

Microprocessor Theory
and Applications with

68000/68020 and Pentium

M. RAFIQUZZAMAN, Ph.D.
Professor

California State Polytechnic University
Pomona, California

and
President

Rafi Systems, Inc.

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

Microprocessor Theory
and Applications with

68000/68020 and Pentium

This Page Intentionally Left Blank

Microprocessor Theory
and Applications with

68000/68020 and Pentium

M. RAFIQUZZAMAN, Ph.D.
Professor

California State Polytechnic University
Pomona, California

and
President

Rafi Systems, Inc.

WILEY

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-
6008, or online at http://www.wiley.comlgo/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-
3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Rafiquzzaman, Mohamed.

Rafiquzzaman.
p. cm.

Microprocessor theory and applications with 68000/68020 and Pentium / M.

Includes bibliographical references and index.
ISBN 978-0-470-3803 1-4 (cloth)

1. Motorola 68000 series microprocessors. 2. Pentium (Microprocessor) I.
Title.

QA76XM6895R34 2008
0 0 4 . 1 6 5 4 ~ 2 2 2008011009

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

To my wge, Kusum; my son, Tito; and my brothel; Elan

This Page Intentionally Left Blank

CONTENTS
PREFACE XI11

CREDITS XV

1. INTRODUCTION TO MICROPROCESSORS
1.1 Explanation of Terms
1.2 Microprocessor Data Types

1.2.1 Unsigned and Signed Binary Numbers
1.2.2 ASCII and EBCDIC Codes
1.2.3 Unpacked and Packed Binary-Coded-Decimal Numbers
1.2.4 Floating-point Numbers

1.3 Evolution of the Microprocessor
1.4 Typical Features of 32-bit and 64-bit Microprocessors
1.5 Microprocessor-based System Design Concepts
1.6 Typical Microprocessor Applications

1.6.1 A Simple Microprocessor Application
1.6.2 Examples of Typical Microprocessor Applications

2. MICROCOMPUTER ARCHITECTURE
2.1 Basic Blocks of a Microcomputer
2.2 Typical Microcomputer Architecture

2.2.1 System Bus
2.2.2 Clock Signals

2.3 Single-Chip Microprocessor
2.3.1 Register Section
2.3.2 Control Unit
2.3.3 Arithmetic-Logic Unit
2.3.4 Functional Representations of Simple and Typical Microprocessors
2.3.5 Simplified Explanation of Control Unit design

2.4 Program Execution by Conventional Microprocessors
2.5 Program Execution by typical 32-bit Microprocessors

2.5.1 Pipelining
2.5.2 Branch Prediction Feature

2.6 Scalar and Superscalar Microprocessors
2.7 RISC vs. CISC
Questions and Problems

1
2
4
5
7
7
8
9

15
16
19
20
21
23
23
24
24
25
26
26
30
32
32
34
38
38
39
44
45
45
47

vii

...
Vlll

3. MICROPROCESSOR MEMORY ORGANIZATION
3.1 Introduction
3.2 Main memory

3.2.1 Read-only Memory
3.2.2 Random-Access Memory
3.2.3 READ and WRITE Timing Diagrams
3.2.4 Main Memory Organization
3.2.5 Main Memory Array Design

3.3.1 Memory Management Concepts
3.3.2 Cache Memory Organization

4. MICROPROCESSOR INPUT/OUTPUT

3.3 Microprocessor on-chip memory management unit and cache

Questions and Problems

4.1 Introduction
4.2 Simple I/O Devices
4.3 Programmed I/O
4.4 Unconditional and Conditional Programmed I/O
4.5 Interrupt I/O

4.5.1 Interrupt Types
4.5.2 Interrupt Address Vector
4.5.3 Saving the Microprocessor Registers
4.5.4 Interrupt Priorities

4.6 Direct Memory Access (DMA)
4.7 Summary of I/O
Questions and Problems

5.1 Microcomputer Programming Languages
5.2 Machine Language
5.3 Assembly Language

5. MICROPROCESSOR PROGRAMMING CONCEPTS

5.3.1 Types of Assemblers
5.3.2 Assembler Delimiters
5.3.3 Specifying Numbers by Typical Assemblers
5.3.4 Assembler Directives or Pseudoinstructions
5.3.5 Assembly Language Instruction Formats
5.3.6 Instruction Set Architecture (ISA)
5.3.7 Typical Instruction Set
5.3.8 Typical Addressing Modes
5.3.9 Subroutine Calls in Assembly Language

5.4 High-Level Language
5.5 Choosing a programming language
5.6 Flowcharts
Questions and Problems

6.1 Introduction
6.2 68000 Registers
6.3 68000 Memory Addressing
6.4 Assembly Language Programming with the 68000

6. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68000

Contents

49
49
50
51
52
52
54
55
58
58
63
68
71
71
72
74
76
78
80
80
81
81
84
86
87
89
89
90
90
91
92
93
93
95
97
98

102
104
104
105
106
107
109
109
111
112
113

Contents ix

6.5 68000 Addressing Modes
6.5.1 Register Direct Addressing
6.5.2 Address Register Indirect Addressing
6.5.3 Absolute Addressing
6.5.4 Program Counter Relative Addressing
6.5.5 Immediate Data Addressing
6.5.6 Implied Addressing

6.6.1 Data Movement Instructions
6.6.2 Arithmetic Instructions
6.6.3 Logic Instructions
6.6.4 Shift and Rotate Instructions
6.6.5 Bit Manipulation Instructions
6.6.6 Binary-Coded-Decimal Instructions
6.6.7 Program Control Instructions
6.6.8 System Control Instructions
6.6.9 68000 Stack

6.6 68000 Instruction Set

6.7 68000 Delay Routine
Questions and Problems

117
117
118
122
123
124
125
125
128
134
150
152
156
157
160
163
166
168
170

7. 68000 HARDWARE AND INTERFACING 175
175

7.1.1 Synchronous and Asynchronous Control Lines 177
7.1.2 System Control Lines 179

7.1.4 DMA Control Lines 181
7.1.5 Status Lines 181

181
7.2.1 68000 Clock Signals 181
7.2.2 68000 Reset Circuit 182

7.3 68000 Read and Write Cycle Timing Diagrams 185
7.4 68000 Memory Interface 188
7.5 68000 I10 192

7.5.1 68000 Programmed I10 192

7.5.3 68000 DMA 206
7.6 68000 Exception Handling 207
7.7 68000/2732/6116/682 1-Based Microcomputer 208
7.8 Multiprocessing with the 68000 Using the TAS Instruction and the AS Signal 212
Questions and Problems 217

221

7.1 68000 Pins And Signals

7.1.3 Interrupt Control Lines 181

7.2 68000 Clock and Reset Signals

7.5.2 68000 Interrupt System 201

8. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68020
8.1 Introduction 22 1
8.2 68020 Functional Characteristics 222
8.3 68020 Registers 225
8.4 68020 Data Types, Organization, and CPU Space Cycle 227
8.5 68020 Addressing Modes 22 8

8.5.1 Address Register Indirect (AM) with Index and 8-Bit Displacement 23 1
8.5.2 ARI with Index (Base Displacement, bd: Value 0 or 16 Bits or 32 Bits) 232

X Contents

8.5.3 Memory Indirect 232
8.5.4 Memory Indirect with PC 233

8.6 68020 Instructions 237
8.6.1 68020 New Privileged Move Instructions 238
8.6.2 Return and Delocate Instruction 238
8.6.3 CHK/CHK2 and CMP/CMP2 Instructions 239
8.6.4 Trap-on-Condition Instructions 243
8.6.5 Bit Field Instructions 245
8.6.6 PACK and UNPK Instructions 247
8.6.7 Multiplication and Division Instructions 250
8.6.8 68000 Enhanced Instructions 254
8.6.9 68020 Subroutines 254

Questions and Problems 256
9. 68020 HARDWARE AND INTERFACING 261

9.1 Introduction 26 1
9.1.1 68020 Pins and Signals 26 1
9.1.2 68020 Dynamic Bus Sizing 265
9.1.3 68020 Timing Diagrams 27 1

9.2 68020 System Design 274
9.2.1 Memory Decode Logic for Memory and VO 275
9.2.2 68020-27C256 Interface 276
9.2.3 68020- 2256C/CH (SRAM) Interface 277
9.2.4 68020 Programmed I/O 279

9.3 68020 Exception processing 282
9.4 68020-based Voltmeter 283

285
289

a Seven-Segment Display 293
294

Segment Display 296
Questions and Problems 302

10. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PENTIUM: PART 1 305
10.1 Introduction 306
10.2 Pentium Registers 308

10.2.1 General-Purpose Registers 308
10.2.2 Stack Pointers and Index Registers 308
10.2.3 Extended Instruction Pointer and Flag Register 310
10.2.4 Segment Registers 311

10.3 Modes of Operation 311
10.3.1 Real Mode 3 12
10.3.2 Protected Mode 315

10.4 Pentium data Organization 316
10.5 Assembly Language Programming with the Pentium 316
10.6 Pentium Addressing Modes 32 1

32 1

9.4.1 Voltmeter Design Using Programmed I/O
9.4.2 Voltmeter Design Using Interrupt I/O

9.5 Interfacing a 68020-Based Microcomputer to a Hexadecimal Keyboard and

9.5.1 Basics of Keyboard and Display Interface to a Microcomputer
9.5.2 68020 Interface to a Hexadecimal Keyboard and a Seven-

10.6.1 Pentium’s 32-Bit Addressing in Real Mode

Contents xi

10.6.2 Register and Immediate Modes 323
10.6.3 Memory Addressing Mode 3 24
10.6.4 Port Addressing Mode 330
10.6.5 Relative Addressing Mode 330
10.6.6 Implied Addressing Mode 330

10.7 Pentium Instructions 33 1
10.7.1 Data Transfer Instructions 33 1
10.7.2 Arithmetic Instructions 340

Questions and Problems 3 62
11. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PENTIUM: PART 2 367

11.1 Logic, Bit Manipulation, Set on condition, Shift, and Rotate Instructions 367

1 1.3 Unconditional Transfer Instructions 3 82
11.4 Conditional Branch Instructions 389
11.5 Iteration Control Instructions 3 92
11.6 Interrupt Instructions 393
1 1.7 Processor Control Instructions 394
1 1.8 Pentium Delay routine 395
Questions and Problems 397

12. PENTIUM HARDWARE AND INTERFACING 401
40 1
403
405

12.3.1 Memory Interface 405
12.3.2 Pentium-EPROM Interface 41 1
12.3.3 Pentium-SRAM interface 413
12.3.4 Pentium Programmed I/O 415
12.3.5 Pentium Interrupts and Exceptions in Real Mode 420

12.4 Pentium-based voltmeter 423
12.4.1 Pentium-based voltmeter using programmed I/O 424
12.4.2 Pentium-based voltmeter using NMI 426
12.4.3 Pentium-based voltmeter using INTR 427

430
430

a Pentium-Based Microcomputer 43 1

APPENDIX A: ANSWERS TO SELECTED PROBLEMS 443

APPENDIX B: GLOSSARY 45 1

APPENDIX C: MOTOROLA 68000 AND SUPPORT CHIPS 467

APPENDIX D: 68000 EXECUTION TIMES 479

APPENDIX E: 68000 / SELECTED 68020 INSTRUCTION SET 487

APPENDIX F: PENTIUM INSTRUCTION FORMAT AND TIMING 497
F. 1. INTEGER INSTRUCTION FORMAT AND TIMING 497

1 1.2 String Instructions 377

12.1 Pentium Pins and Signals
12.2 Pentium READ and WRITE Timing Diagrams
12.3 Pentium’s interface to memory and I/O

12.5 Interfacing a Pentium-based Microcomputer to a Hexadecimal Keyboard
and a Seven Segment Display

12.5.1 Basics of Keyboard and Display Interface to a Microcomputer
12.5.2 Hexadecimal Keyboard and Seven-Segment Display Interface to

Questions and Problems 437

xi i Contents

APPENDIX G: PENTIUM INSTRUCTION SET IN REAL MODE (SELECTED) 525

APPENDIX H: PENTIUM PINOUT AND PIN DESCRIPTIONS 547
H. 1. PentiumTM Processor Pinout 547
H.2. Design Notes 55 1
H.3. Quick Pin Reference 55 1
H.4. PIN REFERENCE TABLES 558
H.5. Pin Grouping According To Function 560
H.6. Output Pin Grouping According To When Driven 561

BIBLIOGRAPHY 563

INDEX 565

PREFACE
Microprocessors play an important role in the design of digital systems. They are found in
a wide range of applications, such as process control and communication systems.

This book is written to present the fundamental concepts of assembly language
programming and system design concepts associated with typical microprocessors, such as
the Motorola 68000/68020 and Intel Pentium. The 68000 is a 16-bit microprocessor that
continues to be popular. Since the 68000 uses linear memory and contains 32-bit general-
purpose registers, it is an excellent educational tool for acquiring an understanding of both
hardware and software aspects of typical microprocessors.

Conventional microprocessors such as the 68000 complete fetch, decode and
execute cycles of an instruction in sequence. Typical 32-bit microprocessors such as
the 68020 and Pentium use pipelining, in which instruction fetch and execute cycles are
overlapped. This speeds up the instruction execution time of 32-bit microprocessors.
Pipelining was used for many years in mainframe and minicomputer CPUs. In addition,
other mainframe features, such as memory management and floating-point and cache
memory, are implemented in 32-bit microprocessors. Hence, brief coverage of these topics
is provided in the first part of the book.

The book is self-contained and includes a number of basic topics. A basic
digital logic background is assumed. Characteristics and principles common to typical
microprocessors are emphasized and basic microcomputer interfacing techniques are
demonstrated via examples using the simplest possible devices, such as switches, LEDs,
A/D converters, the hexadecimal keyboard, and seven-segment displays.

The book has evolved from classroom notes developed for three microprocessor
courses taught at the Electrical and Computer Engineering Department, California State
Poly University, Pomona for the last several years: ECE 343 (Microprocessor I), ECE 432
(Microprocessor 11), and ECE 56 1 (Advanced Microprocessors).

The text is divided into 12 chapters. In Chapter 1, we provide a review of
terminology, number systems, evolution of microprocessors, system design concepts and
typical microprocessor applications.

Chapters 2 through 12 form the nucleus of the book. Chapter 2 covers typical
microcomputer architectures for both 16-bit (conventional) and 32-bit microprocessors.
The concepts of pipelining, superscalar processors and RISC vs. CISC are included.

...
XI11

xiv Preface

Chapter 3 is focused on the memory organization of typical microprocessors. The
basic concepts associated with main memory array design, including memory maps are
also covered, as are memory management concepts and cache memory organization.

In Chapter 4, we describe microprocessor input/output techniques including
programmed I/O, interrupt I/O, and direct memory access (DMA).

Chapter 5 contains programming concepts associated with atypical microprocessor.
Topics include assembly language programming, typical addressing modes, and instruction
sets.

The theory of assembly language programming and system design concepts
covered in the early chapters is illustrated in Chapters 6 through 12 by means of a typical
conventional 16-bit microprocessor such as the Motorola 68000 and typical 32-bit
microprocessors such as the Motorola 68020 and Intel Pentium. Several examples of
assembly language programming and I/O techniques associated with these microprocessors
are included. These chapters also demonstrate how the software and hardware work
together by interfacing simple I/O devices such as LEDs, a hexadecimal keyboard, and
A/D converters. The concepts are described in a very simplified manner.

A CD containing a step-by-step procedure for installing and using a typical
68000/68020 assembleddebugger such as the ide68k21 and a Pentium assembler/
debugger such as the MASM32 / OllyDebugger is provided. Note that these assemblers
and debuggers are Windows-based and are very user friendly. Screen shots provided on
the CD verify the correct operation of several assembly language programs for the 68000,
68020, and Pentium via simulations using test data.

The book can be used in a number of ways. Since the materials presented here
are basic and do not require an advanced mathematical background, the book can easily be
adopted as a text for two- semester courses in microprocessors taught at the undergraduate
level in electrical/computer engineering and computer science departments.

The book will also be useful for graduate students and for practicing microprocessor
system designers. Practitioners of microprocessor system design will find more simplified
explanations, together with examples and comparison considerations, than are found in
manufacturers’ manuals.

I wish to extend my sincere appreciation to my students, Joseph Lee, Raffi
Karkourian, Tony Lopez, Julius Ramos, David Ambasing, Kevin Asprer, William Cambell,
Devine Jeyarajah, Huy Nguyen, Thuan Ho, Kenneth Kha, Darren Ly, Dat Nguy, and Sevada
Isayan for reviewing the manuscript and making valuable comments, and to CJ Media of
California for preparing the final version of the manuscript. I am indebted especially to my
deceased parents, who were primarily responsible for my accomplishments.

Pomona, California M. RAFIQUZZAMAN

CREDITS
The material cited here is used by permission of the sources listed below.

Copyright of Freescale Semiconductor, Inc. 2008, Used by Permission: Table 6.4, Table
7.1, Table 7.2, Table 7.3, Table 7.5, Tables 7.7 through 7.11, Tables 8.2 through 8.13,
Tables 9.1 through 9.7, Tables 9.1 1 and 9.12, Table 10.21, Table 10.23, Figures 6.1 through
6.3, Figure 7.1, Figure 7.2, Figure 7.8, Figure 7.12, Figure 7.14, Figures 8.1 through 8.3,
Figures 9.1 through 9.5, Figures 9.9(a) and 9.9(b), Figures 9.16 through 9.20, Appendix
C, Appendix D. All mnemonics of Motorola microprocessors are courtesy of Freescale
Semiconductor, Inc.

Copyright of Intel Corporation, Used by Permission: Table 10.5, Table 10.6, Tables 11.2
through 11.5, Table 11.7, Tables 12.1 through 12.8, Table 12.10, Table 12.12, Figure 2.9(b),
Figure 10.1, Figure 10.2, Figure 10.5, Figures 1 1.1 through 1 1.4, Figures 12.1 through
12.6, Figure 12.12, Appendix F, Appendix H. All mnemonics of Intel microprocessors are
courtesy of Intel Corporation. The 80386 microprocessor referred to in the text as the
i386TM, the 80486 as the i486TM, and the Pentium as the PentiumTM, trademarks of Intel
Corporation.

Microsoft: MASM32 software used by permission.

Oleh Yuschuk, The author of OllyDbg: OllyDbg software used by permission.

Peter J. Fondse, The author of Ide 68k: Ide 68k software used by permission.

xv

This Page Intentionally Left Blank

1
INTRODUCTION TO

MICROPROCESSORS

Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. A digital computer, more commonly
called simply a computer, is an example of a typical digital system.

A computer manipulates information in digital or more precisely, binary form. A
binary number has only two discrete values: zero or one. Each discrete value is represented
by the OFF and ON status of an electronic switch called a transistor. All computers
understand only binary numbers. Any decimal number (base 10, with ten digits from 0 to
9) can be represented by a binary number (base 2, with digits 0 and 1).

The basic blocks of a computer are the central processing unit (CPU), the
memory, and the input/output (UO). The CPU of a computer is basically the same as the
brain of a human being; so computer memory is conceptually similar to human memory.
A question asked of a human being is analogous to entering a program into a computer
using an input device such as a keyboard, and a person answering a question is similar
in concept to outputting the program result to a computer output device such as a printer.
The main difference is that human beings can think independently, whereas computers can
only answer questions for which they are programmed. Computer hardware includes such
components as memory, CPU, transistors, nuts, bolts, and so on. Programs can perform a
specific task, such as addition, if the computer has an electronic circuit capable of adding
two numbers. Programmers cannot change these electronic circuits but can perform tasks
on them using instructions.

Computer software consists of a collection of programs that contain instructions
and data for performing a specific task. All programs, written using any programming
language (e.g., C++), must be translated into binary prior to execution by a computer
because the computer Therefore, a translator is
necessary to convert such a program into binary and this is achieved using a translator
program called a compiler. Programs in the binary form of 1’s and 0’s are then stored
in the computer memory for execution. Also, as computers can only add, all operations,
including subtraction, multiplication, and division, are performed by addition.

Due to advances in semiconductor technology, it is possible to fabricate a CPU
on a single chip. The result is a microprocessor. Both metal-oxide semiconductor (MOS)
and bipolar technologies are used in the fabrication process. The CPU can be placed on
a single chip when MOS technology is used. However, several chips are required with
bipolar technology. At present, HCMOS (high-speed complementary MOS) or BICMOS

understands only binary numbers.

2 Microprocessor Theory and Applications with 68000/68020 and Pentium

(combination of bipolar and HCMOS) technology to fabricate a
microprocessor on a single chip. Along with the microprocessor chip, appropriate memory
and I/O chips can be used to design a microcomputer. The pins on each one of these chips
can be connected to the proper lines on a system bus, which consists of address, data, and
control lines. In the past, some manufacturers designed a complete microcomputer on a
single chip with limited capabilities. Single-chip microcomputers were used in a wide
range of industrial and home applications.

Microcontrollers evolved from single-chip microcomputers. Microcontrollers are
typically used for dedicated applications such as automotive systems, home appliances, and
home entertainment systems. Typical microcontrollers include a microcomputer, timers,
and A/D (analog-to- digital) and D/A (digital to analog) converters, all on a single chip.
Examples of typical microcontrollers are the Intel 875 1 (8-bit)/8096 (16-bit), Motorola
HC 1 1 (8-bit)/HC 16 (1 6-bit), and Microchip Technology’s PIC (peripheral interface
controller).

In this chapter we first define some basic terms associated with microprocessors.
We then describe briefly the evolution of microprocessors and typical features of 32- and
64-bit microprocessors. Finally, microprocessor-based system design concepts and typical
microprocessor applications are included.

is normally used

1.1 Explanation of Terms

Before we go on, it is necessary to understand some basic terms.
An Address is a pattern of 0’s and 1 ’s that represents a specific location in memory
or a particular I/O device. Typical 8-bit microprocessors have 16 address lines, and,
these 16 lines can produce 216 unique 16-bit patterns from 0000000000000000 to
11 11 1 1 11 1 11 11 11 1, representing 65,536 different address combinations.
Addressing mode is the manner in which the microprocessor determines the operand
(data) and destination addresses during execution of an instruction.

An Arithmetic-logic unit (ALU) is a digital circuit that performs arithmetic and logic
operations on two n-bit digital words. The value of n can be 4, 8, 16, 32, or 64.
Typical operations performed by an ALU are addition, subtraction, ANDing, ORing,
and comparison of two n-bit digital words. The size of the ALU defines the size of the
microprocessor. For example, a 32-bit microprocessor contains a 32-bit ALU.

Bit is an abbreviation for the term binary digit. A binary digit can have only two values,
which are represented by the symbols 0 and 1, whereas a decimal digit can have 10
values, represented by the symbols 0 through 9. The bit values are easily implemented
in electronic and magnetic media by two-state devices whose states portray either of
the binary digits 0 and 1. Examples of such two-state devices are a transistor that is
conducting or not conducting, a capacitor that is charged or discharged, and a magnetic
material that is magnetized north to south or south to north.
Bit size refers to the number of bits that can be processed simultaneously by the basic
arithmetic circuits of a microprocessor. A number of bits taken as a group in this
manner is called a word. For example, a 32-bit microprocessor can process a 32-bit
word. An 8-bit word is referred to as a byte , and a 4-bit word is known as a nibble.
A bus consists of a number of conductors (wires) organized to provide a means of
communication among different elements in a microprocessor system. The conductors

Introduction to Microprocessors 3

in a bus can be grouped in terms of their functions. A microprocessor normally has
an address bus, a data bus, and a control bus. Address bits are sent to memory or to
an external device on the address bus. Instructions from memory, and data to/from
memory or external devices, normally travel on the data bus. Control signals for the
other buses and among system elements are transmitted on the control bus. Buses are
sometimes bidirectional; that is, information can be transmitted in either direction on
the bus, but normally in only one direction at a time.

Cache Memory is a high-speed, directly accessible, relatively small, semiconductor
readwrite memory block used to store datdinstructions that the microprocessor may
need in the immediate future. It increases speed by reducing the number of external
memory reads required by the microprocessor. Typical 32-bit microprocessors such as
the Intel Pentium are provided with on-chip cache memory. Pentium I1 supports two
levels of cache. These are L1 (Level 1 cache) and L2 (Level 2 cache) cache memories.
The L1 cache (smaller in size) is contained inside the microprocessor while L2 cache
(larger in size) is interfaced to the microprocessor. This two level cache enhances the
performance of the microprocessor.

A Complex Instruction Set Computer (CISC) contains a large instruction set. It is
difficult to pipeline compared to RISC. Motorola 68020 is a CISC microprocessor.

Clock is analogous to human heart beats. The microprocessor requires synchronization
among its components, and this is provided by a clock or timing circuits.
The instruction set of a microprocessor is a list of commands that the microprocessor
is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE.
Individual instructions are coded as unique bit patterns which are recognized and
executed by the microprocessor. If a microprocessor has 3 bits allocated to the
representation of instructions, the microprocessor will recognize a maximum of 23, or
eight, different instructions. The microprocessor will then have a maximum of eight
instructions in its instruction set. It is obvious that some instructions will be more
suitable than others to a particular application. For example, if a microprocessor is to be
used in a calculating mode, instructions such as ADD, SUBTRACT, MULTIPLY, and
DIVIDE would be desirable. In a control application, instructions inputting digitized
signals to the processor and outputting digital control variables to external circuits
are essential. The number of instructions necessary in an application will directly
influence the amount of hardware in the chip set and the number and organization of
the interconnecting bus lines.
Memoly Management Unit (M N) allows programmers to write programs much
larger than could fit in the main memory space available to the microprocessor. The
programs are simply stored in a secondary device such as a hard disk and portions
of the programs are swapped into the main memory as needed for execution by
the microprocessor. The MMU is implemented as on-chip hardware in typical
microprocessors such as the Pentium.
A microprocessor is the CPU of a microcomputer contained on a single chip, and
must be intefaced with peripheral support chips in order to function. In general, a CPU
contains several registers (memory elements), an ALU, and a control unit. Note that
the control unit translates instructions and performs the desired task. The number of
peripheral devices depends on the particular application involved and may even vary
within an application. As the microprocessor industry matures, more of these functions

Microprocessor Theory and Applications with 68000/68020 and Pentium

are being integrated onto chips, to reduce the system package count. In general, a
microcomputer typically consists of a microprocessor (CPU) chip, input and output
chips, and memory chips in which programs (instructions and data) are stored. Note
that a microcontroller, on the other hand, is implemented on a single chip containing
typically a CPU, memory, I/O, a timer, and A/D and D/A converter circuits.

Pipelining is a technique that overlaps instruction fetch (instruction read) with
execution. This allows a microprocessor’s processing operation to be broken down into
several steps (dictated by the number of pipeline levels or stages) so that the individual
step outputs can be handled by the microprocessor in parallel. Pipelining is often used
to fetch the microprocessor’s next instruction while executing the current instruction,
which speeds up the overall operation of the microprocessor considerably.
Random-access memory (RAM) is a storage medium for groups of bits or words
whose contents cannot only be read but can also be altered at specific addresses. A
RAM normally provides volatile storage, which means that its contents are lost in case
power is turned off. RAMs are fabricated on chips and have typical densities of 4096
bits to 1 megabit per chip. These bits can be organized in many ways: for example,
as 4096-by-1-bit words or as 2048-by-%bit words. RAMs are normally used for the
storage of temporary data and intermediate results as well as programs that can be
reloaded from a backup nonvolatile source. RAMs are capable of providing large
storage capacity, in the megabit range.
Read-only memory (ROM) is a storage medium for the groups of bits called words,
and its contents cannot normally be altered once programmed. A typical ROM is
fabricated on a chip and can store, for example, 2048 eight-bit words, which can be
accessed individually by presenting to it one of 2048 addresses. This ROM is referred
to as a 2K by 8-bit ROM. 101 101 11 is an example of an 8-bit word that might be stored
in one location in this memory. A ROM is a nonvolatile storage device, which means
that its contents are retained in case power is turned off. Because of this characteristic,
ROMs are used to store programs (instructions and data) that must always be available
to the microprocessor.
A register can be considered as volatile storage for a number of bits. These bits may
be entered into the register simultaneously (in parallel) or sequentially (serially) from
right to left or from left to right, 1 bit at a time. An 8-bit register storing the bits
1 1 1 10000 is represented as follows:

1 ~ 1 ~ 1 ~ 1 ~ 0 ~ 0 ~ 0 ~ 0

A reduced instruction set computer (RISC) contains a simple instruction set. The
RISC architecture maximizes speed by reducing clock cycles per instruction and
makes it easier to implement pipelining. A Power PC is a RISC microprocessor.

A Superscalar microprocessor is provided with more than one pipeline and can
execute more than one instruction per clock cycle. The Pentium is a superscalar
microprocessor.

1.2 Microprocessor Data Types

In this section we discuss data types used by typical microprocessors: unsigned and

Introduction to Microprocessors 5

signed binary numbers, binary-coded decimal (BCD), ASCII (American Standard Code
for Information Interchange), EBCDIC (extended binary coded decimal interchange code),
and floating-point numbers.

1.2.1
An Unsigned binary number has no arithmetic sign, therefore, are always positive. Typical
examples are your age or a memory address, which are always positive numbers. An 8-bit
unsigned binary integer represents all numbers from 00,, through FF,,(O,, through 255,,).

A signed binary number, on the other hand, includes both positive and negative
numbers. It is represented in the microprocessor in two’s-complement form. For example,
the decimal number +15 is represented in 8-bit two’s-complement form as 0000 1111
(binary) or OF (hexadecimal). The decimal number -15 can be represented in 8-bit two’s-
complement form as 11 110001 (binary) or F1 (hexadecimal). Also, the most significant bit
(MSB) of a signed number represents the sign of the number. For example, bit 7 of an 8-bit
number, bit 15 of a 16-bit number, and bit 3 1 of a 32-bit number represent the signs of the
respective numbers. A “0” at the MSB represents a positive number; a “1” at the MSB
represents a negative number. Note that the 8-bit binary number 11 11 11 11 is 255,,when
represented as an unsigned number. On the other hand, 1 1 1 1 1 1 1 1 is - 1 ,, when represented
as a signed number.

An error (indicated by overflow in a microprocessor) may occur while performing
twos complement arithmetic. The microprocessor automatically sets an overflow bit to
1 if the result of an arithmetic operation is too big for the microprocessor’s maximum
word size; otherwise it is reset to 0. For signed arithmetic operations such as addition, the
overflow, V = C,O C, where C, is the final carry and C, is the previous carry. This can be
illustrated by the following examples.

Consider the following examples for 8-bit numbers. Let C, be the final carry (carry
out of the most significant bit or sign bit) and C, be the previous carry (carry out of bit 6
or seventh bit). We will show by means of numerical examples that as long as C, and C,
are the same, the result is always correct. If, however, C, and C, are different, the result is
incorrect and sets the overflow bit to 1. Now, consider the following cases.

Unsigned and Signed Binary Numbers

Case 1: C, and C, are the same.

0 0 0 0 0 1 1 0 0616
00010100 -16

/ o 0 0 0 1 1 0 1 0 1.416
Cr=O AJ + cp= 0

0 1 1 0 1 0 0 0 68 16

/ l 0 1 1 0 0 0 1 0 62 16

11111010 -16

C r = l fw +
c p = 1

Therefore when C, and C, are either both 0 or both 1, a correct answer is obtained.

6 Microprocessor Theory and Applications with 68000/68020 and Pentium

Case 2: C, and C, are different.

0 1 0 1 1 0 0 1 5916
nll)ol)ll)1 a 6

c , = 1

C, = 0 and C, = 1 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

c , = 0

C, = 1 and C, = 0 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit will be set to zero if
the carries C, and C, are the same, that is, if both C, and C, are either 0 or 1. On the other
hand, the overflow flag will be set to 1 if carries C, and C, are different. The relationship
among C, , C, , and V can be summerized in a truth table as follows:

Inputs output
Cf c, V
0 0 0
0 1 1
1 0 1
1 1 0

From the truth table, overflow, V = c, C, + C, cp = C, 0 C,
Note that the symbol 0 represents exclusive-OR logic operation. Exclusive-OR

means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, iftwo inputs are different, the output is one. The overflow can be considered as
an output while C, and C, are the two inputs. The answer is incorrect when the overflow
bit is set to 1; the answer is correct if the overflow bit is 0.

multiplication
and division instructions as follows: MULU (multiply two unsigned numbers), MULS
(multiply two signed numbers), D I W (divide two unsigned numbers), and DIVS (divide
two signed numbers). It is important for the programmer to understand clearly how to use
these instructions.

Typical microprocessors have separate unsigned and signed

Introduction to Microprocessors 7

For example, suppose that it is desired to compute X2/255. If Xis a signed 8-bit
number, the programmer should use the MULS instruction to compute X * X which is
always unsigned (the square of a number is always positive), and then use D I W to compute
X /255 (16-bit by 8-bit unsigned divide) since 255,, is positive. But if the programmer
uses DIVS, both X *X and 255,0 (FFI6) will be interpreted as signed numbers. FF,, will
be interpreted as - l I o , and the result will be wrong. On the other hand, i f X i s an unsigned
number, the programmer needs to use MULU and DIVU to compute X /255.

1.2.2 ASCII and EBCDIC Codes
If it is to be very useful, a microprocessor must be capable of handling nonnumeric
information. In other words, a microprocessor must be able to recognize codes that represent
numbers, letters, and special characters. These codes are classified as alphanumeric
or character codes. A complete and adequate set of necessary characters includes the
following:

26 lowercase letters

26 uppercase letters
10 numerical digits (0-9)

Approximately 25 special characters, which include +, I, #, YO, and others.
This totals 87 characters. To represent 87 characters with some type of binary

code would require at least 7 bits. With 7 bits there are 2' = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.

The two most common alphanumerical codes are the American Standard Code
for Information Interchange (ASCII) and the extended binary-coded-decimal interchange
code (EBCDIC). ASCII is typically used with microprocessors; IBM uses EBCDIC code.
Eight bits are used to represent characters, although 7 bits suffice, because the eighth bit is
frequently used to test for errors and is referred to as a parity bit. It can be set to 1 or 0 so
that the number of 1 bits in the byte is always odd or even.

Note that decimal digits 0 through 9 are represented by 30,, through 39,, in ASCII.
On the other hand, these decimal digits are represented by FO,, though F9,, in EBCDIC.

A microcomputer program is usually written for code conversion when input/
output devices of different codes are connected to the microcomputer. For example,
suppose that it is desired to enter the number 5 into a computer via an ASCII keyboard and
to print this data on an EBCDIC printer. The ASCII keyboard will generate 35,, when the
number 5 is pushed. The ASCII code 35,, for the decimal digit 5 enters the microcomputer
and resides in the memory. To print the digit 5 on the EBCDIC printer, a program must be
written that will convert the ASCII code 35,, for 5 to its EBCDIC code, F5,,. The output
of this program is F5,,. This will be input to the EBCDIC printer. Because the printer
understands only EBCDIC codes, it inputs the EBCDIC code F5,, and prints the digit 5.
Typical microprocessors such as the Intel Pentium include instructions to provide correct
unpacked BCD after performing arithmetic operations in ASCII. The Pentium instruction,
AAA (ASCII adjust for addition) is such an instruction.

1.2.3
The 10 decimal digits 0 through 9 can be represented by their corresponding 4-bit binary
numbers. The digits coded in this fashion are called binary-coded-decimal digits in 8421
code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form

Unpacked and Packed Binary-Coded-Decimal Numbers

8 Microprocessor Theory and Applications with 68000/68020 and Pentium

packed BCD. For example, two unpacked BCD bytes 02,, and 05,, can be combined as a
packed BCD byte 25,,.

decimal 24 via an ASCII keyboard into a
microcomputer. Two keys (2 and 4) will be pushed on the ASCII keyboard. This will
generate 32 and 34 (32 and 34 are ASCII codes in hexadecimal for 2 and 4, respectively)
inside the microcomputer. A program can be written to convert these ASCII codes into
unpacked BCD 02,, and 04,,, and then to convert to packed BCD 24 or to binary inside
the microcomputer to perform the desired operation. Unpacked BCD 02,, and 04,, can be
converted into packed BCD 24 (00100100,) by logically shifting 02,,four times to the
left to obtain 20,,, then logically ORing with 04,,. On the other hand, to convert unpacked
BCD 02,, and 04,, into binary, one needs to multiply 02,, by 10 and then add 04,, to
obtain 0001 1000, (the binary equivalent of 24).

Typical 32-bit microprocessors such as the Motorola 68020 include PACK and
UNPK instructions for converting an unpacked BCD number to its packed equivalent, and
vice versa.

Let us consider entering data

1.2.4 Floating-point Numbers
A number representation assuming a fixed location of the radix point is calledjixed-point
representation. The range of numbers that can be represented in fixed-point notation is
severely limited. The following numbers are examples of fixed-point numbers:

01 10.1 loo,, 5 1.12,,, DE.2AI,
In typical scientific computations, the range of numbers is very large. Floating-

point representation is used to handle such ranges. Ajoating-point number is represented
as N x rp , where N is the mantissa or significand, r the base or radix of the number system,
and p the exponent or power to which r is raised. Some examples of numbers in floating-
point notation and their fixed-point decimal equivalents are:

Fixed-Point Number Floating-Point Representation
0.0167,, 0.167 x lo-'

BE.2A9,, O.BE2A9 x 16,
1101.101, o.iioiioi x24

In converting from fixed-point to floating-point number representation, the
resulting mantissas are normalized, that is, the digits of the fixed-point numbers are shifted
so that the highest-order nonzero digit appears to the right of the decimal point and a
0 always appears to the left of the decimal point. This convention is normally adopted
in floating-point number representation. Because all numbers will be assumed to be in
normalized form, the binary point is not required to be represented in microprocessors.

Typical 32-bit microprocessors such as the Intel Pentium and the Motorola
68040 contain on-chip floating-point hardware. This means that these microprocessors
can be programmed using instructions to perform operations such as addition, subtraction,
multiplication, and division using floating-point numbers. The Motorola 68020 does not
contain on-chip floating-point hardware but 68020 can be interfaced to a floating-point
coprocessor chip to provide floating-point functions.

Introduction to Microprocessors 9

1.3 Evolution of the Microprocessor

The Intel Corporation is generally acknowledged as the company that introduced the
first microprocessor successfully into the marketplace. Its first processor, the 4004, was
introduced in 197 1 and evolved from a development effort while making a calculator chip
set. The 4004 microprocessor was the central component in the chip set, which was called
the MCS-4. The other components in the set were a 4001 ROM, a 4002 RAM, and a 4003
shift register.

