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PART |

Target Processors

A major advantage of the use of a high-level language is its independence of
the hardware its generated code will eventually run on; that is, its portability.
However, one of the main strands of this book is the interaction of software with
its hardware environment, and thus it is essential to use real products in both
domains. For clarity, rather than describing a multitude of devices, most of the
examples are based on just two microprocessors. Two, rather than one, not to
loose sight of the portability aspects of high-level code.

In this part I describe the Motorola 6809 and 68000/8 microprocessors, the
chosen devices. This gives us a hardware target spectrum ranging from 8 through
32-bit architecture. As both microprocessors share a common ancestor, the com-
plexity is reduced compared with a non-related selection. Where necessary, other
processors are used as examples, but in general the principles are similar irre-
spective of target. If the hardware detail seems excessive to a reader with a
software background, much may be ignored if building the miniproject circuitry
of Part 3 is to be omitted.



CHAPTER 1
The 6809 Microprocessor: Its
Hardware

The microprocessor revolution began in 1971 with the introduction of the Intel
4004 device. This featured a 4-bit data bus, direct addressing of 512 bytes of
memory and 128 peripheral ports. It was clocked at 108 kHz and was imple-
mented with a transistor count of 2300. Within a year, the 8-bit 200 kHz 8008
appeared, addressing 16 kbyte of memory and needing a 3500 transistor imple-
mentation. The improved 8080 replacement appeared in 1974, followed a few
months later by the Motorola 6800 MPU [1]. Both processors could directly ad-
dress 64 kbytes of memory through a 16-bit address bus and could be clocked at
up to 2 MHz. These two families, together with descendants and inspired close
relatives, have remained the industry standards ever since.

The Motorola 6800 MPU [2]] was perceived to be the easier of the two to use
by virtue of its single 5V supply requirement and a clean internal structure. The
8085 MPU is the current state of the art Intel 8-bit device. First produced in
1976, it has an on-board clock generator and requires only a single power supply,
but has a virtually identical instruction set to the 8080 device. Soon after Zilog
produced its Z80 MPU which was upwardly compatible with Intel's offering, then
the market leader, with a much extended instruction set and additional internal
registers [3].

The Motorola 6802/8 MPUs (1977) also have internal clock generators, with the
former featuring 128 bytes of on-board RAM. This integration of support mem-
ory and peripheral interface leads to the single-chip microcomputer unit (MCU) or
micro-controller, exemplified by the 6801, 6805 and 8051 MCU families [4]. The
6809 MPU introduced in 1979 [5}[6} [7] was seen as Motorola's answer to Zilog's Z80
and these both represent the most powerful 8-bit devices currently available. By
this date the focus was moving to 16- and 32-bit MPUs, and it is unlikely that
there will be further significant developments in general-purpose 8-bit devices.
Nevertheless, these latter generation 8-bit MPUs are powerful enough to act as the
controller for the majority of embedded control applications, and their architec-
ture is sophisticated enough to efficiently support the requirements of high-level
languages; more of which in later chapters. Furthermore, many MCU families
have a core and language derived from their allied 8-bit MPU cousins.
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1.1 Architecture

The internal structure of a general purpose microprocessor can be partitioned
into three functional areas:

1. The mill.
2. Register array.
3. Control circuitry.

Figure [Tl shows a simplified schematic of the 6809 MPU viewed from this per-
spective.

THE MILL

A rather old fashioned term used by Babbage [8] for his mechanical computer
of the last century to identify the arithmetic and logic processor which " ground'
the numbers. In our example the 6809 has an 8-bit arithmetic logic unit (ALU)
implementing Addition, Subtraction, Multiplication, AND, OR, Exclusive-OR, NOT
and Shift operations. Associated with the ALU is the Code Condition (or Sta-
tus) register (CCR). Five of the eight CCR bits indicate the status of the result of
ALU processes. They are: C indicating a Carry or borrow, V for 2's complement
oVerflow, Z for a Zero result, N for Negative (or bit 7 = 1) and H for the Half carry
between bits 3 and 4. These flags are set as a result of executing an instruction,
and are normally used either for testing and acting on the status of a process, or
for multiple-byte operations. The remaining three bits are associated with inter-
rupt handling. The I bit is used to lock out or mask the IRQ interrupt, and the
F bit carries out the same function for the FIRQ interrupt. During an interrupt
service routine the E flag may be consulted to see if the Entire register state has
been saved (IRQ, NMI and SWI) or not (FIRQ). More details are given in Section 6.1.

REGISTER ARRAY

The 6809 has two Data registers, termed Accumulators A and B. These Data reg-
isters are normally targeted by the ALU as the source and destination for at least
one of its operands. Thus ADDA #50 adds 50 to the contents of Accumulator_A (in
register transfer language, RTL, this is symbolized as [A] <- [A] + 50, which
reads "the contents of register A become the original contents of A plus 50'). Op-
erations requiring one operand can seemingly be done directly on external mem-
ory; for example, INC 6000h which increments the contents of location 6000h
([6000] <- [6000] + 1). The suffix h indicates the hexadecimal number base,
whilst b denotes binary. However, in reality the MPU executes this by bringing
down the contents of 6000h (written as [6000]), uses the ALU to add one and
returns it. Whilst this fetch and execute process is invisible to the programmer,
the penalty is space and time; INC M (3 bytes length) takes 7 us and INCA or INCB
(1 byte length) takes 2 us (at a 1 MHz clock rate). Thus while it is always better
to use the Data registers for operands, this is difficult in practice because there
are only two such registers. Unlike the older 6800 MPU, the 6809's two 8-bit Data
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registers can be concatenated to one 16-bit double register A:B; the D Accumu-
lator. A few operations such as Add (e.g. ADDD #4567) can directly handle this.
But although the 6809 has pretensions to be a 16-bit MPU, the ALU is only 8-bits
wide and instructions such as this require two passes; but they are nevertheless
faster than two single operations.

Six dedicated Address registers are accessible to the programmer and are as-
sociated with generating addresses of program and operand bytes external to the
processor. The Program Counter (PC) always points to the current program byte
in memory, and is automatically incremented by the number of operation bytes
during the fetch. It normally advances monotonically from its start (reset) value,
with discontinuities occurring only at Jump or Branch operations, and internal
and external interrupts.

Two Index registers are primarily used when a computed address facility is de-
sired. For example an Index register may be set up to address or point to the first
element of a byte array. At any time after this, the nth element of this array can be
fetched by augmenting the contents of the Index register by n. Thus the instruc-
tion LDA 6,Xbrings down array[6] to Accumulator_A ([A] <- [[X]+6]). Index
registers can also be automatically or manually incremented or decremented and
thus can systematically step through a table or array. The 6809 does not have a
separate ALU for computed address generation, and this can make the execution
of such operations rather lengthy. Sometimes Index registers are used, rather
surreptitiously, to perform simple 16-bit arithmetic, for example counting loop
passes. An example is given in the listing of Table[2.9.

The System Stack Pointer (SSP) register (also known as Hardware Stack Pointer)
is normally used to identify an area of RAM used as a temporary storage area,
to facilitate the implementation of subroutines and interrupts. These techniques
are discussed in Chapters 5 and 6. Rather unusually the 6809 also has a User
Stack Pointer (USP), which can be usefully employed to point to an area of RAM
which can be used by the programmer to place data for retrieval later and will
not get mixed in with the automatic action of the SSP. Both Stack Pointers can
also be used as Index registers.

The address size of most 8-bit MPUs is 16-bits wide, allowing direct access
to 65,536 (216) bytes. With a data bus of only 8-bits width, instructions which
specify absolute addresses will be at least three bytes long (one or more bytes
for the operation code and two for the address). As well as needing space, the
three fetches take time. To reduce this problem, the 6800 and 6502 processors
use the concept of zero page addressing. This is a shortform absolute address
mode which assumes that the upper address byte is 00h. Thus in 6800 code,
loading data from location 005Fh (LDAA 005F) can be coded as: B6-00-5F (4 cy-
cles) using the 3-byte Extended Direct address mode or 96-5F (3 cycles) with the
2-byte Direct address mode. In the 6809 MPU this concept has been extended in
that the direct page can be moved to any 256-byte segment based at 00 to FFh,
the segment number being held in the Direct Page register (DP). Thus, supposing
locations 8000 - 80FFh hold peripheral interface devices which are frequently be-
ing accessed, then transferring the segment number 80h into the DP means that
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the instruction LDA 5F, coded as 96-5F, actually moves data from 805Fh into
Accumulator_A. When the 6809 is Reset, the DP is set to 00h and, unless its value
is changed, direct addressing is equivalent to zero page addressing. The DP can
be changed dynamically as the program progresses, but this is worthwhile only
if more than eight accesses within a page are to be made.

CONTROL CIRCUITRY

The remaining registers shown in Fig. [I.1] are invisible to the programmer, in
that there is no direct access to their contents. Of these, the Instruction decoder
represents the intelligence' of the MPU. In essence its job is to marshal all available
resources in response to the operation code word fetched from memory. This
sequential control function is the most complex internal process undertaken by
the MPU; however, its design is beyond the scope of this text. References [9}|10]
are useful background reading in this regard. Suffice to say that the 6809, like
its earlier relatives, uses a random logic circuit for its decoder implementation.
This provides for the highest implementation speed but at the expense of a less
structured set of programming operations.

1.2 Outside the 6809

The 6809 MPU is available in a 40-pin package, whose pinout is shown in Fig.[T.2]
The 40 signals can be conveniently divided into three functional groups, data,
address and control. Unlike the 808x family, all signals are non-multiplexed, that
is they retain the same function throughout the clock cycle, see Fig.[I.3l Signals
are all Transistor-Transistor Logic (TTL) voltage-level compatible.

DATA BUS d(n)

A single bidirectional 8-bit data bus carries both instruction and operand data
to and from the MPU (Read and Write respectively). When enabled, data lines
can drive up to four 74 LS loads and a capacitive loading of 130 pF without exter-
nal buffering. Data lines are high-impedance (turned off) when the processor is
halted or in a direct memory access (DMA) mode.

ADDRESS BUS a(n)

Sixteen address lines can be externally decoded to activate directly up to 216 byte
locations which can be placed on the common data bus. During cycles when
the MPU is internally processing, the address bus is set to all ones (FFFFh) and
the data bus to Read. When enabled, up to four 74LS loads and 90 pF can be
driven. Activating Halt or DMA/BREQ turns off (or floats) these bus lines.

CONTROL BUS
All MPUs have similar data and address buses, but differ considerably in the
miscellany of functions conveniently lumped together as the control bus. These
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Figure 1.2 6809 pinout.

indicate to the outside world the status of the processor, or allow these external
circuits control over the processor operation.

Power (V¢ Vgs)

A single 5V =+ 5% supply dissipating a maximum of 1.0 W (200 mA). The analogous
Hitachi 6309 CMOS MPU dissipates 60 mW during normal operation and 10 mW
in its sleep mode.

Read/Write (R/W)

Used to indicate the status of the data bus, high for Read and low for Write. Halt
and DMA/BREQ float this signal.

Halt

A low level here causes the MPU to stop running at the end of the present instruc-
tion. Both data and address buses are floated, as is R/W. While halted, the MPU
does not respond to external interrupt requests. The system clocks (E and Q)
continue running.

DMA/BREQ

This is similar to Halt in that data, address and R/W signals are floated. How-
ever, the MPU does not wait until the end of the current instruction execution.
This gives a response delay (sometimes called a latency) of 1% cycles, as opposed
to a worst-case Halt latency of 21 cycles [5]. The payback is that because the
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processor clock is frozen, the internal dynamic registers will lose data unless
periodically refreshed. Thus the MPU automatically pulls out of this mode every
14 clock cycles for an internal refresh before resuming (cycle stealing).

Reset

A low level at this input will reset the MPU. As long as this pin is held low, the
vector address FFFEh will be presented on the address bus. On release, the 16-bit
data stored at FFFEh and FFFFh will be moved to the Program Counter; thus the
Reset vector FFFE:Fh should always hold the restart address (see Fig. [6.4).

Reset should be held low for not less than 100 ms to permit the internal clock
generator to stabilize after a power switch on. As the Reset pin has a Schmitt-
trigger input with a threshold (4 V minimum) higher than that of standard TTL-
compatible peripherals (2 V maximum), a simple capacitor/resistor network may
be used to reset the 6809. As the threshold is high, other peripherals should be
out of their reset state before the MPU is ready to run.

Non-Maskable Interrupt (NMI)

A negative edge (pulse width one clock cycle minimum) at this pin forces the MPU
to complete its current instruction, save all internal registers (except the System
Stack Pointer, SSP) on the System stack and vector to a program whose start ad-
dress is held in the NMI vector FFFC:Dh. The E flag in the CCR is set to indicate
that the Entire group of MPU registers (known as the machine state) has been
saved. The | and F mask bits are set to preclude further lower priority interrupts
(i.e. IRQ and FIRQ). If the NMI program service routine is terminated by the RE-
TURN FROM INTERRUPT (RTI) instruction, the machine state is restored and the
interrupted program continues. After Reset, NMI will not be recognized until
the SSP is set up (e.g. LDS #T0S+1 points the System Stack Pointer to just over
the top of the stack, TOS). More details are given in Section 6.1.

Fast Interrupt Request (FIRQ)

A low level at this pin causes an interrupt in a similar manner to NMI. However,
this time the interrupt will be locked out if the F mask in the CCR is set (as it is
automatically on Reset). If F is clear, then the MPU will vector via FFF6:7h after
saving only the PC and CCR on the System stack. The F and | masks are set to
lock out any further interrupts, except NMI, and the E flag cleared to show that
the Entire machine state has not been saved.

As FIRQ is level sensitive, the source of this signal must go back high before
the end of the service routine.

Interrupt Request (IRQ)

A low level at this pin causes the MPU to vector via FFF8:9h to the start of the
IRQ service routine, provided that the | mask bit is cleared (it is set automatically
at Reset). The entire machine state is saved on the System stack and | mask set
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to prevent any further IRQ interrupts (but not FIRQ or NMI). As in FIRQ, the IRQ
signal must be removed before the end of the service routine. On RTI the machine
state will be restored, and as this includes the CCR, the | mask will return low
automatically.

Bus Available, Bus Status (BA, BS)
These are status signals which may be decoded for external control purposes.
Their four states (BA, BS) are:

00 : Normally running

01 : Interrupt or Reset in progress

10 : A software SYNC is in progress (see Section 6.2)
11 : MPU halted or has granted its bus to DMA/BREQ

Clock (XTAL, EXTAL)
An on-chip oscillator requires an external parallel-resonant crystal between the XTAL
and EXTAL pins and two small capacitors to ground (see Fig.[I3.1). The internal
oscillator provides a processor clocking rate of one quarter of the crystal reso-
nant frequency. The basic 6809 MPU is a 1 MHz device requiring a 4 MHz crystal,
whilst the 68A09 and 68B09 1.5 and 2 MHz versions need 6 and 8 MHz crystals
respectively. The Hitachi 6309 MPU is available in a 3 MHz version. In all cases
there is a lower frequency limit at 100 kHz, due to the need to keep the internal
dynamic registers constantly refreshed. If desired, an external TTL-level oscilla-
tor may be used to drive EXTAL, with XTAL grounded.

The 6809E/6309E MPUs do not have an integral clock generator, but provide
additional control functions suitable for multi-processor configurations.

Enable, Quadrature (E, Q)

These are buffered clock signals from the internal (or external) clock generator.
They are used to synchronize devices taking data from or putting data on the
data bus. We will look at the timing relationship between these signals and the
main buses in the following section. E is sometimes labelled ¢, after the second
phase clock signal needed for the 6800 MPU, which fulfilled a similar role.

Memory Ready (MRDY)

This is a control input to the internal clock oscillator. By activating MRDY, a
slow external memory or peripheral device can freeze the oscillator until its data
is ready. This is subject to a maximum of 10ms, in order to keep the MPU's
dynamic registers refreshed.

1.3 Making the Connection

A microprocessor monitors and controls external events by sending and receiving
information via its data bus through interface circuitry. In order to interface to
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Figure 1.3 A snapshot of the 6809 MPU reading data from a peripheral device. Worst-case 1 MHz
device times are shown.

a MPU, it is necessary to understand the interplay between the relevant buses and
control signals. These involve sequences of events, and are usually presented as
timing or flow diagrams.

Consider the execution of the instruction LDA 6000h ([A] <- [6000h]). This
instruction takes four clock cycles to implement; three to fetch down the 3-
byte instruction (B6-60-00) and one to send out the peripheral (memory or oth-
erwise) address and put the resulting data into Accumulator_A. Figure [.3] shows
a somewhat simplified state of affairs during that last cycle, with the assumption
of a 1 MHz clock frequency. The address will be out and stable by not later than
25ns before Q goes high (f5q). The external device (at 6000k in our example)
must then respond and set up its data on the bus by no later than 80ns (fpsg)
before the falling edge of E, which signals the cycle end. Such data must remain
held for at least 10ns (tpyr) to ensure successful latching into the internal data
register. faq, tpsg, tpur for the 68B09 2 MHz processor are 15, 40 and 10ns re-
spectively.

Writing data to an external device or memory cell is broadly similar, as illus-
trated in Fig. [[.4, which shows the waveforms associated with, for example, the
last cycle of a STA 8000h (Store) instruction.

Once again the Address and R/W signals appear just before the rising edge
of Q, taq- This time it is the MPU which places the data on the bus, which will
be stable well before the falling edge of Q. This data will disappear within 30ns
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Figure 1.4 Sending data to the outside world.

after the cycle end tppy; the corresponding address hold time t 4 is 20 ns.

Earlier members of the 6800 family did not provide a Q clock signal. In these
cases the end of the E signal had to be used to turn off or trigger the external
device when writing. As there are only 30ns after this edge before the data
collapses, care had to be taken to ensure that the sum of the address decoder
propagation delay plus the time data must be held at the peripheral interface
device after the trigger event (hold time) satisfies this criterion. Because of this
tight timing requirement, the E clock is normally routed directly to the interface
circuitry, rather than be delayed by the address decoder (e.g. see Fig. [I.9). With
the 6809, it is preferable to use the falling edge of the Q clock for this purpose
when writing. While reading of course, the peripheral interface must be enabled
up to (and a little beyond) the end of the E cycle, at which point the MPU captures
the proffered data.

The basic structure of a synchronous common data bus MPU-based system is
shown in Fig. .5l The term synchronous is used to denote that normal commu-
nication between peripheral device and MPU is open loop, with the latter having
no knowledge of whether data is available or will be accepted at the end of a clock
cycle. If a peripheral responds too slowly, its garbled data will be read at the end
of the cycle irrespective of its validity. In such cases MRDY can be used to slow
things down, although this is considered an abnormal transition. The alternative
closed-loop architecture is discussed on page [711
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As all external devices communicate to the master through a single common
data highway, it is necessary to ensure that only one is active on any exchange.
All microprocessors use an address bus for this purpose. Taken together with
external decoding circuitry, each target can be assigned a specific address and
thus enabled uniquely. As depicted in Fig.[I.5], only one decoder is used, but in
a larger system there is likely to be one central decoder dividing the available
memory space into zones or pages, and local decoders providing the " fine print'.
Memory chips of course are not single devices, but comprise a multitude of ad-
dressable cells: they have their secondary decoder on-board. The 808x family
use separate address buses for memory and peripheral selection. As well as re-
quiring additional pins on the package, special instructions must be provided to
use them.

There is nothing special about address decoder design [11}, 12]. Implementa-
tion techniques range through gates, comparators, decoders, PROMs and PALs.
Figure [1.6(a) shows a very simple page decoder which splits up the available
64 kbyte memory space into eight 4 kbyte zones. The decoder output of Fig.[1.61b)(i)
assumes that the 74138 is permanently enabled. Notice that the signal does not
begin to go back high until after the address collapses, that is 10 ns after the cycle
end. There is no problem during a Read, as the MPU will already have latched in
the data; but during a Write, the data will collapse in 30 ns, leaving only 10 ns for
decoder propagation delay and peripheral hold time. Using the E clock to enable
the decoder (e.g. E to G1 in Fig.[I.6(a)) extends the permissible propagation delay
plus hold time to 30 ns. For example, if we take the 7415377 of Fig.[[.Zlused as an
8-bit output port, then its hold time is 5ns minimum and the propagation delay
time for the 74LS138 from G1 is 26 ns worst-case. Clearly a hazardous race.

To avoid such races we can directly qualify each device which can be written
to by either E, or preferably Q. The 74LS377 octal D flip flop array used as an
8-bit output port is selected at the appropriate address, 6000k in Fig.[I.7] by the
decoder, but the data is only clocked in at the falling edge of Q. This leaves around
% cycle before the data collapses. Where separate enable and clock controls are
not provided, the decoder signal may be gated by a derivative of Q.

RAM chips are more problematical as they need to be enabled until the end of
the cycle when being read from, but cut off early when writing to. This differen-
tiation can be accomplished by qualifying the R/W signal by Q, producing:

RAM_R/W = R/W+Q

which is high irrespective of Q during a Read, and is just Q when writing. As
shown in Fig. it is normal to ensure that the RAM will not output data during
a Write-to operation, by driving the RAM's Output_Enable with the complement
of R/W. The “doctored' RAM_R/W signal may of course be used for as many RAM
chips as are present in the system. It may also be used to replace Q in Fig.[1.7]
having the advantage that the output port cannot be erroneously read.

Care must be taken when interfacing memory chips to choose a device with
a suitable access time. This is especially true for more recent MPUs, which can
run at higher clock rates. The access time for a memory chip is normally given
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Figure 1.6 An elementary address decoding scheme.
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as the duration from the application of a stable address or chip enable until the
activation of the cell to be read from or written to. In the 6116 RAM, this internal
decoding occurs irrespective of the state of the chip enables. Looking first at
RAM interfacing and taking Fig. [[.8] as an example, it is clear that the writing
action is the more critical as this will end earlier at the falling edge of Q. From
Fig.[[.4dlwe see that we have tpq + tqn less the RAM data setup time. The Hitachi
HM6116AP-20 has a setup requirement of 50ns and a 200ns access time, so:

taq+tgn—350 = 200
taq+ton = 250 ns

%

At 1 MHz, tpq + tqn is 455 ns, but this shrinks to 230ns for a 2 MHz clock. Thus
a 150ns access time RAM chip must be used in the latter instance; for example
the Hitachi HM6116AP-15. The 6264 RAM has an access time measured from the
chip select. In this case the address decoder delay must be part of the calculation.
An example of this is given in Section 3.3.

ROM chips are interfaced in a similar fashion, but of course they are read-
only. Referring to the timing diagram of Fig. [[.3] we see that as data from the
ROM must be present tpsg before the end of the cycle, we have the relationship
teyc—tavs —Epsr = Laccess- At 1 MHz this sums to 720 ns, and 380 ns at 2 MHz. Most
of the smaller EPROMs, for example the 2 kbyte Texas Instruments TMSD2516]L,
have 450 ns access times. The TMS2764-25]JL is an 8 kbyte 250 ns device and is
therefore suitable for the higher-speed processor.

Rather than qualifying each write-to peripheral by Q, it is possible to enable
the address decoder directly. Thus the decoder should have a lengthy output
pulse when a read is in operation, but be cut short (at the end of Q) when a write
is in progress. This relationship can be written as:

Enable = (R/W-(E+Q)) + (R/W-Q)

giving the decoder output waveforms shown in Fig. [[.6Ib)(ii) and (iii). To make
use of the two active low G2A and G2B 74138 inputs, a little Boolean algebra
yields:

(R/W-E) + (R/W-Q) + (R/W-Q)
(R/W-E) + Q- (R/W + R/W)
(R/W-E) +Q

(R/W+Q)-(Q +E) = (G2A)-(G2B)

giving the qualifying network of Fig.[L6(a).

Special-purpose 6800 family peripheral interface devices, such as the PIA of
Fig.[L9 [13], are designed to work in harmony with older MPU types which only
provide an E signal. They all have an enable input designed to be directly driven
by E, and have data hold time requirements within the 30 ns limit. They must not
be disabled early in the cycle by a Q related signal. This means that 68xx periph-
erals cannot be selected by a modified decoder, such as in Fig. [[.6la). However,
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Figure 1.9 Interfacing a 6821 Peripheral Interface Adapter to the 6809.

it is permissible to mix the two kinds of peripheral devices, each enabled by the
appropriate address decoder. For example, a primary address decoder could en-
able a simple secondary decoder for 68xx peripheral devices, and a more complex
Q related secondary decoder for simple interface circuitry.
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CHAPTER 2
The 6809 Microprocessor: Its
Software

The 6809 processor's instruction set was designed to be upwardly compatible
with its predecessor, the 6800. Indeed many of the common instructions even
have the same machine code; for example the operation to clear location 2000h
(CLR 2000h) is coded as 7F-20-00 in both cases. Notwithstanding, many new in-
structions were introduced giving greater flexibility and subsuming several older
instructions. Thus the older 6800 device could only push its Accumulators into
the stack (i.e. PSHA and PSHB; the equivalent 6809 instruction can push any or all
its registers in one go: for example PSHS A,B,CC,DP,X,Y,U,PC.

As we shall see, enhancing stack-based operations facilitates the production
of efficient high-level language code. To this end, the 6809 also features an ex-
tended arithmetic functionality and a limited repertoire of 16-bit operations. Ad-
ditionally, the number of available address modes was considerably enlarged, in
particular those involving computed effective addresses.

In this chapter I will overview the instruction set and address modes. Some ex-
ample program subroutines will tie these together, and give us a base to compare
with the 68000 MPU software introduced in Chapter 4. Detailed consideration of
subroutines and interrupts are left to Chapters 5 and 6.

2.1 Its Instruction Set

Although the 6809 instruction set was designed to be upwardly compatible with
that of the 6800, in fact the number of distinct operations was reduced from 72
to only 59. Its increased power, of the order of 260% [1], comes instead from
the additional functionality of these instructions, the capability of using more
registers and the extra address modes. First and second generation 8-bit MPUs,
such as the 8080/8085 and 6800 devices, encoded all instructions as a byte-sized
operation code (op-code). Thus no more than 256 operation-register-address
mode combinations were possible. Third generation devices such as the Z80
and 6809 MPUs can use two bytes for this function. Whereas the 6800 MPU has
only 197 op-codes (out of a maximum of 256), the 6809 has 1464 op-codes. As
an example, the primary op-code for PUSH ONTO THE SYSTEM STACK is 34h, the

19
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complete code for PSHS A,B,X is 34-16h. In binary this is 0011 0100 0001
0110, where each bit of the post-byte represents a register to be saved according
to the format shown in Fig.[2.Jl Of course the programmer normally need not be
concerned with detail at this level; the assembler will take care of such matters.

PC|IU | Y | X |DP| B | A |CC

Push order —

Figure 2.1 Postbyte for pushing and pulling.

Typically around 40% of instructions at machine-code level involve shuffling
data in-between registers and out to memory [Z2], so we will look first of all at
data movement instructions, as summarized in Table [2.Il The Load and Store
operations copy data between memory and register. Both 8- and 16-bit moves are
possible, but as memory is addressable only one byte at a time, the latter move in-
volves two consecutive transfers. Thus the instruction LDX 0C100h will perform
as shown in Fig.[2.2(a). Note how the most significant byte (MSB) of X comes from
the least significant memory location C100h and the least significant byte (LSB)

from the next highest location C101h, thus MSB C100n LSB Cloth |

The same order is observed when sending out multiple-byte data, for example
STX 0C000. In general, data structures in the 6800/68000 family are ordered
with the MSB in the lowest consecutive memory location. Some other proces-
sors, such as the 808x family, are ordered with the MSB as the lowest successive
memory location.

Notice that no Store to Direct Page register operation exists. To set up this
register to, say, 80h, the sequence:

LDA  #80h
TFR  A,DP

first places the number 80h in Accumulator_A (it could equally be B) and then
transfers this to the DP register. This overhead is justified as the DP register
is (or should be) rarely altered. The TRANSFER instruction can move the con-
tents of any 8-bit register (A,B,DP,CC) to any other, or any 16-bit register contents
(X,Y,U,S,D,PC) to any other. The upper and lower nybbles (four bits) of the post-
byte determine the source and destination register respectively, according to the
code:

0000 = D 0001 = X 0010 =Y 0011 u 0100 = S
0101 = PC 1000 = A 1010 = B 1010 = CCR 1011 = DP

thus TFR A,DP is coded as 1F-8Bh (post-byte 1000 1011b). EXCHANGE works in
a similar way between like-sized registers with the same post-byte construction.
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Table 2.1 Move instructions.

Flags
Operation Mnemonic VN Z C Description
Exchange Exchanges two like-sized
R1-R2! EXG R1,R2 |e|e|e|e|register contents
e.g. EXG A,B oo o | [Al<-->[B]
Load Moves data to register
toA;toB LDA; LDB 0 NINIK [Al<-[M]; [B]l<-[M]
toD LDD 0 NINVIK [D]<-[M:M+1]
toX;toY LDX; LDY |0 VINIK [XI<-[M:M+1]; [Y]<-[M:M+1]
toS;toU LDS; LDU 0 NINVIK [S1<-[M:M+1]; [U]l<-[M:M+1]
Push Moves registers onto Stack
to System stack PSHS regs |e|e|e|e|Listed registers to S stack
to User stack PSHU regs |e|e|e |e|Listed registers to U stack
e.g. PSHS A,B,X|e|e|e|e|ABand X to S stack
Pull Moves stack data to registers

from System stack |PULS regs
from User stack [PULU regs

S stack to listed registers
U stack to listed registers

e.g. PULS A,B,X|e|e ¢ (S stack to A,B and X
Store Moves data from register
from A; from B STA; STB 0 NINIK [M]<-[A]; [M]<-[B]
from D STD O/l [M:M+1]<-[D]
from X; from Y STX; STY |0 VINIK [M:M+1]<-[X]; [M:M+1]<-[Y]
from S; from U STS; STU 0 NINIK [M:M+1]<-[S]; [M:M+1]<-[U]
Transfer Transfers two like-sized

register contents
R1-R2! TFR R1,R2
e.g. TFR A,DP

[DP]<-[A]

o

Flag always reset

Flag always set

Flag not affected

Flag operates in the normal way

j—

Note 1: Register pairs must either be 8-bit A,B,CC,DP or 16-bit X,Y,S,U,PC.

The programmer can easily keep two separate stacks using the System Stack
Pointer and User Stack Pointer registers. These stacks are normally set up at the
beginning of the program, simply by using the relevant Load operation. Thus if
we wish to define RAM from 1FFFh downwards as the System stack and 18FFh
downwards as a User stack, the sequence:

LDS #02000h
LDU #01900h

will accomplish this. Notice that the Top Of Stack (TOS) in both cases is one above
physical memory. This is because the Push and Pull operations, as well as the
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C100h C101h C100h C101h
0C100h M M+1 0C100h M M+1
o |e o |e
T
IX IXH IXL D A B
1
(@) LDX 0C100h; X < M:M+1l (b) STD 0C100h; M:M+1< D

Figure 2.2 Moving 16-bit data at one go'.

system operations of jumping to a subroutine and implementing an interrupt,
decrement the relevant Stack Pointer before moving data. As mentioned earlier,
the Push and Pull operations allow any register or set of registers to be pushed or
pulled into or out of a stack at one go. This facilitates the passing of arguments
to and from subroutines, and allows called subroutines to use registers without
corrupting register-held data in the calling program (see Section 5.2).

Figure 2.1] shows how the post-byte is calculated for a Push or a Pull. Specif-
ically the System stack is shown; if the User stack is being employed then U is
replaced by S. Figure 2.3lshows a snapshot of memory after a Push onto the Sys-
tem stack. If only a subset of registers are saved, then the same order is preserved
as in the diagram. The time-taken for a Push or Pull is five cycles plus one cycle
per byte moved. In Fig. 23] this adds up to 17 cycles.

The 6809 implements the normal Add and Subtract operations, as shown in
Table [2.2] both with and without carry, targeted on an 8-bit Accumulator. An
Accumulator_D-based 16-bit Add and Subtract instruction is also provided, but
unfortunately not with a carry. An unsigned addition of Accumulator_B to the
16-bit X Index register can also be classed as double, but the 8-bit addend is
promoted to 16-bit at addition time, by assuming an upper byte of zero, hence the
terminology unsigned. Thus for example, ABX #56h actually adds the constant
0056h to X.

It is possible to promote a signed number in Accumulator_B to its 16-bit equiv-
alent in Accumulator_D by using the SIGN EXTENSION instruction. This zeros
Accumulator_A if bit7 of B is 0 and fills A with ones (A <- FFh) otherwise; for
example [B] = 10110011b (—83) becomes [D] = 1717111171 10110011b (—83).
The SIGN EXTENSION (SEX) instruction makes the 6809 unique as the only MPU
offering sex appeal!

Any 16-bit Index or Stack register can be summed with an 8-bit Accumulator
(which is automatically sign extended), Accumulator_D or a constant by means of
the LOAD EFFECTIVE ADDRESS (LEA) instruction. This makes use of the arithmetic
provision which computes effective addresses in the Indexed address mode. We
will discuss this in the next section, but as an example the instruction:

LEAX 1,X ; Coded as 30-01h
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Program Counter contents

User Stack Pointer *

Y Index register contents

X Index register confents

Direct Page register contents

B Accumulator contents

A Accumulator contents

Code Condition register contents

* System Stack Pointer for a
Push/Pull into the User Stack.

Figure 2.3 Stacking registers in memory using PSH and PUL. Also applicable to IRQ and NMI interrupts.
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Table 2.2 Arithmetic operations

Flags
Operation Mnemonic VN Z C Description
Add Binary addition
to A; to B ADDA; ADDB|./|/|+/|+/|[Al<-[B]+[M]; [Bl<-[B]+[M]
toD ADDD VIVIV| V]| [D]1<-[D]+[M:M+1]
BtoX ABX o|e|e|e|[X]<-[X]+[00]|B]
Add with Carry Includes carry
toA;to B ADCA; ADCB|./|+/|/|/|[Al<-[A]+[M]+C; [B]l<-[B]+[M]+C
Clear Destination contents zeroed
memory CLR 0[0|1]0|[M]<-00
A; B CLRA; CLRB|O|0O|1|0|[A]l<-00; [B]<-00
Decrement Subtract one, produce no carry
memory DEC /1] e [ [M]<-[M]-1
A; B DECA; DECB|!|./|/|e|[Al<-[A]-1; [B]<-[B]-1
Increment Add one, produce no carry
memory INC 2 VIV | [MI<-[M]+1
A; B INCA; INCB|2|./|/|e|[Al<-[A]+1; [Bl<-[Bl+1
Load Effective Address Effective Address to register
X;Y LEAX; LEAY|e|e|./|e|[X]<-EA; [Y]<-EA
S; U LEAS; LEAU|e|e|e|e|[S]<-EA; [U]<-EA
Multiply Multiplies [A] by [B]
MUL o|e|y|3|[DI<-[Alx [B]
Negate Reverses 2's complement sign
memory NEG 41/ [ IM]<= —[M]
A; B NEGA; NEGB|4|./|V/|%|[Al<- —[A]l; [Bl<- —[B]
Sign Extend Promotes signed B to signed D
SEX e | /|| *|[D]<-00|[B] or [D]<-FF]|[B]
Subtract Binary subtraction
from A; from B|SUBA; SUBB|./|/|+/|+/|[Al<-[A]—-[M]; [Bl<-[B]—[M]
from D SUBD VIV ] [D1<-[D]—[M:M+1]
Subt with Carry Includes carry (borrow)
from A; from B|SBCA; SBCB|./|+/|+/|+/|[Al<-[A]-[M]-C; [B]<-[B]-[M]-C

Note 1:
Note 2:
Note 3:
Note 4:
Note 5:

Overflow set when passes from 10000000 to 01111111, i.e. an apparent sign change.
Overflow set when passes from 01111111 to 10000000, i.e. an apparent sign change.
Carry set to state of bit 7 product, i.e. MSB of lower byte; for rounding off.

Overflow set if original data is 10000000 (—128), as there is no +128.

Carry set if original data is 00000000; for multiple-byte negation.
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calculates the effective address as [X] + 1 and loads it into the X Index register
([X] <- [X] + 1); thusitis the equivalent to an INCREMENT X (INX) instruction,
which is missing from the 6809's repertoire. Much more powerful permutations
of LEA exist, thus:

LEAY A,X ; Coded as 31-96h

promotes a signed number in Accumulator_A to 16-bits, adds this to the con-
tents of the X Index register and puts the result in the Y Index register ([Y] <-
SEX| [A] + [XI)

The contents of any read-write memory location, or any 8-bit Accumulator can
be directly incremented or decremented by using the INC or DEC instruction. As
noted, the X,Y,S,U registers can be similarly augmented by using the LEA instruc-
tion. Notice that INC and DEC do not set the Carry flag, which makes multiple-byte
Increment and Decrement operations awkward (use ADD #1 and SUB #1 instead).
Increment sets the oVerflow flag when the target goes from 0,1111111b through
to 1,0000000pb (seemingly from + to —) and Decrement likewise when going from
1,0000000b throughto 0,1111111b (- to +). INC and DEC on memory are classi-
fied as read-modify-write operations, as during execution, data is fetched from
memory, modified and then sent back. Clearing (CLR) memory strangely works
in the same way — although the original value is irrelevant.

It is possible to multiply the two 8-bit Accumulator contents using the MUL in-
struction, giving a 16-bit product overwriting the original contents of Accumula-

tor_D; thus A A B P/ leads to A « B P°|. For this purpose

the multiplier and multiplicand are treated as unsigned. The 16-bit product may
be truncated by using only the contents of Accumulator_A as the outcome, effec-
tively dividing by 256 (equivalent to moving the binary point left eight places).
Instead of truncating, this 8-bit product may be rounded off by adding the MSB
of Accumulator_B to Accumulator_A, in effect adding the %bit. To facilitate this,
MUL sets the C flag to the state of bit 7 of B. Thus the sequence:

MUL ; Multiply [A] and [B] giving a 16-bit product as [D]
ADCA #0 ; Add Carry to [A] (now can disregard contents of B)

would give the required rounded 8-bit product in Accumulator_A.

It is of course possible to multiply or divide by powers of two by shifting left
or right as appropriate. Also a combination of shift and add or shift and subtract
can be used to multiply or divide by any number [3]. Table gives the range of
Shift instructions available. All of these operate on an 8-bit Accumulator or on
any read/write memory location through the read-modify-write mechanism.

Linear Arithmetic Shift instructions move the 8-bit operand left or right with
the Carry flag catching the emerging bit. In the case of ASR, the sign bit propagates
right; thus 7,1110100b (—12) becomes 7,71111010b (-6) — 1,17111101b (-3) etc.
and 0,0001100b (+12) becomes 0,0000110 (+6) — 0,0000011b (+3) etc. The
LOGIC SHIFT RIGHT equivalent always shifts in zeros from the left. LOGIC SHIFT
LEFT and ARITHMETIC SHIFT LEFT are equivalent, and some assemblers permit
the use of the alternative LSL mnemonic.
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Table 2.3 Shifting Instructions.

Flags
Operation Mnemonic VN Z C Description
Shift left, arithmetic or logic Linear shift left into carry
memory ASL Hy/V|b7
Cl|l— —0
A; B ASLA;ASLBI\/\/b7 ’IIIIIII‘
Shift right, logic Linear shift right into carry
memory LSR *|V|V|bo
0— —| C
A;B LSRA; LSRB|e|./|{/|bg SINNENED
Shift right, arithmetic As above but keeps sign bit
memory ASR o |\/[\/|bo
b7 |[— —| C
A; B ASRA;ASRB-\/\/bo ’IIIIIII‘
Rotate left Circular shift left into carry
memory ROL L /1V|b7
Cl|l— —| C
. ROLA;ROLBW“)?!IIIIIIH
Rotate right Circular shift right into carry
memory ROR o |/[\/|bo
Cl— —| C
A B RORA;RORBo\/\/bo SNNNENED

Note 1: V=by®bg before shift.

Circular or Rotate Shift instructions are similar to Add with Carry, in that they
can be used for multiple-precision operations. A Rotate takes in the Carry from
any previous Shift and in turn saves its ejected bit in the C flag. As an example,
a 24-bit word stored in ’ 24 M 16 | 15 M+1 gl 7 M+2 o ‘ can be shifted
right once by the sequence [4]:

LSR M ; 0o - > " be—[c]
ROR M4l ; big/[C] — > "lbs ~[c]
ROR  M+2 ; bg/C] — > "™lb, ~[c]

In all types of Left Shifts, the oVerflow flag is set when bits 7 and 6 differ
before the shift (i.e. b;®bg), meaning that the (apparent) sign will change after
the shift.

The logic operations of AND, OR, Exclusive-OR and NOT (Complement) are
provided, as shown in Table 2.4l The only unusual feature here is the special
instructions of ANDCC and ORCC for clearing or setting flags in the Code Condition
register. Thus to clear the | mask (see Fig.[L.I) we have:




ITS INSTRUCTION SET 27

ANDCC #11101111b ; Coded as 1C-EFh (equivalent to CLI)
and to set it:
ORCC #00010000b ; Coded as 1A-10h (eqgivalent to SEI)

This saves having to provide a series of separate instructions targeted at each
of the CCR flags and masks, such as the 6800's CLI and SEI (CLEAR and SET
INTERRUPT MASK), and also allows more than one flag to be set or cleared in a
single instruction.

