	the	data	direction	register	as	the
chosen	 register	 in	 each	 port.	 All	 ones	 are	 stored	 to	 Port	 A’s	 data	 direction	 register,
selecting	 all	 eight	 lines	 as	 outputs.	 One	 is	 stored	 to	 Port	 B’s	 data	 direction	 register,
selecting	bit	zero	as	an	output	and	the	rest	of	the	port	as	inputs.	Then	the	control	registers
are	 loaded	again,	 this	 time	ORing	bit	 two	back	on	before	 re-storing	 them,	 to	choose	 the
data	register	as	 the	chosen	register	 in	each	port.	Finally,	one	is	written	out	Port	B	to	 the

printer’s	Data	Strobe	to	initialize	the	line.

Now	bytes	can	be	written	to	the	printer	by	waiting	for	a	zero	on	the	Printer	Busy	Line
(bit	seven	of	Port	B	was	chosen	so	that	a	positive/negative	test	could	be	made	to	test	the
bit),	then	storing	the	byte	to	be	written	to	Port	A,	and	finally	toggling	the	Data	Strobe	to
zero	and	then	back	to	one	to	inform	the	printer	that	a	new	character	is	ready	to	be	printed.

Fragment	B.5.

You	must	be	sure,	in	toggling	the	Strobe	by	writing	to	it,	that	the	zero	written	to	bit
seven	(zeroes	are	written	 to	bits	one	 through	seven	during	both	writes	 to	Port	B)	not	be
read	 back	 as	 though	 it	 is	 a	 value	 being	 sent	 by	 the	 printer’s	 Busy	 Line	 indicating	 the
printer	is	not	busy.

Remember	that	it	is	always	important	to	have	a	data	sheet	for	each	peripheral	support
chip	you	attempt	to	write	code	for.

C

The	Rockwell	65C02
Rockwell	International	Corporation	has	a	family	of	CPUs	which	it	calls	the	R65C00

family.	It	includes	their	R65C02;	while	the	designation	would	lead	you	to	believe	it	is	the
65C02	to	which	a	part	of	this	book	is	devoted,	in	fact	its	instruction	set	is	a	superset	of	the
65C02	instruction	set	discussed	earlier.	It	is	the	65C02	described	earlier,	not	the	Rockwell
part,	which	Apple	employed	in	its	//c	computer	and	the	1985	upgrade	to	its	//e	computer.

Furthermore,	 the	R65C02’s	 superset	 adds	 32	 instructions	with	 opcodes	 that	 are	 the
same	 as	 32	 very	 different	 instructions	 on	 the	 65816,	 making	 the	 Rockwell	 R65C02
incompatible	with	the	65802	and	65816.	For	this	reason,	the	R65C02	has	been	relegated	to
this	 appendix.	 If	 these	 additional	 instructions	 are	 disregarded	 and	 left	 unused,	 the
remaining	available	instructions	correspond	to	the	standard	65C02	instruction	set.

This	 is	not	 to	 say	 the	additional	 instructions	are	without	merit.	Rockwell’s	R65C02
has	 two	 additional	 operations	 for	 manipulating	 a	 single	 zero	 page	 bit	 at	 a	 time,	 Reset
Memory	Bit	(RMB)	and	Set	Memory	Bit	(SMB),	and	two	additional	operations	for	testing
a	single	zero	page	bit	and	branching	if	it	is	clear	or	set,	Branch	on	Bit	Reset	(BBR)	and
Branch	 on	 Bit	 Set	 (BBS).	 All	 four	 have	 eight	 versions—one	 for	 each	 bit—which	 are
specified	 by	 adding	 a	 bit	 number	 (0	 through	 7)	 to	 the	mnemonic.	 So	 there	 are	 32	 total
additional	instructions.

The	operand	to	the	bit-manipulating	instructions	is	a	zero	page	address	(specified	as
dp,	for	“direct	page”,	in	the	following	pages	to	be	consistent	with	the	instructions	chapter,
although	the	direct	page	is	actually	limited	to	the	zero	page).	The	operand	to	the	bit-testing
instructions	is	a	compound	operand:	a	zero	page	address	to	test,	a	comma,	and	a	nearby
label	to	which	to	branch	(which	an	assembler	turns	into	a	program	counter	relative	offset).

While	 incompatible	with	 the	65802/65816	 family	expansion,	 the	Rockwell	65C02’s
bit	manipulation	and	testing	instructions	can	be	valuable	for	control	applications,	in	which
single	 bits	 are	 used	 to	 store	 boolean	 true/false	 values	 and	 to	 send	 signals	 to	 external
devices.

BBR Branch	on	Bit	Reset
The	specified	bit	 in	 the	zero	page	location	specified	 in	 the	operand	is	 tested.	If	 it	 is

clear	(reset),	a	branch	is	taken;	if	it	is	set,	the	instruction	immediately	following	the	two-
byte	 BBRx	 instruction	 is	 executed.	 The	 bit	 is	 specified	 by	 a	 number	 (0	 through	 7)
concatenated	to	the	end	of	the	mnemonic.

If	 the	 branch	 is	 performed,	 the	 third	 byte	 of	 the	 instruction	 is	 used	 as	 a	 signed
displacement	 from	 the	 program	 counter;	 that	 is,	 it	 is	 added	 to	 the	 program	 counter:	 a
positive	value	(numbers	less	than	or	equal	to	$80;	that	is,	numbers	with	the	high-order	bit
clear)	results	in	a	branch	to	a	higher	location;	a	negative	value	(greater	than	$80,	with	the
high-order	 bit	 set)	 results	 in	 a	 branch	 to	 a	 lower	 location.	 Once	 the	 branch	 address	 is
calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,	 transferring	 control	 to	 that
location.

Most	assemblers	calculate	the	displacement	for	you:	you	must	specify	as	the	operand,
not	the	displacement	but	rather	the	label	to	which	you	wish	to	branch.	The	assembler	then
calculates	the	correct	offset.

Flags	Affected:	––––––-

Codes:

BBS Branch	on	Bit	Set
The	specified	bit	 in	 the	zero	page	location	specified	 in	 the	operand	is	 tested.	If	 it	 is

set,	a	branch	is	taken;	if	it	is	clear	(reset),	the	instruction	immediately	following	the	two-
byte	 BBSx	 instruction	 is	 executed.	 The	 bit	 is	 specified	 by	 a	 number	 (0	 through	 7)
concatenated	to	the	end	of	the	mnemonic.

If	 the	 branch	 is	 performed,	 the	 third	 byte	 of	 the	 instruction	 is	 used	 as	 a	 signed
displacement	 from	 the	 program	 counter;	 that	 is,	 it	 is	 added	 to	 the	 program	 counter:	 a
positive	value	(numbers	less	than	or	equal	to	$80;	that	is,	numbers	with	the	high-order	bit
clear)	results	in	a	branch	to	a	higher	location;	a	negative	value	(greater	than	$80,	with	the
high-order	 bit	 set)	 results	 in	 a	 branch	 to	 a	 lower	 location.	 Once	 the	 branch	 address	 is
calculated,	 the	 result	 is	 loaded	 into	 the	 program	 counter,	 transferring	 control	 to	 that
location.

Most	assemblers	calculate	the	displacement	for	you:	you	must	specify	as	the	operand,
not	the	displacement	but	rather	the	label	to	which	you	wish	to	branch.	The	assembler	then
calculates	the	correct	offset.

Flags	Affected:	d	––––––

Codes:

RMB Reset	Memory	Bit
Clear	the	specified	bit	in	the	zero	page	memory	location	specified	in	the	operand.	The

bit	 to	 clear	 is	 specified	 by	 a	 number	 (0	 through	 7)	 concatenated	 to	 the	 end	 of	 the
mnemonic.

Flags	Affected:	––––––-

Codes:

SMB Set	Memory	Bit
Set	the	specified	bit	in	the	zero	page	memory	location	specified	in	the	operand.	The

bit	to	set	is	specified	by	a	number	(0	through	7)	concatenated	to	the	end	of	the	mnemonic.

Flags	Affected:	––––––-

Codes:

D

Instruction	Groups
The	65x	instructions	can	be	divided	into	three	groups,	on	the	basis	of	both	the	types

of	actions	of	each	instruction	and	the	addressing	modes	each	can	use.	The	opcodes	in	the
first	group	and	some	in	the	second	have	similar	bit	patterns,	 the	same	addressing	modes
available,	 and	 regularity	 which	 can	 make	 remembering	 the	 capabilities	 of	 a	 particular
instruction—or	creating	a	compiler	code	generator—much	easier.

Group	 I	 instructions	 are	 the	most	 commonly	 used	 load,	 store,	 logic,	 and	 arithmetic
instructions,	 and	 have	 by	 far	 the	 most	 addressing	 modes	 available	 to	 them.	 Group	 II
instructions	 are	 mostly	 read-modify-write	 instructions,	 such	 as	 increment,	 decrement,
shift,	 and	 rotate,	 which	 both	 access	 and	 change	 one	 and	 only	 one	 register	 or	 memory
location.

Group	 III	 is	 a	 catch-all	 for	 the	 remaining	 instructions,	 such	 as	 index	 register
comparisons	and	stack	operations.

Group	I	Instructions
The	65x	Group	I	instructions,	with	their	opcode’s	bit	patterns,	are	shown	in	Table	D.1.

The	 ‘aaaaa’s	 are	 filled	with	 addressing	mode	bit	 patterns—there	 is	 one	pattern	 for	 each
addressing	mode	available	to	Group	I	instructions.

Table	D.1.	Group	I	Instructions	Opcode	Patterns.

The	6502	addressing	modes	available	to	the	Group	I	instructions	have	bit	patterns	that
all	end	in	‘01’.	These	bit	patterns	are	found	in	Table	D.2.	The	exception	to	this	scheme	is
STA	 immediate;	 since	 it	 is	 not	 possible	 to	 use	 immediate	 addressing	 with	 a	 store
instruction,	its	logical	opcode	1000	1001	is	used	by	a	non-Group-I	instruction.

Table	D.2.	Address	Mode	Patterns	for	Group	I	Instructions.