Shortly after the 4004 appeared in the commercial marketplace, three other
general-purpose microprocessors were introduced: the Rockwell International 4-bit PPS-4,
the Intel 8-bit 8008, and the National Semiconductor 16-bit IMP-16. Other companies,
such as General Electric, RCA, and Viatron, also made contributions to the development of
the microprocessor prior to 197 1.

The microprocessors introduced between 197 1 and 1972 were the first-generation
systems designed using PMOS technology. In 1973, second-generation microprocessors
such as the Motorola 6800 and the Intel 8080 (8-bit microprocessors) were introduced.
The second-generation microprocessors were designed using NMOS technology. This
technology resulted in a significant increase in instruction execution speed over PMOS and
higher chip densities. Since then, microprocessors have been fabricated using a variety of
technologies and designs. NMOS microprocessors such as the Intel 8085, the Zilog 280,
and the Motorola 6800/6809 were introduced based on second-generation microprocessors.
A third generation HMOs microprocessor, introduced in 1978 is typically represented by
the Intel 8086 and the Motorola 68000, which are 16-bit microprocessors.

During the 1980’s, fourth-generation HCMOS and BICMOS (a combination of
bipolar and HCMOS) 32-bit microprocessors evolved. Intel introduced the first commercial
32-bit microprocessor, the problematic Intel 432, which was eventually discontinued.
Since 1985, more 32-bit microprocessors have been introduced. These include Motorola’s
68020, 68030, 68040, 68060, PowerPC, Intel’s 80386, 80486, the Intel Pentium family,
Core Duo, and Core2 Duo microprocessors..

The performance offered by the 32-bit microprocessor is more comparable to
that of superminicomputers such as Digital Equipment Corporation’s VAX11/750 and
VAX11/780. Intel and Motorola also introduced RISC microprocessors: the Intel 80960
and Motorola 88 100/PowerPC, which had simplified instruction sets. Note that the purpose
of RISC microprocessors is to maximize speed by reducing clock cycles per instruction.
Almost all computations can be obtained from a simple instruction set. Note that, in order
to enhance performance significantly, Intel Pentium Pro and other succeeding members of
the Pentium family and Motorola 68060 are designed using a combination of RISC and
CISC.

of the Motorola 68XXX and PowerPC microprocessors will
be provided next. Motorola’s 32-bit microprocessors based on the 68000 (16-bit
microprocessor) architecture include the MC68020, MC68030, MC68040, and MC68060.
Table 1.1 compares the basic features of some of these microprocessors with the 68000.

MC68020 is Motorola’s first 32-bit microprocessor. The design of the 68020 is
based on the 68000. The 68020 can perform a normal read or write cycle in 3 clock cycles
without wait states as compared to the 68000, which completes a read or write operation in
4 clock cycles without wait states. As far as the addressing modes are concerned, the 68020
includes new modes beyond those of the 68000. Some of these modes are scaled indexing,
larger displacements, and memory indirection.

An overview

10

TABLE 1.1

Microprocessor Theory and Applications with 68000/68020 and Pentium

Motorola 68000 vs. 68020/68030/68040

68000 68020 68030 68040
33MHz 33 MHz 33 MHz 33 MHz Comparable Clock Speed

Pins
Address Bus

Addressing Modes
Maximum Memory

Memory Management

Cache (on chip)

Floating Point

Total Instructions

ALU size

(4MHz min)*

64,68
24-bit

14
16 Megabytes

NO

NO

NO

56

One 16-bit

(8 MHz
min.)*

114
32-bit

18

4 Gigabytes
By interfacing

the 68851
MMU chip
Instruction

cache
By interfacing
68881/68882
floating-point
coprocessor

chip
101

Three 32-bit

(8 MHz min.)*

118
32-bit

18
4 Gigabytes

On-chip MMU

Instruction and
data cache

By interfacing
68881/68882
floating-point
coprocessor

chip
103

Three 32-bit

(8 MHz min.)*

118
32-bit

18
4 Gigabytes

On-chip MMU

Instruction and
data cache
On-chip

floating point
hardware

103 plus
floating- point

instructions
Three 32-bit

ALU ALU’s ALU’s ALU’s
*Higher clock speeds available

Furthermore, several new instructions are added to the 68020 instruction set,
including the two new instructions are used to perform conversions between packed BCD
and ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits.

68030 and 68040 are two enhanced versions of the 68020. The 68030 retains most
of the 68020 features. It is a virtual memory microprocessor containing an on-chip MMU
(memory management unit). The 68040 expands the 68030 on-chip memory management
logic to two units: one for instruction fetch and one for data access. This speeds up the
68040’s execution time by performing logical-to-physical-address translation in parallel.
The on-chip floating-point capability of the 68040 provides it with both integer and floating-
point arithmetic operations at a high speed. All 68000 programs written in assembly
language in user mode will run on the 68020/68030 or 68040.

MC68060 is a superscalar (two instructions per cycle) 32-bit microprocessor.
The 68060, like the Pentium Pro and the succeeding members of the Pentium family, is
designed using a combination of RISC and CISC architectures to obtain high performance.
For some reason, Motorola does not offer MC68050 microprocessor. The 68060 is hlly
compatible with the 68040 in the user mode. The 68060 can operate at 50- and 66-MHz
clocks with performance much faster than the 68040. An striking feature of the 68060 is the
power consumption control. The 68060 is designed using static HCMOS to reduce power
during normal operation.

PowerPC family of microprocessors were jointly developed by Motorola, IBM,

Introduction to Microprocessors 11

and Apple. The PowerPC family contains both 32- and 64-bit microprocessors. One of
the noteworthy feature of the PowerPC is that it is the first top-of-the-line microprocessor
to include an on-chip real-time clock (RTC). The RTC is common in single-chip
microcomputers rather than microprocessors. The PowerPC is the first microprocessor to
implement this on-chip feature, which makes it easier to satisfy the requirements of time-
keeping for task switching and calendar date of modem multitasking operating systems. The
PowerPC microprocessor supports both the Power Mac and standard PCs. The PowerPC
family is designed using RISC architecture.

An overview of Intel’s 8OXXX, Pentium, and contemporary microprocessors will
be provided in the following.

The original Pentium processor was introduced by Intel in 1993, and the name
was changed from 80586 to Pentium because of copyright laws. The processor uses more
than 3 million transistors and had an initial speed of 60 MHz. The speed has increased
over the years to the latest speed of 233 MHz. Table 1.2 compares the basic features of
the Intel 80386DX, 80386SX, 80486DX, 80486SX, 80486DX2, and Pentium. These are
all 32-bit microprocessors. Note that the 80386SL (not listed in the table) is also a 32-bit
microprocessor with a 16-but data bus like the 80386SX. The 80386SL can run at a speed
of up to 25 MHz and has a direct addressing capability of 32 MB. The 80386SL provides
virtual memory support along with on-chip memory management and protection. It can
be interfaced to the 80387SX to provide floating-point support. The 80386SL includes an
on-chip disk controller hardware.

The Pentium Pro was introduced in November 1995. The Pentium processor
provides pipelined superscalar architecture. The Pentium processor’s pipelined
implementation uses five stages to extract high throughput and the Pentium Pro utilizes
12-stage, superpipelined implementation, trading less work per pipestage for more stages.
The Pentium Pro processor reduced its pipe stage time by 33% compared with a Pentium
processor, which means the Pentium Pro processor can have a 33% higher clock speed
than a Pentium processor and still be equally easy to produce from a semiconductor
manufacturing process. A200-MHz Pentium Pro is always faster than a 200-MHz Pentium
for 32-bit applications such as computer-aided design (CAD), 3-D graphics, and multimedia
applications.

The Pentium processor’s superscalar architecture, with its ability to execute two
instructions per clock, was difficult to exceed without a new approach. The new approach
used by the Pentium Pro processor removes the constraint of linear instruction sequencing
between the traditional fetch and execute phases, and opens up a wide instruction pool.
This approach allows the execute phase of the Pentium Pro processor to have much more
visibility into the program’s instruction stream so that better scheduling may take place.
This allows instructions to be started in any order but always be completed in the original
program order.

Microprocessor speeds have increased tremendously over the past several
years, but the speed of the main memory devices has only increased by 60 percent. This
increasing memory latency, relative to the microprocessor speed, is a fundamental problem
that the Pentium Pro is designed to solve. The Pentium Pro processor Zooks ahead into its
instruction pool at subsequent instructions and will do useful work rather than be stalled.
The Pentium Pro executes instructions depending on their readiness to execute and not on
their original program order. In summary, it is the unique combination of improved branch
prediction, choosing the best order, and executing the instructions in the preferred order
that enables the Pentium Pro processor to improve program execution over the Pentium

12 Microprocessor Theory and Applications with 68000/68020 and Pentium

TABLE 1.2 Intel 80386/80486/Pentium Micr

Features

Introduced

Maximum Clock
Speed (MHz)

MIPS*
Transistors

On-chip cache
memory

Data bus
Address bus
Directly

addressable
memory

Pins
Virtual memory
On-chip memory

management and
protection

Floating point
unit

80386DX

October
1985
40

6
275,000

support
chips
available
32-bit
32-bit
4 GB

132
Yes
Yes

387DX

80386SX

June 1988

33

2.5
275,000

support
chips
available
16-bit
24-bit
16MB

100
Yes
Yes

387SX

80486DX

April
1989
50

20
1.2
million
Yes

32-bit
32-bit
4 GB

168
Yes
Yes

on chip

processors.

80486SX

April 1991

25

16.5
1.185
million
Yes

32-bit
32-bit
4 GB

168
Yes
Yes

487SX

80486DX2

March
1992
100

54
1.2 million

Yes

32-bit
32-bit
4 GB

168
Yes
Yes

on chip

Pentium
(original)
March
1993
233

112
3.1
million
Yes

64-bit
32-bit
4 GB

273
Yes
Yes

on chip

* MIPS means million of instructions per second that the microprocessor can execute. MIPS is
typically used as a measure of performance of a microprocessor. Faster microprocessors have a
higher MIPS value.

TABLE 1.3 Pentium vs. Pentium Pro.

Pentium Pentium Pro
First introduced March 1993 Introduced November 1995
2 instructions per clock cycle 3 instructions per clock cycle
Primary cache of 16K Primary cache of 16K
Original clock speeds of 100, 120, 133, Original clock speeds 166, 180,200 MHz

More silicon is needed to produce the Tighter design reduces silicon needed and
makes chip faster (shorter distances between
transistors)

Designed for operating systems written Designed for operating systems written in
in 16-bit code 32-bit code.

150, 166,200, and 233 MHz

chip

Introduction to Microprocessors 13

processor. This unique combination is called dynamic execution.
The Pentium Pro does a great job running some operating systems such as

Windows NT or Unix. The first release of Windows 95 contains a significant amount of
16-bit code in the graphics subsystem. This causes operations on the Pentium Pro to be
serialized instead of taking advantage of the dynamic execution architecture. Nevertheless,
the Pentium Pro is up to 30% faster than the fastest Pentium in 32-bit applications. Table
1.3 compares the basic features of the Pentium with the Pentium Pro.

The 32-bit Pentium I1 processor is Intel’s next addition to the Pentium line of
microprocessors, which originated form the widely cloned 80x86 line. It basically takes
attributes of the Pentium Pro processor plus the capabilities of MMX technology to yield
processor speeds of 333, 300, 266, and 233 MHz. The Pentium I1 processor uses 0.25
micron technology (this refers to the width of the circuit lines on the silicon) to allow
increased core frequencies and reduce power consumption. The Pentium I1 processor took
advantage of four technologies to achieve its performance ratings:

Dynamic Execution

Intel MMX Technology
Single-Edge-Contact Cartridge

DIB was first implemented in the Pentium Pro processor to address bandwidth
limitations. The DIB architecture consists of two independent buses, an L2 cache bus and
a system bus, to offer three times the bandwidth performance of single bus architecture
processors. The Pentium I1 processor can access data from both buses simultaneously to
accelerate the flow of information within the system.

Dynamic execution was also first implemented in the Pentium Pro processor. It
consists of three processing techniques to improve the efficiency of executing instructions.
These techniques include multiple branch prediction, data flow analysis, and speculative
execution. Multiple branch prediction uses an algorithm to determine the next instruction
to be executed following a jump in the instruction flow. With data flow analysis, the
processor determines the optimum sequence for processing a program after looking at
software instructions to see if they are dependent on other instructions. Speculative
execution increases the rate of execution by executing instructions ahead of the program
counter that are likely to be needed.

MMX (matrix math extensions) technology is Intel’s greatest enhancement to
its microprocessor architecture. MMX technology is intended for efficient multimedia
and communications operations. To achieve this, 57 new instructions have been added to
manipulate and process video, audio, and graphical data more efficiently. These instructions
support single-instruction multiple-data (SIMD) techniques, which enable one instruction
to perform the same function on multiple pieces of data. Programs written using the new
instructions significantly enhance the capabilities of Pentium 11.

The final feature in Intel’s Pentium 11 processor is single-edge-contact (SEC)
packaging. In this packaging arrangement, the core and L2 cache are fully enclosed in a
plastic and metal cartridge. The components are surface mounted directly to a substrate
inside the cartridge to enable high-frequency operation.

Intel Celeron processor utilizes Pentium I1 as core .The Celeron processor family
includes: 333 MHz, 300A MHz, 300 MHz, and 266 MHz processors. The Celeron 266
MHz and 300 MHz processors do not contain any level 2 cache. But the Celeron 300A

Dual Independent Bus Architecture (DIB)

14 Microprocessor Theory and Applications with 68000/68020 and Pentium

MHz and 333 MHz processors incorporate an integrated L2 cache. All Celeron processors
are based on Intel’s 0.25 micron CMOS technology. The Celeron processor is designed
for inexpensive or “Basic PC” desktop systems and can run Windows 98. The Celeron
processor offers good floating-point (3D geometry calculations) and multimedia (both
video and audio) performance.

The Pentium I1 Xeon processor contains large, fast caches to transfer data at super
high speed through the processor core. The processor can run at either 400 MHz or 450
MHz. The Pentium I1 Xeon is designed for any mid-range or higher Intel-based server or
workstation. The 450 MHz Pentium I1 Xeon can be used in workstations and servers.

The Pentium I11 operates at 450 MHz and 500 MHz. It is designed for desktop
PCs. The Pentium Ill enhances the multimedia capabilities of the PC, including full screen
video and graphics. Pentium I11 Xeon processors run at 500 MHz and 550 MHz. They are
designed for mid-range and higher Internet-based servers and workstations. It is compatible
with Pentium I1 Xeon processor-based platforms. Pentium 111 Xeon is also designed for
demanding workstation applications such as 3-D visualization, digital content creation, and
dynamic Internet content development. Pentium III-based systems can run applications on
Microsoft Windows NT or UNIX-based environments. The Pentium I11 Xeon is available
in a number of L2 cache versions such as 5 12-Kbytes, l-Mbyte, or 2-Mbytes (500 MHz);
5 12 Kbytes (550 MHz) to satisfy a variety of Internet application requirements.

is an enhanced Pentium 111 processor. It is currently
available at 1.30, 1.40, 1.50, and 1.70 GHz. The chip’s all-new internal design contains
Intel NetBurstTM micro-architecture. This provides the Pentium 4 with hyper pipelined
technology (which doubles the pipeline depth to 20 stages), a rapid execution engine (
which pushes the processor’s ALUs to twice the core frequency), and 400 MHz system
bus. The Pentium 4 contains 144 new instructions. Furthermore, inclusion of an improved
Advanced Dynamic Execution and an improved floating point pushes data efficiently
through the pipeline. This enhances digital audio, digital video and 3D graphics. Along
with other features such as streaming SIMD Extensions 2 (SSE2) that extends MMXTM
technology, the Pentium 4 gives the advanced technology to get the most out of the Internet.
Finally, the Pentium 4 offers high performance when networking multiple PCs, or when
attaching Pentium 4 based PC to home consumer electronic systems and new peripherals.

Intel introduced the 32-bit Pentium M microprocessor in 2003. It was designed
specifically for the mobile computing market. The Pentium M contains approximately 77
million transistors and originally ran at a speed of 1.3 to 1.6 GHz. In 2006, Intel introduced the
64-bit Core Duo microprocessor. The Core Duo is based on the Pentium M microarchitecture.
The Core Duo contains approximately 15 1 million transistors. The original Core Duo ran at
a speed of 1.66 to 2.33 GHz. The Core Duo is used primarily in servers.

Intel introduced the Core 2 Duo microprocessor in 2006, based on Core Duo
microarchitecture. The Core 2 Duo contains approximately 29 1 million transistors and is
used in desktop computers. The original Core 2 Duo ran at a speed of 1.86 to 2.93 GHz.

Note that Intel 4004 contained approximately 2300 transistors with a clock
frequency of about 100 kHz. In contrast, contemporary microprocessors such as Intel Core
Duo contain over 100 million transistors with a frequency of more than 2 GHz. These
microprocessors are typically used in designing client and server systems for the Internet.

An overview of the latest microprocessors is provided in this section.
Unfortunately, this may be old news within a few years. One can see, however, that both
Intel and Motorola offer (and will continue to offer) high-quality microprocessors to satisfy
demanding applications.

The Intel Pentium 4

Introduction to Microprocessors 15

1.4

In this section we describe the basic aspects of typical 32- and 64-bit microprocessors.
Topics include on-chip features such as pipelining, memory management, floating-
point, and cache memory implemented in typical 32- and 64-bit microprocessors. The
first 32-bit microprocessor, Intel’s problematic iAPX432, was introduced in 1980. Soon
afterward, the concept of mainji-ame on a chip or micromainframe was used to indicate the
capabilities of these microprocessors and to distinguish them from previous 8- and 16-bit
microprocessors.

The introduction of several 32-bit microprocessors revolutionized the
microprocessor world. The performance of these 32-bit microprocessors is actually more
comparable to that of superminicomputers such as Digital Equipment Corporation’s
VAXl1/750 and VAX11/780. Designers of 32-bit microprocessors have implemented
many powerful features of these mainframe computers to increase the capabilities of
microprocessor chip sets: pipelining, on-chip cache memory, memory management, and
floating-point arithmetic.

In pipelining, instruction fetch and execute cycles overlap. This method allows
simultaneous preparation for execution of one or more instructions while another instruction
is being executed. Pipelining was used for many years in mainframe and minicomputer CPUs
to speed up the instruction execution time of these machines. The 32-bit microprocessors
implement the pipelining concept and operate simultaneously on several 32-bit words,
which may represent different instructions or part of a single instruction.

Although pipelining greatly increases the rate of execution of nonbranching code,
pipelines must be emptied and refilled each time a branch or jump instruction appears in
the code. This may slow down the processing rate for code with many branches or jumps.
Thus, there is an optimum pipeline depth, which is strongly related to the instruction set,
architecture, and gate density attainable on the processor chip.

With memory management, virtual memory techniques, traditionally a feature of
mainframes, are also implemented as on-chip hardware on typical 32-bit microprocessors.
This allows programmers to write programs much larger than those that could fit in the
main memory space available to microprocessors; the programs are simply stored on a
secondary device such as a hard disk, and portions of the program are swapped into main
memory as needed.

Segmentation circuitry has been included in many 32-bit microprocessor chips.
With this technique, blocks of code called segments, which correspond to modules of the
program and have varying sizes set by the programmer or compiler, are swapped. For many
applications, however, an alternative method borrowed from mainframes and superminis
calledpaging is used. Basically, paging differs from segmentation in that pages are of equal
size. Demandpaging, in which the operating system swaps pages automatically as needed,
can be used with all 32-bit microprocessors.

Floating-point arithmetic is yet another area in which the new chips mimick
mainframes. With early microprocessors, floating-point arithmetic was implemented in
software largely as a subroutine. When required, execution would jump to a piece of code
that would handle the tasks. This method slows the execution rate considerably, however,
so floating-point hardware such as fast bit-slice (registers and ALU on a chip) processors
and, in some cases, special-purpose chips was developed. Other than the Intel 8087, these
chips behaved more or less like peripherals. When floating-point arithmetic was required,
the problems were sent to the floating-point processor and the CPU was freed to move

Qpical Features of 32-bit and 64-bit Microprocessors

1 6 Microprocessor Theory and Applications with 68000/68020 and Pentium

on to other instructions while it waited for the results. The floating-point processor is
implemented as on-chip hardware in typical 32-bit microprocessors, as in mainframe and
minicomputer CPUs. Caching or memory-management schemes are utilized with all 32-bit
microprocessors to minimize access time for most instructions.

A cache, used for years in minis and mainframes, is a relatively small, high-speed
memory installed between a processor and its main memory. The theory behind a cache
is that a significant portion of the CPU time spent running typical programs is tied up in
executing loops; thus, chances are good that if an instruction to be executed is not the
next sequential instruction, it will be one of some relatively small number of instructions
clustering around a small region in the main memory, a concept known as locality of
reference. Therefore, a high-speed memory large enough to contain most loops should
greatly increase processing rates. Cache memory is included as on-chip hardware in typical
32-bit microprocessors such as the Pentium.

Typical 32-bit microprocessors such as Pentium and PowerPC chips are
superscalar processors. This means that they can execute more than one instruction in one
clock cycle. Also, some 32-bit microprocessors such as the PowerPC contain an on-chip
real-time clock. This allows these processors to use modern multitasking operating systems
that require timekeeping for task switching and for keeping the calendar date.

Typical 32-bit microprocessors implement a multiple-branch prediction feature.
This allows these microprocessors to anticipate jumps of the instruction flow. Also, some
32-bit microprocessors determine an optimal sequence of instruction execution by looking
at decoded instructions and determining whether to execute or hold them. Typical 32-
bit microprocessors use a “look-ahead” approach to execute instructions. These 32-bit
microprocessors maintain an instruction pool for a sequence of instructions and perform a
useful task rather than executing the present instruction and going on to the next.

The 64-bit microprocessors such as Power PC 750 include all the features of 32-bit
microprocessors. In addition, they contain multiple on-chip integer and floating-point units
and a larger address and data buses. The 64-bit microprocessors can typically execute four
instructions per clock cycle and can run at a clock speed of over 2 GHz. The original Pentium
microprocessor is a CISC microprocessor. Pentium Pro and other succeeding members of
the Pentium family are designed using a combination of mostly microprogramming (CISC)
and some hardwired control (RISC) whereas the PowerPC is designed using hardwired
control with almost no microcode. The PowerPC is a RISC microprocessorand therefore
includes a simple instruction set. This instruction set includes register-to-register, load, and
store instructions. All instructions involving arithmetic operations use registers; load and
store instructions are utilized to access memory. Almost all computations can be obtained
from these simple instructions. Finally, 64-bit microprocessors are ideal candidates for
data-crunching machines and high-performance desktop systems and workstations.

1.5 Microprocessor-based System Design Concepts

A microprocessor-based system is typically designed using a microcomputer development
system a tool that allows the designer to develop, debug, and integrate error-free application
software in microprocessor systems. Development systems fall into one of two categories:
systems supplied by the device manufacturer (nonuniversal systems) and systems built
by after-market manufacturers (universal systems). The main difference between the two
categories is in the range of microprocessors that a system will accommodate. Nonuniversal
systems are supplied by the microprocessor manufacturer (e.g., Intel, Motorola) and are

Introduction to Microprocessors 17

limited to use for the particular microprocessor manufactured by the supplier. In this
manner, an Intel development system may not be used to develop a Motorola-based
system. Universal development systems (e.g., Hewlett-Packard) can develop hardware and
software for several microprocessors.

Within both categories of development systems, basically two types are available:
single-user and networked systems. A single-user system consists of one development
station that can be used by one user at a time. Single-user systems are low in cost and
may be sufficient for small systems development. A networked system usually consists
of a number of smart terminals capable of performing most development work and can
be connected over data lines to a central microcomputer. The central microcomputer in a
networked system usually is in charge of allocating disk storage space and will download
some programs into the user’s workstation microcomputer. A microcomputer development
system is a combination of the hardware necessary for microprocessor design and software
to control the hardware. The basic components of the hardware are a central processor, a
terminal, a mass storage device (e.g., hard disk), and usually an in-circuit emulator (ICE).

In a single-user system, the central processor executes the operating system
software, handles the inputloutput (I/O) facilities, executes the development programs (e.g.,
editor, assembler, linker), and allocates storage space for the programs being executed. In
a large multiuser networked system the central processor may be responsible for the I/O
facilities and execution of development programs. The terminal provides the interface
between the user and the operating system or program under execution. The user enters
commands or data via the keyboard, and the program under execution displays data to the
user on the screen. Each program (whether system software or user program) is stored in
an ordered format on disk. Each separate entry on the disk is called a j l e . The operating
system software contains the routines necessary to interface between the user and the mass
storage unit. When the user requests a file by a specificJile name, the operating system
finds the program stored on disk by the file name and loads it into main memory. Typical
development systems contain memory management software that protects a user’s files from
unauthorized modification by another user. This is accomplished by means of a unique user
identification code called userid. A user can only access files that have the user’s unique
code. The equipment listed here makes up a basic development system, but most systems
have other devices, such as printers and EPROM programmers, attached. A printer is
needed to provide the user with a hard copy record of the program under development.

After the application software has been developed and debugged completely, it
needs to be stored permanently in the target hardware. The EPROM (erasable/programmable
read-only memory) programmer takes the machine code and programs it into an EPROM.
EPROMs are still widely used in typical system development..

Most development systems support one or more in-circuit emulators (ICES). An
ICE is a very usefd tool for microprocessor hardware development. To use an ICE, the
microprocessor chip is removed from the system under development (called the target
processor) and the emulator is plugged into the microprocessor socket. Functionally and
electrically, the ICE will act identically to the target processor with the exception that the
ICE is under the control of development system software. In this manner the development
system may exercise the hardware that is being designed and monitor all status information
available about the operation of the target processor. Using an ICE, the processor register
contents may be displayed on the screen and operation of the hardware observed in a
single-stepping mode. In-circuit emulators can find hardware and software bugs quickly
that might take many hours to locate using conventional hardware testing methods.

1 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

Typical programs provided for microprocessor development are the operating
system, editor, assembler, linker, compiler, and debugger. The operating system is responsible
for executing the user’s commands. The operating system handles 110 functions, memory
management, and loading of programs from mass storage into RAM for execution. The
editor allows the user to enter the source code (either assembly language or some high-
level language) into the development system.

Typical microprocessor development systems use a character-oriented editor,
more commonly referred to as a screen editor; so called because the text is dynamically
displayed on the screen and the display updates automatically any edits made by the user.
The screen editor uses the pointer concept to point to characters that need editing. The pointer
in a screen editor is called the cursor, and special commands allow the user to position the
cursor at any location displayed on the screen. When the cursor is positioned, the user may
insert characters, delete characters, or simply type over the existing characters.

Complete lines may be added or deleted using special editor commands. By
placing the editor in the insert mode, any text typed will be inserted at the cursor position
when the cursor is positioned between two existing lines. If the cursor is positioned on a
line to be deleted, a single command will remove the entire line from the file. Screen editors
implement the editor commands in different fashions. Some editors use dedicated keys to
provide some cursor movements. The cursor keys are usually marked with arrows to show
the direction of cursor movement. Some popular editors (such as the Hewlett-Packard HP
64XXX) use soft keys which are unmarked keys located on the keyboard directly below the
bottom of the CRT screen. The mode of the editor decides what functions the keys are to
perform. The function of each key is displayed on the screen directly above the appropriate
key. The soft key approach is valuable because it allows the editor to reassign a key to a
new function when necessary.

The source code generated on the editor is stored as ASCII or text characters
and cannot be executed by a microprocessor. Before the code can be executed, it must be
converted to a form accessible by the microprocessor. An assembler is the program used
to translate the assembly language source code generated with an editor into object code
(machine code), that can be executed by a microprocessor.

The output file from most development system assemblers is an objectjle usually
a relocatable code that may be configured to execute at any address. The function of the
linker is to convert the object file to an absolute3le, which consists of the actual machine
code at the correct address for execution. Absolute files thus created are used for debugging
and for programming EPROMs.

Debugging a microprocessor-based system may be divided into two categories:
software debugging and hardware debugging. Each debugging process is usually carried
out separately because software debugging can be carried out on an out-of-circuit emulator
without having the final system hardware. The usual software development tools provided
with the development system are a single stepper and a breakpoint.

A single stepper simply allows the user to execute the program being debugged
one instruction at a time. By examining the register and memory contents during each
step, the debugger can detect such program faults as incorrect jumps, incorrect addressing,
erroneous op-codes, and so on. A breakpoint allows the user to execute an entire section of
a program being debugged. There are two types of breakpoints: hardware and software. A
hardware breakpoint uses the hardware to monitor the system address bus and detect when
the program is executing the desired breakpoint location. When the breakpoint is detected,
the hardware uses the processor control lines to halt the processor for inspection or cause

Introduction to Microprocessors 19

the processor to execute an interrupt to a breakpoint routine. Hardware breakpoints can be
used to debug both ROM- and RAM-based programs. Software breakpoint routines may
only operate on a system with the program in RAM because the breakpoint instruction
must be inserted into the program that is to be executed.

Single-stepper and breakpoint methods complement each other. The user may
insert a breakoint at the desired point and let the program execute up to that point. When
the program stops at the breakpoint, the user may use a single-stepper to examine the
program one instruction at a time. Thus, the user can pinpoint the error in a program.

There are two main hardware-debugging tools: the logic analyzer and the
in-circuit emulator. Logic anaZyzers are commonly used to debug hardware faults in a
system. The logic analyzer is the digital version of an oscilloscope because it allows the
user to view logic levels in the hardware. In-circuit emulators can be used to debug and
integrate software and hardware. Inexpensive PC-based workstations are used extensively
as development systems.

The total development of a microprocessor-based system typically involves three
phases: software design, hardware design, and program diagnostic design. A systems
programmer will be assigned the task of writing the application software, a logic designer
will be assigned the task of designing the hardware, and typically, both designers will be
assigned the task of developing diagnostics to test the system. For small systems, one
engineer may do all three phases, and on large systems several engineers may be assigned
to each phase. Figure 1.1 shows a flowchart for the total development of a system. Notice
that software and hardware development may occur in parallel to save time.

The first step in developing the software is to take the system specifications
and write a flowchart to accomplish the tasks that will implement the specifications.
The assembly language or high-level source code may now be written from the system
flowchart. The complete source code is then assembled. The assembler is the object code
and a program listing. The object code will be used later by the linker. The program listing
may be sent to a disk file for use in debugging, or it may be directed to the printer.
The linker can now take the object code generated by the assembler and create the final
absolute code that will be executed on the target system. The emulation phase will take the
absolute code and load it into the development system RAM. From here, the program may
be debugged using breakpoints or single stepping.

Working from the system specifications, a block diagram of the hardware must
be developed. The logic diagram and schematics may now be drawn using the block
diagram as a guide, and a prototype may now be constructed and tested for wiring errors.
When the prototype has been constructed, it may be debugged for correct operation using
standard electronic testing equipment such as oscilloscopes, meters, logic probes, and logic
analyzers, all with test programs created for this purpose. After the prototype has been
debugged electrically, the development system in-circuit emulator may be used to check it
functionally. The ICE will verify the memory map, correct I/O operation, and so on. The
next step in system development is to validate the complete system by running operational
checks on the prototype with the finalized application software installed. The EPROMs are
then programmed with the error-free programs.

1.6 Typical Microprocessor Applications

Microprocessors are extensively used in a wide variety of applications. A simple

20 Microprocessor Theory and Applications with 68000/68020 and Pentium

microprocessor application along with some typical applications are briefly described in
the following.

1.6.1 A Simple Microprocessor Application
To put microprocessors into perspective, it is important to explore a simple application.
For example, consider the microprocessor-based dedicated controller shown in Figure 1.2.
Suppose that it is necessary to maintain the temperature of a furnace to a desired level to
maintain the quality of a product. Assume that the designer has decided to control this
temperature by adjusting the fuel. This can be accomplished using a microcomputer along
with the interfacing components as follows. Temperature is an analog (continuous) signal.
It can be measured by a temperature-sensing (measuring) device such as a thermocouple.

Wrne programs wth editor

S ~ I I hardware design G
block diagram

Create logic and 1 Schematic diagram correct any errors

absolute ccde + Construd prototvpe

all logic errors

I
Test hardware

with test programs

I

emulate diagnostic program

r--+-l Correct any errors

Validate software operation

Validate total system operation

+ Program EPROM

FIGURE 1.1 Microprocessor system development flowchart

Introduction to Microprocessors 21

The thermocouple provides the measurement in millivolts (mV) equivalent to the
temperature. Since microcomputers only understand binary numbers (0’s and 1 ’s), each
analog mV signal must be converted to a binary number using an analog-to-digital (N D)
converter chip.

First, the millivolt signal is amplified by a m V N amplifier to make the signal
compatible for N D conversion. A microcomputer can be programmed to solve an
equation with the furnace temperature as an input. This equation compares the temperature
measured with the temperature desired which can be entered into the microcomputer using
the keyboard. The output of this equation will provide the appropriate opening and closing
of the fuel valve to maintain the appropriate temperature. Since this output is computed
by the microcomputer, it is a binary number. This binary output must be converted into an
analog current or voltage signal.

The D/A (digital-to-analog) converter chip inputs this binary number and converts
it into an analog current (4. This signal is then input into the current/pneumatic (UP)
transducer for opening or closing the fuel input valve by air pressure to adjust the fuel to
the furnace. The furnace temperature desired can thus be achieved. Note that a transducer
converts one form of energy (analog electrical current in this case) to another form (air
pressure in this example).

1.6.2
Microprocessors are used in designing personal workstations. These workstations
can provide certain sophisticated functions such as IC layout, 3D graphics, and stress
analysis.

In many applications such as control of life-critical systems, control of nuclear
waste, and unattended remote system operation, the reliability of the hardware is of utmost
importance. The need for such reliable systems resulted in fault-tolerant systems. These
systems use redundant microprocessors to provide reliable operation.

Real-time controllers such as flight-control systems for aircraft, flight simulators,
and automobile engine control require high-performance microprocessors. For example,
the flight simulators use multiple microprocessors to perform graphic manipulation, data
gathering, and high-speed communications.

Microprocessors are widely used in robot control systems. In many cases, the
microprocessor is used as the brain of the robot. In a typical application, the microprocessor
will input the actual arm angle measurement from a sensor, compare it with the desired arm
angle, and will then send outputs to a motor to position the arm. Mitsubishi manufactured
the first 68020-based robot control system.

Examples of Typical Microprocessor Applications

n I I /Thermocouple

I Furnace I r 7
Microcomputer

W%
I

Valve

FIGURE 1.2 Furnace Temperature Control

22 Microprocessor Theory and Applications with 68000/68020 and Pentium

Implementation of the on-chip floating-point unit (FPU) in 32-bit microprocessors
such as the Pentium and 68040 makes it appropriate for wide areas of numeric applications:

~~ ~

Typical FPU’s can accept decimal operands and produce extra decimal -results of
up to several digits. This greatly simplifies accounting programming. Financial
calculations that use power functions can take advantage of exponential and logarithmic
functions.

Many minicomputer and mainframe large simulation problems can be executed by
the 32-bit microprocessors. These applications include complex electronic circuit
simulations using SPICE and simulation of mechanical systems using finite element
analysis.

The FPU’s implemented in typical 32-bit microprocessors can move and position
machine control heads with accuracy in real time. Axis positioning can efficiently
be performed by the hardware trigonometric support provided by the FPU. The 32-
bit microprocessors can, therefore, be used for computer numerical control (CNC)
machines. CNC machines are extensively used in manufacturing intraocular (cataract
implant) lenses.

The pipelined instruction feature of the 32-bit microprocessor makes it an ideal
candidate for DSP (digital signal processing) and related applications for computing
matrix multiplications and convolutions.

Embedded Control microprocessors, also called embedded controllers, are
designed to manage specific tasks. Once programmed, the embedded controllers can
manage the functions of a wide variety of electronic products. Since the microprocessors
are embedded in the host system, their presence and operation are basically hidden
from the host system. Typical embedded control applications include office automation
products such as copiers, laser products, fax machines, and consumer electronics such as
VCRs, microwave ovens. Applications such as laser printers require a high performance
microprocessor with on-chip floating-point hardware. The RISC microprocessors are ideal
for these types of applications. Note that the PC interfaced to the laser printer is the host.

RISC microprocessors such as the PowerPC are well suited for applications such
as image processing, robotics, graphics, and instrumentation. The key features of the RISC
microprocessors that make them ideal for these applications are their relatively low level
of integration in the chip, and instruction pipeline architecture. These characteristics result
in low power consumption, fast instruction execution, and fast recognition of interrupts.

Also, note that the Power PC contains an on-chip Real Time Clock (RTC). In the
past, the on-chip RTC was common to single chip microcomputers, Power PC is the first top
of the line microprocessor to implement the on-chip RTC. This facilitates implementation
of multitasking operating systems which require time keeping for task switching as well as
keeping the calendar date.

MICROCOMPUTER
ARCHITECTURE

In this chapter we describe the hndamental material needed to understand the basic
characteristics of microprocessors. It includes topics such as typical microcomputer
architecture, timing signals and internal microprocessor organization. and status flags. The
architectural features are then compared to the Intel Pentium. Finally, an overview of
pipelining, superscalar microprocessors, RISC vs. CISC, and the branch prediction feature
is included.

2.1 Basic Blocks of a Microcomputer

A microcomputer has three basic blocks: a central processing unit (CPU), a memory unit,
and an input/output (I/O) unit. The CPU executes all the instructions and performs arithmetic
and logic operations on data. The CPU of the microcomputer is called the microprocessor
typically a single VLSI (very large scale integration) chip that contains all the registers and
control unit, and arithmetic-logic circuits of the microcomputer.

A memory unit stores both data and instructions. The memory section typically
contains ROM and RAM chips. The ROM can only be read and is nonvolatile; that is,
it retains its contents when the power is turned off. A ROM is typically used to store
instructions and data that do not change. For example, it might store a table of seven-
segment codes for outputting data to a display external to the microcomputer for turning
on a digit from 0 through 9.

One can read from and write into a RAM. The RAM is volatile; that is, it does not
retain its contents when the power is turned off. A RAM is used to store programs and data
that are temporary and might change during the course of executing a program. An I/O unit
transfers data between the microcomputer and the external devices via I/O ports (registers).
The transfer involves data, status, and control signals.

In a single-chip microcomputer, these three elements are on one chip, whereas
in a single-chip microprocessor, separate chips are required for memory and I/O.
Microcontrollers, which evolved from single-chip microcomputers, are typically used

RAM

I

RAM

I

Microprocessor Memo; Element I/O ;nit

FIGURE 2.1 Basic blocks of a microcomputer.