Table 2.4 Logic instructions.

Flags
Operation Mnemonic VN Z C Description
AND Logic bitwise AND
A;B ASL 0|v|V|e|[Al<-[A]-[M]; [B]<-[B]-[M]
ccC ANDCC #nn |Can clear | [CCR]<-[CCR]-#nn
Complement Invert (ls complement)
memory | COM 0|/|V|1|M]<-[M]

A; B COMA; COMB|O|./|+/|1|[Al<-[A]; [Bl<-[B]

Exclusive-OR Logic bitwise Exclusive-OR
A; B EORA; EORB|O|./|+/|*|[Al<-[Al®[M]; [Bl<-[Bl®[M]

OR Logic bitwise Inclusive-OR
A; B ORA; ORB |0|+/|+/|*|[Al<-[Al+[M]; [B]l<-[BJ]+[M]
CC ORCC #nn Can set | [CCR]<-[CCR]+#nn

The setting of the CCR flags can be used after an operation to make some
deduction about, and hence act on, the state of the operand data. Thus, to deter-
mine if the value of a port located at, say, 8080h is zero, then:

LDA 8080h ; Move in data & set Z & N flags as appropriate {86-80-80h}
BEQ SOMEWHERE ; Go somewhere if Z flag EQuals zero {27-xxh}

will bring its contents into Accumulator_A and set the Z flag if it is zero. BRANCH
IF EQUAL TO ZERO will then cause the program to skip to another place. The
N flag is also set if bit7 is logic 1, and thus a Load operation can enable us to
test the state of this bit. The problem is, loading destroys the old contents of the
Accumulator, and the new data is probably of little interest. A non-destructive
equivalent of loading is TEST, as shown in Table The sequence now becomes:

TST 8080h ; Check data & set Z & N flags as appropriate {7D-80-80h}
BEQ SOMEWHERE ; Go somewhere if Z flag EQuals zero {27-xxh}

but the Accumulator contents are not overwritten. However, 16-bit tests must
be carried out using a 16-bit Load operation as only 8-bit TEST instructions are
provided.

TEST can only check for all bits zero or the state of bit 7. For data already in
an 8-bit Accumulator, ANDing can check the state of any bit; thus:
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Table 2.5 Data test operations.

Flags
Operation Mnemonic VN Z C Description
Bit Test Non-destructive AND
A; B BITA; BITB|O|./|./|«|[A]-[M]; [B]-[M]
Compare Non-destructive subtract
with A; B CMPA; CMPB|/|+/|/|+/|[A]—[M]; [B]-[M]
with D CMPD JIVIV]V| [D]—[M:M+1]
with X; Y CMPX; CMPY|/|/ ||| [X]—[M:M+1]; [Y]-[M:M+1]
with S; U CMPS; CMPU|/|+/|/|+/|[S]1—[M:M+1]; [U]-[M:M+1]
Test for Zero or Minus Non-destructive subtract from zero
memory TST 0|/[+/|e|[M]-00
A;B TSTA; TSTB|O|+/|+/|*|[A]1-00; [B]-00
ANDB #00100000b ; Clear all Accumulator B bits except 5 {C4-20h}

will set the Z flag if bit5 is 0, otherwise Z will be cleared. Once again this is a
destructive examination, and the equivalent from Table [2.5]is BIT TEST; thus:

BITB  #00100000b ; Coded as C5-20h

does the same thing, but with the contents of Accumulator_B remaining un-
changed; and more tests can subsequently be carried out without reloading.

Comparison of the magnitude of data in an Accumulator with either a constant
or data in memory requires a different approach. Mathematically this can be
done by subtracting [M] from [A] and checking the state of the flags. Which
flags are relevant depend on whether the numbers are to be treated as unsigned
(magnitude only) or signed. Taking the former first gives:

[A] Higher than [M] : [A]-[M] gives no Carry and non-Zero C=0, Z=0 (C + Z=1)
[A] Equal to [M] : [A]-[M] gives Zero (Z=1)
[A] Lower than [M] : [A]-[M] gives a Carry (C=1)

The signed situation is more complex, involving both the Negative and oVer-
flow flag. Where a subtraction occurs and the difference is positive, then either
bit 7 will be 0 and there will be no overflow (both N and V are 0) or else an overflow
will occur with bit 7 at logic 1 (both N and V are 1). Logically, this is detected by
the function N®V. A negative difference is signalled whenever there is no over-
flow and the sign bit is 1 (N is 1 and V is 0) or else an overflow occurs together
with a positive sign bit (N is 0 and V is 1). Logically, this is N®V. Based on these
outcomes we have:

[A] Greater than [M] : [A]-[M] — non-zero +ve result (N®V-Z = 1 or N&V+Z = 0)
[A] Equal to [M]: [A]-[M] — zero (Z=1)
[A] Less than [M]: [A]-[M] — a negative result (N®V =1)

Subtraction is a destructive test operation and Comparison is its non-destructive
counterpart. It is the most powerful of the Data Testing operations, as it can be
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applied to both Index and Stack Pointer registers as well as 8- and 16-bit Accu-
mulators.

Table 2.6 Operations which affect the Program Counter.

Operation Mnemonic Description

Bcc cc is the logical condition tested

LBcc
Always (True) BRA; LBRA |Always affirmed regardless of flags
Never (False) BRN; LBRN |Never carried out
Equal BEQ; LBEQ |Z flag set (Zero result)
not Equal BNE; LBNE |Z flag clear (Non-zero result)
Carry Set BCS; LBCS!|[Acc] Lower Than (Carry=1)
Carry Clear BCC; LBCC?|[Acc] Higher or Same as (Carry = 0)
Lower or Same BLS; LBLS |[Acc] Lower or Same as (C+Z=1)
Higher Than BHI; LBHI |[Acc] Higher Than (C+Z=0)
Minus BMI; LBMI |N flag set Bit7=1)
Plus BPL; LBPL |N flag clear (Bit7 =0)
Overflow Set BVS; LBVS |V flag set
Overflow Clear BVC; LBVC |V flag clear
Greater Than* BGT; LBGT |[Acc] Greater Than (NeV-Z=1)
Less Than or Equal* BLE; LBLE |[[Acc] Less Than or Equal (NeV -Z = 0)
Greater Than or Equal* |[BGE; LBGE |[Acc] Greater Than or Equal (Ne V =1)
Less Than* BLT; LBLT |[Acc] Less Than (NeV=0)

Jump JMP Absolute unconditional goto

No Operation NOP Only increments Program Counter

* 2's complement Branch

Note 1: Some assemblers allow the alternative BLO.
Note 2: Some assemblers allow the alternative BHS.

All Conditional operations in the 6809 are in the form of a Branch instruction.
These cause the Program Counter to skip xx places forward or backwards; usu-
ally based on the state of the CCR flags. Excluding BRANCH TO SUBROUTINE (see
Section 5.1), there are 16 Branches provided, which can be considered as the True
or False outcome of eight flag combinations. Thus BRANCH IF CARRY SET (BCS)
and BRANCH IF CARRY CLEAR (BCC) are based on the one test (C =7).

If the test is True, the offset following the Branch op-code is added to the
Program Counter. Thus if the Carry flag is zero:

E100:1 BCC-08 ; Coded as 24-08h
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will add 0008h to the Program Counter state E102h to give PC = E10Ah. Note
that the PCis already pointing to the following instruction when execution occurs,
giving an effective destination of ten places on from the Branch location. The
Branch offset is sign extended before addition to the Program Counter; thus if
the N flag is zero:

E100:1 BPL-F8 ; Coded as 24-F8h

gives PC<-E102h + FFF8h = EOFAh, which is eight places back (six places back
from the Branch itself). With such a single signed-byte offset, the maximum range
is only +125 and —129 bytes.

Each 6809 Branch has a long equivalent which uses a double-byte offset. Thus
the Conditional Branch:

E100:1:2:3 BCC-100F ; Coded as 10-24-10-0Fh

if true forces PC to E104h + 100Fh = F113h.

Long Branches can skip to anywhere in the 64 kbyte memory space, but oc-
cupy more room and take longer to execute. A normal Branch requires 3 cycles,
whereas a Long Branch takes 6 cycles if carried out and 5 if not. Except for LONG
BRANCH ALWAYS (LBRA), the op-code has a 10h byte fronting the normal Branch
op-code; thus occupying four memory bytes. LBRA is exceptional, in that it has a
special op-code of 16h, giving a 3-byte instruction always taking 5 cycles. Using
a LONG BRANCH ALWAYS instead of a Jump is useful for position independent
code (PIC); as by definition, the offset is relative to the Program Counter, the
absolute destination being irrelevant. This is convenient where the program is
to run in ROM which may be based anywhere in memory space. A plain Jump
can only be made to an absolute location, which by defination cannot be altered
unless the ROM is reprogrammed.

Although Long Branches will cope with all destinations, where possible Short
Branches should be used for efficiency. However, it can be difficult sometimes to
predict whether a destination is within range. Some assemblers will choose for
you at assembly time if advised accordingly, although they are unlikely to choose
the Short Branch in all legal situations.

The remaining instruction in Table 2.6lis NO OPERATION. NOP does just this,
and as a consequence the fetch increments the Program Counter, taking 2 cycles
to do it. NOPs are normally used in situations where a do-nothing delay is nec-
essary. BRANCH NEVER (BRN) is effectively a 2-byte NOP with a 3-cycle delay and
LBRN takes up 4 bytes for a 5-cycle delay.

Table[2.4 summarizes the instruction set and address modes of the 6809 fam-
ily of microprocessors.

2.2 Address Modes

Virtually all instructions act on data; either outside the processor in its mem-
ory space, or in an internal register. Thus the op-code must include bits which
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Table 227t (a) The M6809 instruction set (continued next page).

Insert page 1 of Table 2.7 here.
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Table[Z7 (b) The M6809 instruction set (continued next page).

Insert page 2 of Table 2.7 here.
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Table 2.7 (c) (continued). The M6809 instruction set. Reproduced by courtesy of Motorola Semicon-
ductor Products Ltd.

Insert page 3 of Table 2.7 here.
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inform the MPU's Control registers where this data is being held. There are a
few exceptions to this, the so called Inherent operations, such as NOP (NO OP-
ERATION) and RTS (RETURN FROM SUBROUTINE). Single-byte instructions whose
operand is a single register, for example INCA INCREMENT ACCUMULATOR A), are
also sometimes classified as Inherent.

With the exception of Inherent instructions, the bytes following the op-code
are either the (constant) operand itself, or more usually a pointer to where the
operand can be found. We have already met the simplest of these, where the
absolute address itself follows, as in:

LDA 2000h ; [Al <- [2000] {Coded as B6-20-00h}

Absolute addressing is rather inflexible, as the address is fixed as part of
the program, and this must be allocated by the programmer. One of the most
important features of a processor is its range of address modes, that is different
techniques for evaluating the operand address. To see why this is important,
consider, say, the problem of adding the constant 30h to each element of an
array of 256 data bytes stored consecutively between 2000h and 20FFh. If we
had only absolute addressing, the routine would look something like the listing
in Table[2.8]a), which is a pity because the same action is repeated 256 times, and
takes 2048 bytes of program memory.

An alternative strategy is to use an address mode where the address is stored
in a register which can be incremented, and fold our program into a loop as
shown in Table [Z.8(b). This only takes 16 bytes, less than 1% of the absolute
version. Furthermore, the array can be of any length without increasing the size
of the program. However, there is a penalty to pay for this flexibility. The more
complex address modes take longer to execute (see Table 2. 7(c) under ~), and
the loop construct has the Test and Branch overhead. Thus, the absolute array

Table 2.8 Initializing a 256-byte array.
BEGIN: LDA  2000h ; Get array[0]

ADDA #30h ; Add the constant (#) 30h
STA  2000h ; Restore it
LDA 2001h ; Get array[1]
ADDA #30h ; Add the constant 30h
STA  2001h ; Restore it
LDA  2002h ; Get array[3]
:: : ; and so on
LDA 20FFh ; Get array[255]

ADDA  #30h
END: STA  20FFh

Add the constant 30h
Restore it (phew!)

(@) Linear coding.

BEGIN: LDX #2000h ; Point IX to array [0]
; While address less than 2100h add 30h to the contents of that address
LOOP: LDA X ;

), ; Get array [IX]
ADDA #30h Add the constant 30h

STA , X+ ; Put it away at [IX] and increment pointer
CMPX #2100h ; Check for past array [256]
BNE LOOP ; and repeat if not

END:

(b) Equivalent circular mode.
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program would take 3072 cycles, whilst the loop equivalent takes considerably
longer at 4867 cycles to execute.
In the remainder of this section, we will look at the 6809 address modes. In

this catalog, may be one or two bytes.

Inherent

All the operand information is contained in the op-code, with no specific address-
related bytes following. All of the 6809 inherent operations are one byte long
except SOFTWARE INTERRUPT 2. An example is NOP (NO OPERATION). Motorola
also classify most Register-Direct instructions as inherent, for example INCA (IN-
CREMENT A). Table[2.7] gives the Inherent instructions.

Register Direct, >R

op-code | post-byte ‘

Information concerning the source register(s) and/or destination register(s) are
contained in a post-byte. For example TFR A,B (TRANSFER THE CONTENTS OF A
TO B) is coded as 0001 1111 1000 1001b (1F-89h). The post-byte here is divided
into two fields. The left field specifies the source register, and the right the
destination. Each register is encoded as a bit in a 4-wide code. Thus 1000b is A
and 1001b is B. A list of codes is given on page[20] The Transfer, Exchange, Push,
and Pull operations come under this category. In Table 2.7]these are classified as
Immediate.

Immediate, #kk

’ op-code Iconstant‘ 8 bit

’ op-code | constant ‘ 16 bit

With Immediate addressing, the byte or bytes following the op-code are constant
data and not a pointer to data. We have used this form of addressing before, in
the array argument routine in Table 2.8] Some examples are:

ADDB #30h ; Add the constant 30h to Acc. B {Coded as CB-30h}
LDX #2000h ; Put the constant 2000h in X {Coded as 8E-20-00h}
CMPY #21FFh ; Compare [Y] with the constant 21FFh {Coded as 10-8C-21-FFh}

The pound (hash) symbol # is commonly used to indicate a constant number.

Absolute, M
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’ op-code IDP offset‘ Short (Direct)

’ op-code | Address ‘ Long (Extended Direct)

In Absolute addressing, the address itself — either in whole or part — follows
the op-code. Motorola terms the long 16-bit address version as Extended Direct.
There is a short version just called Direct, where the effective address (ea) is the
concatenation of the Direct Page register with the byte following the op-code.
Thus if this register is set at, say, 80h, then the instruction LDA 08h, coded as
96-08h, effectively brings down the byte from address 8008h. Some assem-
blers have difficulty in deciding which of these forms to use. For example, in the
fragment above, should the assembler generate the code B6-80-08 (LDA 8008) or
96-08 (LDA 08)? After all, the setting of the DP register may have been altered in
a call to a subroutine yet to be linked in. There are ways around this, but none is
entirely satisfactory.

Absolute Indirect, [M]

op-code | 9Fh |Pointer to address

Here the op-code is followed by a post-byte 9Fh and then a 16-bit address. This
is not the address of the operand but a pointer to where the operand address is
stored in memory. Thus, if the locations 2000:2001h hold the address 80-08h,
then the instruction:

LDA [2000h] ; [A]l <- [[2000:2001]] {Coded as AF-9F-20-00h}

effectively fetches the data down from 2000/ and then 2001h, puts them to-
gether as a 16-bit address and sends this address out on the address bus to fetch
the data into Accumulator_A. Although the location in memory of this pointer
address is absolute, the pointer residing there can be altered as the program
progresses.

As an example, consider the problem of implementing a subroutine (see Chap-
ter 5) which will process in some way the contents of an array of data. Rather
than passing each element of the array to the subroutine it makes sense to send
only the address or pointer to the first element. This can be done by using an
absolute address, say 2000:2001h, to store the pointer prior to jumping to the
subroutine. The subroutine can then use this pointer as a sort of base address
to access any element of the array relative to this location.

As this indirect address is at an absolute location, this address mode is only
slightly more flexible than the ordinary absolute modes. However, indirection
can be used in conjunction with the Indexed addressing modes discussed below.
As in the absolute case, the effective address is in fact only the address of a
pointer to the data and not the data itself.
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Branch Relative
’ op-code I offset ‘ 8-bit (Short)

’ op-code I offset ‘ 16-bit (Long)

We have already discussed this form of address mode in the previous section.
Regular (or short) Branches sign extend the following 8-bit offset, and add this to
the Program Counter. Effectively this means that offsets between 80h and FFh
are treated as negative. For example the instruction BRA -06 is coded as 20-FAh
(FAh is the 2's complement of 06h) when the PC is at E108h, is implemented as:

1110 0001 0000 1000 (PC) = E108h
+ 17171 1117 1111 1010 (offset) = FFFAh = -6
A 1110 0001 0000 0010 (E102h, which is E108h — 0006h)

In calculating this offset, it must be remembered that the PC is already point-
ing to the next instruction. Thus the maximum forward point is (00)7Fh + 2 =
127 + 2 = 129 bytes from the op-code and (FF)80h + 2 = —128 + 2 = 126 bytes
back. Long Branches have a 16-bit offset and can range from +32,767 and —32,768
bytes from the following op-code, effectively anywhere in the full 64 kbyte ad-
dress space of memory that the processor can address at one time. Of course
Long Branch code is bigger and slower to execute (see Table 2.Z(c) under the
column ~).

Indexed

The Absolute address modes are used where operands lie in fixed locations. In
many cases, this places an unacceptable restriction on the data structures which
can easily be processed. Compilers, for example, like to pass parameters in a
stack, and these should then be capable of being retrieved in locations relative
to the Stack Pointer. The 6800 MPU has a primitive form of computed effective
address (ea), where this could be up to +FFh (+255) bytes from the contents of
one Index register thus:

LDAA 8,X ; [A] <- [X] + 8

means that if X is 8000h at the time of execution, then 8008h is the ea of the
data brought down to Accumulator_A. The 6809 has an additional complement of
Index registers (X, Y, S, U and sometimes the PC), as well as an extended repertoire
of offsets. Constant offsets of up to +2!> are now possible, and Accumulator_A,
_B or _D can act as a variable offset. In addition, automatic incrementation or
decrementation submodes are possible. A level of indirection is also provided
for most combinations. Table[Z.7(c) summarizes the submodes, which are coded
as an op-code followed by a post-byte. Notice that Absolute Indirect is part of
this table, although strictly it is not an Indexed address mode.

Constant Offset from Register
op-code post-byte O,Ror ,R
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’ op-code | post-bytexn ‘ + n, R (5-bit)
’ op-code | post-byte I +n ‘ +n, R (8-bit)
’ op-code I post-byte I +n ‘ +n, R (16-bit)

Here the effective address is R + n where R is X, Y, S or U. The actual machine
code produced depends on the size of n, with a single post-byte capable of in-
tegrally handling up to =15. This complex encoding scheme is worthwhile, as
most offsets are small; for example, an analysis has shown that 40% of this type
of indexing uses a zero offset [1]. Indirect Constant Offset Index does not have
an 8-bit (+127) offset version, the 16-bit variety being used. Fortunately the task
of evaluating the post-byte and following bytes is handled automatically by the
assembler.

Post-Auto-Increment / Pre-Auto-Decrement from Register
’ op-code Ipost-byte‘ R+ / ,R++ / ,-R / ,--R

As we saw in the listing of Table[2.8(b), indexing comes into its own when stepping
through blocks of memory, arrays and related structures. To avoid having to
follow (or lead) the use of the Index register with an Increment or Decrement,
this mode provides for automatic advance or retard; thus:

LDA ,R+ ; Bring down data byte and then increment Index register R
LDA ,-R ; Bring down data byte and then increment Index register R twice
LDA ,R++ ; Decrement Index register R and then bring down data byte
LDA ,--R ; Decrement Index register R twice and then bring down data byte

where R is X, Y, S or U. Notice that incrementing is done after and decrementing
before the Index register is used. Double Increment/Decrement modes are useful
when the arrays contain addresses or other double-byte data. Indirection is only
available for this double form, as by its nature addresses are likely to be being
accessed.

As an example of these modes, consider the problem of multiplying two 256-
byte arrays to give a 256 double-byte array. If array_1 begins at 2000h with
the second array following directly, and the product array commences at 3000h,
then we have:

LDX #2000h ; Point IX to array_1[0]
LDY #3000h ; Point IY to array_3[0]

LOOP: LDA 256,X ; Get array_2[i]
LDB , X+ ; Get array_1[i]; increment i
MUL ; Multiply them
STD , Y4+ ; Put it away and move on twice
CMPX #21FFh ; Last element yet?
BLS LOOP ; IF not past it THEN repeat
RTS ; ELSE finished
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Accumulator Offset from Register, A,R / B,R / D,R

op-code post-byte

As an alternative to a constant offset, any Accumulator can hold a variable offset
to an Index register, for example:

LDA B,X ; [A]l <- [SEX|[BI+[X]]
LDB A,Y ;[B] <- [SEX|[Al+[Y]]
LDX D,U ; [X1 <- [[DI+[U]T:[[D]+[U]+1]

Note that the value of the 8-bit Accumulator is sign extended before the addition,
giving arange of +127 to —128. Thusif Bis FEh, then FFFEh is added to the X Index
register in the first example above to give the effective address. Of course, FFFER
is effectively —2, so the target memory location is actually X — 2. If this is not
desirable, Accumulator_A may be cleared and D used as the offset, e.g.:

CLRA
LDA D,X ; [A] <- [00]|[BI+[X1]

and this allows an offset of up to +255 (FFh) in Accumulator_B.

The use of an Accumulator allows the offset to be dynamically calculated as
the program runs. A typical example is listed below, where we require access to
one of a table (array) of ten elements, actually the 7-segment code. The requested
element is already in the Accumulator_B (the decimal number 0-9), and it is to
be replaced with the 7-segment equivalent code on exit. We are assuming that
the subroutine starts at E200h.

E200/1/2 8E-E2-06 LDX #TABLE_BOT ; Point X to table
E203/4 E6-85 LDB B,X ; Get element [B]
E205 39 RTS ; Exit

; Table of 7-segment codes begins here
E206-E20A 01-4F-12-06-4C TABLE_BOT: .BYTE 1,4Fh,12h,6,4Ch
E20B-E20F 24-20-0F-00-0C .BYTE 24h,20h,0Fh,0,0Ch

The first instruction puts the absolute address of the first table element (E206 1)
in the X Index register. The effective address calculated in the following instruc-
tion is B + X. If, say, B is 04h on entry, then this gives 0004 + E206 = E20Ah.
The data in here is 4Ch, and this is the value loaded into Accumulator_B. Notice
the assembler directive .BYTE, which states that the following bytes are to be put
into memory verbatim; that is not to be interpreted as instruction mnemonics.

Constant Offset from Program Counter
’ op-code I post-byte I +tn ‘ + n, PC (8-bit)

’ op-code | post-byte | +n ‘ + n,PC (16-bit)
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One of the major advantages of the Relative address mode is that it produces
position independent code (PIC). Thus a Branch is relative to where the program
is at the time the decision is taken. If the program is moved to a different part
of memory, all the offsets move with it unchanged. This is what differentiates
a Branch from a Jump operation. The Program Counter Offset mode extends
the PIC capability to any instruction which has an Indexed address mode. This is
similar to the Constant Offset from Register mode, but with the Program Counter
being the Index register. For example in:

LDA  200h,PC ; [Al <- [200+[PC]]

the data 2004 bytes on from where the PC is on execution (pointing to the fol-
lowing instruction) is placed in Accumulator_A. This of course is not an absolute
address, as only the distance from the instruction is of interest. PIC is especially
suitable for code in ROM (i.e. firmware) which can be placed anywhere in the ad-
dress space. Thus a vendor could sell a ROM-based floating-point package with
no a priori knowledge of where the customer will locate the firmware in memory.

As an example of this, consider the 7-segment decoder routine previously dis-
cussed. Line 1 of the actual code (shown second column from the left) contained
the bytes E2-06h, which is the absolute location of the table bottom. If, say, the
table of data was to start at C180h, then the ROM would have to be reprogrammed
to make these two bytes C1-80h, the rest of the code remaining unaltered. Here
is a PIC version of the same routine:

C102/3/4 30-8C-03 LEAX 3,PC

;Effective address PC+3 is loaded into X, which then points to the table
C105/6 E6-85 LDB B,X ; Get element [B]
c107 39 RTS

; Table of 7-segment codes begins here
C108-C10C  01-4F-12-06-4C TABLE_BOT: .BYTE 1,4Fh,12h,6,4Ch
C10D-C111 24-20-0F-00-0C .BYTE 24h,20h,0Fh,0,0Ch

The only difference between the two programs is in line 1. In the first case, the
absolute address of the table bottom is put into the X Index register. In the re-
locatable case, the X Index register is loaded with the contents of the Program
Counter+3, which is again the address of the bottom of the table, but is the dif-
ference between the instruction following step 1 (i.e. at C105h) and the base of
the table. If the program is bodily moved somewhere else, the offset of three
bytes to the table remains the same. Thus the address of the table is calculated
during each run rather than before (at load time).

As with Branch operations, assemblers save the programmer having to calcu-
late this offset, by permitting the use of an absolute label in this type of address
mode; thus assembling:

LEAX TABLE_BOT,PC

still produces the same code 30-8C-03h; thatis the label TABLE_BOT is interpreted
by the assembler as the distance from the following instruction to the absolute
address TABLE_BOT and not the absolute value C108h.
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We first met the LOAD EFFECTIVE ADDRESS (LEA) instruction in Table Here
we observed that it could be used to perform simple arithmetic on the X, Y, U or S
registers. Essentially, any effective address computed by any of the Direct Index
address modes, except Post-Increment/Pre-Decrement, can be loaded into one of
these four registers. A few examples are:

LEAX +2,X ; The EA of X+2 is put into X, effectively incrementing X by 2
LEAY D,X ; Adds [D] to [X] and puts sum in Y
LEAS -20,S ; Moves the Stack Pointer down 20 bytes

2.3 Example Programs

Previously we have used program fragments to illustrate various instruction/address
mode combinations. Here we conclude our look at 6809 assembly-level software
by developing three programs of a slightly more elaborate nature. This will serve

to integrate at least some of the concepts we have discussed, and provide for a
comparison with equivalent software using 68000 code in Chapter 4. Each pro-
gram module is written in the form of a complete subroutine; that is data is
assumed present on entry in some place, usually in a register, and is terminated
by a RETURN FROM SUBROUTINE (RTS) instruction. Subroutine structure is the
subject of Chapter 5.

Implementing a software function involves developing an appropriate algo-
rithm, writing code in a suitable language, testing and debugging. There is little
that can be done to mechanize the former, as algorithms are an expression of
human creativity. Once this has been done, a range of software tools, such as
assemblers, linkers, compilers and simulators, exist to aid in the production of
the latter phases. We will look at these in some detail in Part 2.

The most fundamental software tool is the assembler. An assembler is a pro-
gram that translates, on a line for line basis, symbolically-coded native language
to machine code for the target processor. This saves the error-prone tedium
of working out op-codes and relative offsets. Nearly as important is the use of
mnemonics for instructions and names for locations (labels). These, together
with the use of comments, provide superior documentation compared to strings
of hexadecimal digits (see page[1G8).

At this point in the text, we are only concerned to provide sufficient back-
ground to allow the reader to follow program syntax as presented in the re-
mainder of the text. Assemblers, like any other commercial package (such as
a word processor), have their own peculiar rules and peccadilloes, which have to
be learnt. One common denominator is the virtually unanimous use of the pro-
cessor manufacturers' standard instruction mnemonics, with minor variations.
Most of the variations lie in the layout of the source code and the directives (or
pseudo operators) used to pass information from the programmer to the assem-
bler.

A line of source code comprises four fields: an optional label, the essential



42 C FOR THE MICROPROCESSOR ENGINEER

instruction mnemonic, the operand (if any) and an optional comment. Some as-
semblers require all fields to be present in spirit, their absence being signalled
by spaces or tabs. The Real Time Systems XAS8 cross assemblen] used here has a
free format, where absent fields can simply be omitted. The only essential role
of space is in separating the instruction mnemonic from its operand. However,
as the following code fragment shows, spaces and tabs should be used for read-
ability:

BCC NEXT;IF no Carry THEN don't add one to int X
ADDD #1
NEXT:RTS;and return

or
BCC NEXT ; IF no Carry THEN don't add one to int X
ADDD #1

NEXT: RTS ; and return

The latter source code is obviously more pleasing to the eye. Notice that lines 1
and 2 have no label, line 2 no comment and line 3 no operand field.
Looking at the syntax in more detail.

Labels

These are defined in the first field and should be delineated by a colon. The colon
is omitted when the label is referred to in the operand field. The label takes on
the value of the Program Counter pointing to the first instruction byte. Labels
can be up to 15 meaningful alphanumeric (including _ and .) characters long,
and should not start with a numeral.

Operator mnemonics
These are the standard manufacturer's mnemonics, with a few minor extensions.
There must be an entry in this field.

Operand

These may be a label, defined name, address or data constant. Numbers may be
in decimal, hexadecimal, octal, binary or ASCII. Thus the following all translate
to the same:

LDA #43h ; Codes as 86-43h. Use a 0 prefix if MSD is alpha, e.g. OF6h
LDA #67 ; Codes as 86-43h. Decimal 67 is 43 hex

LDA #01000011b ; Codes as 86-43h. Binary 01000011 is 43 hex

LDA #1030 ; Codes as 86-43h. Octal 103 is 43 hex

LDA #'C' ; Codes as 86-43h. ASCII 'C' is 43 hex

1Real Time Systems, M & G House, Head Road, Douglas, Isle of Man, British Isles; Intermetrics
Microsystems Software Inc., 733 Concord Avenue, Cambridge MA 02138, USA.; Whitesmiths Aus-
tralia Pty Ltd. PO Box 756, Suite 3, 47 Regent Street, Kogarah NSW 2217, Australia; COSMIC SARL,
33 rue Le Corbusier, EUROPARC CRETEIL, 94035 CRETEIL CEDEX, France and ADaC, Nihon Seimei
Otsuka Bldg., No. 13-4 Kita Otsuka 1-chome, Toshima-Ku, Tokyo 170 Japan.
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but the use of the appropriate form aids in readability and thus documentation.
Mathematical expressions can be used to generate a constant at assembly time,
thus:

LDA MSD-1 ; Get data from address MSD less one
LDA  ARRAY+(i*5)+j ; Get data from address ARRAY plus

; 1 rows of 5 and j columns
BRA .+3 ; Branch forward 3 places

Comment
The final field is simply a documentation comment, delimited by a semicolon ;.
Whole-line comments are possible with an initial semicolon. Some assemblers
use an asterisk * to delimit comments.

Some of the more common assembler directives, all of which are distinguished
by a leading period, are:

.PROCESSOR
The first line of source code must indicate which processor is being targeted, e.g.:

.processor m6809

for the 6809 MPU.

.END
The last line of source code must be . end.

.DEFINE
This gives a permanent value to a symbol. For example:

.DEFINE ERROR = OFFh,
TRUE = 01,
FALSE =0,
PIA_BASE = 8080h

CMPA #ERROR
BEQ ABORT
CMPA #FALSE
BEQ REPEAT
CMPA #TRUE

BNE ABORT

LDB PTIA_BASE+2

This mechanism is useful in assigning names to absolute locations, such as
those associated with hardware interface ports, and to constants which have a
readily identifiable meaning. Placing definitions at the start of the source pro-
gram means that such constant data and addresses can be altered throughout



44 C FOR THE MICROPROCESSOR ENGINEER

the source file by simply altering this header. The mnemonic EQU (EQUATE) is
frequently used in other assemblers to perform the same function; see page [180]

.INCLUDE
Source code in separate files can be included for assembly by using this directive,
for example:

.INCLUDE "stdio.h" ; Insert the I/0 header file at this point

.PSECT

A useful feature of this assembler is the ability to delineate sections of the source
program to produce code in different memory areas. Thus program code and
fixed constants can be assigned to area _text which the linker can place in mem-
ory occupied by ROM, whilst section _data can be used for variable data destined
for RAM. An example of the use of .psect is given in Table P.12.

.ORG

The assembler used here is configured to be relocatable, that is absolute ad-
dresses are not assigned until link time (see Section 7.2). The .ORG function
is normally used in an absolute assembler (one in which absolute locations are
assigned at assembly time) to denote where the code commences. In the RTS as-
sembler .ORG can be used in a relocatable manner relative to a label, for example:

.PSECT _text ; Program code
START: LDA MEMORY ; Program start (e.g. OE000h)
RVECTOR: .ORG START+1FFEh ; Move on from start (e.g. OFFFEh)
.WORD START ; Put in Reset vector
.end

Assuming that the section _text is linked to OEO0Oh, then the code at RVECTOR
is commanded to be placed in OEOOOh + 1FFEh = OFFFEh.

.BYTE, .WORD, .DOUBLE, .TEXT
In the code fragment above, the assembler is commanded to place the double-
byte constant EO-00h in at RVECTOR : RVECTOR+1, using the .WORD directive. The
directives .BYTE and .DOUBLE are similar, but allocate storage of 8 and 32 bits
respectively. . TEXT allows series of bytes, entered as strings within quotes, to be
stored in a similar manner. Other assemblers use FCB (FORM CONSTANT BYTE),
RMB (RESERVE MEMORY BYTE), FDB (FORM DOUBLE BYTE), FCC (FORM CONSTANT
CHARACTER) as equivalent directives.

We have already seen an example of .BYTE when we designed the 7-segment
decoder subroutine on page A simple example of . TEXT is:

.TEXT "This 1is an example", 0
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which is considerably more convenient than the equivalent:

.BYTE 54h,68h,69h,73h,20h,69h,73h,20h,61h,6Eh
.BYTE 20h,65h,78h,61h,60h,70h,6Ch,65h,0

Statements such as this have to be used with caution where the program is
blasted into ROM. Constants can be located in ROM (e.g. .psect _text). but not
in RAM (e.g. .psect _data). This is because there is no download of code prior
to the run, and volatile memory is unpredictable on power up. Care must be taken
when using a simulator to debug such programs, as this data is downloaded into
RAM from the assembled machine code file and will then appear to be available
at start-up.

Our first program generates the sum of all integers n up to a maximum of
255 (FFh). We assume that n is passed to the subroutine in Accumulator_B. The
maximum possible total of 32,640 can comfortably fit into the 16-bit Accumula-
tor_D for return.

Table 2.9 Source code for sum of n integers program.
.processor m6809

o dedededededededeedede e de e de e de e dede e de e de e de e de e dede e dededede Sk ddededdededddeht

; * FUNCTION : Sums all unsigned byte numbers up to n

;¥ ENTRY : n is passed in Accumulator B *
;% EXIT : Sum is returned in D Accumulator *
;o * EXIT : Index X = sum *
.psect _text ; Direct code into text area
; for (sum=0;n>0;n--){
Tdx  #0 ; Sum = 0000
SLOOP: tstb ; no> 007
beq SEND ; IF not THEN end
abx ; ELSE sum = sum + n
decb ; n--
bra  SLOOP ;3
SEND: tfr x,d ; Put sum in D Accumulator as asked
S_EXIT: rts ; for return
.end

The algorithm used in Table simply clears the initial total, temporarily
located in the X Index register, and adds to it the progressively decrementing in-
teger, kept in Accumulator_B. When B reaches zero, the grand total is transferred
to Accumulator_D for return. The instruction ADD B TO X (ABX) is a convenient
vehicle to add the 8-bit integer to the 16-bit partial summation. Without it, n
would have to be unsigned promoted to 16-bits by zeroing Accumulator_A and
then the instruction LEAX D, X used for the addition.

The source-code file is translated by the assembler program to produce a
machine-code file, which will eventually find its way into program memory. An
absolute listing file is also generated, which documents the machine code and its
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location together with the original source code. The listing of Table 2. 10l shows
the outcome of the translation, with the line number, location and machine code
occupying the leftmost three columns. This type of file is often referred to as
object code. The absolute location of the machine code is decided by the linker-
locator program, as described in Section 7.2. All 6809-based programs in this text
assume ROM from EO00h upwards for the program sections designated _text,
and RAM from 0000h upwards for the _data sections. Only _text is needed in
this case.

Table 2.10 Object code generated from Table[ZQ

1 .processor m6809

2 § R e e R R e e e e e e e S e S e e e e ek
3 ; * FUNCTION : Sums all unsigned byte numbers up to n

4 ; * ENTRY : n is passed in Accumulator B

5 ;¥ EXIT : Sum is returned in D Accumulator *
6 ;¥ EXIT : Index X = sum *
7 § R R e R R R e e e e e S S S e e e
8 ’

9 .psect _text ; Direct code into text area
10 ; for (sum=0;n>0;n--){

11 E0O00 8EO000 SUM_OF_N: Tdx #0 ; Sum = 0000

12 E003 5D SLOOP: tstb ; no> 007

13 E004 2704 beq SEND ; IF not THEN end

14 E006 3A abx ; ELSE sum = sum+n

15 E007 5A decb ; n--

16 E008 20F9 bra SLOOP ; }

17 EOOA 1F10 SEND: tfr X,d ; Put sum in D Accumulator as asked
18 EOOC 39 S_EXIT: rts ; for return

19 .end

The program of Table [2.10]is 12 bytes long and takes 16 + 13n cycles (max-
imum 3331). An alternative algorithm recognizes that the total is given by the
expression n x (n + 1) + 2. In Table[2.11] this is implemented by copying n into
Accumulator_A, incrementing it, multiplying the two Accumulators and doing a
single double-byte shift right (i.e. +2). Only six bytes long and executing in a
fixed 28 cycles, this illustrates that time taken in refining the problem algorithm
can be profitable. However, there is a bug in this implementation, with one value
of n giving an erroneous zero answer. Can you determine which, and recode to
avoid this problem?

Our second program is more elaborate. We are required to convert a 16-bit
binary word to a string of ASCII-coded decimal digits, terminated with 00h (ASCII
NULL). The more usual mathematical conversion algorithm requires that the base-
M number be continually divided by ten, the series of remainder digits being the
base-10 equivalent (see the listing of Table 4.14). Implementing this requires
a lengthy division/remainder subroutine. If this is already present for use by
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Table 2.11 A superior implementation.

1 .processor m6809
2 § R R R R R R e e R S e S S S S e e
3 ; * FUNCTION : Sums all unsigned byte numbers up to n *
4 ;¥ ENTRY : n is passed in Accumulator B *
5 ;% EXIT : Sum is returned in D Accumulator *
6 ;o EXIT : No other registers disturbed *
7 H Fededededefdedehde S ded NS dde Nl dhdevdede Nl d SNl dhde A de Nl A SNl dhde Nl dehdfddn
8 .psect _text ; Direct code into text area
9
10 ; sum = n*(n+1)/2
11 EO00 1F98 SUM_OF_N: tfr b,a ; Copy n into Acc.A
12 E002 4C inca ; which becomes n+1
13 E003 3D mul ; n*(n+l) now in Acc.D
14 E004 44 Isra ; Divide by two
15 EOO05 56 rorb ; by shifting right once
16 E0O06 39 S_EXIT: rts ; for return
17 .end

another program module, the resulting code will be acceptably short. In any
case, in the absence of a hardware divide operation in the 6809, execution time
is likely to be long.

An alternative algorithm, which is especially suitable for small numbers, is
illustrated in Fig.2.4] Essentially the nth-decade digit is evaluated as the number
of successful subtractions by 10", where n begins at the highest possible value,
and is decremented towards zero after each decade evaluation. As the maximum
value for a 16-bit binary number is 65,535, this requires subtraction by 10,000,
1000, 100, 10 and 1. With the procedure being the same for each decade, it is
easier to store the constants as a table in ROM and use a loop with an advancing
pointer to select the decade and its corresponding table entry. This look-up table
is shown in the listing of Table [2.12]in line 43. Notice the additional zero word
at the end of the table; this is used to provide an escape mechanism after the
decade passes 10°.