The	65C02	adds	one	more	addressing	mode	for	Group	I	instructions;	it	has	the	only
Group	I	addressing	mode	bit	pattern	to	end	in	a	zero:

Direct	(Zero)	Page	Indirect 10010

The	65802	and	65816	add	the	six	addressing	modes	for	Group	I	instructions	found	in
Table	D.3.

Table	D.3.	65802/65816	Group	I	Addressing	Mode	Patterns.

Group	II	Instructions
Group	II	 instructions	are	an	amalgam	of	mostly	 read-modify-write	 instructions	with

very	similar	addressing	modes	(differing	only	whether	they	have	accumulator	addressing
available	to	them	on	the	6502).	The	instructions,	with	their	opcode	bit	patterns,	are	listing
in	Table	D.4.

There	are	either	four	or	five	addressing	modes	available	 to	 these	instructions	on	the
6502—five	 if	 the	missing	 bits	 are	 ‘bbc’	 rather	 than	 just	 ‘bb’,	 the	 fifth	 addressing	mode
being	accumulator	addressing.

Table	D.5	 shows	 the	 five	addressing	modes	with	 their	bit	patterns.	All	 three	bits	 in
this	table	are	filled	into	the	‘bbc’	missing	bits	in	Table	D.4;	only	the	first	two	bits	of	each
Table	D.5	set	are	filled	into	‘bb’	missing	bits	in	Table	D.4.

Table	D.4.	Group	II	Opcode	Patterns.

Table	D.5.	Address	Mode	Patterns	for	Group	II	Instructions.

Notice	 how	 the	 four	 ‘bbl’	 addressing	modes	 have	 the	 same	 bit	 patterns	 as	 the	 first
three	bits	of	their	corresponding	bit	patterns	for	the	Group	I	instruction	addressing	modes.

There	are	a	few	exceptions.

Absolute	indexing	is	not	available	for	storing	either	index	register.	Furthermore,	since
the	 register	cannot	use	 itself	 to	store	 itself,	 the	STX	 instruction	can’t	use	direct	page,X;
instead,	direct	page,Y	substitutes	for	this	instruction’s	direct	page,	indexed	store.

The	 two	 65C02	 instructions	 to	 increment	 and	 decrement	 the	 accumulator	 do	 not
follow	this	scheme	at	all;	giving	these	 instructions	 that	addressing	mode	clearly	was	not
planned	 when	 the	 6502	 was	 designed,	 since	 their	 opcodes	 were	 assigned	 to	 other
instructions.	Nor	does	the	65C02’s	STZ	(store	zero	to	memory)	instruction,	which	uses	the
main	 four	 addressing	 modes,	 follow	 the	 scheme,	 even	 though	 it	 seems	 clearly	 to	 be	 a
Group	 II	 instruction	 of	 this	 type.	 But	 four	 of	 the	 five	 addressing	 modes	 of	 the	 BIT
instruction	on	the	65C02,	65802,	and	65816	(the	6502	has	only	two	addressing	modes	for
this	 instruction)—the	 four	 ‘bbl’	 addressing	 modes	 above—follow	 this	 scheme	 (its	 bit
pattern	is	001b	blOO).	It	also	has	an	immediate	addressing	mode,	however,	which	is	in	no
way	regular.

Loading	the	Index	Registers
The	two	index	registers	can	be	loaded	with	regular	opcodes:

Load	Index	Register	X	(LDX) lOld	ddlO
Load	Index	Register	Y	(LDY) 101d	dd00

Available	to	them	are	the	five	addressing	modes	in	table	D.6.

Table	D.6.	Address	Mode	Patterns	for	Load	Index
Register	Instructions.

The	 two	 indexed	modes	 use	 the	Y	 index	 register	 for	 indexing	when	 loading	 the	X
register	and	vice	versa.

Index	Register	Compares
The	two	instructions	 to	compare	an	 index	register	 to	memory	have	 three	addressing

modes	available	to	them.

The	instructions	are:

Compare	Index	Register	X	with	Memory	(CPX)	1110	ee00

Compare	Index	Register	Y	with	Memory	(CPY)	1100	ee00

Table	D.7	lists	the	three	addressing	modes	available.

Table	D.7.	Address	Mode	Patterns	for	Compare	Index	Register	Instructions.

Test-and-Change-Bits	Instructions
The	two	test-and-change-bits	 instructions	each	have	two	addressing	modes	that	 they

use	in	a	regular	manner.

The	two	instructions	are:

Test	and	Reset	Memory	Bits	(TRB) 0001	x100
Test	and	Set	Memory	Bits	(TSB) 0000	x100

The	two	addressing	modes	are:

Direct	Page x	=	0
Absolute x	=	1

CMOS	W65C816	and	W65C802
16-Bit	Microprocessor	Family
Features

• Advanced	CMOS	design	for	low	power	consumption	and	increased	noise	immunity

• Single	3-6V	power	supply,	5V	specified

• Emulation	mode	allows	complete	hardware	and	software	compatibility	with	6502	designs

• 24-bit	address	bus	allows	access	to	16	MBytes	of	memory	space

• Full	16-bit	ALU.	Accumulator,	Stack	Pointer,	and	Index	Registers

• Valid	Data	Address	 (VDA)	and	Valid	Program	Address	 (VPA)	output	allows	dual	cache	and	cycle	 steal	DMA
implementation

• Vector	Pull	(VP)	output	indicates	when	interrupt	vectors	are	being	addressed	May	be	used	to	implement	vectored
interrupt	design

• Abort	(ABORT)	input	and	associated	vector	supports	virtual	memory	system	design

• Separate	program	and	data	bank	registers	allow	program	segmentation	or	full	16-MByte	linear	addressing

• New	Direct	Register	and	stack	relative	addressing	provides	capability	for	re-entrant,	re-cursive	and	re-locatable
programming

• 24	addressing	modes—13	original	6502	modes,	plus	11	new	addressing	modes	with	91	 instructions	using	255
opcodes

• New	Wait	for	Interrupt	(WAI)	and	Stop	the	Clock	(STP)	instructions	further	reduce	power	consumption,	decrease
interrupt	latency	and	allows	synchronization	with	external	events

• New	Co-Processor	 instruction	 (COP)	with	associated	vector	 supports	 co-processor	configurations,	 i.e.,	 floating
point	processors

• New	block	move	ability

General	Description

WDC’s	W65C802	and	W65C816	are	CMOS	16-bit	microprocessors	featuring	total	software	compatibility	with	their	8-
bit	NMOS	 and	CMOS	 6500-series	 predecessors	 The	W65C802	 is	 pin-to-pin	 compatible	with	 8-bit	 devices	 currently
available,	while	the	W65C816	extends	addressing	to	a	full	16	megabytes.	These	devices	offer	the	many	advantages	of
CMOS	technology,	 including	 increased	noise	 immunity,	higher	 reliability,	and	greatly	 reduced	power	 requirements.	A
software	switch	determines	whether	the	processor	is	in	the	8-bit	“emulation”	mode,	or	in	the	native	mode,	thus	allowing
existing	systems	to	use	the	expanded	features.

As	 shown	 in	 the	 processor	 programming	model,	 the	Accumulator,	ALU,	X	 and	Y	 Index	 registers,	 and	Stack	Pointer
register	have	all	been	extended	to	16	bits.	A	new	16-bit	Direct	Page	register	augments	the	Direct	Page	addressing	mode
(formerly	Zero	Page	addressing).	Separate	Program	Bank	and	Data	Bank	registers	allow	24-bit	memory	addressing	with
segmented	or	linear	addressing.

Four	 new	 signals	 provide	 the	 system	 designer	 with	 many	 options.	 The	 ABORT	 input	 can	 interrupt	 the	 currently
executing	 instruction	 without	 modifying	 internal	 register,	 thus	 allowing	 virtual	 memory	 system	 design.Valid	 Data
Address	(VDA)	and	Valid	Program	Address	(VPA)	outputs	facilitate	dual	cache	memory	by	indicating	whether	a	data
segment	or	program	segment	is	accessed.	Modifying	a	vector	is	made	easy	by	monitoring	the	Vector	Pull	(VP)	output.

Note:	To	assist	 the	design	engineer,	 a	Caveat	 and	Application	 Information	 section	has	been	 included	within	 this	data
sheet.

Advance	Information	Data	Sheet:

This	is	advanced	information	and	specifications	are	subject	to	change	without	notice.

Absolute	Maximum	Ratings:	(Note	1)

This	device	contains	input	protection	against	damage	due	to	high	static	voltages	or	electric
fields,	however,	precautions	should	be	taken	to	avoid	application	of	voltages	higher	than
the	maximum	rating.

Notes:

1.	 Exceeding	 these	 ratings	 may	 cause	 permanent	 damage.	 Functional	 operation	 under
these	conditions	is	not	implied.

Pin	Function	Table

Timing	Notes:

1	Voltage	levels	are	VL	<	0.4V.	VH	>	2.4V

2	Timing	measurement	points	are	0.8V	and	2.0V

Timing	Notes:

1.	Voltage	levels	are	VL	<	0.4V,	VH	>	2.4V

2.	Timing	measurement	points	are	0.8V	and	2.0V

Functional	Description

The	W65C802	offers	the	design	engineer	the	opportunity	to	utilize	both	existing	software
programs	 and	 hardware	 configurations,	 while	 also	 achieving	 the	 added	 advantages	 of
increased	register	lengths	and	faster	execution	times.	The	W65C802’s	“ease	of	use”	design
and	 implementation	 features	provide	 the	designer	with	 increased	 flexibility	 and	 reduced
implementation	 costs.	 In	 the	 Emulation	 mode,	 the	 W65C802	 not	 only	 offers	 software
compatibility,	 but	 is	 also	 hardware	 (pin-to-pin)	 compatible	with	 6502	 designs…	 plus	 it
provides	the	advantages	of	16-bit	internal	operation	in	6502-compatible	applications.	The
W65C802	is	an	excellent	direct	replacement	microprocessor	for	6502	designs.