23

24 Microprocessor Theory and Applications with 68000/68020 and Pentium

for dedicated applications such as automotive systems, home appliances, and home
entertainment systems. Typical microcontrollers therefore include on-chip timers and A/D
(analog-to-digital) and D/A (digital-to-analog) converters. Two popular microcontrollers
are Microchip Technology’s 8-bit PIC (peripheral interface controller) microcontroller
and Motorola’s HCll @-bit). Figure 2.1 shows the basic blocks of a microcomputer. A
system bus (comprised of several wires) connects these blocks.

2.2 Typical Microcomputer Architecture

In this section we describe the microcomputer architecture in more detail. The various
microcomputers available today are basically the same in principle. The main variations
are in the number of data and address bits and in the types of control signals they use.

To understand the basic principles of microcomputer architecture, it is necessary to
investigate a typical microcomputer in detail. Once such a clear understanding is obtained,
it will be easier to work with any specific microcomputer. Figure 2.2 illustrates a very
simplified version of atypical microcomputer and shows the basic blocks ofamicrocomputer
system. The various buses that connect these blocks are also shown. Although this figure
looks very simple, it includes all the main elements of a typical microcomputer system.

2.2.1 System Bus
The microcomputer’s system bus contains three buses, which carry all the address, data, and
control information involved in program execution. These buses connect the microprocessor
(CPU) to each of the ROM, RAM, and I/O chips so that information transfer between the
microprocessor and any of the other elements can take place. In a microcomputer, typical
information transfers are carried out with respect to the memory or I/O. When a memory
or an I/O chip receives data from the microprocessor, it is called a WRITE operation, and
data is written into a selected memory location or an I/O port (register). When a memory
or an I/O chip sends data to the microprocessor, it is called a READ operation, and data is
read from a selected memory location or an I/O port.

In the address bus, information transfer takes place in only one direction, from
the microprocessor to the memory or I/O elements. This is therefore called a unidirectional
bus. This bus is typically 20 to 32 bits long. The size of the address bus determines the
total number of memory addresses available in which programs can be executed by the
microprocessor. The address bus is specified by the total number of address pins on the
microprocessor chip. This also determines the direct addressing capability or the size of
the main memory of the microprocessor. The microprocessor can only execute programs

- - -
T

Address Bus

T T T

MicroprOCessor RAM ROM 110

FIGURE 2.2 Simplified version of a typical microcomputer.

Microcomputer Architecture 25

located in the main memory. For example, a microprocessor with 32 address pins can
generate 232 = 4,294,964,296 bytes [4 gigabytes(GB)] of different possible addresses
(combinations of 1 ’ s and 0’s) on the address bus. The microprocessor includes addresses
from 0 to 4,294,964,295 (00000000,, through FFFFFFFF,,). A memory location can be
represented by each of these addresses. For example, an 8-bit data item can be stored at
address 00000200,,.

When a microprocessor such as the Pentium wants to transfer information between
itself and a certain memory location, it generates the 32-bit address from an internal register
on its 32 address pins, A,-A,,, which then appears on the address bus. These 32 address
bits are decoded to determine the desired memory location. The decoding process normally
requires hardware (decoders) not shown in Figure 2.2.

In the data bus, data can flow in both directions, that is, to or from the
microprocessor. This is therefore a bidirectional bus. The size of the data bus varies from
one microprocessor to another. The Pentium contains a 64-bit data bus whereas the 68020
provides a 32-bit data bus.

The control bus consists of a number of signals that are used to synchronize
operation of the individual microcomputer elements. The microprocessor sends some of
these control signals to the other elements to indicate the type of operation being performed.
Each microprocessor has a unique set of control signals. However, some control signals are
common to most microprocessors. We describe some of these control signals later in this
section.

2.2.2 Clock Signals
The system clock signals are contained in the control bus. These signals generate the
appropriate clock periods during which instruction executions are carried out by the
microprocessor. The clock signals vary from one microprocessor to another. Some
microprocessors have an internal clock generator circuit to generate a clock signal. These
microprocessors require an external crystal or an RC network to be connected at the
appropriate microprocessor pins for setting the operating frequency. For example, the
Intel 801 86 (1 6-bit microprocessor) does not require an external clock generator
circuit. However, most microprocessors do not have the internal clock generator circuit and
require an external chip or circuit to generate the clock signal. Figure 2.3 shows a typical
clock signal.

The number of cycles per second (hertz, abbreviated Hz) is referred to as the clock
frequency. This number is defined as “Hertz” (abbreviated as Hz). The clock frequency
of contemporary microprocessors is more than 2 GHz (2 X 109Hz). The clock defines the
speed of the microprocessor. Note that, a clock cycle = 1K wheref is the clock frequency.

I on,;;,k I
FIGURE 2.3 Typical clock signal.

Registers tl
I Control Unit I

FIGURE 2.4 Microprocessor chip with the main functional elements.

26 Microprocessor Theory and Applications with 68000/68020 and Pentium

The execution times of microprocessor instructions are provided in terms of the number
of clock cycles. For example, the instruction for adding data in two registers inside the
Pentium takes three clock cycles. This means that for a Pentium with a 100-MHz clock, the
instruction ADD reg,reg will be executed in 30 ns [clock cycle = 1/(100 X lo6) = 10 ns].
On the other hand, for a 200-MHz Pentium, the instruction ADD reg,reg will be executed
in 15 ns. This implies that the higher the clock frequency, the faster the microprocessor can
execute the instructions.

2.3 Single-Chip Microprocessor

As mentioned earlier, the microprocessor is the CPU of the microcomputer. Therefore, the
power of the microcomputer is determined by the capabilities of the microprocessor. Its
clock frequency determines the speed ofthe microcomputer. The number ofdata and address
pins on the microprocessor chip make up the microcomputer’s word size and maximum
memory size. The microcomputer’s I/O and interfacing capabilities are determined by the
control pins on the microprocessor chip.

The logic inside the microprocessor chip can be divided into three main areas: the
register section, the control unit, and the arithmetic-logic unit (ALU). A microprocessor
chip with these three sections is shown in Figure 2.4.

2.3.1 Register Section
The number, size, and types of registers vary from one microprocessor to another. However,
the various registers in all microprocessors carry out similar operations. The register
structures of microprocessors play a major role in designing microprocessor architectures.
Also, the register structures for a specific microprocessor determine how convenient
and easy it is to program the microprocessor. We first describe the most basic types of
microprocessor registers, their functions, and how they are used. We then consider other
common types of registers.
Basic Microprocessor Registers There are four basic microprocessor registers:
instruction register, program counter, memory address register, and accumulator.

Instruction register (IR). The instruction register stores instructions. The contents of
an instruction register are always decoded by the microprocessor as an instruction.
After fetching an instruction code from memory, the microprocessor stores it in the
instruction register. The instruction is decoded internally by the microprocessor, which
then performs the operation required. The word size of the microprocessor determines
the size of the instruction register. For example, a 32-bit microprocessor has a 32-bit
instruction register.

Program Counter (PC). The program counter contains the address of the instruction or
operation code (op-code). The program counter normally contains the address of the
next instruction to be executed. Note the following features of the program counter:

1. Upon activating the microprocessor’s RESET input, the address of the first
instruction to be executed is loaded into the program counter.

2. To execute an instruction, the microprocessor typically places the contents of the
program counter on the address bus and reads (“fetches”) the contents ofthis address
(i.e., instruction) from memory. The program counter contents are incremented
automatically by the microprocessor’s internal logic. The microprocessor thus

Microcomputer Architecture 27

executes a program sequentially, unless the program contains an instruction such
as a JUMP instruction, which changes the sequence.

3. The size of the program counter is determined by the size of the address bus.
4. Many instructions, such as JUMP and conditional JUMP, change the contents

of the program counter from its normal sequential address value. The program
counter is loaded with the address specified in these instructions.

Memory Address Register (MAR). The memory address register contains the address
of data. The microprocessor uses the address, which is stored in the memory address
register, as a direct pointer to memory. The contents of the address is the actual data
that is being transferred.

General Purpose Register (GPR). For an 8-bit microprocessor, the general-purpose
register is called the accumulator. This is typically an 8-bit register. It stores the
result after most ALU operations. These 8-bit microprocessors have instructions
to shift or rotate the accumulator one bit to the right or left through the carry flag.
The accumulator is typically used for inputting a byte into the accumulator from an
external device or for outputting a byte to an external device from the accumulator. In
16- and 32-bit microprocessors the accumulator is replaced by a GPR. Typical 32-bit
microprocessors such as the Pentium contain several GPRs. In these microprocessors,
any GPR can be used as an accumulator.

Depending on the register section, the microprocessor can be classified either
as an accumulator- or general-purpose register-based machine. In an accumulator-based
microprocessor such as the Intel 8085 and Motorola 6809, the data is assumed to be held
in a register called the accumulator. All arithmetic and logic operations are performed
using this register as one of the data sources. The result of the operation is stored in the
accumulator. Eight-bit microprocessors are usually accumulator based.

The general-purpose register-based microprocessor is usually popular with 16-
and 32-bit microprocessors such as the Intel Pentium and the Motorola 68000/68020.
The term general-purpose comes from the fact that these registers can hold data, memory
addresses, or the results of arithmetic or logic operations. The number, size, and types of
registers vary from one microprocessor to another.

Most registers are general-purpose, but some, such as the program counter (PC),
are provided for dedicated functions. The PC normally contains the address of the next
instruction to be executed. As mentioned before, upon activating the microprocessor chip’s
RESET input pin, the PC is normally initialized with the address of the first instruction.
For example, the Pentium, upon hardware reset, reads the first instruction from the 32-bit

, hex address FFFFFFFO. To execute the instruction, the microprocessor normally places
the PC contents on the address bus and reads (fetches) the first instruction from external
memory. The program counter contents are then incremented automatically by the ALU. As
mentioned earlier, the size of the PC varies from one microprocessor to another depending
on the address size. For example, the 68000 has a 24-bit PC, whereas both the 68020 and
the Pentium contain a 32-bit PC.

Other Microprocessor Registers In the following we describe other microprocessor
registers such as general-purpose registers, index register, status register and stack pointer
register.

General-Purpose Register Both 16-, and 32-bit microprocessors are register-

28 Microprocessor Theory and Applications with 68000/68020 and Pentium

oriented. They have a number of general-purpose registers for storing temporary data or for
carrying out data transfers between various registers. The use of general-purpose registers
speeds up the execution of a program because the microprocessor does not have to read
data from external memory via the data bus if data is stored in one of its general-purpose
registers. These registers are typically 16 to 32 bits. The number of general-purpose
registers will vary from one microprocessor to another. Some of the typical functions
performed by instructions associated with the general-purpose registers are given here. We
will use [REG] to indicate the contents of the general-purpose register and [MI to indicate
the contents of a memory location.

1.
2.
3.

4.

Move [REG] to or from memory: [MI t [REG] or [REG] t [MI.
Move the contents of one register to another: [REG11 c [REG2].
Increment or decrement [REG] by 1: [REG] t [REG] + 1 or [REG] +- [REG]
- 1.
Load 16-bit data into a register [REG] : [REG] c 16-bit data.

Index Register An index register is typically used as a counter in address modification
for an instruction or for general storage functions. The index register is particularly useful
with instructions that access tables or arrays of data. In this operation the index register is
used to modify the address portion of the instruction. Thus, the appropriate data in a table
can be accessed. This is called indexed addressing. This addressing mode is normally
available to the programmers of microprocessors. The effective address for an instruction
using the indexed addressing mode is determined by adding the address portion of the
instruction to the contents of the index register. Index registers are typically 16 or 32 bits
long. In a typical 16- or 32-bit microprocessor, general-purpose registers can be used as
index registers.

Status Register A status registel; also known as aprocessor status word register or
condition code register, contains individual bits, with each bit having special significance.
The bits in the status register are calledflags. The status of a specific microprocessor
operation is indicated by each flag, which is set or reset by the microprocessor’s internal
logic to indicate the status of certain microprocessor operations such as arithmetic and
logic operations. The status flags are also used in conditional JUMP instructions. We
describe some of the common flags in the following.

A carryflag is used to reflect whether or not the result generated by an arithmetic
operation is greater than the microprocessor’s word size. As an example, the addition of
two 32-bit numbers might produce a carry. The carry is generated out of the 32nd bit
position, which results in setting the carry flag. However, the carry flag will be zero if no
carry is generated from the addition. As mentioned before, in multibyte arithmetic, any
carry out of the low-byte addition must be added to the high-byte addition to obtain the
correct result. This can illustrated by the following 16-bit addition example:

Microcomputer Architecture 29

high byte low byte
0 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1
0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 1

“t
high-order bit carry is reflected

T
position intothe high-byte

addition

While performing BCD arithmetic with microprocessors, the carry out of the low
nibble (4 bits) has a special significance. Because a BCD digit is represented by 4 bits, any
carry out of the low 4 bits must be propagated into the high 4 bits for BCD arithmetic. This
carry flag is known as an auxiliary carry Jag and is set to 1 if the carry out of the low 4
bits is 1; otherwise, it is 0.

A zero flag is used to show whether the result of an operation is zero. It is set to
1 if the result is zero, and it is reset to 0 if the result is nonzero. AparityJag is set to 1 to
indicate whether the result of the last operation contains either an even number of 1’s (even
parity) or an odd number of 1’s (odd parity), depending on the microprocessor. The type of
parity flag used (even or odd) is determined by the microprocessor’s internal structure and
is not selectable. A sign flag (sometimes called a negative flag) is used to indicate whether
the result of the last operation is positive or negative. If the most significant bit of the last
operation is 1, this flag is set to 1 to indicate that the result is negative. This flag is reset to
0 if the most significant bit of the result is zero: that is, if the result is positive.

As mentioned earlier, an overflowflag arises from representation of the sign flag
by the most significant bit of a word in signed binary operation. The overflow flag is set to
1 if the result of an arithmetic operation is too big for the microprocessor’s maximum word
size, otherwise it is reset to 0. Let Cfbe the final carry out of the most significant bit (sign
bit) and C, be the previous carry. It was shown in section 1.2.1 that the overflow flag is the
exclusive- OR of the carries C, and C’

overflow = C, 0 C,

Stack Pointer Register Astack consists of a number of RAM locations set aside for
reading data from or writing data into these locations and is typically used by subroutines
(a subroutine is a program that performs operations frequently needed by the main or
calling program). The address of the stack is contained in a register called a stackpointer.
Two instructions, PUSH and POP, are usually available with a stack. The PUSH operation
is defined as writing to the top or bottom of the stack, whereas the POP operation means
reading from the top or bottom of the stack. Some microprocessors access the stack from
the top; others access via the bottom. When the stack is accessed from the bottom, the stack
pointer is incremented after a PUSH and decremented after a POP operation. On the other
hand, when the stack is accessed from the top, the stack pointer is decremented after a
PUSH and incremented after a POP. Microprocessors typically use 16- or 32-bit registers
for performing PUSH or POP operations. The incrementing or decrementing of a stack
pointer depends on whether the operation is PUSH or POP and on whether the stack is
accessed from the top or the bottom.

We now illustrate stack operations in more detail. We use 16-bit registers and 16-

30 Microprocessor Theory and Applications with 68000/68020 and Pentium

bit addresses in Figures 2.5 through 2.8. All data (hex) are chosen arbitrarily. In Figure 2.5,
the stack pointer is incremented by 2 (16-bit register) after the PUSH to contain the value
20CA. Now, consider the POP operation of Figure 2.6. The stack pointer is decremented by
2 after the POP. The contents of address 20CA are assumed to be empty conceptually after
the POP operation. Next, consider the PUSH operation of Figure 2.7. The stack is accessed
from the top. The stack pointer is decremented by 2 after a PUSH. Finally, consider the
POP operation of Figure 2.8. The Stack pointer is incremented by 2 after the POP. The
contents of address 20C6 are assumed to be empty conceptually after a POP operation.

Note that the stack is a LIFO (last in first out) memory. As mentioned earlier,
a stack is typically used during subroutine CALLS. The microprocessor automatically
PUSHes the return address onto a stack after executing a subroutine CALL instruction in
the main program. After executing a RETURN from a subroutine instruction (placed by
the programmer as the last instruction of the subroutine), the microprocessor automatically
POPS the return address from the stack (previously PUSHed) and then returns to the main
program.

2.3.2 Control Unit
The main purpose of the control unit is to read and decode instructions from the program
memory. To execute an instruction, the control unit steps through the appropriate blocks of
the ALU based on the op-codes contained in the instruction register. The op-codes define
the operations to be performed by the control unit to execute an instruction. The control
unit interprets the contents of the instruction register and then responds to the instruction
by generating a sequence of enable signals. These signals activate the appropriate ALU
logic blocks to perform the required operation.

The control unit generates the control signals, which are output to the other
microcomputer elements via the control bus. The control unit also takes appropriate actions
in response to the control signals on the control bus provided by the other microcomputer
elements. The control signals vary from one microprocessor to another. For each specific
microprocessor, these signals are described in detail in the manufacturer’s manual. It is
impossible to describe all the control signals for various manufacturers. However, we
cover some of the common ones in the following discussion.

Before Push After Push

16-bit Regis:;
20C8

Stack -pi 20c2
20C4
20C6
20C8
20CA
2occ
20CE

16-bit Registe& r l
20CA

Bottom of
Stack

Stack

20C8
20CA
20cc
20CE

FIGURE 2.5 PUSH operation when accessing a stack from the bottom.

Microcomputer Architecture 31

16-bit Register
SP

Before POP After POP

/
Bottom 01

Stack

FIGURE 2.6 POP operation when accessing a stack from the bottom.

Before PUSH

16-bit Register '$' I Slack I
SP

16-bit Register
SP

2oc2
20C4
20C6
20C8
20CA
2occ
20CE

After PUSH

I Slack I

20CA

Top of
Stack

IGURE 2.7 PUSH operation when accessing a stack from the top.

Before POP After POP

16-bit Regis;; m]
\

Slack

2oc2
20C4
20C6
20C8
20CA
2occ

16-bit Register
SP

Top of
Stack

>PI 052C

H

FIGURE 2.8 POP operation when accessing a stack from the top.

32 Microprocessor Theory and Applications with 68000/68020 and Pentium

RESET. This input is common to all microprocessors. When this input pin is driven
HIGH or LOW (depending on the microprocessor), the program counter is loaded with a
predefined address specified by the manufacturer. As mentioned before, in the Pentium,
upon hardware reset, the program counter is loaded with FFFFFFFO,,. This means that the
instruction stored at memory location FFFFFFFO,, is executed first. In some other
microprocessors, such as the Motorola 68000, the program counter is not loaded directly
by activating the RESET input. In this case the program counter is loaded indirectly from
two locations (such as 000004 and 000006) predefined by the manufacturer. This means
that these two locations contain the address of the first instruction to be executed.

READWRITE (W-). This output line is common to all microprocessors. The
status of this line tells the other microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal on this line indicates a READ
operation, and a LOW indicates a WRITE operation. Some microprocessors have separate
READ and WRITE pins.

READY, This is an input to a microprocessor. Slow devices (memory and I/O) use
this signal to gain extra time to transfer data to or receive data from a microprocessor. The
READY signal is usually an active low signal; that is, LOW indicates that the microprocessor
is ready. Therefore, when the microprocessor selects a slow device, the device places a
LOW on the READY pin. The microprocessor responds by suspending all its internal
operations and enters a WAIT state. When the device is ready to send or receive data, it
removes the READY signal. The microprocessor comes out of the WAIT state and performs
the appropriate operation.

Interrupt Request (INT or IRQ). The external I/O devices can interrupt the
microprocessor via this input pin on the microprocessor chip. When this signal is activated
by the external devices, the microprocessor jumps to a special program called the interrupt
service routine. This program is normally written by the user for performing tasks that the
interrupting device wants the microprocessor to carry out. After completing this program,
the microprocessor returns to the main program it was executing when the interrupt
occurred.

2.3.3 Arithmetic-Logic Unit
The ALU performs all the data manipulations, such as arithmetic and logic operations, inside
a microprocessor. The size of the ALU conforms to the word length of the microcomputer.
This means that a 32-bit microprocessor will have a 32-bit ALU. Some of the typical
functions performed by the ALU are:

1. Binary addition and logic operations
2. Finding the one’s complement of data
3. Shifting or rotating the contents of a general-purpose register 1 bit to the left

or right through a carry

2.3.4
Figure 2.9(a) shows the functional block diagram of a simple microprocessor. Note that
the data bus shown is internal to the microprocessor chip and should not be confused with
the system bus. The system bus is external to the microprocessor and is used to connect all
the necessary chips to form a microcomputer. The buffer register in Figure 2.9(a) stores

Functional Representations of Simple and Qpical Microprocessors

Microcomputer Architecture

t* Status Register 4 b

t, Shifter 4 b

33

General Purpose

Memoty Address
- Register - Register

Prograrm Counter

Instruction

t, -
(a) Simple microprocessor

-
Complementer 4

Boolean Logic
and Addition

BcBn
D.ta
BUI

U I I

&Target M d r

1 Control Unit I t t 1
r

Floating
Point

PDBl l

(b) Pentium Microprocessor

FIGURE 2.9 Microprocessor block diagrams.

34 Microprocessor Theory and Applications with 68000/68020 and Pentium

any data read from memory for further processing by the ALU. All other blocks of Figure
2.9(a) have been discussed earlier. Note that the hnctional block diagram of a typical
commercially available microprocessor such as the Pentium (discussed later) is more
complex than the one shown in Figure 2.9(a). The simple microprocessor, although
not practical, is presented here for illustrative purposes.

Figure 2.9(b) shows the block diagram of a realistic microprocessor, the Intel
Pentium.

The figure shows that the Pentium contains two instruction pipelines: the U-pipe
and the V-pipe. The U-pipe can execute all integer and floating-point instructions. The
V-pipe can execute simple integer instructions and the FXCH floating-point instruction.

The instruction decode unit translates the prefetched instructions for the Pentium
to execute the instruction. The control ROM contains a microprogrammed ROM that
controls the sequence of operations that must be performed to implement the Pentium
microprocessor architecture. The control ROM unit has direct control over both pipelines.

The Pentium contains two separate cache memories: code cache and data cache.
The code cache, branch target buffer, and prefetch buffers are used to read instructions
into the execution units of the Pentium. Instructions are fetched from the code cache or
from the external bus. Branch addresses are stored in the branch target buffer. The integer
register file contains all the Pentium’s general-purpose registers, and the floating-point
register file contains all the floating-point registers. The Pentium contains a barrel shifter
for fast shift operation. The bus unit provides Pentium’s 64-bit data bus, 32-bit address
bus, and the control signals. This facilitates interfacing the Pentium to external memory
and I/O chips.

2.3.5
The main purpose of the control unit is to translate or decode instructions and generate
appropriate enable signals to accomplish the desired operation. Based on the contents of
the instruction register, the control unit sends the data items selected to the appropriate
processing hardware at the right time. The control unit drives the associated processing
hardware by generating a set of signals that are synchronized with a master clock.

The control unit performs two basic operations: instruction interpretation
and instruction sequencing. In the interpretation phase, the control unit reads (fetches)
an instruction from the memory addressed by the contents of the program counter into
the instruction register. The control unit inputs the contents of the instruction register. It
recognizes the instruction type, obtains the necessary operands, and routes them to the
appropriate functional units of the execution unit (registers and ALU). The control unit
then issues the necessary signals to the execution unit to perform the desired operation
and routes the results to the destination specified. In the sequencing phase, the control unit
generates the address of the next instruction to be executed and loads it into the program
counter.

There are two methods for designing a control unit: hardwired control and
microprogrammed control. In the hardwired approach, synchronous sequential circuit
design procedures are used in designing the control unit. Note that a control unit is a
clocked sequential circuit. The name hardwired control evolved from the fact that the
final circuit is built by physically connecting components such as gates and flip-flops. In
the microprogrammed approach, on the other hand, all control functions are stored in a
ROM inside the control unit. This memory is called the control memory. The words in this
memory, called control words, specify the control functions to be performed by the control

Simplified Explanation of Control Unit design

Microcomputer Architecture 35

unit. The control words are fetched from the control memory and the bits are routed to
appropriate functional units to enable various gates. An instruction is thus executed.

Design of control units using microprogramming (sometimes calledjrmwure to
distinguish it from hardwired control) is more expensive than using hardwired controls. To
execute an instruction, the contents ofthe control memory in microprogrammed control must
be read, which reduces the overall speed of the control unit.The most important advantage
of microprogramming is its flexibility; alterations can be made simply by changing the
microprogram in the control memory. A small change in the hardwired approach may lead
to redesigning the entire system.

For simplicity, we illustrate the concepts of microprogramming using Figure
2.9(a). Let us consider incrementing the contents of the register by 1. This is basically an
addition operation. The control unit will send an enable signal to execute the ALU adder
logic. Incrementing the contents of a register consists of transferring the register contents
to the ALU adder and then returning the result to the register. The complete incrementing
process is accomplished via the five steps shown in Figures 2.10 through Figure 2.14. In
all five steps, the control unit initiates execution of each microinstruction. Figure 2.10
shows the transfer of the register contents to the data bus. Figure 2.11 shows the transfer
of the contents of the data bus to the adder in the ALU in order to add 1 to it. Figure 2.12
shows the activation of the adder logic. Figure 2.13 shows the transfer of the result from
the adder to the data bus. Finally, Figure 2.14 shows the transfer of the data bus contents to
the register.

Arithmetic-Loaic Unit (ALU)

Status flags 4

Shiner 4

-
Complementer 4

I I I

I- Boolean Logic
and Addition

t

Data Bus
Buffer Register

**...
-.._ ____._-- ..___ ,.-- ...- /-.

,/' **.* ,/'
Register

i J 01 101010
I

I I !
Program Counter

Instruction
Register

0 "'

Control Unit u

FIGURE 2.10 Transferring register contents to a data bus.

36 Microprocessor Theory and Applications with 68000/68020 and Pentium

Arithmetic-Logic unit (ALU) ,...... ...

4 Status Flags b j

*---+

~

Shifler 4 +

i
*---+ Compiementer 4

Boolean Logic ,*
and Addition
01101010

b

FIGURE

0 -
b Z

0
r -
0

Statusmags

Register

Memory Address

4

Instruction
Register

-
Shifter

................................. 0

4 b

.. irithmetic-Logic unit (ALU)

Complementer 4 b

Boolean Logic
and Addition
01101011

4

h..

Register
I ,),

01101010

Memory Address
Register

Program Counter

~

I Control Unit I

............................... 0

FIGURE 2.12 Activating the ALU logic.

Microcomputer Architecture

Arithmetic-Logic unit (ALU)
I ...

4--b Status Flags I b

u
~

Shifter I b

u Complementer

Boolean Logic 4

01 10101 1
t* and Addition

b

h
I '._
I

! ... 2

37

- -
0 -

b o
r -
0

Register

01101010

Memory Address
Register

Program Counter

Instruction
Register

I Control Unit I

................................ @

FIGURE 2.13 Transferring an ALU result to a data bus.

Register

Memory Address

Instruction

I Control Unit I

I

FIGURE 2.14 Transferring a data bus.

3 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

Microprogramming is typically used by a microprocessor designer to program the
logic performed by the control unit. On the other hand, assembly language programming
is a popular programming language used by a microprocessor user for programming a
microprocessor to perform a desired function. A microprogram is stored in the control unit.
An assembly language program is stored in the main memory. The assembly language
program is called a macroprogram. A macroinstruction (or simply, an instruction) initiates
execution of a complete microprogram.

2.4

Conventional microprocessors include typical 8-bit microprocessors such as Intel 8085
and 16-bit microprocessors such as Motorola 68000. To execute a program, a conventional
microprocessor repeats the following three steps for completing each instruction.

Program Execution by Conventional Microprocessors

1. Fetch. The microprocessor fetches (instruction read) the instruction from the main
memory (external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit.
The control unit inputs the contents of the instruction register, and then decodes (translates)
the instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To
accomplish the task, the control unit generates a number of enable signals required by the
instruction.

For example, suppose that it is desired to add the contents of two registers, X
and Y, and store the result in register Z. To accomplish this, a conventional microprocessor
perfoms the following steps:

1. The microprocessor fetches the instruction into the instruction register.

2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU
sections to perform the following:

a. The CU transfers the contents of registers X and Y from the Register section into the
ALU.

b. The CU commands the ALU to ADD.

c. The CU transfers the result from the ALU into register Z of the register section.

2.5

As mentioned in Chapter 1, designers of 32-bit microprocessors such as the Pentium have
implemented many powerful features of the mainframe computers in the same chip as
the microprocessor. This enhances the capabilities of the 32-bit microprocessors. The on-

Program Execution by typical 32-bit Microprocessors

Microcomputer Architecture 39

chip hardware implemented in the 32-bit microprocessors include cache memory, memory
management, pipelining, floating-point arithmetic, and branch prediction.

Cache memory is a high-speed readwrte memory implemented as on-chip
hardware in typical 32-bit microprocessors in order to increase processing rates. This topic
is covered in more detail in Chapter 3.

Memory management allows programmers to write programs much larger
than those that could fit in the main memory space available to the microprocessors; the
programs are simply stored on a secondary device, such as a hard disk, and portions of the
program are swapped into main memory as needed. This topic is covered in more detail in
Chapter 3.

Other on-chip features such as pipelining, floating-point arithmetic, and branch
prediction are discussed in the following.

2.5.1 Pipelining
As mentioned earlier, a conventional microprocessor such as the 68000 executes a program
by completing one instruction at a time and then proceeds to the next. This means that
the control unit would have to wait until the instruction is fetched from memory. Also, the
ALU would have to wait until the required data are obtained. Since the speeds of 32-bit
microprocessors are increasing at a more rapid rate than memory speeds, the control unit
and ALU will be idle while the conventional microprocessor fetches each instruction and
obtains the required data.

32-Bit microprocessors utilize the control unit and ALU efficiently by prefetching
the next instruction(s) and the required data before the control unit and ALU require them.
As mentioned earlier, conventional microprocessors such as the 68000 execute programs
in sequence; 32-bit microprocessors such as the Pentium, on the other hand, implement
the feature called pipelining to prefetch the next instruction while the control unit is busy
decoding the current instruction. Hence, 32-bit microprocessors implement pipelining
to increase system throughput. Pipelining was first implemented in Motorola’s 68020.
This was followed by Intel’s pipelined implementation of the 80486. A brief overview of
pipelining is provided in this section.

Basic Concepts Assume that a task T is carried out by performing four activities: Al, A2,
A3, and A4, in that order. Hardware Hi is designed to perform activity Ai. Hi is referred
to as a segment, and it essentially contains combinational circuit elements. Consider the
arrangement shown in Figure 2.15. In this configuration, a latch is placed between two
segments so the result computed by one segment can serve as input to the following
segment during the next clock period.

The execution of four tasks TI, T2, T3, and T4 using the hardware of Figure 2.15
is described using the space-time chart shown in Figure 2.16.
Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy with TI
while segment 1 is busy with T2. Continuing in this manner, task TI is completed at the end

FIGURE 2.15 Four-segment pipeline.

40 Microprocessor Theory and Applications with 68000/68020 and Pentium

Segment 4

Segment 3

Segment 2
Segment 1 u

1 2 3 4 5 6 7
- Time

FIGURE 2.16

of the fourth clock. However, following this point, one task is shipped out per clock. This
is the essence of the pipelining concept. A pipeline gains efficiency for the same reason as
an assembly line does: Several activities are performed but not on the same material.

In 32-bit microprocessors, the pipeline concept is typically used for carrying out
two tasks: arithmetic operations and instruction execution.

Overlapped execution of four tasks using a pipeline.

Arithmetic Pipelines The pipeline concept is widely used in designing floating-
point arithmetic units. Consider the process of adding two floating-point numbers x =

0.9234 * lo4 and y = 0.48 * lo2. First, notice that the exponents of x and y are unequal.
Therefore, the smaller number should be modified so that its exponent is equal to the
exponent of the greater number. For this example, modify y to 0.0048 * lo4. This
modification step is known as exponent alignment. Here the decimal point of the significand
0.48 is shifted to the right to obtain the desired result. After exponent alignment, the
significands 0.9234 and 0.0048 are added to obtain the final solution of 0.9282 * lo4.

As a second example, consider the operation x - y , where x = 0.9234 * 1 O4 and y
= 0.9230 * 1 04. In this case, no exponent alignment is necessary because the exponent of a
equals the exponent ofy. Therefore, the significand of y is subtracted from the significand
of x to obtain 0.9234 - 0.9230 = 0.0004. However, 0.0004 * lo4 cannot be the final answer
because the significand, 0.0004, is not normalized. A floating-point number with base b is
said to be normalized if the magnitude of its significand satisfies the following inequality:

In this example, since b = 10, a normalized floating-point number must satisfy the
5 (significandl < 1.

condition:
0.15 lsignificandl < 1

(Note that normalized floating-point numbers are always considered because for each real-
world number there exists one and only one floating-point representation. This uniqueness
property allows processors to make correct decisions while performing compare
operations).

The final answer is modified to 0.4 * 10'. In this modification step known as
postnormalization, the significand is shifted to the left here to obtain the correct result.

In summary, addition or subtraction of two floating-point numbers calls for four
activities:

1. Exponent comparison
2. Exponent alignment
3. Significand addition or subtraction
4. Postnormalization

Microcomputer Architecture 41

Input

A * Latch

Segment 1 Exponent comparison unit

Latch

Segment 2 Exponent alignment unit a
Latch

Latch

Segment 4 Post normalization unit

+
FIGURE 2.17 Pipelined floating-point addhubtract unit.

Based on this result, a four-segment floating-point adderhbtracter pipeline can be
built, as shown in Figure 2.17. It is important to realize that each segment in this pipeline is
composed primarily of combinational components such as multiplexers. The shifter used in
this system is a barrel shifter. Note that a barrel shifter is a fast shift register that shifts data
in one direction. 32-Bit microprocessors such as the Motorola 68040 (on-chip floating-
point hardware) include a three-stage floating-point pipeline consisting of operand (data)
conversion, execute, and result normalization.

Instruction Pipelines 32-Bit microprocessors such as the Motorola 68020 contain a
three-stage instruction pipeline. Note that an instruction cycle typically involves the
following activities:

1. Instruction fetch
2. Instruction decode
3. Operand fetch (Data Read)
4. Operation execution
5. Result routing.

This process can be carried out effectively by using the pipeline shown in Figure
2.18. As mentioned earlier, in such a pipelined scheme the first instruction requires five
clocks to complete its execution. However, the remaining instructions are completed at a rate

42 Microprocessor Theory and Applications with 68000/68020 and Pentium

A Latch

Segment 1

Segment 2

Segment 3

Segment 4

Segment 5

Instruction fetch
unit

Latch

Instruction decode
unit

Latch

Operand fetch unit

Latch

Operation execution
unit

I Latch I

Result routing unit a
Latch F

FIGURE 2.18 Five-segment instruction pipeline.

s5

s4

s3

s2

s1

k 4 - 4
Extra clocks

FIGURE 2.19 Pipelined execution of a stream of five instructions that includes
a branch instruction.

Microcomputer Architecture 43

of one per pipeline clock. Such a situation prevails as long as all the segments are busy.
In practice, the presence of branch instructions and conflicts in memory accesses

poses a great problem to the efficient operation of an instruction pipeline. For example,
consider the execution of a stream of five instructions: 11,12,13,14, and 15, in which I3 is a
conditional branch instruction. This stream is processed by the instruction pipeline (Figure
2.18) as depicted in Figure 2.19. When a conditional branch instruction is fetched, the next
instruction cannot be fetched because the exact target is not known until the conditional
branch instruction has been executed. The next fetch can occur once the branch is resolved.
Four additional clocks are required, due to 13.

In 32-bit microprocessors, branch instructions are handled using a strategy
called target prefetch. When a conditional branch instruction is recognized, the immediate
successor of the branch instructions and the target of the branch are prefetched. The latter
is saved in a register called a buffer until the branch is executed. If the branch condition is
successful, one pipeline is still busy because the branch target is in the buffer.

Another approach to handling branch instructions is use of the delayed branch
concept. In this case, the branch does not take place until after the following instruction.
To illustrate this, consider the following assembly language instruction sequence (chosen
arbitrarily):

Memory
Address Instruction Comment
2000 LDA X ; Load register A with contents of memory address X
2001 INC Y ; Increment the contents of memory address Y by 1
2002 JMP 2050 ; Jump to address 2050
2003 SUB Z ; Subtract the contents of address Z from the contents

; of register A, and store the result in A

2050 STA W ; Store the contents of register A in memory address W

TABLE 2.1 Modified Sequence

Memory Address Instruction
2000 LDA X
200 1 INC Y

2002 JMP 2051
2003 NOP
2004 SUB Z

205 1 STA W

44

TABLE 2.2

Microprocessor Theory and Applications with 68000/68020 and Pentium

Pipelined Execution of a Hypothetical Instruction Sequence

STA W Instruction Fetch LDA X INC Y JMP 2051 NOP
Instruction Execute LDAX INCY JMP2051 NOP

TABLE 2.3 Instruction Sequence with the Branch Instruction Reversed

Memory Address Instruction
2000 LDA X
200 1 JMP 2050
2002 INC Y
2003 SUB Z

2050 STA W

TABLE 2.4 Execution of a Reversed Instruction Sequence

Instruction Fetch LDA X JMP 2050 INC Y STA W
Instruction Execute LDA X JMP 2050 INC Y
Suppose that there is a NOP (no operation) instruction and that the branch

instruction is changed to JMP 205 I . The program semantics remain unchanged. This is
shown in Table 2.1. This modified sequence will be executed by a two-segment pipeline,
as shown in Table 2.2: instruction fetch and instruction execute. Because of the delayed
branch concept, the pipeline still functions correctly without damage.

The efficiency of this pipeline can be improved further if the assembler produces a
new sequence, as shown in Table 2.3. In this case, the assembler has reversed the instruction
sequence. The JMP instruction is placed in location 2001, and the INC instruction is moved
to memory location 2002. This reversed sequence is executed by the same two-segment
pipeline, as shown in Table 2.4.

It is important to understand that due to the delayed branch rule, the INC Y
instruction is fetched before execution of the JMP 2050 instruction; therefore, there is no
change in the order of instruction execution. This implies that the program will still produce
the same result. Since the NOP instruction was eliminated, the program is executed more
efficiently. The concept of delayed branch is one of the key characteristics of RISC as it
makes concurrency visible to a programmer.

2.5.2 Branch Prediction Feature
Typical 32-bit microprocessors implement a multiple-branch prediction feature. This allows
these microprocessors to anticipate jumps of the instruction flow ahead of time. Also, some
32-bit microprocessors determine an optimal sequence of instruction execution by looking
at decoded instructions and then determining whether to execute or hold the instructions.
Typical 32-bit microprocessors use a “look ahead” approach to execute instructions. These
32-bit microprocessors maintain an instruction pool for a sequence of instructions and
perform a useful task rather than executing the present instruction and then going on to
the next.