The actual subtraction of 10" is performed in line 23, with the X Index regis-
ter pointing into the table of powers. If no borrow is generated (C = 0), the byte
holding the nth string character (initialized to ASCII 0 = 30h in lines 18-21)
is incremented and the process repeated (lines 25-28). On emerging from this
inner (decade) loop, the 10" constant is added back to compensate for the one
subtraction too many. As line 30 uses the Double-Increment Index address mode
(ADDD , X++), the table pointer is simultaneously advanced one word. LEAY 1,Y
then increments the string pointer (the Y Index register) one byte, and the scene
is set for the next decade evaluation. Before returning to the top of this outer
loop, the escape condition (i.e. NULL) must be tested. There is no instruction
to test the zero state of a double memory location; instead an unused double
register is loaded with the word data (LDU 0,X in line 34) and the Z flag will
be set accordingly. An alternative escape procedure would be to decrement a
count on each loop pass or simply to check the table pointer for OE030h (e.g.
CMPX #PWR_10+10). Using a special terminate character is better where the length



48 C FOR THE MICROPROCESSOR ENGINEER

n = 4
n" decade = 0’
BimornyOn
Yes Increment
nth decade
No

Restore
10" to binary

Yes

End of String
NULL

Return

Figure 2.4 16-bit binary to decimal string conversion.
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Table 2.12 Object code for the conversion of 16-bit binary to an equivalent ASCII-coded decimal

string.
1 processor m6809
2 , ¥ e J 3 % e ¥ Yo de Yo Je de v v d o o J ot o d o o e ¥ ¥ de ¥ ¥ Yo Je Je Yo Yo Yo Je v Je de v v J g d J o o e o ot e e o e e A
3 . Converts 16-bit binary to a string of five ASCII-coded *
4 ; * characters terminated by 00 (NULL) *
5 ; * EXAMPLE : FFFF -> '6''5''5"''3''5''0" (36/35/35/33/35/00h) *
6 ; * ENTRY : Binary word in D *
7 ;% EXIT : Decimal string in 6 RAM bytes starting from DEC_ STRG“
8 ;% EXIT A1l register contents unchanged
9
10 .list +.text
11 .define NUL = 0000
12 .psect _text
13 EO00 3476 BIN_2_DEC: pshs a,b,x,y,u ; Save pointer registers used
14 ; N=4
15 E002 308C21 Teax PWR_10,pc ; Point to table bottom (10A4)
16 EO05 108E0000 Tdy #DEC_STRG ; Point to beginning of string in RAM
17 ; Nth decade = '0'
18 E009 1F03 NEW_N: tfr d,u ; Put away binary for safekeeping
19 EOOB 8630 1da #'0' ; Put ASCII 'O' in nth decade of string
20 EOOD A7A4 sta 0,y
21 EOOF 1F30 tfr u,d ; Get binary back
22 ; Binary - 10%*N
23 EO011 A384 NEXT_SUBT: subd 0,x
24 ; Can do?
25 EO013 2504 bcs NEXT_DEC ; A Carry/borrow means No
26 ; IF Yes THEN 1increment Nth decade
27 EO015 6CA4 inc 0,y
28 E017 20F8 bra NEXT_SUBT
29 ; ELSE restore 10**N to binary
30 EO019 E381 NEXT_DEC: addd ,x++
31 ; N=N -1
32 EOlB 3121 leay 1,y ; Advance one decade
33 ; N <07
34 EO1D EE84 1du 0,x ; Look for double-byte NULL in table
35 ; No
36 EO1F 26E8 bne NEW_N
37 ; Yes
38 E021 6FA4 clr 0,y ; IF Yes terminate the string
39 ; End
40 EO023 3576 puls a,b,x,y,u ; Return old register values
41 E025 39 rts ; 0m1t if above 1s pu1s a, b X,Y,u,pc!
42 ; Th1s is the tab]e of powers of 10
43 E026 2710 PWR_10: .word 10000,1000,100,10,1,NUL
03E8
0064
000A
0001
0000
o ¢ o o 56 o 5o 95 o o o o S S o .
44 ; Th1s is the area of RAM where the number str1ng is to be returned
45 .psect _data
46 0000 DEC_STRG: .byte [6] ; Reserve six memory bytes for string
47 .end

of the table can vary, and is the normal approach to character strings, as is spec-
ified in this example (line 38).

None of the MPU's registers are altered by this subroutine, except the Code

Condition register. A subroutine with this property is known as transparent. This
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is achieved by pushing the used registers onto the System stack at the beginning
(line 13) and restoring them at the end (line 40). In general the number of Push
and Pull operations should match to ensure that the System Stack Pointer is back
up to the return Program Counter, which was shoved out automatically when the
subroutine was called. Thus RETURN FROM SUBROUTINE (RTS) will then be able
to retrieve the original PC as required. One trick sometimes seen is to add the PC
to the last PULS, which of course does the same thing; thus:

PULS A,B,X,Y,U,PC
is the same as

PULS A,B,X,Y,U
RTS

The two pointers, X to the table and Y to the string, are set up just after
the initial Push. The table pointer is set up in line 15 using the Program Counter
Relative address mode, LEAX PWR_10, PC. Looking at the machine code produced
(namely 30-8C-21h), shows an operand of 21h, being the distance between the
PC (pointing at execution time to the following instruction at OEO05h) and the
start of the table at OE026h. This relative operand ensures that no matter where
the program/table ROM is placed in address space, the code need not be altered.
This code is strictly speaking not position independent, as the string is in a fixed
location in the _data program section, that is in RAM. If DEC_STRG is the first
occurrence of .psect _data, then our linker will place the string at locations
0000h to 0005h. Thus the code in line 16 for LDY #DEC_STRG is 108E-0000h.
We could use the Program Counter Relative mode here (i.e. LEAY DEC_STRG, PC)
but this would mean that the address distance between the ROM and RAM chips
would have to remain constant, and they could not be independently relocated:
not very convenient.

Our last example also has a mathematical flavor. We are required to calculate
the factorial of an integer n passed in Accumulator_B. The factorial of n (repre-
sented as n!)is definedasn x (n—1) x (n —2) x - - - X 3 x 2 x 1. By convention
0! is defined as 1 [5].

Superficially this appears to be the same as our first example, but with multi-
plication replacing addition, see Fig. However, the product rapidly becomes
very large, with 12! = 479,001, 600 being the largest factorial fitting into a 32-bit
binary number. Thus we will restrict n to the range 0-12, and will have to return
n! in four memory bytes, as no 6809 register of this size is available (although it
could be returned in two pieces using, for example, the X and Y Index registers).
Furthermore, we will use Accumulator_B to return an error status byte of FFh if
the programmer sent an out of range integer (n > 12), otherwise 00h indicating
success.

Our first problem is that product generation is a 4-byte long-word process,
whilst the 6809 can only perform an 8 x 8 multiplication. Thus our requirement
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al
Yes
Error
No
Initialize
sum=1
Yes
n<=17
No End

sum=sum*n

n=n—1

Figure 2.5 Evaluating factorial n.
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for an 8 x 32 product will have to be met by four 8 x 8 operations. Hence we will
require four memory bytes to hold the product (after each total multiplication)
and at least four memory bytes to act as a temporary workspace, where the four
multiplications will be summed as they happen.

The initial value of the product is set to 0001h in lines 21 -25 of the listing
in Table[213] and the 7-byte temporary workspace cleared in lines 30-33. The
actual 4-stage multiplication of the partial product to the integer byte n takes
place in the following lines 35-48. This is shown diagrammatically at the right
of Fig.[2.6, from where it can be seen that each process is similar, but with the
addition shifted left once each move towards the MSB of PROD. Thus the word
n X [PROD+3] is added to TEMP+5:TEMP+6, with any carries up to TEMP+3 (no
more, as we know the result will never exceed four bytes). The second product of
n X [PROD+2] is added to TEMP+4: TEMP+5, with any carry to TEMP+3. The word
n X [PROD+1] is summed to TEMP+3: TEMP+4, whilst the same 4-byte restriction
means that only the lower-byte of the final product n x [PROD] (i.e. [B]) need be
added to the temporary store.

Overflow
PROD PROD+3 TEMP TEMP+6
e e
| | |
| | |
[ DU I
First multiplication
and addition
——
| Second multiplication
I and shifted—once addition
[
r T
| | | Third multiplication
I I I and shifted—twice addition
[ |
r T i il m—
| | | | Fourth multiplication
I I I I and shifted—thrice addition
[ L N DR I

Figure 2.6 A memory map of the factorial process.

From the above discussion, we see that the addition process is different at
each position, as the 16-bit result from the multiplication "slides' from right
to left. This is a pity, as otherwise the four multiply/add steps are the same.
This inefficiency can be circumvented by allowing three buffer temporary bytes,
as shown dashed at the top of Fig. This allows us to put the multiply/add
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E000
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E008
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Table 2.13 Fundamental factorial-n code.
.processor m6809

Subrout1ne calculates the factorial of n (n')

; * EXAMPLE : n = 12; n! = 479,001,600 *

* ENTRY :nin Acc B; maximum va1ue 12 *
* EXIT :n! in 4 bytes PROD -> PROD+3 *
* EXIT : Acc.B = -1 (FFh) 1f error. (n>12) ELSE 00 *
o ededededededededede e e NNt Fedededededededededededede NN hhehhded A dhdt

.define ERROR = -

; Initialize

.psect _text

3412 FACTORIAL: pshs a,x ; Save these registers

3404 pshs b ; Put n away for safekeeping
Error condition

c10C cmpb  #12 ; IF >12 THEN an error condition
2306 bls CONTINUE ; ELSE continue

C6FF 1db #ERROR ; Put FFh in B to signal error
E7E4 stb 0,s ; and into where it is in the stack
204B bra FEXIT ; and exit with it

7F0003 CONTINUE: clr PROD+3 ; Initialize product to 0001h
7C0003 inc  PROD+3

7F0002 clr  PROD+2

7F0001 clr PROD+1

7F0000 clr  PROD
N <=1?

EGE4 OUTER_LOOP: 1db 0,s ; Get factor n (or residue) back
c101 cmpb  #1

2336 bls FEXIT ; IF <=1 then answer is in PROD
8E0004 Tdx  #TEMP ; Now clear temporary product area
6F80 CLOOP: clr ) X+ ; all five 7 bytes

8C000B cmpx  #TEMP+7

26F9 bne  CLOOP
Now begin the mu1t1p1e mu1t1p11cat1on (PROD = PROD*n)

8E0004 1dx  #PROD+4 Point to just past LSB product

E6E4 MUL_LOOP: 1db 0,s ; Get residue of n from stack

A682 Tda , =X ; and ith byte of product, i++

3D mul ; [D] holds the product

E306 addd 6,x ; Add it to temporary product

EDO6 std 6,X ; 6,X points into temp product area
A605 Tda 5,X ; Now add any carry to the third byte
8900 adca #0

A705 sta 5,x

A604 1da 4,x ; and to the next higher byte

8900 adca #0

A704 sta 4,x

8CFFFF cmpx  #PROD-1 ; 1 over the MSB product

26E6 bne MUL_LOOP ; IF not then again once Tleft

3001 Jeax 1,x ; Increment pointer to MSD product
A607  MOVE_LOOP: 1da 7,x ; Moving temporary product bytes
A780 sta , X+ ; which is the new product

8C0004 cmpx  #PROD+4 ; to its rightful place

26F7 bne MOVE_LOOP
n=n-1

6AE4 dec O0,s

20C4 bra OUTER LOOP

65E4 FEXIT: clr 0,s ; Zero (no error), to B in stack

; En

3504 ERR_EXIT: puls b ; Gets error condition from stack
3512 puls a,x ; Retrieve used registers

39 rts ; n! is in the four PROD locations

.psect _data ; Define the data area
PROD: .byte [4] ; The area holding the product
TEMP: .byte [7] ; The temporary product area
.end
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process in a loop ensuring that no other data object is inadvertently altered by the
slide leftward. In lines 36 - 48 of this loop, the X Index register is used to point to
both the relevant product byte (line 37) and, with offset, to the temporary addition
target bytes (lines 39-46). When the multiplication is over, the result becomes

Table 2.14 Factorial using a look-up table.

1 .processor m6809
2 ; e e e Fekd Fekdedek de e dedekek
3 ; * Subroutine calculates the factorial of n (n!) g
4 ; ¥ EXAMPLE : n = 12; n! = 479,001,600 *
5 ; * ENTRY : n in Acc.B; maximum value 12 *
6 ;% EXIT : n! in 4 bytes PROD -> PROD+3 *
7 ;% EXIT : Acc.B = -1 (FFh) if error (n>12) ELSE 00 *
8 , Fededededededededededededededede v dededededededededededededededededede e dhdedddddddd
9 .list +.text
10 .define ERROR = -1
11 ; Initialize
12 .psect _text
13 EO00 3430 FACTORIAL: pshs x,y ; Save registers
14 ; Error condition
15 E002 C10C cmpb  #12 ; IF >12 THEN an error condition
16 E004 2304 bls CONTINUE ; ELSE continue
17 E006 C6FF 1db  #ERROR ; Put FFh in B to signal error
18 E008 2016 bra FEXIT ; and exit with it
19 ; Get factorial out of table
20 EOOA 58 CONTINUE: 1Ts1b ; Multiply n by four
21 EOOB 58 1s1b ; as table is 4-wide
22 EOOC 8EE023 Tdx #TABLE ; Point to bottom of table
23 EOOF 3085 leax b,x ; Point to relevant table entry
24 EO011 10AE81 Tdy S X+ ; Get top two bytes, and advance pointer
25 E014 10BF0000 sty  PROD ; and put away
26 E018 10AE84 1dy 0,x ; Get lower two bytes
27 EO01B 10BF0002 sty  PROD+2 ; and put these away
28 EO1F 5F clrb ; Signal no error state
29 E020 3530 FEXIT: puls X,y ; Retrieve used registers
30 E022 39 rts ; n! is in the four PROD locations
31 ;
32 ; Now the table which is in the text (ROM) area
33 E023 00000001 TABLE: .double 1,1,2,6,24,120,720,5040
00000001
00000002
00000006
00000018
00000078
000002D0
000013B0
34 E043 0000 .word  0,9d80h,5,8980h,37h,5f00h,261h,1500h,1c8ch,0fc00h
9D80
0005
8980
0037
5F00
0261
1500
1C8C
FCO00
35 ;
36 .psect _data ; Define the data area
37 0000 PROD: .byte [4] ; The area holding the product
38 .end
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the new product (lines 51-56). n is decremented in situ on the System stack,
using the System Stack Pointer as an Index register (line 56), and the process
continued until n = 1 (line 28). On exit Accumulator_B is cleared to indicate
success (line 58), unless n is >12 on entry, in which case FFh is put into B (line 17),
and an immediate exit made. Notice how four bytes for the product and seven
temporary locations are reserved in the data program section (RAM) in lines 65
and 66.

As there are only 13 legitimate outcomes of the program for n = 0 — 12, a
more efficient technique is to use a look-up table. The coding for this approach
is shown in Table[2.14] Basically, the X Index register is pointed to the bottom of
TABLE (line 22) and » (stored in Accumulator_B) is used as an offset to point into
the relevant area. As each table entry occupies four bytes, B must be multiplied
by four (by shifting twice left in lines 20 and 21), so that it goes up in 4-byte steps.
The operation LOAD EFFECTIVE ADDRESS INTO X with the address mode B, X points
X to the entry in line 23 (the maximum value of B is 48, thus its sign extension
inherent with this address mode will have no deleterious effect). Now the high
word can be moved from the table to 2 bytes of memory via Index register_Y
(lines 24 and 25). As the Indexed with Post Double Increment address mode
is used, X will automatically point to the lower word, for a repeat performance
(lines 26 and 27).

The coding shows the assembler directive .DOUBLE being used for the first
eight table entries and .WORD twice for each of the remaining entries. This is
deliberate, as the assembler used here has a bug which gives incorrect values
for .DOUBLE above 32,767 (00007FFFh). Assemblers, as all other software, are
not immune to bugs! See Table[4.14] for a look-up table using .DOUBLE for this
situation.

It is interesting to compare the performance of the two implementations. The
former mathematical algorithm requires 96 bytes of ROM and 11 of RAM. Its
operation time varies with n, from 53 cycles with n = 0 or 1 to 1724 cycles with
n = 12. The tabular approach takes 84 bytes of ROM and 4 of RAM, and takes a
fixed 42 cycles for n between 0 and 12. In both cases an error situation requires
30 cycles. The conclusion is obvious.
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CHAPTER 3

The 68000/8 Microprocessor : Its
Hardware

At its inception, the microprocessor was perceived as a replacement for many
applications then implemented by standard logic circuitry. The considerable en-
hancement of facilities offered by second generation MPUs led to their use as the
engine of a number of simple general purpose computers, such as the APPLE IL
Whilst these were initially targeted at the home and education markets, the evolu-
tion of affordable magnetic disk technology quickly created an explosive growth
in their use in the business and scientific communities.

The large potential market thus opened up was the impetus in the develop-
ment of a new generation of more powerful MPUs. Although, as we have seen,
there was some movement in that direction by 8-bit devices, in the main the
opportunity was taken to expand the internal architecture to use 16 and 32-bit
registers and ALUs. As well as increasing the data throughput, especially where
floating-point computation is being used, this makes it easier to support larger
external buses. Along with enhanced power, a larger memory space and support
for data structures targeted to high-level languages was provided. Typically an
increase in execution speed of around ten was achieved by this strategy.

The Intel 8086/8088 16-bit MPU released in 1978 was designed to be com-
patible with the older 8-bit 8080/8085 MPUs, and as such perpetuated many of
their limitations. Internal registers were dedicated, rather than general purpose,
and the address range of 1 Mbyte was fractured into 64 Kbyte segments. Later
members of the family increased the register sizes and address capacity, with the
32-bit 80386,/486 being able to address 232 bytes. This family was popularized
by their use in the IBM series of personal computers.

First devices from the Motorola 68000 family were released in 1979 |1, [2}3].
In contrast these took the chance of breaking completely with the past gener-
ation. The 68000 MPU offered a 32-bit register structure from the beginning,
although the 16-bit data bus and ALU really marks it as 16-bit with 32-bit preten-
sions. A non-multiplexed address bus with effectively 24 lines gives a 16 Mbyte
directly addressable memory capacity. This was later extended to 32 lines in
the 68020/30/40 devices, giving a potential 4 Gbyte memory size. All the 8086
family as well as 68020 up, provide the capability to easily ride tandem with a
floating-point hardware co-processor; which considerably extends their capabili-
ties in mathematics intensive computing, such as computer-aided design graph-

56



INSIDE THE 68000/8 57

ics. In general the 68000 family is found in the more powerful personal comput-
ers, such as the APPLE Macintosh, as well as graphic workstations such as the
Hewlett Packard Apollo DN series.

All this growth in raw power has made the microcomputer at least as powerful
as a minicomputer from the last decade, but there has also been a spin-off into
the area of embedded microprocessor circuitry, with which we are concerned in
this text. Although the current 8-bit microprocessors are adequate in the ma-
jority of embedded applications, either singly on in multiple-processor config-
urations, many of the more powerful tasks are being implemented using these
newer devices. This is not necessarily due to their virtues, but because more aids
to hardware and software design, which have appeared in the last decade, have
been targeted in this direction. This is especially true in the field of compiler and
simulator work.

The 68000/8 is the second of our MPUs we have chosen to illustrate high-level
language techniques. This and the following chapter overviews its hardware and
software features.

3.1 Inside the 68000/8

Here we look at the register model of the 68000 and 68008 MPUs. A highly
simplified equivalent circuit of the former is shown in Fig. 3.1l Following the
classification developed in Section 1.1, we will discuss the internal attributes of
the device in terms of the mill, the register array and the control unit.

THE MILL

A 16-bit ALU implements in hardware the arithmetic operations of Addition, Sub-
traction, Multiplication and Division; the former with and without carry/borrow
and the latter in signed and unsigned representations. The logic operations of
AND, OR, Exclusive-OR, NOT and Shift are also provided.

Five flags in the associated Code Condition register (CCR) provide a status
report on ALU activity. The Carry, Negative, Zero and 2's complement oVerflow
semaphores are standard, but the eXtend flag needs some explanation. The X flag
is similar to Carry, but is only affected by Addition, Subtraction, Negate and cer-
tain Shift operations. Multiple-precision versions of these instructions use the
X flag for their carry; thus the familiar ADD WITH CARRY (ADC) instruction ap-
pears here as ADD WITH EXTEND (ADDX). For example, this means that a Compare
operation, which of course affects the C flag, can be done in between multiple-
precision operations without affecting the "true' carry information (which is in
X).

We shall see that the 68000 MPU directly operates on byte (8-bit), word (16-bit)
or long-word (32-bit) data. All CCR flags operate correctly (eg. Carry from bit 7,
bit 15 or bit 31 respectively), automatically reflecting the operand size.

As shown, the Code Condition register occupies the lower byte of the 16-
bit Status register; the upper field containing masks and bits which control the
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Status register
Control register Code Condition register

T[T Tene] [ T [XIN[z]v]c]
: : Interrupt R
: : Mask Do ECarry/Borrow
Priority : 1 1 oVerflow (2's complement)
: Level . Zero outcome
Supervisor/User state : Negative (MSB=1)
Trace on/off eXtend carry

operating mode of the processor. The three bits 12 I1 10 represent the Interrupt
mask. The MPU will only respond to an interrupt request signalled externally
on pins IPL2 IPL1IPLO, (IPL stands for Interrupt Priority Level) if this active-low
IPL number is above the mask number. For example, an IPL number Low High
Low (active-low 5) will trigger a level-5 request (IRQ5 in Fig. [3.1), if the mask is
set at between 000 and 100. The exception is a level-7 request, which is non-
maskable. More details are given in Section 6.1. The mask is set to level 7 at
Reset, thus inhibiting all but a non-maskable interrupt.

The 68000 MPU leads a Jeckyll and Hyde existence, in that it has two states
of existence, which are virtually independent of each other. These are somewhat
more prosaically termed the Supervisor and User states. When the MPU is Reset,
the S bit in the Status register is automatically set to 1, the Supervisor state.
Certain, so called privileged instructions, can only be executed in this state.
These instructions generally deal with the overall operation of the processor. For
example it is only possible to change the Interrupt mask in the supervisor state;
for example:

MOVE ~ #00100] 100 [00000000b , SR

sets the mask to level 4. Moving data into the Status register is a privileged
instruction (but not reading it).
The only way to exit the Supervisor state is to clear the S bit, for example:

ANDI #11@1111111111111b »SR

will clear bit 13 of the Status register and leave all else unchanged. As you might
expect AND IMMEDIATELY TO STATUS REGISTER is privileged, as is ORI #data, SR
(to set individual bits) and EORI #data, SR (to toggle individual bits).

Once in the User state you cannot return to the Supervisor state by simply
setting the S bit as the MOVE, ANDI, ORI and EORI #data,SR instructions are
illegal in this situation, (but note that the same instructions targeted to the CCR
part of the Status register are perfectly legal; for instance:

ORI #00000001b,CCR
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sets the Carry flag. The only way back to the Supervisor state is when an inter-
rupt or Trap occurs (a Trap is a type of Software interrupt, and is described in
Chapter 6).

What is the point in having two distinct states? In a multitasking environment
(more than one program running concurrently on the same machine) it is usual
to have a master program, known as the operating system. The operating system
provides resources to the user program, such as an interface to a magnetic disk
store. Where more than one user program appears to run simultaneously, it may
switch between these programs in a time-slice manner in a fairly complex way [4].
As a simple example, consider a microprocessor development system to which
software can be downloaded into RAM, whence it can be run and tested. The
operating system, here called a monitor, usually resides in ROM. Once control is
passed from the monitor to the user program running in real time, the only way
back to the operating system is via a Software interrupt, Hardware interrupt or
Reset. In all these situations it is important to ensure that user programs do not
corrupt memory or other resources used by the operating system.

In the 68000 MPU, this operating system runs in the Supervisor state, into
which it enters automatically on Reset. The MPU informs the outside world which
mode it is running by using the three Function Code pins FC2 FC1 FCO, as detailed
in Section 3.2. Thus the hardware engineer can design the address decoder to
access Supervisor ROM and RAM chips in an entirely separate address space than
that accessible to the User program. Furthermore, the Supervisor and User modes
have separate System Stack Pointers, the Supervisor Stack Pointer (SSP) and User
Stack Pointer (USP). Thus, in reality there are two A7 registers, only one of which
is active in any mode. Both separate and mutually exclusive memory spaces
and System Stack Pointers make it difficult for the user program to accidentally
corrupt the operating software.

In small dedicated embedded systems there often is no operating system as
a separate entity. In such naked cases, it is normal to stay in the Supervisor
state and ignore the existence of the User state. We will do this for our project
in Part 3. However, the security of a two distinct states is important for the
reliable operation of more sophisticated embedded systems, especially where an
extensive interrupt driven configuration is being used.

Finally, bit 15 of the Status register is the Trace bit. When set to 1, a Software
interrupt/Trap will occur at the end of each instruction execution. This can be
used in conjunction with a suitable operating system routine to print out infor-
mation, such as the register contents after each step of the program [5]. The
Trace bit is turned off on Reset.

REGISTER ARRAY

As in all microprocessors, the 68000 has a Program Counter (PC) which essentially
points to the next instruction to be fetched. With this MPU, the situation is a
little more complex. This is because use is made of time when the external buses
would normally be idle, to bring down words from program memory into a 2-word
prefetch queue buffer [1]. For example, when a Branch is executed, both the next
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instruction and the Branch-to op-code will already be in the buffer. Which one
executed, will depend on the outcome of the condition test. Like most of the
registers, the PC is 32-bit wide, but in the basic 68000 MPU only the lower 24 bits
have any connection to the external address bus.

Two arrays of eight 32-bit registers are of major concern to the programmer.
These are functionally divided into Data and Address registers. Data registers
provide the source or/and the destination data for most operations. The Ad-
dress registers hold pointers to data stored outside in the MPU's memory. Mo-
torola have made a considerable effort to ensure that these registers behave in a
consistent and regular manner (they use the term orthogonal); for example any-
thing that can be done on DO can also be done in exactly the same manner on,
say, D7. However, they have made a clear distinction between registers holding
operational data (Data registers) and those used to compute addresses (Address
registers).

The eight Data registers are the equivalent to the one or two Accumulator reg-
isters found in most 8-bit MPUs. Most instructions use at least one Data register
to hold a source or destination operand; for example:

ADD.L [ea],DO ; [DO] <- [DO] + [eal
adds the 32-bit long operand at some effective address (ea) to DO, answer in DO.
ADD.L D1, [eal] ; [ea] <- [ea] + [D1]

adds the long operand at some ea to D1, answer in ea.
Any Data register can be treated as an 8-bit, 16-bit or 32-bit Accumulator; for
example:

CLR.L D2 ; [D2(31:0)] <- 00000000 00000000 00000000 00000000
MOVE.B #0FFh,D2 ; [D2(7:0)] <- 00000000 00000000 00000000 11111111
MOVE.W #OFFFFh,D2 ; [D2(15:0)] <- 00000000 00000000 11111111 11111111
MOVE.L #OFFFFFFFFL,D2 ; [D2(31:0)] <- 11111111 111111311 1113113111 11111111

Any bits outside the target field remains unchanged. I have used the notation
D2 (n:m) as meaning bits n through m of Data register 2. Most instructions acting
on Data registers come in all three size varieties, indicated to the assembler by
using the extensions .B (for byte), .W (defaults to word) and .L (for long-word).
Two bits in the op-code word are used to represent the size, as shown in Fig.[4.4
There are also a few instructions which can affect any bit in a Data register; for
example:

BSET #12,D4 ; Sets bit 12 of D4.L high, the rest unchanged.

In order to make it difficult to use an Address register for anything other than
its legitimate role, only a small range of special instructions can be used to alter
their contents. For example, to set up A0 to address 0000C000h we have:

MOVEA.L #0CO00OL,A0 ; [A0(31:0)] <- 0CO0Oh

An ordinary MOVE cannot target an Address register, although it is possible to
copy the data in an Address register to a Data register; for example:
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MOVE.L Al,D4 ; [D4(31:0)] <- [A1(31:0)]

Other Address register modification instructions include (ADD TO ADDRESS
REGISTER) ADDA, (COMPARE WITH ADDRESS REGISTER) CMPA and (SUBTRACT FROM
ADDRESS REGISTER), SUBA. Except for CMPA, such operations do not affect the
CCR flags. Only long and word-sized operations are allowed. The full 32-bits are
always affected, even where word-sized operations are used. In this case, bit 15
is sign-extended to 32 bits; for example:

MOVEA.W #0CO00h,A0 ; [A0(31:0)] <- FFFFCOOOh

There are no byte-sized operations on Address resisters.

Like the Data register array, all Address registers behave in the same way,
except A7 is special in that it is used as the System Stack Pointer for subroutines
and interrupts. The MOVE MULTIPLE (MOVEM) instruction, which when targeted to
A7 is equivalent to Push and Pull in other MPUs, can also be used with any other
Address register (see Section 4.1).

The Address registers have their own arithmetic circuitry, allowing effective
addresses to be calculated in parallel with any data calculation. Like the 6809 MPU,
the 68000 has an extensive range of Indexed addressing modes; for example:

MOVE.B 64(A0,D7.L),DO ; [DO(7:0)] <- [64+[A0(31:0)]+[D7(31:0)1]

copies the contents of the data byte located in wherever AO points to plus the
32-bit variable in D7 plus the constant 64 into the lower byte of DO! Incidentally,
if there is going to be lots of activity around this area of memory, the instruction:

LEA 64(A0,D7.L),Al ; [A1(31:0)] <- 64+[A0(31:0)]+[D7(31:0)1]

puts the effective address (AO.L plus DO.L plus 64) in Al; and future accesses
can be made without further calculation using A1 as a pointer. More about LOAD
EFFECTIVE ADDRESS and address modes in Chapter 4.

CONTROL CIRCUITRY

The 68000's Instruction decoder uses a microcoded design [6] as opposed to
the random logic employed by 8-bit processors, such as the 6809. The order of
magnitude increase in complexity exhibited in 4th generation devices makes the
design and testing of the more efficient random logic circuitry difficult. Thus
the disadvantages of larger and slower circuitry are considered more than offset
by the advantages of simplicity of design and testing, as well as the flexibility
of an easier change or enhancement of operation. In a microcoded design, the
sequence of steps in implementing an instruction are stored in integral ROMs [2].

The 68008 MPU is an 8-bit data bus version of the 68000. Despite the reduced
external functionality, as can be seen from Fig.[3.2] internally the two processors
are the same. Software is identical for both processors, although execution times
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are typically 40% longer, due to the larger numbers of 8-bit fetches, as opposed
to 16-bit equivalents [7]. This still makes the 68008 a powerful alternative to a
purely 8-bit MPU, and it is often used for this purpose in embedded MPU circuitry.
Although the device itself is similar in price to its bigger brother; the smaller
package, bus width and number of memory chips (see Figs.[3.11] B.12] and 13.3)
considerably reduces board space and hence costs.

3.2 Outside the 68000/8

The 68000 MPU is available in a 64-pin package, which is shown in Fig. to-
gether with the 48-pin 68008. Unlike the 8086 family, all bus signals are non-
multiplexed. All signals are TTL voltage-level compatible. The 68HCO000 is a
CMOS version with slightly different electrical and timing specifications. Unless
otherwise stated, figures are given for the normal HMOS version.

ADDRESS BUS and ADDRESS STROBE (a,, & AS)

The term address' is normally used in a rather careless way without qualification.
Address of what? In an 8-bit processor, at the hardware level it can be taken as
the bit pattern on the address bus, which is externally decoded to physically
enable the target 8-bit byte in memory or port onto the 8-bit data bus. Thus it
is a byte address. In a 16-bit processor, it is a word address; that is, points to
a word in memory space. In a high-level language, what meaning do we attach
to the address of, say, an object comprizing an array of ten byte-sized elements
stored in consecutive memory locations? The general convention is to specify
the lowest byte address of the object. This is mainly for historic reasons, as MPU
technology came of age with 8-bit devices. Thus, if the array fred[ ] is stored
in memory between byte addresses 01C030h and 01CO3Ah, then its address is
01C030h. In the 68000 MPU this base address is used for word and long-word
sized objects. Thus the instruction MOVE.W 01C030h,DO0 will bring the object

MSB 1€030h LSB 1C031h | down into DO(15:0).

The physical address bus reflects this natural word size by omitting line ag.
Thus each pattern on the bus ay3-a; spans two internal byte addresses az3 -ag,
one even and one odd. As we shall see, the missing ag line is implicitly available
in the guise of the two Data Strobe lines. Up to 8 Mwords or 16 Mbytes are directly
accessible on this address bus. The 68008 MPU has a natural byte-sized word, as
reflected in its byte organized address bus, which does explicitly provide an ag
line. This 68008 has 20 address pins, from ajg to ag, giving a 1 Mbyte address
space (there is a 52-pin version with 22 lines).
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Figure 3.3 68000 and 68008 DIL packages.

Address_Strobe (AS) is asserted when the state of the address bus is valid, see
Figs.[3:60 &[3-71 When enabled, the address lines can drive up to four LSTTL loads
into a 130 pF capacitive load. AS can similarly drive six LSTTL loads. Both sets of
lines are off when in a direct memory access (DMA) mode, whilst only the address
bus is off when halted.

DATA BUS and DATA STROBES (d,, & UDS / LDS / DS)
The 68000 MPU uses a single bi-directional 16-bit data bus to carry both in-
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struction and operand data to the MPU (Read) and from (Write). There is a prob-
lem here, in that the 68000 sees a byte organized world out there through a
word-sized eye. Figure [3.4] shows the execution cycle of a MOVE instruction in
byte, word and long-word versions. In the case of a Read-byte action, the ac-
tual data lines used for the transfer depend on whether an even address (upper
eight lines) or odd address (lower eight lines) is specified. Data as considered

in byte-sized lumps is organized as ups EVEN Lps °PP|. Thus the

Upper_Data_Strobe is seen to be equivalent to the missing ag (active when ag
is 0, that is on even byte addresses) and Lower_Data_Strobe is active when ag is 1
(odd byte address). Thus the two Data Strobes have a dual role. Firstly they signal
when data is valid during a Write action, as shown in Fig.[3.7. Secondly they can
enable either the upper or lower byte of an addressed word, effectively enabling
the 16-bit data bus to carry a single byte from a word-organized memory space.

A word transfer is signalled with both UDS and LDS being together asserted,
and the two bytes feeding the bus simultaneously. Notice that the most signif-
icant byte (MSB) is always in the even address (lower byte address) in common
with all Motorola MPUs (see page 20). A long-word transfer simply involves two
word transfers in sequence. As can be seen, the execution time here is longer by
four clock periods (see Fig.[3.5) due to the extra transfer cycle. Byte and word
execution takes the same time. In both word and long-word cases the data has to
be organized starting with an even address (MSB). Attempts to do an odd-address
word or long-word access; for example:

MOVE.W 0C101h,DO ; This 1is erroneous

is an error, and the 68000 will terminate execution by returning to the Supervisor
state via an Address Error Trap (see Section 6.2). o

The 68008 has only a byte-sized data bus and a single Data Strobe (DS). There
is no problem here, as address line ag is provided explicitly to reflect the natu-
ral byte size of the data bus, and thus each target memory byte is individually
enabled. This is exactly the same as an 8-bit MPU seeing the world through an
8-bit eye. Nevertheless, the even boundaries restriction for word and long-word
memory data are retained for compatibility with the 68000 processor. Execu-
tion times for the 68008 are shortest for a byte operand; word and long-word
operands taking one and three extra access cycles respectively. Fetching the op-
code also takes twice as long. At a clock frequency of 8 MHz, the 68000 moves
a word to a data register in 2 us, whilst a 68008 takes 4 us. However moving
between registers; for example:

MOVE.W D7,DO ; A register to register move

takes % us in both cases. The moral being to keep as much in the Data registers
as possible.

When the data lines and DS signals are enabled, they can drive up to six 74LS
loads and 130 pF without external buffering. Data lines are high-impedance when
the processor is halted or in a DMA mode. DS signals are off only during DMA.

Reset

Asserting both Reset and Halt together initiates a total Reset of the processor.
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Figure 3.4 Memory Organization for the 68000.

This must be held for at least 100ms when the power is initially applied. This
ensures stabilization of the internal bias voltage generator and external clock
source. Otherwise a duration of ten clock cycles is sufficient.

A total Reset causes the contents of the long-word at 000000 - 3h to be moved
into the Supervisor Stack Pointer (its initial setting) and long-word 000004 - 7h to
be moved into the Program Counter (the Restart address, see Fig.[6.5)). The Status
register is also set to Supervisor state (S = 1), Trace off (T = 0) and Interrupt
mask to 7 (12 11 10 = 111). No other registers are affected.
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Reset can also act as an output signal, activated by the privileged instruction
RESET. This drives the Reset pin low for 124 clock periods, which can be used
to reset peripheral devices. Because of this bi-directional action, external restart
circuitry must be more complex than a simple switch. An example of a typical
circuit [8] is shown in Fig. [I3.3] Reset will also be driven low, together with Halt
when a Double-bus fault occurs, as described in the next paragraph.

Halt

Like Reset, this is also a bi-directional line. As an input it can be used in conjunc-
tion with Reset or alone. When asserted alone, it will stop the processor after the
current instruction is finished. The address and data buses will then be floated,
and other Control outputs negated. If Halt is then released for one cycle, the
processor will execute the next instruction and then stop. So, Halt can be used
to single-step the processor for debug purposes [9].

As an output, Halt is driven low (together with Reset) when the initial Super-
visor Stack Pointer setting obtained from the Vector table on Reset is odd or a
Bus Error is active in an exceptional event (see page [L61). This is known as a
Double-bus fault. Halting the MPU is the obvious thing to do in these cases, as
such events are unrecoverable.

Read/Write (R/W)

This is low during a Write cycle, otherwise high. It is floated during DMA and, as
a precaution, normally has a pull-up resistor to prevent erroneous writes during
this situation. It can drive up to six LSTTL loads into 130 pF.

Data_Transfer_ACKnowledge (DTACK)

This is a signal sent back by the addressed device to indicate that the peripheral's
datais valid during a read cycle and that the peripheral is ready to accept the data
during a Write cycle. This asynchronous handshake protocol is discussed in detail
in the next section.

Interrupt_Priority_Level (IPLOIPL1 IPL2)

These input pins are driven from external devices requesting an interrupt. The 3-
bit active-low code thus placed is its priority level, ranging from zero (111) for no
interrupt (quiescent state) to seven (000) for a non-maskable top-priority request.
The IPL pins are constantly monitored, and any change lasting a minimum of two
successive clock periods is internally latched. At the end of each instruction, the
latched request level is compared with the Interrupt mask bits setting in the Status
register and acted upon if higher. If masked to level 7, a change from a lower level
to level 7 request will trigger an edge-triggered non-maskable interrupt response.
More details in Section 6.1.

The 68008 MPU (except in its 52-pin version) internally connects the IPLO and
IPL2 lines as shown in Fig. This means that only levels where bits 0 & 2 are
the same (117=0, 1071 =2, 010=5 and 000 = 7) are available.
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Bus_ERRor (BERR)

This input acts as a special type of interrupt used to inform the processor that
something has gone wrong out there. As an example of what can go awry, perhaps
the addressed peripheral has not sent back its DTACK acknowledge signal. If
this continues indefinitely, the processor will hang up forever waiting for the
peripheral to respond. Using a re-triggerable monostable activated by DTACK to
drive BERR would ensure that in the absence of a correct response, say within
10ms, the monostable will relax and alarm the processor. The use of a ~watch-
dog' timer like this can be extended to ensure that the veracity of the program
in high-noise situations, which can corrupt data and address lines, causing the
processor to go off to some illegal memory space and do its own thing. By using a
few lines of the legitimate program to trigger a watch-dog at some regular interval,
a Bus Error can be signalled if this area of program is not entered. See Section 6.2
for more details. If a Bus Error occurs during the Restart process, signalling that
the Reset vectors cannot be accessed, then the MPU stop with the HALT pin low.

During normal execution, if the external error-detection circuitry also drives
the Halt line in the correct fashion, the processor can be persuaded to rerun the
cycle which caused the error [10].

When a Bus Error occurs, the processor pushes data onto the Supervisor stack,
which can then be used by the operating system for diagnostic purposes. If a Bus
Error continues to be signalled, then a Double-bus fault is said to have occurred.
The processor signals this catastrophe by bringing Halt low and stopping.

Function_Code (FC2 FC1 FCO0)

These three outputs inform the outside world concerning the state of the proces-
sor according to the codes:

FC2 FC1 FCO

0 0 0 User state accessing Data memory

0 1 0 User state accessing Program memory

1 0 0 Supervisor state accessing Data memory

1 1 0 Supervisor state accessing Program memory
1 1 1 Interrupt acknowledge

Being able to distinguish between User and Supervisor states allows the hardware
engineer to design address decoding circuitry which accesses different RAM and
ROM chips. Knowing that an interrupt is being serviced is useful in cancelling
the request, as discussed in Section 6.1.

Function_Code outputs can drive up to four LSTTL loads into 130 pF. They go
high impedance on DMA.

Bus_Request (BR)

External devices that wish to take over the buses for direct memory access (DMA)
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do so by asserting BR for as long as necessary. Tie high if not being used.
Bus_Grant (BG)

The 68000 asserts BG in response to a bus request. Once the Address_Strobe is
negated, the DMA device can take over the buses.

Bus_Grant_ACKnowledge (BGACK)

Before taking over the buses, the DMA device checks that no other DMA device
is asserting BGACK. If it is, the new device waits until BGACK is negated before
asserting its own BGACK and proceeding. All DMA devices have their BGACK
outputs wire-OR'ed together. The 68008 does not have this handshake input
(except for the 52-pin version) and so can only handle systems where only one
DMA device is present.