The	 W65C816	 provides	 the	 design	 engineer	 with	 upward	 mobility	 and	 software
compatibility	 in	 applications	 where	 a	 16-bit	 system	 configuration	 is	 desired.	 The
W65C816’s	16-bit	hardware	configuration,	coupled	with	current	 software	allows	a	wide
selection	 of	 system	 applications.	 In	 the	 Emulation	 mode,	 the	 W65C816	 offers	 many
advantages,	 including	 full	 software	 compatibility	 with	 6502	 coding.	 In	 addition,	 the
W65C816’s	powerful	instruction	set	and	addressing	modes	make	it	an	excellent	choice	for
new	16-bit	designs.

Internal	organization	of	the	W65C802	and	W65C816	can	be	divided	into	two	parts:	1)	The
Register	 Section,	 and	 2)	 The	 Control	 Section.	 Instructions	 (or	 opcodes)	 obtained	 from
program	 memory	 are	 executed	 by	 implementing	 a	 series	 of	 data	 transfers	 within	 the
Register	Section.	Signals	that	cause	data	transfers	to	be	executed	are	generated	within	the
Control	Section.	Both	the	W65C802	and	the	W65C816	have	a	16-bit	internal	architecture
with	an	8-bit	external	data	bus.

Instruction	Register	and	Decode

An	 opcode	 enters	 the	 processor	 on	 the	 Data	 Bus,	 and	 is	 latched	 into	 the	 Instruction

Register	during	 the	 instruction	fetch	cycle.	This	 instruction	 is	 then	decoded,	a	 long	with
timing	and	interrupt	signals,	to	generate	the	various	Instruction	Register	control	signals.
Timing	Control	Unit	(TCU)

The	Timing	Control	Unit	keeps	track	of	each	instruction	cycle	as	it	is	executed.	The	TCU
is	set	to	zero	each	time	an	instruction	fetch	is	executed,	and	is	advanced	at	the	beginning
of	 each	 cycle	 for	 as	many	 cycles	 as	 is	 required	 to	 complete	 the	 instruction.	 Each	 data
transfer	 between	 registers	 depends	 upon	 decoding	 the	 contents	 of	 both	 the	 Instruction
Register	and	the	Timing	Control	Unit.

The	Timing	Control	Unit	keeps	track	of	each	instruction	cycle	as	it	is	executed.	The	TCU
is	set	to	zero	each	time	an	instruction	fetch	is	executed,	and	is	advanced	at	the	beginning
of	 each	 cycle	 for	 as	many	 cycles	 as	 is	 required	 to	 complete	 the	 instruction.	 Each	 data
transfer	 between	 registers	 depends	 upon	 decoding	 the	 contents	 of	 both	 the	 Instruction
Register	and	the	Timing	Control	Unit.

Arithmetic	and	Logic	Unit	(ALU)

All	arithmetic	and	logic	operations	take	place	within	the	16-bit	ALU.	In	addition	to	data
operations,	 the	 ALU	 also	 calculates	 the	 effective	 address	 for	 relative	 and	 indexed
addressing	modes.	The	result	of	a	data	operation	is	stored	in	either	memory	or	an	internal
register.	Carry,	Negative.	Overflow	 and	Zero	 flags	may	 be	 updated	 following	 the	ALU
data	operation.

Internal	Registers	(Refer	to	Programming	Model)

Accumulators	(A,	B,	C)

The	Accumulator	 is	 a	general	purpose	 register	which	 stores	one	of	 the	operands,	or	 the
result	 of	 most	 arithmetic	 and	 logical	 operations.	 In	 the	 Native	 mode	 (E=0).	 when	 the
Accumulator	Select	Bit	(M)	equals	zero,	the	Accumulator	is	established	as	16	bits	wide	(A
+	B	=	C).	When	 the	Accumulator	Select	Bit	 (M)	 equals	one.	 the	Accumulator	 is	 8	bits
wide	 (A).	 In	 this	 case,	 the	 upper	 8	 bits	 (B)	 may	 be	 used	 for	 temporary	 storage	 in
conjunction	with	the	Exchange	Accumula	tor	(XBA)	instruction.

Data	Bank	Register	(DBR)

During	modes	of	operation,	 the	8-bit	Data	Bank	Register	holds	 the	default	bank	address
for	memory	 transfers.	The	24-bit	address	 is	composed	of	 the	16-bit	 instruction	effective
address	and	the	8-bit	Data	Bank	address.	The	register	value	is	multiplexed	with	the	data
value	 and	 is	 present	 on	 the	 Data/Address	 lines	 during	 the	 first	 half	 of	 a	 data	 transfer
memory	 cycle	 for	 the	W65C816.	 The	 Data	 Bank	 Register	 is	 initialized	 to	 zero	 during
Reset.

Direct	(D)

The	 16-bit	 Direct	 Register	 provides	 an	 address	 offset	 for	 all	 instructions	 using	 direct
addressing.	 The	 effective	 bank	 zero	 address	 is	 formed	 by	 adding	 the	 8-bit	 instruction
operand	 address	 to	 the	Direct	Register.	The	Direct	Register	 is	 initialized	 to	 zero	 during
Reset.

Index	(X	and	Y)

There	are	two	Index	Registers	(X	and	Y)	which	may	be	used	as	general	purpose	registers
or	 to	provide	an	index	value	for	calculation	of	 the	effective	address.	When	executing	an
instruction	with	 indexed	addressing,	 the	microprocessor	fetches	 the	opcode	and	the	base
address,	 and	 then	 modifies	 the	 address	 by	 adding	 the	 Index	 Register	 contents	 to	 the
address	 prior	 to	 performing	 the	 desired	 operation.	 Pre-indexing	 or	 post-indexing	 of
indirect	addresses	may	be	selected.	In	the	Native	mode	(E=0),	both	Index	Registers	are	16
bits	 wide	 (providing	 the	 Index	 Select	 Bit	 (X)	 equals	 zero).	 If	 the	 Index	 Select	 Bit	 (X)
equals	one.	both	registers	will	be	8	bits	wide,	and	the	high	byte	is	forced	to	zero.

Processor	Status	(P)

The	8-bit	Processor	Status	Register	contains	status	flags	and	mode	select	bits.	The	Carry
(C).	Negative	 (N).	Overflow	 (V).	 and	Zero	 (Z)	 status	 flags	 serve	 to	 report	 the	 status	of
most	 ALU	 operations.	 These	 status	 flags	 are	 tested	 by	 use	 of	 Conditional	 Branch
instructions.	The	Decimal	(D).	IRQ	Disable	(I),	Memory/Accumulator	(M),	and	Index	(X)
bits	 are	 used	 as	 mode	 select	 flags.	 These	 flags	 are	 set	 by	 the	 program	 to	 change
microprocessor	operations.

The	 Emulation	 (E)	 select	 and	 the	 Break	 (B)	 flags	 are	 accessible	 only	 through	 the
Processor	 Status	Register.	 The	Emulation	mode	 select	 flag	 is	 selected	 by	 the	Exchange
Carry	 and	Emulation	B	 its	 (XCE)	 instruction.	 Table	1,	W65C802	 and	W65C816	Mode
Comparison,	illustrates	the	features	of	the	Native	(E=0)	and	Emulation	(E=1)	modes	The
M	and	X	flags	are	always	equal	to	one	in	the	Emulation	mode.	When	an	interrupt	occurs
during	 the	 Emulation	mode,	 the	 Break	 flag	 is	 written	 to	 stack	memory	 as	 bit	 4	 of	 the
Processor	Status	Register.

Program	Bank	Register	(PBR)

The	8-bit	Program	Bank	Register	holds	 the	bank	address	 for	all	 instruction	 fetches.	The
24-bit	 address	 consists	 of	 the	 16-bit	 instruction	 effective	 address	 and	 the	 8-bit	 Program
Bank	address.	The	register	value	is	multiplexed	with	the	data	value	and	presented	on	the
Data/Address	 lines	 during	 the	 first	 half	 of	 a	 program	memory	 read	 cycle.	The	Program
Bank	Register	 is	 initialized	 to	 zero	 during	Reset.	 The	PHK	 instruction	 pushes	 the	 PBR
register	onto	the	Stack.

Program	Counter	(PC)

The	16-bit	Program	Counter	Register	provides	 the	 addresses	which	are	used	 to	 step	 the
microprocessor	through	sequential	program	instructions.	The	register	is	incremented	each
time	an	instruction	or	operand	is	fetched	from	program	memory.

Stack	Pointer	(S)

The	Stack	Pointer	is	a	16-bit	register	which	is	used	to	indicate	the	next	available	location
in	the	stack	memory	area.	It	serves	as	the	effective	address	in	stack	addressing	modes	as
well	 as	 subroutine	 and	 interrupt	 processing.	 The	 Stack	 Pointer	 allows	 simple
implementation	of	nested	subroutines	and	multiple-level	interrupts.	During	the	Emulation
mode,	the	Stack	Pointer	high-order	byte	(SH)	is	always	equal	to	one.	The	bank	address	for
all	stack	operations	is	Bank	zero.

Figure	1.	Block	Diagram	—	Internal	Architecture

Signal	Description

The	 following	 Signal	 Description	 applies	 to	 both	 the	 G65SC802	 and	 the	 G65SC816
except	as	otherwise	noted.

Abort	(ABORT)—	G65SC816

The	Abort	input	is	used	to	abort	instructions	(usually	due	to	an	Address	Bus	condition).	A
negative	 transition	 will	 inhibit	 modification	 of	 any	 internal	 register	 during	 the	 current
instruction.	 Upon	 completion	 of	 this	 instruction,	 an	 interrupt	 sequence	 is	 initiated.	 The
location	of	the	aborted	opcode	is	stored	as	the	return	address	in	stack	memory.	The	Abort
vector	 address	 is	 00FFF8.9	 (Emulationmode)	 or	 00FFE8.9	 (Native	 mode).	 Note	 that
ABORT	is	a	pulse-sensitive	signal,	 i.e.	an	abort	will	occur	whenever	 there	 is	a	negative
pulse	(or	level)	on	the	ABORT	pm	during	a	Φ2	clock.