The branch prediction feature of the Pentium speeds up execution of program

Microcomputer Architecture 45

loops. To accomplish this, the Pentium includes on-chip hardware called the Branch Unit
(BU). The BU contains the branch execution unit (BEU) and the branch prediction unit
(BPU). Whenever the Pentium encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s branch condition using the BEU
and determines whether the branch should or should not be taken. Once the BU determines
the branch condition, it calculates the starting address (Branch target) of the next block of
code to be executed. The Pentium then starts fetching code at the new address.

The Pentium uses a technique called speculative execution using the BPU. Using
this feature, the Pentium makes an educated guess at the Branch target before the branch’s
condition is actually evaluated. Instructions that are executed speculatively cannot write
their results back to the registers until the branch condition is evaluated. If the BPU predicts
the branch correctly, the results from the speculative instructions can be written just like
regular instructions. If the Pentium predicts the branch target address incorrectly, it must
flush the pipeline of the erroneous speculative instructions and associated results. After
the pipeline flush, the Pentium obtains the correct Branch target address so that it can start
executing the code at the correct position in the program.

2.6 Scalar and Superscalar Microprocessors

Scalar processors such as the 80486 can execute one instruction per cycle. The 80486
contains only one pipeline. Superscalar microprocessors, on the other hand, can execute
more than one instruction per cycle. These microprocessors contain more than one pipeline.
The Pentium, a superscalar microprocessor, contains two independent pipelines. This
allows the Pentium to execute two instructions per cycle.

2.7 RISC vs. CISC

There are two types of microprocessor architectures: RISC and CISC. A RISC
microprocessor such as the PowerPC emphasizes simplicity and efficiency. RISC designs
start with a necessary and sufficient instruction set. The purpose of using RISC architecture
is to maximize speed by reducing clock cycles per instruction. Almost all computations can
be obtained from a few simple operations. The goal of RISC architecture is to maximize
the effective speed of a design by performing infrequent operations in software and
frequent hnctions in hardware, thus obtaining a net performance gain. The following list
summarizes the typical features of a RISC microprocessor:

The RISC microprocessor is designed using hardwired control with little or
no microcode. Note that variable-length instruction formats generally require
microcode design. All RISC instructions have fixed formats, so microcode
design is not necessary.
A RISC microprocessor executes most instructions in a single cycle.
The instruction set of a RISC microprocessor typically includes only register,
load, and store instructions. All instructions involving arithmetic operations
use registers, and load and store operations are utilized to access memory.
The instructions have a simple fixed format with few addressing modes.
A RISC microprocessor has several general-purpose registers.
A RISC microprocessor processes several instructions simultaneously and
thus includes pipelining.

1.

2.
3.

4.
5.
6.

46 Microprocessor Theory and Applications with 68000/68020 and Pentium

7. Software can take advantage of more concurrency. For example, jumps occur
after execution of the instruction that follows. This allows fetching of the
next instruction during execution of the current instruction.

RISC microprocessors are suitable for embedded applications. Embedded
microprocessors or controllers are embedded in the host system. This means that the
presence and operation of these controllers are basically hidden from the host system.
Typical embedded control applications include office automation systems such as laser
printers. Since a laser printer requires a high-performance microprocessor with on-chip
floating-point hardware, RISC microprocessors such as PowerPC are ideal for these types
of applications.

RISC microprocessors are well suited for applications such as image processing,
robotics, graphics, and instrumentation. The key features of the RISC microprocessors
that make them ideal for these applications are their relatively low level of integration in
the chip and instruction pipeline architecture. These characteristics result in low power
consumption, fast instruction execution, and fast recognition of interrupts. Typical 32- and
64-bit RISC microprocessors include PowerPC microprocessors.

CISC microprocessors, on the other hand, contain a large number of instructions
and many addressing modes, while RISC microprocessors include a simple instruction
set with a few addressing modes. Almost all computations can be obtained from a few
simple operations. RISC basically supports a small set of commonly used instructions that
are executed at a fast clock rate compared to CISC, which contains a large instruction set
(some of which are rarely used) executed at a slower clock rate. To implement the fetch/
execute cycle for supporting a large instruction set for CISC, the clock is typically slower.

In CISC, most instructions can access memory while RISC contains mostly load
store instructions. The complex instruction set of CISC requires a complex control unit,
thus requiring microprogrammed implementation. RISC utilizes hardwired control which
is faster. CISC is more difficult to pipeline; RISC provides more efficient pipelining. An
advantage of CISC over RISC is that complex programs require fewer instructions in CISC
with fewer fetch cycles, while RISC requires a large number of instructions to accomplish
the same task with several fetch cycles. However, RISC can significantly improve its
performance with a faster clock, more efficient pipelining, and compiler optimization.

PowerPC and Intel 8OXXX utilize RISC and CISC architectures, respectively.
Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro and other succeeding
members of the Pentium family and Motorola 68060 use a combination of RISC and
CISC architectures for providing high performance. The Pentium Pro and other succeeding
members of the Pentium family use RISC (hardwired control) to implement efficient
pipelining for simple instructions. CISC (microprogrammed control) for complex
instructions is utilized by the Pentium to provide upward compatibility with the Intel
8086180x86 family.

Microcomputer Architecture

Questions and Problems

47

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

What is the difference between a microprocessor and a single-chip micro-
computer?

What is a microcontroller? Name one commercially available microcontroller.

What is the difference between:
(a)
(b)
(c)

A program counter and the memory address register?
An accumulator and an instruction register?
A general-purpose register-based microprocessor and an accumulator-
based microprocessor. Name a commercially available microprocessor
of each type.

Assuming signed numbers, find the sign, carry, zero, and overflow flags of:
(4 0% + 17,,
(b) ASl6 -Asl6

(4 6E,, + 3 4 6
(el 7E16 + 7E16

(c> 71,6-A916

What are PUSH and POP operations in the stack?

Suppose that a 16-bit microprocessor has a 16-bit stack pointer and uses a 16-bit
register to access the stack from the top. Assume that initially the stack pointer
and the 16-bit register contain 20CO,, and 0205,, respectively. After the PUSH
operation:
(a)
(b)

What are the contents of the stack pointer?
What are the contents of memory locations 20BEl, and 20BF,,?

Assuming the microprocessor architecture of Figure 2.9(a), write down a possible
sequence of microinstructions for finding the one’s complement of an 8-bit
number. Assume that the number is already in the register.

What is pipelining?

Summarize the branch prediction feature of the Pentium.

What is the basic difference between program execution by a conventional
microprocessor and a 32-bit microprocessor.

What is the difference between Scalar and Superscalar microprocessors? Name
one example of each.

Discuss the basic features of RISC and CISC in terms of the Pentium Pro.

This Page Intentionally Left Blank

3
MICROPROCESSOR

MEMORY ORGANIZATION

In this chapter we describe concepts associated with memory organization in typical
microprocessors. Topics include main memory array design, memory management, and
cache memory concepts.

3.1 Introduction

A memory unit is an integral part of any microcomputer, and its primary purpose is to hold
instructions and data. The major design goal of a memory unit is to allow it to operate at a
speed close to that of a microprocessor. However, the cost of a memory unit is so prohibitive
that it is practically not feasible to design a large memory unit with one technology that
guarantees high speed. Therefore, to seek a trade-off between the cost and the operating
speed, a memory system is usually designed with different technologies, such as solid state,
magnetic, and optical. In a broad sense, a microcomputer memory system can be divided
into three groups:
1. Microprocessor memory
2. Primary or main memory
3. Secondary memory

Microprocessor memory comprises to a set of microprocessor registers. These
registers are used to hold temporary results when a computation is in progress. Also, there
is no speed disparity between these registers and the microprocessor because they are
fabricated using the same technology. However, the cost involved in this approach limits a
microcomputer architect to include only a few registers in the microprocessor.

Main memory is the storage area in which all programs are executed. The
microprocessor can directly access only those items that are stored in main memory.
Therefore, all programs must be within the main memory prior to execution. CMOS
technology is normally used in main memory design. The size of the main memory is
usually much larger than processor memory, and its operating speed is slower than that of
processor registers. Main memory normally includes ROMs and RAMS.

Electromechanical memory devices such as hard disks are used extensively as
microcomputer’s secondary memory and allow storage of large programs at low cost.
The storage capacity of a typical hard disk ranges from 5 MB to several gigabytes. The
rotational speed of the hard disk is typically 3600 rpm. These secondary memory devices
access stored data serially. Hence, they are significantly slower than main memory. Hard
disk is a popular secondary memory device. Programs are stored on disks in files. Secondary
memory stores programs in excess of the main memory. Secondary memory is also referred

49

50 Microprocessor Theory and Applications with 68000/68020 and Pentium

Segment 15
FFFFF,,
FOOOO,,

Segment 1
IFFFF,,
10000,,

Segment 0
OFFFFI6 ooooo,, I

FIGURE 3.1 Main memory of the Pentium in the real mode.

to as auxiliary or virtual memory. The microcomputer cannot execute programs stored in
the secondary memory directly, so to execute these programs the microcomputer must
transfer them to its main memory by a program called the operating system.

Programs in hard disk memories are stored in tracks. A track is a concentric ring
of programs stored on the surface of a disk. Each track is further subdivided into several
sectors. Each sector typically stores 512 or 1024 bytes of information. The secondary
memory typically uses magnetic media, except for optical memory, which stores programs
on a plastic disk. CD (compact disc) memory and DVD (digital video disc) memory are
examples of popular optical memory used with microcomputer systems. CD memory uses
an infrared laser whereas DVD memory uses a red laser. Since a red laser has a shorter
wavelength than an infrared laser, DVD memory provides a larger storage capacity than
CD memory. Typical optical memories include CD-ROM, CD-RW, DVD-ROM, and DVD-
RAM.

3.2 Main memory

The main or external memory (or simply, the memory) stores both instructions and data. For
8-bit microprocessors, the memory is divided into a number of 8-bit units called memory
words. An 8-bit unit of data is termed a byte. Therefore, for an 8-bit microprocessor,
memory word and memory byte mean the same thing. For 16-bit microprocessors, a word
contains 2 bytes (1 6 bits). A memory word is identified in the memory by an address. For
example, the Pentium microprocessor uses 32-bit addresses for accessing memory words.
This provides a maximum of 232 = 4,294,964,296 = 4 GB of memory addresses, ranging
from 00000000,, to FFFFFFFF,, in hexadecimal.

An important characteristic of a memory is whether it is volatile or nonvolatile.
The contents of a volatile memory are lost if the power is turned off. On the other
hand, a nonvolatile memory retains its contents after power is switched off. ROM is a
typical example of nonvolatile memory. RAM is a volatile memory unless backed up by
batteries.

Some microprocessors, such as the Intel Pentium, divide the memory into
segments. For example, Pentium in the real mode divides the 1 -MB main memory into 16
segments (0 through 15). Each segment contains 64 kB of memory and is addressed by 16
bits. Figure 3.1 shows a typical main memory layout of the Pentium in real mode. In the
figure, the high 4 bits of an address specify the segment number. As an example, consider
address 10005,, of segment 1. The high 4 bits, 0001, of this address define the location

Microprocessor Memory Organization 5 1

Memory

I I

STATIC DYNAMIC , (SRAM) (DRAM)

FIGURE 3.2 Summary of available semiconductor memories for
microprocessor systems.

as in segment 1, and the low 16 bits, 0005 ,,, specify the particular address in segment 1.
The 68000, on the other hand, uses linear or nonsegmented memory. For example, the
68000 uses 24 address pins to address 224 = 16 MB of memory directly with addresses from
000000,, to FFFFFF,,.

As mentioned before, memories can be categorized into two main types: read-
only memory (ROM) and random-access memory (RAM). As shown in Figure 3.2, ROMs
and RAMS are then divided into a number of subcategories, which are discussed next.

3.2.1 Read-only Memory
ROMs can only be read, so is nonvolatile memory. CMOS technology is used to fabricate
ROMs. ROMs are divided into two common types: mask ROM and erasable PROM
(EPROM), such as 2732 and EAROM (electrically alterable ROM) [also called EEPROM
or E2PROM (electrically erasable PROM)] such as the 2864.

Mask ROMs are programmed by a masking operation performed on a chip during
the manufacturing process. The contents of mask ROMs are permanent and cannot be
changed by the user. EPROMs can be programmed, and their contents can also be altered by
using special equipment, called an EPROMprogrammer. When designing a microcomputer
for a particular application, permanent programs are stored in ROMs. Control memories
used to microprogram the control unit are ROMs.

EPROMs can be reprogrammed and erased. The chip must be removed from the
microcomputer system for programming. This memory is erased by exposing the chip to
ultraviolet light via a lid or window on the chip. Typical erase times vary between 10 and
20 min. The EPROM can be programmed by inserting the chip into a socket of the EPROM
programmer and providing proper addresses and voltage pulses at the appropriate pins of
the chip.

EAROMs can be programmed without removing the memory from the ROM’s
sockets. These memories are also called read-mostly memories (RMMs), because they
have much slower write times than read times. Therefore, these memories are usually
suited for operations when mostly reading rather that writing will be performed. Another
type of memory, called Flush memoly (nonvolatile), invented in the mid- 1980s by Toshiba,
is designed using a combination of EPROM and E2PROM technologies. Flash memory
can be reprogrammed electrically while embedded on the board. One can change multiple
bytes at a time. An example of flash memory is the Intel 28F020 (256K x 8-bit). Flash

52

memory is typically used in cellular phones and digital cameras.

3.2.2 Random-Access Memory
There are two types of RAM: static RAM (SRAM), and dynamic RAM (DRAM). Static
RAMstores data in flip-flops. Therefore, this memory does not need to be refreshed. RAMs
are volatile unless backed up by battery. Dynamic RAM stores data in capacitors. That is,
it can hold data for a few milliseconds. Hence, dynamic RAMs are refreshed typically
by using external refresh circuitry. Dynamic RAMs (DRAMs) are used in applications
requiring large memory. DRAMs have higher densities than static RAMs (SRAMs).
Typical examples of DRAMs are the 4464 (64K x 4-bit), 44256 (256K x 4-bit), and
41 000 (1 M x 1 -bit). DRAMs are inexpensive, occupy less space, and dissipate less power
than SRAMs. Two enhanced versions of DRAM are E D 0 DRAM (extended data output
DRAM) and SDRAM (synchronous DRAM).

The E D 0 DRAM provides fast access by allowing the DRAM controller to output
the next address at the same time the current data is being read. An SDRAM contains
multiple DRAMs (typically, four) internally. SDRAMs utilize the multiplexed addressing
of conventional DRAMs. That is, like DRAMs, SDRAMs provide row and column
addresses in two steps. However, the control signals and address inputs are sampled by the
SDRAM at the leading edge of a common clock signal (1 33 MHz maximum). SDRAMs
provide higher densities than conventional DRAMs by further reducing the need for support
circuitry and faster speeds. The SDRAM has been used in PCs (personal computers).

3.2.3
To execute an instruction, the microprocessor reads or fetches the op-code via the data bus
from a memory location in the ROM/RAM external to the microprocessor. It then places
the op-code (instruction) in the instruction register. Finally, the microprocessor executes the
instruction. Therefore, the execution of an instruction consists of two portions, instruction
fetch and instruction execution. We consider the instruction fetch, memory READ, and
memory WRITE timing diagrams in the following using a single clock signal. Figure 3.3
shows a typical instruction fetch timing diagram.

In Figure 3.3, to fetch an instruction, when the clock signal goes to HIGH, the
microprocessor places the contents of the program counter on the address bus via address

Microprocessor Theory and Applications with 68000/68020 and Pentium

READ and WRITE Timing Diagrams

Clock

Address
AO-A15

Read

Data

0- 9

FIGURE 3.3 Typical instruction fetch timing diagram for an 8-bit
microprocessor.

Microprocessor Memory Organization 53

pins A,-A,, on the chip. Note that since each of lines A,-A,, can be either HIGH or LOW,
both transitions are shown for the address in Figure 3.3. The instruction fetch is basically
a memory READ operation. Therefore, the microprocessor raises the signal on the READ
pin to HIGH. As soon as the clock goes to LOW, the logic external to the microprocessor
gets the contents of the memory location addressed by A,-A,, and places them on the data
bus D,-D,. The microprocessor then takes the data and stores it in the instruction register so
that it gets interpreted as an instruction. This is called instruction fetch. The microprocessor
performs this sequence of operations for every instruction.

We now describe the READ and WRITE timing diagrams. A typical READ
timing diagram is shown in Figure 3.4. Memory READ is basically loading the contents of
a memory location of the main ROM/RAM into an internal register of the microprocessor.
The address of the location is provided by the contents of the memory address register
(MAR). Let us now explain the READ timing diagram of Figure 3.4.
1. The microprocessor performs the instruction fetch cycle as before to READ the op-
code.
2. The microprocessor interprets the op-code as a memory READ operation.
3. When the clock pin signal goes HIGH, the microprocessor places the contents of the
memory address register on the address pins A,-A,, of the chip.
4. At the same time, the microprocessor raises the READ pin signal to HIGH.
5. The logic external to the microprocessor gets the contents of the location in the main
ROM/RAM addressed by the memory address register and places it on the data bus.
6. Finally, the microprocessor gets this data from the data bus via pins D, - D, and stores
it in an internal register.

Memory WRITE is basically storing the contents of an internal register of the
microprocessor into a memory location of the main RAM. The contents of the memory
address register provide the address of the location where data is to be stored. Figure 3.5
shows a typical WRITE timing diagram.

! Instruction -
! fetch / Data /

! fetch i

FIGURE 3.4 Typical memory READ timing diagram.

54 Microprocessor Theory and Applications with 68000/68020 and Pentium

Clock 4
I [PCI j [MAW

Address
AO-A15

Read

Write

, OPCcde , Data , Data

Do- 4
4)i
i Instruction fl H
I fetch / Data i

~ store ~

FIGURE 3.5 Typical memory WRITE timing diagram.

The microprocessor fetches the instruction code as before.
The microprocessor interprets the instruction code as a memory WRITE instruction and
then proceeds to perform the DATA STORE cycle.
When the clock pin signal goes HIGH, the microprocessor places the contents of the
memory address register on the address pins A,-A,, of the chip.
At the same time, the microprocessor raises the WRITE pin signal to HIGH.
The microprocessor places data to be stored from the contents of an internal register onto
data pins Do-D,.
The logic external to the microprocessor stores the data from the register into a RAM
location addressed by the memory address register.

3.2.4 Main Memory Organization
As mentioned earlier, microcomputer main memory typically consists of ROMs/EPROMs
and RAMs. Because RAMs can be both read from and written into, the logic required
to implement RAMs is more complex than ROMdEPROMs. A microcomputer system
designer is normally interested in how the microcomputer memory is organized or, in other
words, how to connect the ROMSEPROMs and RAMs and then determine the memory
map of the microcomputer. That is, the designer would be interested in finding out what
memory locations are assigned to the ROMs/ EPROMs and RAMs. The designer can then
implement the permanent programs in ROMs/ EPROMs and the temporary programs in
RAMs. Note that RAMs are needed when subroutines and interrupts requiring a stack are
desired in an application.

As mentioned before, DRAMs (dynamic RAMs) use MOS capacitors to store
information and need to be refreshed. DRAMs are less inexpensive than SRAMs, provide
larger bit densities and consume less power. DRAMs are typically used when memory
requirements are 16K words or larger. DRAM is addressed via row and column addressing.
For example, 1 -Mb (one megabit) DRAM requiring 20 address bits is addressed using 10

Microprocessor Memory Organization 55
- -

address lines and two control lines,RAS (row address strobe) and CAS (column ~ address
strobe). To provide a 20-bit address into the DRAM, a LOW is applied to RAS - and 10 bits
of the address are latched. The other 10 bits of the address are applied next and CAS is then
held LOW.

The addressing capability of the DRAM can be increased by a factor of 4 by adding
one more bit to the address line. This is because one additional address bit results into one
additional row bit and one additional column bit. This is why DRAMS can be expanded to
larger memory very rapidly - with the - inclusion of additional address bits. External logic is
required to generate the RAS and CAS signals and to output the current address bits to the
DRAM.

DRAM controller chips take care of the refreshing and timing requirements
needed by DRAMs. DRAMs typically require a 4-ms refresh time. The DRAM controller
performs its task independent of the microprocessor. The DRAM controller chip sends a
wait signal to the microprocessor if the microprocessor tries to access memory during a
refresh cycle.

Because of the large memory, the address lines should be buffered using the
74LS244 or 74HC244 (a unidirectional buffer), and data lines should be buffered using the
74LS245 or 74HC245 (a bidirectional buffer) to increase the drive capability. Also, typical
multiplexers such as 74LS 157 or 74HC 157 can be used to multiplex the microprocessors
address lines into separate row and column addresses.

3.2.5 Main Memory Array Design
We noticed earlier that the main memory of a microcomputer is fabricated using solid-
state technology. In a typical microcomputer application, a designer has to implement the
required capacity by interconnecting several memory chips. This concept is known as
memory array design. We address this topic in this section and show how to interface a
memory system with a typical microprocessor.

Now let us discuss how to design ROM/RAM arrays. In particular, our discussion
is focused on the design of memory arrays for a hypothetical microcomputer. The pertinent
signals of a typical microprocessor necessary for main memory interfacing are shown in
Figure 3.6. There are 16 address lines, A,,-A,, with A, being the least significant bit. This
means that this microprocessor can address directly a maximum of 2,, = 65,536 or 64K
bytes of memory locations.
The control line M / k goes LOW if the microprocessor executes an I/O instruction; it is held
HIGH if the microprocessor executes a memory instruction. Similarly, the microprocessor
drives control line HIGH for READ operation; it is held LOW for WRITE operation.
Note that all 16 address lines and the two control lines (M / k , W v) described so far

~~ ~ ~ ~~~~~~

FIGURE 3.6 Pertinent signals of a typical microprocessor required for main
memory interfacing.

56 Microprocessor Theory and Applications with 68000/68020 and Pentium

X 0 X

1 K x 8
RAM chip

The chip is not selected

FIGURE 3.7 Typical 1K x 8 SRAM chip.

are unidirectional in nature; that is, information can always travel on these lines from the
processor to external units. Eight bidirectional data lines, D,-D, (with Do being the least
significant bit) are also shown in Figure 3.6. These lines are used to allow data transfer
from the processor to external units, and vice versa.

In a typical application, the total amount of main memory connected to a
microprocessor consists of a combination of ROMs and RAMS. However, in the following
we illustrate for simplicity how to design memory array using only SRAM chips.

The pin diagram of a typical 1K x 8 RAM chip is shown in Figure 3.7. In this
chip there are 10 address lines , A,-A,, so one can read or write 1024 (2,, = 1024) different
memory words. Also, in this chip there are eight bidirectional data lines, D,-D, so that
information can travel back and forth between the microprocessor and the memory unit.
The three control lines m, CS2, and W w are used to control the SRAM unit according
to the truth table shown in Table 3.1 from which it can be concluded that the RAM unit
is enabled only when m= 0 and CS2 = 1. Under this condition, WE = 0 and WE = 1
imply write and read operations, respectively.

To connect a microprocessor to ROM/RAM chips, two address-decoding
techniques are commonly used: linear decoding and full decoding. Let us discuss first
how to interconnect a microprocessor with a 4K SRAM chip array comprised of the four
1K SRAM chips of Figure 3.7 using the linear decoding technique. Figure 3.8 uses linear
decoding to accomplish this. In this approach, address lines A,-A, of the microprocessor
are connected to all SRAM chips. Similarly, the control lines M / k and WE of the
microprocessor are connected to control lines CS2 and WE, respectively of each SRAM

TABLE 3.1 Truth Table for Controlling SRAM.

CSI c s 2 ww I Function
0 1 0
0 1 1
1 X X

Write Operation
Read Operation
The chip is not selected

Microprocessor Memory Organization 57

1 A 1 4 '

u
Not used

P
-

P
-

P
-

, A g - A o MliO

RAM chip II
I

RAM chiD 111

-
CSI

RAM chip IV
10
,

FIGURE 3.8 Microprocessor connected to 4K SRAM using the linear select
decoding technique.

chip. The high-order address bits A,,-A,, act directly as chip selects. In particular, address
lines A,, and A,, select SRAM chips I and 11, respectively. Similarly, the address lines A,,
and A,, select the SRAM chips I11 and IV, respectively. A,, and A,, are don't cares and are
assumed to be zero. Table 3.2 describes how the addresses are distributed among the four
1K SRAM chips. The primary advantage this method, known as linear select decoding,
is that it does not require decoding hardware. However, if two or more of lines A,,-A,,
are low at the same time, more than one SRAM chip are selected, and this causes a bus
conflict.

Because of this potential problem, the software must be written such that it never
reads into or writes from any address in which more than one of bits A,,-A,, are low.
Another disadvantage of this method is that it wastes a large amount of address space. For
example, whenever the address value is B800 or 3800, SRAM chip I is selected. In other
words, address 3800 is the mirror reflection of address B800 (this situation is also called
memory foldback). This technique is therefore limited to a small system. The system of
Figure 3.8 can be expanded up to a total capacity of 6K using A,, and A,, as chip selects for
two more 1K SRAM chips.

5 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

Address Range
(Hex)

TABLE 3.2 Address Map of the Memory Organization of Figure 3.8

SRAM Chip
Number

A,, A, , A,,
0 0 0
0 0 1

0 1 0

0 1 1

3800-3BFF
3400-37FF
2C00-2FFF
1 COO- 1 FFF

SRAMChipNumber
I
I1
I11

IV

I
I1
111

IV

To resolve problems with linear decoding, we use full decoded memory addressing.
In this technique we use a decoder. The 4K memory system designed using this technique
is shown in Figure 3.9. Note that the decoder in the figure is very similar to a practical
decoder such as the 74LS138 with three chip enables. In Figure 3.9 the decoder output
selects one of the four IK SRAM chips, depending on the values ofA,,, A,,, andA,,(Table
3.3).

Note that the decoder output will be enabled only when E3 = E2 = 0 and E l = 1.
Therefore, in the organization of Figure 3.9, when any one of the high-order bits A,,, A,,,
or A,, is 1, the decoder will be disabled, and thus none of the SRAM chips will be selected.
In this arrangement, the memory addresses are assigned as shown in Table 3.4.

This approach does not waste any address space since the unused decoder outputs
(don’t cares) can be used for memory expansion. For example, the 3-to-8 decoder of
Figure 3.9 can select eight IK SRAM chips. Also, this method does not generate any bus
conflict. This is because the decoder output selected ensures enabling of one memory chip
at a time.

Finally, FPGAs can now be used with 32-bit microprocessors such as the Intel
Pentium and Motorola 68020 for performing the memory decode function.

_ _

3.3

Typical 32-bit microprocessors such as the Pentium contain on-chip memory management
unit hardware and on-chip cache memory. These topics are discussed next.

Microprocessor on-chip memory management unit and cache

3.3.1 Memory Management Concepts
Due to the massive amount of information that must be saved in most systems, the mass
storage device is often a disk. If each access is to a hard disk, system throughput will
be reduced to unacceptable levels. An obvious solution is to use a large and fast locally
accessed semiconductor memory. Unfortunately, the storage cost per bit for this solution
is very high. A combination of both off-board disk (secondary memory) and on-board

Microprocessor Memory Organization

Address Range
(Hex)

0000-03FF
0400-07FF
0800-OBFF
OCOO-OFFF

59

RAM Chip
Number

I
I1
111

IV

cs2
w

FIGURE 3.9 Interconnecting a microprocessor with a 4K RAM using full
decoded memory addressing.

semiconductor main memory must be designed into a system. This requires a mechanism
to manage the two-way flow of information between the primary (semiconductor) and
secondary (disk) media. This mechanism must be able to transfer blocks of data efficiently,
keep track of block usage, and replace them in a nonarbitrary way. The main memory
system must therefore be able to dynamically allocate memory space.

An operating system must have resource protection from corruption or abuse by
users. Users must be able to protect areas of code from each other while maintaining the

60 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Physical
Address

Address

Logical
Address

OFFSET

Physical
Address

(a) using the substitution technique (b) Using the offset technique

FIGURE 3.10 Address translation

ability to communicate and share other areas of code. All these requirements indicate the
need for a device, located between the microprocessor and memory, to control accesses,
perform address mappings, and act as an interface between the logical (programmer’s
memory) and physical (microprocessor’s directly addressable memory) address spaces.
Because this device must manage the memory use configuration, it is appropriately called
the memory management unit (MMU).

Typical 32-bit processors such as the Motorola 68030/68040 and the Intel Pentium
include on-chip MMUs. An MMU reduces the burden of the memory management function
of the operating system. The basic functions provided by an MMU are address translation
and protection. It translates logical program addresses to physical memory address. Note
that in assembly language programming, addresses are referred to by symbolic names.
These addresses in a program are called logical addresses because they indicate the logical
positions of instructions and data. The MMU translates these logical addresses to physical
addresses provided by the memory chips. The MMU can perform address translation in one
of two ways:

1. By using the substitution technique [Figure 3.10(a)].
2. By adding an offset to each logical address to obtain the corresponding
physical address [Figure 3.10(b)].
Address translation using the substitution technique is faster than translation using

the offset method. However, the offset method has the advantage of mapping a logical
address to any physical address as determined by the offset value.

Memory is usually divided into small manageable units. The terms page and
segment are frequently used to describe these units. Paging divides the memory into equal-
sized pages; segmentation divides the memory into variable-sized segments. It is relatively
easier to implement the address translation table if the logical and main memory spaces are
divided into pages.

There are three ways to map logical addresses to physical addresses: paging,
segmentation, and combined paging-segmentation. In a pagedsystern, a user has access to a
larger address space than physical memory provides. The virtual memory system is managed
by both hardware and software. The hardware included in the memory management unit
handles address translation. The memory management software in the operating system
performs all functions, including page replacement policies to provide efficient memory
utilization. The memory management software performs functions such as removal of the
desired page from main memory to accommodate a new page, transferring a new page
from secondary to main memory at the right instant in time, and placing the page at the
right location in memory.

Microprocessor Memory Organization 61

If the main memory is full during transfer from secondary to main memory, it
is necessary to remove a page from main memory to accommodate the new page. Two
popular page replacement policies are first in first out (FIFO) and least recently used
(LRU). The FIFO policy removes the page from main memory that has been resident in
memory longest. The FIFO replacement policy is easy to implement, but one of its main
disadvantages is that heavily used pages are likely to be replaced. Note that heavily used
pages are resident in main memory longest. This replacement policy is sometimes a poor
choice. For example, in a time-shared system, several users normally share a copy of the
text editor in order to type and correct programs. The FIFO policy on such a system might
replace a heavily used editor page to make room for a new page. This editor page might be
recalled to main memory immediately. FIFO would be a poor choice in this case. The LRU
policy, on the other hand, replaces the page that has not been used for the longest amount
of time.

In the segmentation method, an MMU utilizes the segment selector to obtain a
descriptor from a table in memory containing several descriptors. A descriptor contains the
physical base address for a segment, the segment’s privilege level, and some control bits.
When the MMU obtains a logical address from the microprocessor, it first determines whether
the segment is already in physical memory. If it is, the MMU adds an offset component
to the segment base component of the address obtained from the segment descriptor table
to provide the physical address. The MMU then generates the physical address on the
address bus for selecting the memory. On the other hand, if the MMU does not find the
logical address in physical memory, it interrupts the microprocessor. The microprocessor
executes a service routine to bring the desired program from a secondary memory such as
disk to the physical memory. The MMU determines the physical address using the segment
offset and descriptor as described earlier and then generates the physical address on the
address bus for memory. A segment will usually consist of an integral number of pages,
each, say, 256 bytes long. With different-sized segments being swapped in and out, areas
of valuable primary memory can become unusable. Memory is unusable for segmentation
when it is sandwiched between already allocated segments and if it is not large enough to
hold the latest segment that needs to be loaded. This is called external fragmentation and
is handled by MMUs using special techniques. An example of external fragmentation is
shown in Figure 3.11. The advantages of segmented memory management are that few
descriptors are required for large programs or data spaces and that internal fragmentation
(discussed later) is minimized. The disadvantages include external fragmentation, the need
for involved algorithms for placing data, possible restrictions on the starting address, and
the need for longer data swap times to support virtual memory.

Address translation using descriptor tables offers a protection feature. A segment
or a page can be protected from access by a program section of a lower privilege level. For
example, the selector component of each logical address includes 1 or 2 bits indicating the

Allocated

FIGURE 3.11 Memory fragmentation (external).

62 Microprocessor Theory and Applications with 68000/68020 and Pentium

privilege level of the program requesting access to a segment. Each segment descriptor
also includes 1 or 2 bits providing the privilege level of that segment. When an executing
program tries to access a segment, the MMU can compare the selector privilege level
with the descriptor privilege level. If the segment selector has the same or a higher
privilege level, the MMU permits access. If the privilege level of the selector is lower
than that of the descriptor, the MMU can interrupt the microprocessor, informing it of a
privilege-level violation. Therefore, the indirect technique of generating a physical address
provides a mechanism for protecting critical program sections in the operating system.
Because paging divides the memory into equal-sized pages, it avoids the major problem of
segmentation: external fragmentation. Because the pages are of the same size, when a new
page is requested and an old one swapped out, the new one will always fit into the space
vacated. However, a problem common to both techniques remains: internal fragmentation.
Internal fragmentation is a condition where memory is unused but allocated due to memory
block size implementation restrictions. This occurs when a module needs, say, 300 bytes
and the page is 1 kB, as shown in Figure 3.12.

In thepaged-segmentation method, each segment contains a number of pages. The
logical address is divided into three components: segment, page, and word. The segment
component defines a segment number, the page component defines the page within the
segment, and the word component provides the particular word within the page. A page
component of n bits can provide up to 2" pages. A segment can be assigned with one or
more pages up to maximum of 2" pages; therefore, a segment size depends on the number
of pages assigned to it.

A protection mechanism can be assigned to either a physical address or a logical
address. Physical memory protection can be accomplished by using one or more protection
bits with each block to define the access type permitted on the block. This means that
each time a page is transferred from one block to another, the block protection bits must
be updated. A more efficient approach is to provide a protection feature in logical address
space by including protection bits in descriptors of the segment table in the MMU.

Virtual memory is the most fundamental concept implemented by a system that
performs memory-management functions such as space allocation, program relocation,
code sharing, and protection.The key idea behind this concept is to allow a user program
to address more locations than those available in a physical memory. An address generated
by a user program is called a virtual address. The set of virtual addresses constitutes the
virtual address space. Similarly, the main memory of a microcomputer contains a fixed
number of addressable locations, and a set of these locations forms the physical address
space. The basic hardware for virtual memory is implemented in 32-bit microprocessors as
an on-chip feature. These 32-bit processors support both cache and virtual memories. The

PAGES 1 K

IF 300 BYTES NEEDED, 1 K B is ALLOCATED

f

ALLOCATED c MEMORY UNUSED BUT ALLOCATED BECAUSE OF
IMPLEMENTATION RESTRICTIONS ON BLOCK SIZES

FIGURE 3.12 Memory fragmentation (internal).

Microprocessor Meinov Organization 63

virtual addresses are typically converted to physical addresses and then applied to cache.

3.3.2 Cache Memory Organization
The performance of a microprocessor system can be improved significantly by introducing
a small, expensive, but fast memory between the microprocessor and main memory. The
idea for cache memory was introduced in the IBM 360/85 computer. Later, the concept was
implemented in minicomputers such as the PDP- 1 1 /70. With the advent of very large scale
integration (VLSI) technology, the cache memory technique has been gaining acceptance
in the microprocessor world. Studies have shown that typical programs spend most of their
execution time in loops. This means that the addresses generated by a microprocessor have
a tendency to cluster around a small region in the main memory, a phenomenon known
as locality of reference. Typical 32-bit microprocessors can execute the same instructions
in a loop from the on-chip cache rather than reading them repeatedly from the external
main memory. Thus, the performance is greatly improved. For example, an on-chip
cache memory is implemented in Intel’s 32-bit microprocessor, the 80486/Pentium, and
Motorola’s 32-bit microprocessor, the 68030/68040. The 80386 does not have an on-chip
cache, but external cache memory can be interfaced to it.

A block diagram representation of a microprocessor system that employs a cache
memory is shown in Figure 3.13. Usually, a cache memory is very small in size and its
access time is less than that of the main memory by a factor of 5. Typically, the access times
of the cache and main memories are 100 and 500 ns, respectively. If a reference is found
in the cache, we call it a cache hit, and the information pertaining to the microprocessor
reference is transferred to the microprocessor from the cache. However, if the reference is
not found in the cache, we call it a cache miss.

When there is a cache miss, the main memory is accessed by the microprocessor
and the instructions andor data are transferred to the microprocessor from the main memory.
At the same time, a block containing the information needed by the microprocessor is
transferred from the main memory to cache. The block normally contains 4 to 16 words,
and this block is placed in the cache using standard replacement policies such as FIFO
or LRU. This block transfer is done with the hope that all future references made by the
microprocessor will be confined to the fast cache.

The relationship between the cache and main memory blocks is established
using mapping techniques. Three widely used mapping techniques are direct mapping,
fully associative mapping, and set-associative mapping. To explain these three mapping
techniques, the memory organization of Figure 3.14 will be used. The main memory is
capable of storing 4K words of 16 bits each. The cache memory, on the other hand, can store
256 words of 16 bits each. An identical copy of every word stored in cache exists in main
memory. The microprocessor first accesses the cache. If there is a hit, the microprocessor
accepts the 16-bit word from the cache. In case of a miss, the microprocessor reads the
desired 16-bit word from the main memory, and this 16-bit word is then written to the
cache. A cache memory may contain instructions only (Instruction cache) or data only
(data cache) or both instructions and data (unified cache).

Direct mapping uses a RAM for the cache. The microprocessor’s 12-bit address
is divided into two fields, an index field and a tag field. Because the cache address is 8 bits
wide (28 = 256), the low-order 8 bits of the microprocessor’s address form the index field,
and the remaining 4 bits constitute the tag field. This is illustrated in Figure 3.15.

In general, if the main memory address field is m bits wide and the cache memory
address is n bits wide, the index field will then require n bits and the tag field will be (m - n)

64 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Cache
Memory
256 x 16

Main Memory
4 K x 1 6

FIGURE 3.13 Memory organization of a microprocessor system that employs
a cache memory.

bits wide. The n-bit address will access the cache. Each word in the cache will include the
data word and its associated tag. When the microprocessor generates an address for main
memory, the index field is used as the address to access the cache. The tag field of the main
memory is compared with the tag field in the word read from cache. A hit occurs if the tags
match. This means that the data word desired is in cache. A miss occurs if there is no match,
and the required word is read from main memory. It is written in the cache along with the
tag. One of the main drawbacks of direct mapping is that numerous misses may occur if
two or more words with addresses that have the same index but different tags are accessed
several times. This situation should be avoided or can be minimized by having such words
far apart in the address lines.