CLocK (CLK)

This must be driven by an external TTL compatible oscillator. Small crystal con-
trolled DIL packaged circuits are readily available for this purpose. Rise and fall
times should be 10ns or better (8 & 10 MHz). Maximum frequency versions of 8
and 10 MHz are readily available with 12.5 and 16 MHz (not 68008) variants ob-
tainable. The 68040/68060 can run up to 50 MHz. A typical Read or Write cycle
needs four clock pulses (see Figs.[3.5 & [3.6), thus taking between 500 ns (8 MHZ)
through to 80ns (50MHz). The 68000/8 has internal dynamic circuitry, so has
a lower clock frequency bound (2 MHz for the HMOS devices, 4 MHz for CMOS
versions).

E

This output is CLK frequency divided by ten (six low, four high). It is equivalent to
the same-named signal in the older 6800 and 6809 MPU's (see Figs.[L.3|&1.4), and
is used when interfacing to the older style specialized 6800-oriented peripheral
devices. It can drive up to six LSTTL loads at 130 pF.

Valid_Memory_Access (VMA)

This is also an old-style' 6800 type signal (not 6809). It indicates that the address
bus datais valid, and is used as an Address Strobe synchronized to E for old-style'
peripheral devices, such as the 6821 PIA (see Fig.[3.14). This is not available on the
68008 MPU, but can be generated with external circuitry [11]. It is only generated
when external circuitry asserts the MPU's VPA pin, and then will take some time
to lock into the E signal.

Valid_Peripheral_Address (VPA)

This input, which is usually driven from the address decoder, indicates that the
location the MPU wishes to communicate with is populated with a 6800-style
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peripheral, and that a special 6800-type data transfer cycle (using E & VMA) should
be used. VPA is also used to indicate that the processor should use automatic
vectoring to respond to an interrupt, as described in Section 6.1.

Power (V. & GND)

The HMOS 68000/8 MPU dissipates 1.5W maximum at a V. of 5 = 0.25V and
a mean current of 300 mA. However, current peaks of as high as 1.5A can be
expected. The CMOS 68HC000 uses a maximum average current of 25mA at
8 MHz (35 mA at 12.5MHz), but still may require peaks of 1.5 A. These figures do
not include that taken by any loads.

3.3 Making the Connection

Like all microprocessors, the 68000/8 communicates with the outside world via
its data bus through interface circuitry. The sequence of events during a trans-
action is a consequence of the interplay of the various control signals. However,
unlike most 8-bit MPUs, the 68000/8 is controlled in an asynchronous manner,
where the completion of a Read or Write cycle is dependent on the source or
destination responding with a handshake when ready to go ahead. In the simple
open-loop synchronous situation, as shown in Fig. [I.5] the transaction is com-
pleted at the end of the clock cycle irrespective of the state of readiness of the
peripheral. Although it is certainly possible to extend the cycle by freezing the
clock (in the 6809 by using MRDY), this is very much the exceptional way of acting.

The closed-loop nature of asynchronous data transfer is clearly shown in
Fig. B.5] where feedback lines exist between each peripheral in the system and
the microprocessor. When contacted (i.e. enabled by the address decoder) the ex-
ternal device responds when ready with a Data_Transfer_ACKnowledge (DTACK)
signal. Only then will the MPU complete the transaction.

We will use timing diagrams to look at this sequence of events in more detail,
both when doing a Read and doing a Write to the outside world. In both cases the
clock is internally split into eight phases (see Fig.[3.1), each of which initiates some
micro-action. Based on this division, the sequence of events can be illustrated.

The Read cycle of Fig.[3.6lshows the address stabilizing early in the cycle, with
the AS and DS Strobes then being asserted. DS is used as the generic term for
UDS and LDS; one or both of which are asserted according to the rules of Fig.[3.21

When the peripheral is ready, it responds by putting its data on the bus and
asserting its handshake, DTACK. The MPU then proceeds by latching in the data.
The MPU then terminates the cycle by negating its Strobes. The peripheral then
responds by removing its data and raising its DTACK.

In more detail:

1. The address bus's data will be valid within t¢ sy (Clock Low to Address Valid)
of the beginning of phase 1 (¢1).
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2. The AS and DS strobes are asserted by tcys, (Clock High to Strobe Low) follow-
ing the start of ¢».

3. The peripheral device responds when ready by asserting its DTACK line. If this
can be done by tag (Asynchronous Setup Input) preceding the end of ¢4, then
the cycle will go ahead. Otherwise, the MPU will insert wait states of one clock
period each (two phases) until DTACK is recognized on the falling edge.

4. The peripheral must set up its data on the bus no less than tpc (Data In to
Clock Low) before the —\__ of ¢, to ensure a successful read by the processor.

5. The AS and DS Strobes are then negated by no more than ¢ sy (Clock Low to
Strobe High) following ¢g.

6. The peripheral has up to two clock periods from this point to negate its DTACK
and remove its data.

Function_Code values, not shown in the diagram, are stable for the duration
of the asserted Strobe signals, as is R/W (high for Read.).

The Write cycle time sequence shown in Fig. 3.7]is broadly the same as for
reading. This time data is put on the bus by the MPU, and it is the job of the
peripheral device to capture this and acknowledge with the DTACK handshake.
The Data_Strobes are not asserted until the outgoing data is valid; somewhat later
in this situation than the Address_Strobe; which indicates a valid address. After
UDS/LDS is negated, the data is taken off the bus, and the peripheral should now
terminate its handshake.

In more detail:

1. The address bus will be valid within t 5y (Clock Low to Address Valid) of the
beginning of phase 1 (¢1).

2. AS is asserted by tcys; (Clock High to Strobe Low) following the start of ¢».

3. The MPU sends out data on the bus by no later than tc pg (Clock Low to
Data Out) following ¢s.

4. The UDS/LDS Strobes are asserted by tcys, following the start of ¢4.

5. The peripheral device responds when ready by asserting its DTACK line. If this
can be done by tag (Asynchronous Setup Input) preceding the end of ¢4, then
the cycle will go ahead. Otherwise the MPU will insert wait states of one clock
period each (two phases) until DTACK is recognized on the clock —\__ .

6. All Strobes are negated by no more than t¢ sy (Clock Low to Strobe High) fol-

lowing ¢g.

Anytime after this, the peripheral can lift its DTACK handshake.

8. The MPU lifts its data off the bus by no less than tsygp, (Strobe High to Data Out
Invalid) after the Strobes negate. This is the time a peripheral has to grab the
data (including its setup time) after a _/~ Strobe edge (30ns for the 8 MHz
device, 20 and 15 ns for the 10 and 12.5 MHz devices respectively).

N

Not shown are the Function_Code settings, which are valid for the duration of
the AS Strobe, whilst R/W is low for Write as long as the DS is active.

Designing an address decoder involves the definition of logic which will imple-
ment the Boolean equations describing which combinations (addresses) of input
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variables (address lines) are to select the various peripheral devices. In this re-
gard the 68000/8 does not differ from that for an 8-bit processor (see Section 2.3),
although the larger number of variables is a further inducement to use more so-
phisticated implementations, such as programmable array logic [12]. This is es-
pecially the case where high speed versions demand small propagation delays. It
is beyond the scope of this book to discuss the merits and features of the various
circuitry, reference [13] gives a good review for the interested reader.

A rather unlikely, but nevertheless working circuit, is shown in Fig.[3.8l Here
the 16 Mbyte address map can be considered split into four quarters using a3
and ayy. A 74LS154 4 to 16-line decoder further splits the quarter defined by
arzapy = 00 into 16 pages of 256 Kbytes each. Page 0 is again sub-divided into
eight “paragraphs' of 16 Kbytes, which are assumed to directly enable the labelled
devices. In the cases where only a single peripheral interface is indicated, further
levels of decoding may be used. EPROM_EN combines two of these paragraphs
using a 74LS08 AND gate, as 27128 EPROM pairs have a 16 Kword (32 Kbyte)
capacity.

The secondary decoder is qualified by AS. As AS is only asserted when the
address signals have stabilized, this ensures that there are no spurious outputs
during times when the address bus is in transition. With AS being asserted ap-
proximately one clock phase after the address is valid, it should be applied to
the last decoder stage. This allows primary stages to ~get on with it' as soon as
possible, and hence reduce the decoder's overall propagation delay. When high
clock-speed versions of the 68000 are used, AS is commonly fed directly to the
peripheral or memory's Chip Enable, to further reduce this delay; an example
being shown in Fig.[3-TTib).

Address decoding for the 68008 is identical to that for the 68000, but only
address lines up to ajg are available. Thus, a functionally equivalent page 0 split
could be obtained by replacing the 7415154 decoder by a 74LS08 AND gate acting
on ajg and a;g.

As we have seen, each peripheral addressed by a 68000 family MPU must re-
ply by asserting the DTACK line when ready. All 68xxx peripheral devices specifi-
cally designed to function in an asynchronous manner automatically provide this
handshake signal. An example if this is the 68230 Parallel Interface/Timer (PI/T)
shown in Fig. 3.13] However, memory chips and elementary interface devices
such as 3-state buffers and latches do not generate this information.

In the simplest of situations the 68000/8 MPU will run with its DTACK input
permanently asserted. No wait states will be inserted into its Read or Write cycle;
so all memory and peripheral interface must be fast enough to function correctly
in the allowed time. Figure [15.6] shows an example of this treatment of DTACK.

A slightly more sophisticated approach is depicted at the bottom of Fig. 3.8
Here the pulse actually enabling the relevant device is also fed back to acknowl-
edge readiness. This will activate shortly after AS is asserted, and will thus appear
well before the end of clock phase 4, and no wait states will be introduced. The
AND gate used to sum the Enable signals to the relevant interfaces and memory,
is open-collector. Thus other similar signals from elsewhere in the memory space
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Figure 3.8 A simple address decoder with no-wait feedback circuitry.
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Figure 3.9 A DTACK generator for slow devices.

t

can be wire-ORed to the one DTACK pin; see Fig.[3.9] The PI/T_EN of Fig.[3.8 does
not take any part in this scheme, as the 68230 provides its own open-collector

DTACK handshake output (see Fig. B.12).

Although this approach is more flexible than simply grounding DTACK, it
still assumes that the addressed device is fast enough not to require wait states.
Where fast 68000 MPUs are used, this is not likely to be the case for all periph-
erals. Peripherals such as EPROMs and LCD interfaces tend to be rather slow. In
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such situations a delay circuit is needed for each such DTACK reply. This may
take the form of a monostable, counter or shift register. An example of the latter
is given in Fig.[3.9. Normally when the device in question is not being accessed,
DEV_EN is high and all eight flip flops are low. The 741505 open-collector buffer
is then off. When the device is selected, DEV_EN goes low trailing AS by the ad-
dress decoder's propagation delay; thus releasing the register's CLR. As the serial
inputs are permanently held high, the flip flops will each in turn become logic 1,
with an advance from Qa to Qy on the rising edge of the 68000's Clock. Assum-
ing that the decoder's and 74LS05's propagation delay plus the 741.S164's setup
time is less than the difference between AS being asserted and t 55 before the end
of clock phase 4 (approximately one clock cycle, see Figs.[3:6] and [3.7), then wait
states of between 0 and 7 clock periods are available according to the position
of the link. Once the logic 1 reaches the link, the 74LS05's output goes low and
DTACK is asserted.

Two 74LS377 octal flip flop registers are used in Fig.[3.10 to illustrate the im-
plementation of an elementary 16-bit output port. The registers are both enabled
by the address decoder, and the data clocked in by one or both Data Strobes, as
appropriate (see Fig.[3.4). The rising edge of the Strobe is the active transition; @
in Fig.[3.7l There is a minimum of tsypo; between this point and the data becom-
ing invalid. In determining the margin, the hold time (5 ns) for the 74LS377 must
be subtracted. In the case of the 8 MHz 68000, this gives a worst-case margin
of 25ns, which shrinks to 10ns for the 12.5MHz version. There is no problem
meeting the 25 ns 741.S377 setup requirement.

From these figures, it is clear that the Data_Strobes should directly clock the
registers and not be gated via additional logic. For example; it is tempting to
use R/W ANDed with UDS/LDS to ensure that an accidental read from this port
does not latch in irrelevant data. The alternative of using R/W in conjunction
with OUT_EN is preferable for this purpose. The falling edge of UDS/LDS via an
inverter or gate cannot be reliably used as the clock, as it is just possible that
if tcipo is @ maximum and tcpg is @ minimum, the data will not be valid at this
point.

In the case of the 68008 MPU, one 74LS377 will give an 8-bit output port, with
DS acting as the clock (see Fig.[I3.1). The same timing considerations hold.

The 6264 is a static CMOS 64 Kbit RAM organized as an 8K x 8 array. It is
commonly available in 100, 120 and 150ns access time selections. Taking the
Hitachi HM6264CP-10 as an example of a 100 ns device; the access time defining
the minimum period from a stable address and device enabled (CST = 0, CS2 =
1) before data becomes valid during a Read. When writing, the address must
be stable for the full 100 ns and for at least 80ns of this time the device must
be enabled and R/W = 0 for a successful Write-to action. The address must
remain stable for at least 5ns after CS1 or R/W change state, or 15ns after CS2
deactivates.

Referring to Fig.[3.11{a), we see that two broadside 6264s provide the 16 bits
at each word address. As there is no ag byte address bit available from the 68000
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(a) Connecting the RAM chips to the buses.
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(b) An improved scheme for high-speed MPU versions.

Figure 3.10 A simple word-sized output port.

MPU, address lines a; -aj3 drive the Ag-A;> RAM inputs, with UDS and LDS ef-
fectively providing the byte selection.

To determine whether wait states are required in using these devices, we need
to analyze the timing constraints [14]. Essentially the RAM is enabled for the
duration of the Data Strobes. As this is shortest during a Write cycle, we will use
this as the determining factor. From Fig. B.7] the worst-case width of UDS/LDS
is @ - , or three clock phases — tcypy; if we assume a minimum ¢ sy of zero
(no figure is given). For the 8, 10 and 12.5 MHz MPUs, this is 120, 90 and 60ns
respectively. Thus the 80ns HM6264LP-10 figure is suitable for up to 10 MHz
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(a) Connecting the RAM chips to the buses.
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(b) An improved scheme for high-speed MPU versions.

Figure 3.11 Interfacing 6264 RAM ICs to the 68000 MPU.

systems. Actually we are being unduly pessimistic, as the 68000 data sheet gives
tps. (Data Strobe Low) minimum as 80ns for the 12.5MHz MPU. For the Read
cycle, 160ns is the equivalent 12.5 MHz figure, rising to 240ns for the 8 MHz
version.

We have assumed that the propagation delay through the address decoder is
such that RAM_EN is asserted before the Data Strobes. During a Write cycle this
is the time between and | 2 | in Fig. B.7Z} around one clock cycle. In the case of
a Read cycle, the propagation delay must be subtracted from the tpg time that
the Data Strobes are low. In higher speed circuits, this propagation delay can be
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minimized by omitting AS from the address decoder and using it to qualify the
R/W signal, as shown in Fig.[3.11Ib). This is more economical than qualifying the
RAM_EN signal, as the modified R/W (i.e. RAM_R/W) can be used for any number
of RAM chips. The inverted MPU_R/W is normally used in this situation to turn
off the output 3-state buffers during a Write, by activating Output_Enable (OE).
Turn-off time is quicker from OE than from the RAM's Chip Select or R/W.

EPROMs cause problems as they tend to be very much slower. A typical 27128
16Kx8 EPROM has a 250 ns access time from stable address/asserted Chip_Select.
Even at 8 MHz, there is only 235 ns from the falling edge of AS until within the
setup time before the end of ¢g (5 X cycles — tcps. — tpocL). Fortunately, the time
from Output_Enable (OE) to data valid is much less; for example 100ns for the
Hitachi HN4827128AG-25; and the circuit of Fig. makes use of this means
of access. Here CS is enabled whenever R/W is high; that is, during each Read.
The R/W signal is valid no later than 70ns after ¢o, which gives around 350 ns
enabling time to the end of ¢g, less setup time tpc. ( in Fig.[3.6). Provided
that the EPROM's OE is enabled at least 100 ns prior to this endpoint, a successful
Read will occur. As the time between AS enabling the address decoder and this
point is 235 ns, 135 ns is left to more than adequately cover this delay.

Faster CMOS EPROMSs, such as the 150ns National Semiconductor NMC27C64
(60 ns from OE) facilitate no-wait state operation for faster processors. Alterna-
tively the contents of slow EPROM could be transferred “lock-stock and barrel'
to fast RAM at the beginning of the program, and the EPROM henceforth ignored.
This technique is frequently used in IBM PCs, where the BIOS is shadowed in RAM
during the booting process.

RAM and ROM are interfaced to the 68008 MPU in the same way, but this time
the MPU provides the byte-address bit ag, and this goes to the memories' Ag line.
DS replaces UDS and LDS, see Fig. [13.3]

The 68000 family are supported by a series of dedicated peripheral interface
devices. The 68230 Parallel Interface/Timer (PI/T) is typical of these, providing
three 8-bit peripheral ports, two with handshake, and sharing functions with an
internal timer together with interrupt facilities. As shown in Fig. interfacing
is straightforward, with a Data Strobe enabling the device together with the ad-
dress decoder output. DTACK is internally generated and is connected directly to
the MPU's DTACK node. Handshaking for the Interrupts (one for the parallel in-
terface PIRQ/PIACK and one for the timer TOUT/TIACK) is provided, as described
in Chapter 6.

There are 25 internal registers addressed by the five Register Select inputs
(RS1 -RS5). As shown driven by address lines a; - as, they will appear at alternate
byte addresses. Although this presents little inconvenience, a special instruc-
tion, MOVEP, can transfer two or four bytes at alternate addresses to suit this
arrangement.

The two main peripheral ports can be set up to act as one 16-bit port, although
the rather strange decision to use an 8-bit data bus means that two cycles are
needed to transfer the data word. Programming the 68230 is complex and beyond
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the scope of this text; see reference [15] for a good description.
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Figure 3.14 Interfacing a 6821 Peripheral Interface Adapter to the 68000.

When the 68000 MPU was first released in 1979, the decision was taken to pro-
vide an operating mode to allow its use with the existing 68xx family of peripheral
interface devices. This would ensure that the MPU was immediately useful with-
out having to wait for further device introductions. We have already met the
6821 PIA in Fig.[1.9] and Fig.[3.14] shows this device in the alien environment of
the 68000.

Essentially a 68xx device prompts the 68000 MPU about its special status by
asserting the latter's VPA input, rather than DTACK; as shown in Fig.[3.8 The
Read and Write cycles are then synchronized to the E clock to give the normal

6800/6809-type synchronous data transfer sequence. The Valid_Memory_Address
(VMA) status output is used as an Address Strobe in this mode. DTACK should
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not be asserted during this time. As E is the 68000's clock divided by ten, then
the normal 1 MHz 6821 version is adequate up to 10 MHz systems. The 1.5 MHz
68A21 is suitable for the 12.5 MHz 68000 MPU.

References

(1]

[2]

(3]

[4]

[5]

6]

[7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]

[15]

Starnes, T.W.; Design Philosophy Behind Motorola's MC68000; Part 1: A 16-bit Pro-
cessor with Multiple 32-bit Registers, BYTE, 8, no. 4, April 1983, pp.70-92.

Starnes, T.W.; Design Philosophy Behind Motorola's MC68000; Part 2: Data Move-
ment, Arithmetic, and Logic Instructions, BYTE, 8, no. 5, May 1983, pp.342-367.

Starnes, T.W.; Design Philosophy Behind Motorola's MC68000; Part 3: Advanced
Instructions, BYTE, 8, no. 6, June 1983, pp.339-349.

Lawrence, P.D. and Mauch, K.; Real-Time Microcomputer System Design: An Intro-
duction, McGraw-Hill, 1987, Chapter 16.

Kane, G et al.; 68000 Assembly Language Programming, Osbourne/McGraw-Hill,
1981, Chapter 19.

Stritter, S and Tredennic, N.; Microprogrammed Implementation of a Single Chip Mi-
croprocessor, Prog. 11th Ann. Microprogramming Workshop, Nov. 1978, IEEE, pp.8 -
16.

Browne, J.W.; up Fits 16-bit Performance into 8-bit Systems, Electronic Design, 30,
April 15th, 1982, pp.183-187.

Wilcox, A.D.; 68000 Microcomputer Systems: Designing and Troubleshooting,
Prentice-Hall, 1987, Section 9.13.

Starnes, T.W.; Handling Exceptions Gracefully Enhances Software Reliability, Elec-
tronics, 11th Sept. 1980, pp.153 -155.

Clements, A.; Microprocessor Systems Design: 68000 Hardware, Software, and Inter-
facing, PWS-KENT, 2nd ed., 1992, Section 6.5.

Barth, A.J.; Designing with the 68008 MPU, 90, no. 1579, April 1984, pp.30-33 &41.

Cahill, S.J.; Digital and Microprocessor Engineering, Ellis Horwood/Prentice-Hall,
2nd ed., 1993, Section 6.1.

Clements, A.; Microprocessor Systems Design: 68000 Hardware, Software, and Inter-
facing, PWS-KENT, 2nd ed., 1992, Sections 5.1 & 5.2.

Wilcox, A.D.; 68000 Microcomputer Systems: Designing and Troubleshooting,
Prentice-Hall, 1987, Section 10.6.

Clements, A.; Microprocessor Systems Design: 68000 Hardware, Software, and Inter-
facing, PWS-KENT, 2nd ed., 1992, Section 8.3.



CHAPTER 4

The 68000/8 Microprocessor: Its
Software

Although the 68000 architecture represents a complete break with its progenitor
6800 family; its software is in reality an evolution rather than a break from ear-
lier implementations. Many of the characteristics exhibited by the 6809 instruc-
tion set (see Chapter 2) also appear in 68000 software, and indeed this is not
surprising as they both support high-level language compilation, with extensive
stack-oriented operations and a large repertoire of computed address modes.

The use of a full 16-bit op-code allows considerable scope in handling the
many instruction:op-code:register combinations. Nevertheless, a special effort
was made to make the assembly-level software user friendly. There are only
56 primary instructions [1], although variations on themes of several of these add
another 29 mmnemonics (eg. MOVE and MOVEQ for MOVE and MOVE QUICK). Most
instructions are orthogonal, in that they apply to all registers within a group (Data
or Address) in the same manner. The "rules of grammar' are fairly consistent
across the range of instructions with relatively minor quirks [2].

In this chapter we look at the more important of the instructions and their
address modes. We will tie these together with the same example subroutines
used to illustrate 6809 software in Section 2.3. The same assembler will be used
here, details of which were given at that point. 68008 software is identical to that
for the 68000 (except that only the lower twenty address bits are significant) and
we will use the term 68000 as generic of the two.

It would take a complete book, rather than a single chapter, to do justice to
assembly-level programming for such a complex processor. References [3]4}[5] 6]
are recommended to the interested reader.

4.1 Its Instruction Set

We will briefly look at the machine-code structure of 68000 instructions at the
end of the next section. As far as assembly level is concerned, instructions may
be classified as three kinds; that is, inherent, single- and dual-operand.

Inherent instructions have no operand, and are represented by mnemonic
only, for instance the instruction RETURN FROM SUBROUTINE:

87
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RTS ; Program counter is pulled from System stack {Coded as 4E75h}

Single-operand (or monadic) instructions, such as CLEAR, have only one entry
in the operand field, for example:

CLR.B OEOOOh ; [E000] <- 00 {Coded as 4439-0000-E000h}
CLR.L DO ; [DO(31:0)] <- 00000000 {Coded as 4480h}

Dual-operand (diadic) operations such as Move have the form:
Mnemonic  <Source operand>,<Destination operand>
For example:

MOVE.L DO,D1 ; [D1(31:0)] <- [D0(31:0)] {Coded as 2200h}
MOVE.B 4000h,0E000h ; [E000] <- [4000] {Coded as 03F9-4000-0000-E000h}
MOVE.W DO,0EO00h ; [E000:1] <- [D0(15:0)] {Coded as 33C0-0000-E000h}

Data Movement is the the most common operation executed. Reference [7]
reports a frequency count of about 33% for MOVE, and it is with this in mind
that we start with Table @.I] Here we can see that only three mnemonics cover
the range (see also LEA and PEA in Table[4.2). Of these the chief is MOVE, which
subsumes the Load and Store operations of the 6809 MPU. MOVE is so frequently
used that Motorola made it the most flexible of all the 68000 operations, a true 2-
address instruction. Datain 8-, 16- or 32-bit packets can be copied from anywhere
in memory, any register (except the PC) or immediately to any alterable memory
or to any register (except PC). All other 2-operand instructions must specify a
register as the source and/or destination, for instance ADD.B 0C000h, DO.

The MOVEA variation of the plain MOVE instruction must be used where an
Address register is the destination. For example:

MOVEA.L #0C000h,A0 ; [A0(31:0)] <- 0000C000 {Coded as 207C-0000-CO00h}

Like all specific Address register-destination operations, the CCR flags are not
altered, and only word and long-word sizes are permitted. Word-sized operands
are sign extended to 32 bits, for example:

MOVE.W #0C000h,A0 ; [A0(31:0)] <- FFFFCO00 {Coded as 307C-C0O00h}

The state of the CCR flags can be set up using the MOVE <ea>,CCR variant
(some assemblers use the non-standard mnemonic MTCCR for MOVE To CCR).
Notice that its size is word only (the .W is usually omitted) although the CCR is
byte sized. The Status register equivalent is MOVE <ea>, SR (or MTSR <ea>), and
is only legal in the Supervisor state, that is privileged; but a MOVE FROM THE SR,
MOVE SR, <ea> (or MFSR <ea>), can be made from anywhere. The MOVE FROM
THE CCR is only available on the 68010 MPU and higher family members.

The MOVE QuICK (MOVEQ) instruction is targeted exclusively to the Data regis-
ters. Itisused to setup a 32-bit Dataregister to a fixed long number between +127
and —128 (signed 8-bit). Of course an ordinary MOVE can be used, but as the im-
mediate data is included in the op-code for MOVEQ, the latter's execution is much
faster, as shown here:
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Table 4.1 Move instructions.

Flags
Operation Mnemonic XNzVC Description
Move Data, source to destination
data MOVE.s3 eal,ea2|e|./|/|0|0|[ea2] <- [eal]
to Address reg. [MOVEA.s2 ea,Dn o|e|e|e|e|[An] <- [ea]
quick MOVEQ #+dg,Dn|e|./|/|0]|0|[Dn] <- #=dg
regs to memory |MOVEM.s2 > Rp,ea |e|e|e|e|e|[-ea] <- >Ry
memory to regs|MOVEM.s2 ea,> R, |e|e|e|e|e >Ry <- [ea+]
to CCR MOVE.W ea,CCR |||V |+V|V|[CCR] <- [ea]
to SR MOVE.W  ea,SR VIVIVIVIVIISR] <~ [ea], privileged
from SR MOVE.W SR, ea eje|e|e|e|[ea] <- [SR]
Exchange Switch two registers
EXG.L R1,R2 o|e|e|ele|[R2] <--> [R1]
Swap Switch lower/upper words
SWAP Dn e|/|/|0]0|[D(31:16)] <--> [D(15:0)]
0 Flag always reset Rn Data or Address register n
1 Flag always set An Address register n
. Flag not affected Dn Data register n
N Flag operated in the expected way Dn(x:y) Dataregister n, bitsxtoy
s3  Three sizes, .B, .W, .L #+dg Signed 8-bit value
s2 Two sizes, .W, .L [1] Contents of
ea Effective Address or immediate data <- Becomes

MOVE.L #1,D0 ; [DO(31:0)] <- 00000001 (12~) {Coded as 223C-0000-0001h}
MOVEQ #1,D0O ; [DO(31:0)] <- 00000001 (4~ ) {Coded as 7001h}
MOVEQ #-1,D0 ; [DO(31:0)] <- FFFFFFFF (4~ ) {Coded as 70FFh}

where ~ indicates clock cycle. Thus the ordinary MOVE takes 1.5 us at an 8 MHz
clock rate against 0.5 s for a MOVEQ. The timings for the 68008 MPU are 24~ (3 us)
and 8~ (1 us) respectively. Note that all 32 bits of the Data register are affected.
There is no MOVEQ. B or MOVEQ. W; an ordinary MOVE must be used in cases where
only the lower 8 or 16 bits are to be setup.

Using a regular MOVE with the appropriate address mode gives the equivalent
of a Push or Pull operation; for example:

MOVE.L DO,-(SP) ; Same as PSHS DO (14~) {Coded as 2F00h}

pushes all of DO out to the System stack, after the System Stack Pointer A7 has
been decremented four bytes, and

MOVE.L (SP)+,D0O ; Same as PULS DO (12~) {Coded as 201Fh}

pulls four bytes off the System stack into DO.L and then increments the System
Stack Pointer. The actual System stack used depends on whether the MPU is in the
Supervisor or User mode, the assembler allowing the use of the mnemonic SP or,
indeed A7, for either System Stack Pointer. Note that a MOVE . B to/from the System
stack always results in a word being transferred, to preserve the evenness of the
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System Stack Pointer (i.e. A7). Any of the other Address registers may be used in
place of A7. Pre-Decrement and Post-Increment address modes are discussed in
the next section.

As there are 16 registers which may have to be pushed or pulled, clearly a
single instruction which can save or retrieve any or all Address and Data registers
at one go will be more efficient. The MOVE MULTIPLE instruction fulfils this task;
for example:

MOVEM.L D2/D3/D4/A2,-(SP) ; Same as PSHS D2,D3,D4,A2 (40~) {Coded as 48E7-3820h}

pushes all of D2,D3, D4 and A2 out to the System stack, the System Stack Pointer
ending 16 bytes down; and

MOVEM.L (SP)+,D2/D3/D4/A2 ; Same as PULS D2,D3,D4,A2 (44~) {Coded as 4CDF-041Ch}

pulls the register contents back out, restoring the System Stack Pointer to its
original value. Any Address register can be used in place of A7. In general, the
time taken for a multiple Push is 8 + 8n~ and multiple Pull is 12 + 8n~, where
n is the number of registers involved. Thus to Push a full register complement
takes 132 clock cycles (16.5 us at 8 MHz) against 224 clock cycles and 32 bytes
of program memory using ordinary MOVESs.

The MOVEM instruction uses a post-word to the op-code to indicate which regis-
ters are involved, as shown in Fig.[4.1]. If less than the full complement is involved,
then the order of storage in the stack is still that shown in the register list. There
is a word-sized MOVEM which only transfers the lower register words. This saves
stack space and time; however, onreturn all registers — both Data and Address —
are filled with the sign-extended long version of the stored word.

Less usefully, a fixed address can be used as MOVEM's address mode instead
of Pre-Decrement (registers to memory) or Post-Increment (memory to registers).
In this case no pointer marks the bottom of the dump, and the same address is
used for both directions.

EXCHANGE (EXG) swaps around the complete 32-bit contents of any two regis-
ters, Data or Address. SWAP acts only on Data registers, and exchanges the lower
and upper words. This is useful, for example, when using the Division opera-
tion, which produces a 16-bit quotient in the lower part of a Data register and
the remainder in the upper 16-bits. Using SWAP makes getting at the remainder
easier (see Table 4.12). The 68020 MPU has a byte-sized SWAP which exchanges
the lower two bytes. The 68000 can use a ROL.W #8,Dn to perform the same
function (see Table E.3).

The 68000 provides for Addition, Subtraction, Multiplication and Division op-
erations together with some ancillary instructions. The elementary Addition and
Subtraction operations are straightforward, with at least one of the operands
being a Data register, for example:

ADD.B D0,1234h ; [1234] <- [DO(7:0)] + [1234h]. Add <Source> to  <Destination>
SUB.W 1234h,D1 ; [D1(15:0)] <- [D1(15:0)] - [1234:5h]. Sub <Source> from <Destination>
ADD.L DO,D1 ; [D1(31:0)] <- [D1(31:0)] + [DO(31:0)]. Add <Source> to <Destination>



MOVEM.L (SP)+,D0-D7/A0-27 (Pull)

Before
SP #

TOS

(Push)

MOVEM.L DO-D7/A0-A7,-(SP)

After

MOVEA.L #0F003,SP
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. . . Absolute
OEFFC OFF | MovEM.L OEFFFh,D0-D7/A0-A7
] A7 MOVEM.L DO-D7/A0-A7,0EFFFh
OEFF8 ! OEFFB
AB
H, \ L
OFFF4 ! OEFF7
A5
o, L
OEFFO ! QOEFF3
A4
H ) L
OEFEC ! OEFEF
A3
H, \ L
OFFES ! OEFEB
A2
o, L
OEFE4 ! OEFE7
A1
H ) L
OEFED ! OEFE3
AO
H, N N L
OEFDC ! OEFDF
D7
L
OEFD8 ! OEFDB
D6 Order of transfer
H | L 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofrD T oerD7 [Do[D1]D2]D3]D4[D5[D6[D7]AC] A1]A2] A3 A4]AS] AG[ A7
D5 Post-word for Pre-Decrement (Push) address mode
H, \ L
OEFDO ! OEFD3 Order of transfer
D4 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
B L L [a7]as]A5]a4]a3] A2] A1]A0]D7]D6]D5]D4]D3[D2]D1]DO]
OeFce b3 OEFCF Post-word for Pre-Decrement (Push) address mode
AN E—— (b) Register List Mask field.
OEFC8 OEFCB
D2
H, N N L
OEFC4 ! OEFCT
D1
H N L
OEFCO j DEFC3
DO
H, N N L
OEFBC ! OEFBF
Empty
H, N L L
oerss 1 oee8|  (a) Multiple Move interaction with memory.

Figure 4.1 Multiple moves to and from memory.
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Table 4.2 Arithmetic operations.

Flags
Operation Mnemonic XNZzZVC Description
Add Add source to destination
to Data reg. ADD.s3 ea,Dn VIVIV|VIV][Dn] <- [Dn] + [ea]
to memory ADD.s3 Dn,ea VIVIVI|VIV|[eal <- [ea] + [Dn]
to Address reg. |[ADDA.s2 ea,An ole|e|e|e|[An] <- [An] + [ea]
quick ADDQ.s3! #d3,ea VIVIVIV|V|[eal <- [ea] + #d3?
immediate ADDI.s3 #kk,ea VIVIVIV|V|[eal <- [ea] + #kk
with extend ADDX.s3 Dy,Dx JIVI3 |V[V]IDx] <- [Dx] + [Dyl + X
ADDX.s3 -(Ay),-(AX) ||V|?|V|V|[-(A)] <- [-(Ax)] + [-(AYD] + X
Clear Clears destination
CLR.s3 ea* «|0]|0|1]|0|[ea] <- 00
Divide Generates quotient and remainder (%)
signed DIVS ea,Dn o |/[/|/|0]|[Dn(15:0)] <-[Dn(31:0)]+[ea(15:0)]
unsigned DIVU ea,Dn e|/|v/|V/|0]|[Dn(31:16)]1<-[Dn(31:0)1% [ea(15:0)]
Extend Sign Extend Data register
word EXT.W Dn o|/|/|0]|0[[Dn(15:0)] <- [SEX|[Dn(7:0)11]
long EXT.L Dn e|/|/|0]|0[[Dn(31:0)] <- [SEX|[Dn(15:0)11]
Load Effective Address Effective Address to Address reg.
LEA ea,An ele|e|e|e|[AN] <- ea
Multiply
signed MULS ea,Dn e|/[/|0]|0|[Dn(31:0)]<-[Dn(15:0)]x+[ea(15:0)]
unsigned MULU ea,Dn e|/|/|0]|0[[Dn(31:0)]<-[Dn(15:0)]1x [ea(15:0)]
Negate Reverses 2's complement sign
data NEG.s3 ea VIVIVIVIV|[eal <- 00 - [ea]
with extend NEGX.s3 ea JIvI3 V|| [eal <- 00 - [ea] - X
Push Effective Address Effective Address into Stack
PEA ea oo o|o|e [_SP] <- ea
Subtract Subtract source from destination
from Data reg. |SUB.s3 ea,Dn VIVIVIVIV]IDn] <- [Dn] - [ea]
from memory |SUB.s3 Dn,ea VIVIV|V|V|[eal <- [ea]l - [Dn]
from Addr. reg. |SUBA.s2 ea,An o|e|ele|e|[[An] <- [An] - [eal]
quick SUBQ.s3! #d3,ea VIVIV|V]V|[eal <- [ea] - #d32
immediate SUBI.s3 #kk,ea VIVIVIV|V|[eal <- [ea] - #kk
with extend SUBX.s3 Dy,Dx VIVI? [V|V|IDx] <- [Dx] - [Dy] - X
SUBX.s3 -(Ay),-(Ax) ||V} |VIVI[-(AX)] <- [-(AX)] - [-(AY)] - X

Note 1: Only Long and Word with Address register destination. Also CCR unchanged.

Note 2: d3 is a 3-bit number 1 to 8.

Note 3: Cleared for non-zero, otherwise unchanged.

Note 4: Not Address register.
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In all cases the result is stored at the destination. Notice that in subtraction
the , can be read as from. When the destination is in memory, then it must of
course be alterable memory, usually RAM. Amongst the instructions, only MOVE
can have both operands in memory.

An Address register is not permitted as a destination, although legal as a
source. Instead the special instructions ADDA and SUBA are used. As is usual,
the CCR flags are not changed by any operation that alters an Address register,
and only word and long-word sizes are permitted. Word results are always sign
extended to a long-word.

The ADD IMMEDIATE QUICK and SUB IMMEDIATE QUICK instructions are used
as a substitute for the missing Increment and Decrement operations. A constant
between 1 and 8 can be added or subtracted from any Data or Address register
or read/write memory location, for example:

ADDA.W #1,A0 ; [A0(31:0)] <- [A0(31:0)] + 1. Increment (12~) {Coded as DOFC-0001h}
ADDQ.W #1,A0 ; [A0(31:0)] <- [A0(31:0)] + 1. Increment ( 8~) {Coded as 5248h}
SUBQ.B #1,1234h ; [1234h] <- [1234] - 1. Decrement (16~) {Coded as 5338-1234h}

The constant is encoded as a 3-bit group in the op-code itself. As can be seen
above, this halves the size of the instruction and therefore decreases execution
time. If an Address register is targeted, the usual word or long-word sizes are
permitted, with the latter being sign extended to the whole 32 bits. The CCR flags
remain unaltered.

Notice that the last example above altered a memory location directly without
using a Data register as an intermediary stop. The ADD IMMEDIATE and SUB
IMMEDIATE instructions can be used where the data is greater than 8, for example:

SUBI.W #500h,0C000h ; [C000:1] <- [C000:1] - 500h

Where operands of greater than 32 bits are involved, then several sequential
Adds or Subtracts may be used to form the multiple-precision sum or difference.
In most processors the Carry flag provides the linkage between successive op-
erations but, as noted on page ??, the X flag is used for this purpose in the
68000 family.

Figure shows an example of a 96-bit addition made up of three 32-bit
operations. The program for this is:

MOVEA.L #0CO0Ch,A0Q ; Point A0 to just before Teast significant long-word <Source>
MOVEA.L #0C10Ch,Al ; and Al to just before least significant long-word <Destination>
ADD.L -(A0),-(A1l) ; Add LSLWs, sum in <Destination> LSLW
ADDX. L -(A0),-(A1l) ; Add NSLWs, sum in <Destination> NSLW
ADDX. L -(A0),-(A1) ; Add MSLWs, sum in <Destination> MSLW

One main point to notice here is the use of the Pre-Increment Address Regis-
ter Indirect address mode. As described in the next section, the Address register
used to point to the operand (like an Index register) is automatically decremented
by the appropriate number of bytes (by four here) before being used. With the
arrangement of Fig. [4.2] the address will naturally creep towards the most sig-
nificant bytes as we do each addition. This is the only memory targeted address
mode that can be used by ADDX and SUBX to access data in memory. Alternatively
both operands can lie in Data registers.
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—(A0) —(A0) AO
N Source " 1
COOOI COOWI COOZI C003 COO4I COOSI COO6I C007 COOSI COO9I COOAI COOB
L | | L | | L | |
—(A1) + —(A1) A
r r
estination <~ 1
CM)OI CWOWI CWOZI C103 CWO4I CWOSI (3106I c107 CWOSI CWO9I CWOAI C10B
L | | L | | L | |
MSLW NSLW LSLW
— Sum

Figure 4.2 Multiple precision addition.

Wouldn't it be useful if you could tell whether the whole multiple sum or
difference was zero? A normal Add or Subtract will set the Z flag if the re-
sult is zero otherwise it will clear it; thus the state of Z reflects the last addi-
tion/subtraction. However, ADDX/SUBX does not affect the Z flag when the result
is zero, otherwise the flag is cleared. Thus setting the Z flag (and also clearing
the X flag) and using all ADDX or SUBXs will give a final Z setting of 1 only if all
outcomes in the sequence are zero. Use:

MOVE #00000100b, CCR ; Clears all flags, except Z = 1

to set up this condition.

An Address register cannot be zeroed using CLR; instead use a MOVEA #0,An or
even SUBA An,An. NEGATE (NEG) is the normal 2's Complement operation (not on
an Address register), but is rather unusually paired with a NEGATE WITH EXTEND
(NEGX) instruction, which is used in a similar way to ADDX/SUBX for multiple-
precision negations.