Address	Bus	(A0-A15)

These	 sixteen	 output	 lines	 form	 the	Address	Bus	 for	memory	 and	 I/O	 exchange	 on	 the
Data	Bus.	When	using	the	G65SC816.	the	address	lines	may	be	set	to	the	high	impedance
state	by	the	Bus	Enable	(BE)	signal.

Bus	Enable	(BE)—	W65C816

The	Bus	Enable	input	signal	allows	external	control	of	the	Address	and	Data	Buffers,	as
well	as	the	R/W	signal.	With	Bus	Enable	high,	the	R/W	and	Address	Buffers	are	active.
The	Data/Address	Buffers	 are	 active	during	 the	 first	half	of	 every	cycle	 and	 the	 second

half	 of	 a	 write	 cycle	 When	 BE	 is	 low.	 these	 buffers	 are	 disabled.	 Bus	 Enable	 is	 an
asynchronous	signal.

Data	Bus	(D0-D7)—W65C802

The	 eight	 Data	 Bus	 lines	 provide	 an	 8-bit	 bidirectional	 Data	 Bus	 for	 use	 during	 data
exchanges	between	the	microprocessor	and	external	memory	or	peripherals.	Two	memory
cycles	are	required	for	the	transfer	of	16-bit	values.

Data/Address	Bus	(D0/BA0-D7/BA7)—W65C816

These	 eight	 lines	multiplex	 address	 bits	 BA0-BA7	with	 the	 data	 value.	 The	 address	 is
present	during	the	first	half	of	a	memory	cycle,	and	the	data	value	is	read	or	written	during
the	second	half	of	the	memory	cycle.	Two	memory	cycles	are	required	to	transfer	16-bit
values.	These	lines	may	be	set	to	the	high	impedance	state	by	the	Bus	Enable	(BE)	signal.

Emulation	Status	(E)—W65C816

The	 Emulation	 Status	 output	 reflects	 the	 state	 of	 the	 Emulation	 (E)	 mode	 flag	 in	 the
Processor	Status	(P)	Register.	This	signal	may	be	thought	of	as	an	opcode	extension	and
used	for	memory	and	system	management.

Interrupt	Request	(IRQ)

The	 Interrupt	 Request	 input	 signal	 is	 used	 to	 request	 that	 an	 interrupt	 sequence	 be
initiated.	When	 the	 IRQ	Disable	 (I)	 flag	 is	 cleared,	 a	 low	 input	 logic	 level	 initiates	 an
interrupt	sequence	after	the	current	instruction	is	completed.	The	Wait	for	Interrupt	(WAI)
instruction	may	be	executed	 to	ensure	 the	 interrupt	will	be	recognized	 immediately.	The
Interrupt	Request	 vector	 address	 is	OOFFFE.F	 (Emulation	mode)	 or	 00FFEE.F	 (Native
mode).	Since	IRQ	is	a	level-sensitive	input,	an	interrupt	will	occur	if	the	interrupt	source
was	not	cleared	since	the	last	interrupt.	Also,	no	interrupt	will	occur	if	the	interrupt	source
is	cleared	prior	to	interrupt	recognition.

Memory	Lock	(ML)-	W65C816

The	 Memory	 Lock	 output	 may	 be	 used	 to	 ensure	 the	 integrity	 of	 Read-Modify-Write
instructions	 in	 a	 multiprocessor	 system.	 Memory	 Lock	 indicates	 the	 need	 to	 defer
arbitration	of	the	next	bus	cycle.	Memory	Lock	is	low	during	the	last	three	or	five	cycles
of	ASL,	DEC,	 INC,	LSR,	ROL,	ROR,	TRB,	and	TSB	memory	referencing	 instructions,
depending	on	the	state	of	the	M	flag.

Memory/Index	Select	Status	(M/X)—W65C816

This	multiplexed	 output	 reflects	 the	 state	 of	 the	Accumulator	 (M)	 and	 Index	 (X)	 select
flags	(bits	5	and	4	of	the	Processor	Status	(P)	Register.	Flag	M	is	valid	during	the	Phase	2
clock	negative	transition	and	Flag	X	is	valid	during	the	Phase	2	clock	positive	transition.
These	 bits	may	 be	 thought	 of	 as	 opcode	 extensions	 and	may	 be	 used	 for	memory	 and
system	management.

Non-Maskable	Interrupt	(NMI)

A	 negative	 transition	 on	 the	 NMI	 input	 initiates	 an	 interrupt	 sequence.	 A	 high-to-low
transition	 initiates	 an	 interrupt	 sequence	 after	 the	 current	 instruction	 is	 completed.	 The
Wait	for	Interrupt	(WAI)	instruction	may	be	executed	to	ensure	that	the	interrupt	will	be

recognized	 immediately.	 The	 Non-Maskable	 Interrupt	 vector	 address	 is	 OOFFFA,B
(Emulation	mode)	or	OOFFEA,B	(Native	mode).	Since	NMI	is	an	edge-sensitive	input,	an
interrupt	will	occur	 if	 there	 is	 a	negative	 transition	while	 servicing	a	previous	 interrupt.
Also,	no	interrupt	will	occur	if	NMI	remains	low.

Phase	1	Out	(Φ1	(OUT))—W65C802

This	 inverted	clock	output	signal	provides	 timing	for	external	read	and	write	operations.
Executing	the	Stop	(STP)	instruction	holds	this	clock	in	the	low	state.

Phase	2	In	(Φ2	(IN))

This	is	the	system	clock	input	to	the	microprocessor	internal	clock	generator	(equivalent	to
Φ0	(IN)	on	the	6502).	During	the	low	power	Standby	Mode.	Φ2	(IN)	should	be	held	in	the
high	state	to	preserve	the	contents	of	internal	registers.

Phase	2	Out	(Φ2	(OUT))—W65C802

This	clock	output	signal	provides	timing	for	external	read	and	write	operations.	Addresses
are	valid	(after	the	Address	Setup	Time	TADS))	following	the	negative	transition	of	Phase
2	Out	Executing	the	Stop	(STP)	instruction	holds	Phase	2	Out	in	the	High	state

Read/Write	(R/W)

When	the	R/W	output	signal	is	in	the	high	state,	the	microprocessor	is	reading	data	from
memory	 or	 I/O.	 When	 in	 the	 low	 state,	 the	 Data	 Bus	 contains	 valid	 data	 from	 the
microprocessor	which	is	 to	be	stored	at	 the	addressed	memory	location.	When	using	the
W65C816.	the	R/W	signal	may	be	set	to	the	high	impedance	state	by	Bus	Enable	(BE).

Ready	(RDY)

This	 bidirectional	 signal	 indicates	 that	 a	Wait	 for	 Interrupt	 (WAI)	 instruction	 has	 been
executed	allowing	the	user	to	halt	operation	of	the	microprocessor.	A	low	input	logic	level
will	halt	the	microprocessor	in	its	current	state	(note	that	when	in	the	Emulation	mode,	the
W65C802	stops	only	during	a	read	cycle).	Returning	RDY	to	the	active	high	state	allows
the	microprocessor	 to	 continue	 following	 the	next	Phase	2	 In	Clock	negative	 transition.
The	RDY	signal	 is	 internally	pulled	 low	following	 the	execution	of	a	Wait	 for	 Interrupt
(WAI)	instruction,	and	then	returned	to	the	high	state	when	a	RES,	ABORT,	NMI,	or	IRQ
external	interrupt	is	provided.	This	feature	may	be	used	to	eliminate	interrupt	latency	by
placing	 the	WAI	 instruction	 at	 the	 beginning	 of	 the	 IRQ	 servicing	 routine.	 If	 the	 IRQ
Disable	flag	has	been	set.	the	next	instruction	will	be	executed	when	the	IRQ	occurs.	The
processor	will	not	stop	after	a	WAI	instruction	if	RDY	has	been	forced	to	a	high	state.	The
Stop	(STP)	instruction	has	no	effect	on	RDY.

Reset	(RES)

The	Reset	input	is	used	to	initialize	the	microprocessor	and	start	program	execution.	The
Reset	input	buffer	has	hysteresis	such	that	a	simple	R-C	timing	circuit	may	be	used	with
the	internal	pullup	device.	The	RES	signal	must	be	held	low	for	at	least	two	clock	cycles
after	VOD	reaches	operating	voltage.	Ready	(RDY)	has	no	effect	while	RES	is	being	held
low.	 During	 this	 Reset	 conditioning	 period,	 the	 following	 processor	 initialization	 takes
place:

When	Reset	is	brought	high,	an	interrupt	sequence	is	initiated:

• R/W	remains	in	the	high	state	during	the	stack	address	cycles.

• The	Reset	vector	address	is	00FFFC.D.

Set	Overflow	(SO)—	W65C802

A	negative	transition	on	this	input	sets	the	Overflow	(V)	flag,	bit	6	of	the	Processor	Status
(P)	Register.

Synchronize	(SYNC)—W65C802

The	SYNC	output	is	provided	to	identify	those	cycles	during	which	the	microprocessor	is
fetching	 an	 opcode.	 The	 SYNC	 signal	 is	 high	 during	 an	 opcode	 fetch	 cycle,	 and	when
combined	with	Ready	(RDY).	can	be	used	for	single	instruction	execution.

Valid	Data	Address	(VDA)	and
Valid	Program	Address	(VPA)-G65SC816

These	two	output	signals	indicate	valid	memory	addresses	when	high	(logic	1),	and	must
be	used	for	memory	or	I/O	address	qualification.

VOD	and	Vss

Vdd	is	the	positive	supply	voltage	and	Vss	is	system	logic	ground	Pin	21	of	the	two	Vss
pins	on	the	W65C802	should	be	used	for	system	ground.

Vector	Pull	(VP—)	W65C816

The	 Vector	 Pull	 output	 indicates	 that	 a	 vector	 location	 is	 being	 addressed	 during	 an
interrupt	sequence.	VP	is	low	during	the	last	two	interrupt	sequence	cycles,	during	which
time	 the	 processor	 reads	 the	 interrupt	 vector.	 The	VP	 signal	may	 be	 used	 to	 select	 and
prioritize	interrupts	from	several	sources	by	modifying	the	vector	addresses.