Let us illustrate the concept of direct mapping for a data cache by means of the

4 bits 8 bits

Main Memory Cache Memory
Address = 8 bits
Data = 16 bits

Hex Address = 12 bits
Address Data = 16 bits

F F F F F
FIGURE 3.14 Addresses for main and cache memory.

Microprocessor Memory Organization

000
00 1

002

100

101

200

20 1

65

01 3F

1234

A370

2714
23B4

7A3F

2721

Memory
Address

(a) Main Memory

01 3F

01

02 A370

(b) Cache Memory

FIGURE 3.15

numerical example shown in Figure 3.15. All numbers are in hexadecimal. The content of
index address 00 of cache is tag = 0 and data = 0 13F. Suppose that a microprocessor wants to
access the memory address 100. The index address 00 is used to access the cache. Memory
address tag 1 is compared with cache tag 0. This does not produce a match. Therefore,
the main memory is accessed and the data 27 14 is transferred into the microprocessor. The
cache word at index address 00 is then replaced by a tag of 1 and data of 27 14.

The fastest and most expensive cache memory known as fully associative mapping
utilizes an associative memory. Each element in associative memory contains a main
memory address and its content (data). When the microprocessor generates a main memory
address, it is compared associatively (simultaneously) with all addresses in the associative
memory. If there is a match, the corresponding data word is read from the associative cache
memory and sent to the microprocessor. If a miss occurs, the main memory is accessed
and the address and its corresponding data are written to the associative cache memory.
If the cache is full, certain policies such as FIFO, are used as replacement algorithms
for the cache. Associative cache is expensive but provides fast operation. The concept of
associative cache is illustrated by means of a numerical example in Figure 3.16. Assume
that all numbers are hexadecimal.

The associative memory stores both the memory address and its contents (data).
The figure shows four words stored in the associative cache. Each word in the cache is a
12-bit address along with its 16-bit contents (data). When the microprocessor wants to
access memory, the 12-bit address is placed in an address register and the associative cache
memory is searched for a matching address. Suppose that the content of the microprocessor
address register is 445. Because there is a match, the microprocessor reads the corresponding
data OFAl into an internal data register.

Set-associative mapping is a combination of direct and associative mapping. Each

Direct mapping numerical example.

66 Microprocessor Theory and Applications with 68000/68020 and Pentium

12 Bits Address register

I 010 I 2F17 I
I 247 I 3245 I
I 445 I OFAI I
I 73 1 I 2A00 I

I I
FIGURE 3.16 Numerical example of associative mapping.

cache word stores two or more main memory words using the same index address. Each
main memory word consists of a tag and its data word. An index with two or more tags and
data words forms a set.
When the microprocessor generates a memory request, the index of the main memory
address is used as the cache address. The tag field of the main memory address is then
compared associatively (simultaneously) with all tags stored under the index. If a match
occurs, the desired dataword is read. If a match does not occur, the data word, along with
its tag, is read from main memory and written into the cache. The hit ratio improves as the
set size increases because more words with the same index but different tags can be stored
in the cache.

The concept of set-associative mapping can be illustrated by the numerical
example shown in Table 3.5. Assume that all numbers are hexadecimal. Each cache word
can store two or more memory words under the same index address. Each data item is
stored with its tag. The size of a set is defined by the number of tag and data items in a
cache word. A set size of 2 is used in this example. Each index address contains two data
words and their associated tags. Each tag includes 4 bits, and each data word contains 16
bits. Therefore, the word length = 2 x (4 + 16) = 40 bits. An index address of 8 bits can
represent 256 words. Hence, the size of the cache memory is 256 x 40. It can store 512
main memory words because each cache word includes two data words.

The hex numbers shown in Table 3.5 are obtained from the main memory contents
shown in Figure 3.15. The words stored at addresses 000 and 200 of main memory in Figure
3.15 are stored in cache memory (shown in Table 3.5) at index address 00. Similarly, the
words at addresses 101 and 201 are stored at index address 01. When the microprocessor
wants to access a memory word, the index value of the address is used to access the cache.
The tag field of the microprocessor address is then compared with both tags in the cache
associatively (simultaneously) for a cache hit. If there is a match, appropriate data is read
into the microprocessor. The hit ratio will improve as the set size increases because more
words with the same index but different tags can be stored in the cache. However, this may
increase the cost of comparison logic.

TABLE 3.5 Numerical Example of Set-Associative Mapping with a Set Size of 2

Index Fl
00 013F 7A3F
01 23B4

Microprocessor Memory Organization 67

There are two ways of writing into cache: the write-back and write-through
methods. In the write-back method, whenever the microprocessor writes something into
a cache word, a “dirty” bit is assigned to the cache word. When a dirty word is to be
replaced with a new word, the dirty word is first copied into the main memory before it
is overwritten by the incoming new word. The advantage of this method is that it avoids
unnecessary writing into main memory.

In the write-through method, whenever the microprocessor alters a cache address,
the same alteration is made in the main memory copy of the altered cache address. This
policy is easily implemented and ensures that the contents of the main memory are always
valid. This feature is desirable in a multiprocesssor system, in which the main memory
is shared by several processors. However, this approach may lead to several unnecessary
writes to main memory.

One of the important aspects of cache memory organization is to devise a method
that ensures proper utilization of the cache. Usually, the tag directory contains an extra bit
for each entry, called a valid bit. When the power is turned on, the valid bit corresponding
to each cache block entry of the tag directory is reset to zero. This is done to indicate that
the cache block holds invalid data. When a block of data is transferred from the main
memory to a cache block, the valid bit corresponding to this cache block is set to 1. In
this arrangement, whenever the valid bit is zero, it implies that a new incoming block can
overwrite the existing cache block. Thus, there is no need to copy the contents of the cache
block being replaced into the main memory.

The growth in integrated circuit (IC) technology has allowed manufacturers to
fabricate a cache on a microprocessor chip such as Motorola’s 32-bit microprocessor, the
68020. The 68020 on-chip cache is a direct-mapped instruction cache. Only instructions
are cached; data items are not.

Finally, microprocessors such as the Intel Pentium I1 support two levels of cache,
L1 (level 1) and L2 (level 2) cache memories. The L1 cache (smaller in size) is contained
inside the processor chip while the L2 cache (larger in size) is interfaced external to the
microprocessor. The L 1 cache normally provides separate instruction and data caches. The
processor can access the L1 cache directly and the L2 cache normally supplies instructions
and data to the L1 cache. The L2 cache is usually accessed by the microprocessor only if
L 1 misses occur. This two-level cache memory enhances microprocessor performance.

68

Questions and Problems

Microprocessor Theory and Applications with 68000/68020 and Pentium

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

What is the basic difference between main memory and secondary memory?

A microprocessor has 24 address pins. What is the maximum size of the main
memory?

Can the microprocessor execute programs directly in hard disk? Explain your
answer.

What is the basic difference between: (a) EPROM and EEPROM? (b) SRAM
and DRAM?

Given a memory with a 14-bit address and an 8-bit word size.
(a)
(b)

(c)

How many bytes can be stored in this memory?
If this memory were constructed from 1K x 1 RAMS, how many
memory chips would be required?
How many bits would be used for chip select?

What are the main differences between CD and DVD memories?

Draw a block diagram showing the address and data lines for the 2732, and
2764 EPROM chips.

(a)

(b)

How many address and data lines are required for a 1M x 16 memory
chip?
What is the size of a decoder with one chip enable (E) to obtain a
64K x 32 memory from 4K x 8 chips? Where are the inputs and outputs
of the decoder connected?

A microprocessor with 24 address pins and eight data pins is connected to a
1K x 8 memory chip with one chip enable. How many unused address bits of the
microprocessor are available for interfacing other 1K x 8 memory chips? What is
the maximum directly addressable memorv available with this microprocessor?

-
WE -

c s 1

c s 2

(Chip select 1)

(Chip select 2)

512 x 8
RAM -

WE = Low for Write
High for Read

FIGURE P3.11

Microprocessor Memory Organization 69
- I A , , A,, Miig A,, MEMR Alo-A, A i A 0

I
L

v,
v,

0

-I

2Kx8
ROM -

OE

CE
- ~-

(RW = O for read
= 1 for write)

- A,-Ao

D7- Do‘-
-
CS 256x8

FIGURE P3.12

3.10 Name the methods used in main memory array design. What are the advantages
and disadvantages of each?

3.11 The block diagram of a 5 12 x 8 RAM chip is shown in Figure P3.11. In this
arrangement the memory chip is enabled only when = L and CS2 = H.
Design a 1K x 8 RAM system using this chip as the building block. Draw a
neat logic diagram of your implementation. Assume that the microprocessor can
directly address 64K with a and eight data pins. Using linear decoding and
don’t-care conditions as l’s, determine the memory map in hexadecimal.
Consider the hardware schematic shown in Figure P3.12.

(a)

(b)

3.12

Determine the address map of this system. Note: MEMR = 0 for read,
MEMR = 1 for write, M/ %= 0 for I/O and M/%= 1 for memory.
Is there any possibility of bus conflict in this organization?
Clearly justify your answer.

TABLE P3.13

Device Size Address Assignment (Hex)
EPROM chip 1 K x 8 8000-83FF

RAM chip 0 1K x 8 9000-93FF

RAM chiD 1 1 K x 8 C000-C3FF

70

TABLE P3.14

Microprocessor Theory and Applications with 68000/68020 and Pentium

Device Size Address Assignment in hex

EPROM chip 1 K x 8 7000-73FF
RAM chip 0 1 K x 8 DOOGD3FF
RAM chio 1 1 K x 8 FOOO-F3FF

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

Interface a microprocessor with 16-bit address pins and 8-bit data pins and a
pin to a 1K x 8 EPROM chip and two 1K x 8 RAM chips such that the memory
map shown in Table P3.13 is obtained:
Assume that both EPROM and RAM chips contain two enable pins: CE and
for the EPROM and CE and WE for each RAM. Note that WE = 1 and WE = 0
indicate read and write operations for the RAM chip. Use a 74138 decoder.

Repeat Problem 3.13 to obtain the memory map shown in Table P3.14 using a
74 1 3 8 decoder.

What is meant by foldback in linear decoding?

Comment on the importance of the following features in an operating
system implementation:
(a) Address translation
(b) Protection

Explain briefly the differences between segmentation and paging.

What is the advantage of having a cache memory? Name a 32-bit microprocessor
that does not contain an on-chip cache.

What basic functions are performed by a microprocessor’s on-chip MMU?

Discuss briefly the various cache-mapping techniques.

A microprocessor has a main memory of 8K x 32 and a cache memory of 4K
x 32. Using direct mapping, determine the sizes of the tag field, index field, and
each word of the cache.

A microprocessor has a main memory of 4K x 32. Using a cache memory address
of 8 bits and set-associative mapping with a set size of 2, determine the size of
the cache memory.

A microprocessor can address directly1 MB of memory with a 16-bit word size.
Determine the size of each cache memory word for associative mapping.

Under what conditions does the set-associative mapping method become one of
the following?
(a) Direct mapping
(b) Fully associative mapping

4
MICROPROCESSOR INPUT/

OUTPUT

In this chapter we describe the basics of inpudoutput (I/O) techniques utilized by typical
microprocessors. Topics include programmed I/O, interrupt I/O, and DMA (direct memory
access).

4.1 Introduction

The technique of data transfer between a microcomputer and an external device is called
inpudourput (UO). One communicates with a microcomputer via the I/O devices interfaced
to it. The user can enter programs and data using the keyboard on a terminal and execute
the programs to obtain results. Therefore, the I/O devices connected to a microcomputer
provide an efficient means of communication between the microcomputer and the outside
world. These I/O devices, commonly called peripherals and include keyboards, monitors
(screens), printers, and hard disks.

The characteristics of I/O devices are normally different from those of a
microcomputer. For example, the speed of operation of peripherals is usually slower than
that of the microcomputer, and the word length of the microcomputer may be different
from the data format of the peripheral devices. To make the characteristics of the I/O
devices compatible with those of a microcomputer, interface hardware circuitry between
the microcomputer and I/O devices is necessary. Interfaces provide all input and output
transfers between the microcomputer and peripherals by using an I/O bus. An I/O bus
carries three types of signals: device address, data, and command.

A microprocessor uses an I/O bus when it executes an I/O instruction. A typical
I/O instruction has three fields. When the microprocessor executes an I/O instruction,
the control unit decodes the op-code field and identifies it as an I/O instruction. The
microprocessor then places the device address and command from respective fields of the
I/O instruction on the I/O bus. The interfaces for various devices connected to the I/O
bus decode this address, and an appropriate interface is selected. The identified interface
decodes the command lines and determines the hnction to be performed. Typical functions
include receiving data from an input device into the microprocessor or sending data to an
output device from the microprocessor. In a typical microcomputer system, the user gets
involved with two types of I/O devices: physical I/O and virtual I/O. When a microcomputer
has no operating system, the user must work directly with physical I/O devices and perform
detailed I/O design.

There are three ways of transferring data between a microcomputer and physical
I/O devices: programmed I/O, interrupt I/O and direct memory access. Using programmed
Z/O, the microprocessor executes a program to perform all data transfers between

71

72 Microprocessor Theory and Applications with 68000/68020 and Pentium

the microcomputer and the external device. The main characteristic of this type of I/O
technique is that the external device carries out the functions dictated by the program
inside the microcomputer memory. In other words, the microprocessor controls all transfers
completely.

In interrupt I/O, an external device can force the microprocessor to stop executing
the current program temporarily so that it can execute another program known as an
interrupt service routine. This routine satisfies the needs of the external device. After
completing this program, a return from interrupt instruction can be executed at the end of
the service routine to return control at the right place in the main program.

Direct memory access (DMA) is a type of I/O technique in which data can be
transferred between microcomputer memory and an external device such as the hard disk,
without microprocessor involvement. A special chip called the DMA controller chip is
typically used with the microprocessor for transferring data using DMA.

In a microcomputer with an operating system, the user works with virtual I/O
devices. The user does not have to be familiar with the characteristics of the physical
I/O devices. Instead, the user performs data transfers between the microcomputer and the
physical I/O devices indirectly by calling the I/O routines provided by the operating system
using virtual I/O instructions.

Basically, an operating system serves as an interface between the user programs
and actual hardware. The operating system facilitates the creation of many logical or
virtual I/O devices and allows a user program to communicate directly with these logical
devices. For example, a user program may write its output to a virtual printer. In reality, a
virtual printer may refer to a block of disk space. When the user program terminates, the
operating system may assign one of the available physical printers to this virtual printer and
monitor the entire printing operation. This concept, known as spooling improves system
throughput by isolating the fast processor from direct contact with a slow printing device. A
user program is totally unaware of the logical-to-physical device-mapping process. There
is no need to modify a user program if a logical device is assigned to some other available
physical device. This approach offers greater flexibility over the conventional hardware-
oriented techniques associated with physical I/O.

4.2 Simple I/O Devices

A simple input device such as a DIP switch can be connected to a microcomputer’s I/O
port as shown in Figure 4.1. The figure shows a switch circuit that can be used as a single
bit input into an I/O port. When the DIP switch is open, V, is HIGH. When the switch is
closed, VIN is LOW. V, can be used as an input bit for performing laboratory experiments.

+5 v

t

FIGURE 4.1 Qpical switch for a microcomputer’s input.

Microprocessor Input /Output (I/O) 73

TABLE 4.1 Current and Voltage Requirements of LEDs

LEDs Red Yellow Green
Current 10 mA 10 mA 20 mA
Voltage 1.7 V 2.2v 2.4V

Note that unlike TTL, a lKohm resistor is connected between the switch and the input of
the MOS gate (port input). This provides protection against static discharge.

For performing simple I/O experiments using programmed I/O, light-emitting
diodes (LEDs) and seven-segment displays can be used as output devices. An LED is
typically driven by low voltage and low current, which makes it a very attractive device for
use with microprocessors. Table 4.1 provides the current and voltage requirements for red,
yellow, and green LEDs. Basically, an LED will be ON, generating light, when its cathode
is sufficiently negative with respect to its anode. A microcomputer can therefore light an
LED either by grounding the cathode (if the anode is tied to +5 V) or by applying +5 V
to the anode (if the cathode is grounded) through an appropriate resistor value. A typical
hardware interface between a microcomputer and an LED is depicted in Figure 4.2.

A microcomputer normally outputs 400 pA at a minimum voltage V, = 2.4 volts
for a HIGH. The red LED requires 10 mA at 1.7 volts. A buffer such as an inverter is
required to turn the LED ON.

A HIGH at the microcomputer output will turn the LED ON. This will allow a
path of current to flow from the +5 V source through R and the LED to the ground. The
appropriate value of R needs to be calculated to satisfy the voltage and current requirements
of the LED. The value of R can be calculated as follows:

R- 5 - 1.7 5 - 1.7
10mA - lOmA -330

Therefore, the interface design is complete, and a value of R = 330 C2 is required.
A seven-segment display can be used with programmed I/O to display, for example,
decimal numbers from 0 to 9. The name seven segment is based on the fact that there are
seven LEDs, one in each segment of the display. Figure 4.3 shows a typical seven-segment
display. In the figure, each segment contains an LED. All decimal numbers from 0 through
9 can be displayed by turning the appropriate segment ON or OFF. For example, a zero
can be displayed by turning the LED in segment g OFF and turning the other six LEDs
in segments a throughf ON. There are two types of seven-segment displays: common-
cathode and common-anode. In a common- cathode arrangement, the microcomputer can
send a HIGH to light a segment and a LOW to turn it off. In a common-anode configuration,
on the other hand, the microcomputer sends a LOW to light a segment and a HIGH to turn
it off.

FIGURE 4.2

I Microcomputer I

Microcomputer - LED interface via an inverter

74 Microprocessor Theory and Applications with 68000/68020 and Pentium

0 0 1 1 0 1 0 0

a

Data-direction

FIGURE 4.3 Seven-segment display.

Seven-segment displays can be interfaced to typical microprocessors using
programmed I/O. BCD to seven-segment code converter chips such as 7447 or 7448 can be
replaced by a look-up table. This table can be stored in a microcomputer’s main memory.
An assembly language program can be written to read the appropriate code for a BCD digit
stored in this table. This data can be output to display the BCD digit on a seven-segment
display connected to an I/O port of the microcomputer. Programs to accomplish this are
written in 68000/68020 and Pentium assembly language later in the book.

4.3 Programmed I/O

A microcomputer communicates with an external device via one or more registers called
Z/O ports using programmed I/O. I/O ports are usually of two types. For one type, each
bit in the port can be configured individually as either input or output. For the other type,
all bits in the port can be set up as all parallel input or parallel output bits. Each port can
be configured as an input or output port by another register called the command or
data-direction register. The port contains the actual input or output data. The data-
direction register is an output register and can be used to configure the bits in the
port as inputs or outputs.

Each bit in the port can be set up as an input or output, normally by writing a 0
or a 1 in the corresponding bit of the data-direction register. As an example, if an 8-bit
data-direction register contains 34H (34 Hex), the corresponding port is defined as shown
in Figure 4.4. In this example, because 34H (0011 0100) is sent as an output into the data-
direction register, bits 0, 1, 3, 6, and 7 of the port are set up as inputs, and bits 2, 4, and
5 of the port are defined as outputs. The microcomputer can then send output to external
devices, such as LEDs, connected to bits 2,4, and 5 through a proper interface. Similarly,
the microcomputer can input the status of external devices, such as switches, through bits
0, 1, 3, 6, and 7. To input data from the input switches, the microcomputer inputs the
complete byte, including the bits to which LEDs are connected. While receiving input
data from an I/O port, however, the microcomputer places a value, probably 0, at the bits
configured as outputs and the program must interpret them as “don’t cares.” At the same
time, the microcomputer’s outputs to bits configured as inputs are disabled.

-1 I/Oport

+ + + + + + + +
FIGURE 4.4 Bit configurable I/O port along with a data-direction register.

Microprocessor Input /Output (I/O) 75

Other control information
such as timer control signals -

............. Command register

b 3 - ipo~B I-...'.

.................................. - v
Input Devices Output Devices

FIGURE 4.5 Parallel I/O ports.

For parallel I/O, there is only one data direction register for all ports. A particular
bit in the data direction register configures all bits in the port as either inputs or outputs.
Consider two I/O ports in an I/O chip along with one data direction register. Assume that
a 0 or a 1 in a particular bit position defines all bits of port A or B as inputs or outputs
respectively. An example is depicted in Figure 4.5. Some I/O ports are called handshake
ports. Data transfer occurs via these ports through exchanging of control signals between
the microcomputer and an external device.

I/O ports are addressed using either standard I/O or memory-mapped I/O
techniques. Standard I/O or port I/O (called isolated I/O by Intel) uses an output pin such
as the M / E pin on the Intel Pentium microprocessor chip. The microprocessor outputs
a HIGH on this pin to indicate to memory and the I/O chips that a memory operation is
taking place. A LOW output from the microprocessor to this pin indicates an I/O operation.
Execution of an IN or OUT instruction makes the M / E LOW, whereas memory-oriented
instructions, such as MOVE, drive the M/% to HIGH.

In standard I/O, the microprocessor uses the M/% pin to distinguish between I/O
and memory. For typical microprocessors, an 8-bit address can be used for each I/O port.
With an 8-bit I/O port address, these processors are capable of addressing 256 ports. In
addition, 32-bit microprocessors can also use 16- or 32-bit I/O ports.

In memory-mapped I/O, the microprocessor does not use the M / E control pin.
Instead, the microprocessor uses an unused address pin to distinguish between memory
and I/O. The microprocessor uses a portion of the memory addresses to represent I/O
ports. The I/O ports are mapped as part of the microprocessor's main memory addresses
which may not exist physically, but are used by the microprocessor's memory-oriented
instructions, such as MOVE, to generate the necessary control signals to perform I/O.
Motorola microprocessors such as the 68000 or 68020 do not have a control pin such as
M / E and use only memory-mapped I/O. Intel microprocessors can use both types.

When standard I/O is used, typical microprocessors such as the Pentium normally
use an IN or OUT instruction with 8-bit ports as follows:

76 Microprocessor Theory and Applications with 68000/68020 and Pentium

IN AL, PORTA
OUT PORTA,AL

; Inputs 8-bit data from PORTA into the 8-bit register AL
; Outputs the contents of the 8-bit register AL into PORTA

With memory-mapped I/O, the microprocessor normally uses an instruction(i.e.,

MOV mem,reg

MOV reg,mem

MOV as follows:
; Inputs the contents of a register into a port called “mem”
; mapped as a memory location
; outputs the contents of a port called “rnem” mapped as a
; memory location into a register

4.4

There are typically two ways in which programmed I/O can be utilized: unconditional I/O
and conditional I/O. The microprocessor can send data to an external device at any time
using unconditional I/O. The external device must always be ready for data transfer. A
typical example is that of a microprocessor outputting a 7-bit code through an I/O port to
drive a seven-segment display connected to this port. In conditional YO, the microprocessor
outputs data to an external device via handshaking. This means that data transfer occurs via
the exchange of control signals between the microprocessor and an external device. The

Unconditional and Conditional Programmed I/O

The processor
outputs or inputs
data to or from
external device

FIGURE 4.6 Flowchart for conditional programmed I/O.

Microprocessor Input /Output (YO)

Start
b

4

Conversion complete
(end of conversion)

b
Output enable

77

v

8-bit
tri-state
digital
output

DO

8-bit
tri-state

A/D converter
.

Bit 0

Bit
Bit 2

Port A

Bit

PortB {
Microcomputer

B i t 0 4

I I

~

b Output enable
Conversion

14 complete
b Start

Digital ’1 output

7 4

DO
N D Converter

FIGURE 4.7 A/D converter.

microprocessor inputs the status of the external device to determine whether the device
is ready for data transfer. Data transfer takes place when the device is ready. Figure 4.6
illustrates the concept of conditional programmed I/O.

The concept of conditional 110 will now be demonstrated by means of data transfer
between a microprocessor and an analog-to-digital (A/D) converter. Consider, for example,
the A/D converter shown in Figure 4.7, which transforms an analog voltage Vx into an
&bit binary output at pins D,-Do. A pulse at the “start ” pin initiates the conversion. This
drives the “conversion complete” signal LOW. The signal stays LOW during the conversion
process. The “conversion complete” signal goes HIGH as soon as the conversion ends.
Because the A/D converter’s output is tristated, a LOW on the Output enable transfers the
converter’s outputs. A HIGH on the Output enable drives the converter’s outputs to a high-

78 Microprocessor Theory and Applications with 68000/68020 and Pentium

The concept of conditional I/O can be demonstrated by interfacing an A/D
converter to a typical microcomputer. Figure 4.8 shows such an interfacing example. The
user writes a program to carry out the conversion process. When this program is executed,
the microcomputer sends a pulse to the “start” pin of the converter via bit 2 of port A. The
microcomputer then checks the “conversion complete” signal by inputting bit 1 of port A
to determine if the conversion is completed.

If the “conversion complete” signal is HIGH (indicating the end of conversion),
the microcomputer sends a LOW to the output enable pin of the A/D converter. The
microcomputer then inputs the converter’s Do-D, outputs via port B. If the conversion is
not completed, the microcomputer waits in a loop checking for the “conversion complete”
signal to go HIGH.

4.5 Interrupt I/O

A disadvantage of conditional programmed I/O is that the microcomputer needs to check
the status bit (a conversion complete signal of the A/D converter) by waiting in a loop. This
type of I/O transfer is dependent on the speed of the external device. For a slow device, this
waiting may slow down the microcomputer’s ability to process other data. The interrupt
I/O technique is efficient in this type of situation.

Interrupt I/O is a device-initiated I/O transfer. The external device is connected
to a pin called the interrupt (INT) pin on the microprocessor chip. When the device needs
an I/O transfer with the microcomputer, it activates the interrupt pin of the processor chip.
The microcomputer usually completes the current instruction and saves the contents of the
current program counter and the status register in the stack.

The microcomputer then loads an address automatically into the program counter
to branch to a subroutine-like program called the interrupt service routine. This program
is written by the user. The external device wants the microcomputer to execute this
program to transfer data. The last instruction of the service routine is a RETURN, which is
typically similar in concept to the RETURN instruction used at the end of a subroutine. The
RETURN from interrupt instruction normally restores the program counter and the status
register with the information saved in the stack before going to the service routine. Then
the microcomputer continues executing the main program. An example of interrupt I/O is
shown in Figure 4.9.

Assume that the microcomputer is 68000 based and is executing the following
instruction sequence:

ORG $2000
M0VE.B #$8 1, DDRA ;Configure bits 0 and 7

;of port A as outputs
M0VE.B #$OO, DDRB ;Configure port B as input
M0VE.B #$8 1, PORTA ;Send a HIGH start pulse to A/D

;and a HIGH to output enable
M0VE.B #$0 I , PORTA ;Send a LOW to start and

; a HIGH to output enable
CLR.W DO ;Clear 16-bit register DO to 0

BEGIN M0VE.W D1, D2

Microprocessor Input /Output (I/O)

4

.Outpute

4

79

Conversion
complete

Start

‘D7 AID
Tri-state

- converter

Do

I NT

Bit 0

PortA (I

Port6 {
Bii 7

Bit 7

Bit 0

FIGURE 4.9

The extensions .B and .W represent byte and word operations. Note that $ and #
indicate hexadecimal number and immediate mode respectively. The preceding program is
written arbitrarily.

The program logic can be explained using the 68000 instruction set. Ports DDRA
and DDRB are assumed to be the data-direction registers for ports A and B, respectively.
The first four MOVE instructions configure bits 0 and 7 of port A as outputs and port B
as the input port, and then send a trailing “start” pulse (HIGH and then LOW) to the A/D
converter along with a HIGH to the output enable. This HIGH output enable is required to
disable the A/D’s output.

The microcomputer continues with execution of the CLR.W DO instruction.
Suppose that the “conversion complete” signal becomes HIGH, indicating the end of
conversion during execution of the CLR.W DO instruction. This drives the INT signal to
HIGH, interrupting the microcomputer. The microcomputer completes execution of the
current instruction, CLR.W DO. It then saves the current contents of the program counter
(address BEGIN) and status register automatically and executes a subroutine-like program
called the service routine. This program is usually written by the user. The microprocessor
manufacturer normally specifies the starting address of the service routine, or it may be
provided by the user via external hardware. Assume that this address is $4000 and that the
user writes a service routine to input the A/D converter’s output as follows:

Microcomputer A/D converter interface via interrupt I/O.

ORG $4000
M0VE.B #$OO, PORTA ; Activate output enable
M0VE.B PORTB, D1 ; Input A/D
RTE
In this service routine, the microcomputer inputs the A/D converter’s output. The

return instruction RTE, at the end of the service routine, pops the address BEGIN and
the previous status register contents from the stack and loads the program counter and
status register with them. The microcomputer executes the M0VE.W D 1 ,D2 instruction
at the address BEGIN and continues with the main program. The basic characteristics of
interrupt I/O have been discussed so far. The main features of interrupt I/O provided with
a typical microcomputer are discussed next.

Return and restore PC and SR

80

4.5.1 Interrupt w e s
There are typically three types of interrupts: external interrupts, traps or internal interrupts,
and software interrupts. External interrupts are initiated through a microprocessor’s
interrupt pins by external devices such as A/D converters. External interrupts can be
divided firther into two types: maskable and nonmaskable. Nonmaskable interrupt cannot
be enabled or disabled by instructions, whereas a microprocessor’s instruction set contains
instructions to enable or disable maskable interrupt. For example, the Intel Pentium can
disable or enable maskable interrupt by executing instructions such as CLI (clear the
interrupt flag in the status register to 0) or STI (set interrupt flag in the status register to
1) . The Pentium recognizes maskable interrupt after execution of the STI while ignoring
it upon execution of the CLI. Note that the Pentium has an interrupt flag bit in the status
register. A nonmaskable interrupt has a higher priority than a maskable interrupt. If
maskable and nonmaskable interrupts are activated at the same time, the processor will
service the nonmaskable interrupt first.

A nonmaskable interrupt is typically used as a power failure interrupt.
Microprocessors normally use +5 V dc, which is transformed from 110 V ac. If the power
falls below 90 V ac, the DC voltage of +5 V cannot be maintained. However, it will take a
few milliseconds before the ac power drops below 90 V ac. In these few milliseconds, the
power-failure-sensing circuitry can interrupt the processor. The interrupt service routine
can be written to store critical data in nonvolatile memory such as battery-backed CMOS
RAM, and the interrupted program can continue without any loss of data when the power
returns.

Some microprocessors, such as the Pentium, are provided with a maskable
~ handshake interrupt. This interrupt is usually implemented by using two pins: INTR and
INTA. When the INTR pin is activated by an external device, the processor completes the
current instruction, saves at - least the current program - counter onto the stack, and generates
an interrupt acknowledge (INTA). In response to the INTA, the external device provides an
8-bit number using external hardware on the data bus of the microcomputer. This number
is then read and used by the microcomputer to branch to the service routine desired.

Internal interrupts, or traps, are activated internally by exceptional conditions
such as overflow, division by zero, or execution of an illegal op-code. Traps are handled
in the same way as external interrupts. The user writes a service routine to take corrective
measures and provide an indication to inform the user that an exceptional condition has
occurred. Many microprocessors include software interrupts, or system calls. When one of
these instructions is executed, the microprocessor is interrupted and serviced similarly to
external or internal interrupts.

Software interrupt instructions are normally used to call the operating system.
These instructions are shorter than subroutine calls, and no calling program is needed to
know the operating system’s address in memory. Software interrupt instructions allow the
user to switch from user to supervisor mode. For some processors, a software interrupt is
the only way to call the operating system, because a subroutine call to an address in the
operating system is not allowed.

4.5.2 Interrupt Address Vector
The technique used to find the starting address of the service routine (commonly known as the
interrupt address vector) varies from one processor to another. With some microprocessors,
the manufacturers define the fixed starting address for each interrupt. Other manufacturers use
an indirect approach by defining fixed locations where the interrupt address vector is stored.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Microprocessor Input /Output (I/O) 81

4.5.3 Saving the Microprocessor Registers
When a microprocessor is interrupted, it normally saves the program counter (PC) and
the status register (SR) onto the stack so that the microprocessor can return to the main
program with the original values of PC and SR after executing the service routine. The user
should know the specific registers the microprocessor saves prior to executing the service
routine. This will allow the user to use the appropriate return instruction at the end of the
service routine to restore the original conditions upon return to the main program.

4.5.4 Interrupt Priorities
A microprocessor is typically provided with one or more interrupt pins on the chip.
Therefore, a special mechanism is necessary to handle interrupts from several devices that
share one of these interrupt lines. There are two ways of servicing multiple interrupts:
polled and daisy chain techniques.

Polled Interrupts Polled interrupts are handled by software and therefore are slow
in servicing the interrupts. The microprocessor responds to an interrupt by executing one
general service routine for all devices. The priorities of devices are determined by the order
in which the routine polls each device. The microprocessor checks the status of each device
in the general service routine, starting with the highest-priority device, to service an
interrupt. Once the microprocessor determines the source of the interrupt, it branches to the
service routine for the device. Figure 4.10 shows a typical configuration of the polled-
interrupt system.

In Figure 4.10, several external devices (device 1, device 2,. . . , device N) are
connected to a single interrupt line of a microprocessor via an OR gate (not shown in the
figure). When one or more devices activate the INT line HIGH, the microprocessor pushes
the PC and SR onto the stack. It then branches to an address defined by the manufacturer
of the microprocessor. The user can write a program at this address to poll each device,
starting with the highest-priority device, to find the source of the interrupt. Suppose that the
devices in Figure 4.10 are A/D converters. Each converter, along with the associated logic
for polling, is shown in Figure 4.11.

Assume that in Figure 4.10 two N D converters (devices 1 and 2) are provided
with the “start” pulse by the microprocessor at nearly the same time. Suppose that the user
assigns device 2 the higher priority. The user then sets up this priority mechanism in the
general service routine. For example, when the “Conversion complete” signals from device
1 and/or 2 become HIGH, indicating the end of conversion, the processor is interrupted. In
response, the microprocessor pushes the PC and SR onto the stack and loads the PC with
the interrupt address vector defined by the manufacturer.

The general interrupt service routine written at this address determines the source
of the interrupt as follows: A 1 is sent to PA1 for device 2 because this device has higher
priority. If this device has generated an interrupt, the output (PB 1) of the AND gate in Figure
4.11 becomes HIGH, indicating to the microprocessor that device 2 generated the interrupt.
If the output of the AND gate is 0, the processor sends a HIGH to PA0 and checks the
output (PBO) for HIGH. Once the source of the interrupt is determined, the microprocessor
can be programmed to jump to the service routine for that device. The service routine
enables the A/D converter and inputs the converter’s outputs to the microprocessor.

Polled interrupts are slow, and for a large number of devices the time required
to poll each device may exceed the time to service the device. In such a case, a faster
mechanism, such as the daisy chain approach, can be used.

82 Microprocessor Theory and Applications with 68000/68020 and Pentium

Processor PB ,
PA 1

PB 0

PA 0

INT

I
Device a Device

2

I

. .
Device

N

FIGURE 4.10 Polled interrupt.

Daisy Chain Interrupts Devices are connected in daisy chain fashion, as shown in
Figure 4.12, to set up priority systems. Suppose that one or more devices interrupt the
processor. In response, the microprocessor - pushes the PC and SR onto the stack and,
generates an interrupt acknowledge (INTA) signal to the highest-priority - device (device 1
in this case). If ~ this device has generated the interrupt, - it will accept the INTA; otherwise,
it will pass the INTA onto the next device until the INTA is accepted.

Once accepted, the device provides a means for the processor to find the interrupt-
address vector by using external hardware. Assume that the devices in Figure 4.12 are A/D
converters. Figure 4.13 provides a schematic for each device and the associated logic.

I vx

Conversion
complete

Output enable

INT Do D7

From bit N To bit N
of port A of

of the processor port B

FIGURE 4.11 Device N and associated logic for polled interrupt.

Microprocessor Input /Output (I/O) 83

I

I NT

Processor -
I NTA

Device
1

Device Device
2 N

Device
1

Device Device
2

+ +

Hardware for
generating the
interrupt
address vector

t t t t t

vx
Analog signal

b Do- D,
AID converter / b

I

~

INTA from
processor

-
When LOW, provides INTA

0 for the next device

FIGURE 4.12 Daisy chain interrupt.

Suppose that the microprocessor in Figure 4.12 sends a pulse to start the conversions of
the A/D converters of devices 1 and 2 at nearly the same time. When the “conversion
complete” signal goes HIGH, the microprocessor is interrupted through the INT line.
The microprocessor - pushes the PC and SR. It then generates a LOW at the interrupt
acknowledge (INTA) for the highest-priority device. Device ~ 1 has the highest priority; it
is the first device in the daisy chain configuration to receive INTA . If A/D converter 1 has
generated the “conversion complete” HIGH, the output of the AND gate in Figure 4.13
becomes HIGH.

This signal can be used to enable external hardware to provide the interrupt
address vector on the microprocessor’s data lines. The microprocessor then branches to

84 Microprocessor Theory and Applications with 68000/68020 and Pentium

the service routine. This program enables the converter and inputs the A D output to the
microprocessor via port B. IfA/D converter 1 does not generate the “conversion complete”
HIGH, however, the output of the AND gate in Figure 4.13 becomes LOW (an input to
device 2’s logic) and the same sequence of operations takes place. In the daisy chain, each
- device has the same logic, with the exception of the last device, which must accept the
INTA . Note that the outputs of all the devices are connected to the INT line via an OR gate
(not shown in Figure 4.12).

4.6 Direct Memory Access (DMA)

Direct memory access (DMA) is a technique that transfers data between a microcomputer’s
memory and an I/O device without involving the microprocessor. DMA is widely used in
transferring large blocks of data between a peripheral device such as a hard disk and the
microcomputer’s memory. The DMA technique uses a DMA controller chip for the data
transfer operations. The DMA controller chip implements various components, such as a
counter containing the length of data to be transferred in hardware in order to speed up data
transfer. The main functions of a typical DMA controller are summarized as follows:

The I/O devices request DMA operation via the DMA request line of the controller
chip.

The controller chip activates the microprocessor HOLD pin, requesting the
microprocessor to release the bus.
The microprocessor sends HLDA (hold acknowledge) back to the DMA controller,
indicating that the bus is disabled. The DMA controller places the current value of
its internal registers, such as the address register and counter, on the system bus and
sends a DMA acknowledge to the peripheral device. The DMA controller completes
the DMA transfer.