The use of LOAD EFFECTIVE ADDRESS (LEA) to move the result of a 6809 MPU's
computed address into an Index register has been described in Sections 2.1 and 2.3.
In the 68000 MPU, the destination is any Address register and the similar PUsH
EFFECTIVE ADDRESS (PEA) inherently targets the System stack. We will discuss
computed address modes in the next section, but some examples are:
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LEA 8(SP),A0 ; [AO0] <- [SP] + 8, Point A0 to 8 bytes above SP

LEA -200(PC),Al1 ; [A1l] <- [PC] - 200, Point Al to 200 bytes below PC

PEA 5(CA0,D7.L) ; [[-SP] <- [A0] + [D7(31:0)] + 5, Push into Stack the
contents of AO.L plus 32-bit contents of D7 plus 5

The middle example illustrates the use of LEA in position independent code (see
Sections 2.2 and 4.2).

Signed and unsigned 16 x 16 multiplication is provided as a primitive. The
Source can be anywhere in memory, a Data register or immediate data, whilst the
destination must be a Data register, for example:

MULU 0CO00h,DO ; [DO(31:0)] <- [DO(15:0)]1 x [C000:1]
MULS #-7,D0 ; [DO(31:0)] <- [DO(15:0)]1 x -7
MULU D1,D2 ; [D2(31:0)] <- [D2(15:0)] x [D1(15:0)]

The Division instructions are more complex. These are designed to divide a
32-bit dividend by a 16-bit divisor, giving a 16-bit quotient in the lower word of
the destination Data register and a 16-bit remainder in the upper word of the
same register. The following code fragment shows how a dividend in DO.L is
divided by 5000, with the quotient result placed in the the bottom of D6 and the
remainder in the bottom of D7:

DIVU #5000,D0 ; Divide the destination by the source
; [DO(15:0)] <- [DO(31:0)] / 5000 (/ symbol 1is integer division)
; [D0(31:16)] <- [DO(31:0)] % 5000 (% symbol is integer remainder)

CLR.L D6 ; Will hold the quotient

CLR.L D7 ; Will hold the remainder

MOVE.W DO,D6 ; 16-bit quotient to D6.W

SWAP DO ; 16-bit remainder in Tower DO

MOVE.W DO,D7 ; to D7

Preclearing D6.L and D7.L effectively promotes the word-moved unsigned
quantities to 32 bits; it can be omitted if the upper 16 bits of these registers
can be ignored. Alternatively, if DIVS is used, EXT can be utilized for a signed
extension. Permitted operand address modes are the same as for MUL.

As only 16 bits are reserved for the quotient and the dividend is 32 bits, it is
possible that overflow will occur. This is especially likely with a small divisor. In
such cases the V flag will be set. If the source should be zero, then a trap will
occur, as described in Section 6.2.

Four types of Shift operation are available, each in a right and left version, as
shown in Table Any Shift operation can be targeted to a word in read/write
memory or a Data register. The former is limited to a single shift, for example:

LSR.W 0C000h ; Logic Shift Right the contents of C000:1 one place

Multiple shifts are possible if a Data register is targeted. Fixed shifts of 1 to 8
places are specified as a 3-bit code embedded in the op-code (like ADDQ). Thus:

LSR.L #4,D0 ; Shift all bits in DO Teft 4 places

Alternatively, the number of shifts can be specified dynamically by the lower five
bits held in another Data register Dx[4:0]. For instance:
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Table 4.3 Shifting instructions.

Flags

Operation Mnemonic X NZV C Description
Arithmetic Shift Right Linear Shift Right keeping the sign

memory ASR.W ea bo ||| |bo

static Datareg. |ASR.s3 #d3,Dn |bg|+/|+/|!|bg

dynamic Data reg.|ASR.s3 Dx,Dy |bg|J/|v|!|bo =] ]a
Logic Shift Right Linear Shift Right

memory LSR.W ea bo [+/|+/| 0| bo

static Data reg. LSR.s3 #d3,Dn |bg|/|+/|0]|bg

dynamic Data reg.|LSR.s3 Dx,Dy |bg|+/[+/|0|bg|| 0 —] ]~
Arithmetic Shift Left Linear Shift Left

memory ASL.W ea bml+|| ! |bm

static Datareg.  |ASL.s3 #d3,Dn |bm ||| ! [bm

dynamic Data reg.|ASL.s3 Dx,Dy |bm|+/|V|! |bm %l |— 0
Logic Shift Left 2 Linear Shift Left

memory LSL.W ea bm|+/|v]0|bm

static Data reg. LSL.s3 #d3,Dn |bm|+/|V/|0|bm

dynamic Data reg.|LSL.s3 Dx,Dy |bm|+/[+|0|bm <—| |— o0
ROtate Right Circular Shift Right

memory ROR.W ea e [/][V/|0|bg

static Data reg. ROR.s3 #d3,Dn |  |\/[/|0|bg e - N

dynamic Data reg.|ROR.s3 Dx,Dy e [/][V|0|bg [ ]~
ROtate Left Circular Shift Left

memory ROL.W ea e [/|/|0|bm

static Data reg. ROL.s3 #d3,Dn | « |\/|/|0|bm 7 = N

dynamic Data reg.|ROL.s3 Dx,Dy e [/|/|0|bm <—| |
ROtate Right with eXtend Circular Shift Right through X

memory ROXR.W ea bo [+/|+/| 0| bo

static Data reg. ROXR.s3 #d3,Dn|bg|/[+/]|0|bo 4 ﬁ@ N

dynamic Data reg.|ROXR.s3 Dx,Dy |bg|+/|+/|0|bg [ ]~
ROtate Left with eXtend Circular Shift Left through X

memory ROXL.W ea bm|+/|v]0|bm

static Data reg. ROXL.s3 #d3,Dn|bm|+/|+/|0|bm 7 ==> N

dynamic Data reg.|ROXL.s3 Dx,Dy |bm|+/[v|0|bm <—| |

Note 1: Set IF most significant bit, b,,, changes, ELSE cleared.
Note 2: Identical with ASR except V flag cleared.
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MOVEQ #18,D7 ; [D7.L] <- 00000012h
.......... ; Sometime Tater
LSR.L D7,D0 ; Shift all bits in DO Tleft by [D7[4:0]], i.e. 18

As well as being able to specify a shift number larger than eight, this type of
specification has the advantage of variability, as it can be changed dynamically
in software as conditions warrant, for example in a loop.

The Logic Shift instructions simply shift in Os from the left or right as appro-
priate, with the emerging bit being caught by flags C and X. ARITHMETIC SHIFT
LEFT and LOGIC SHIFT LEFT are the same, except that the V flag is set if the MSbit
changes. If the operand is a signed number, this would signal a sign change, for
instance 0,10011110 — 1,0011100. In the case of ARITHMETIC SHIFT RIGHT,
the sign bit propagates right; thus 7,1110100b (—12) becomes 1,1111010b (—6)
becomes 1,17111101b (-3) etc. and 0,0001100b (+12) becomes 0,0000110b (+6)
becomes 0,0000011b (+3) etc.

ROtate through the eXtend instructions (ROXL, ROXR) are similar to ADD with
eXtend, in that they can be used for multiple-precision operations. A ROtate
through eXtend takes in the X flag from any previous Shift and in turn saves
its ejected bit in X. As an example, a 48-bit number stored as three consecu-
tive 16-bit words in memory ’ 47 M 32 | 31 M+2 16 | 15 M+4 ‘ can
be shifted once right as follows[8]:

LSR M ; 0 - = M by —[X]
ROXR  M+2 ; by/|X] - - M2 p e —[X]
ROXR  M+4 ; bie/|X] - - M by —[X]

True circular ROtates are provided, where the shift is not through a flag (al-
though the C flag still catches the emerging bit). This emerging bit is copied into
the other end of the operand word. Thus:

ROR.W #8,D0 ; [D0(15:8)] <- [DO(7:0)], [DO(7:0)] <- [D0(15:8)]

moves the lower byte of DO up eight places and the next higher byte around to be
the new lower byte. This is the equivalent of SWAP.W DO (only SWAP. L is available,
except in the 68020 MPU and up).

The three binary logic operations AND, OR, EXCLUSIVE-OR (EOR) and NOT are
provided, as shown in Table[44l The first two can bitwise operate on any Data
register or alterable memory location. EOR (rather inconsistently) can only use a
Data register as target. All three have an Immediate variant that can target an
alterable memory location directly or be used to change any bit or bits in the CCR
or SR (the latter only in the Supervisor state), for example:

ANDI.B #11111110b,CCR ; Clear Carry flag, others unchanged

NOT is a single-operand instruction that inverts all 8, 16 or 32 bits in either a
Data register or alterable memory. Some assemblers use COM (COMPLEMENT) as
the mnemonic for this instruction.
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Table 4.4 Logic Instructions.

Flags
Operation Mnemonic XN ZzZV C Description
AND Logic bitwise AND
to Data register | AND.s3 ea,Dn |e|./|/|0]| O | [Dn] <- [Dn] - [ea]
to memory AND.s3 Dn,ea |e|./|/|0]| O |[ea] <- [ea] - [Dn]
immediate ANDI.s3 #kk,eal|e|./|./|0]|02]|[ea]l <- [ea] - #kk
EOR Logic bitwise EXclusive-OR
to Data register | EOR.s3 ea,Dn |e|./|/|0]| O | [Dn] <- [Dn] @ [ea]
immediate EORI.s3 #kk,ea!|e|/|./|0|0?|[ea] <- [ea] ® #kk
NOT NOT.s3 ea o|/|+/|0| O |[ea] <- [ea]
OR Logic bitwise OR
to Data register OR.s3 ea,Dn |e|,/|/|0]| O |[Dn] <- [Dn] + [ea]
to memory OR.s3 Dn,ea |e|./|/|0]| O |[ea] <- [ea] + [Dn]
immediate ORI.s3 #kk,eal|e|./|/|0]0%|[ea] <- [ea] + #kk

Note 1: Any alterable memory location, Data register, CCR or SR (privileged).
Note 2: With destination CCR or SR, all flags altered accordingly.

Being able to get at individual bits of an operand directly is considered impor-
tant for microcontrollers [9], but rather unusual in 16/32-bit MPUs. The 68000
MPU has four such instructions, listed in Table[4.3], which can clear, set or toggle
any bit in a byte of alterable memory, or any of the 32 bits in a Data register. The
bit number may be defined as a static immediate operand or dynamically held
in another Data register (like the Shift instructions). All three instructions also
affect the Z flag giving the state of the targeted bit before the operation.

The final instruction BTST does not alter the bit in question, but the Z flag still
ends up reflecting its state; thus the code fragment:

LOOP: BTST #6,08080h ; How is the state of bit 6 in location 8080h?
BEQ LOOP ; If it is still zero try again

circulates in a tight loop waiting for bit 6 of memory location 8080h to change
to logic 1. This may be the Control register of a PIA, and thus effectively the
program will be waiting for the active edge of handshake line CA2 (programmed
as an input) to occur. Of course if that event never occurs, due to a hardware
fault, then the system will hang up indefinitely. More about that later.

Strictly speaking BTST should be classified as a Data testing instruction, its
purpose being not to change the operand but to sense its state, which is reflected
in the Z flag to be used later by a Conditional Branch. The two other such instruc-
tions are COMPARE (CMP) and TEST (TST), as shown in Table ©.61 A COMPARE does
a subtraction of the source operand from the destination operand (as does SUB),
setting the flags accordingly but not putting the difference into the destination.
A TEST FOR ZERO OR NEGATIVE is just a COMPARE with a zero source operand
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Table 4.5 Bit-level instructions.

Flags
Operation Mnemonic XN Z VC Description

Bit Test and Change Z = by. Toggle bit n
dynamic |BCHG Dx,eal [s|s |by|e|e|bpx] <- bpx]
static BCHG #kk,eal|e|e|bp|e|e bk <- bik

Bit Test and Clear B Z = by. Clear bitn
dynamic [BCLR Dx,ea! |e|s|bp|e|e|bpy <- O
static BCLR #kk,eal|e|e|bpy|e|e by <- O

Bit Test and Set Z = by,. Set bitn
dynamic [BSET Dx,eal |e|e|by|e|e|bpx] <- 1
static BSET #kk,eal|e|e|bpn|e|e bk <- 1

Bit Test B Z = bp. Test bitn
dynamic |BTST Dx,ea! [e|e|by|e|e|No change except in Z
static BTST #kk,eal|e|e|bp|e|e|No change except in Z

Note 1: Size is Byte if ea is out in memory, else Long if a Data register.

(i.e. TST DO is the same as CMP #0,D0).

There are four varieties of COMPARE available. The "plain vanilla’ CMP can
use any memory contents, immediate data, Data register or Address register as
source to be compared with a Data register, for example:

CMP.W #56,D0 ; Compare [DO(15:0)] with the number 56, [D0O(15:0)]-56
CMP.B 123h,D1 ; Compare [D1(7:0)] with the contents of 123h, [D1(7:0)]-[123h]
CMP.L A0,D2 ; Compare [D2(31:0)] with [A0(31:0)], [D2(31:0)]-[A0(31:0)]

Notice the comparison is destination with source, just as SUB is subtract source
from destination. Some processor assemblers, such as for the PDP-11 minicom-
puter and 80x86 family MPUs, reverse the order.

CMPA is used with Address register destinations. Unlike other such targeted
instructions (e.g. ADDA), the CCR flags are set normally, but with word-length
source operands sign extended in the usual way to a long-word, for example:

CMPA.W #8000h,A0 ; [A0(C31:0)] 1is compared with FFFF8000h (-32,768)
CMPA.L 1234h,Al1 ; Compare [A1(31:0)] with [1234:5:6:7]
CMPA.L DO,A2 ; Compare [A2(31:0)] with [D0(31:0)]

An immediate quantity can be compared to any alterable memory or Data
register by using CMPI, for example:

CMPI.B #64,1234h ; Compare [1234h] with 64

Memory can be directly compared to memory with a COMPARE MEMORY (CMPM).
In this case only the Post-Increment address mode is available, as CMPM is pri-
marily designed as a Block-Compare primitive. For instance, the following code
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Table 4.6 Data testing instructions.

Flags

Operation Mnemonic XN 2z VC Description
Compare Non-destructive [destn] — [source]

Data reg. with CMP.s31 ea,Dx o V|V |V|V|[Dx] - [eal]

Addr. reg. with | CMPA.s2 ea,Ax o| V|VI|V|V]|[AX] - [ea]

Mem. with const.|CMPI.s3  #kk,ea o | IV |V | [eal - #kk

Mem. with mem. | CMPM.s3 (Ay)+, (AxX)+|e|/|/ ||| [[Ax]+] - [[Ay]+]
Test for Zero or Minus Non-destructive [destination] — 0

| TST.s3 ea’ o|/|/|0|0]|[eal-00

Note 1: Only Word and Long if source is Address register.
Note 2: Only alterable memory and Data register, not Address register.

fragment exits with the address+1 of the first pair of bytes which differ in two
blocks of data or strings:

MOVEA.L #BLOCK_1,A0 ; Point A0 to bottom of Block 1
MOVEA.L #BLOCK_2,A1 ; Point Al to bottom of Block 2
CLOOP: CMPM.B (A0)+,(Al)+ ; Compare bytes and move each pointer on one
BEQ CLOOP ; IF same THEN next
............... ; ELSE continue

The TEST primitive is represented by the TST instruction. This can check
that the contents of any memory location or Data register is zero (sets Z flag) or
negative (sets N flag), for example:

TST.B 1234h ; Test contents of 1234h for zero or negative
TST.W DO ; Test Tower 16 bits of DO for zero or negative

The Block-Test code fragment above followed the Comparison operation by
the Conditional Branch (BEQ). Branch instructions add an offset to the Program
Counter if the condition is True (Z = 1 in the example) otherwise its state remains
pointing to the following instruction. There is also an Unconditional Branch, BRA,
which always adds the offset. Two sizes of Branches are available, Short (or byte)
which carries an 8-bit signed offset as part of the op-code, and Word, where a
16-bit signed offset follows the op-code word. The 68020 allows a Long Branch.

There are 14 combinations of the C, Z, N and V flags which can be used as
a test for a Conditional Branch. The X flag is reserved exclusively for multiple-
precision arithmetic and does not take part in this exercise. With the exception of
the somewhat useless BRANCH NEVER (BRN), all 6809 Conditional Branches listed
in Table[2.6lare also available to the 68000 family. The mathematical significance
of the various flag combinations are given on page and will not be repeated
here. In Table K.7] these tests are listed as 4-bit code combinations (cc). All
Branch op-codes start with 0110b followed by the cc code, followed on by the
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Table 4.7 Instructions which affect the Program Counter.

Operation Mnemonic Description
Unconditional Program Transfer Always goto
Branch to Label | BRA Offset! Offset always added to PC, relative goto
Jump to Label | JMP ea [PC] <- ea, absolute goto
Conditional Program Transfer Goto IF condition is True
Branch to Label | Bcc? Offset Offset added onto PC IF condition is met

Test, Decrement & Branch | DBcc? Dx,0ffset | Repeat loop until any condition is met

IF condition is True THEN exit loop
ELSE

[Dx(15:0)] <- [Dx(15:0)] - 1

IF [Dx(15:0)] = -1is True THEN exit loop
ELSE

[PC] <- [PC] + Offset (continue loop)

No Operation Does nothing except increment PC by 2
NOP [PC] <- [PC] + 2, takes 4~

Note 1: Normally a label is specified here and the assembler works out the offset.
Note 2: The condition codes (cc) are:

True on True on
0000 | T3 True always Always 1000 | VC oVerflow Clear V=0
0001 F3 False always Never 1001 | VS oVerflow Set V=1
0010 | HI Higher than C+Z=0 1010 | PL PLus N=0
0011 LS | Lower or Same | C+Z =1 1011 | MI MInus N=1
0100 | CC Carry Clear Cc=0 1100 | GE | Greater or Equal NeV =0
0101 | CS Carry Set C=1 1101 LT Less Than NV =1
0110 | NE Not Equal Z=0 1110 | GT Greater Than Nev-Z =1
0111 | EQ EQual Z=1 1111 | LE Less or Equal NeV-Z=0

Note 3: Only for DBcc.

the 8-bit displacement if Short or all zeros if Word. In the latter case the 16-
bit displacement follows the op-code. Thus the instruction BPL .06 (BRANCH IF
PLUS six places on) is coded as 0110-1010-00000110b (6A06h).

In the 68000 family the cc tests can be used with other instructions, the most
useful of which are the Decrement, Test and Branch loop operations. We have
already used software loops, for example the Block-Compare routine on page[Q9l
Essentially a loop is a mechanism in which a section of code can either be repeated
a fixed number of times (the loop count) or exit when a certain condition or
conditions are fulfilled, or both.

As an example of the latter situation, consider interfacing to a peripheral which
sets bit6 of an interface device's Control register (e.g. a 6821 PIA) when it has
valid data it wishes to be read. This involves continually checking the state of
bit6 in a loop until it goes high; only then do we move on and read the data.
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Alternative
Entry |
Path *
|
|

True

CONTINUE only IF
any condition is TRUE

Set Dn to
Loop Count, N

Loop Body

Test

False

Decrement N

EXIT:

False

Omitted for DBF

i

Bcc EXIT
SUBQ.W #-1,Dn
BCC LOOP

both conditions are FALSE

REPEAT only IF

v

} DBcc Dn, LOOP

Figure 4.3 Using DBcc to implement a loop structure.
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But what happens if, say, due to hardware malfunction, this Data Ready signal is
never sent? The software will then hang indefinitely. Perhaps it would be better
to give up after a fixed number of times and go to an error routine if this sequence
of events happens. To do this we would have to check the flag; if it is not set,
then decrement the loop count, and if this hasn't fallen through zero (i.e. to —1)
then repeat. Following the structure of Fig. a possible coding is:

MOVE . W #n,D1 ; Set Toop count n
LOOP: BTST #6,CONTROL ; Test bit 6 of the Control register 16~
BNE EXIT ; IF True THEN EXIT (cc=Not Equal Zero) 12~
SUBQ.W #1,D1 ; ELSE decrement Toop count 4~
BCC LOOP ; IF no Carry then [D1] is not -1 18~
EXIT: CMP #-1,D1 ; Exit with n = -17
BEQ ERROR ; IF True THEN error
MOVE.B PORT, DO ; ELSE read data from port

............ ; and continue

The alternative combines the decrement and two tests thus:

MOVE . W #n,D1 ; Set Toop count n (max 65535)
LOOP: BTST #6,CONTROL ; Test bit 6 of the Control register 16~
DBNE D1,LOOP ; Decrement and repeat loop until True 18~
; Pass here either IF True that bit 6 is 1 OR True that n = -1
EXIT: CMP #-1,D1 ; Exit with n = -17
BEQ ERROR ; IF True THEN Error
MOVE.B PORT,DO ; ELSE read data from port

............. ; and continue

For applications where speed is important (not this example) reducing the time
taken by the control mechanism is important, as this housekeeping overhead is
executed on each pass through the loop body. In this case the Test and Control
is 34~ as against 50~. Notice that BNE is shown with an execution time of 12~,
whilst BCC is 18~. This is because Branches taken (i.e. True) for byte offsets take
longer than Branches not taken (but the opposite for word offsets, 18~ and 20~!).
Similarly DBcc has a variable execution time. As the number n used by DBcc
is limited to 65,536, the ordinary Branch construction must be used where the
default timeout parameter exceeds this number.

Some situations require the number of loop passes to be fixed. As the normal
DBcc exits if either test is True, the variant DBF makes the first test always False,
and so an exit only happens when the loop count reaches —1. The routine below,
which is a fixed delay using an idle loop body, shows this:

DELAY: MOVE.W #n,DO ; n is the delay parameter 16~
LOOP: NOP ; Do nothing and take 4~
DBF DO,LOOP ; one less pass 18~

The total delay here is 16 + (n + 1) x 22 (+8 extra when DBF is True), a total of
46 + 22n clock cycles. Thus a 0.1s delay requires 46 + 22n = 8 x 10° us at a
clock rate of 8 MHz, giving n = 36,363. Remember that n has a maximum value
of 65,536 for DBF.
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Using the DBcc construct, the number of loop passes is n + 1, where n is
the word-sized number preloaded into a Data register. It is possible initially to
enter the loop directly into the control mechanism, as shown dashed in Fig. [4.3]
in which case the number of passes is just n. In this case no passes through
the loop body will occur if n = 0 or the test is True (WHILE-DO loop construct)
whereas the former situation always includes one pass irrespective (DO-WHILE
loop construct). An example of this is shown in Table 5.4]

The DBcc instruction can be confusing because it operates in the opposite
sense to the analagous Bcc. Thus BEQ LOOP causes control to be passed to LOOP
if the conditional test outcome is True (i.e. Z = 0). The similar DBEQ LOOP does
not transfer control to LOOP if the outcome is True, that is the processor escapes
from the loop. Using the terminology “Decrement and Branch until True' as
opposed to “Branch if True' may help clarify the situation. Table summarizes
the complete 68000/8 instruction set. For each instruction, its operand size is
given and allowable address modes are given. Finally, its effect on the five flags
in the Code Condition register is tabulated.
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Table[4.8l Summary of 68000 instructions (continued next page).

Instruction Size Address modes for [ea] Flags

# Dn An (n) (An)+ -(An) +dy(in) +dg(An,Ri) A.L A.W +d1e(PC) +dg(PC,RI)|X N Z V C
ABCD Dx,Dy B vVUuyuy
ABCD -(Ax),-(Ay)| B JUyuy
ADD [ea],Dx BWL[# || % | % * * * * * | % * * NERYRVRVERV
ADD Dx, [ea] BWL * * * * * * | % NARVARVARVARV/
ADDA [ea],Ax WL [+ | *| * * * * * * | * * * e 0 0 0 o
ADDI #K, [ea] BWL * * * * * * * | % \/ \/ v \/ W
ADDQ #K3, [eal BWL x|k | x * * * * * | % VVvAvAVAY
ADDX Dx,Dy BWL VVAvAY
ADDX -(Ax),-(Ay) |[BWL VVVAVAY
AND [eal,Dx BWL| | * * * * * * x| * * o« /v 0O
AND Dx, [ea] BWL * * * * * * | % CRRVARVAN BN
ANDI #K, [ea] BWL * * * * * * * | * CRRVARVAN BN
ANDI #K,CCR B NAVEVEVAN.
ANDI #K,SRP w VVAAY
ASL/R Dx,Dy BWL NAVENANVAN
ASL/R #d3,Dx | BWL NANVEVENVAN.
ASL/R [eal W * * * * * | VVAVAVY
Bcc [labell BW LRI T Y
BRA [label] BW LRI T )
BSR [label] BW e o 0 0 o
BCHG Dx, [ea] BL L B B B B B B|B DR ERVA I}
BCHG #K, [eal BL L B B B B B B|B ¢ 0o/ 0 e
BCLR Dx, [eal BL L B B B B B B|B ¢ 0/ 0 e
BCLR #K, [ea] BL L B B B B B B|B o 0/ 0 e
BSET Dx, [ea] BL L B B B B B B|B ¢ o/ 0 e
BSET #K, [eal BL L B B B B B B|B ¢ 0o/ 0 e
BTST #K, [eal BL L B B B B B B|B DR RV I}
BTST Dx, [ea] BL L B B B B B B|B o 0/ 0 e
CHK [ea],Dx W o[« %% ]| * * * * * * | x * * ¢« /U UU
CLR [eal BWL * * * * * * * |k ¢ 001 00
CMP [ea],Dx BWL|# |+ | % | * * * * * x| * * DRVARVARVARYS
CMPA [ea] ,Ax WL |* ] % | % | * * * * * % | x * * DIRVARVARVARY)
CMPI #K,Dx BWL * * * * * * * | x DIRVARVARVARYS
CHPM (Ax)+, (Ay)+|BWL DRVARVARVARYS
DBcc Dx,[label] | W o 0 0 0 0
DIVS [ea],Dx W [+ * * * * * £ | o« * * CRRVARVARVAN |
DIVU [eal,Dx W | * | * * * * * * | % * * CERVARVARVAN
EOR Dx, [eal BWL * * * * * * * | * ¢« /0O
EORI #K, [eal BWL * * * * * * * | % ¢« /0O
EORT #K,CCR w NAVENANAN,
EORI #K,SR” W NEVAVANAN
EXG Dx,Dy L e 0 0 0 0
EXT Dx WL e/ V0O
ILLEGAL ¢ 0 0 0 0
JMP [ea] * * * £ | o« * * e o 0 0 o
JSR [eal * * * * | % * * o 0 0 0 0
LEA [eal,Ax L * * * * | * * * e o 0 0 o
LINK Ax,#K ¢ 0 0 0 0
LSL/R Dx,Dy BWL NAVANVAEIY,
LSL/R #d3,0x  |BWL NAVANE I,
LSL/R [eal W * * * * * * | % VvV 0

\/ i Flag operates in the normal manner. o : Not affected. U : Undefined.
P Privileged. S Source only. * - Available.

dp : n-bit displacement. #Km : m-bit immediate number. + : Sign extended.
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Table 4.8 (continued) Summary of 68000 instructions.

Instruction Size Address modes for [ea] Flags
# Dn An (An) (An)+ -(An) +dje(An) +dg(An,Ri) A.L AW +djp(PC) Fdg(PC,RI)|X N Z V C
MOVE [ea], [ea] BWL 5| # [+5| * * * * * | # 3 ¥ DRRVARVAN ]
MOVE [ea] ,CCR W | % | % * * * * * % | # * * VVAvAV
MOVE SR, [ea] W |+ | % * * * * * £ | * o 0 0 0 0
MOVE [ea],SRY W * * * * * * * | % IVARVARVARVARY
NOVE USP, Ax” L * 00 00
MOVEA Ax,USP” L ¢ 0 0 0 e
MOVEA [ea] ,Ax WL [ * | %] * * * * * * £ | * e o 0 0 0
MOVEM [XR], [ea] WL * * * * £ | * o 0 0 0 0
MOVEM [ea], [XR] WL * * * * £ | * * * o o 0 0 0
MOVEP Dx,+die(Ay) | WL o 0 0 0 0
MOVEP +dj6(Ay),Dx| WL e o 0 0 0
HOVEQ #:+Kg,Dn L AVAN
MULS [ea],Dx W |« | * [ * ¥ * * * |k * & CRRVARYAN ]
MULU [ea],Dx W |« | * ¥ * & * * * |k * & CERVARVAN ]
NBCD [ea] B * & * & * * * |k v UVU Y
NEG [eal BWL * * * & * * ¥ | ok IARVARVARVARYS
NEGX [ea] BWL * * * # * * ¥ |k IVARVARVARVARYS
Nop ¢ o 0 0 0
NOT [eal BWL * * * # * * * |k CRRVARVAN ]
OR [eal,Dx BWL| « | * * * * * * * |k * # CERVARVAN ]
OR Dx, [eal BWL * * * * * x| e x /00
ORI #K, [ea] BWL * * * * * * * | ok e x /00
ORI #K,CCR B IARVARVARVARYA
ORI #K,SR” w VAV Y
PEA [eal L K * * * | % o 0 0 0 0
RESET e 0 0 0 0
ROL/R Dx,Dy BWL . \/ \/ 0 \/
ROL/R #d3,Dx BWL . \/ \/ 0 \/
ROL/R [eal i * * * * * ¥ | o CRVARVAN IRV
ROXL/R Dx,Dy BWL \/ \/ \/ 0 \/
ROXL/R #d3,Dx BWL \/ \/ \/ 0 \/
ROXL/R [eal W * * * * * ¥ | o IVARVARVAN IR
RTE” VYV VY
RTR” VARV,
RTS ¢ o 0 0 0
SBCD Dx,Dy B VUV U Y
SBCD -(Ax),-(Ay) | B VU VU Y
Scc [eal B ¥ K * * * * * | % o 0 0 0 0
sTOP” VIV
SUB [ea] ,Dx BWL[ * | * | * | « * * * * % | % * * IVARVARVARVARYS
SUB Dx, [ea] BWL * * * * * x| % NARVARVARY ARV
SUBA [ea],Ax WL |« | % | % | * * ¥ * * * | * * * e 6 0 0 0
SUBI #K, [ea] BWL * * * * * * * | % IVARVARVARVARY
SUBQ #K3, [eal BWL | k| * * * * * * | % IVARVARVARVARY
SUBX Dx,Dy BWL NEVEVEVAN,
SUBX -(Ax),-(Ay) |BWL VIAAY
SWAP Dx W VAV
TAS [eal B * K * ¥ * * * |k CRRVARYAN ]
TRAP #Kg ¢ 0 0 0
TRAPY ¢ o 0 0 0
TST [eal BWL # K * ¥ * * k| ok CRRVARVAN ]
UNLK Ax ¢ 0 0 0 0
\/ : Flag operates in the normal manner. o  : Not affected. U : Undefined.
P : Privileged. S Source only. *  Available.
dp, : n-bit displacement. #Kp - m-bit immediate number. = : Sign extended.
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4.2 Address Modes

Except for the few inherent operations which do not require data, such as RETURN
FROM SUBROUTINE (RTS), some part of the instruction must be used to specify
where or how to calculate the whereabouts of the operand(s). Broadly there are
three methods of specifying an effective address (ea):

1. Constant (fixed) data: Immediate. Here the data is part of the instruction and
usually follows the op-code. Some instructions have quick varieties, such as
ADDQ, which embed small immediate numbers (e.g. 1 to 8) in the op-code itself.

2. Fixed location: Absolute memory or Register direct. The fixed memory ad-
dress follows the op-code, or a register is specified as part of the op-code.

3. Variable location: Address register or Program Counter register Indirect with
optional fixed and variable offsets, where a register points to the operand. As
such register contents can be changed in software at run time, the effective
address is a variable.

The use of the more complex address modes of category 3 are important in
high-level language where data is often allocated space relative to a Stack Pointer
rather than in absolute addresses. Computed addresses are also useful in access-
ing data structures such as arrays and in producing position independent code,
see page [40]

As anillustrated example, consider the problem of clearing an array of 1024 bytes
located between EO00 and EO3Fh. Using only Absolute addressing, the routine
would look something like this:

CLEAR_ARR: CLR.B OEO000h ; Clear ARRAY[O0]
CLR.B OEO001h ; and ARRAY[1]
CLR.B OE002h ; each CLR occupies 6 bytes
CLR.B OEO003h ; of program memory
CLR.B OE004h ; and takes 20 clock cycles
CLR.B OEO005h ; Keep on going
CLR.B OE3FFh ; Clear ARRAY[1023]. Phew!

This routine occupies 6144 bytes of program memory and takes 20,480 clock
cycles (2560 us at 8 MHz) to execute.

As we need to repeat the same operation 1024 times, clearly we have a prime
candidate for using a loop construction, thus:

CLEAR_ARR: MOVEA.L #OEOOOh,AO ; Point A0 to ARRAY[O0]
MOVE.W #1023,DO0 ; Set up Toop count less 1 in DO.W
CLOOP: CLR.B (A0)+ ; While [DO.W] > -1
; Clear Array element pointed to by A0 and move pointer on one byte
DBF DO, CLOOP ; Decrement Toop count, exit on DO.W = -1

This routine occupies 6 + 4 + 2 + 4 = 16 bytes of program memory and takes
4+4+(12x1024)+(10x1023) + 14 = 22,540 clock cycles (2817.5 us at 8 MHz).
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In the first two instructions Immediate addressing is used to place constants.
The loop body uses Address Register Indirect with Post-Increment addressing
to walk through the array. Address register_AO holds the address of the array
element, and, after that address has been put out on the bus, is automatically
incremented. Although the execution time of this address mode is shorter than
for Absolute, as the address does not have to be fetched after the op-code, this
is more than made up for by the overhead of the loop control DBF instruction,
which takes 10~ when the loop is re-entered and 14~ for the final exit. Thus the
quid pro quo for the reduction of program memory by a factor of 38,400% is an
increase in execution time of around 10%.

The rest of this section looks at the available address modes. Sizes are given
for single-operand instructions, double-operands may require additional exten-
sion words.

Inherent

Inherent instructions make implicit reference to a register or registers. Thus
RTS implies the use of the SSP and PC registers. The Branch instructions are
sometimes listed under this category, implying the PC register; however, they
can also be thought of as using a type of Program Counter with Displacement
address mode.

Immediate, #kk

op-code 3 or +8-bit (Quick)
op-code constant ‘ 8/16-bit (.B or .W)
op-code constant ‘ 32-bit (. L)

Here the operand is the data itself, not an address or pointer to an address. Gen-
erally the constant follows the op-code as one or two words. Three instructions
have Quick-Immediate variants where the data is embedded in the op-code itself,
MOVEQ reserves 8 bits for the signed constant (+127 to —128) and ADDQ/SUBQ
can only be used for unsigned 3-bit constants 1 to 8 (000b represents 8 here).
The instruction variants ADDI/SUBI permit constants of any applicable size to be
added or subtracted directly on alterable memory locations, rather than on Data
registers. Some examples are:

ADD.L  #1,DO ; [D0(31:0)]1<-[DO(31:0)]+1  (16~) {Coded DOBC-0000-0001h}
ADDQ.L #1,DO ; [D0(31:0)]1<-[D0(31:0)]+1  ( 8~) {Coded 5280h}
ADDQ.W #1,0E000h ; [E000:1] <-[E000/1] +1  (20~) {Coded 5279-0000-E000h}

ADDI.W #56h,0EO000h ; [E000:1] <-[E000/1] +56h (24~) {Coded 0679-0056-0000-E000}

Notice the difference in size and execution time between the top two examples,
which do the same thing. Of course ADDQ is limited to operand sizes of up to only
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eight. The difference between ADDQ and ADDI for alterable memory destinations
is not so great, but still significant.

Direct or Absolute modes
Three submodes are available which specify that the operand is in either a Data
register, Address register or in absolute memory.

Data Register Direct, Dn

The vast majority of instructions use a Data register as the destination, source or
both — as listed in Table 4.8l The op-code itself holds the register number(s) (see
Fig.[4.4), so instructions using this address mode are short and also execute faster.
Thus, where convenient, variables should be kept in a register. The first two
examples under the Immediate heading also used Data Register Direct addressing
as the destination; some other possibilities are:

ADD.L DO,D1 ; [D1(31:0)] <- [DP1(31:0)] + [D0(31:0)] {Coded as D280h}
ADD.B D1,0E000h; [EO000] <- [E000] + [D1(31:0)] {Coded as D339-0000-E000h}

Address Register Direct, An

Addresses stored in an Address register can point to data for most instructions,
but only the special instructions ADDA, SUBA and MOVEA can also target and hence
change these pointers. The ADDQ and SUBQ variants can also target any Address
register in .W or .L sizes. They are useful to increment or decrement pointers.
Some examples are:

ADD.L AO0,DO ; [D0(31:0)] <- [DO(31:0)]1+[A0(31:0)] {Coded as D188h}
ADDA.W #8000h,Al ; [AL1(31:0)] <- [A1(31:0)]+FFFF8000h  {Coded as D2FC-8000h}
SUBQ.L #1,A1 ; [A1(31:0)] <- [A1(31:0)]1-00000001h  {Coded as 5389h}

Note again that any operation changing Address register contents always acts
on all 32 bits, and if word-sized (no byte size allowed), will be sign extended as
shown in the second example above.

Memory Direct (or Absolute), M

’ op-code | address ‘ +16-bit (Short)
’ op-code | address ‘ 32-bit (Long)

The absolute address itself directly follows the op-code in this mode. In the
short-form version, only a 16-bit address is specified, and this is sign-extended
in the usual manner before being sent out on to the address bus. The applicable
range for this is 00007FFFh to 00000000h and FFFFFFFFh to FFFF8000h. Con-
ceptualizing the memory map as a grand circle, this can be thought of as a range
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from +0 up to +32,767 and back to —32, 768. The long form will of course specify
any address directly, but occupies an extra word of program memory and thus
takes an extra Read cycle (4~) during the fetch phase. Two examples are:

MOVE.W 500h,DO ; [DO(15:0)] <- [00000500:1] {Coded as 3038-0500h}
MOVE.W 9000h,DO ; [DO(15:0)] <- [00009000:1] {Coded as 3039-0000-9000h}

Absolute addresses are by definition constant as part of the program (except
with risqué self-modifying code) and as such are most useful for specifying data
from I/0 ports, which are fixed in the memory map by virtue of their hardware
decoder.

Register Indirect Modes

The most flexible of the address modes; this group generates the effective ad-
dress (ea) as a simple function of the contents of an Address register or the Pro-
gram Counter. As the state of such aregister is not constant, it may be changed at
any time to reflect the current storage requirements of the program, and may be
systematically advanced or retarded to deal with arrays or other data structures.
The opening example of this section on page [I06] demonstrated this flexibility.

Address Register Indirect, (An)

Here an Address register holds the location of the operand in memory, that is
points to the operand. The term Indirect is used, as the register does not hold
the data itself. Thus:

MOVEA.L #0E100h,A0 ; [A0(31:0)] <- #0000E100 {Coded as 207C-0000-E100h}
ADD.B (A0),DO ; Adds contents of E100h to DO {Coded as D010h}

has the same affect as ADD.B OE000h, DO, but of course once AO is set up, the
shorter and faster indirect access can be used, and the target address dynamically
altered by changing the contents of AQ.

Address Register Indirect with Displacement, +d(An) or (+dig,An)

op-code |displacement

Similarly to the previous mode, a 16-bit displacement is used to define a signed
offset of between +32,767 to —32,768. As an example, if we assume that we have
two arrays, one starting at EOOOh and the other at E200h, then, assuming AO has
been pointed to E100h by the previous example, the sequence:

MOVE.B -100h(A0),DO ; Get ARRAY_1[0] {Coded as 1028-FF0Oh}
ADD.B 100h(A0),DO ; and add to it ARRAY_2[0] {Coded as D028-0100}
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puts the sum of the first two array elements in DO.B.
Of course the displacement is a fixed part of the program, but if necessary we
can still change the base address in AO.

Address Register Indirect with Pre-decrement/Post-increment, - (An) / (An) +

There are two modes here, both of which automatically modify the designated
Address register, which points to the operand. The former decrements the ef-
fective address by one, two or four for a byte, word or long object respectively
before the operation. In the latter case the Address register holds the ea, which,
after the operation is complete, is incremented by the appropriate one, two or
four.

We have already illustrated these modes in use, see Fig. A.I]and the opening
example on page where we cleared an array. As a further example, which
also uses the previous indirect modes, consider the problem of digitally low-pass
filtering this same array. Taking the 1024 byte-array elements already stored
between locations EO00 and E3FFh as samples in advancing time, originating
from, say, an analog to digital converter, then the 3-point algorithm [9] is given
as:

X[n] N X[n-1] N X[n - 2]

Yinl=—=5 4 2

where n is the sample number, X[n] the existing nth array sample and Y [n] the
new filtered nth array element.