Note	1.	See	Caveat	section	for	additional	information.

W65C802	and	W65C816
Microprocessor	Addressing	Modes

The	W65C816	is	capable	of	directly	addressing	16	MBytes	of	memory.	This	address	space
has	special	significance	within	certain	addressing	modes,	as	follows:

Reset	and	Interrupt	Vectors

The	Reset	and	Interrupt	vectors	use	the	majority	of	the	fixed	addresses	between	OOFFEO
and	OOFFFF.

Stack

The	Stack	may	use	memory	from	000000	to	OOFFFF.	The	effective	address	of	Stack	and
Stack	Relative	addressing	modes	will	always	be	within	this	range.

Direct

The	Direct	addressing	modes	are	usually	used	to	store	memory	registers	and	pointers	The
effective	address	generated	by	Direct.	Direct.X	and	Direct.Y	addressing	modes	is	always

in	Bank	0	(000000-OOFFFF).

Program	Address	Space

The	 Program	 Bank	 register	 is	 not	 affected	 by	 the	 Relative,	 Relative	 Long,	 Absolute,
Absolute	Indirect,	and	Absolute	Indexed	Indirect	addressing	modes	or	by	incrementing	the
Program	Counter	from	FFFF.	The	only	instructions	that	affect	the	Program	Bank	register
are:	RTI,	RTL,	JML,	JSL,	and	JMP	Absolute	Long	Program	code	may	exceed	64K	bytes
although	code	segments	may	not	span	bank	boundaries.

Data	Address	Space

The	 data	 address	 space	 is	 contiguous	 throughout	 the	 16	MByte	 address	 space.	Words,
arrays,	 records,	 or	 any	 data	 structures	 may	 span	 64	 KByte	 bank	 boundaries	 with	 no
compromise	in	code	efficiency.	The	following	addressing	modes	generate	24-bit	effective
addresses:
• Direct	Indexed	Indirect	(d,x)

• Direct	Indirect	Indexed	(d),y

• Direct	Indirect	(d)

• Direct	Indirect	Long	[d]

• Direct	Indirect	Long	Indexed	|d].y

• Absolute	a

• Absolute	a,x

• Absolute	a,y

• Absolute	Long	al

• Absolute	Long	Indexed	al,x

• Stack	Relative	Indirect	Indexed	(d,s),y

The	following	addressing	mode	desciptions	provide	additional	detail	as	 to	how	effective
addresses	are	calculated.

Twenty-four	 addressing	modes	 are	 available	 for	 use	with	 the	W65C802	 and	W65C816
microprocessors.	The	“long”	addressing	modes	may	be	used	with	the	W65C802;	however,
the	high	byte	of	the	address	is	not	available	to	the	hardware.	Detailed	descriptions	of	the
24	addressing	modes	are	as	follows:

1. Immediate	Addressing—#

The	operand	is	the	second	byte	(second	and	third	bytes	when	in	the	16-bit	mode)	of	the	instruction.

2. Absolute—a

With	Absolute	addressing	the	second	and	third	bytes	of	the	instruction	form	the	low-order	16	bits	of	the
effective	address.	The	Data	Bank	Register	contains	the	high-order	8	bits	of	the	operand	address

3. Absolute	Long—al

The	second,	third,	and	fourth	byte	of	the	instruction	form	the	24-bit	effective	address

4. Direct—d

The	second	byte	of	the	instruction	is	added	to	the	Direct	Register	(D)	to	form	the	effective	address	An
additional	cycle	is	required	when	the	Direct	Register	is	not	page	aligned	(DL	not	equal	0).	The	Bank
register	is	always	0.

5. Accumulator—A

This	form	of	addressing	always	uses	a	single	byte	instruction.	The	operand	is	the	Accumulator.

6. Implied—I

Implied	addressing	uses	a	single	byte	instruction.	The	operand	is	implicitly	defined	by	the	instruction.

7. Direct	Indirect	Indexed—(d),y

This	address	mode	is	often	referred	to	as	Indirect.Y.	The	second	byte	of	the	instruction	is	added	to	the
Direct	Register	(D).	The	16-bit	contents	of	this	memory	location	is	then	combined	with	the	Data	Bank
register	 to	form	a	24-bit	base	address.	The	Y	Index	Register	 is	added	to	 the	base	address	 to	form	the
effective	address.

8. Direct	Indirect	Long	Indexed—[d],y

With	this	addressing	mode,	the	24-bit	base	address	is	pointed	to	by	the	sum	of	the	second	byte	of	the
instruction	and	the	Direct	Register.	The	effective	address	 is	 this	24-bit	base	address	plus	 the	Y	Index
Register.

9. Direct	Indexed	Indirect—(d.x)

This	address	mode	is	often	referred	to	as	Indirect.X.	The	second	byte	of	the	instruction	is	added	to	the
sum	of	the	Direct	Register	and	the	X	Index	Register.	The	result	points	to	the	low-order	16	bits	of	the
effective	address.	The	Data	Bank	Register	contains	the	high-order	8	bits	of	the	effective	address.

10. Direct	Indexed	With	X—d,x

The	second	byte	of	the	instruction	is	added	to	the	sum	of	the	Direct	Register	and	the	X	Index	Register
to	form	the	16-bit	effective	address.	The	operand	is	always	in	Bank	0.

11. Direct	Indexed	With	Y—d,y

The	second	byte	of	the	instruction	is	added	to	the	sum	of	the	Direct	Register	and	the	Y	Index	Register
to	form	the	16-bit	effective	address.	The	operand	is	always	in	Bank	0.

12. Absolute	Indexed	With	X—a,x

The	second	and	third	bytes	of	the	instruction	are	added	to	the	X	Index	Register	to	form	the	low-order	16
bits	 of	 the	 effective	 address.	 The	Data	Bank	Register	 contains	 the	 high-order	 8	 bits	 of	 the	 effective
address.

13. Absolute	Long	Indexed	With	X—al,x

The	second,	third	and	fourth	bytes	of	the	instruction	form	a	24-bit	base	address.	The	effective	address	is
the	sum	of	this	24-bit	address	and	the	X	Index	Register.

14. Absolute	Indexed	With	Y—a,y

The	second	and	third	bytes	of	the	instruction	are	added	to	the	Y	Index	Register	to	form	the	low-order	16
bits	 of	 the	 effective	 address.	 The	Data	Bank	Register	 contains	 the	 high-order	 8	 bits	 of	 the	 effective
address.

15. Program	Counter	Relative—r

This	address	mode,	referred	to	as	Relative	Addressing,	is	used	only	with	the	Branch	instructions.	If	the
condition	being	tested	is	met,	the	second	byte	of	the	instruction	is	added	to	the	Program	Counter,	which
has	been	updated	to	point	to	the	opcode	of	the	next	instruction.	The	offset	is	a	signed	8-bit	quantity	in
the	range	from	-128	to	127.	The	Program	Bank	Register	is	not	affected.

16. Program	Counter	Relative	Long—rt

This	 address	 mode,	 referred	 to	 as	 Relative	 Long	 Addressing,	 is	 used	 only	 with	 the	 Unconditional
Branch	Long	instruction	(BRL)	and	the	Push	Effective	Relative	instruction	(PER).	The	second	and	third
bytes	 of	 the	 instruction	 are	 added	 to	 the	 Program	 Counter,	 which	 has	 been	 updated	 to	 point	 to	 the
opcode	 of	 the	 next	 instruction.	With	 the	 branch	 instruction,	 the	 Program	Counter	 is	 loaded	with	 the
result.	With	 the	 Push	Effective	Relative	 instruction,	 the	 result	 is	 stored	 on	 the	 stack.	 The	 offset	 is	 a
signed	16-bit	quantity	in	the	range	from	-32768	to	32767.	The	Program	Bank	Register	is	not	affected.

17. Absolute	Indirect—(a)

The	 second	 and	 third	 bytes	 of	 the	 instruction	 form	 an	 address	 to	 a	 pointer	 in	Bank	 0.	 The	Program
Counter	is	loaded	with	the	first	and	second	bytes	at	this	pointer.	With	the	Jump	Long	(JML)	instruction,
the	Program	Bank	Register	is	loaded	with	the	third	byte	of	the	pointer.

18. Direct	Indirect—(d)

The	second	byte	of	the	instruction	is	added	to	the	Direct	Register	to	form	a	pointer	to	the	low-order	16
bits	 of	 the	 effective	 address.	 The	Data	Bank	Register	 contains	 the	 high-order	 8	 bits	 of	 the	 effective
address.

19. Direct	Indirect	Long—[d]

The	 second	 byte	 of	 the	 instruction	 is	 added	 to	 the	 Direct	 Register	 to	 form	 a	 pointer	 to	 the	 24-bit
effective	address.

20. Absolute	Indexed	Indirect—(a,x)

The	second	and	third	bytes	of	the	instruction	are	added	to	the	X	Index	Register	to	form	a	16-bit	pointer
in	Bank	0.	The	contents	of	this	pointer	are	loaded	in	the	Program	Counter.	The	Program	Bank	Register
is	not	changed.

21. Stack—s

Stack	addressing	refers	to	all	instructions	that	push	or	pull	data	from	the	stack,	such	as	Push.	Pull,	Jump
to	 Subroutine,	 Return	 from	 Subroutine,	 Interrupts,	 and	 Return	 from	 Interrupt.	 The	 bank	 address	 is
always	0.	Interrupt	Vectors	are	always	fetched	from	Bank	0

22. Stack	Relative—d,s

The	 low-order	 16	 bits	 of	 the	 effective	 address	 is	 formed	 from	 the	 sum	 of	 the	 second	 byte	 of	 the
instruction	 and	 the	 Stack	 Pointer.	 The	 high-order	 8	 bits	 of	 the	 effective	 address	 is	 always	 zero.	 The
relative	offset	is	an	unsigned	8-bit	quantity	in	the	range	of	0	to	255.