There are three basic types of DMA: block transfer, cycle stealing, and interleaved
DMA. For block transfer DMA, the DMA controller chip takes over the bus from the
microcomputer to transfer data between the microcomputer memory and the I/O device.
The microprocessor has no access to the bus until the transfer is completed. During this
time, the microprocessor can perform internal operations that do not need the bus. This
method is popular with microprocessors. Using this technique, blocks of data can be
transferred.

Data transfer between the microcomputer memory and an 110 device occurs
on a word-by-word basis with cycle stealing. Typically, the microprocessor is generated
by ANDing an INHIBIT signal with the system clock. The system clock has the same
frequency as the microprocessor clock. The DMA controller controls the INHIBIT line.
During normal operation, the INHIBIT line is HIGH, providing the microprocessor clock.
When DMA operation is desired, the controller makes the INHIBIT line LOW for one
clock cycle. The microprocessor is then stopped completely for one cycle. Data transfer
between the memory and I/O takes place during this cycle. This method is called cycle
stealing because the DMA controller takes away or steals a cycle without microprocessor
recognition. Data transfer takes place over a period of time.

With interleaved DMA, the DMA controller chip takes over the system bus when
the microprocessor is not using it. For example, the microprocessor does not use the bus
while incrementing the program counter or performing an ALU operation. The DMA
controller chip identifies these cycles and allows transfer of data between memory and the

Microprocessor Input /Output (I/O) 85

I/O device. Data transfer for this method takes place over a period of time.
Because block transfer DMA is common with microprocessors, a brief description

is provided. Figure 4.14 shows a typical diagram of block transfer DMA. In the figure, the
I/O device requests DMA transfer via the DMA request line connected to the controller
chip. The DMA controller chip then sends a HOLD signal to the microprocessor and waits
for the HOLD acknowledge (HLDA) signal from the microprocessor. On receipt of the
HLDA, the controller chip sends a DMA ACK signal to the I/O device. The controller
takes over the bus and controls data transfer between RAM and the I/O device. On the
completion of data transfer, the controller interrupts the microprocessor by the INT line
and returns the bus to the microprocessor by disabling the HOLD and DMA ACK signals.

The DMA controller chip usually has at least three registers normally selected
by the controller's register select (RS) line: an address register, a terminal count register,
and a status register. Both the address and terminal counter registers are initialized by
the microprocessor. The address register contains the starting address of the data to be
transferred, and the terminal counter register contains the block to be transferred. The
status register contains information such as completion of DMA transfer. Note that the
DMA controller implements logic associated with data transfer in hardware to speed up the
DMA operation.

Address RG
lines

, Data INT
lines

' HOLD

I HLDA

FIGURE 4.14

v
Decoding

logic

RAM

Address cs +
lines

Data
lines

-
RIW +

F Data

I r
I DMA

Controller
Chip

f Bus

?...I Address

I ,dRS

L
110

device

lines

DMA I ACK

Typical block transfer.

4

86

4.7 Summary of 1 / 0

Microprocessor Theory and Applications with 68000/68020 and Pentium

Figure 4.15 summarizes various VO techniques used with a typical microprocessor.

110

I
Programmed 110

I

I

I
Interrupt 110

I
Direct Memory Access

P Y A)

Standard 110 Memory-
or Mapped I10 Block Transfer Interleaved

Isolated 110
or

Port 110

External Internal

I I
Maskable Nonmaskable Due to Software
(can be (cannot be enabled or exceptional such as
enabled disabled by

or disabled
conditions TRAP

instructions) such as instructions
by instructions) ovefflow

FIGURE 4.15 I/O structure of a typical microcomputer.

Microprocessor Input /Output (YO)

Questions and Problems

87

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Define the three types of I/O. Identify each as either microprocessor-initiated or
device-initiated.

What is the basic difference between standard I/O and memory-mapped I/O? Identify
the programmed I/O technique (s) used by Intel and Motorola microprocessors.

What are programmed I/O and virtual I/O?

What is the difference between memory mapping in a microprocessor and memory-
mapped I/O?

Discuss the basic difference between polled I/O and interrupt I/O.

What is the difference between subroutine and interrupt I/O?

What is an interrupt address vector?

Summarize the basic difference between maskable and nonmaskable interrupts.
Describe how power failure interrupt is normally handled.

Why are polled interrupt and daisy chain interrupt used?

Discuss the basic difference between internal and external interrupts.

What are cycle stealing, block transfer, and interleaved DMA?

Summarize the typical functions performed by a DMA controller chip.

This Page Intentionally Left Blank

5

Assembly or high- Translator
level language d (assembler or
(source code) com piledinterpreter)

MICROPROCESSOR
PROGRAMMING CONCEPTS

Binary

(object code)
- machine language

In this chapter we provide the fundamental concepts of microprocessor programming.
Typical programming characteristics such as programming languages, basics of
assembly language programming, instruction formats, instruction set architecture (ISA),
microprocessor instruction sets, and addressing modes are discussed.

5.1 Microcomputer Programming Languages 5.1 Microcomputer Programming Languages

Microprocessors are typically programmed using semi-English-language statements
(assembly language). In addition to assembly languages, microcomputers use a more
understandable human-oriented language called high-level language. No matter what type
of language is used to write programs, microcomputers understand only binary numbers.
Therefore, all programs must eventually be translated into their appropriate binary forms.
The principal ways to accomplish this are discussed later.

Microprocessor programming languages can typically be divided into three
main types: machine language, assembly language, and high-level language. A machine
language program consists of either binary or hexadecimal op-codes. Programming a
microcomputer with either one is relatively difficult, because one must deal only with
numbers. The architecture and microprograms of a microprocessor determine all its
instructions. These instructions are called the microprocessor’s instruction set. Programs
in assembly and high-level languages are represented by instructions that use English-
language-type statements. The programmer finds it relatively more convenient to write
programs in assembly or high-level language than in machine language. However, a
translator must be used to convert such programs into binary machine language so that the
microprocessor can execute the programs. This is shown in Figure 5.1.

An assembler translates a program written in assembly language into a machine
language program. A compiler or interpreter, on the other hand, converts a high-level
language program such as C or C++ into a machine language program. Assembly or high-
level language programs are called source codes. Machine language programs are known
as object codes. A translator converts source codes to object codes. Next, we discuss the
three main types of programming language in more detail.

90 Microprocessor Theory and Applications with 68000/68020 and Pentium

5.2 Machine Language

A microprocessor has a unique set of machine language instructions defined by its
manufacturer. No two microprocessors by two different manufacturers have the same
machine language instruction set. For example, the Intel Pentium microprocessor uses
the code 03C3,, for its addition instruction, whereas the Motorola 68020 uses the code
0640,,. Therefore, a machine language program for one microprocessor will not run on the
microprocessor of a different manufacturer.

At the most elementary level, a microprocessor program can be written using its
instruction set in binary machine language. As an example, the following program adds
two numbers using the Intel Pentium machine language:

011001101011 10000000000100000000
011001101011 10110000001000000000
0110011000000011 11000011
1111 0100

Obviously, the program is very difficult to understand unless the programmer
remembers all the Pentium codes, which is impractical. Because one finds it very
inconvenient to work with 1’s and O’s, it is almost impossible to write an error-free program
on the first try. Also, it is very tiring for a programmer to enter a machine language program
written in binary into the microcomputer’s RAM. For example, the programmer needs a
number of binary switches to enter the binary program. This is definitely subject to error.

To increase the programmer’s efficiency in writing a machine language program,
hexadecimal numbers rather than binary numbers are used. The following is the same
addition program in hexadecimal using the Intel Pentium instruction set:

66B80100
66BB0200
6603C3
F4

It is easier to detect an error in a hexadecimal program, because each byte contains only
two hexadecimal digits. One would enter a hexadecimal program using a hexadecimal
keyboard. A keyboard monitor program in ROM, usually offered by the manufacturer,
provides interfacing of the hexadecimal keyboard with the microcomputer. This program
converts each key actuation into binary machine language in order for the microprocessor
to understand the program. However, programming in hexadecimal is not normally used.

5.3 Assembly Language

The next programming level is to use assembly language. Each line in an assembly language
program includes four fields:

Label field

Operand field
Comment field

Instruction, mnemonic, or op-code field

Microprocessor Programming Concepts 91

As an example, a typical program for adding two 16-bit numbers written in Pentium
assembly language is as follows:

Label Mnemonic Operand Comment
START MOV AX, 1 Move 1 into AX

MOV BX,2 Move 2 into BX
ADD AX,BX Add the contents of AX with BX
JMP START Jump to the beginning of the program

Obviously, programming in assembly language is more convenient than
programming in machine language, because each mnemonic gives an idea of the type of
operation it is supposed to perform. Therefore, with assembly language, the programmer
does not have to find the numerical op-codes from a table of the instruction set, and
programming efficiency is improved significantly.

An assembly language program is translated into binary via a program called an
assembler. The assembler program reads each assembly instruction of a program as ASCII
characters and translates them into the respective binary op-codes. As an example, consider
the HLT instruction for the Pentium. Its binary op-code is 11 11 01 00. An assembler would
convert HLT into 1 1 1 10 100 as shown in Table 5.1.

An advantage ofthe assembler is address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically. One can obtain hands-
on experience with a typical assembler for a microprocessor by downloading it from the
Internet.

5.3.1 m e s of Assemblers
Most assemblers use two passes to assemble a program. This means that they read the
input program text twice. The first pass is used to compute the addresses of all labels in the
program. To find the address of a label, it is necessary to know the total length of all the
binary code preceding that label. Unfortunately, however, that address may be needed in
that preceding code. Therefore, the first pass computes the addresses of all labels and stores
them for the next pass, which generates the actual binary code. Various types of assemblers
are available today:

One-Pass Assembler This assembler goes through an assembly language program once
and translates it into a machine language program. This assembler has the problem of

TABLE 5.1 Conversion of HLT into Its Binary Op-Code
Binary form of ASCII
Codes as Seen by

Binary OP Code
Created by

Assembly Code Assembler Assembler

H
L
T

0100 1000
0100 1100
0101 0100

1111 0100

Microprocessor Theory and Applications with 68000/68020 and Pentium

defining forward references. This means that a JUMP instruction using an address that
appears later in the program must be defined by the programmer after the program is
assembled.
Two-Pass Assembler: This assembler scans an assembly language program twice. In
the first pass, this assembler creates a symbol table. A symbol table consists of labels
with addresses assigned to them. This way, labels can be used for JUMP statements and
no address calculation has to be done by the user. On the second pass, the assembler
translates the assembly language program into machine code. The two-pass assembler
is more desirable and much easier to use.
Macroassembler. This type of assembler translates a program written in macrolanguage
into machine language. This assembler lets the programmer define all instruction
sequences using macros. Note that by using macros, the programmer can assign a name
to an instruction sequence that appears repeatedly in a program. The programmer can
thus avoid writing an instruction sequence that is required many times in a program
by using macros. The macroassembler replaces a macroname with the appropriate
instruction sequence each time it encounters a macroname.

It is interesting to see the difference between a subroutine and a macroprogram.
A specific subroutine occurs once in a program. A subroutine is executed by CALLing
it from a main program. The program execution jumps out of the main program and
executes the subroutine. At the end of the subroutine, a RET instruction is used to
resume program execution following the CALL SUBROUTINE instruction in the main
program. A macro, on the other hand, does not cause the program execution to branch
out of the main program. Each time a macro occurs, it is replaced by the appropriate
instruction sequence in the main program. Typical advantages of using macros are
shorter source programs and better program documentation. A typical disadvantage is
that effects on registers and flags may not be obvious.

Conditional macroassembly is very useful in determining whether or not an
instruction sequence is to be included in the assembly, depending on a condition that
is true or false. If two different programs are to be executed repeatedly based on a
condition that can be either true or false, it is convenient to use conditional macros.
Based on each condition, a particular program is assembled. Each condition and the
appropriate program are typically included within IF and ENDIF pseudoinstructions.

Cross assembler: This type of assembler is typically resident in a processor and
assembles programs for another for which it is written. The cross assembler program
is written in a high-level language so that it can run on different types of processors
that understand the same high-level language.
Resident assembler: This type of assembler assembles programs for a processor in
which it is resident. The resident assembler may slow down operation of the processor
on which it runs.

Meta-assembler. This type o f assembler can assemble programs for many different
types of processors. The programmer usually defines the particular processor being
used.

5.3.2 Assembler Delimiters
As mentioned before, each line of an assembly language program consists of four

Microprocessor Programming Concepts 93

fields: label, mnemonic or op-code, operand, and comment. The assembler ignores the
comment field but translates the other fields. The label field must start with an uppercase
alphabetic character. The assembler must know where one field starts and another ends.
Most assemblers allow the programmer to use a special symbol or delimiter to indicate the
beginning or end of each field. Typical delimiters used are spaces, commas, semicolons,
and colons:

Spaces are used between fields.
Commas (,) are used between addresses in an operand field.

A semicolon (;) is used before a comment.
A colon (:) or no delimiter is used after a label.

5.3.3
To handle numbers, most assemblers consider all numbers as decimal numbers unless
specified otherwise. All assemblers will also specify other number systems, including
hexadecimal numbers. The user must define the type of number system used in some way.
This is generally done by using a letter before or after the number. For example, Intel uses
the letter H after a number to represent it as a hex number, whereas Motorola uses a $ sign
before the number to represent it as a hex number. As an example, 60 in hexadecimal is
represented by an Intel assembler as 60H and by a Motorola assembler as $60.

Typical assemblers such as MASM32 require hexadecimal numbers to start with
a digit (0 through 9). A 0 is typically used if the first digit of the hexadecimal number
is a letter. This is done to distinguish between numbers and labels. For example, typical
assemblers such as MASM32 will normally require the number F3H to be represented as
OF3H; otherwise, the assembler will generate an error. However, ide 68k assembler used
in this book for assembling 68000 and 68020 assembly language programs does not require
‘0’ to be used if the first digit of a hexadecimal number is a letter.

5.3.4 Assembler Directives or Pseudoinstructions
Assemblers use pseudoinstructions or directives to make the formatting of the edited text
easier. Pseudoinstructions are not translated directly into machine language instructions.
They equate labels to addresses, assign the program to certain areas of memory, or insert
titles, page numbers, and so on. To use the assembler directives or pseudoinstructions, the
programmer puts them in the op-code field, and if the pseudoinstructions require an address
or data, the programmer places them in the label or data field. Typical pseudoinstructions are
ORIGIN (ORG), EQUATE (EQU), DEFINE BYTE (DB), and DEFINE WORD (DW).

Specifying Numbers by Typical Assemblers

ORIGIN (ORG) The directive ORG lets a programmer place programs anywhere in
memory. Internally, the assembler maintains a program counter type of register called an
address counter. This counter maintains the address of the next instruction or data to be
processed.

An ORG directive is similar in concept to a JUMP instruction. Note that the JUMP
instruction causes a processor to place a new address in the program counter. Similarly, the
ORG pseudoinstruction causes the assembler to place a new value in the address counter.

Typical ORG statements are

ORG 7000H
HLT

94

The Pentium assembler will generate the following code for these statements:

Most assemblers assign a value of zero to the starting address of a program ifthe programmer
does not define this by means of an ORG.

Microprocessor Theory and Applications with 68000/68020 and Pentium

7000 F4

Equate (EQU) The directive EQU assigns a value in its operand field to an address
in its label field. This allows the user to assign a numerical value to a symbolic name. The
user can then use the symbolic name in the program instead of its numeric value. This
reduces errors.

A typical example of EQU is START EQU 0200H, which assigns the value 0200
in hexadecimal to the label START. Typical assemblers such as the MASM32 require the
EQU directive to use hexadecimal numbers to start with a digit. A 0 is typically used if
the first digit of the hexadecimal number is a letter. This is done to distinguish between
numbers and labels. For example, most assemblers will require the number A5H to be
represented as OA5H, as follows:

BEGIN EQU OA5H

Another example is

PORTA EQU 40H
MOV AL,OFFH
OUT PORTA,AL

In this example, the EQU gives PORTA the value 40 hex, and FF hex is the data
to be written into register AL by MOV AL,FFH. OUT PORTA,AL then outputs this data
FF hex to port 40, which has already been equated to PORTA.

Note that if a label in the operand field is equated to another label in the label field,
the label in the operand field must have been defined previously. For example, the EQU
statement

BEGIN EQU START

will generate an error unless START is defined previously with a numeric value.

Define Byte (DB)
certain byte value. For example,

The directive DB is generally used to set a memory location to a

START DB 45H

will store the data value 45 hex to the address START. With some assemblers, the DB
pseudoinstruction can be used to generate a table of data as follows:

ORG 7000H
TABLE DB 20H,30H,40H,50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex, and 50 hex
occupy the next three memory locations. Therefore, the data in memory will look like this:

Microprocessor Programming Concepts 95

7000 20
7001 30
7002 40
7003 50

Define Word (DW)
two memory locations. For example,

The directive DW is typically used to assign a 16-bit value to

ORG 7000H
START DW 4AC2H

will assign C2 to location 7000 and 4A to location 7001. It is assumed that the assembler
will assign the low byte first (C2) and then the high byte (4A). With some assemblers, the
DW directive can be used to generate a table of 16-bit data as follows:

ORG 8000H
POINTER DW 5000H,6000H,7000H

In this case, the three 16-bit values 5000H, 6000H, and 7000H are assigned to memory
locations starting at the address 8000H. That is, the array would look like this:

E

8000 00
800 1 50
8002 00
8003 60
8004 00
8005 70

iD This directive indicates the end of the assem 'IY anguage source program.

5.3.5 Assembly Language Instruction Formats
In this section, assembly language instruction formats available with typical microprocessors
are discussed. Depending on the number of addresses specified, the following instruction
formats can be used: three-address, two-address, one-address, zero-address. Because all
instructions are stored in the main memory, instruction formats are designed in such a
way that instructions take less space and have more processing capabilities. It should be
emphasized that the microprocessor architecture has considerable influence on a specific
instruction format. The following are some important technical points that have to be
considered while designing an instruction format:

The size of an instruction word is chosen such that it facilitates the specification of
more operations by a designer. For example, with 4- and %bit op-code fields, we can
specify 16 and 256 distinct operations, respectively.
Instructions are used to manipulate various data elements, such as integers, floating-
point numbers, and character strings. In particular, all programs written in a symbolic
language such as C are stored internally as characters. Therefore, memory space will
not be wasted if the word length of the machine is some integral multiple of the number
of bits needed to represent a character. Because all characters are represented using

96 Microprocessor Theory and Applications with 68000/68020 and Pentium

typical 8-bit character codes such as ASCII or EBCDIC, it is desirable to have 8-, 16-,
32-, or 64-bit words for the word length.

The size ofthe address field is chosen such that high resolution is guaranteed. Note that
in any microprocessor, the ultimate resolution is a bit. Memory resolution is a function
of the instruction length, and in particular, short instructions provide less resolution.
For example, in a microcomputer with 32K 16-bit memory words, at least 19 bits are
required to access each bit of the word. (This is because 215 = 32K and Z4 = 16.)

The general form of a three-address instruction is

<op-code> Addr 1 ,Addr2,Addr3

Some typical three-address instructions are

MUL A,B,C C < - A * B
ADD A,B,C 9 C < - A + B
SUB Rl,R2,R3 2 R3 <- R1 - R2

In this specification, all alphabetic characters are assumed to represent memory addresses,
and the string that begins with the letter R indicates a register. The third address of this type
of instruction is usually referred to as the destination address. The result of an operation is
always assumed to be saved in the destination address.

Typical programs can be written using three-address instructions. For example,
consider the following sequence of three-address instructions:

MUL A,B ,Rl 9 R1 < - A * B
MUL C,D,R2 2 R 2 < - C * D
MUL E,F,R3 9 R3 <- E * F
ADD Rl,R2,Rl 9 R l <- R 1 + R2
SUB Rl,R3,Z 9 Z <-R1 - R 3

This sequence implements the statement Z = A * B + C * D - E * F. The three-address
format, in addition to the other formats is normally used by typical 32-bit microprocessors
such as the Intel Pentium and the Motorola 68000.

If we drop the third address from the three-address format, we obtain the two-
address format, whose general form is

<op-code> Addrl ,Addr2

Some typical two-address instructions are

MOV A,R1 R1 <-A
ADD C,R2 2 R 2 < - R 2 + C
SUB R 1 , E R2 <- R2 - R1

In this format, the addresses Addrl and Addr2 represent source and destination addresses,
respectively. The following sequence of two-address instructions is equivalent to the
program using three-address format presented earlier:

Microprocessor Programming Concepts 97

MOV
MUL
MOV
MUL
MOV
MUL
ADD
SUB
MOV

A,R1
B,R1
c,R2
D,R2
E,R3
F,R3
R2,Rl
R3,Rl
R1,Z

9 R1 <-A
2 R1<- R1 * B
3 R2 <- c

R 2 < - R 2 * D
2 R3 <- E
2 R3 <-R3 * F
3 R1<- Rl + R2
3 R1<- R1- R3
9 Z <-R1

This format is predominant in typical general-purpose microprocessors such as the
Pentium and 68000/68020. Typical 8-bit microprocessors such as the Intel 8085 and the
Motorola 6809 are accumulator based. In these microprocessors, the accumulator register
is assumed to be the destination for all arithmetic and logic operations. Also, this register
always holds one of the source operands. Thus, we only need to specify one address in the
instruction, and therefore, this idea reduces the instruction length. The one-address format
is predominant in 8-bit microprocessors. Some typical one-address instructions are

LDA B 2 ACC <- B
ADD C 3 ACC <- ACC + C
MUL D 3 ACC <- ACC * D
STA E E <- ACC

The following program illustrates how we can translate the C language statement,
z = (a * b) + (c * d) - (e * f) ; into a sequence of one-address instructions:

Ida
mu1
sta
Ida
mu1
sta
Ida
mu1
add
sub
sta

e
f
t l

d
t2
a
b
t2
t l

C

Z

Ace <- e
Acc <- e * f
t l <- ACC
ACC <- c
ACC <- c * d
t2 <- ACC
Acc <- a
Acc <- a * b
ACC <- ACC + t2
ACC <- ACC - t 1
Z <- ACC

In this program, t l and t2 represent the addresses of memory locations used to
store temporary results. Instructions that do not require any addresses are called zero-
address instructions. All microprocessors include some zero-address instructions in the
instruction set. Typical examples of zero-address instructions are CLC (clear carry) and
NOP.

5.3.6 Instruction Set Architecture (ISA)
An instruction set architecture (ISA) defines the assembly instructions (instruction set) of
a microprocessor. Each instruction specifies the operation to be performed and includes
one or more operands. An assembly language program typically contains a number of

98 Microprocessor Theory and Applications with 68000/68020 and Pentium

assembly instructions. ISAs have been distinguished based on the number of operands that
can be specified in each instruction. Typical examples include two- and three-operand
instructions.

Earlier 8-bit microprocessors such as the Intel 8085 are accumulator-based
machines. To add two numbers, these microprocessors used a dedicated register called the
accumulator to hold one of the data to be added. A single-operand ADD instruction such
as ADD B specifies the add operation to be performed between the contents of an 8-bit
register B and the contents of the 8-bit accumulator. The 8-bit result is stored back in the
accumulator. In these microprocessors, single-operand instructions are predominant.

Typical 32-bit microprocessors such as the Pentium assume that both operands
to be added are stored in registers. For example, the Pentium instruction ADD BX,CX
will add the 16-bit contents of register BX with the 16-bit contents of register CX.
The 16-bit result will be stored in BX. Two-operand instructions are predominant in these
microprocessors.

A particular microprocessor’s hardware implementation of an ISA is normally
called that microprocessor’s microarchitecture. Since the 1990s, new microarchitectures
have been implemented with existing ISAs. This is because the time and cost of
developing assembledcompilers and operating systems for a new ISA can be enormous.
Microprocessors such as the Pentium have been designed basically with an existing ISA.
Note that Intel’s x86 hardware became more complex with each successive generation,
whereas the ISA was mostly unchanged. Intel extended the original x86 ISA to include the
floating-point instructions in the Pentium.

5.3.7 Typical Instruction Set
An instruction set of a specific microprocessor consists of all the instructions that it can
execute. The capabilities of a microprocessor are determined to some extent by the types
of instructions it is able to perform. Each microprocessor has a unique instruction set
designed by its manufacturer to do a specific task. We discuss some of the instructions that
are common to all microprocessors. We group together chunks of these instructions which
have similar functions. These instructions typically include:

Arithmetic andLogic Instructions. These operations perform actual data manipulations.
The instructions typically include arithmetic/logic, increment/decrement, and
rotatekhift operations. Typical arithmetic instructions include ADD, SUBTRACT,
COMPARE, MULTIPLY, and DIVIDE. Note that the SUBTRACT instruction
provides the result and also affects the status flags, whereas the COMPARE instruction
performs subtraction without any result and affects the flags based on the result.

Typical microprocessors utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set for
a microprocessor typically includes the same ADD and SUBTRACT instructions for
both unsigned and signed numbers. The interpretations of unsigned and signed ADD and
SUBTRACT operations are performed by the programmer. For example, consider adding
two 8-bit numbers, A and B (A = FF,, and B = FF,,) using the ADD instruction by a
microprocessor as follows:

Microprocessor Programming Concepts

Dividend

710

99

Divisor Subtraction Counter
Result

310 7 - 3 = 4 1
4 - 3 = 1 1 + 1 = 2

11 11 11 1 +- Intermediate carries
FF,,= 11111111

+ FF,,= 11111111

finalcarry ---f 111111110=FE,,
___-_-_______-______-------

When the addition above is interpreted by the programmer as an unsigned operation, the
result will be A + B = FFI6 + FF,, = 255,,+ 255,,= 510,, which is FE,,with a carry, as
shown above. However, if the addition is interpreted as a signed operation, then A + B =

FF,, + FF,, = (-llo) + (-llo) = -2,, which is FE as shown above, and the final carry must
be discarded by the programmer. Similarly, the unsigned and signed subtraction can be
interpreted by the programmer.

Typical 16- and 32-bit microprocessors include both unsigned and signed
multiplication and division instructions. Several unsigned multiplication algorithms are
available. Multiplication of two unsigned numbers can be accomplished via repeated
addition. For example, to multiply 4,, by 3,,, the number 4,, can be added twice to itself to
obtain the result, 12,,.

Division between unsigned numbers can be accomplished via repeated subtraction.
For example, consider dividing 7,, by 3,, as follows:

Quotient = counter value = 2
Remainder = subtraction result = 1

Here, 1 is added to a counter whenever the subtraction result is greater than the divisor. The
result is obtained as soon as the subtraction result is smaller than the divisor.

Signed multiplication can be performed using various algorithms. A simple
algorithm follows. Assume that Q (multiplier) are in two’s-
complement form. For the first case, perform unsigned multiplication of the magnitudes
without the sign bits. The sign bit of the product is determined as M, 0 Q,, where M, and
Q, are the most significant bits (sign bits) of the multiplicand (M) and the multiplier (Q),
respectively. To perform signed multiplication, proceed as follows:

1. If M, = 1, compute the twos complement of M.
2. If Qn = 1, compute the twos complement of Q.
3. Multiply the n - 1 bits of the multiplier and the multiplicand using unsigned

4. The sign of the result, S,, = M, 0 Qn.
5. If S, = 1, compute the two’s-complement of the result obtained in step 3.
Next, consider a numerical example. Assume that Mand Q are two’s-complement

numbers. Suppose that M= 1 100, and Q = 0 1 1 1,. Because M, = 1, take the two’s-complement
of M = 0100,; because Q, = 0, do not change Q. Multiply 01 11, and 01 00, using the
unsigned multiplication method discussed before. The product is 000 1 1 100,. The sign of
the product S,, = M , 0 Qn = 1 0 0 = 1. Hence, take the two’s-complement of the product
0001 1100, to obtain 11 lOOlOO,, which is the final answer: -28,,.

M (multiplicand) and

multiplication.

100 Microprocessor Theory and Applications with 68000/68020 and Pentium

Unsigned division can be performed using repeated subtraction. However, the
general equation for division can be used for signed division. Note that the general equation
for division is dividend = quotient * divisor + remainder. For example, consider dividend
= - 9, divisor = 2. Three possible solutions are shown below:

(a)
(b)
(c)

- 9 = - 4 * 2 - I , Quotient = - 4, Remainder = - 1.
- 9 = - 5 * 2 + 1, Quotient = - 5, Remainder = + l .
- 9 = - 6 * 2 + 3 , Quotient = - 6, Remainder = +3.

However, the correct answer is shown in (a), in which, the Quotient = - 4 and the remainder
= ~ 1. Hence, for signed division, the sign of the remainder is the same as the sign of
the dividend, unless the remainder is zero. Typical microprocessors such as the Pentium
follow this convention.

Typical logic instructions perform traditional Boolean operations such as AND,
OR, and Exclusive-OR. The AND instruction can be used to perform a masking operation.
If the bit value in a particular bit position is desired in a word, the word can be logically
ANDed with appropriate data to accomplish this. For example, the bit value at bit 2 of an
8-bit number 0100 l Y l 0 (where an unknown bit value of Y is to be determined) can be
obtained as follows:

0 1 0 0 1 Y 1 0 -- 8-bit number
0 0 0 0 0 1 0 0 --masking data

0 0 0 0 OY 0 0 --result

AND
.....................

If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the
result is zero (Flag Z = 1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ (Jump if Z = 0) to determine whether Y
is 0 or 1. This is called a masking operation. The AND instruction can also be used to
determine whether a binary number is ODD or EVEN by checking the least significant
bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd). The OR instruction can
typically be used to insert a 1 in a particular bit position of a binary number without
changing the values of the other bits. For example, ’ a 1 can be inserted using the OR
instruction at bit 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing the values
of the other bits:

0 1 1 1 0 0 1 1 -- 8-bit number
OR 0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit 3

0 1 1 I 1 0 1 1 --result

The Exclusive-OR instruction can be used to find the one’s-complement of a
binary number by XORing the number with all 1’s as follows:

0 1 0 1 1 l o o - - 8-bitnumber
XOR 1 1 1 1 1 1 1 1 - - data

..........................
1 0 10 0 0 1 1 -- Result (Ones Complement of the 8-bit number 0 1 0 1 I 1 0 0)

Next, the concept of logic and arithmetic shift and rotate operations is reviewed.

Microprocessor Programming Concepts

Shift
type
Right

Left

101

Logic Arithmetic Rotate

-ast Lost -
Lost SC Lost =o -

&bit word
Before:

0 0 1 1 0 0 1 0 ' 0 1 1 0 0 1 0 1

Shift right: Afer:

1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1

1 'I0 5 10

FIGURE 5.2 Logical right shift operation.

In a logical shift operation, a bit that is shifted out will be lost, and the vacant position
will be filled with a 0. For example, if we have the number (1 l),,, after a logical right shift
operation, the register contents shown in Figure 5.2 will occur. Typical examples of logic/
arithmetic and shiwrotate operations are given in Table 5.2.
It must be emphasized that a logical left or right shift of an unsigned number by n positions
implies multiplication or division of the number by 2", respectively, provided that a 1 is not
shifted out during the operation.

In the case of true arithmetic left or right shift operations, the sign bit of the
number to be shifted must be retained. However, in computers, this is true for right shift
and not for left shift operation. For example, if a register is shifted right arithmetically, the

Original Aferfirst shift Afier second shi j

001 12 = (3) lO 01102= (6)10 11002= (-4)

3 x 2 = 6 ; correct 6 x 2 = 12 not - 4; incorrect

most significant bit (MSB) of the register is preserved, thus ensuring that the sign of the
number will remain unchanged. This is illustrated in Figure 5.3.

There is no difference between arithmetic and logical left shift operations. If the

102 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

most significant bit changes from 0 to 1, or vice versa, in an arithmetic left shift, the result
is incorrect and the microprocessor sets the overflow flag to 1. For example, if the original
value of the register is (3),0, the results of two successive arithmetic left shift operations are
interpreted as follows:

Instructions for controlling microprocessor operations. These instructions typically
include those that set the reset specific flags and halt or stop the microprocessor.

Data movement instructions. These instructions move data from a register to memory,
and vice versa, between registers, and between a register and an I/O device.
Instructions using memory addresses. An instruction in this category typically
contains a memory address, which is used to read a data word from memory into a
microprocessor register or for writing data from a register into a memory location.
Many instructions under data processing and movement fall in this category.

Conditional and unconditional JUMP These instructions typically include one of the
following:

1. An unconditional JUMP, which always transfers the memory address specified in
the instruction into the program counter.
2. A conditional JUMP, which transfers the address portion of the instruction into
the program counter based on the conditions set by one of the status flags in the flag
register.

5.3.8 Typical Addressing Modes
One of the tasks performed by a microprocessor during execution of an instruction
is the determination of the operand and destination addresses. The manner in which a
microprocessor accomplishes this task is called the “addressing mode.” Now, let us present
the typical microprocessor addressing modes, relating them to the instruction sets of
Motorola 68000.

An instruction is said to have “implied or inherent addressing mode” if it does
not have any operand. For example, consider the following instruction: RTS, which means
“return from a subroutine to the main program.” The RTS instruction is a no-operand
instruction. The program counter is implied in the instruction because although the program
counter is not included in the RTS instruction, the return address is loaded in the program
counter after its execution.

Whenever an instructiodoperand contains data, it is called an “immediate mode”
instruction. For example, consider the following 68000 instruction:

In this instruction the # indicates to the assembler that it is an immediate mode instruction.
This instruction adds 15 to the contents of register DO and then stores the result in DO. An
instruction is said to have a register mode if it contains a register as opposed to a memory
address. This means that the operand values are held in the microprocessor registers. For
example, consider the following 68000 instruction:

This ADD instruction is a two-operand instruction. Both operands (source and destination)
have a register mode. The instruction adds the 16-bit contents of DO to the 16-bit contents
of D1 and stores the 16-bit result in DO.

An instruction is said to have an absolute or direct addressing mode if it contains
a memory address in the operand field. For example, consider the 68000 instruction

ADD #15,DO ; DO <- DO + 15

ADD D1,DO ; DO <- D 1 + DO

ADD 3000,D2

Microprocessor Programming Concepts 103

This instruction adds the 16-bit contents of memory address 3000 to the 16-bit contents of
D2 and stores the 16-bit result in D2. The source operand to this ADD instruction contains
3000 and is in the absolute or direct addressing mode.

When an instruction specifies a microprocessor register to hold the address, the
resulting addressing mode is known as the register indirect mode. For example, consider
the 68000 instruction

This instruction clears the 16-bit contents of a memory location whose address is in register
A0 to zero. The instruction is in register indirect mode.

Conditional branch instructions are used to change the order of execution of
a program based on the conditions set by the status flags. Some microprocessors use
conditional branching using the absolute mode. The op-code verifies a condition set by
a particular status flag. If the condition is satisfied, the program counter is changed to the
value of the operand address (defined in the instruction). If the condition is not satisfied,
the program counter is incremented, and the program is executed in its normal order.

Typical 16-bit microprocessors use conditional branch instructions. Some
conditional branch instructions are 16 bits wide. The first byte is the op-code for checking
a particular flag. The second byte is an 8-bit offset, which is added to the contents of the
program counter if the condition is satisfied to determine the effective address. This offset
is considered as a signed binary number with the most significant bit as the sign bit. It
means that the offset can vary from -128,, to +127,, (0 being positive). This is called the
relative mode.

Consider the following 68000 example, which uses the branch not equal (BNE)
instruction:

Suppose that the program counter contains 2000 (address of the next instruction to be
executed) while executing this BNE instruction. Now, if Z = 0, the microprocessor will
load 2000 + 8 = 2008 into the program counter and program execution resumes at address
2008. On the other hand, if 2 = 1, the microprocessor continues with the next instruction.

In the last example the program jumped forward, requiring a positive offset. An
example for branching with negative offset is BNE -14

CLR (AO)

BNE 8

Suppose that the current program counter value = 2004,,
= 0010 0000 0000 0100

offset = two's complement of 14,; FFF2,6= [=I 1 1 11 0010 +

reflect this 1 to the high byte
(sign extension)

Therefore, to branch backward to 1FF6,,, the assembler uses an offset of F2
following the op-code for BNE.

An advantage of the relative mode is that the destination address is specified
relative to the address of the instruction after the instruction. Since these conditional Jump
instructions do not contain an absolute address, the program can be placed anywhere in
memory, which can still be executed properly by the microprocessor. A program that can
be placed anywhere in memory and can still run correctly is called a relocatableprogram.
It is a good practice to write relocatable programs.

I04

5.3.9
It is sometimes desirable to execute a common task many times in a program. Consider the
case when the sum of squares of numbers is required several times in a program. One could
write a sequence of instructions in the main program for carrying out the sum of squares
every time it is required. This is all right for short programs. For long programs, however,
it is convenient for the programmer to write a small program known as a subroutine for
performing the sum of squares, and call this program each time it is needed in the main
program. Therefore, a subroutine can be defined as a program carrying out a particular
hnction that can be called by another program, known as the mainprogram. The subroutine
only needs to be placed once in memory starting at a particular memory location. Each
time the main program requires this subroutine, it can branch to it, typically by using a
jump to subroutine (JSR) instruction along with its starting address. The subroutine is then
executed. At the end of the subroutine, a RETURN instruction takes control back to the
main program.

The 68000 includes two subroutine call instructions. Typical examples include
JSR 4000 and BSR 24. JSR 4000 is an instruction using the absolute mode. In response
to the execution of JSR, the 68000 saves (pushes) the current program counter contents
(address of the next instruction to be executed) onto the stack. The program counter is then
loaded, with 4000 included in the JSR instruction. The starting address of the subroutine is
4000. The RTS (return from subroutine) at the end of the subroutine reads (pops) the return
address saved into the stack before jumping to the subroutine into the program counter. The
program execution thus resumes in the main program. BSR 24 is an instruction using relative
mode. This instruction works in the same way as the JSR 4000 except that displacement 24
is added to the current program counter contents to jump to the subroutine.

The stack must always be balanced. This means that a PUSH instruction in a
subroutine must be followed by a POP instruction before the RETURN from subroutine
instruction so that the stack pointer points to the right return address saved onto the stack.
This will ensure returning to the desired location in the main program after execution of
the subroutine. If multiple registers are PUSHed in a subroutine, one must POP them in the
reverse order before the subroutine RETURN instruction.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Subroutine Calls in Assembly Language

5.4 High-Level Language

As mentioned earlier, a programmer’s efficiency increases significantly with assembly
language compared to machine language. However, the programmer needs to be well
acquainted with the microprocessor’s architecture and its instruction set. Further, the
programmer has to provide an op-code for each operation that the microprocessor has
to carry out in order to execute a program. As an example, for adding two numbers, the
programmer would instruct the microprocessor to load the first number into a register,
add the second number to the register, and then store the result in memory. However, the
programmer might find it tedious to write all the steps required for a large program. Also,
to become a reasonably good assembly language programmer, one needs to have a lot of
experience.