The following listing starts at the top of the X array and works its way down
overwriting this with the new Y array:

MOVEA.L #0E400h,AO ; Point A0 to one past X[1023]
LOOP: MOVE.B -(A0),DO ; Decrement pointer and then get X[n]

LSR.B #2,D0 ; Divide by 4

MOVE.B -1(A0),D1 ; Get X[n-1] (AO unchanged)
LSR.B #1,D1 ; Divide by 2
ADD.B D1,DO ; YI[n] = X[nl/4 +X[n-11/2

MOVE.B -2(A0),D1 ; Get X[n-2] (AO unchanged)
LSR.B #2,D1 ; Divide by 4
ADD.B D1,DO ; YInl = X[nl/4 + X[n-11/2 + X[n-2]/4
MOVE.B DO, (AO) ; Overwrite X[n] by Y[n]

CMPA. L #0E002h,A0 ; Check for end, cannot go lower than X[2]
BNE LOOP ; IF not repeat with n to be decremented
RTS ; Exit

Notice that AO points to X[#] and it is automatically decremented on each pass
through the loop. Notice also the edge effect in that Y[0] = X[0] and Y[1] =
X[1].
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Address Register Indirect with Index, +dg(An,X.W) / +dg(An,X.L) or
(xdg,An,X.W) / (=dg,An,X.W)

op-code X reg./disp.

This mode offsets the contents of a designated Address register with both a
constant and a variable to give the effective address. The variable index can be
the contents of any Address or Data register. Either the entire 32 bits (.L) or a
sign-extended 16 bits (.W) can be used. The constant is a signed 8-bit byte. Thus
we have:

<ea>= +dg+ X.L+An or =+dg+ SEX|X.W+ An

As an example consider a subroutine to convert a decimal 0-9, passed in
DO0.B to its 7-segment equivalent returned in the same place. The 7-segment
equivalents are stored sequentially as a table (array) of 10 bytes following the
subroutine. We assume the subroutine starts at 0600h.

(600/605) MOVEA.L #TABLE_BOT,A0 ; Point A0 to table
(606/609 1030-0000) MOVE.B 0(A0,DO0.W),D0O ; Get element [DO(15:0)]
(60A/60B 4E75) RTS ; and return

(60C/610 01-4F-12-06-4C) TABLE_BOT:.BYTE 1,4Fh,12h,6,4Ch; 7-segment code
(611/615 24-20-0F-00-00) .BYTE  24h,20h,0Fh,0,0Ch

If we assume that DO.W is 0004h on entry, then the first instruction puts
the absolute address of the first table element (060Ch) into AO. The effective
address calculated in the following instruction is 00 + [A0] + SEX|D0(15:0),
in this case 00 + 0000060C + 00000004 = 00000610h. The data in this byte is
4Ch, and this is the value moved to DO(7:0) prior to return.

As can be seen from this example, this mode is useful for random access
into an array, with the array number (or a multiple of, for word or long-word
arrays) being in the Index register. It is instructive to compare this example with
its equivalent 6809 code on page [39 which used an Accumulator to hold the
variable offset and one of the Index registers to hold the base address.

Program Counter Indirect with Displacement, +d;(PC) or (+d;g,PC)

op-code |displacement ‘

This is similar to Address Register Indirect with Displacement but this time the
Program Counter is the specified register. For example in:

MOVE.B  200h(PC),DO ; [DO(7:0)] <- [[PC]+200h]

the data 200h bytes on from where the PC is (actually pointing to the next in-
struction) is placed in DO.B. This of course is not an absolute address, as only
the distance from the instruction is of interest. Like the relative Branch instruc-
tions, a label is normally used for the destination and the assembler evaluates
the appropriate offset.
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Program Counter Indirect modes are used to generate position independent
code (PIC) as described on page BQl As an example, referring back to the 7-
segment decoder just listed, we see in line 1 that the absolute address of the table
base, 0000060Ch, is placed in Address register AO.L. If, say, the subroutine were
to be relocated to start at 1780h, then the ROM would have to be reprogrammed
to change the extension word of the MOVEA instruction from 060Ch to 178Ch, the
rest of the code remaining the same. Here is a PIC version of the same subroutine:

(600/603 41FA-0006) LEA 6(PC),A0 ; Point A0 to table
(604/607 1030-0000) MOVE.B 0(A0,DO.W),D0 ; Get element [DO(7:0)]
(608/609 4E75) RTS ; and return

(60A/13 ....) TABLE_BOT:.BYTE etc. ; 7-segment code

The only difference between the two programs is in line 1. Previously the absolute
address of the table bottom was put into A0. In the PIC case, A0 is loaded with
the contents of PC plus 6, which is again the address of the bottom of the table,
but is calculated at run time. If we were to relocate the subroutine to start at
1780h, nothing would change.

In practice, if the first line of the program were:

LEA TABLE_BOT(PC) ,A0

the assembler would produce the same code (41FA-0006h), evaluating the dif-
ference between TABLE_BOT and the location of the following instruction, that is
6 bytes. The absolute value of TABLE_BOT is not used as the offset — as in the
case of Branch instructions.

Note the use of LOAD EFFECTIVE ADDRESS to move the ea generated by any ad-
dress mode (except Pre-Decrement and Post-Increment) into an Address register.
Some other examples are:

LEA 20(A7) ,A7 ; Move Stack Pointer up 20 bytes
LEA 20(A0,D7.L),Al1 ; Add AO.L to D7.L plus 20 and put into Al.L

LEA is long-word sized only, and must solely target an Address register.

Program Counter Indirect with Index, +dg(PC,X.W) / +dg(PC,X.L) or
(+dg,PC,X.W) / (=dg,PC,X.L)

op-code X reg./disp.

This is similar to Address Register Indirect with Index in that a constant offset
plus a variable offset in either an Address or Data register is added to the PC to
give an effective address. The assembler permits a label to be used as the con-
stant, and will calculate the required difference. Using this mode the 7-segment
program reduces to:

(600/603 103B-0002) MOVE.B TABLE_BOT(PC,DO.W),DO
(604/5 4E75) RTS
(606/F ....) TABLE_BOT: .BYTE etc.
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Note the offset of 02 in the machine code generated by the first instruction.

The offset permissible for this mode is only +127 to —128, which represents
a considerable limitation compared to the plain offset-mode with a range of
+32,767 to —32, 768 (both ranges have been extended for the 68020 MPU).

The twelve address modes covered there are summarized in Table Except
for the two Register Direct modes, additional time is needed to calculate the
effective address. Some of this may be due to the necessity to fetch one or more
extension words, and some due to the address arithmetic. As an example, the
base time to CLEAR a memory byte is 8 clock cycles (4 to read the op-code and
4 to send out the zero on the data bus). Thus from the table, CLR.B (An) takes
8+4 =12~,CLR.B 0E04567h takes 8 + 12 = 20~. Reference [4]] gives timings for
all instructions. The 68008 takes longer to generate eas for most operations due
to its byte-sized Data bus.

Table 4.9 A summary of 68000 address modes.

Address mode ea Extra cycles 68000/8 Code

Byte | Word | Long | Mode:Register

Dn Dn 0/0 0/0 0/0 000:rrr!

An An 0/0 0/0 0/0 001:rrr

(An) [An] 4/4 4/8 8/16 010:rrr

(An)+ [An]+ 4/4 4/8 8/16 OT11:rrr

—(An) [-An] 6/6 6/10 10/18 100:rrr

+dg(An) [An+di6] 8/12 | 8/16 | 12/24 101:rrr

+dg(An,X)? [An+X+dg] 10/14 | 10/18 | 14/28 110:rrr

+d;6(PC) [PC+d;6] 8/12 | 8/16 | 12/24 111:010

+dg(PC,X)? [PC+X+dg] 10/14 | 10/18 | 14/26 111:011

abs.W sex|<abs value> | 8/12 8/16 12/24 111:000

abs.L <abs value> 12/20 | 12/24 | 16/32 111:001

#immediate - 4/8 4/8 8/16 111:100

Note 1: A 3-bit code indicating the target register for modes 000b to 110b,
otherwise a submode.

Note 2: The Index register, which can be any Data or Address register, is specified
as a 4-bit code in the extension word, which also carries the 8-bit offset.

Not all address modes are legitimate in many situations. For example, an Im-
mediate operand by definition cannot be specified as the destination ea. Also,
but not so obviously, the two Program Counter Indirect modes are also illegal for
a destination operand. This is because it is considered bad practice to modify
program code, and in any case the area around the PC will frequently be in ROM
and therefore cannot be altered. The group of address modes excluding PC Rel-
ative and Immediate are referred to as Alterable. Those also excluding Address
Register Direct are categorized as Data Alterable. In general, except for special
instructions such as ADDX, all address modes may be used as a source operand.
The destination operand may be a Data register only, an Address register only
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or, in more comprehensive operations, such as MOVE and ADD, a Data Alterable
mode may be specified. Except for MOVE, one of the operands must be a register.
Table 4.8l summarizes the permitted address modes for each instruction.

Table also lists a 6-bit code against each mode. This is the bit pattern
used in the op-code to specify the address mode for both source (if present) and
destination. Two examples are given in Fig.[4.4l Of course it is not necessary
for the programmer to work out the binary code for an instruction, unless he
or she suspects the assembler's integrity — I did once find an assembler which
incorrectly coded one instruction - address mode combination. After all this is
the main raison d'étre for using an assembler.

Instruction Code Size Destination Address Mode
15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
. : : - , :
00 (.B) .
01101000 1]0{01 (w)| Mode Register
10 (.L)
Il

(a) One operand; cLR.B (a3)+ = 01000010/00/100:011 (4223h).

I.Code Size Destination Address Mode Source Address Mode

15 14 13 12 11 10 % 8 7 6 5 4 3~ 2 1 0
01 (.B)

ol ol E.w)) Register Mode Mode Register
10 (L

(b) Two operands; MOVE.W D7, (a0) = 00/11/000:010/000:111 (3087h).

Figure 4.4 Two examples of machine coding.

4.3 Example Programs

The last few sections used program fragments to illustrate various instruction/address
mode combinations. Here we finish our introduction to 68000 software by devel-
oping three programs of a slightly more elaborate nature. These will implement
similar functions to those coded in 6809 assembly language in Section 2.3, and
this will allow comparison between the software of the two processors.

As in Section 2.3 we are using the Real Time Systems XAS8 cross-assembler,
the syntax and format rules of which were discussed at that point. There are two
minor differences which are relevant here. 6809 assembly language assigns the
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Table 4.10 Object code for sum of n integers program.
.processor m68008
; Fedededd e dedededededededededede e dedededededededededededefe e deddeddedededededede il
; * FUNCTION : Sums all unsigned word numbers up to n (max 65,535) *
;¥ ENTRY : n is passed in Data register DO.W *
;¥ EXIT *

LCoNoOOUVThA WN R

Sum is returned in Data register D1.L
.psect _text ; Direct code into text area
; for (sum=0;n>=0;n--){

10 000400 02800000FFFF SUM_OF_N: and.1 #0000FFFFh,d0 ; n promoted to long
11 000406 4281 clr.T d1 ; Sum initialized to 00000000
12 000408 D280 SLOOP: add.1 do,d1 ; sum = sum + n
13 00040A 51C8FFFC dbf d0,SLOOP ; n--, REPEAT WHILE N>-1
14 00040E 4E75 S_EXIT: rts
15 .end

source operand to the operand field and destination to the instruction mnemonic,
for instance:

LDB 1234h ; [B] <- [1234h] {[<Destination>] <- [<Source>]}
LDY #OEOOOh ; [Y] <- #EOOOh {[<Destination>] <- <Source>}

In 68000 assembly language, the mnemonic does not contain any operand
information, and any operands appear explicitly or implicitly in the operand field
as <source>,<destination>, for example:

MOVE.B 1234h,D0 ; [DO(7:0)] <- [1234h] {[<Destination>] <- [<Source>]}
MOVEA.L #OEO00Oh,A0 ; [A0(C31:0)] <- #0000E000h {[<Destination>] <- <Source>}

However, the size of the operands are indicated in the mnemonic field by the
extension .B, .W or .L as appropriate. Both operands are the same size.

One quirk peculiar to the XA8 cross assembler is the treatment of the MOVE
MULTIPLE (MOVEM) instruction. The standard Motorola way of representing a
range of registers is to use the - range operator, for example DO-D3 meaning
D0/D1/D2/D3. Thus the two ways of indicating a Push of the registers DO to D3
and AO on to the System stack are:

MOVEM. L D0-D3/A0, -(A7) ; Not used by XA8 assembler
MOVEM.L DO/D1/D2/D3/A0, -(A7) ; Applicable to all assemblers

The XA8 assembler unfortunately does not support the - range operator.

Each program module is written in the form of a complete subroutine, with
data assumed present on entry in some place, usually a Data register, and termi-
nated by a RETURN FROM SUBROUTINE (RTS) instruction. We will look at subrou-
tines in some detail in Chapter 5.

Our first program generates the sum of all integers up to a maximum n
of 65,535 (FFFFh). We assume that n is passed to the subroutine in the lower
word of DO. The maximum possible sum of 2,147,450,880 fits comfortably in
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Table 4.11 A superior implementation.

1 .processor m68008

2 § R e e R R R e e e e e e e e e e e e e
3 ; * FUNCTION : Sums all unsigned word numbers up to n (max 65,535) *
4 ; * ENTRY : n is passed in Data register DO.W ®
5 ;% EXIT : Sum is returned in Data register D1.L *
6 ;% EXIT : No other registers disturbed *
7 ;iR o R o i i i R i e o ek
8 ’

9 .psect _text ; Direct code into text area
10 ; sum = n*(n+1)/2
11 000400 3200 SUM_OF_N: move.w dO0,dl ; Copy n into dl.w
12 000402 5241 addg.w #1,dl ; which becomes n+l
13 000404 C2C0 mulu d0,dl ; n*(n+1l) now in dl1.1
14 000406 E289 Isr.1 #1,d1 ; Divide to give n*(n+l)/2
15 000408 4E75 S_EXIT: rts
16 .end

the 32-bit D1 for return. Compare this with the n = 255 limit in the 6809 equiva-
lent on page[45]due to its smaller registers, although of course external memory
could have been used for larger operands.

The algorithm used in the listing of Table[4.10] simply clears Data register_DT,
which will hold the 32-bit sum, and also the upper 16 bits of DO. This latter oper-
ation effectively promotes the word-sized parameter », passed to the subroutine
in DO.W, to long-sized. The equality is necessary for the addition of line 12,
which adds the progressively decrementing n to the partial sum. The loop con-
trol DBF implements this decrementation using n both as the operand and the
loop counter. When »n drops below zero, the loop terminates and the final sum
isin D1.L as specified.

The object code shown in Table is the result of passing the source code
file through the assembler and then the linker-loader, as described in Section 7.2.
All 68000-based programs in this book assume ROM from 0400h up for the pro-
gram sections designated _text and RAM from EO0O0h up for the _data sec-
tions. Only _text is needed in this case. The program is 16 bytes long and takes
54 + 14n clock cycles to execute (maximum 114,694.75 us at 8 Mhz).

The alternative direct algorithm:

(n+1)
sum=mnx ————
2
is shown coded in Table [4.111 This copies »n into D1.W, adds one, multiplies
to give the long n x (n + 1) and then divides by two using a Shift Right once
operation. Only 10 bytes in length, it takes 104 clock cycles to execute (13 us
at 8 MHz) irrespective of n. However, like its 6809 equivalent of Table[2.10, one
value of n will give an erroneous zero answer. It is left to the reader to determine
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which, and to devise a means to avoid this problem.

Our second example involves converting a binary number to a string of ASCII-
coded digits, terminated with 00h (ASCII NULL). In Fig. 2.4 we implemented this
by evaluating the nth digit as the number of successful subtractions by 10",
starting with the maximum »n and moving down to zero. The values of 10™ were
stored as a table of constants. We used this technique in preference to the usual
algorithm of continually dividing by ten, with the remainders giving the digits, as
the 6809 MPU has no Division operation. This is not the case for the 68000 family,
and so this is the approach taken in the listing of Table .12l As an example:

65536 +10 =06553r6 Fifth digit
06553 +10 =006551r3 Fourth digit
00655 +10 = 0006515 Third digit
00065 +10 = 0000615 Second digit
00006 +~10 =00000r 6 First digit

The conversion loop simply divides repetitively by ten the long binary number
passed in DO, producing the 16-bit remainder in the top of DO and the 16-bit
quotient at the bottom. SWAP (line 19) is used to reverse the order of these, and
with the quotient safely at the top, the following Convert to ASCII and Move-byte
operations leave this undisturbed (lines 20 to 22). Finally, clearing the remainder
and swapping again restores the quotient as a 32-bit quantity ready for the next
32 + 16 bit DIVU.

Data register_D1.W is used with DBF to give 5 passes around the loop, and A0
is used as a pointer to the next RAM byte for the string digits, in conjunction with
the Post-Increment address mode. MULTIPLE MOVEs at the start and end of the
subroutine Push and Pull all use registers into the System stack, and ensure that
the internal state (except the CCR) is returned unaltered on completion.

Unlike the 6809 equivalent in Table 2.12] the binary number is not restricted
to FFFFh (65,535). As we have coded the algorithm for five digits, the upper limit
is 99,999. Changing line 16 to MOVEQ #5,D1 (i.e. six digits) will increase this to
655,359 before overflow occurs. The reason the limit is not 999,999 is the 16-bit
quotient produced by DIVU. The 68020 MPU has a 32 x 32 divide, giving a 32-bit
quotient and remainder (e.g. DIVUL #10,D0:D1 puts the 32-bit quotient in DO
and 32-bit remainder in D1). With the 68000's DIVU, one approach is initially
to divide the binary number by 10,000, the quotient then holding the upper five
digits and the remainder the lower five digits. Each half is then processed as
shown. The limit thus is 4,294,967,295. Coding this is left as an exercise for the
reader.

Our final example is the evaluation of the factorial of an integer n passed to
the subroutine in the lower byte of Data register DO. n!is returned as a long-word
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Table 4.12 Binary to decimal string conversion.

1 .processor m68000

2 ; Tededehfdehfdhhdhhddhfdhfdhhdhhddhfdhhdhhddhfdfdhdhhddhfdhfdhdhhd i

3 ; * Converts binary code (max 99,999 decimal) to a string of five

4 ; * ASCII-coded characters, terminated by 00 (NULL) *

5 ; * EXAMPLE : OO0OOFFFF -> '6''5''5''"3''5'NUL (36/35/35/33/35/00h) *

6 ;¥ ENTRY : Binary 1in DO.L *

7 ;o EXIT : Decimal string in 6 RAM bytes starting from DEC_STRG *

8 ;¥ EXIT A1l register contents except CCR unchanged *

9 3 R R e e e e e S R R e e e e e e e
10 .1ist +.text
11 .psect  _text ; Direct code into text area
12 ; Initialize data and pointer
13 000400 48E7C080 BIN_2_BCD: movem.1 d0/d1/a0,-(sp); Save everything except CCR
14 000404 207CO00E006 movea.l #DEC_STRG+6,a0; Point a0 to top of string
15 00040A 4220 clr.b -(a0) ; Put a null at this point
16 00040C 7204 moveq  #4,d1 ; Loop counter 5-1 = 4
17 ; Divide by 10 five times, the remainders giving the decimal digits

18 00040E 80FCOO0A BLOOP: divu #10,d0 ; Divide by ten

19 000412 4840 swap do ; Remainder to Tower word

20 000414 06000030 add.b  #'0',d0 ; converted to ASCII (add 30h)
21 000418 1100 move.b d0,-(a0) ; Move down one char & put it out
22 00041A 4240 clr.w do ; Zero this remainder

23 00041C 4840 swap do ; & get quotient back in word form
24 00041E 51C9FFEE dbf d1,BLOOP ; Dec count & repeat unless -1
25 H

26 000422 4CDF0103 movem.1 (sp)+,d0/d1l/a0; Return everything except CCR
27 000426 4E75 rts

28 ; dededededededededededede e hdeddeddddededededededefff e dddddedededededededefd e hhdhdddddddd

29 ; This is the area of RAM where the number string is returned in order

30 ; TEN_THOU THOU HUNDS TENS UNITS NULL from DEC_STRG to DEC_STRG+5

31 .psect _data ; Variable data space

32 00E000 DEC_STRG: .byte [6] ; Reserve six bytes for string
33 .end

in D1. As we observed on page [50] this restricts n to no more than 12, and to
signal a value outside this range, DO.L is used to return an error status, —1 for
error and O for success.

As in Section 2.3, there are two techniques for tackling problems of this nature.
The direct method uses the mathematical definition of factorial as the product
of all integers up to and including n (with the exception of 0! = 1), as shown
in Fig.2.5] Although the 6809 MPU has a multiplication instruction, its 8 x 8 field
size meant that the necessary 32 x 8 products had to be evaluated as four separate
operations together with the necessary shifting and addition. Furthermore the
growing product had to be kept externally in four memory bytes, all of which led
to the messy coding of Table 213l

Matters are somewhat improved in the 68000 with its 16 x 16 multiply and
32-bit Data registers. Implementing a 32 x 8 multiplication now involves the
process:
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34.

Fededededdhdk

* ENTRY
* EXIT
»EXIT

S

; Inditiali

000400 48E73000 FACTORTAL:

* EXAMPLE

Table 4.13 Mathematical evaluation of factorial n.

dede dede de dede de e de de e e

n
n

: do.

ze

000404 024000FF
; Error conditions

000408 0C00
00040C 6304
00040E 70FF
000410 6022

000412 7201
; N<=17

CONTINUE:

.processor

m68000

Fedededededededededede NN hdhddddddddedd NNk

.define

psect
and.w
cmp.b
bls
moveq
bra

moveq

000414 0C000001 OUTER_LOOP:cmp.b

000418 6318
00041A 3401
00041C 3601
00041E 4843
000420 C4CO
000422 C6CO
000424 4843

MUL_LOOP:

000426 02430000

00042A 2202
00042C D283
; n=n-1
00042E 5300

000430 60E2
000432 4280

FEXIT:

000434 4CDFO00C ERR_EXIT:

bls
move.w
move.w
swap
mulu
mulu
swap
and.w
move. 1
add.1

subqg.b
bra
clr.1

movem.1 (a7)+,d2/d3 :

= 12; n! = 479,001,600
in Tower byte of dO; maximum value 12
: n! in 32-bit dl
Torl, SEFFEEEEF) if error (n>12) ELSE O wxsss

Fedededededededededek

ERROR = -1
_text

movem.1 d2/d3,-(a7)

#00FFh,doO

#12,d0

CONTINUE
#ERROR, dO
ERR_EXIT

#1,d1

#1,d0
FEXIT
d1,d2
di,d3
d3

do,d2
do,d3
d3

#0,d3
d2,d1
d3,d1

#1,d0
OUTER_LOOP
do

s
s
*
s
s

; Save these registers on Stack
; n extended to 16 bits

IF n>12 THEN error condition
ELSE continue

FFFFFFFFh in dO signals error
and exit with it

Initialize sum to 00000001
IF n<=1 then answer is in dl
Lower word of sum to d2

Upper word to d3

First product (n*sum.1) in d2
Second product (n*sum.u) in d3
Move it to the upper word
Zeroing the lower word

Begin to build the new sum

Sum of products

; Zero indicates no error

Get used registers from Stack

Split sum of products into two words

Multiplied by word M

000438 4E75 rts
.end
SUM.U SUM.L
X M
SUM.L x M
+ SUM.U x M

New sum of products

1st product
2nd product shifted left 16 bits

Firstly the 32-bit sum of products is split into two words each of which is
multiplied by n (promoted to word size in line 12). The second product is shifted
left 16 places and the two products added to give the new sum. Repeating this
with M decrementing from #» to 1 gives the loop algorithm of Table £.13] lines 21 -

Splitting up the sum of products, using a word MOVE from D1 (holding the
32-bit sum) to D2.W, gives the 16-bit SUM.L. Moving all of D1 to D3 and then
swapping words (SWAP D3) puts the 16-bit SUM.U in the lower word of D3. The
two MULUs of lines 26 and 27 then give the two sub-products. The second of these
is moved left 16 places by doing a SWAP and clearing the lower 16 bits. Finally,
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Table 4.14 Factorial using a look-up table.

1 .processor m68000

2 3 R R R e R e e e e e e e e e e e e ek

3 ; * EXAMPLE : n = 12; n! = 479,001,600 *

4 ;% ENTRY : n in lower byte of d0O; maximum value 12 *

5 ;% EXIT : n! in 32-bit dl *

6 ;% EXIT do.1 1 (FFFFFFFFh) if error (n>12) ELSE 0O *

7 ; Fededededend ek Yo e de e de Fededed oS dede el ddeddnd

8 .define ERROR = -1

9 .list  +.text
10 ; Initialize
11 .psect _text
12 000400 48E70080 FACTORIAL: movem.1 a0,-(a7) ; Save a0.L on Stack

13 000404 024000FF and.w  #00ffh,d0; n extended to 16 bits

14 000408 207C00000426 movea.l #TABLE,a0; Point a0 to bottom of table

15 ; Error conditions

16 00040E 0C00000C cmp.b #12,d0 ; IF n>12 THEN an error condition
17 000412 6304 bls CONTINUE ; ELSE continue

18 000414 70FF moveq #ERROR,d0; Put FFFFFFFFh in dO signals error
19 000416 6008 bra ERR_EXIT ; and exit with it

20 ;

21 000418 ES508 CONTINUE: 1s1.b  #2,d0 ; Multiply n by 4 as table is 4-wide
22 00041A 22300000 move.l 0(a0,d0.w),d1l;Get Tong-wrd at [a0]+[d0] to D1
23 00041E 4280 FEXIT: clr.1 do ; Zero indicates no error

24 000420 4CDF0100 ERR_EXIT: movem.1l (a7)+,a0 ; Retrieve a0.1 from Stack
25 000424 4E75 t
2 6 ; P e %k % ¥ % % ¥ % ¥ % ¥ o v e % % o %
27 ; Now the table of factorials which is in the text (ROM) area
28 000426 TABLE: .double 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
362880, 3628800, 39916800, 479001600

00000001
00000002
00000006
00000018
00000078
000002D0
000013B0
00009D80
00058980
00375F00
02611500
1C8CFC00
29 .end

they are summed in D1 (lines 30 and 31) to give the grand total. Decrementing n
(line 33) completes the loop.

Once again this example is easier to implement with the 68020 MPU, which has
a 32 % 32-bit multiply MULU. L. This would avoid the need to split the multiplicand
in two and later combine the two sub-products.

On entry to the loop, n is tested for 1 or 0, and if True the subroutine is
exited with DO.L cleared. The alternative exit if n > 12 (lines 14 and 15) puts
FFFFFFFFh (—1) in DO.L to signal error and bypasses the clearing operation.

Where no simple mathematical algorithm exists to specify a function, using
a table of outcomes is the only approach, for example the 7-segment decoder
of page [IT1l Although this is not the case here, there are only 13 successful
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outcomes to the subroutine, and the use of a look-up table is an attractive propo-
sition.

Using this approach, the resulting coding of Table .14 shows the active por-
tion of the program (i.e. excluding error checking and reporting, which is the same
as the previous listing) to be only lines 21 and 22. The first multiplies n by four to
match the size of the table entries. This is then used as the Index register (D0.W)
to point into the table, with A0 holding the base address 0426h (TABLE). For exam-
ple, if n = 4 then [DO(15:0)] becomes 10h (4 x4) and MOVE.L 0(A0,DO.W),D1 ef-
fectively moves the 4 bytes starting at 0+ [A0]+[D0(15:0)] = 0+0426h+10h =
0436h to D1.L. The contents of 0436:7:8:9h are 24 (00 00 00 18h), as required
for n!.
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CHAPTER 5
Subroutines, Procedures and
Functions

A subroutine may be defined as a self-standing sequence of instructions which
may be called from anywhere and, having been run, will return control whence
it was called. Thus, for example, the code for the calculation of sin(x) may be
stored offside the main program. To exercise the function:

y = sin(x);

the program must jump out to the code, carrying with it the value of x. After
execution, the outcome 7y will be found at some prearranged location.

Subroutines are primarily used to reduce the size of the overall code, since
they may be successively called from many points outside, including other sub-
routines, and even from inside itself (when they are known as recursive)! For
example, the calculation of sine may be needed at five different parts of the pro-
gram, but if it is coded as a subroutine, only one implementation is necessary.
Furthermore, subroutines can be nested, with one subroutine calling another. For
example, a call to a cosine subroutine will invariably have recourse to the use of
the sine function.

Sets of useful subroutines are often organized in a library. These libraries are
scanned at link time (see Section 7.2) and the relevant entries referred to in the
user's program, extracted and added to the final code. To be used in this man-
ner, each subroutine must be documented with well-defined parameter-passing
protocols. Libraries may be built up by the user or be available as a commercial
package. High-level languages usually come with several such packages.

Aside from saving space, subroutines are the vehicle normally used to im-
plement modular programming [1]. A structured approach to hardware design
decomposes the system into functional modules, for example oscillator, gate,
counter, decoder, display. Each module has a relatively simple function and may
be designed, implemented and tested as a separate entity, with the appropriate
stimuli. This may not produce the smallest, most efficient circuit, but it is likely
that the product will come to fruition earlier and be more maintainable due to its
testability.

The software module is analogous to its hardware cousin as it too can be
inserted into its motherboard (the main program), takes one or more signals
(parameters, e.g. x) and has an outcome (return values, e.g. sin(x)). A software
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module, invariably in the form of a subroutine, is normally self-standing with its
own area of code (usually in ROM) and data storage in RAM. Good programming
techniques are used to enforce a single entry and exit point and a minimum of
interaction with data areas used by other modules.

The expression function is commonly used in high-level languages to describe
a callable module. In Pascal the name procedure is reserved for the special case
of a function that returns no value, that is a void function. In common with
assembly language, Fortran uses the name subroutine. Irrespective of the name
used, assembly-level subroutines are normally used to implement these high-
level modules. Thus an understanding of the structure of subroutines is the
key to comprehending the operation of these important aspects of high-level
languages. This is the objective of this chapter.

5.1 The Call-Return Mechanism

In essence, getting to a subroutine involves nothing more than placing the address
of its opening instruction in the Program Counter (PC), that is doing a Jump or
Branch. Thus, if we take as an example a subroutine which evokes a delay of 0.1 s
(i.e. does nothing for 100 ms) and starts at E100h, then JMP OE100h will transfer
control. In practice the programmer will probably not know the absolute address
of the subroutine, especially if it is hidden in a library. However, a subroutine
entry point is normally identified with a label, and the assembler or linker will
evaluate the appropriate address, for example JMP DELAY (see Table [5.2).

The problem lies not in getting there, but returning afterwards. As can be seen
from Fig.[5.1] the jumping-off point may be from anywhere in the main program
or indeed from another subroutine — the latter process is known as nesting.
Thus the microprocessor (MPU) needs to remember the value of its PC (which is
already pointing to the instruction following the Jump or Branch after its fetch)
before its contents are overwritten.

One possibility is to move the contents of the PC to a designated memory
location or Address register, for example LEAX 0, PC (LOAD EFFECTIVE ADDRESS
0+ PCto the 6809's X register) or LEA 0(PC),A0 (LOAD EFFECTIVE ADDRESS O + PC
into the 68000's AO register). Then the subroutine can be terminated by moving
this pre-saved jumping-off address back to the PC (JMP 0,X or JMP (AO0)).

This approach breaks down when a subroutine wishes to call another, for
the secondary subroutine will overwrite the return address of the primary. To
get around this problem, the jumping-off address could be pushed down into a
stack, rather than using a fixed register or memory location. As each subroutine is
called, this Stack Pointer is moved down automatically by the appropriate number
of bytes. Returning inwards simply involves the mirror operation of pulling up
out of the stack back into the PC. The Stack Pointer moves up accordingly. This
last-in first-out sequence, necessary for nesting, exactly describes the structure
supported by the System stack/Stack Pointer.

Using this technique gives us:
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Subroutine

Program 1J More Program Even_more Program

Main flow

(a) Calling up a subroutine twice.

———

SR3

SR2

Main flow

(b) Nested subroutine with Main calling SR1, which in turn
calls SR2, which in turn calls SR3. SR1 also calls SR3.

Figure 5.1 Subroutine calling.

PSHS PC

IMP DELAY } = JSR DELAY it ii i PULS PC = RTS

for the 6809 MPU, and

PEA 0(PC)
JMP DELAY } = JSR DELAY ...t IJMP (SP)+ = RTS
for the 68000 MPU.

Notice how we simulated a Pull operation for the 68000 MPU, which does
not have an explicit Pull instruction. The Post-Increment Indirect address mode
operation on A7 (the System Stack Pointer) causes the SSP to move up (4 bytes)
after the data (the return address) has been extracted. By definition, the Jump
operation puts this extracted address in the Program Counter.

Calling and returning from a subroutine is a sufficiently frequent operation
to warrant the specific Call and Return instructions of Table These have
exactly the same outcome as the generalized approach shown above. JuMP TO
SUBROUTINE (JSR) and its relative BRANCH TO SUBROUTINE (BSR) push the re-
turn address on to the System stack before going off. The BSR variants follow
the same rules as ordinary Branches (see Sections 2.2 and 4.2) and of course
generate position-independent code (PIC). RETURN FROM SUBROUTINE (RTS) pulls
the return address back from the System stack. 80x86 microprocessors use the
mnemonics CALL and RET for the same purpose.
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Table 5.1 Subroutine instructions.

Operation Mnemonic Description
Call Transfer to subroutine
Jump to subroutine [JSR ea Push PC onto Stack, PC <- <ea>

Branch to subroutine!
short |BSR offsetg [Push PC onto Stack, PC <- PC + sex|offsetg
long |LBSR offsetqg|Push PC onto Stack, PC <- PC + offsetig

Return Transfer back to caller
from subroutine RTS Pull original PC back from Stack

(a) 6809 instructions.

Call Transfer to subroutine
Jump to subroutine |JSR ea Push PC onto Stack, PC <- <ea>
Branch to subroutine!
short [BSR offsetg |Push PC onto Stack, PC <- PC + sex|offsetg
long |LBSR offsetjg|Push PC onto Stack, PC <- PC + sex|offsetyg

Return Transfer back to caller
from subroutine RTS Pull original PC back from Stack
and restore CCR RTR Pull original CCR back from Stack
Pull original PC back from Stack
Frame Maintain a frame for local variables
Make LINK An,#kkig||An into Stack (save old Frame Pointer, An)

An <- SP (Point An to Top Of Frame, TOF),
SP <- SP + sex]kkqg (SP to Bottom of Frame)

Close UNLNK An SP <- An (move SP back to TOF),
Pull An (Get old Frame Pointer from Stack)

(b) 68000 instructions.

Note 1: Available in signed 8-bit (+127, —128) and 16-bit offset (+32,767, —32,768)
varieties. Most assemblers can chose the appropriate versions automatically.
The 68020 upwards have a full 32-bit offset Branch capability.

From Fig.[5.2] we see that the action of JSR/BSR and RTS on the System stack
is the same for both 6809 and 68000 MPUs, except the latter requires four bytes.
As is usual for Motorola MPUs, the lower byte is located in the higher address (i.e.
the lower byte of the address is pushed out first). The 68000's SSP must always
point to an even address, and this will be enforced even if a single byte is pushed
out.

As an example, consider a subroutine to give a 0.1 s delay. This is easily imple-
mented by loading a constant into a register and decrementing to zero. Coding
for the 6809 and 68000 processors is shown in Table Other than the termi-



THE CALL-RETURN MECHANISM 127

SSP mmmp 4000h 4000h SSP mmmp 4000h
3FFFh PCL Byte 1 | 3FFFh PCL Byte 1 | 3FFFh
3FFER SSP mmmp | PCH Byte 0 | 3FFEN PCH Byte 0 | 3FFEh
3FFDh 3FFDh 3FFDh
3FFCh 3FFCh 3FFCh
3FFBh 3FFBh 3FFBh

Stack 3FFAh Stack 3FFAh Stack 3FFAh
(i) Before a Call (i) After a JSR or BSR (iii) After a RTS

(a) The 6809 MPU.

SSP mmp 4000h 4000h SSP mmmp 4000h
3FFFh PCL Byte 3 | 3FFFh PCL Byte 3 | 3FFFh
3FFEN Byte 2 | 3FFER Byte 2 | 3FFEh
3FFDh Byte 1 | 3FFDh Byte 1 | 3FFDh
3FFCh SSP mmmp | PCH Byte 0 | 3FFCh PCH Byte 0 | 3FFCh
3FFBh 3FFBh 3FFBh

Stack 3FFAh Stack 3FFAh Stack 3FFAR
(i) Before a Call (i) After a JSR or BSR (iii) After a RTS

(b) The 68000 MPU.

Figure 5.2 Saving the return address on the Stack. The SSP assumed a priori set to 4000h.

nating RTS, the programs are perfectly normal routines. Strictly, in calculating
their delay, the time to get to the subroutine should be considered, and this can
differ according to how far away the subroutine is from the caller and which Call
instruction and/or address mode is used. This also illustrates that there is a time
overhead in using a subroutine, and where speed is of the essence, in-line code
should be used.

Notice that in both cases illustrated in Table 5.2] one of the registers (X or AQ)
will be returned in an altered state, the same being true of the Code Condition reg-
ister (CCR). Provided that such changes are well documented, this will frequently
be of little consequence. However, it is often preferable to make subroutines
transparent in that all registers, or perhaps a subset, remain unaltered. This can
be accomplished by pushing all relevant registers into a stack at the beginning
of the subroutine and pulling them out again just before the final exit RTS. This
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Table 5.2 A simple subroutine giving a fixed delay of 100 ms when called.

% ’ processor @§§ 9uuuu,uu s N
3 ; ¥ This subrout1ne does nothing and takes 0.1s to do it

4 ;¥ ENTRY : Non

g H EXIT X Addres§ reg1ster 0000, CCR destroxgq e
7 .define N =12500- (5+3/8)

8 E000 8E30D3 DELAY: 1dx #N ; Delay factor, 3~

9 EO003 301F DLOOP: Teax -1,x ; Decrement , Nx5~
10 E005 26FC bne pLOOP ; to zero , Nx3~
11 E007 39 rts ; , 5~
12 .end

(a) 6809 code; 1 MHz clock, ~ =1 us.

3 : Th1s subrout1ne does noth1ng and takes 0 ls to do 1t *
4 ;¥ ENTRY : Non *
g ; :hFXIThJi PQJWuPéyg reg1ster W 0000 CCR destroxgquahuh Jhuhhdhuhhuf
7 define (200000 8-14)/14

8 000400 303C37CC DELAY: move w #N d ; Delay factor, 8~

9 000404 5340 DLOOP: subqg.w #1,d0 ; Decrement , Nx4
10 000406 66FC bne DLOOP ; to zero s Nx10/8~ (taken/not)
l% 000408 4E75 r‘té ; s ~
1 .en

(b) 68000 code: 8 MHz clock, ~ = 0.5 us.

is easy in the 6809 MPU, as any combination of registers, including the CCR, can
be Pushed or Pulled with a single instruction, see Table 5.3[a). There is a slight
problem with the 68000 MPU. The MOVEM instruction used for Pushing and Pulling
only acts on Address and Data registers. There is a MOVE SR, -(SP) instruction
which copies the whole Status register, of which the CCR is the lower byte. The
opposite Pull operation is supported, that is MOVE (SP)+,CCR! Although the lat-
ter only pulls out a byte, the SSP moves up two bytes. This is necessary to obey
the rule that the SSP always points to an even address, and thus preserves the
integrity of the System stack. Interestingly the 68010 and higher family mem-
bers have gained the missing MOVE CCR,<ea> instruction, which matches the
MOVE <ea>,CCR instruction.

From Table [5.1ib), we see that the 68000 family has a second Return instruc-
tion, RTR (RETURN AND RESTORE CCR). This is used as an equivalent to the se-
quence:

MOVE (SP)+,CCR
RTS

and assumes that the CCR has been saved out onto the System stack at the be-
ginning of the subroutine before any other stack-based operations have altered
the SSP. Notice from Table 5.3lb) that the CCR is saved first (line 8), before the
Data register is Pushed. The Pull sequence at the end of the subroutine is then
in the reverse order. Failure to observe this can lead to spectacular crashes! The
equivalent instruction PULS CCR, PC is sometimes used to terminate a 6809 sub-
routine (see Table [8.3).



129

THE CALL-RETURN MECHANISM

4y944¢

4y844¢

uvd44¢

yod4¢

Yy344¢

yoooy

RIEEEIS

RICEELS

yvi4e

uod4¢

REEEIN

4000y

(Ind) |zd (A)

400

(usnd)

<mmm SG

(ds) - "¥9S HAOW (Il

wisysAs

400

<4mmm |SS

<4mmm S5

4y944¢

4y844¢

uv44¢

Uo44¢

Yy344¢

yoooy

Y9d4¢

yg44¢

yviig

uo44¢

Y344¢

4yoooy

0a’+(ds) M°HAOW (A)

(Usnd) ¥sg Jo ¥SL Jouy (1)

(Ind)

mod

; 420
dS
HOd
10d

0 °¥g “ | oMg
HOd

Z ovig ; ¢ eig
10d

<mmm SS

<mmm Sg

Yy944¢

4y844¢

uv44¢

Yd44¢

Yy344¢

yoooy

Yad4¢

ug44¢

uv44¢

4o44¢

Y344¢

Clelele}4

(Usnd) (dS)-'0a M°HAOH (A)
Slg “ £:0
moda <4 SS
; 902
dsS
HOd
10d

IreD 8y a10jeg ()

<= SS

Figure 5.3 The stack when executing the code of Table[5.3(b), viewed as word-oriented.
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Table 5.3 Transparent 100 ms delay subroutine.