23. Stack	Relative	Indirect	Indexed—(d,s),y

The	second	byte	of	the	instruction	is	added	to	the	Stack	Pointer	to	form	a	pointer	to	the	low-order	16-bit
base	address	in	Bank	0.	The	Data	Bank	Register	contains	the	high-order	8	bits	of	the	base	address	The
effective	address	is	the	sum	of	the	24-bit	base	address	and	the	Y	Index	Register.

24. Block	Source	Bank,	Destination	Bank—xyc

This	 addressing	 mode	 is	 used	 by	 the	 Block	 Move	 instructions.	 The	 second	 byte	 of	 the	 instruction
contains	the	high-order	8	bits	of	the	destination	address.	The	Y	index	Register	contains	the	low-order	16
bits	of	 the	destination	address.	The	 third	byte	of	 the	 instruction	contains	 the	high-order	8	bits	of	 the
source	 address.	 The	 X	 Index	 Register	 contains	 the	 low-order	 16	 bits	 of	 the	 source	 address.	 The	 C
Accumulator	contains	one	less	than	the	number	of	bytes	to	move.	The	second	byte	of	the	block	move
instructions	is	also	loaded	into	the	Data	Bank	Register.

For	alternate	mnemonics,	see	Table	7.

The	VP	output	is	low	during	the	two	cycles	used	for	vector	location	access	When	an	interrupt	is	executed,	D	0	and	I	=	1
in	Status	Register	P.

Opcode	Matrix

Op	Code	Matrix	Legend

Recommended	W65C816	and	W65C802	Assembler	Syntax	Standards

Directives

Assembler	directives	are	those	parts	of	the	assembly	language	source	program	which	give	directions	to	the	assembler,
this	 includes	 the	 definition	 of	 data	 area	 and	 constants	 within	 a	 program.	 This	 standard	 excludes	 any	 definitions	 of
assembler	directives.

Comments

An	assembler	 should	provide	a	way	 to	use	any	 line	of	 the	 source	program	as	 a	 comment.	The	 recommended	way	of
doing	this	is	to	treat	any	blank	line,	or	any	line	that	starts	with	a	semi-colon	or	an	asterisk	as	a	comment.	Other	special
characters	may	be	used	as	well.

The	Source	Line

Any	 line	 which	 causes	 the	 generation	 of	 a	 single	 W65C816	 or	 W65C802	 machine	 language	 instruction	 should	 be
divided	into	four	fields:	a	label	field,	the	operation	code,	the	operand,	and	the	comment	field.

The	Label	Field—The	label	field	begins	in	column	one	of	the	line.	A	label	must	start	with	an	alphabetic	character,	and
may	be	followed	by	zero	or	more	alphanumeric	characters.	An	assembler	may	define	an	upper	limit	on	the	number	of
characters	that	can	be	in	a	label,	so	long	as	that	upper	limit	is	greater	than	or	equal	to	six	characters.	An	assembler	may
limit	 the	alphabetic	 characters	 to	upper-case	characters	 if	desired	 If	 lowercase	characters	 are	 allowed,	 they	 should	be
treated	as	identical	to	their	upper-case	equivalents	Other	characters	may	be	allowed	in	the	label,	so	long	as	their	use	does
not	conflict	with	the	coding	of	operand	fields.

The	Operation	Code	Field—The	operation	code	shall	consist	of	a	three	character	sequence	(mnemonic)	from	Table	3.
It	shall	start	no	sooner	than	column	2	of	the	line,	or	one	space	after	the	label	if	a	label	is	coded.

Many	of	the	operation	codes	in	Table	3	have	duplicate	mnemonics,	when	 two	or	more	machine	 language	 instructions
have	the	same	mnemonic;	the	assembler	resolves	the	difference	based	on	the	operand.

If	an	assembler	allows	lower-case	letters	in	labels,	it	must	also	allow	lower-case	letters	in	the	mnemonic.	When	lower-
case	 letters	 are	 used	 in	 the	 mnemonic,	 they	 shall	 be	 treated	 as	 equivalent	 to	 the	 upper-case	 counterpart.	 Thus,	 the
mnemonics	LDA,	Ida,	and	LdA	must	all	be	recognized.	and	are	equivalent.

In	addition	to	the	mnemonics	shown	in	Table	3.	an	assembler	may	provide	the	alternate	mnemonics	shown	in	Table	6.

Table7.	Alternate	Mnemonics

JSL	should	be	recognized	as	equivalent	to	JSR	when	it	is	specified	with	a	long	absolute	address.	JML	is	equivalent	to
JMP	with	long	addressing	forced

The	 Operand	 Field—The	 operand	 field	 may	 start	 no	 sooner	 than	 one	 space	 after	 the	 operation	 code	 field.	 The
assembler	 must	 be	 capable	 of	 at	 least	 twenty-four	 bit	 address	 calculations.	 The	 assembler	 should	 be	 capable	 of
specifying	 addresses	 as	 labels,	 integer	 constants,	 and	 hexadecimal	 constants.	The	 assembler	must	 allow	 addition	 and
subtraction	 in	 the	 operand	 field	Labels.	 shall	 be	 recognized	by	 the	 fact	 that	 they	 start	 alphabetic	 characters.	Decimal
numbers	shall	be	recognized	as	containing	only	 the	decimal	digits	0	9.	Hexadecimal	constants	shall	be	recognized	by
prefixing	 the	constant	with	a	“$”	character,	 followed	by	zero	or	more	of	either	 the	decimal	digits	or	 the	hexadecimal
digits	“A”	“F”.	If	lower-case	letters	are	allowed	in	the	label	field,	then	they	shall	also	be	allowed	as	hexadecimal	digits.

All	 constants,	 no	matter	 what	 their	 format,	 shall	 provide	 at	 least	 enough	 precision	 to	 specify	 all	 values	 that	 can	 be
represented	by	a	twenty-four	bit	signed	or	unsigned	integer	represented	in	two’s	complement	notation.

Table	8	shows	the	operand	formats	which	shall	be	recognized	by	the	assembler.	The	symbol	d	is	a	label	or	value	which
the	assembler	can	recognize	as	being	less	than	$100.	The	symbol	a	is	a	label	or	value	which	the	assembler	can	recognize
as	greater	 the	$FF	but	 less	 than	$10000;	 the	 symbol	al	 is	 a	 label	 of	 value	 that	 the	 assembler	 can	 recognize	 as	being
greater	than	$FFFF.	The	symbol	EXT	is	a	label	which	cannot	be	located	by	the	assembler	at	the	time	the	instruction	is
assembled	Unless	in-structed	otherwise,	an	assembler	shall	assume	that	EXT	labels	are	two	bytes	long.	The	symbols	r
and	rl	are	8	and	16	bit	signed	displacements	calculated	by	the	assembler.

Note	that	the	operand	does	not	determine	whether	or	not	immediate	addressing	loads	one	or	two	bytes;	this	is	determined
by	 the	 setting	of	 the	 status	 register.	This	 forces	 the	 requirement	 for	a	directive	or	directives	 that	 tell	 the	assembler	 to
generate	one	or	 two	bytes	of	 space	 for	 immediate	 loads.	The	directives	provided	 shall	 allow	separate	 settings	 for	 the
accumulator	and	index	registers.

The	assembler	shall	use	the	<	.	>.	and	∧	characters	after	the	#	character	in	immediate	address	to	specify	which	byte	or
bytes	will	be	selected	from	the	value	of	the	operand.	Any	calculations	in	the	operand	must	be	performed	before	the	byte
selection	 takes	 place	Table	 7	 defines	 the	 action	 taken	 by	 each	 operand	 by	 showing	 the	 effect	 of	 the	 operator	 on	 an
address.	 The	 column	 that	 shows	 a	 two	 byte	 immediate	 value	 show	 the	 bytes	 in	 the	 order	 in	 which	 they	 appear	 in
memory.	The	coding	of	the	operand	is	for	an	assembler	which	uses	32	bit	address	calculations,	showing	the	way	that	the
address	should	be	reduced	to	a	24	bit	value.

Table	8	.	Byte	Selection	Operator

In	any	location	in	an	operand	where	an	address,	or	expression	resulting	in	an	address,	can	be	coded,	the	assembler	shall
recognize	the	prefix	characters	<	.|.	and	>	.	which	force	one	byte	(direct	page),	two	byte	(absolute)	or	three	byte	(long
absolute)	addressing.	In	cases	where	the	addressing	mode	is	not	forced,	the	assembler	shall	assume	that	the	address	is
two	 bytes	 unless	 the	 assembler	 is	 able	 to	 determine	 the	 type	 of	 addressing	 required	 by	 context,	 in	 which	 case	 that
addressing	mode	will	be	used.	Addresses	shall	be	truncated	without	error	if	an	addressing	mode	is	forced	which	does	not
require	the	entire	value	of	the	address	For	example.

are	completely	equivalent.	If	the	addressing	mode	is	not	forced,	and	the	type	of	addressing	cannot	be	determined	from
context,	 the	 assembler	 shall	 assume	 that	 a	 two	 byte	 address	 is	 to	 be	 used.	 If	 an	 instruction	 does	 not	 have	 a	 short
addressing	mode	(as	 in	LDA,	which	has	no	direct	page	indexed	by	Y)	and	a	short	address	 is	used	in	the	operand,	 the
assembler	shall	automatically	extend	the	address	by	padding	the	most	significant	bytes	with	zeroes	in	order	to	extend	the
address	 to	 the	 length	 needed.	 As	 with	 immediate	 addressing,	 any	 expression	 evaluation	 shall	 take	 place	 before	 the
address	is	selected,	thus,	the	address	selection	character	is	only	used	once,	before	the	address	of	expression.

The!	(exclamation	point)	character	should	be	supported	as	an	alternative	to	the	|	(vertical	bar).

A	long	indirect	address	is	indicated	in	the	operand	field	of	an	instruction	by	surrounding	the	direct	page	address	where
the	indirect	address	is	found	by	square	brackets,	direct	page	addresses	which	contain	sixteen-bit	addresses	are	indicated
by	being	surrounded	by	parentheses.