High-level language programs composed of English-language-type statements
rectify all these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microprocessor structure or its
instruction set. Also, each statement in a high-level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement f = a + b;

Microprocessor Programming Concepts 105

written in a high-level language called C. This single statement adds the contents of a with
b and stores the result in f. This is equivalent to a number of steps in machine or assembly
language, as mentioned before. It should be pointed out that the letters a, b, and f do not
refer to particular registers within the microprocessor. Rather, they are memory locations.

A number of high-level languages such as C and C++ are widely used at present.
Typical microprocessors such as the Intel Pentium and the Motorola 68000/68020 can be
programmed using these high-level languages. A high-level language is a problem-oriented
language. The programmer does not have to know the details of the architecture of the
microprocessor and its instruction set. Basically, the programmer follows the rules of the
particular language being used to solve the problem at hand. A second advantage is that
a program written in a particular high-level language can be executed by two different
microcomputers, provided that they both understand that language. For example, a program
written in C for a Pentium-based microcomputer will run on a 68020-based microcomputer
because both microprocessors have a compiler to translate the C language into their
particular machine language; minor modifications are required for I/O programs.

As mentioned before, like the assembly language program, a high-level language
program requires a special program for converting the high-level statements into object
codes. This program can be either an interpreter or a compiler. They are usually very large
programs compared to assemblers. An interpreter reads each high-level statement such as
F = A + B, and directs the microprocessor to perform the operations required to execute the
statement. The interpreter converts each statement into machine language codes but does
not convert the entire program into machine language codes prior to execution. Hence, it
does not generate an object program. Therefore, an interpreter is a program that executes
a set of machine language instructions in response to each high-level statement in order to
carry out the function. A compiler converts each statement into a set of machine language
instructions and also produces an object program that is stored in memory. This program
must then be executed by the microprocessor to perform the required task in the high-level
program.

In summary, an interpreter executes each statement as it proceeds, without
generating an object code, whereas a compiler converts a high-level program into an object
program that is stored in memory. This program is then executed.

5.5 Choosing a programming language

Compilers normally provide inefficient machine codes because of the general guidelines
that must be followed for designing them. C/C++ is a high-level language that includes
I/O instructions. However, the compiled codes generate many more lines of machine code
than does an equivalent assembly language program. Therefore, the assembled program
will take up less memory space and will execute much faster than the compiled C/C++.
Although C/C++ language includes I/O instructions, applications involving I/O are
normally written in assembly language. One of the main uses of assembly language is in
writing programs for real-time applications. Real time indicates that the task required by
the application must be completed before any other input to the program can occur that
would change its operation. Typical programs involving non-real-time applications and
extensive mathematical computations may be written in C/C++.

106

TABLE 5.3 Flowchart symbols

Microprocessor Theovy and Applications with 68000/68020 and Pentium

&@2!

t I Rectangle

~ Diamond

Oval

0 Circle

i
Parallelogram

5.6 Flowcharts

Function

Operation to be
carried out

Logical decision

Terminal point
(typically start and
end of program)

Connection from one
point in a flowchart
to another

I10 ODeration

Example

A = 30

Arrow indicates direction
of program flow

t

4 Yes

Exit diamond from right if
A t B and from bottom if
A = B

n Input D

Before writing an assembly language program for a specific operation, it is convenient to
represent the program in a schematic form called aJowchur-t. A brief listing of the basic
shapes used in a flowchart and their functions is given in Table 5.3.

Microprocessor Programming Concepts

Questions and Problems

107

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

What is the basic difference between assembly and high-level languages? Why
would you choose one over the other?

Assume that two microprocessors, the Pentium and the 68020, have C compilers.
Will a program written in C language run on both microprocessors?

Will a program written in Pentium assembly language run on a 68020?

Determine the contents of address 5004,, after assembling the following:
(4 ORG 5002H

(b) ORG 5000H
DB

DW 0702H, 123FH, 7020H, OOOOH

OOH, 05H, 07H, OOH, 03H

What is the difference between:
(a)
(b)

A cross assembler and a resident assembler?
A two-pass assembler and a meta-assembler?

Write a program equivalent to the C language assignment statement
z = a + (b * c) + (d * e) - (f / g) - (h * i);

Use only:
(a) Three-address instructions
(b) Two-address instructions

Assume that a microprocessor has only two registers, RI and R2, and that only the
following instruction is available:

XOR Ri,Rj ; Rj <- Ri CB Rj
; i j = 1,2

Using this XOR instruction, find an instruction sequence to exchange the contents
of registers R1 and R2.

Assume 2 two’s-complement signed numbers, M = 11 11 11 1 l 2 and Q = 11 11 1100,.
Perform signed multiplication using the algorithm described in Section 5.3.7.

Using the convention described in section 5.3.7, find the quotient and remainder
of (-25)/3.

Find the logic operation and 8-bit data for clearing bits 2 and 4 of an 8-bit number,
7E16 to 0’s without changing the other bits.

Find the logic operation and 8-bit data for setting bits 0 and 7 of an 8-bit
number, 3A16 to 1’s without changing the other bits.

Find the overflow bit after performing an arithmetic shift on B6,, three times to
the left.

108

5.13

Microprocessor Theory and Applications with 68000/68020 and Pentium

Describe the meaning of each of the following addressing modes.
(a) Immediate (b) Absolute
(c) Register (d) Register indirect
(e) Relative (f) Implied

5.14 What are the advantages of subroutines?

5.15 Explain the use of a stack in implementing subroutine calls.

ASSEMBLY LANGUAGE
PROGRAMMING WITH THE

68000
In this chapter we describe the fundamental concepts associated with assembly language
programming using the Motorola 68000 microprocessor. Topics include 68000 registers,
addressing modes, instruction sets, and assembly language programming.

6.1 Introduction

The 68000 is Motorola’s first 16-bit microprocessor. Its address and data registers are all
32 bits wide, and its ALU is 16 bits wide. The 68000 requires a single 5-V supply. The
processor can be operated from a maximum internal clock frequency of 25 MHz. The
68000 is available in several frequencies, including 4, 6, 8, 10, 12.5, 16.67, and 25 MHz.
The 68000 does not have on-chip clock circuitry and therefore, requires an external crystal
oscillator or clock generatoddriver circuit.

The 68000 has several different versions, which include the 68008, 68010, and
68012. The 68000 and 68010 are packaged either in a 64-pin DIP (dual in-line package)
with all pins assigned or in a 68-pin quad pack or PGA (pin grid array) with some unused
pins. The 68000 is also packaged in 68-terminal chip carrier. The 68008 is packed in a
48-pin dual in-line package, whereas the 6801 2 is packed in an 84-pin grid array. The 68008
provides the basic 68000 capabilities with inexpensive packaging. It has an 8-bit data bus,
which facilitates the interfacing of this chip to inexpensive 8-bit peripheral chips. The
6801 0 provides hardware-based virtual memory support and efficient looping instructions.
Like the 68000, it has a 16-bit data bus and a 24-bit address bus. The 68012 includes all the
68010 features with a 3 1-bit address bus. The clock frequencies of the 68008,68010, and
68012 are the same as those of the 68000. Table 6.1 summarizes basic differences among
the 68000 family members:

TABLE 6.1 Basic Differences Among 68000 Family Members

68000 68008 68010 68012
Data size (bits) 16 8 16 16
Address bus size (bits) 24 20 24 31
Virtual memory No No Yes Yes

Directly addressable 16MB 1MB 16MB 2GB
memory (bytes)

Control registers None None 3 3

109

1 10 Microprocessor Theory and Applications with 68000/68020 and Pentium

TABLE 6.2 68000 User and Supervisor Modes

Suuervisor Mode User Mode
Enter mode by: Recognition of a trap, Clearing status bit S

reset, or interrupt
System stack pointer Supervisor stack pointer User stack pointer
Other stack pointers User stack pointer Registers, AO-A6

Instructions available All including: All except those listed
and registers AO-A6

STOP under supervisor mode
RESET
MOVE to/from SR
ANDI to/from SR
OR1 to/from SR
EORI to/from SR
MOVE USP to (An)
MOVE to USP
RTE

Function code pin FC2 1 0

To implement operating systems and protection features, the 68000 can be operated
in two modes: supervisor and user. The supervisor mode is also called the operating system
mode. In this mode, the 68000 can execute all instructions. The 68000 operates in one of
these modes based on the S bit of the status register. When the S bit is 1, the 68000 operates
in the supervisor mode; when the S bit is 0, the 68000 operates in the user mode.
Table 6.2 lists the basic differences between the 68000 user and supervisor modes. From
the table, it can be seen that the 68000 executing a program in the supervisor mode can
enter the user mode by modifying the S bit of the status register to 0 via an instruction.
Instructions such as MOVE to SR, ANDI to SR, and EORI to SR can be used to accomplish
this. On the other hand, the 68000 executing a program in the user mode can enter the
supervisor mode only via recognition of a trap, reset, or interrupt. Note that upon hardware
reset, the 68000 operates in the supervisor mode and can execute all instructions. An
attempt to execute privileged instructions (instructions that can be executed only in the
supervisor mode) in the user mode will automatically generate an internal interrupt (trap)
by the 68000.

The logical level in the 68000 function code pin (FC2) indicates to the external
devices whether the 68000 is currently operating in the user or the supervisor mode. The
68000 has three function code pins (FC2, FC1, and FCO), which indicate to the external
devices whether the 68000 is accessing supervisor prograddata or user prograddata or
performing an interrupt acknowledge cycle.

The 68000 can operate on five different data types: bits, 4-bit binary-coded-
decimal (BCD) digits, bytes, 16-bit words, and 32-bit long words. The 68000 instruction
set includes 56 basic instruction types. With 14 addressing modes, 56 instructions, and five
data types, the 68000 contains over 1000 op-codes. The fastest instruction is one that copies
the contents of one register into another register. It is executed in 500 ns at an 8-MHz clock
rate. The slowest instruction is a 32-bit by 16-bit divide, which in executed in 21.25 ps at 8
MHz. The 68000 has no I/O instructions. Thus, the I/O is memory mapped. Hence, MOVE
instructions between a register and a memory address are also used as I/O instructions. The

Assembly Language Programing with the 68000 111 i 16,15

DO

Eight
D2 data
D3 registers

D4

D5
D6
D7

31 16.15 0

t 4 A0

addressktack
registers

A6

User

Supervisor Slack pointer A T SSP
L ..

Program countel

15 8 7 0 I System I
bVte I Status register

FIGURE 6.1 68000 programming model.

68000 is a general-purpose register-based microprocessor. Although the 68000 PC is 32
bits wide, only the low-order 24 bits are used. Because this is a byte-addressable machine,
it follows that the 68000 microprocessor can directly address 16 MB of memory. Note that
brackets [1, are used in the examples throughout this chapter to indicate the contents of a
68000 register or a memory location.

6.2 68000 Registers

Figure 6.1 shows the 68000 registers. This microprocessor includes eight 32-bit data
registers (DGD7) and seven 32-bit address registers (AO-A6). Data registers normally
hold data items such as 8-bit bytes, 16-bit words, and 32-bit long words. An address
register usually holds the memory address of an operand; AO-A6 can be used as 16- or
32-bit. Because the 68000 uses 24-bit addresses, it discards the uppermost 8 bits (bits
24-3 1) while using the address registers to hold memory addresses. The 68000 uses A7 or
A7’ as the user or supervisor stack pointer (USP or SSP), respectively, depending on the
mode of operation.

Note that the stack is basically readwrite memory (RAM) addresses by the stack
pointer. The stack is typically used during subroutine calls. For example, when the main
program calls a subroutine using a 68000 instruction such as JSR (jump to subroutine).
The 68000 automatically pushes the contents of the program counter (return address) onto
the user or supervisor stack, depending on the S-bit. The RTS (return from subroutine)
instruction, typically used at the end of the subroutine, pops the return address from the
stack and transfers control to the proper place in the main program.

The 68000 status register consists of two bytes: a user byte and a system byte
(Figure 6.2). The user byte includes typical condition codes such as C, V, N, Z, and X. The
meaning of the C, V, N, and Z flags is obvious. Let us explain the meaning of the X bit.
Note that the 68000 does not have any ADDC or SUBC instructions; rather, it has ADDX

1 12 Microprocessor Theory and Applications with 68000/68020 and Pentium

FIGURE 6.2 68000 status register.

and SUBX instructions. Because the flags C and X are usually affected in an identical
manner, one can use ADDX or SUBX to reflect the carries or borrows in multiprecision
arithmetic. The contents of the system byte include a 3-bit interrupt mask (12, 11, 10), a
supervisor flag (S), and a trace flag (T). When the supervisor flag is I , then the system
operates in the supervisor mode; otherwise, the user mode of operation is assumed. When
the trace flag is set to I , the processor generates a trap (internal interrupt) after executing
each instruction. A debugging routine can be written at the interrupt address vector to
display registers and/or memory after execution of each instruction, as this will provide a
single-stepping facility. Note that the trace flag can be set to 1 in the supervisor mode by
executing the instruction ORI# $8000, SR.
~- The interrupt mask bits (12, 11, 10) provide the status of the 68000 interrupt pins
IPL2,IPLI, and IPLO. I2 I1 I0 = 000 indicates that all interrupts are enabled. I2 I1 I0 =

1 1 1 indicates that all maskable interrupts except the nonmaskable interrupt (Level 7) are
disabled. The other -- combinations of ~ 12, 11, and I0 provide the maskable interrupt levels.
The signals on the IPL2JPL1, and IPLO pins are inverted internally and then compared
with 12, 11, and 10, respectively. The 68000 interrupts are covered in detail later in the
chapter.

-

6.3 68000 Memory Addressing

The 68000 supports bytes (8 bits), words (I 6 bits), and long words (32 bits) as shown in
Figure 6.3 . Byte addressing includes both odd and even addresses (0, 1, 2, 3, . . .), word
addressing includes only even addresses in increments of 2 (0, 2, 4, ...), and long word
addressing contains even addresses in increments of 4 (0,4, 8, . . .). As an example of the

Assembly Language Programing with the 68000 113

TABLE 6.3 Conversion of RTS into Its Binary Op-Code

Assemblv Code

Binary Form of ASCII
Codes as Seen by

Binary Op-Code
Created by the 68000

the Assembler Assembler

R
T
S

0101 0010
0101 0100
0101 0011

0100 111001110101

68000 addressing structure, consider M0VE.L D0,$506080. If prior to execution of the
M0VE.L instruction, [DO] =$07F12481, thenafterthisMOVE, [$506080] =$07, [$506081]
= $F1, [$506082] = $24, [$506083] = $81, and [DO] = $07F12481 (unchanged).

Next, consider M0VE.W D0,$506080 with [DO] = $07F12481 prior to execution
of the M0VE.L instruction. After execution of the instruction, [$506080] = $24, [$50608 I]
= $81, and [DO] = $07F12481 (unchanged). Finally, consider M0VE.B D0,$506080 with
[DO] = $07F12481 prior to execution of the M0VE.B instruction. After execution of the
instruction, [$506080] = $81 and [DO] = $07F12481 (unchanged).

In the 68000, all instructions must be located at even addresses for byte, word,
and long word instructions; otherwise, the 68000 generates an internal interrupt. The size
of each 68000 instruction is even multiples of a byte. This means that once a programmer
writes a program starting at an even address, all instructions are located at even addresses
after assembling the program. For byte instructions, data can be located at even or odd
addresses. On the other hand, data for a word and long word instruction must be located at
even addresses; otherwise, the 68000 generates an internal interrupt.

Note that in 68000 for word and long word data, the low-order address stores
the high-order byte of a number. This is called big-endian byte ordering. In contrast, the
Pentium uses little-endian byte ordering, in which the Pentium assigns the low address to
the low byte of a 16-bit register and the high address to the high byte of the 16-bit register
for 16-bit transfers between the Pentium and main memory.

6.4

The assembly language program is translated into binary via a program called an assembler.
The assembler program reads each assembly instruction of a program as ASCII characters
and translates them into the respective binary op-codes. For example, the 68000 assembler
translates the RTS (Return from subroutine) instruction into its 16-bit binary op-code is
0100111001110101 (4E75 in hex), as depicted in Table 6.3.

An advantage ofthe assembler is address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically.

One can obtain hands-on experience with a typical assembler for a microprocessor
by downloading it from the Internet. The ide68k21 assemblerldebugger is used to
assemble and debug all 68000 and 68020 assembly language programs in this book. It can
be downloaded free of charge from the web site: http://home.hetnet.nll-pj.fondselide68W.

Assembly Language Programming with the 68000

114 Microprocessor Theory and Applications with 68000/68020 and Pentium

As mentioned in Chapter 5 , each line in an assembly language program includes
four fields:
1. Label field
2. Mnemonic or op-code field
3. Operand field
4. Comment field

The assembler ignores the comment field but translates the other fields. The label field must
start with an uppercase alphabetic character.

The assembler must know where one field starts and another ends. Most assemblers
allow the programmer to use a special symbol or delimiter to indicate the beginning or end
of each field. Typical delimiters used are spaces, commas, semicolons, and colons:

Note that the ide68k2 1 (68000/68020 assembleddebugger) used for developing programs
in this book does not use a colon after a label.

To handle numbers, most assemblers, including the 68000, consider all numbers
as decimal numbers unless specified otherwise. Most assemblers, including the 68000
assembler, will also allow other number systems, including hexadecimal. For example,
with the 68000 assembler, the user can define a hexadecimal number by using a $ sign
before the number. This means that $60 will imply that the number 60 is in hexadecimal.
Typical assemblers such as the MASM32 require hexadecimal numbers to start with a digit
(0 through 9). A 0 is typically used if the first digit of the hexadecimal number is a letter.
This is done to distinguish between numbers and labels. For example, typical assemblers,
such as the MASM32, will require the number F3H to be represented as OF3H; otherwise,
the assembler will generate an error. Note that the ide68k used in this book for assembling
68000 and 68020 assembly language programs does not require 0 to be used if the first digit
of a hexadecimal number is a letter.

Assemblers use pseudoinstructions or directives to make the formatting of the
edited text easier. These directives are not translated directly into machine language
instructions. Typical assembler directives are discussed in the following.

Spaces are used between fields.
Commas (,) are used between addresses in an operand field.

A semicolon (;) is used before a comment.

A colon (:) or none is used after a label.

ORIGIN (ORG)
in memory. Typical ORG statements are

ORG $7000
M0VE.W D0,Dl

Most assemblers assign a value of zero to the starting address of a program if the programmer
does not define this by means of an ORG.

The directive ORG lets the programmer place programs anywhere

Equate (EQU) The EQU assigns a value in its operand field to an address in its label
field. This allows the user to assign a numerical value to a symbolic name. The user can
then use the symbolic name in the program instead of its numerical value. Atypical example
of EQU is START EQU $0200, which assigns the value 0200 in hexadecimal to the label
START. Typical assemblers, such as the ide68k2 1, require hexadecimal numbers to start
with a digit when the EQU directive is used. A 0 is used if the first digit of the hexadecimal
number is a letter; otherwise, an error will be generated by the assembler. This is done to

Assembly Language Programing with the 68000 115

distinguish between numbers and labels. For example, TEST EQU $OA5 will assign A5
in hex to the label TEST.

Define Byte Constant (DC.B)
location to a certain byte value. For example,

will store the data value 45 hex to the address START. The DC.B directive can be used to
generate a table of data as follows:

The directive DC.B is generally used to set a memory

START DC.B $45

ORG $7000
TABLE DC.B $20,$30,$40,$50

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex, and 50
hex occupy the next three memory locations. Therefore, the data in memory will look like
this:

7000 20
7001 30
7002 40
7003 50

Define Word Constant (DC.W)
16-bit value to two memory locations. For example,

ORG $7000
START DC.W $4AC2

The directive DC.W is typically used to assign a

will assign C2 to location 7001 and 4A to location 7000. It is assumed that the assembler
will assign the high byte first (4A) and then the low byte (C2). The DC.W directive can be
used to generate a table of 16-bit data as follows:

ORG $8000
POINTER DW $5000,$6000, $7000

In this case, the three 16-bit values $5000, $6000, and $7000 are assigned to memory
locations starting at the address $8000. That is, the array would look like this:

8000 50
800 1 00
8002 60
8003 00
8004 70
8005 00

Define Long Word Constant (DC.L) Similar to DC.B and DC.W, the directive
DC.L is typically used to assign a 32-bit value to four memory locations. The directive
DC.W can be used to create a table in memory containing 32-bit data. As mentioned
earlier, in order to develop 68000 assembly language programs in this book, ide68k21,
containing the 68000/68020 assembler and simulator (debugger), is used. The ide68k2 1
software is window-based and is very userfriendly. These programs can be downloaded
from the Internet free of charge. The zip files are provided in a CD. The CD also contains
a tutorial showing step-by-step procedure for installing, assembling, and debugging a
typical 68000 assembly language program using the ide68k2 1. Screen shots are provided
on CD, verifying correct operation of all assembly language programs via simulations
using test data.

A typical program for adding two 16-bit numbers written in 68000 assembly
language is as follows:

1 16 Microprocessor Theory and Applications with 68000/68020 and Pentium

Label Mnemonic Operand Comment Field
Field Field Field

ORG $2000
MOVE #2,DO
MOVE #3,D1
ADD DO,D 1

; Move 2 into the low 16 bits of DO
; Move 3 into the low 16 bits of D l
; Add DO with D1,store result in D1

FINISH JMP FINISH ; stop

Note that for a two-operand instruction such as ADD DO,Dl, Motorola uses the
first operand, DO, as the source operand and D1 as the destination operand. In contrast,
for Pentium’s MOV AX,BX instruction, Intel uses AX as the destination operand and BX
as the source operand. Also, unlike Pentium Motorola, does not have a HALT instruction.
Hence, an unconditional jump to the same address, such as FINISH JMP FINISH, is
used to halt the program.

The assembly language program described above called a sourcefile, contains all
the instructions required to execute a program. The assembler converts the source file into
an object file containing the binary codes or machine codes that the 68000 will understand.
In typical assemblers, including the ide68k2 1, the source file must be stored with a file
extension called .ASM. Suppose that the programmer stores the source file as SUM.ASM.
To assemble the program, the source file SUM.ASM is presented as input to the assembler.
The assembler typically generates two files: SUM.OBJ (object file) and SUM.LST (list
file).

SUM.OBJ is an object$le, a binary file containing the machine code and data that
correspond to the assembly language program in the source file (SUM.ASM). The object
file, which includes additional information about relocation and external references, is not
normally ready for execution.

SUM.LST is a listfile which shows how the assembler interprets the source file
SUM.ASM. The list file may be displayed on the screen. The source file SUM.ASM is
assembled using the ide68k21. The SUM.LST file is as follows:

2000 1 ORG $2000
2000 303C0002 2 MOVE #2,DO
2004 323C0003 3 MOVE #3,D1
2008 D240 4 ADD D0,Dl
200A 4EF8200A 5 FINISH JMP FINISH

Note that the assembled code shown on the left above is in hex. The first column gives the
address values where the codes are stored. ORG $2000 generates the starting address,
002000 in hex. The machine code ($303C0002) for the first instruction, MOVE #2,DO,
is stored at the address $2000. Since this instruction takes 4 bytes, the machine code for
the next instruction, MOVE #3,D1, starts at address $2004. Note that the comment fields
in the SUM.ASM file are not translated by 68asmsim.

When a large program is being developed by a group of programmers, each
programmer may write only a portion of the whole program. The individual program
parts must be tested and assembled to ensure their proper operation. When all portions

Assembly Language Programing with the 68000 117

of the program are verified for correct operation, their object files must be combined into
a single object program using a Linker, a program that checks each object file and finds
certain characteristics, such as the size in bytes and its proper location in the single object
program. The linker also resolves any problems with regard to cross-references to labels.
A library of object files is typically used to reduce the size of the source file. The library
files may contain frequently used subroutines andor sections of codes. Rather than writing
these codes repeatedly in the source file, a special pseudoinstruction is used to tell the
assembler that the code must be inserted by the linker at linking time. When linking is
completed, the final object file is called an executable (.EXE)Jile.
Finally, a program called a Loader can be used to load the .EXE file in memory for
execution.

6.5 68000 Addressing Modes

The 14 addressing modes of the 68000 shown in Table 6.4 can be divided into six basic
groups: register direct, address register indirect, absolute, program counter relative,
immediate, and implied. As noted earlier, the 68000 has three types of instructions: no
operand, single operand, and double operand. Single-operand instructions contain the
effective address (EA) in the operand field. The EA for these instructions is calculated by
the 68000 using the addressing mode used for this operand. In two-operand instructions,
one of the operands usually contains the EA and the other operand is usually a register or
memory location. The EA in these instructions is calculated by the 68000 based on the
addressing mode used for the EA.

Some two-operand instructions have the EA in both operands. This means that
the operands in these instructions use two addressing modes. Note that the 68000 address
registers do not support byte-sized operands. Therefore, when an address register is used
as a source operand, either the low-order word or the entire long word operand is used,
depending on the operation size. When an address register is used as the destination
operand, the entire register is affected, regardless of operation size. If the operation size is
a word, an address register in the destination operand is sign-extended to 32 bits after the
operation is performed. Data registers, on the other hand, support data operands of byte,
word, or long word size.

To identify the operand size of an instruction, the following notation is placed
after a 68000 mnemonic: .B for byte, .W or none (default) for word, and .L for long word:
for example,

ADD.B D0,Dl 2 [D1llowbyte [Dollowbyte + [D1llawbyte
ADD.W D0,Dl 2 [D1110w16bit [Dollow16bit+ [D1110w16bit

ADD.L D0,Dl [DlI,, bits [D ~ I ~ Z bits + [DOI~Z bits

6.5.1 Register Direct Addressing
In the register direct mode, the eight data registers (DGD7) or seven address registers
(AO-A6) contain the data operand. For example, consider M0VE.W AO, D1. The source
operand of this instruction is in addres register direct mode while the destination operand is
in data register direct mode. Note that instructions with two operands have two addressing
modes.

1 18 Microprocessor Theory and Applications with 68000/68020 and Pentium

TABLE 6.4 68000 Addressing Modes.

Addressing Mode Generation Assembler Syntax

Register direct addressing
Data register direct
Address register direct

Address register indirect addressing
Register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Indexed register indirect with offset

Absolute data addressing
Absolute short
Absolute long

Program counter relative addressing

Relative with offset
Relative with index and offset

Immediate data addressing
Immediate
Quick immediate

Implied addressing

EA = Dn
EA =An

EA = (An)
EA = (An), An -An + N
An -An - N, E A = (An)
EA = (An) + d,,
EA = (An) + (Ri) + d,

EA = (Next word)
EA = (Next two words)

EA = (PC) + d,,
EA = (PC) + (Ri) + d,

DATA = Next word(s)
Inherent data

Implied register EA = SR, USP, SP, PC

Dn
An

(An)
(An)+
-(An)
d(An)
d(An, Ri)

xxxx
xxxxxxxx

d
d(Ri)

#xxxx
#xx

Notes:
EA = effective address USP = user stack pointer
An = address register d, = 8-bit signed offset (displacement)

Dn = data register d,, = 16-bit signed offset (displacement)
Ri

SR = status register () = contents of
PC = program counter t =replaces
SP

= address or data register used as index register N = I for byte, 2 for words, and 4 for long
words

= active system stack pointer

6.5.2 Address Register Indirect Addressing
There are five different types of address register indirect mode. In this mode, an address
register contains the effective address. The address must be even for word and long word
operands; odd addresses are not allowed for .W and .L operands. However, for byte-
sized operands, both even and odd addresses can be used. Next, consider CLR.W(A1).
If [Al.L] = $00003000; then after execution of CLR.W(Al), the 16-bit contents of the
memory location addressed by $003000 (the low 24 bits of AO) is cleared to zero. This is
depicted in Figure 6.4.

The postincrement address register indirect mode increments an address register
by 1 for byte, 2 for word, and 4 for long word after it is used. For example, consider
CLR.L (AO)+. If [AO] = $00005000, after execution of CLR.L (AO)+, the 32-bit contents
of memory location addressed by $005000 (the low 24 bits of AO) is cleared to zero. This
means that the 16-bit contents of each of the memory locations $005000 and $005002 is
cleared to zero and [AO] = $00005000 + 4 = $00005004. This is shown in Figure 6.5.

Assembly Language Programing with the 68000 119

A1 $003000 Low address
‘=b 0 0 3 0 1 T 1 003002 A098

003004 7698
00300
003008 8769

High address

(a) Memory contents prior to execution of CLR.W (Al). All numbers in hex.

4 ’ 50000 00300
003002 A098

1 Low address

00300{ 7’7: I
00300
003008 8769

1 I High address

(b) Memory contents after execution of CLR.W (Al). All numbers in hex.

FIGURE 6.4

The postincrement mode is typically used with memory arrays stored from LOW
to HIGH memory locations. For example, to clear 100 words starting at memory location
$003000 and above, the following instruction sequence can be used:

Illustration of the address register indirect mode

23 0
A{ $005000 I

L 005000
005002
005004
005006
005008

1 151234 1 Low address

pi
34c 1

1-1 High address

(a) Memory contents prior to execution of CLR.L (AO)+. All numbers in hex.
[AO] = $00005000.

005000
005002
005004
005006
005008

Low address

1 I High address

(b) Memory contents after execution of CLR.L (AO)+. All numbers in hex.
[AO] = $00005004.

FIGURE 6.5 Illustration of the postincrement address register indirect mode.

120 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

M0VE.W #100,DO ; Load the length of data into DO
M0VEA.L #$00003000,AO ; Load the starting address into A0

REPEAT CLR.W (A())+ ; Clear a location pointed to
;by A0 and increment A0 by 2

SUBQ. W # 1 ,DO ;Decrement DO by 1
BNE REPEAT ;Branch to REPEAT if Z = 0

;otherwise, go to next instruction

Although the instructions and addressing modes used in the program above are
described in detail later, let us explain them briefly here. Note that # is used by Motorola
to indicate the immediate mode. Hence, the first instruction, MOVE. W # 100, DO loads 100
(the length of data to be cleared) into DO. M0VEA.L #$00003000,AO loads $00003000
(initial pointer value) into AO.

CLR.W (AO)+ clears the 16-bit content of memory whose address is in the
low 24 bits of AO. Note that CLR.W (AO)+ points automatically to the next location by
incrementing A0 by 2 (for word) after clearing a 16-bit memory location to 0. Hence, A0
will contain $00003002 after clearing the first word. SUBQ.B #1,DO decrements DO by 1
and affects the zero flag. When DO is decremented to 0, the ZF will be 1. BNE REPEAT
will branch to label REPEAT if DO is not zero (ZF = 0). When 100 words are cleared to 0,
DO will be 0 (ZF = I), and the program will stop.

The predecrement address register indirect mode, on the other hand, decrements
an address register by 1 for a byte, 2 for a word, and 4 for a long word before using a
register. For example, consider CLR.W -(AO). If [AO] = $00005004, the content of A0
is first decremented by 2: that is, [AO] = $00005002. The content of memory location
$005002 is then cleared to zero. This is depicted in Figure 6.6.

The predecrement mode is used with arrays stored from HIGH to LOW memory
locations. For example, to clear 100 words starting at memory location 004000,, and below,
the following instruction sequence can be used:

M0VE.W #100,DO ;Load length of data into DO
M0VEA.L #$00004002,AO ;Load starting address plus 2 into A0

REPEAT CLR.W -(AO) ;Decrement A0 by 2 and clear memory
;location addressed by A0

SUBQ. W # 1 ,DO ;Decrement DO by 1
BNE REPEAT ;If Z = 0, branch to REPEAT

;otherwise, go to next instruction

In this instruction sequence, CLR.W -(AO) first decrements A0 by 2 and then
clears the location. Because the starting address is $004000, A0 must initially be loaded
with $00004002. It should be pointed out that the predecrement and postincrement modes
can be combined in a single instruction. A typical example is M0VE.W (A5)+,-(A3).

In two other address register indirect modes, offsets and indexes are included to
an indirect address pointer. The address register indirect with offset mode determines the
effective address by adding a 16-bit signed integer to the contents of an address register.
For example, consider M0VE.W 4(A5),D3, in which the source operand is in the address
register indirect with offset mode. If [A51 = $00002000 and [$002004] = $0014, then after

Assembly Language Programing with the 68000

A $005004 7 I15 I Low address
005000/ 1::; 1
005002 A098
00500 7698
00500 34C1
00500

I I High address

(a) Memory contents prior to execution of CLR.W -(AO). All numbers in hex.
[AO] = $00005004.

Ad- +

121

High address

(b) Memory contents after execution of CLR.W-(AO). All numbers in hex.
[AO] = $00005002.

FIGURE 6.6 Illustration of the predecrement address register indirect mode

Offset, ALPHA
p G E l

RECORD
0

pEG7ROC)2000
Base RegistMO

RECORD
N

I

NAME 0

DATE OF BIRTH

SALARY

NAME N

DATE OF BIRTH

SALARY

EA

$002000

$002001

$002002

$003000

$003001

SO03002

FIGURE 6.7 Accessing a fixed record stored in different places in memory
using the address register indirect with offset mode.

122

execution of M0VE.W 4(A5),D3, register D3.W will contain $0014.
The address register indirect with offset mode can be used to access the elements

in a table or a one-dimensional array when the size of each element is a byte. For example,
consider an array of 50 bytes stored in memory starting at an address $3400. Note that the
first element in the array is element 0 and the last element is element 49. Now, to access
an element, say element 5 in the array, address register A5 can be initialized with address
$3400, and the instruction M0VE.W 5(A5),D1 can be used to read element 5 into D1.B
from the array.

The address register indirect with offset mode is usefil when one wants to access
the same record type among several occurrences in a data structure which may be stored
at different places in memory. For example, consider Figure 6.7. In the figure, personal
records of N employees are stored starting at an address $002000. Assume that each record
type is 8 bits wide. For example, the element “salary” of the employee with NAME 0 can
be loaded into an 8-bit register such as D0.B of the 68000 using the instruction M0VE.B
ALPHA(AO),DO, where ALPHA is the 16-bit signed displacement $0002 and A0 contains
the 24-bit starting address of RECORD 0. Now, to access the salary of RECORD N , the
programmer simply changes the contents of A0 to $003000.

The indexed register indirect with offset mode determines the effective address by
adding an 8-bit signed integer and the contents of a register (data or address register) to the
contents of an address (base) register. The size of the index register can be a signed 16-bit
integer or an unsigned 32-bit value. As an example, consider M0VE.W 6(A4,D3.W),D4
in which the source is in the indexed register indirect with offset mode. Note that in this
instruction A4 is the base register and D3.W is the 16-bit index register (sign-extended to
32 bits). This register can be specified as 32 bits by using D3.L in the instruction, and 6
is the 8-bit offset that is sign-extended to 32 bits. If [A41 = $00003000, [D3.W] = $0200,
and [$003206] = $0024, this MOVE instruction will load $0024 into the low 16 bits of
register D4. The indexed register indirect with offset mode can also be used to access two-
dimensional arrays such as matrices.

Microprocessor Theory and Applications with 68000/68020 and Pentium

6.5.3 Absolute Addressing
In the absolute addressing mode, the effective address is part of the instruction. The 68000
has two modes: absolute short addressing, in which a 16-bit address is used (the address
is sign-extended to 24 bits before use), and absolute long addressing, in which a 24-bit
address is used. For example, consider an example of the absolute short mode such as
M0VE.W $2000,D2. If prior to execution of this instruction, [$002000] = $0012 and
[D2.W] = $0010, after execution of M0VE.W $2000,D2 , register D2.W will contain
$0012, and [$002000] = $0012 (unchanged]. The absolute short mode includes an address
ADDR in the range 0 5 ADDR 5 $7FFF or $FF8000 5 ADDR 5 $FFFFFF.

The absolute long addressing mode is used when the address size is more than
16 bits. For example, M0VE.W $240000,D5 loads the 16-bit contents of memory location
$240000 into the low 16 bits of D5. Note that a single instruction may use both short and
long absolute modes, depending on whether the source or destination address is less than,
equal to, or greater than the 16-bit address. Atypical example is M0VE.W $500002,$1000.
Also, note that the absolute long mode must be used for a MOVE to or from address
$008000. For example, M0VE.W $8000,D1 will move the 16-bit contents of location
$FF8000 to the low 16 bits of D1, and M0VE.W $008000,Dl will transfer the 16-bit
contents of address $008000 to D 1.

Assembly Language Programing with the 68000

6.5.4 Program Counter Relative Addressing
The 68000 has two program counter relative addressing modes: relative with offset and
relative with index and offset. In the relative with offset mode, the effective address is
obtained by adding the contents of the current PC with a signed 16-bit displacement
providing the range -32768 to +32767 (0 being positive). Typical branch instructions
such as BCC, BEQ, BRA, and BLE use the relative with offset mode.

Instructions using the relative with offset mode specify the operand as a signed
16-bit displacement relative to PC. An example is BCC START. This instruction means
that if carry = 0, the PC is loaded with the current program counter contents plus the 16-bit
signed value of START; otherwise, the next instruction is executed. This mode can also
be used by some other instructions. For example, consider ADD $30(PC),D5, in which
the source operand is in the relative with offset mode. Now suppose that the current PC
contents is $002000, the content of $002030 is 0005, and the low 16 bits of D5 contain
$001 0. Then, after execution of this ADD instruction, D5 will contain $001 5 .

To illustrate the concept of relative branching, consider the following instruction
sequence along with the machine code (all numbers in hex):

123

00 1000
00 1000
00 1004
002000
002000
002002
002006
00200A
00200E
0020 10

303C 0002
4EF8 1004

340 1
6000 OOOA
3C3C 0005
6000 EFF4
3206
4EF8 20 10

1
2
3
4
5
6
7
8
9
10

ORG
BACK MOVE
FINISH JMP

ORG
MOVE
BRA
MOVE
BRA

DOWN MOVE
END JMP

$1000
#2,DO
FINISH
$2000
D 1 ,D2
DOWN
#5,D6
BACK
D6,D 1
END

Note that all instructions, addresses, and data are chosen arbitrarily. The first branch
instruction, BRA DOWN (line 6) at address $002002, has a machine code $6000000A.
The instruction BRA (branch always) unconditionally branches to address DOWN,
which has the relative addressing with offset mode. This means that DOWN is a positive
number (the number of steps forward relative to the current program counter) indicating
a forward branch. The machine code $6000000A means that the op-code for BRA is $60
and the relative displacement value is $000A (+lo). This is a positive value indicating
a forward branch. An additional $00 is included in the machine code to make it even
multiples of a byte since all 68000 instructions must be at even addresses. Note that while
executing BRA DOWN at address $002002, the 68000 points to address $002004 since
the program counter is incremented by 2. This means that the program counter contains
$002004. The offset $000A is added to address $002004 to find the target branch address
where the program will jump unconditionally. The branch address can be calculated as
follows:

$002004 = 0000 0000 00 10 0000 0000 0 100
+ $000A = 0000 0000 0000 0000 0000 10 10 (sign-extendedd to 24 bits)

...
00000000 0010 000000001110=$002000E

124 Microprocessor Theory and Applications with 68000/68020 and Pentium

Hence, the instruction branches unconditionally to address $002000E. This can be
verified in the instruction sequence above.