SRR 1t 0 SOR
3 ; * This subroutine does nothing and takes 0.1 s to do it *
4 ; * ENTRY : None *
T LI
7 .define N =12500-(5+3+7+7/8)

8 E000 3411 DELAY: pshs X,CC ; Save Address reg and CCR , 7~

9 E002 8E30D2 Tdx #N ; Initial delay factor , 3~
10 EOO5 301F DLOOP: Tleax -1,x ; Decrement , Nx5~
11 EO007 26FC bne DLOOP ; to zero , Nx3~
12 EO009 3511 puls X,CC ; Get registers back , I~
13 E0O0B 39 rts ; , 5~
14 .end

(a) 6809 code. Note lines 12 and 13 could be replaced by puls x,cc,pc.

T G D e e
3 ; * This subroutine does nothing and takes 0.1 s to do it
4 ; * ENTRY : None
7 .define N = (200000-8-18-14-8-8)/14
8 000400 40E7 DELAY: move sr,-(sp) ; Save CCR (in SR) , 14~
9 000402 3F00 move.w d0,-(sp) ; and Data reg d0(15:0) , 8~
10 000404 303C37CC move.w #N,d0 ; Initial delay factor , 8~
11 000408 5340 DLOOP: subg.w #1,d0 ; Decrement , Nx4~
12 00040A 66FC bne DLOOP ; to zero , Nx10/8~(taken/not)
13 00040C 301F move.w (sp)+,d0 ; Retrieve old d0(15:0) , 8~
%é 00040E 4E77 rtg ; Retrieve CCR then RTS , 20~
.en

(b) 68000 code. Note rtr is equivalent to 6809 code puls cc,pc.

Apart from its convenience, transparency is necessary to support the recur-
sive use of a subroutine. A subroutine is recursive if it calls itself. Clearly register
variables used in the subroutine will be wiped out when used again by the next
recursion. Similarly, static memory locations cannot be used to store variables
for a subroutine which is to be recursive, but variables can be saved in a stack,
as shown in the next section, where they are known as automatic variables.

5.2 Passing Parameters

The simple fixed-delay subroutine used as the example in the previous section is
unusual, in that no information was passed from the caller and none returned.
Another example of a double-void subroutine would be a function actuating
an external relay, where the very act of calling is sufficient. The actuation is
sometimes referred to as a side effect.

Consider the situation where the total delay is to be an integer (0 to 65,535)
multiple of 0.1 seconds, depicted as DELAY(Z), where Z is the aforementioned
integer passed to the subroutine by the caller. In Table [5.4lit is assumed that the
caller has set up the D1.W register accordingly. Thus to invoke a 1s delay, the
call would be something like this:
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Table 5.4 Using a register to pass the delay parameter. The call-up sequence shown above passed a
constant (ten) to the subroutine.

1 .processor m68000

2 ; Fedddedehfdh Nl fdhffdhfdhfdhfdhddhddhfdhfdhNdhdhhfd N Ndhhdhhddhddhn

3 ; * This subroutine does nothing and takes Zx0.1ls to do it *

4 ; * EXAMPLE : Z = 10; delay = 1 second *

5 ;¥ ENTRY : Z passed in lower 16 bits of D1 *

6 ;¥ EXIT : D1(15:0) = FFFF, D2(15:0) = 0000, CCR destroyed *

7 3 e e e e e e e e e e e e e e e e S S e

8 .define N = (200000-8-10)/14

9 000400 6008 DELAY: bra LOOPTEST ; Check Z =0 , 10~
10 000402 303C37CC OUTERLOOP: move.w #N,dO ; 100ms delay factor , 8~
11 000406 5340 INNERLOOP: subq.w #1,d0 ; Decrement , Nx4~
12 000408 66FC bne INNERLOOP ; to zero , Nx10/8
13 00040A 51C9FFF6 LOOPTEST: dbf d1,0UTERLOOP ; One Tess 100ms click, 10/14~
14 00040F 4E75 rts ; » 16~
15 .end
MOVE.W #10,D1 ; Ten ticks = 1 second
BSR DELAY ; Go to 1it!

The coding itself uses an inner loop (lines 11 and 12) identical to that in Ta-
bles and [5.3] with DBF being employed in conjunction with D1.W (i.e. Z) to
count the number of passes through this inner core (i.e. 0.1 s ticks). This DBF
Decrement and Test is exercised immediately the subroutine is entered, to en-
sure a speedy exit should Z be zero. The delay due to line 9 only happens once,
and can be thought of together with the caller's JSR/BSR as a constant error in-
dependent of Z. No data is returned from this void subroutine.

If the delay parameter is a variable, for example data read from an analog to
digital converter, and stored somewhere in memory at MEM_Z, then:

MOVE . W MEM_Z,D1 ; Copy the delay variable to D1
BSR DELAY ; to pass to subroutine

will do the necessary. Note that the parameter passed is a copy of the variable
(still in MEM_Z), not the variable itself. Thus when D1.W is decremented in the
subroutine, Z will not be altered, just its clone. Passing copied parameters is
known as call by value [2]. We will look at ways of directly affecting variables
through a subroutine later.

Using registers to pass parameters is convenient, fast and efficient. Further-
more, with some modification, it is suitable for recursion (subroutines that call
themselves), supports re-entrant code (subroutines which can be interrupted and
then called again by the service routine, see Section 6.1) and is position indepen-
dent. Its main problem is lack of generality, as the complement, range and type
of registers available vary considerably between devices. Thus the 6502 MPU has
two 8-bit Address registers and one 8-bit Data register, the 8086 with four 16-
bit Data registers and three 16-bit Address registers, while the 68000 has eight
32-bit registers each of both types. This is especially a problem with high-level
language compilers, which attempt to be portable between processors.



132 C FOR THE MICROPROCESSOR ENGINEER

Table 5.5 Using a static memory location to pass the delay parameter.

1 .processor m68000

2 3 e e e e e e e e e e e e e S e S e

3 ; * This subroutine does nothing and takes Zx0.1 s to do it *

4 ; * EXAMPLE : Z = 10; delay = 1 s *

5 ;¥ ENTRY : Z passed in memory Tocation 6000/6001h *

6 H : D1(15:0) = FFFF D2(15:0) = 0000, CCR destroyed *

7 ;o Fededek edededededoded Tedededdddhhddhh *%

8 .def1ne = (200000-8-10)/14

9 000400 32386000 DELAY: move.w 6000h,d1 ; Get delay parameter 12~
10 000404 6008 bra LOOPTEST ; Check Z = 10~
11 000406 303C37CC OUTERLOOP: move.w #N,d0 ; 100 ms de1ay factor, 8~
12 00040A 5340 INNERLOOP: subg.w #1,d0 ; Decrement , Nx4~
13 00040C 66FC bne INNERLOOP ; to zero , Nx10/8
14 00040E 51C9FFF6 LOOPTEST: dbf d1,0UTERLOOP ; 1 less 100 ms c11ck 10/14~
15 000412 4E75 rts ; , 16~
16 .end

Another technique, used especially with MPUs having a small complement of
registers, is to use assigned memory locations as a common area between caller
and subroutine. Where the location is fixed, this is known as static allocation.
In Table [5.5] a single memory word is used to pass the static variable Z, with the
caller copying the delay parameter thus:

MOVE.W  MEM_Z,6000h ; Copy the delay variable from memory
BSR DELAY ; to pass to the subroutine via 6000h

If MEM_Z was actually the common memory location, then this copy would not
need to be made, but care would have to be taken not to alter the variable itself
(rather than the copy).

The use of common static memory has the advantage of being able to pass
large numbers of parameters and structures such as arrays. However, as these lo-
cations are by definition fixed, such subroutines cannot be recursive or re-entrant.
Also, unless different static locations are used for each subroutine, nesting can
lead to unfortunate side effects as one subroutine inadvertently alters another
subroutine's variables. This makes debugging difficult, as routines other than the
one being tested may interact in unpredictable ways. Such common areas can be
used to hold global variables, which are known throughout all linked program
modules.

Many of these problems can be overcome by using a stack to pass variables
back and forth, or preferably putting them there in the first place [3} 4]. This
situation is depicted in the listing of Table[5.6]and Fig. Now to call up DELAY,
a copy of the delay variable Z is pushed onto the System stack before calling the
subroutine. On return the System Stack Pointer must be moved back up again to
balance this Push and be returned to its original position. Using LEA 2(SP),SP
is an alternative to ADDQ #2,SP (or ADDA +2,SP), and can be used for operands
up to 32,767. The 8086 MPU family has a convenient RET #n instruction which
is equivalent to LEA +n(SP),SP after a RTS. Similarly, the 68010 and up has a
RTD #n equivalent (RETURN AND DEALLOCATE PARAMETERS) where n is a 16-bit
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Table 5.6 Using the stack to pass the delay parameter.

1 .processor m68000
2 3 e e e e e e e e e e e e e e e S e
3 ; * This subroutine does nothing and takes Zx0.1 s to do it *
4 ; * EXAMPLE : Z = 10; delay = 1 s *
5 ; * ENTRY : Z passed in Stack at SP+4/SP+5 *
6 ;% EXIT : D1(15:0) = FFFF, D2(15:0) = 0000, CCR destroyed *
7 o wEE e e o e ¥ dedk * dedededodedodode e
8 .define N = (200000-8-10)/14
9 000400 322F0004 DELAY: move.w 4(sp),dl ; Get delay parameter, 12~
10 000404 6008 bra LOOPTEST ; Check Z = 0 , 10~
11 000406 303C37CC OUTERLOOP: move.w #N,dO ; 100 ms delay factor, 8~
12 00040A 5340 INNERLOOP: subq.w #1,d0 ; Decrement , Nx4~
13 00040C 66FC bne INNERLOOP ; to zero , Nx10/8
14 00040E 51C9FFF6 LOOPTEST: dbf d1,0UTERLOOP ; 1 Tess 100 ms click, 10/14~
15 000412 4E75 rts H , 16~
16 .end
SSP n— sP+6 < SSP
MOVE.W MEM_Z, - (SP) # LEA 2(SP), (SP)
SSP n— z SP+4 < SSP
BSR DELAY PCL SP+2 RTS
SSP n— PCH sp < SSP
Go Return

Figure 5.4 The Stack corresponding to Table[5.61

immediate parameter sign-extended to 32 bits.

MOVE . W MEM_Z,-(SP) ; Copy delay variable to the System stack
BSR DELAY ; to pass to the subroutine
LEA +2(SP),SP ; Clean up stack after return

Comparing Tables[5.6/and[5.5], we see that the only change is of Address mode
in line 9. From Fig. we see that Z lies 4:5 bytes up from where the SSP points
to on arrival. Its effective address is thus 4 (SP).

Passing parameters using dynamic allocation permits nesting, recursion and
re-entrancy as the SSP automatically moves down for each call and up again on
eachreturn. Essentially such variables are local (sometimes called automatic) and
are known only to their own subroutine. The technique is general to all processors
supporting a stack, and is used by block-structured high-level languages such as
Algol, Pascal and C [5]. It is also possible to return values on a stack in a similar
manner.

All our examples so far have involved copying the value of a variable to pass to
the subroutine. The actual variable itself is somewhere out in read/write memory
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Table 5.7 Making a copy of a block of data of arbitrary length.

1 .processor m68000

2 ; Tl dededededededededededede e deddedededededededededeffffhhdhdddddededededededede e hhhdddk
3 ; * Copies a block of data from one area (e.g. ROM) to another (e.g. RAM)*
4 ; * ENTRY : Constant LENGTH passed in SP+22/23 (up to 65,535) *
5 ; * ENTRY : Constant address RAM_START passed in SP+18/19/20/21 *
6 ; ¥ ENTRY : Constant address ROM_START passed in SP+14/15/16/17 *
7 ; ¥ EXIT : Block of data from ROM_START to ROM_START+(LENGTH-1) *
8 ; * EXIT : copied to RAM_START to RAM_START+(LENGTH-1) *
9 ; * EXIT : DO.W = FFFFh if copy successful *

10 ; ¥ EXIT : else LENGTH-DO.W 1is number of successful bytes transferred *

11 ; Fededededededededededede e hhhdhdddddededededededdef e dddddededededededede e hddddedededededd

12 ;

13 000400 42E7 BLOCK_COPY: move CCR,-(SP) ; Save CCR

14 000402 48E740C0 movem.1 AO/A1/D1,-(SP) ; Save used registers

15 ; Get Tlength parameter and check for zero

16 000406 302F0016 move.w 22(SP),DO ; Get LENGTH out from stack

17 00040A 4A40 tst.w DO ; Is it zero?

18 00040C 6714 beq EXIT ; IF yes THEN exit

19 00040E 5340 subg.w #1,D0 ; ELSE redress DBNE'S n+1 Toop

20 ; Now do the move loop

21 000410 206F0012 movea.l 18(SP),A0 ; Point A0 to RAM

22 000414 226F000E movea.l 14(SP),Al ; Point Al to ROM

23 000418 1219 CLOOP: move.b (AL)+,D1 ; Move byte ROM to D1

24 00041A 1081 move.b D1, (AO) ; and hence up to RAM

25 00041C B218 cmp.b (A0)+,D1 ; Did it get there ok?

26 00041E 56C8FFF8 dbne DO, CLOOP ; IF so THEN dec. and repeat

27 ; Pass here IF LENGTH is zero, OR error occurs OR copy is finished

28 000422 48DF0302 EXIT: movem.1 (SP)+,A0/A1/D1 ; Restore registers

29 000426 4E77 rtr ; and CCR before return

30 .end

and is not altered by processes in the subroutine. Itis possible to use a subroutine
to affect a variable directly by passing the address of that variable. This is known
as call by reference [2]. Now that the subroutine knows where the variable lives,
it can be modified. Passing addresses is also useful in pointing out to a subroutine
where a large data structure, such as an array, is stored without having to send
all its elements over. Only a pointer to the first element and its length need be
passed.

A rather more sophisticated example of a program making use of a stack to
pass both a copy of a variable and pointers is given in Table [5.7] The program
specification is to make a copy of a block of data from one area of memory to
another area of read/write memory. Parameters passed are pointers to the
start of the source and destination blocks, and the length of the original block
(assumed to be not greater than 64 kbytes). A successful copy is signalled by
returning the code —1 (FFFFh) in DO.W. If any copy action is unsuccessful, then
the subroutine is exited with D0O.W holding the block length less the number
of successfully transferred bytes. The caller can then subsequently calculate
LENGTH — DO.W to give the number of bytes actually transferred. Other than the
error status return, all other registers are to be unaltered. A typical application
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ssP+24 < SSP

SSP+22

SSP+18

LEA 10(sp),SP
Clean up stack

ssp+14 < SSP

SSP+10

SSP+8

SSP+4

SSP

RTR

(SP)+

Pull AO, A1

MOVEM.L AO/Al,

<4 SSP

Return

of such a subroutine would be to copy a table of initialized variables stored in
ROM by a compiler to RAM where they can be modified later (see Table [10.12).
Initial values cannot be stored in RAM, as such memory is volatile. Usually the
compiler will generate the necessary constants, such as block start addresses and
length, at link time.

The core of the program is contained in lines 21 to 26 of Table[5.Zl Each byte
is moved directly from memory to memory using Address registers to point to
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the two locations. A comparison tests for a successful copy as well as advancing
the pointer. The DBNE loop control exits if it is true that the two bytes are not
equal (i.e. unsuccessful) otherwise decrements the count in DO.W (originally set
to LENGTH — 1 in line 19) and repeats. The residue in DO.W will be FFFFh if each
copied byte is verified, otherwise its exit state reflects the number of loop passes
taken.

The System stack, as seen in Fig. 5.9] is used for three purposes. Firstly the
three parameters are pushed out prior to the call, in a sequence such as:

MOVE.W  #LENGTH, -(SP) ; Word Tength parameter pushed (2 bytes)
MOVE.L #RAM_START, -(SP) ; Pointer to start of RAM pushed (4 bytes)
MOVE.L #ROM_START, -(SP) ; Pointer to start of ROM pushed (4 bytes)
BSR BLOCK_COPY ; Go to it

LEA 10(sp),SP ; After return, clean up Stack

Then the actual call places the PC on the System stack automatically. Finally, as
the subroutine is to be transparent, the System stack is used to save any used
registers, apart from DO.

The code shown in Table [5.7] uses offsets from the SSP to obtain the three
parameters, for example MOVE.W 22 (SP),DO0. This can cause problems, since in
the body of many subroutines, the SSP is used to Push and Pull temporary results
of evaluation into and out of the System stack. In particular local variables (that
is variables used only by the subroutine and forgotten about after return) are also
frequently kept on this stack. All this means that the parameter offsets from the
SSPwill be in a constant state of flux. To get around this problem another Address
register is frequently pointed to the top of the System stack at the beginning of
the subroutine and this remains as a fixed point of reference for the duration of
the subroutine, irrespective of what is happening to the SSP. This is known as the
Frame Pointer (FP), with the space used on the System stack after entry being the
Frame.

Our final example is used to illustrate the concept of a Frame. Consider a
subroutine where an analog signal must be sampled as rapidly as possible for a
variable number of times, using an 8-bit analog to digital converter, after which
the resulting array is to be processed in some manner. Typical processes are
filtering, averaging and peak detection. To keep our program as simple as pos-
sible, we will assume that we wish to return the simple sum of not more than
256 of these samples. To comply with the injunction that sampling should be as
quick as possible, it will be necessary to allocate space to store temporarily up
to 256 bytes. After this burst of sampling, the process can be carried out on the
array now in situ in this RAM buffer.

Our first implementation is based on the 6809 MPU, as an example of a proces-
sor without any specific Frame-handling instructions. The System stack reflecting
the coding of Table[5.8is shown in Fig.[5.6. The variable i representing the num-
ber of samples to be taken is pushed on to this stack in the normal way prior to
the subroutine call. The subroutine itself commences by saving the contents of
the User Stack Pointer (USP) on the System stack. The USP is to point to the Top
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(1) SSP m—)
(2) SSP umm—p i FP+4
PCL FP+3
(@ SSP m—) PCH FP+2
USPL FP+1
(4) SSP m— USPH FP < FP (U) TOF
(Top Of Frame)
count FP—1
FP—2
FP—3
FP—4
1 <Before>
2 PSHS <i>
3 JSR/BSR . L ARRAY[256] < Frame
4 PSHS U ; 0l1d Frame pointer N N
5 LEAS -101h,S; Make Frame
FP—255
FP—256
(5) SSP ) FP—257| < BOF
(Bottom Of Frame)

Figure 5.6 The 6809 System stack organized by the array averaging subroutine.

Of Frame (TOF) and is thus to be the Frame Pointer. Transferring the contents of
the System Stack Pointer (SSP) to the USP effectively points the Frame Pointer to
the TOF, and then the SSP is moved down 257 bytes, one to hold the temporary
(local) variable holding the count and 256 for the array (lines 11-13). At this
point, the SSP points to the bottom of the frame (BOF) but, as all references in Ta-
ble[5.8luse the Frame Pointer (e.g. line 21, DEC -1, U), it can be used subsequently
for other purposes.

After the body of the subroutine, the Frame is closed by copying the Frame
Pointer to the SSP — that is moving it up to the TOF — and pulling out the old
Frame Pointer, before RTS (lines 34 and 35). Of course, after return the System
stack will need to be cleaned up to compensate for passing i.
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Table 5.8 Using a frame to acquire temporary data; 6809 code.

1 .processor m6809

2 ; Fedededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededede ek

3 ; * Burst acquires up to 256 analog samples and returns the sum *

4 ; * ENTRY : i is the number of samples on the stack *

5 ; * EXIT : The sum of i 8-bit samples in Accumulator D *

6 ; * EXI X, CCR altered. U is used as the Frame Pointer *

7 ; Tl Tededehfdehfdhhddhhfdhfdhfdhhdhfdhid * *

8 ’

9 .define A_D = 6000h ; Where the A/D converter lives
10 ; First make the frame
11 EO00 3440 ARRAY_AV: pshs u ; Save current USP on stack, old FP
12 E002 1F43 tfr s,u ; Point Frame Pointer to TOF
13 E004 32E9FEFF leas -101h,s ; Open frame of 257 bytes, SP to BOF
14 ; Initialize to acquire data
15 E008 E644 1db  4,u ; Copy i into frame
16 EOOA E75F stb -1,u ; to initialize count (= 1)
17 EOOC 305F leax -1,u ; X to just above ARRAY[0] (array ptr)
18 ; Burst sample
19 EOOE F66000  GET_LOOP: 1db  A_D ; Get data

20 EO011 A782 sta , =X ; Put it in frame, decrement pointer
21 E013 6ASF dec -1,u ; count = count - 1

22 EO015 26F7 bne GET_LOOP ; and repeat

23 ; Initialize to sum data

24 EO017 E644 1db  4,u ; Copy i back into frame again

25 E019 E75F stb -1,u ; to initialize count (= i)

26 EO1B 305F leax -1,u ; Point X to just above ARRAY[0] again
27 EO1D 4F clra ; Clear sum (Acc.D)

28 EO1E 5F clrb

29 ; Now do the summation

30 EO1F E382 ADD_LOOP: addd ,-x ; Add byte to sum, decrement pointer
31 E021 6ASF dec -1,u ; count = count - 1

32 E023 26FA bne  ADD_LOOP ; and repeat

33 ; Close frame

34 E025 1F34 tfr u,s ; Move SP back up

35 E027 3540 puls u ; and get back old frame pointer, USP
36 E029 39 rts ; and return

37 .end

The core programin lines 15 - 32 is unremarkable. The Frame Pointer is copied
into the X Index register to permit the use of the Pre-Decrement Index Address
mode in stepping through the array, yet leaving the Frame Pointer untouched
(lines 17 and 20). The passed parameter 1 is copied into the Frame to initialize the
loop counter in both instances (lines 16 and 25). It would be more efficient to use
an Accumulator as a loop counter, but the 6809 MPU does not have enough regis-
ters to make the use of such register variables a feasible proposition. One quirk
exhibited by this implementation is the need to pass i = 0 to sample 256 times,
as a byte can only represent up to 255.

The 68000 System stack of Fig.[5.7] reflecting the code in Table[5.9] is very sim-
ilar to its 6809 counterpart. This time 1 is passed as a word to preserve the even-
ness of the System Stack Pointer (a byte sized Pre-Decrement/Increment MOVEM
via A7, i.e. Push and Pull, always results in a word being transferred to/from the
System stack, the upper byte of which is null).
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(D) SSP (A7) —

Q) SSP (A7) e i FP+8
PCL FP+6
(@ SSP (A7) m—) PCH FP+4
AGL FP+2
A6H FP <= P (AG) TOF
' (Top Of Frame)
count FP—2
FP—4
77777 +77777
FP—6
,,,,, ]
FP—8
,,,,, ]
<Before>
MOVE.W <i>,-(SP) :: ARRAY[256] :: Frame

JSR/BSR
LINK -102h,A6; Make Frame

oW N e

FP-254

FP—-256

@ SSP (A7) FP—256| < BOF
+ (Bottom Of Frame)

Figure 5.7 The 68000 System stack organized by the array-averaging subroutine.

The coding shown in Table [5.9] is designed to reflect the 6809 equivalent,
rather than using the more efficient features of the 68000, such as DBF. The
LINK A6,#102h instruction in line 11 replaces the three equivalent 6809 instruc-
tions in lines 11 - 13 of Table The old Frame Pointer (A6 in this example, but
any Address register except A7 could be used) is firstly saved in the System stack.
Then it is overwritten by the SSP to become the new Frame Pointer to TOF. Finally,
the SSP is moved down to open the 102-byte Frame. The opposite UNLINK (UNLK)
instruction of line 30 undoes these three actions also in one go. Table 5.1ib) lists
the behavior of this pair of instructions. Note that LINK An,#kk is a word op-
eration, with kk being sign extended to a 32-bit constant and then added to SSP.
Effectively this limits the frame size to 32,768 bytes. With relatively little mod-
ification, the code given below could deal with sampled arrays of this size. The
68020 MPU has a long LINK variant.
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Table 5.9 Using a Frame to acquire temporary data; 68000 code.

1 .processor m68000

2 3 R R R R R R e e e e e e e S e e e e e e

3 ; * Burst acquires up to 256 analog samples and returns the sum *

4 ; * ENTRY : i is the number of samples on the stack

5 ; * EXIT : The sum of i 8-bit samples in Data register D7 *

6 ;¥ EXIT AO, DO.W and CCR altered. A6 1is used as the Frame Pointer*

7 H Fededededek Fededdededefdededde el dedeNdt fededededededededefdedede e dedehdefdd ek

8

9 .define A_D = 6000h ; Where the A/D converter lives
10 ; First make the frame
11 000400 4E560102 ARRAY_AV: Tink a6,#102h ; Make 258-byte frame, A6 as FP
12 ; Initialize to acquire data
13 000404 3D6EOOO8FFFE move.w 8(a6),-2(a6); Copy i into frame
14 00040A 41EEFFFE Tea -2(ab),a0 ; Point AO to just above ARRAY[O]
15 ; Burst sample
16 00040E 11386000 GET_LOOP: move.b A_D,-(a0) ; Get data into frame & dec pntr
17 000412 536EFFFE subq #1,-2(ab) ; count = count - 1

18 000416 66F6 bne GET_LOOP ; and repeat

19 ; Initialize to sum data

20 000418 3D6EO008FFFE move.w 8(a6),-2(a6); Copy i back into frame again
21 00041E 41EEFFFE lea -2(ab6),al ; A6 to just above ARRAY[O0] anew
22 000422 4247 clr.w d7 ; Clear sum (D7)

23 000424 4240 clr.w do ; Use DO to extend byte to word
24 ; Now do the summation

25 000426 1020 ADD_LOOP: move.b -(a0),d0 ; EXtend ARRAY[n] to word, ptr--
26 000428 DE40 add.w d0,d7 ; Add to word sum

27 00042A 536EFFFE subq #1,-2(ab) ; count = count - 1

28 00042E 66F6 bne ADD_LOOP ; and repeat

29 ; Close frame

30 000430 4ESE unlk a6 ; SSP back up and restore old FP
31 000432 4E75 rts ; and return

32 .end

The core of the program is straightforward, with the only problem lying in
lines 25 and 26. Here a byte sample is to be added to a word sum. As both source
and destination operands must be the same size, the byte variable is promoted
to word size by moving into previously cleared DO.W. This is then added to D7.W.
In stepping an Address register through the array, A0 fulfils the same role as the
X Index register in the 6809 equivalent, leaving the Frame Pointer A6 untouched
(lines 16 and 25).

The 68000 family are blessed with a generous complement of registers. It
would thus be more efficient to use a Data register to hold the loop counter
rather than operate directly in memory. The C high-level language allows the
programmer to declare local (known as Auto) variables as Register variables. The
compiler will then make an attempt to lodge such variables in a register.

The last two examples have returned their single parameter in a Data register.
High-level languages such as Pascal and C permit only one return variable, which
is defined as the value of the function. Thus expressions in C such as:

if (block_copy(rom_start, ram_start, length) = -1)
{do this, as no error has occurred;}

else
{do that, on an error situation;}
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are possible, where function block_copy() (see Table [5.7) is called up (with
the passed parameters indicated in brackets) and its value compared to —1. Its
“value' is in fact the returned value.

In C and Pascal, larger numbers of variables can be altered by passing pointers
(as in this example) or by declaring variables as global. Global variables are stored
in fixed RAM locations, and are thus accessible to any function.

The System stack itself may be used to pass back multiple variables. In such
cases, room is normally left on this stack, just below the pass-to variables, be-
fore moving control to the subroutine. On return, the SSP will then point to the
returned parameters, which can be extracted before the stack is cleaned up.

References

[1] Yourdon, E.; Techniques of Program Structure and Design, Prentice-Hall, 1975, Sec-
tion 3.4.

[2] Goor, A.J. van de; Computer Architecture and Design, Addison-Wesley, 1989, Sec-
tion 8.3.

[3] Wakerly, J.K.; Microcomputer Architecture and Programming: The 68000 Family, Wi-
ley, 1989, Section 9.3.6.

[4] Maurer, W.D.; Subroutine Parameters, BYTE, 4, no. 7, July 1979, pp.226-230.

[5] Wakerly, J.K.; Microcomputer Architecture and Programming: The 68000 Family, Wi-
ley, 1989, Section 9.2.



CHAPTER 6
Interrupts plus Traps equals
Exceptions

A microprocessor used as a controller spends much of its time detecting and
measuring events happening in the outside world. These external events happen
in their own time and are in no way synchronized to the MPU's internal processes.
A simple example of this is shown in Fig. where we wish to measure the time
in 1 ms "ticks' between each cycle of an electrocardiograph (ECG or EKG) signal
(heart wave). One possibility would be to use hardware to count 1 kHz oscillations
and to detect the fiducial point [1]; indeed this hardware could itself be a MPU-
based circuit. When this reference point (the signal peak in the diagram) occurs,
the master microprocessor must be alerted to the fact. A response must be made
within 1 ms of the event, as the counter continues incrementing.

One approach would be to use the peak detector's output to set a flag (latch).
This latch outputis buffered to the data bus, and can be accessed at some address.
Thus the MPU could regularly read the flag at intervals of no less than 1 ms, and
get the counter data only when the flag was set. Resetting the latch at this point
prepares for the next event. However, in this example this will typically only
happen around once per second, a 0.1% hit rate! This polling approach is fine if
there are only a few events being measured and the background processing task
is not too onerous. However, in this instance we may also be measuring blood
pressure, temperature etc. for a whole ward of patients. In that case the MPU will
spend most of its time polling, leaving little time for processing.

To circumvent this problem, all MPUs have at least one input labelled Interrupt.
When its Interrupt line is tugged (usually by going low or by a low-going edge)
the MPU will temporarily suspend its operation and go to an interrupt service
routine (ISR). This is just a subroutine entered via an external (hardware) signal.
At the end of this routine, control is passed back to the background program.
However, interrupts as seen from the MPU happen at random, so care must be
taken that the machine state has not been disrupted when control does return.
Furthermore, when several devices can request an interrupt, some means must be
found to determine the source of the service request, and prioritize when more
than one peripheral requires attention.

All this refers to hardware-generated interrupts. Most MPUs can generate in-
terrupts when some exceptional condition occurs internally, for example using a
zero divisor for the DIVU and DIVS 68000 instructions. Allied to these traps are

142
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INTERRUPTS PLUS TRAPS EQUALS EXCEPTIONS
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Figure 6.1 Detecting and measuring an asynchronous external event.
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explicit instructions which can cause the processor to act in much the same way
as a hardware interrupt. These are sometimes known as software interrupts. A
generic term for all hardware and software interrupts is an exception (for excep-
tional circumstances).

Processors handle exceptions in differing ways. In this chapter we will look
at the general concepts involved in interrupt handling, and how the 6809 and
68000 processors implement exceptions.

6.1 Hardware Initiated Interrupts

Although the minutia of the response to an interrupt request varies considerably
from processor to processor, the following phases can usually be identified:

Finishing the current instruction.

Ignoring the request if the appropriate mask (if any) is set.

Saving at least the state of the PC and CCR registers.

Entering the appropriate service routine.

Identifying the source of the interrupt (if not done in phase 4).

Executing the defined task.

Restoring the processor state and returning to the point in the program where
control was first transferred.

Nk W=

Interrupts are by definition asynchronous to system operation. Their apparent
randomness means that the system response to such events must ensure that the
interrupted program (the background program) is oblivious to the fact that the
processor has “gone away for a while' to service an external request. In some ways
this is akin to transparency in subroutines (see page[IZ6) but is more difficult to
implement due to the erratic nature of the action.

At the very least, transparency to interrupts demands that the state of the
MPU must be saved before going to the interrupt service routine, and restored on
exit. This implies that instructions be treated as indivisible, as saving the MPU
state part of the way through an instruction is difficult and to my knowledge is
not implemented by any current MPU. Thus, although an interrupt request signal
may be internally latched by the MPU at any time, usually on a clock edge, it will
not be examined until the end of the current instruction execution.

As a consequence of this, care must be taken when dealing with data objects
greater than the natural size of the processor. As an example, consider incre-
menting a 4-byte variable N in 6809 code. Assuming that this is stored in mem
to mem+3 we have:

1 LDD mem+2 ; Add one to Tower word

2 ADDD  #1 ; stored in mem+2:mem+3

3 STD mem+2 ; Lower word now incremented

4 LDD mem ; Add carry to upper word stored in mem:mem+1
5 ADCB #0 ; one byte at a time

6 ADCA #0 ; as there is no Double Add with Carry
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7 STD mem ; N++ at last!

This is simple enough. But consider that N = FFFF FFFFh. If an interrupt strikes
in-between lines 2 and 7, and the interrupt service routine uses N, then the value it
will see is FFFF 0000h rather than 0000 0000h. Although problems like this can
be avoided at assembly level, they are difficult to overcome when using high-level
languages, as the machine-level code produced by the compiler is not directly
under the control of the programmer. This is particularly true as high-level in-
structions are not entities as seen by an interrupt. In general do not share data
between interrupt service routines and other code, see Section 10.2. However,
avoiding the use of global variables is easier said than done.

Most interrupts can be inhibited during sensitive moments', such as de-
scribed above, by setting the appropriate mask in the Code Condition register.
Specifically the 6809 MPU supports three interrupt lines. These are labelled in
Fig.[6.2(a) as IRQ (for Interrupt_ReQuest), FIRQ (for Fast_Interrupt_ReQuest) and
NMI (for Non_Maskable_Interrupt). The former two are inhibited by mask bits I
and F respectively. These are automatically set when the MPU is Reset, so that pe-
ripheral interface devices and relevant variables can be allocated their initial state
before dealing with an interrupt. The ANDCC instruction can be used at any point
in the program to clear either or both mask bits, for example ANDCC #10101111b
enables both IRQ and FIRQ lines. Conversely the ORCC instruction can be used to
inhibit, for example ORCC #01000000b disables FIRQ.

The 6809 has one non-maskable interrupt line. This cannot be locked out, and
as such must be used with caution. Unlike IRQ and FIRQ which are activated by
a low voltage level at the appropriate pin, NMI is triggered by a low-going
voltage ~—\__ that is edge triggered. This voltage may stay low after the event,
and will not cause another interrupt until the signal goes high and then low again.
In the event of one type of interrupt being interrupted by another, the NMI will
have top priority, that is NMI can interrupt an IRQ or FIRQ service routine, or even
itself. IRQ has the lowest priority, and can be interrupted by a FIRQ, as well as
NMI. As we shall see, the interrupt handling mechanism requires the use of the
System stack. After the 6809 is Reset a NMI interrupt event is latched, but not
acted upon, until the first load into the System Stack Pointer, which it is assumed
sets up the System stack, for instance LDS #0400h.

The interrupt structure of the 68000 MPU as shown in Fig. [6.2[b) is some-
what more complex. Here too there are three interrupt lines, and in a minimum
system these can be used to give three different responses. However, the pro-
cessor is actually designed to differentiate between seven different interrupt re-
quests, which it interprets from the 3-bit pattern on the Interrupt Priority Level
IPL2 IPLT IPLO. Thus 100b (active low 011b) is considered a level 3 interrupt re-
quest. A level 0 request (IPL2IPLTIPLO = 111) is ignored (no interrupt), whilst
level 7 is non-maskable, and like the 6809's NMI equivalent, is edge triggered, an
edge here being defined as a transition from a lower level.

The mask structure also echoes the level-oriented interrupt request. Three
mask bits in the Status register (see Fig.[3.1) set the level above which a request
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Figure 6.2 Interrupt logic for the 6809 and 68000 processors.
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is honored. Thus if 121110 is set at 100 (e.g. ANDI #11111[100[11111111b,5SR)
then any request from level 5 to 7 will result in the relevant internal IRQ line being
activated. On Reset the three interrupt mask bits are set to 111, locking out all
except level 7, the non-maskable interrupt.
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Priority encoder

Figure 6.3 Using a priority encoder to compress 7 lines to 3-line code.

Interrupt request lines from three peripheral interfaces may be directly con-
nected to IPL2 IPL1 IPLO, having level 1, 2 or 4 priorities. Up to seven interrupt
sources can be handled using external circuitry to encode these lines to 3-bit
binary. The most common approach shown in Fig. [6.3luses a 7415148 priority
encoder [2]. This has eight active-low inputs and three active-low outputs. The
7415148 gives a 3-bit coded equivalent of the highest active input line. Thus if
devices 6 and 1 simultaneously request service (10111101b), then the output
will be 6 (001D, active-low). Once device 6 has been serviced and its interrupt

request line lifted, the 74L.S148's output will change to 110b (active low 1), and
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device 1 will then be eligible for service (if not masked out by 121110). Similar
considerations apply to the 68008 MPU, although as we can see from Fig.[3.2]IPLO
and IPL2 are internally connected, effectively allowing only levels 2 (101), 5 (010)
and 7 (000) to be acceded to. The higher the level of interrupt request, the greater
is its priority. Thus if a level 5 interrupt is in progress, it can only be interrupted
by a level 6 or 7 request.

Once the MPU accepts an interrupt, it must change from executing the back-
ground program, and move to the appropriate interrupt service routine or fore-
ground program. This is similar to switching to a subroutine, but the change-
over is dictated by an apparently random call from outside. As this can happen
anywhere in the background program, the state of all the MPU's registers (its
context) used in the background program must be saved before the change-over.
On return these are restored, leaving the state of the MPU unchanged. Making
the interrupt process invisible in this manner allows the MPU apparently to ex-
ecute more than one task in parallel. Multitasking in this manner is of course
a serial process, and carries the overhead of the time to switch context between
background and foreground [3]].

There are two approaches to context switching. At the very least the Program
Counter and Code Condition register/Status register must be saved. The former,
so that control can be passed back to the background program at the point of
the break, as in the case of a subroutine call. The latter, because the CCR will be
altered by any but the most trivial interrupt service routine. Any additional regis-
ters altered by the service routine can be saved by Pushing and Pulling via a stack,
in the manner shown in Table[5.3] Some early microprocessors, such as the 6800,
save all internal registers automatically on the System stack when an interrupt
response is initiated and return them at the end. This entire-state context switch-
ing is convenient, but in processors with a significant complement of registers,
the resulting time overhead can have a noticeable impact on system response.
This is not justified where only a few registers are actually used in the service
routine. Early processors have few registers and/or stack-oriented instructions
(the 6800 has one Address register, two Data registers and cannot directly Push
or Pull the former), and thus an automatic whole-state context switch is efficient.
Both types of context switching use the System stack to save the register states.

The 6809 MPU has both partial and full context switching. The IRQ and NMI
responses automatically cause all registers to be Pushed on to the System stack,
in the order shown in Fig. [6.4lb). The FIRQ response saves only the PC and CCR,
leaving the rest up to the programmer (see Table [6.1lb)). The E flag in the CCR is
set after the Push if the Entire state has been saved. Itis used by the RETURN FROM
INTERRUPT instruction, which terminates all 6809 interrupt service routines. RTI
reverses the context switch and restores the MPU to its original state.

The FIRQ response automatically sets the | and F mask bits in the CCR before
entering its service routine, in order to ensure that it cannot be further inter-
rupted by any other than the non-maskable interrupt. Only the | mask is set in
the IRQ response. Consequently an IRQ service routine can be interrupted by
a FIRQ response as well as a NMIL. Of course when the old value of the CCR is
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(b) Context switching, saving the state on the System stack. (c) Vector table.

Figure 6.4 (continued) How the 6809 responds to an interrupt request.

returned, these changes vanish.

When a 68000 processor recognizes a level-n request, it saves the SR in a
temporary internal register. Then the three interrupt mask bits are updated to
level n, permitting only interrupts at a higher priority level to be further recog-
nized during the level-n service routine. Also the T flag is cleared, to prevent
Trace interrupts (see page[164), and the S flag is set. The latter means that the
processor switches into the Supervisor state (if not already there). Thus when
the PC and SR are saved, as shown in Fig.[6.51b), the Supervisor Stack Pointer (SSP)
and not the User Stack Pointer (USP) is used to delineate the context stack. The
SR saved in this manner is the original copied into the internal register and not
the modified version. Thus the interrupt service termination RETURN FROM EX-
EMPTION (RTE) (equivalent to the 6809's RTI) will move the processor back to the
User state, if this was the interrupted state, as well as restoring the mask bits to
their original value.

With everything put away on the System stack, the processor is ready to go to
the start of the appropriate service routine. The simplest approach to this is to
have the entry addresses stored in predetermined locations. The 6809 MPU re-
serves 14 bytes at the top of its memory space to hold the seven start addresses of
its three hardware, three software and one Reset interrupt, as shown in Fig.[6.4(c).
For example, when the MPU responds to an IRQ request, it will find the start of
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(c) Exception table (unassigned may be used for 68020+ processors).

Figure 6.5 (continued) How the 68000 responds to an interrupt request.
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the IRQ service routine in FFF8:9h. Normally this vector table is in ROM, and this
is a necessity for the Reset vector in FFFE:Fh, as the address for the main routine
must be present at power up (cold start). In systems where no actual memory
exists at these locations, the Address decoder must be designed to enable phys-
ical memory when these addresses are output by the MPU. If necessary, clever
address decoding can be used to place locations FFF2 - FFFDh in RAM where they
may be dynamically altered by the program, although this is rare.