The	 operands	 of	 a	 block	move	 instruction	 are	 specified	 as	 source	 bank,	 destination	 bank—the	 opposite	 order	 of	 the
object	bytes	generated.

Comment	Field—The	comment	field	may	start	no	sooner	than	one	space	after	the	operation	code	field	or	operand	field
depending	on	instruction	type.

Note	The	alternate	!	(exclamation	point)	is	used	in	place	of	the	|	(vertical	bar).

NOTES:

1	Page	boundary,	add	1	cycle	if	page	boundary	is	crossed	when	forming	address.

2	Branch	taken,	add	1	cycle	if	branch	is	taken.

3	M	=	0	or	X	=	0.16	bit	operation,	add	1	cycle,	add	1	byte	for	immediate.

4	Direct	register	low	(DL)	not	equal	zero,	add	1	cycle.

5	Read-Modify-Write,	add	2	cycles	for	M	=	1,	add	3	cycles	for	M	=	0.

Caveats	and	Application	Information	Stack	Addressing

When	 in	 the	Native	mode,	 the	Stack	may	use	memory	 locations	000000	 to	00FFFFF.	The	effective	address	of	Stack.
Stack	Relative,	and	Stack	Relative	Indirect	Indexed	addressing	modes	will	always	be	within	this	range.	In	the	Emulation
mode,	 the	Stack	address	 range	 is	000100	 to	0001FF.	The	 following	opcodes	and	addressing	modes	will	 increment	or
decrement	beyond	this	range	when	accessing	two	or	three	bytes.

JSL:	JSR(a,x):	PEA;	PEI;	PER;	PHD;	PLD;	RTL;	d.s.	(d.s).y

Direct	Addressing

The	Direct	Addressing	modes	are	often	used	to	access	memory	registers	and	pointers.	The	effective	address	generated	by
Direct.	Direct.X	and	Direct.Y	addressing	modes	will	always	be	in	the	Native	mode	range	000000	to	OOFFFF.	When	in
the	Emulation	mode,	 the	 direct	 addressing	 range	 is	 000000	 to	 0000FF,	 except	 for	 [Direct]	 and	 [Directj.Y	 addressing
modes	and	the	PEI	instruction	which	will	increment	from	0000FE	or	OOOOFF	into	the	Stack	area.

When	in	the	Emulation	mode	and	DH	is	not	equal	to	zero,	the	direct	addressing	range	is	00DH00toOODHFF.	except	for
[Direct]	and	[Directj.Y	addressing	modes	and	the	PEI	instruction	which	will	increment	from	OODHFE	or	OODHFF	into
the	next	higher	page.

When	in	the	Emulation	mode	and	DL	in	not	equal	to	zero,	the	direct	addressing	range	is	000000	to	OOFFFF.

Absolute	Indexed	Addressing	(W65C816	Only)

The	Absolute	Indexed	addressing	modes	are	used	to	address	data	outside	the	direct	addressing	range.	The	W65C02	and
W65C802	addressing	range	is	0000	to	FFFF.	Indexing	from	page	FFXX	may	result	in	a	00YY	data	fetch	when	using	the
W65C02	or	W65C802.	In	contrast,	indexing	from	page	ZZFFXX	may	result	in	ZZ+1	.OOYY	when	using	the	W65C816.

Future	Microprocessors	(i.e.,	W65C832)

Future	WDC	microprocessors	 will	 support	 all	 current	W65C816	 operating	modes	 for	 both	 index	 and	 offset	 address
generation.

ABORT	Input	(W65C816	Only)

ABORT	should	be	held	low	for	a	period	not	to	exceed	one	cycle.	Also,	if	ABORT	is	held	low	during	the	Abort	Interrupt
sequence,	the	Abort	Interrupt	wiM	be	aborted.	It	is	not	recommended	to	abort	the	Abort	Interrupt.	The	ABORT	internal
latch	is	cleared	during	the	second	cycle	of	the	Abort	Interrupt	Asserting	the	ABORT	input	after	the	following	instruction
cycles	will	cause	registers	to	be	modified:

• Read-Modify-Write:	Processor	status	modified	if	ABORT	is	asserted	after	a	modify
cycle.

• RTI:	Processor	status	will	be	modified	if	ABORT	is	asserted	after	cycle	3.
•	IRQ,	NMI,	ABORT	BRK,	COP:	When	ABORT	is	asserted	after	cycle	2,	PBR	and	DBR	will	become	00	(Emulation
mode)	or	PBR	will	become	00	(Native	mode).

The	Abort	Interrupt	has	been	designed	for	virtual	memory	systems.	For	this	reason,	asynchronous	ABORT’S	may	cause
undesirable	results	due	to	the	above	conditions.

VDA	and	VPA	Valid	Memory	Address	Output	Signals	(W65C816	Only)

When	VDA	or	VPA	are	high	and	during	all	write	cycles,	the	Address	Bus	is	always	valid.	VDA	and	VPA	should	be	used
to	qualify	all	memory	cycles.	Note	that	when	VDA	and	VPA	are	both	low.	invalid	addresses	may	be	generated.	The	Page
and	Bank	addresses	could	also	be	 invalid.	This	will	be	due	 to	 low	byte	addition	only.	The	cycle	when	only	 low	byte
addition	occurs	is	an	optional	cycle	for	instructions	which	read	memory	when	the	Index	Register	consists	of	8	bits.	This
optional	cycle	becomes	a	standard	cycle	for	the	Store	instruction,	all	instructions	using	the	16-bit	Index	Register	mode,
and	the	Read-Modify-Write	instruction	when	using	8-or	16-bit	Index	Register	modes.

Apple	II,	lle,	lle	and	ll+	Disk	Systems	(W65C816	Only)

VDA	and	VPA	should	not	be	used	 to	qualify	addresses	during	disk	operation	on	Apple	 systems.	Consult	your	Apple
representative	for	hardware/software	configurations.

DB/BA	Operation	when	RDY	is	Pulled	Low	(W65C816	Only)

When	RDY	is	low.	the	Data	Bus	is	held	in	the	data	transfer	state	(i.e.,	Φ2high)	The	Bank	address	external	transparent
latch	should	be	latched	when	the	Φ2	clock	or	RDY	is	low.

M/X	Output	(W65C816	Only)

The	 M/X	 output	 reflects	 the	 value	 of	 the	 M	 and	 X	 bits	 of	 the	 processor	 Status	 Register.	 The	 REP.	 SEP	 and	 PLP
instructions	may	change	the	state	of	the	M	and	X	bits.	Note	that	the	M/X	output	is	invalid	during	the	instruction	cycle
following	REP,	SEP	and	PLP	instruction	execution.	This	cycle	is	used	as	the	opcode	fetch	cycle	of	the	next	instruction.

All	Opcodes	Function	in	All	Modes	of	Operation

It	should	be	noted	that	all	opcodes	function	in	all	modes	of	operation.	However,	some	instructions	and	addressing	modes
are	intended	for	W65C816	24-bit	addressing	and	are	therefore	less	useful	for	the	W65C802.	The	following	is	a	list	of
instructions	and	addressing	modes	which	are	primarily	intended	for	W65C816	use:

JSL;	RTL;	[d];	[d].y.	JMP	al;	JML;	al;	al,x

The	following	instructions	may	be	used	with	the	W65C802	even	though	a	Bank	Address	is	not	multiplexed	on	the	Data
Bus:

PHK;	PHB;	PLB

The	following	instructions	have	“limited”	use	in	the	Emulation	mode:

• The	 REP	 and	 SEP	 instructions	 cannot	 m	 odify	 the	 M	 and	 X	 bits	 when	 in	 the
Emulation	mode.	In	this	mode	the	M	and	X	bits	will	always	be	high	(logic	1).

• When	 in	 the	 Emulation	mode,	 the	MVP	 and	MVN	 instructions	 use	 the	 X	 and	 Y
Index	Registers	for	the	memory	address.	Also,	the	MVP	and	MVN	instructions	can
only	move	data	within	the	memory	range	0000	(Source	Bank)	to	00FF	(Destination
Bank)	for	the	W65C816,	and	0000	to	00FF	for	the	W65C802

Indirect	Jumps

The	JMP	(a)	and	JML	(a)	instructions	use	the	direct	Bank	for	indirect	addressing,	while	JMP	(a.x)	and	JSR	(a.x)	use	the
Program	Bank	for	indirect	address	tables.

Switching	Modes

When	switching	from	the	Native	mode	to	the	Emulation	mode,	the	X	and	M	bits	of	the	Status	Register	are	set	high	(logic
1),	 the	high	byte	of	 the	Stack	 is	 set	 to	01.	 and	 the	high	bytes	of	 the	X	and	Y	 Index	Registers	 are	 set	 to	00.	To	 save
previous	values,	 these	bytes	must	always	be	stored	before	changing	modes.	Note	 that	 the	 low	byte	of	 the	S.	X	and	Y
Registers	and	the	low	and	high	byte	of	the	Accumulator	(A	and	B)	are	not	affected	by	a	mode	change.

How	Hardware	Interrupts,	BRK,	and	COP	Instructions	Affect	the	Program	Bank	and	the	Data	Bank	Registers

When	in	the	Native	mode,	the	Program	Bank	register	(PBR)	is	cleared	to	00	when	a	hardware	interrupt,	BRK	or	COP	is
executed.	In	the	Native	mode,	previous	PBR	contents	is	automatically	saved	on	Stack.

In	 the	 Emulation	 mode,	 the	 PBR	 and	 DBR	 registers	 are	 cleared	 to	 00	 when	 a	 hardware	 interrupt.	 BRK	 or	 COP	 is
executed.	In	this	case,	previous	contents	of	the	PBR	are	not	automatically	saved.

Note	that	a	Return	from	Interrupt	(RTI)	should	always	be	executed	from	the	same	“mode”	which	originally	generated	the
interrupt.

Binary	Mode

The	Binary	mode	is	set	whenever	a	hardware	or	software	interrupt	is	executed	The	D	flag	within	the	Status	Register	is
cleared	to	zero.