As an example, consider an extension to the system shown in Fig. An
external 16-bit counter records 1 ms ticks, whilst a detector circuit records signal
peaks. An array of 256 peak to peak times in milliseconds is to be displayed on
an oscilloscope. Two digital to analog converters are to be used to drive the X
and Y oscilloscope plates — see Fig.[11.3] The background program is to scan
this array sending its analog equivalent to the Y plates at the same time as the
X plates drive is being incremented from 0 to 255 (0 to full-scale analog). This
occurs as a continuous loop, giving a flicker-free display. Whenever a peak is
detected, the processor is to switch from its background display task to updating
the array with the latest period. When the array is full (256 peaks), the process
is to be repeated, over-writing the oldest values. Provided that this foreground
task is accomplished quickly, this switch back and forth will not be noticed on
the display.

We need not concern ourselves with the details of the Address decoder nor the
interfacing digital to analog converters here, but we must consider the problem
of driving the MPU's interrupt input from the peak detector. Taking the 6809 MPU
for our first solution, we will use the FIRQ input to keep the response time short.
Now FIRQ (and IRQ) are active as long as their level is low. We have not specified
the duration of the peak detector's active output, but in this situation it is likely
to be anything up to 250ms, to avoid multiple triggering due to noise around
the peak. Thus if FIRQ is still low after the return to the background program,
then another interrupt response will be immediately set in train. In this case the
whole 256-word array will probably be updated in one go!

As shown in Fig. [6.6], interposing a D flip flop solves the problem. As the flip
flop is edge-triggered, its D input is only clocked in on the falling edge (in this
case). This interrupt flag is thus "lowered'. After the processor vectors to the
service routine, the act of reading the counter also activates the flip flop's Preset
input, which sets it to logic 1 (raises the flag). Thus on return, the interrupt line
is no longer active, irrespective of the indeterminate length of the source request.
Edge-triggered interrupts, such as NMI, can be directly driven without using an
external flag.

Peripheral devices designed specifically to interface to a MPU normally incor-
porate such flags as part of a Status or Control register. For example the 6821 PIA
of Fig.[L.9luses bits 6 and 7 of each Control register for this purpose [4]. Reading
the appropriate Data register clears these flags automatically.

The 6809 code implementing our specification is shown in Table This
comprises three separate source modules:
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Figure 6.6 Using an external interrupt flag to drive a level-sensitive interrupt line.

1. The background module DISPLAY which extracts the 256 array values using
them to drive the oscilloscope Y plates as it ramps up the X plates. This module
runs continually except when interrupted by the foreground module.

2. The foreground module UPDATE is entered only when an external event occurs.
It reads the counter, evaluates the time since the last event, inserts the outcome
in the array and moves the array index on one.

3. The VECTOR module simply sets up the Interrupt and Reset vectors. The ac-
tual values are put into memory at load time, that is when the EPROM is pro-
grammed (or program downloaded into RAM in a Microprocessor Development
System). It does not execute as such at run time, it is simply in situ in a sup-
porting role to the two previous modules.

Each of these three modules are separately assembled and subsequently linked
together to give the listing of Table We will discuss this linkage process in
the following chapter, here it is sufficient to note that the assembler reserves
256 words in its Data program space .psect _data (line 17 of Table[6.1[a)), the
start address of which is called ARRAY. This name is made known to the other sep-
arately assembled modules through the linker by declaring it . pub1ic in line 16.
The foreground module needs to use this address, its value at assembly time be-
ing unknown, and it gets round this problem by declaring ARRAY as .external in
line 20 of Table[6.1kb). This directive is really saying to the assembler “hold your
fire, the actual address will be supplied at a later date via the linker'. Of course
this is an array of words, as the counter is 16-bits wide. In a similar manner, the
address of both run-time modules are made known to module VECTOR by declar-
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ing their start address .public. They are consequently declared .external in
line 9 of Table [E.1lc).

In the background module, the ramp count x (the Scan pointer) is also used
as array index (i.e. at position x display ARRAY[x]). However, as each array ele-
ment is a double byte, x is first promoted to 16 bits (line 24) and then multiplied
by two (lines 25 and 26). The resulting value in Accumulator_D is then used as
the offset to the X Index register — which is pointing to ARRAY[0] — to abstract
ARRAY [x]. The same mechanism is used in the update interrupt module to con-
vert the Update pointer i to the array pointer i (lines 29 -31). Both the Scan and
Update pointers conveniently wrap around from 255 to zero after incrementing.
Numbers other than 255 would need to be actively zeroed.

Notice how in module VECTOR (lines 10-12) the start addresses for the Reset
and FIRQ service routines are located in their appropriate place. In practice other
vector addresses, not used in this fragment, would be defined here.

The 6809 MPU can only deal directly with three interrupt requests from sepa-
rate sources. Some applications require many more than can be handled in this

Table [Tl 6809 code displaying heart rate on an oscilloscope (continued next page).

1 6809
3 ; * Background program which scans array of word data (ECG periods) *
4 ; * Sends out to oscilloscope Y plates in sequence *
5 ; * At same time incrementing X plates *
6 ; * so that ARRAY[0] is seen at the Tleft of screen *
7 ; * and ARRAY[255] at the right of screen *
8 ; * ENTRY : None *
9 ; * EXIT : Endless Tloop *
10 ; Fedededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededede ek
11 ;
12 .define DAC_X=6000h, ; 8-bit X-axis D/A converter
13 DAC_Y=6001h ; 12-bit Y-axis D/A converter
14 ;
15 .psect _data ; Data space
16 .pubTic ARRAY ; Make the array global
17 0000 ARRAY : .word [256] ; Reserve 256 words for the array
18 0200 X_COORD: .byte [1] ; and a byte for the X co-ordinate
19 ;
20 .psect _text ; Program space
21 .public DISPLAY; Make program known to the Tinker
22 EO000 10CE0800 DISPLAY: 1ds #0800h ; Define Top Of Stack
23 E004 F60200 DLOOP: 1db X_COORD ; Get X co-ordinate
24 EO07 4F clra ; Expand to word size
25 E008 58 1s1b ; Multiply by two
26 E009 49 rola ; to give array index in Acc.D
27 EOOA 8EO0000 Tdx #ARRAY ; Point to ARRAY[O0]
28 EOOD 308B leax d,x ; now to ARRAY[X]
29 EOOF F60200 1db X_COORD ; Get back X co-ordinate
30 EO12 F76000 stb DAC_X ; Send it out to X plates
31 EO015 EC84 1dd 0,x ; Get ARRAY[X] word
32 E017 FD6001 std DACLY ; and send it to the Y plates
33 EO01A 7C0200 inc X_COORD ; Go one on in X direction
34 EO01D 20E5 bra DLOOP ; and show next sample
35 .end

(a) The background array-display module.
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Table 6.1 (continued) 6809 code displaying heart rate on an oscilloscope.

% processor m6809

3 . Interrupt service routine to update one array e1ement *
4 ; * with the latest ECG period, as signalled by the peak detector *
5 ; * ENTRY : Via a FIRQ interrupt *
6 ; * ENTRY : Location of ARRAY[0] is globally known through the linker *
7 ; ¥ EXIT : ARRAY[i] updated, where i is a local index *
8 ;% EXIT s MPU state unchanged *
9 H Fededededededededededededededededededededededede ek Fededededededededededededededededededededededededededededededededededek
10 ;
11 .define COUNTER =9000h, ; The 16-bit period Counter
12 INT_FLAG=9800h ; The external Interrupt flag
13 ;
14 .psect _data ; Data space
15 0201 UPDATE_I: .byte [1] ; Space for the array update index
16 0202 LAST_TIME: .word [1] ; and for the last counter reading
17 ;
18 .psect _text ; Program space
19 .pubTic UPDATE; Make routine known to the Tinker
20 .external ARRAY ; Get ARRAY from another module

21 EOLF 3436 UPDATE: pshs a,b,x,y ; For FIRQ save used registers

22 E021 7F9800 clr INT_FLAG ; Reset external Interrupt flag

23 E024 FC9000 1dd COUNTER ; and get the count from outside

24 E027 1F02 tfr d,y ; Put in Y register for safekeeping
25 E029 B30202 subd LAST_TIME ; Sub frm last cnt gives new period
26 E02C 10BF0202 sty LAST_TIME ; and update last counter reading
27 E030 1F02 tfr d,y ; Y now holds the new period

28 E032 F60201 1db UPDATE_I ; Get the update array index

29 EO035 4F clra ; Expand to word

30 EO36 58 1s1b ; Multiply by 2 to cope with

31 E037 49 rola ; the word nature of ARRAY[]

32 E038 8E0000 Tdx #ARRAY ; Point to ARRAY[O]

33 EO3B 10AF8B sty d,x ; Put new value (in Y) 1in ARRAY[I]
34 EO3E 7C0201 inc UPDATE_I ; Move update marker on one

35 E041 3536 puls a,b,x,y ; Return machine state

36 E043 3B rti

37 .end

(b) The foreground interrupt service routine updating the array.

1 .processor m6809

2 ; Fededededededededededede e hhdddddddedededededdff e dddddddededededede e dhdddddddd

3 ; * Sets up Interrupt and Reset vector at top of ROM *

4 ; ¥ using g1oba11y known Tlabels through the 11nker *

5 ; ededededendh Tl RSN NddhfdhfdhRddfddhddh Nl Rddddhdde Nl Nddddhdd i

6

7 .psect _text

8 .public  VECTOR ; Make this routine known globally
9 .external UPDATE, DISPLAY These will be got thru the Tinker
10 E7F6 EO1F VECTOR:.word UPDATE ; Addr of the FIRQ service routine
11 E7F8 .word [3] ; Skip IRQ, SWI, NMI not used here
12 E7FE EO000 RESET: .word DISPLAY ; Go to DISPLAY routine on Reset
13 .end

(c) The Vector table.

way. Wiring these n request lines through open-collector gates is a convenient
way of channelling n lines to one interrupt line, see right side of Fig.[6.7 Nor-
mally the n service request lines are high and the open-collector gates are off,
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letting IRQ rise through the pull-up resistor to +V. If one or more request lines
go low then IRQ goes low. MPU-compatible peripheral interface devices, such as
the 6821 and 68230 PIAs, have integral open-collector buffers at their interrupt
output lines.

Given that the MPU has gone to the service routine, how is it to distinguish
between the various possible sources? A simple procedure is to examine each in-
terrupt flag in turn, until the source is found. Where MPU-compatible peripherals
are used, this is accomplished by examining the relevant bits in the appropriate
peripheral Control/Status register.

Polling in this manner is rather slow but does have the advantage of simplicity,
and a priority scheme of arbitrary complexity can be implemented in software.

There are many schemes which speed up the process of distinguishing be-
tween interrupting peripherals [5], one of which is shown in Fig.[6.7. Here, four
events (e.g. peak detectors) trigger interrupt flags in the manner of Fig.[6.6l These
four service requests are combined together with open-collector buffers to drive
the MPU's IRQ line. The state of these four lines can be read at any time through
3-state buffers at address Vector. Assuming that unconnected data lines read
as logic 0, we have:

Request Vector
0 00000100 (4)
1 00001000 (8)
2 00010000 (16)
3 00100000 (32)

If more than one request is simultaneously received, intermediate vector values
will be generated. The appropriate software filtering routine can then separate
and prioritize the requests, or a priority encoder can be used as a hardware so-
lution. The MPU can then go to the appropriate routine.

As an extension to this scheme, the vector buffers could be enabled when-
ever the addresses FFF9:Ah are detected on the address bus with the Status bits
BA BS = 01, rather than the ROM. Thus the address of the program start is di-
rectly generated as a response to the interrupt, but appears to originate at the
appropriate vector address. In this situation it would be better to read the Service
Request lines through a priority encoder to remove ambiguities caused by more
than one peripheral requesting service at the same time [6]. Direct vectoring by
device is the fastest technique available, but is expensive in hardware.

The 68000 family also makes use of a Vector table to service its various excep-
tional events, but in a rather more flexible manner. The lowest 256 long-words of
memory, 000000 - 0003FFh, hold addresses potentially pointing to the beginning
of 255 service routines as shown in Fig. Of these, the bottom two long-words
are reserved for the critical Reset vector thus:

SSP 0000-0003h

PC 0004-0007h

]»Double long-word Reset vector
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Figure 6.7 Servicing four peripherals with one interrupt.
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When the 68000 MPU is Reset, the initial setting of the Supervisor Stack Pointer
(not the User Stack Pointer) is fetched from long-word 0 (000000 -000003h),
followed by the start value of the Program Counter in long-word 1 (000004 -
000007h). This dual vector must be in ROM to ensure a successful cold start
(i.e. from power up), as must be the equivalent 6809 Reset vector at the top
of memory. The remaining 254 vectors are normally also located in ROM, but
clever address decoding can be used to overlay these vectors in RAM. This latter
procedure allows the software dynamically to relocate exception service routines.
The external decoder can distinguish between vectors 0 and 1, and 2 to 255
from the state of the Function Code status pins, which are 110b for the former
(Supervisor Program) and 101b for the latter (Supervisor Data) — see page [69]
As the Supervisor Stack Pointer is set up after the MPU leaves its Reset start-up,
interrupts can be immediately serviced. The Interrupt Mask bits in the Status
register are set to 111b, locking out all but level 7 interrupts (i.e. non-maskable).

IACK Decoder 68000 MPU
[ —
(S E—c 74 A al
S CE—e 75 B a2
[ CE—s ' c a3
TACK4 ov4 feo
[ CIE—, % Gl1A FC1
JACK2 o co
TACKT 1 618 Enabled on FC=111 dss
(see Fig. 6.6) G2 $L
Int t Al
Service Request n er’%| o9 7415138
[ DCKQ VPA
Priority Encoder
68xxx Peripheral Interface 0’ (see Fig. 6.3)
. Levell
Service Request IACK[D——t——— 1
Level2
C—— RQP 2 q
5 C dirL2
g B girLt
ASO—=— —+4 A Arlo
LDS[O——=—— > MPU —(gs ™
R/W——— — s
7
DTACK[D 7415148 Qotack
8
do-d do-d7
Data Bus
—

Figure 6.8 External interrupt hardware for the 68000 MPU.

When a 68000 MPU receives an interrupt request of a higher priority than
its mask setting, it commences an Interrupt Acknowledge read cycle [7]. The
level is echoed on Address lines aj a a3, with all other address lines going high.
The Function Code lines FC2 FC1 FCO are set to 111 and a normal Read cycle is
implemented. Depending on external hardware, two things can happen. If the in-
terrupting device wishes to use the fixed internal autovector table it responds by
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bringing VPA low during this Read cycle. More sophisticated peripheral interface
devices specifically designed for the 68000 MPU can respond by putting a Vector
number on its data bus and activating DTACK in the normal asynchronous way
(see Fig.[3.6). The MPU multiplies this number by four (shift left twice) giving the
address of the user interrupt vector somewhere in the table.

Referring to Fig. [6.8] we see that in both cases a 3 to 8-line decoder generates
one of seven Interrupt Acknowledge signals IACKn from the 3-bit level address.
This decoder is only active when the Function Code is 111, that is Interrupt Ac-
knowledge. The rest of the address lines are logic 1 and the general address
decoding must ensure that nothing else responds to this situation. The level,
and hence which IACK line is active, is determined by the connection of the pe-
ripheral's service request to a 7415148 Priority encoder, as described in Fig.

First we look at a dumb interface, such as shown in Figs and which
cannot generate its own Vector number. In Fig.[6.8] the level-1 request itself and
acknowledgement (IACK1) are ANDed to drive VPA low. The MPU will go auto-
matically to vector 25 (000064 - 7h) for its level-1 service routine. As previously

Table[6.2} 68000 code displaying heart rate on an oscilloscope (continued next page).

1 .processor m68000

2 ; Fedededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededededede ek

3 ; * Background program which scans array of word data (ECG points) *

4 ; * Sends out to oscilloscope Y plates in sequence *

5 ; * At same time incrementing X plates *

6 ; * so that ARRAY[O] 1is seen at the left of screen *

7 ; * and ARRAY[255] at the right of screen *

8 ;% ENTRY : None *

9 ; * EXIT : Endless Toop *
10 ; Tededehfdehfdhhfdhfdhfdhfdhhddhfdehfdhfddhddhfdhfdhhdhhddhfdhfdhdhhddid
11 H
12 .define DAC_X=6000h,; 8-bit X-axis D/A converter
13 DAC_Y=6001h ; 12-bit Y -axis D/A converter
14 ;
15 .psect _data ; Data space
16 .public ARRAY ; Make the array global
17 00E000 ARRAY: .word [256] ; Reserve 256 words for the array
18 00E200 X_COORD: .byte [1] ; and a byte for the X co-ordinate
19 ;
20 .psect _text ; Program space
21 .public DISPLAY ; This program known to the linker
22 000400 4240 DISPLAY: clr.w dO ; Get X co-ordinate byte
23 000402 1039 DLOOP: move.b X_COORD,d0 ; expanded to word

0000E200

24 000408 E348 1sl.w  #1,d0 ; X2 to give array index in DO.W
25 00040A 207CO000E000 movea.l #ARRAY,a0 ; Point A0 to ARRAY[O]
26 000410 31F000006001 move.w 0(a0,d0.w),DAC_Y ; Get ARRAY[x] to Y plates
27 000416 31F90000E2006000 move.w X_COORD,DAC_X ; Send X coord to X plates
28 00041E 52390000E200 addg.b #1,X_COORD ; Go one on in X direction
29 000424 60DC bra DLOOP ; and show next sample

30 .end

(a) The background array-display module.
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Table 6.2 (continued) 68000 code displaying heart rate on an oscilloscope.

1 processor m68000

2 3 s e e e e e S e e cdedededededededededdhkdkdede ek ddhh ke hhhhh ki hdhk

3 ;* Interrupt service routine to update one array e1ement

4 ;¥ with the latest ECG period, as signalled by the peak detector *

5 ;* ENTRY : Via a Levell 1nterrupt *

6 ;* ENTRY : Location of ARRAY[O0] is g1oba11y known through the Tinker*

7 ;¥ EXIT : ARRAY[i] updated, where i is a local index *

8 0¥ EXIT : MPU state unchanged

9 ;7’.‘7’: E R R R R R TR o S o U o R R R o R S R T o S R AR T R LR T S R T o R R AR LR R R T R R R R R T o
10 ;
11 .define COUNTER=9000h, ; The 16-bit period Counter
12 INT_FLAG=9800h ; The external Interrupt flag
13 ;
14 .psect _data ; Data space
15 O00E201 UPDATE_I: .byte [1] ; Space for the array update index
16 00E202 LAST_TIME: .word [1] ; and for the Tlast counter reading
17 ;
18 .psect _text ; Program space
19 .public UPDATE ; This routine known to the Tinker
20 .external ARRAY ; Get ARRAY from another module
21 000426 48E7C080 UPDATE: movem.1 d0/dl/a0,-(sp); Save used registers
22 00042A 427900009800 clr INT_FLAG ; Reset external Interrupt flag
23 000430 303900009000 move.w COUNTER,d0 ; & get the count from the counter
24 000436 3200 move.w dO,dl ; Put in DO.W for safekeeping
25 000438 92790000E202 sub.w LAST_TIME,dl; Sub from last cnt for new period
26 00043E 33C00000E202 move.w dO,LAST_TIME; and update Tlast counter reading
27 000444 4240 clr.w dO ; Prepare to get update array index
28 000446 30390000E201 move.w UPDATE_I,dO; expanded to word size
29 00044C E348 Tsl.w  #1,d0 ; X2 to cope with word ARRAY[]
30 00044E 207C0000E000 movea.l #ARRAY,a0 ; Point AO.L to ARRAY[O0]
31 000454 31810000 move.w d1,0(a0,d0.w); New value (D1.W) to ARRAY[I]
32 000458 52790000E201 addg.w #1,UPDATE_I; Move update marker on one
33 00045E 4CDF0103 movem.1 (sp)+,d0/d1l/a0; Return machine state
34 000462 4E73 rte
35 .end

(b) The foreground interrupt service routine updating the array.
processor m68000

* Sets up 1nterrupt and reset vectors at bottom of ROM
* usin Tobally known labels through the Tinker

.psect _text

.public  VECTOR
.external UPDATE,DISPLAY
10 000000 0000F000 VECTOR: SSP:.double OF000h

Make this routine known globally
These will be got through the Tlinker
Initial value of the System Stack

OooNOTUVTAWNER

11 000004 00000400 PC: .double  DISPLAY Go to DISPLAY routine on Reset
12 000008 .double [23] Other vectors not used here

13 000064 00000426 LEVEL1: .double UPDATE Addr of Level-1 IRQ serv routine
14 .end

(c) The Vector table.

described, the Interrupt flag must be lifted at this time.

Smart interfaces, such as the 68230 PI/T, are interfaced to the MPU in the
normal way, see Fig.[313l Their IACK input is driven by the appropriate IACK
decoder line, and the vector number put on the data bus during the concurrent
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Read cycle. This vector number is programmed into the appropriate interface
register (the Port Interrupt Vector register in the 68230 [8]) during the setup rou-
tine. If we wanted to vector via address 000100h, the programmed-in vector
number would be 40h (000100 + 4h). Vector numbers 0 - 63 should not be used,
although there is nothing physically to prevent this. Should a 68xxx peripheral
interface not have its vector register set up when an interrupt occurs, a default
vector 15 will be sent to indicate Uninitialized Interrupt.

The software for our example is given in Table [6.2. It matches the listing of
Table[6.1]for the 6809 MPU, and the comments made there apply equally. Notice
that the Interrupt Service routine UPDATE is terminated by RTE, the 68000 equiva-
lent for RTI. I have assumed that a level-1 autovector is being used as a pointer to
the service routine. A simple change of operand in line 12 of Table[6.Z(c) would
move the start address to any other appropriate vector number.

Vector 24 is described in Fig. [6.5(c) as a Spurious Interrupt. This startup ad-
dress will be used if external circuitry asserts the Bus_Error (BERR) pin during an
Interrupt Acknowledge Read cycle. The hardware designer may wish to do this
when DTACK (or VPA) is not activated within a fixed time after the start of this
cycle; to indicate a hardware problem. Such circuitry is frequently implemented
as aretriggerable monostable which " collapses' if not clocked frequently enough.
Such a watch-dog timer can of course be used to indicate trouble out there' during
anormal (i.e. not Interrupt Acknowledge) cycle. In such cases the MPU returns to
the Supervisor state and enters the Bus Error exception service routine pointed to
by Vector 2. Should the BERR signal persist when the status is being pushed out
to the Supervisor stack on entry to the service routine, a catastrophic situation is
assumed to have occurred. Such a Double-Bus fault causes the MPU to stop, with
both Halt and Reset going low. This response will occur in general where a prob-
lem occurs when an exception (including a Reset) tries to Push out its registers,
for example when the Supervisor Stack Pointer is odd.

Another possibility is to assert BERR and Halt simultaneously. Then the failed
bus cycle will be rerun, with the hope that a spurious failure occurred (perhaps
due to noise) and that the situation can be redeemed [9].

6.2 Interrupts in Software

Interrupts occur when something outside requests assistance. The MPU responds
by saving all or part of its internal state on the System stack and going to a
service routine via a table of addresses. It is also possible to initiate a similar
response by internal software means, either deliberately or via a dubious event,
such as having a zero division for the DIVU/DIVS instruction. Software initiated
exceptions are commonly known as Software Interrupts or Traps. In this section
we will briefly consider these operations and other instructions associated with
Exceptional operations.

Interrupt service routines are normal subroutines but terminated with an in-
struction or instructions that restore the state saved when responding to the
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Table 6.3 Exception related instructions.

Operation Mnemonic Description
ReTurn Switch back to background
from Interrupt RTI Pulls context back from System stack
Synchronize Halt until interrupt
Clear and WAIt CWAT #kkg Clear CCR bits ([CCR] <- [CCR]-kk),

save entire state and wait for interrupt

SYNChronize SYNC Stop until interrupt occurs, THEN:
continue if masked out, ELSE
go to interrupt service routine

Trap Software-initiated interrupt-like sequence
SoftWare Interrupt |SWI Save entire state and vector via FFFA:Bh
and mask out | and F Hardware interrupts
SoftWare Interrupt 2|SWI2 As above but vector FFF4:5h and no masking
SoftWare Interrupt 3|SWI3 As above but vector FFF2:3h and no masking

(a) Relating to the 6809.

ReTurn Switch back to background
from Exception! RTE Pulls context back from Supervisor stack
Synchronize Halt until interrupt
STOP! STOP #kkqg |[SR] <- #kk and wait for interrupt
Trap Software-initiated interrupt-like sequence
CHecK Bounds CHK <ea>,Dn|IF 0 > Dn-W > ea THEN exception via vector 6
ILLEGAL Instruction |ILLEGAL Exception via vector 4
TRAP TRAP #kkgq |Sixteen software interrupts via vector 32 + #kk
TRAP on oVerflow |TRAPV IF V = 1 THEN exception via vector 7

(b) Relating to the 68000.

Note 1: Privileged instructions.

interrupt. This is true of both hardware and software-initiated responses. In the
6809 processor the state returned by RETURN FROM INTERRUPT (RTI) depends
on the setting of the E flag, either all registers if E is zero otherwise only the PC
and CCR. The equivalent 68000 RETURN FROM EXCEPTION (RTE) always returns the
PC and SR only. The same is true for the 8086 MPU family, where the instruction
is INTERRUPT RETURN (IRET).

Most MPUs have at least one instruction which halts the processor until an
interrupt (or reset) occurs. From Table [6.3(a), we see that the 6809 proces-
sor has two related instructions categorized as such. CLEAR AND WAIT allows
the programmer to clear the F or | mask if desired prior to stopping. Thus
CWAI #10111111b clears F and stops the processor after saving the entire ma-
chine state in the System stack (E set). If at some time in the future a NMI or FIRQ
request is sent, the MPU will immediately go to the appropriate service routine.
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An IRQ will have no effect in this example, as it is masked out. Notice that unusu-
ally a FIRQ will enter its service routine with the entire machine state (context)
saved.

The SYNCHRONIZE instruction is similar, although any CCR flags will have to
be set by a preceding instruction. However, this time if the interrupt occurs but is
masked out, then the processor will simply move on to the following instruction.
If the interrupt is not masked out, and lasts for three clock cycles or more, then
it will be answered in the normal way. Tri-state buses go high impedance during
SYNC, allowing an external device to access memory directly [10].

The 68000's STOP instruction is comparable with the 6809's CWATI, but the im-
mediate word operand is the new state of the Status register, rather than being
ANDed with it. For example, STOP #001000[ 011 [00000000b will halt the proces-
sor until an interrupt of level greater than 3 occurs. The MPU then responds in the
normal way. STOP is privileged and thus can only be used in the Supervisor state.
The machine context is not switched prior to the request. The equivalent HALT
(HLT) for the 8086 family does not carry an immediate operand, but otherwise
operates in the same manner.

The 6809 MPU has three instructions which explicitly initiate Software inter-
rupt operations. SWI causes the entire state to be saved, sets the | and F masks
to lock out all but NMI interrupts, and then vectors to the start of its service
routine via FFFA:Bh. Instructions SWI2 and SWI3 are similar but using vectors
FFF2:3h and FFF4:5h respectively to hold their start address, and not locking out
the Hardware interrupts.

The 68000 MPU has 17 Software interrupts, known as TRAPS. Sixteen of these,
TRAP #0 to TRAP #15 are unconditional and TRAPV is only implemented if the
oVerflow flag is set at execution time. Looking at Fig.[6.5]c), we see that TRAP #0
vectors via location 000080 -3h up to TRAP #15 at 0000BC - Fh, Exception vec-
tors 32 to 47. TRAPV has its service address located at 00001C-00001Fh. Like
all other Exceptions, Traps execute in the Supervisor state.

Although what a Software interrupt/Trap does is clear enough, the reason for
using one is not entirely evident. Consider an environment where an applications
program is being written for a specific computer system. This system will have
various means of communicating to the world, using typically a keyboard, VDU,
serial and parallel ports, interrupts and various disk drives. Knowing the charac-
teristics of all these input/output (I/0) devices, the programmer can write a suite
of subroutines known as device handlers. Once this has been done, data can
be transferred by calling up the appropriate handler. However, a change of en-
vironment to a different computer will likely require a complete rewrite of these
handlers.

This approach is frequently adopted by the designers of embedded micropro-
cessor systems, where the hardware infrastructure is usually highly individual-
istic. Some standardization is possible for mass-produced computing machines,
such as engineering workstations and personal computers. These normally come
with an operating system, which can be thought of as a shell around the applica-
tions software shielding the programmer from the hardware. Typical operating
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systems are UNIX [11]] and MSDOS [12]. These systems are mainly disk-based
loaded into RAM, but work in tandem with a Basic Input Output System (BIOS),
usually located in ROM. The applications programmer can then call up the ap-
propriate subroutine in the BIOS, to communicate with a peripheral. The BIOS
ROM will vary with different machines, but in such a way as to hide the hardware
details from the operating system. The use of an operating system leads to the
concept of system-independent (portable) software.

Using a Trap call to communicate, rather than a subroutine, has the advantage
that the address of the procedure need not be explicitly known, as the vector table
will be in the BIOS. Hiding explicit details of the BIOS is important for portabil-
ity. Thus, as an example, INT #25 in a MSDOS environment [12] will enable a
Read from a magnetic disk (INT is the 8086 family mnemonic for TRAP). Param-
eters such as track, sector and drive are placed in registers prior to the Trap. In
68000-family based systems, the operating system normally resides in the Super-
visor state, completely separated from the application program in the User state
memory space.

The 68000 MPU has two additional explicit software interrupt instructions.
The instruction ILLEGAL (op-code 4AFCh) causes a transfer via vector address
000010-13h and the CHECK REGISTER (CHK) instruction vectors via 000018 -Bh
if the lower word of the designated Data register is below zero or above the stated
limit.

There are also a number of implicit traps, triggered by some internal event.
These are:

Address Error, 00000C-0Fh
Entered when a word or long-word access to an odd address is attempted.

lllegal Instruction, 000010-13h
Entered if an illegal op-code is encountered, but see line A and line F Exceptions
below.

Divide by Zero, 000014-17h
Entered when the divisor for DIVU/DIVS is zero.

Privilege Violation, 000020-23h
Entered when there is an attempt to execute a privileged instruction (e.g. STOP)
while in the User state.

Trace, 000024 -27h

Entered after each instruction if the T flag is set in the Status register. Used
during debugging to monitor the state of the processor if the appropriate Trace
Service routine is in situ [13].

Line A Op-Code, 000028 -2Bh
Entered when the upper 4 bits of the op-code are 1010b. These op-codes are
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unused, but this facility provides the means for emulating unimplemented in-
structions in software.

Line F Op-Code, 00002C-2Fh

Entered when the upper 4 bits of the op-code are 1111b. Used as above (the
68020 MPU uses these codes for co-processor instructions, and therefore service
routines are often used to simulate these missing instructions in software). All
other unimplemented instructions vector via the Illegal instruction vector address
above.
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PART II

C

The only reality as seen from a central processing unit, be it mainframe, mini or
microprocessor, is in the patterns of binary states in memory. This is generally
far removed from the human description of the task which is to be controlled by
the processor hardware. In going from the problem specification to executable
binary installed in memory involves many steps, both conceptual and in software.
Many translation processes must occur on the way (see Fig.[Z1). Furthermore,
testing, debugging and commissioning the system require additional skills and
aids.

In Part 2 we look at these steps in some detail, how they interact and their
limitations. In particular we will investigate the use of the high-level language C as
a buffer between the problem-oriented human thought process and the machine-
oriented assembly-level languages. Many of the concepts introduced here apply
to other high-level languages, such as Pascal and Forth, but C is a small language
which is widely available, especially in a cross form, popular, flexible and can run
on inexpensive development systems. I can do no better than quote from the
originators of the language

C is a general-purpose programming language featuring economy of ex-
pression, modern control flow and data structure capabilities, and a rich
set of operators and data types.

C is not a "very high-level' language nor a big one and is not special-
ized to any particular area of application. Its generality and an absence
of restrictions make it more convenient and effective for many tasks than
supposedly more powerful languages. C has been used for a wide variety
of programs, including the UNIX operating system, the C compiler itself,
and essentially all UNIX applications software. The language is sufficiently
expressive and efficient to have completely displaced assembly language
programming on UNIX.

IRitchie, D.M. et al.; The C Programming Language, The Bell System Technical Journal, 57, no. 6,
part 2, July - August 1978, pp. 1991 - 2019.



CHAPTER 7

Source to Executable Code

Consider the fragment of code below. To a 68000-family MPU this makes perfect
sense. Indeed a series of binary bits, typically represented by nominal 0Vand 5V
potentials stored in memory, is the only code that a MPU or any other type of
computer, can understand. To the software engineer, interpreting programs in
this pure machine code is virtually impossible. Writing code in this form is
torturous, involving at the very least working out each op-code by hand, together
with bits representing source, destination and any applicable data; evaluating
relative offsets; and keeping tally of where data is stored.

0001000000111000 0001001000110100
0101110000000000
0001111000000000 0001001000110101

Even with a program written in such a form, some means must be found of
putting or loading the code to its final place in memory. Very early computers
did not use electronic memory at all, the code being configured by wire links.
Using switches to set up each memory address and its corresponding data, in
effect a kind of direct memory access, was still used up to the 1960s to enter a
short startup program. This program was known as a bootstrap, as once in and
executed, a paper tape reader could be controlled. Programs could then be read
in from this source, that is the computer was able to pick itself up by its own
bootstraps. A modern version of this is the resident BIOS in a PC, which allows
the MPU to read in the operating system from magnetic disk after switch on,
hence the term "to boot up'.

Using the computer to aid in translating code from more user-friendly (human)
forms to machine code and loading this into memory began in the late 1940s. At
the very least it permitted the use of higher order number bases such as octal
and hexadecimal. Using the latter, our code fragment becomes:

1038 1234
5C00
1E00 1235

A hexadecimal loader will translate this to binary and put the code in designated
addresses. Hexadecimal coding has little to commend it, except that the number
of keystrokes is reduced (but there are more keys!) and it is slightly easier to
spot certain types of errors. Nevertheless, this technique was extensively used in

168
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the early 1970s for microprocessor software generation and is often still used in
education as a first introduction to programming simple MPUs.

At the very least a symbolic translator or assembler is required for serious
programming. This allows the use of mnemonics for the instructions and internal
registers with names for constants, variables and addresses. We now have:

.DEFINE  CONSTANT = 6

MOVE.B NUM1,DO ; Get the number NUM1
ADDQ.B  #CONSTANT,DO ; Add the constant to it
MOVE.B DO, NUM2 ; is now the number NUM2
.ORG 1234h ; This 1is the data area
NUM1: .BYTE [1] ; NUM1 Tives at 1234h
NUM2: .BYTE [1] ; and NUM2 at 1235h

Giving names to addresses and constants is especially valuable for long pro-
grams. Together with the use of comments, this makes code written in assembly
level easier to maintain. Furthermore, programs can be written as separate mod-
ules with symbols defined in only one module and a linker program used to
put them together with their actual values. This assembly of modules into one
program gave the name assembly-level to this type of language [1]. Of course
assemblers/linkers and their ancillary programs are rather more complex than
simple hexadecimal loaders. Thus they demand more of the computer running
them, especially in the area of memory and backup store. Because of this, their
use in small MPU-based projects was limited until the early 1980s, when power-
ful personal computers (made possible by MPUs) appeared. Prior to this, either
mainframe and minicomputers or target-specific microprocessor development
systems (MDSs) were required. Any of these solutions were expensive.

Assembly-level language is machine-oriented, in that there is generally a one-
to-one correspondence to the machine instructions. As such, code written at this
level bears little relationship to the problem being implemented. The use of a
high-level language permits a description of the problem in an algorithmically-
oriented language. In C, our code fragment becomes:

#define CONSTANT = 6
unsigned char NUM1,NUM2; /* Define NUM1 and NUM2 as unsigned bytes */
{NUM1 = NUM2 + CONSTANT;} /* The process */

Now we no longer need to keep track of exactly where NUM1 and NUM2 have to
be stored. Also we have a large repertoire of mathematical and string functions,
which do not have a one-to-one machine level counterpart. Notice that our pro-
gram did not indicate which processor's machine code would eventually be pro-
duced, the target might well be a Z80 rather than a 68000 (see Table[I0.15).

Of course there are problems in using high-level languages, especially when
the target is an embedded MPU-based system. In general the further away the
level is from the machine code, the more isolated the programmer is from the
raw hardware. A compiler also demands much more of its supporting computer,
and for this reason only recently became popular as a tool in this type of design.
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Figure 7.1 Onion skin view of the steps leading to an executable program.

Many high-level languages compile their syntax into assembler-level source
code which is then translated and linked in the same manner as “hand written'
assembly code. Thus in this chapter we will be looking at assemblers, linkers,
loaders and their associated programs as well as compilation and related pro-
cesses.

7.1 The Assembly Process

We have used assemblers at some length in Part 1 of this text, to present a more
palatable interface to the reader of the (binary) software aspects of two micropro-
cessors. Without going into any detail, we have seen that a Symbolic Assembler
program (or assembler for short) allows us to use predefined symbols for the
instructions and various processor registers, and to define names for constants,
variables and memory locations. They take the drudgery out of calculating rel-
ative offsets and converting number bases. Comments, which are ignored at
translation time, make maintenance easier than raw code. The use of a conve-
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nient editor allows alterations to be easily made to the source code, which can
then be quickly retranslated with the updated symbolic and offset values [1], 2]

In faithfully reflecting the underlying structure of the hardware, assembler
code can produce the smallest and quickest code of any of the symbolic lan-
guages. Even though it is furthest away from the problem algorithm, these advan-
tages frequently mean that assembly-level routines are linked in with high-level
code, or even used entirely to implement problems, especially when real-time
operation is required.

Assemblers are one of a class of translator programs and are available from
a wide range of originators for most target processors. Although some attempt
has been made to standardize syntax [3}/4], normally each package has its own
rules. Generally the MPU manufacturer's recommended mnemonics are adhered
to reasonably closely. Directives, which are pseudo operators used to pass infor-
mation to the assembler program, do differ considerably. Details of the layout
and syntax for the assemblers used in Part 1 are given in Section 2.3 and will
not be repeated here. Differences in other assemblers used later in this text are
pointed out where they occur.

No matter which language is being used, the programmer must prepare the
source form of the code in the appropriate format and syntax. This preparation
involves the use of an editor program or word processor. The actual one used
is irrelevant, provided that the text is stored in a form which can be read by
the translator, usually plain ASCII. Most operating systems come with a basic
editor, for example MSDOS's EDLIN and UNIX's ED. More sophisticated packages,
such as Wordperfect, are usually favored for larger projects. Table [ZI] shows
a slightly modified source form of the sum-of-integers program first presented
in Table [4.10] (actually entered using EDLIN). This document, which is normally
stored on magnetic disk, is the file presented to the assembler for translation.
Conventionally the file name is postfixed .S, .SRC or .ASM for assembly source,
thus the file printed in Table[7.I]was called T1ist7_1.s.

Assemblers can be broadly classified as absolute or relocatable, according to
the type of code they produce. The former normally generates a file with the
machine code and its absolute location ready to be loaded into memory. This
machine code file is a finished entity, to which no further alterations need be
or should be made before loading. The output of a relocatable assembler is not
yet complete, as it usually does not contain information regarding the eventual
location of the machine code in memory. Furthermore, symbols may be used in
the source code which are not defined at this juncture and which are assumed to
be in modules coming from elsewhere. It will be the job of a Linker program to
satisfy these unrequited references and to define code addresses.

Absolute assemblers tend to be simpler to use, as the path between source and
machine code is more direct, as can be seen in Fig.[Z.2(a). Despite their simplicity
they are rarely used in major projects due to their lack of flexibility.

As a demonstration, consider the source code listed in Table[Z1l This is vir-
tually identical to the source of Table but with the directive .0ORG replacing
.PSECT. As this source is to be processed by an absolute assembler, the pro-



172 C FOR THE MICROPROCESSOR ENGINEER

§9552.pp0 /DYIOP KipUlg

§9552.ppo /DYOP KipUlg

S9LIDIQI| PUD ‘S3INPOW JSLY0 WOU)
s8|ly 8p0o—308(q0 8|qoIDo0jRY

Jopeo]

(epoo 308lqp eInjosqy)

apod 102(qo

-

K <[/ oyun

|

3|lj BPOO—BUIYIDJ B}N|0SqY ;

<
<
<

8|1} Jodi3
8l 1oquiAs
s|ly Bunsn

Jopeo

(epo2 308lqQ 8injosqy)
E 3|ly 9POO—3UIYIDN 3}N[0SqY

~r

2|qD}DI0|3Y

Jejquiesse Buiyesojey

o

|1} 82.nog

o|l} 40443
oy Bunsn

Jo|qUIBSSe Snjosay

o

|1} 82.nog

s|i} Jodi]
3|4 [0quiAs
oy} buiysi

Figure 7.2 Assembly-level machine code translation.
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Table 7.1 Source code for the absolute assembler.
.pro