WAI	Instruction

The	WAI	instruction	pulls	RDY	low	and	places	the	processor	in	the	WAI	“low	power”	mode	NMI.	IRQ	or	RESET	will
terminate	the	WAI	condition	and	transfer	control	to	the	interrupt	handler	routine.	Note	that	an	ABORT	input	will	abort
the	WAI	 instruction,	but	will	not	 restart	 the	processor.	When	 the	Status	Register	 I	 flag	 is	set	 (IRQ	disabled),	 the	IRQ
interrupt	 will	 cause	 the	 next	 instruction	 (following	 the	 WAI	 instruction)	 to	 be	 executed	 without	 going	 to	 the	 IRQ
interrupt	handler.	This	method	results	in	the	highest	speed	response	to	an	IRQ	input.	When	an	interrupt	is	received	after
an	ABORT	which	occurs	during	the	WAI	instruction,	the	processor	will	return	to	the	WAI	instruction	Other	than	RES
(highest	priority).	ABORT	is	the	next	highest	priority,	followed	by	NMI	or	IRQ	interrupts.

STP	Instruction

The	STP	instruction	disables	the	Φ2	clock	to	all	circuitry.	When	disabled,	the	Φ2	clock	is	held	in	the	high	state	In	this
case,	the	Data	Bus	will	remain	in	the	data	transfer	state	and	the	Bank	address	will	not	be	multiplexed	onto	the	Data	Bus.
Upon	executing	the	STP	instruction,	the	RES	signal	is	the	only	input	which	can	restart	the	processor.	The	processor	is
restarted	by	enabling	the	Φ2	clock,	which	occurs	on	the	falling	edge	of	the	RES	input	Note	that	the	external	oscilla	tor
must	be	stable	and	operating	properly	before	RES	goes	high.

COP	Signatures

Signatures	00-7F	may	be	user	defined,	while	signatures	80-FF	are	reserved	for	 instructions	on	future	microprocessors
(i.e..	W65C832).	Contact	WDC	for	software	emulation	of	future	microprocessor	hardware	functions.

WDM	Opcode	Use

The	WDM	opcode	will	be	used	on	future	microprocessors	For	example,	the	new	W65C832	uses	this	opcode	to	provide
32-bit	 floating-po	 int	 and	 other	 32-bit	 math	 and	 data	 operations	 Note	 that	 the	 W65C832	 will	 be	 a	 plug-to-plug
replacement	for	the	W65C816.	and	can	be	used	where	high-speed.	32-bit	math	processing	is	required	The	W65C832	will
be	available	in	the	near	future.

RDY	Pulled	During	Write

The	NMOS	6502	does	not	stop	during	a	write	operation.	In	contrast,	both	the	W65C02	and	the	W65C816	do	stop	during
write	operations.	The	W65C802	stops	during	a	write	when	in	the	Native	mode,	but	does	not	stop	when	in	the	Emulation
mode.

MVN	and	MVP	Affects	on	the	Data	Bank	Register

The	MVN	 and	MVP	 instructions	 change	 the	 Data	 Bank	 Register	 to	 the	 value	 of	 the	 second	 byte	 of	 the	 instruction
(destination	bank	address).

Interrupt	Priorities

The	following	interrupt	priorities	will	be	in	effect	should	more	than	one	interrupt	occur	at	the	same	time.

Transfers	from	8-Bit	to	16-Bit,	or	16-Bit	to	8-Bit	Registers

All	 transfers	 from	one	 register	 to	 another	will	 result	 in	 a	 full	 16-bit	 output	 from	 the	 source	 register.	 The	 destination
register	 size	will	 determine	 the	 number	 of	 bits	 actually	 stored	 in	 the	 destination	 register	 and	 the	 values	 stored	 in	 the
processor	Status	Register.	The	following	are	always	16-bit	transfers,	regardless	of	the	accumulator	size:

TCS;	TSC;	TCD;	TDC

Stack	Transfers

When	in	the	Emulation	mode,	a	01	is	forced	into	SH	In	this	case,	the	B	Accumulator	will	not	be	loaded	mtoSH	during	a
TCS	instruction.	When	in	the	Native	mode,	the	B	Accumulator	is	transferred	to	SH	Note	that	in	both	the	Emulation	and
Native	modes,	the	full	16	bits	of	the	Stack	Register	are	transferred	to	the	A,	B	and	C	Accumulators,	regardless	of	the
state	of	the	M	bit	in	the	Status	Register.

Packaging	Information

Sales	Offices:

Technical	or	sales	assistance	may	be	requested	from:

The	Western	Design	Center,	Inc.

2166	East	Brown	Road

Mesa.	Arizona	85203

602/962-4545

TLX	6835057

WDC	reserves	the	right	to	make	changes	at	any	time	and	without	notice

Information	contain	ed	herein	 is	provided	gratuitously	and	without	 liability,	 to	any	user	Reasonable	efforts	have	been
made	 to	 verify	 the	 accuracy	 of	 the	 information	 but	 no	 guarantee	whatsoever	 is	 given	 as	 to	 the	 accuracy	 or	 as	 to	 its
applicability	to	particular	uses.	In	every	instance	it	must	be	the	responsibility	of	the	user	to	determine	the	suitability	of
the	products	for	each	application	WDC	products	are	not	authorized	for	use	as	critical	components	in	life	support	devices
or	systems	No	thing	contained	herein	shall	be	construed	as	a	recommendation	to	use	any	product	in	violation	of	existing
patents	or	other	rights	of	third	parties	The	sale	of	any	WDC	product	is	subject	to	a	ll	WDC	Terms	and	Conditions	of	Sale
and	Sales	Policies	copies	of	which	are	available	upon	request

• The	Western	Design	Center	Inc	1985

F

The	ASCII	Character	Set

	Contents
	Preface
	Acknowledgments
	Foreword
	Introduction
	Part I Basics
	1 Basic Assembly Language Programming Concepts
	Binary Numbers
	Grouping Bits into Bytes
	Hexadecimal Representation of Binary
	The ASCII Character Set
	Boolean Logic
	Signed Numbers
	Storing Numbers in Decimal Form
	Computer Arithmetic
	Microprocessor Programming
	Writing in Assembly Language
	Basic Programming Concepts

	Part II Architecture
	2 Architecture of the 6502
	Microprocessor Architecture
	The 6502 Registers
	Addressing Modes
	Instructions
	The 6502 System Design
	NMOS Process
	Bugs and Quirks
	3 Architecture of the 65C02
	The 65C02 Architecture
	Addressing Modes
	Instructions
	CMOS Process
	Bugs and Quirks
	4 Sixteen-Bit Architecture: The 65816 and the 65802
	Power-On Status: 6502 Emulation Mode
	The Full-Featured 65x Processor: The 65816 in Native Mode
	The 65802 Native Mode
	Emulation Mode
	Switching Between 6502 Emulation and Native Modes
	65802 /65816 Bugs and Quirks

	Part III Tutorial
	5 SEP, REP, and Other Details
	The Assembler Used in This Book
	Address Notation
	6 First Examples: Moving Data
	Loading and Storing Registers
	Moving Data Using the Stack
	Moving Data Between Registers
	Storing Zero to Memory
	Block Moves
	7 The Simple Addressing Modes
	Immediate Addressing
	Absolute Addressing
	Direct Page Addressing
	Indexing
	Absolute Indexed with X and Absolute Indexed with Y Addressing
	Direct Page Indexed with X and Direct Page Indexed with Y Addressing
	Accumulator Addressing
	Implied Addressing
	Stack
	Direct Page Indirect Addressing
	Absolute Long Addressing
	Absolute Long Indexed with X Addressing
	Direct Page Indirect Long
	Block Move
	8 The Flow of Control
	Jump Instructions
	Conditional Branching
	Unconditional Branching
	9 Built-In Arithmetic Functions
	Increment and Decrement
	Addition and Subtraction: Unsigned Arithmetic
	Comparison
	Signed Arithmetic
	Signed Comparisons
	Decimal Mode
	10 Logic and Bit Manipulation Operations
	Logic Functions
	Bit Manipulation
	Shifts and Rotates
	11 The Complex Addressing Modes
	Relocating the Direct Page
	Assembler Addressing Mode Assumptions
	Direct Page Indirect Indexed with Y Addressing
	Direct Page Indexing Indirect Addressing 1
	Absolute Indexed Indirect Addressing
	Direct Page Indirect Long Indexed with Y Addressing
	Stack Relative Addressing
	Stack Relative Indirect Indexed Addressing
	Push Effective Instructions
	12 The Basic Building Block: The Subroutine
	The Jump-to-Subroutine Instruction
	The Retum-from-Subroutine Instruction
	JSR Using Absolute Indexed Indirect Addressing
	The Long Jump to Subroutine
	Return from Subroutine Long
	Branch to Subroutine 1
	Coding a Subroutine: How and When
	Parameter Passing
	13 Interrupts and System Control Instructions
	Interrupts
	Status Register Control Instructions
	No Operation Instructions

	Part IV Applications
	14 Selected Code Samples
	Multiplication
	Division
	Calling an Arbitrary 6502 Routine
	Testing Processor Type
	Compiler-Generated 65816 Code for a Recursive Program
	The Sieve of Eratosthenes Benchmark
	15 DEBUG16—A 65816 Programming Tool
	Declarations
	LIST
	FLIST
	FRMOPRND
	POB
	STEP
	PUTHEX
	CLRLN
	UPDATE
	PRINTLN
	TRACE
	EBRKIN
	CHKSPCL
	DUMPREGS
	PUTREG8
	Tables
	16 Design and Debugging
	Debugging Checklist
	Generic Bugs: They Can Happen Anywhere
	Top-Down Design and Structured Programming
	Documentation

	Part V Reference
	17 The Addressing Mode
	18 The Instruction Sets
	19 Instruction Lists

	Appendices
	A 65x Signal Description
	6502 Signals
	65802 Signals
	B 65x Series Support Chips
	The 6551 Serial Chip
	C The Rockwell 65C02
	D Instruction Groups
	Group I Instructions
	Group II Instructions
	E W65C816 Data Sheet
	F The ASCII Character Set