Next, consider the second branch instruction, BRA BACK (line 8). The machine
code for this instruction at address $00200A is $6000 EFF4, where $60 is the op-code
and $EFF4 is the signed 16-bit offset value. This offset is represented as a 16-bit two’s-
complement number. An additional $00 is included in the machine code to make it even
multiples of a byte since all 68000 instructions must be at even addresses. Since $EFF4
is a negative number (-41081°), this is a backward jump. Note that while executing BRA
BACK at address $00200A, the 68000 points to address $00200C since the program
counter is incremented by 2. This means that the program counter contains $00200C. The
offset 4108 is subtracted from $00200A to find the address value where the program will
jump unconditionally. The branch address is calculated as follows:

$00200c = 0000 0000 0010 0000 0000 1100
+ $EFF4 = 1111 1111 1110 1111 1111 0100 (sign-extendedto24bits)

Y 1 0000 0000 0001 0000 0000 0000 = $001000
Ignore final carry

The branch address is $001000, which can be verified in the instruction sequence
above. Also, in the instruction sequence, the JMP (unconditional jump) with absolute
mode is used at lines 3 and 10. These two JMP instructions are used as halt since the 68000
does not have a HALT instruction in the user mode. Note that unconditionally jumping to
the the same address is equivalent to HALT. The machine code for FINISH JMP FINISH
(line 3) address $001004 is $4EF8 1004, where $4EF8 is the op-code, and $1004 is the
jump address. Note that jump address $1004 is included with the instruction since JMP
uses the absolute addressing mode. In contrast, BRA uses the relative with offset mode, so
the machine code contains a signed offset relative to the program counter rather than an
absolute address.

In the relative with index and offset mode, the effective address is obtained by
adding the contents ofthe current PC, a signed 8-bit displacement (sign-extended to 32 bits),
and the contents of an index register (address or data register). The index register can be
16 or 32 bits wide. For example, c0nsiderADD.W 4(PC,DO.W),D2. If [D2] = $00000012,
[PC] = $002000, [DOIlow 16 bits = $0010, and [$002014] = $0002, then, after this ADD,
[D2]low 16 bits = $0014. An advantage of the relative mode is that the destination
address is specified relative to the address of the instruction after the instruction. Since
68000 instructions in the relative mode do not contain an absolute address, the program
can be placed anywhere in memory and still be executed properly by the 68000. A program
that can be placed anywhere in memory and can still run correctly is called a relocatable
program. It is a good practice to write relocatable programs.

6.5.5 Immediate Data Addressing
Two immediate modes are available with the 68000: the immediate and quick immediate
modes. In the immediate mode, the operand data is constant data, which is part of the
instruction. For example, consider ADD1.W #$OOOS,DO. If [DO.W] = $0002, then after this
ADD1 instruction, [DO.W] = $0002 + $0005 = $0007. Note a # is used by Motorola to
indicate the immediate mode. The quick immediate mode (ADD or SUBTRACT) allows
one to increment or decrement a register or a memory location (.B, .W, .L) by a number

Assembly Language Programing with the 68000 125

from 0 to 7. For example, ADDQ.B #l,DO increments the low 8-bit contents of DO by
1. Note that the immediate data, 1, is inherent in the instruction. That is, data 0 to 7 is
contained in the 3 bits of the instruction. Also, note that ADDQ.B #O,Dn is the same as the
NOP instruction.

6.5.6 Implied Addressing
The instructions using the implied addressing mode do not require an operand, and registers
such as PC, SP, or SR are referenced in these instructions. For example, RTS returns to the
main program from a subroutine by placing the return address into a PC using the PC
implicitly. It should be pointed out that in the 68000 the first operand of a two-operand
instruction is the source and the second operand is the destination. Recall that in the case of
the Pentium, the first operand is the destination and the second operand is the source.

6.6 68000 Instruction Set

The 68000 instruction set contains 56 basic instructions. Table 6.5 lists some of the
instructions affecting the condition codes. Appendixes D and E provide the 68000
instruction execution times and the instruction set (alphabetical order), respectively.

TABLE 6.5 Some 68000 Instructions Affecting Conditional Codes

Instruction X N Z V C
ABCD
ADD, ADDI, ADDQ, ADDX
AND, AND1
ASL, ASR
BCHG, BCLR, BSET, BTST
CHK
CLR
CMP, CMPA, CMPI, CMPM
DIVS, DIVU
EOR, EORI
EXT
LSL, LSR
MOVE (ea),(ea)
MOVE TO CCR
MOVE TO SR
MOVEQ
MULS, MULU
NBCD
NEG, NEGX
NOT

U
J

J

J

-

J

0
J

J

J

J

J

J

J

J

J

J

U
J

J

J

J

J

J

J

U
1
J

J

J

J

J

J

J

J

J

J

J

J

J

U
J

0
J

~

U

0
J

J

0
0
0
0
J

J

0
0
U

J

0

-

J

0
J

-

U
0
J

0
0
0
J

0
J

J

0
0
J

J

0

126

TABLE 6.5 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

OR,ORI
ROL, ROR
ROXL, ROXR
RTE, RTR
SBCD
STOP
SUB, SUBI, SUBQ, SUBX
SWAP
TAS
TST

J

J

J

J

U
J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

0
0
0
J

U
J

J

0
0
0

0
J

J

J

J

J

J

0
0
0

J Affected, - Not Affected, U Undefined

Note: ADDA, B,,, and RTS do not affect flags.

TABLE 6.6 68000 Data Movement Instructions

Instruction Size Comment

MOVE (EA), (EA) B, W,L (EA)s are calculated by the 68000 using the
specific addressing mode used. (EA)s can be
register or memory location. Therefore, data
transfer can take place between registers, between
a register and a memory location, and between
different memory locations. Flags are affected.
For byte-size operation, address register direct is
not allowed. An is not allowed in the destination
(EA). The source (EA) can be An for word or
long word transfers.
Content of the source is moved to the destination
address register, An. Word size source operands
are sign extended to 32 bits before the operation
is done.

MOVEA (EA), An W, L

MOVEQ # data, Dn L This instruction moves the 8-bit data into the
specified data register. The data is then sign-
extended to 32 bits.
Specified registers are transferred to or from
consecutive memory locations starting at the
location specified by the effective address.

MOVEM reg list, (EA) or W, L
(EA), reg list

Assembly Language Programing with the 68000 127

TABLE 6.6 Cont.

Instruction Size Comment

MOVEP Dn, d (Ay) or
d (AY), Dn

W, L Two (W) or four (L) bytes of data are transferred
between a data register and alternate bytes of
memory, starting at the location specified and
incrementing by 2. The high-order byte of data
is transferred first, and the low-order byte is
transferred last.This instruction has the address
register indirect with displacement only mode.
Exchange the contents of two registers. Rx or Ry
can be any address or data register. No flags are
affected.

EXG Rx,Ry L

SWAP Dn W Exchanges 16-bit halves of a data register.
LEA (EA), An L The effective address (EA) is calculated using the

particular addressing mode used and then loaded
into the address register. (EA) specifies the actual
data to be loaded into An.

PEA (EA) L Computes an effective address and then pushes
the 32-bit address onto the stack.

LINK An, #-displacement Unsized The current contents of the specified address
register are pushed onto the stack. After the push,
the address register is loaded from the updated
SP. Finally, the 16-bit sign-extended displacement
is added to the SP. A negative displacement is
specified to allocate stack.

UNLK An Unsized An + SP; (SP) + -+ An
(EA) in LEA (EA), An can use all addressing modes except Dn, An, (An) +, - (An),
and immediate.
Destination (EA) in MOVE (EA), (EA) can use all modes except An, relative, and
immediate.

Source (EA) in MOVE (EA), (EA) can use all modes.

(EA) in MOVEA can use all modes.

Destination (EA) in MOVEM reg list, (EA) can use all modes except An, (An)+,
relative, and immediate.
Source (EA) in MOVEM (EA), reg list can use all modes except Dn, An,- (An), and
immediate.
(EA) in PEA (EA) can use all modes except, An, (An)+, - (An), and immediate.

128 Microprocessor Theory and Applications with 68000/68020 and Pentium

The 68000 instructions can be classified into eight groups as follows:
1. Data movement instructions
2. Arithmetic instructions
3. Logic instructions
4. Shift and rotate instructions
5. Bit manipulation instructions
6. Binary-coded decimal instructions
7. Program control instructions
8. System control instructions

6.6.1 Data Movement Instructions
These instructions allow data transfers from register to register, register to memory,
memory to register, and memory to memory. In addition, there are special data movement
instructions such as MOVEM (move multiple registers). Typically, byte, word, or long
word data can be transferred. The 68000 data movement instructions are given in Table 6.6.
Next, we explain the data movement instructions.

MOVE Instructions The format for the basic MOVE instruction is M0VE.S
(EA),(EA), where S = B, W, or L. (EA) can be a register or memory location, depending on
the addressing mode used. Consider M0VE.B D3,D1, which uses the data register direct
mode for both the source and the destination. If [D3.B] = $05 and [Dl.B] = $01, then after
execution of this MOVE instruction, [Dl .B] = $05 and [D3.B] = $05 (unchanged).

There are several variations of the MOVE instruction. For example, M0VE.W
CCR,(EA) moves the contents of the low-order byte of SR (16-bit status register) to the
low-order byte of the destination operand; the upper byte of SR is considered to be zero.
Note that CCR (condition code register) is the low byte of SR, containing the flags X,
N, Z, V, and C. The source operand is a word. Similarly, M0VE.W (EA),CCR moves an
8-bit immediate number, or low-order 8-bit data, from a memory location or register into
the condition code register; the upper byte is ignored. The source operand is a word. Data
can also be transferred between (EA) and SR or USP (A7) using the following privileged
instructions:

M0VE.W (EA),SR
M0VE.W SR,(EA)
M0VEA.L A7,An
M0VEA.L An,A7

M0VEA.W 0r.L (EA),An can be used to load an address into an address register.
Word-size source operands are sign-extended to 32 bits. Note that (EA) is obtained by using
an addressing mode. As an example, M0VEA.W #$2000,A5 moves the 16-bit word $2000
into the low 16 bits of A5 and then sign-extends $2000 to the 32-bit number $00002000.
Note that sign extension means extending bit 15 of 2000,, from bit 16 through bit 3 1. As
mentioned before, sign extension is required when an arithmetic operation between two
signed binary numbers of different sizes is performed. The (EA) in MOVEA can use all
addressing modes.

The M0VEQ.L #$d8, Dn instruction moves the immediate &bit data into the low
byte of Dn. The 8-bit data is then sign-extended to 32 bits. This is a one-word instruction.
For example, M0VEQ.L #$8F,D5 moves $FFFFFF8F into D5.

The MOVEM instruction can be used to push or pop multiple registers to or from

Assembly Language Programing with the 68000

A7
STACK '-{Ti Low Address

I D3 I

I D5 I

129

High Address

FIGURE 6.8

the user or supervisor stack. For example, M0VEM.L DO-D7/AO-A6,-(A7) saves the
contents of all eight data registers and seven address registers in the user stack. Typical
68000 assemblers use the symbol '-' in DO-D7 and AO-A6 to indicate that registers DO
through D7 and registersA0 throughA6 are included in the operation. Also, the M0VEM.L
DO-D7/AO-A6,-(A7) instruction stores address registers in the order ACAO first, followed
by data registers in the order D7-DO, regardless of the order in the register list. This is
depicted in Figure 6.8.

MOVEM.L(A7)+,DO-D7/AO-A6 restores the contents of the registers in the order
DO-D7, AO-A6, regardless of the order in the register list. Note that MOVEM.L(A7)+,DO-
D7/AO-A6 will pop the register contents from the stack of Figure 6.8 in the correct order.

Next, consider the instruction M0VEM.L DS/DO/AO/A2/D7,-(A7). Note that the
order is chosen arbitrarily. Typical 68000 assemblers use the symbol / to separate individual
registers in the M0VEM.L D5/DO/AO/A2/D7,-(A7) instruction. The stack contents after
execution of M0VEM.L D5/DO/AO/A2/D7,-(A7) are shown in Figure 6.9. Since A2 is
the address register with the highest number in the list, A2 will be pushed first, then AO,
followed by D7, D5, and DO. Note that no matter how the registers are ordered in the
instruction, the order of pushing onto the stack is fixed (A6-A0 followed by D7-DO). The

A7 -1 sT:K 1 LowAddress

Stack contents after execution of M0VEM.L DO-D7/AO-A6,-
(A71

High Address

Stack contents after execution of M0VEM.L D5/DO/AO/A2/D7,-(A7) FIGURE 6.9

1 30 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

order is also fixed for popping (DO-D7 followed by AO-A6). For example, M0VEM.L
(A7)+,DYDO/AO/A2/D7 will pop the register contents of the stack of Figure 6.9 in the
correct order.

The MOVEM instruction can also be used to save a set of registers in memory. In
addition to the preceding predecrement and postincrement modes for the effective address,
the MOVEM instruction allows all the control modes. If the effective address is in one
of the control modes, such as absolute short, the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer is from DO to
D7 and then from A0 to A6. For example, M0VEM.W A5/Dl/D3/Al-A3,$2000 transfers
the low 16-bit contents of D1, D3, Al , A2, A3, and A5 to locations $2000, $2002, $2004,
$2006, $2008, and $200A, respectively.

To transfer data between the 68000 data registers and 6800 @-bit) peripherals, the
MOVEP instruction can be used. This instruction transfers 2 or 4 bytes of data between
a data register and alternate byte locations in memory, starting at the location specified
and incrementing by 2. Register indirect with displacement is the only addressing mode
used with this instruction. If the address is even, all transfers are made on the high-order
half of the data bus; if the address is odd, all transfers are made on the low-order half of
the data bus. The high-order byte to/from the register is transferred first, and the low-
order byte is transferred last. For example, consider M0VEP.L $0020(A2),Dl. If [A21 =

$00002000, [002020,,] = 02, [002022,,] = 05, [002024,,] = 01, and [002026,,] = 04, then
after execution of this MOVEP instruction, D1 will contain 02050104,,.

EXG and SWAP Instructions The EXG.L Rx, Ry instruction exchanges the 32-bit
contents of Rx with that of Ry. The exchange is between two data registers, two address
registers, or an address register and a data register. The EXG instruction exchanges only
32-bit long words. The data size (L) does not have to be specified after the EXG instruction
because this instruction has only one data size (L) and it is assumed that the default is this
single data size. No flags are affected. The SWAP.W Dn instruction, on the other hand,
exchanges the low 16 bits of Dn with the high 16 bits of Dn. All condition codes are
affected.

LEA and PEA Instructions The LEA.L (EA),An instruction moves an effective
address (EA) into the address register specified. The (EA) can be calculated based on the
addressing mode of the source. For example, LEA $00256022,A5 moves $00256022 into
A5. This instruction is equivalent to M0VEA.L #$00256022,A5. Note that $00256022 is
contained in PC. It should be pointed out that the LEA instruction is very usefil when
address calculation is desired during program execution. The (EA) in LEA specifies the
actual data to be loaded into An, whereas the (EA) in MOVEA specifies the address of
actual data. For example, consider LEA $04(A5, D2.W),A3. If [A51 = 00002000,, and
[D2] = 0028,,, then the LEA instruction moves 0000202C16 into A3. On the other hand,
MOVEA $04(A5, D2.W), A3 moves the contents of 00202C,, into A3. Therefore, it is
obvious that if address calculation is required, the instruction LEA is very useful.

The instruction PEA.L (EA) computes an effective address and then pushes it
onto the supervisor stack (S = 1) or User stack (S = 0). This instruction can be used when
the 16-bit address in absolute short mode is required to be pushed onto the stack. For
example, consider PEA.L $9000 in the user mode. If [A71 = $00003006, then $9000
is sign-extended to 32 bits ($FFFF9000). The low-order 16 bits ($9000) are pushed at
$003004, and the high-order 16 bits ($FFFF) are pushed at $003002.

Assembly Language Programing with the 68000 131

LINK and UNLK Instructions Before calling a subroutine, the main program quite
often transfers the values of certain parameters to the subroutine. It is convenient to save
these variables onto the stack before calling the subroutine. These variables can then be
read from the stack and used by the subroutine for computations. The 68000 LINK and
UNLK instructions are used for this purpose. In addition, the 68000 LINK instruction
allows one to reserve temporary storage for the local variables of a subroutine. This storage
can be accessed as needed by the subroutine and can be released using UNLK before
returning to the main program. The LINK instruction is generally used at the beginning of
a subroutine to allocate stack space for storing local variables and parameters for nested
subroutine calls. The UNLK instruction is commonly used at the end of a subroutine before
the RETURN instruction to release the local area and restore the stack pointer contents so
that it points to the return address. The LINK An,# -displacement instruction causes the
current contents of the specified An to be pushed onto the system stack (A7 or A7’,
depending on whether user or supervisor mode). The updated SP contents are then loaded
into An. Finally, a sign-extended two’s- complement displacement value is added to the SP.
No flags are affected. For example, consider LINK AS,#-$100.

If [AS] = $00002 100 and [A71 = $00004 104, then after execution of the LINK
instruction, the situation shown in Figure 6.10 occurs. This means that after the LINK
instruction, [AS] = $00002100 is pushed onto the stack and the [updated A71 = $004100 is
loaded into A5. A7 is then loaded with $004000, and therefore $100 locations are allocated
to the subroutine at the beginning of which this particular LINK instruction can be used.
Note that AS cannot be used in the subroutine.

The UNLK instruction at the end of this subroutine before the RETURN
instruction releases the loo,, locations and restores the contents of AS and USP to those
prior to using the LINK instruction. For example, UNLK AS will load [AS] = $00004100
into USP and the two stack words $00002100 into AS. USP is then incremented by 4 to
contain $00004104. This restores the contents ofAS and USP as they were prior to using
the LINK instruction.

In this example, after execution of the LINK, addresses $0003FF and below can
be used as the system stack. One hundred (hex) locations starting at $004000 and above
can be reserved for storing the local variables of the subroutine. These variables can then
be accessed with an address register such as AS as a base pointer using the address register
indirect with displacement mode. M0VE.W d(AS),Dl for read and M0VE.W Dl,d(AS)
for write are typical examples.

The use of LINK and UNLK can be illustrated by the following subroutine
structure:

0041 04
00002100

USP 00004104
I

FIGURE 6.10 Execution of the LINK instruction.

132

SUBR LINKA2, #-50 ; Allocate 50 bytes

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

UNLK A2 2 Restore the original values
RTS 3 Return to the subroutine

The LINK instruction is used in this case to allocate 50 bytes for local variables. At the
end of the subroutine, UNLK A2 is used before RTS to restore the original values of the
registers and the stack. RTS returns program execution in the main program.

EXAMPLE 6.1 Determine the effect of each of the following 68000 instructions:
CLRDO

M0VE.L D1,DO
CLR.L (AO)+

MOVE -(AO),DO

MOVE 20(AO),DO

M0VEQ.L #$D7,DO
MOVE 21(AO, Al.L),DO

Assume the following initial configuration before each instruction is executed; also assume
that all numbers are in hex:

[DO] = 22224444,
[AO] = 00002224,
[002220] = 8888,
[002224] = 6666,
[002238] = AAAA, [00556C] = FFFF

[Dl] = 55556666
[All = 00003333
[002222] = 7777
[002226] = 5555

TABLE 6.7 Results for Example 6.1

Instruction Effective Address Net Effect (Hex)
CLR DO Destination EA = DO DO = 22220000
M0VE.L D 1 ,DO DO = 55556666
CLR.L (AO)+ Destination EA = [AO] [002224] = 0000

[002226] = 0000
A0 = 00002228

Source EA = [AO] - 2 A0 = 00002222
Destination EA = DO DO = 22227777
Source EA = [AO] + 20,,

Destination EA = DO

Destination EA = DO

MOVE -(AO),DO

MOVE 20(AO),DO DO = 2222AAAA
(or 14,6) = 002238

M0VEQ.L #$D7,DO Source data = D7,, DO = FFFFFFD7

MOVE 2l(AO,Al.L),DO
Destination EA = DO
Source EA= [AO] + [All + 21,,

= 00556C
Destination EA = DO

DO = 2222FFFF

Assembly Language Programing with the 68000

Solution See Table 6.7

133

EXAMPLE 6.2
following 68000 instruction sequence:

Find the affected register(s) and/or memory locations for the

LEA.L $0000 1000,AO
MOVEA .W #$7002,A1
M0VE.L #$12345678,D5
MOVE D5,(AO)
SWAP. W D5
MOVE D5,-(A I)
MOVE (A0)+,2(A 1)

Solution

After execution of the instruction sequence above, (AO) = $00001002, (Al) =

$00007002, (D5) = $56781234, ($007002) = $5678, and ($001000) = $5678.
Note that, LEA .L $00001000,AO moves $00001000 directly into AO. MOVEA

.W #$7002,A1 moves immediate 16-bit data into the low 16 bits of D5 and sign-extends
to $00007002 in A 1.

M0VE.L #$12345678,D5 moves $12345678 into D5. MOVE D5,(AO) moves
$5678 into 16-bit memory location $001000. SWAP.W D5 exchanges the low 16-bit
($5678) of D5 with the high 16-bit of D5 ($1234) so that (D5) = $56781234.

D5,-(A1) decrements A1 by 2 so that A1 contains $007000, and then
moves low 16 bit contents ($1234) into memory location $007000. MOVE (A0)+,2(AI)
moves the 16-bit contents of memory addressed by A0 into the memory addressed by
A1+2. Hence, $5678 is moved into memory location $007002; A0 is incremented by 2 to
contain $0000 1002.

MOVE

EXAMPLE 6.3
consecutive bytes to zero from LOW to HIGH addresses starting at location $003000.

Write a 68000 assembly program at address $002000 to clear 100

Solution

ORG $2000 ; #1 STARTING ADDRESS
MOVEA .L #$3000,AO ; #2 LOAD A0 WITH $3000
M0VE.W #99,DO ; #3 MOVE 99 INTO DO

DBF.W D0,LOOP ; #5 DECREMENT AND
LOOP CLR.B (AO)+ ; #4 CLEAR[$3000]+

; BRANCH
FINISH JMP FINISH ; #6 HALT

In order to explain the above program , line numbers are included with
the comments. The instruction, DBF (Decrement and branch if false) is covered later in
this chapter. Note that DBF.W Dn,LOOP decrements low 16 bits of the data register
Dn by 1, and checks for Dn = -1 . If Dn # -1, then it branches to LOOP. If Dn = -1, then
the next instruction is executed. That is, the loop is executed [Dn-11 times where Dn.W
contains the loop count. Also, because DBF is a word instruction and considers DO’S low
16-bit word as the loop count, one should be careful about initializing DO using M0VEQ.L
#d8,Dn since this instruction sign extends low byte of Dn to 32 bits.

1 34 Microprocessor Theory and Applications with 68000/68020 and Pentium

In the above program, ORG $2000 at line # 1 provides the starting address of the
program. M0VEA.L #$3000,AO instruction at line #2 loads A0 with $0000 3000 so that
low 24 bits will be used as the starting address of the first byte in memory to be cleared to 0.
M0VE.W #99,D0 at line #3 loads the loop count 99 into low 16 bits of DO. CLR.B (AO)+
at line #4 clears the byte pointed to by A0 (that is contents of $003000) to 0, and then
increments A0 by 1 to point to $003001 (next location to be cleared). DBF.W D0,LOOP
at line #5 decrements DO by 1, checks if DO = -1. Since DO # -1, branches to label LOOP.
The LOOP is performed 100 times until DO = - 1.
Note that the 68000 has no HALT instruction.. Therefore, the unconditional jump to the
same location such as FINISH JMP FINISH at line #6 is normally used at the end of the
program to accomplish HALT.

EXAMPLE 6.4 Write a 68000 assembly language program at address $4000 to
move a block of 16-bit data of length IOO,, from the source block starting at location
002000,, to the destination block starting at location 003000,, from low to high addresses.

Solution

ORG $4000
M0VEA.W #$2000,A4 ;LOAD A4 WITH SOURCE ADDR
M0VEA.W #$3000,A5 ;LOAD A5 WITH DEST ADDR
M0VE.W #99,DO ;LOAD DO WITH COUNT -1=99

START M0VE.W (A4)+,(A5)+ ;MOVE SOURCE DATA TO DEST

STAY JMP STAY ;HALT
DBF.W D0,START ;BRANCH IF DO IS NOT EQUAL TO -1

6.6.2 Arithmetic Instructions
Arithmetic instructions allow:

8-, 16-, or 32-bit additions and subtractions
16-bit by 16-bit multiplication (both signed and unsigned) and 32-bit by 16-bit division
(both signed and unsigned)
Compare, clear, and negate instructions
Extended arithmetic instruction for performing multiprecision arithmetic
A Test (TST) instruction for comparing the operand with zero
A Test and set (TAS) instruction, which can be used for synchronization in a
multiprocessor system

Typical microprocessors utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set of
microprocessors typically include the same ADD and SUBTRACT instructions for both
unsigned and signed numbers. The interpretations of unsigned and signed ADD and
SUBTRACT operations are performed by the programmer. More detailed coverage is
provided in Chapter 5.

Unsigned and signed multiplication and division operations can be
performed using various algorithms. Typical 32-bit microprocessors such as the Pentium
contain separate instructions for performing these multiplication and division operations.

Assembly Language Programing with the 68000 135

These topics, along with some multiplication and division algorithms, are covered in
chapter 5.

The 68000 arithmetic instructions are summarized in Table 6.8. Let us now explain
the arithmetic instructions.

TABLE 6.8 68000 Arithmetic Instructions
~ ~~

Instruction Size Operation

Addition and Subtraction Instructions

ADD (EA), (EA)
ADD1 #Data, (EA)
ADDQ #d,, (EA) B, W, L [EA] + d,+ [EA]

B, W, L
B, W, L

[EA] + [EA] + [EA]
[EA] + data + [EA]

d, can be an integer from 0 to 7

ADDA (EA), An W, L An + [EA] +An

SUB1 # data, (EA)
SUB (EA), (EA) B, W, L [EA] - [EA] + [EA]

B, W, L [EA] -data ----* [EA]

d, can be an integer from 0 to 7
SUBQ #d,, (EA) B, W, L [EA] - d, -+ [EA]

SUBA (EA), An W, L An - [EA] + [An]
Multiplication and Division Instructions

MULS (EA), Dn W IDnIl6 * I E A I l 6 + P I 3 2

(signed multiplication)

MULU (EA), Dn W I D n I 6 I* I E A I l 6 --t LDn132

(unsigned multiplication)

DIVS (EA), Dn W [D n h / [E A h + [Dnl,~
(signed division, high word of Dn contains remainder
and low word of Dn contains the quotient)

DIVU (EA), Dn W [Dn13z / [EA1,6 + [D n h
(unsigned division, remainder is in high word of Dn
and quotient is in low word of Dn)

Compare, Clear. and Negate Instructions

CMP (EA), Dn
CMPA (EA), An
CMPI # data, (EA)
CMPM (Ay) +, (Ax)+
CLR (EA) B,W,L 0 - [EA]

B, W, L
W, L
B, W, L
B, W, L

Dn - [EA] + No result. Affects flags.
An - [EA] -+ No result. Affects flags.
[EA] - data + No result. Affects flags.
(Ax)+ - (Ay)+ + No result. Affects flags.

NEG (EA) B,W,L 0 - IEAl +TEA1
Extended Arithmetic Instructions

ADDX Dy,Dx B,W,L D x + D y + X + D x
ADDX - (Ay), - (AX) B, W, L - (AX) + - (Ay) + X + (AX)

136

TABLE 6.8 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

EXT Dn W, L If size is W, then sign extend low byte of Dn to 16
bits. If size is L, then sign extend low 16 bits of Dn
to 32 bits.

NEGX (EA)
SUBX Dy,Dx B ,W,L Dx-DY-X-DX
SUBX - (Av). - (AX)

B, W, L 0 - [EA] - X + [EA]

B, W, L - (AX) - - (Av) - X --t (AX)
Test Instruction

TST (EA) B, W, L [EAl - 0 0 Flags are affected.
Test and Set Instruction

TAS (EA) B If [EA] = 0, then set Z = 1; else Z = 0, N = 1
and then alwavs set bit 7 of [EAl to 1.

NOTE: If source (EA) in the ADDA or SUBA instruction is an address register, the
operand length is WORD or LONG WORD.
(EA) in any instruction is calculated using the addressing mode used.
All instructions except ADDA and SUBA affect condition codes.

Source (EA) in the aboveADD,ADDA, SUB, and SUBAcan use all modes. Destination
(EA) in the above ADD and SUB instructions can use all modes except An. relative,
and immediate.

Destination (EA) in ADDI and SUB1 can use all modes except An. relative, and
immediate.

Destination (EA) in ADDQ and SUBQ can use all modes except relative and
immediate.
(EA) in all multiplication and division instructions can use all modes except An.

Source (EA) in CMP and CMPA instructions can use all modes.
Destination (EA) in CMPI can use all modes except An, relative, and immediate.
(EA) in CLR and NEG can use all modes except An, relative, and immediate.

(EA) in NEGX can use all modes except An, relative and immediate.

(EA) in TST can use all modes except An, relative, and immediate.

(EA) in TAS can use all modes except An, relative, and immediate.

Addition and Subtraction Instructions The 68000 addition and subtraction
instructions are illustrated by means of numerical examples in the following.

Consider ADD.W $122000,DO. If [$122000] = $0012 and [DO] = $0002, then after
execution of this ADD, the low 16 bits of D0.W will contain $0014. C = 0 (no Carry),
X = 0 (same as C), V = 0 (no overflow since the previous carry and the final carry are
the same), N = 0 (most significant bit of the result is 0), Z = 0 (nonzero result).
The ADDI instruction can be used to add immediate data to a register or memory
location. The immediate data follows the instruction word. For example, consider
ADD1.W #8,$100200. If [$100200] = $0002, then after execution of this ADDI,

Assembly Language Programing with the 68000 137

memory location $100200 will contain $000A. All condition codes are affected.

ADDQ adds a number from 0 to 7 to a register or a memory location in the destination
operand. This instruction occupies 16 bits, and the immediate data 0 to 7 is specified
by 3 bits in the instruction word. For example, c0nsiderADDQ.B #2, D1. If [DIIlowbyte
= $20, then after execution of this ADDQ, the low byte of register D1 will contain
$22.

ADDA.L #4,A2 adds 4 to 32 bits of A2. For example, if prior to execution of this
instruction, [A21 = $OA20 4000, then after execution of ADDA.L #4,A2, register
A2.L will contain $OA20 4004. No condition codes are affected.
All subtraction instructions subtract the source from the destination. For example,
consider SUB.B $122200,D2. If [D2.L]= $23A50707 and [$122200] = $03, then, after
execution of this SUB.B $122200,D2, register D2.L will contain $23A50704. The
condition codes are affected as follows:
Using two’s-complement subtraction, 1 1 11 11 1 + Intermediate Carries

[D2.B] = 0000 01 11
Add twos complement of $03 = 1111 1101

final carry -.I 0000 0100
.....................

The final carry is one’s-complemented after subtraction to reflect the correct borrow.
Hence, C = 0.
Also, X = 0 (same as C), Z = 0 (nonzero Result), N = 0 (most significant bit of the
result is zero), and V = Cf @ Cp = 1 @ 1 = 0.
The SUB1 instruction can be used to subtract immediate data from a register or
memory location. For example, consider SUB1.B #9,D1. If prior to execution of this
instruction, [Dl.B] = $08, then after execution of SUB1.B #9,D1, the register will
contain $FF or - l , o

SUBQ subtracts a number from 0 to 7 from register or a memory location in the
destination operand. This instruction occupies 16 bits, and the immediate data 0 to 7
is specified by 3 bits in the instruction word. For example, consider SUBQ.B #2,D1.
If [Dl],owbyte = $05, then after execution of this SUBQ, the low byte of register D1 will
contain $03.
SUBA.L #4,A2 subtracts 4 to 32 bits of A2. No condition codes are affected. For
example, if prior to execution of this instruction, [A21 = $0A204008, then after
execution of SUBA.L #4,A2, register A2.L will contain $OA204004. No condition
codes are affected.

Multiplication and Division Instructions The 68000 instruction set includes both
signed and unsigned multiplication of integer numbers. These instructions are explained
using numerical examples in the following.

MULS (EA),Dn multiplies two 16-bit signed numbers and provides a 32-bit result. For
example, consider MULS #-2,D5. If [D5.W] = $0003, then after this MULS, D5 will
contain the 32-bit result $FFFFFFFA, which is -6 in decimal.

MULU (EA),Dn performs unsigned multiplication. Consider MULU (AO),D 1. If [AO]
= $00 102000, [$I020001 = $0300, and [D 1 .W] = $0200, then, after this MULU, D 1
will contain the 32-bit result $00060000.

138 Microprocessor Theory and Applications with 68000/68020 and Pentium

Consider DIVS #2, D1. If [Dl] = -5,0 = $FFFFFFFB, then, after this DIVS, register
D1 will contain

D1 FFFF I FFFE
16-bit 16-bit
remainder = quotient =

-110 -210

Note that in the 68000, after DIVS, the sign of the remainder is always the same as
the dividend unless the remainder is equal to zero. Therefore, in this example, because
the dividend is negative (-5& the remainder is negative (-l,o). Also, division by zero
causes an internal interrupt automatically. A service routine can be written by the
user to indicate an error. N = 1 if the quotient is negative, and V = 1 if there is an
overflow.

D I W is the same as the DIVS instruction except that the division is unsigned. For
example, consider D I W #4,D5. If [D5] = 14,, = $OOOOOOOE, then after this DIVU,
register D5 will contain

D5 I 0002 I 0003 I
16-bit 16-bit
remainder quotient

As with the DIVS instruction, division by zero using DIVU causes a trap (internal
interrupt).

Compare, Clear, and Negate Instructions
instructions are illustrated by means of numerical examples in the following.

The 68000 compare, clear, and negate

The compare (CMP) instruction subtracts the source from the destination, providing
no result of subtraction; all condition codes are affected based on the result. Note
that the SUBTRACT instruction provides the result and also affects the condition
codes. Consider CMP.B D3,DO. If prior to execution of the instruction, [DO.B] =

$40 and [D3.B] = $30, then after execution of CMP.B D3,DO, the condition codes
are as follows: C = 0, X = 0, Z = 0, N = 0, and V = 0. Suppose that it is desired to find
the number of matches for an 8-bit number in a 68000 register such as D5.B in a data
array (stored from low to high memory) of 50 bytes in memory pointed to by AO. The
following instruction sequence with CMP.B (AO)+,D5 rather than SUB.B (AO)+,D5
can be used :

CLR.B DO ; Clear D0.B to 0, D0.B to hold the number of
; matches

M0VE.B #50,D1 ; Initialize the array count

START CMP.B (AO)+,D5 ; Compare the number to be matched in D5

BNE.B DECR

ADDQ.B #1,DO ; a match, Z=l and increment DO.

DECR SUBQ.B #1,D1 ; Decrement D1 by 1 and go back to START if

; with a data byte in the array. If there is

Assembly Language Programing with the 68000

BNE.B START ; Z = O.If Z = 1, go to the next instruction

139

; D0.B contains the number of matches

In the above, if SUB.B (AO)+,D5 were used instead of CMP.B (AO)+,D5, the number
to be matched needed to be loaded after each subtraction because the contents of
D5.B would have been lost after each SUB. Since we are only interested in the
match rather than the result, CMP.B (AO)+,D5 instead of SUB.B (AO)+,D5 should
be used in the above.

The 68000 instruction set includes a memory-to-memory COMPARE instruction.
For example, CMPM.W (AO)+,(Al)+. If [AO] = $00100000, [All = $00200000,
[$lOOOOO] = $0005, and [$200000] = $0006, then after this CMPM instruction, N = 0,
C = 0, X = 0, V = 0, Z = 0, [AO] = $00100002, and [All = $00200002.
CLR.L D5 clears all 32 bits of D5 to zero.

Consider NEG.W (AO). If [AO] = $00200000 and [$200000] = 5,,, then after this NEG
instruction, the low 16 bits of location $200000 will contain $FFFB.

Extended Arithmetic Instructions The 68000 extended arithmetic instructions are
illustrated by means of numerical examples in the following.

ADDX and SUBX instructions can be used in performing multiprecision arithmetic
because there are no ADDC (add with carry) or SUBC (subtract with borrow)
instructions. For example, to perform a 64-bit addition, the following two instructions
can be used:

ADD.L DO,D5
ADDX.L D1 ,D6

Add the low 32 bits of data and store in D5
Add the high 32 bits of data along with any carry from
the low 32-bit addition and store the result in D6

In the example above, DlDO contains one 64-bit number and D6D5 contains the
other 64-bit number. The 64-bit result is stored in D6D5. Note that the ADDX and
SUBX instructions contain two operands. The addressing modes of these operands
can be either both data register direct mode or both address register indirect with
predecrement mode.
SUBX.B D1,D2 subtracts the source byte (D1 .B) plus the X-bit (the same as the carry
flag) from the destination byte (D2.B); the result is stored in the destination byte, and
no other bytes of the destination register are affected. All condition codes are affected.
For example, if [D2.L] = $2AB10003, [Dl.L] = $A2345602, and X = C = 1, then after
SUBX.B D1,D2, the contents of D2.B = 03 - 02 - 1 = $00. [D2.L] = $2AB10000.

1 1 1 1 1 11 t intermediate carries
using two’s-complement subtraction, [D2.B] = 0000 001 1 (+3)
Add twos complement of 3 (D1 .B plus Carry) = + 1 11 1 1 10 1 (-3)

................................
final carry -, 1 0000 0000

The final carry is one’s-complemented after subtraction to reflect the correct borrow.
Hence,C= 0.
Also, X = 0 (same as C), Z = 1 (zero result), N = 0 (most significant bit of the result is
zero), and V = C, 0 C, = 1 0 1 = 0.

140 Microprocessor Theory and Applications with 68000/68020 and Pentium

EXT.W Dn copies bit 7 of Dn to bits 8 through 15 of Dn. The upper 16 bits of
Dn are not affected. Consider EXT.W D2. If [D2.L] = $421700F3, then after the
EXT.W, [D2.L] = $4217FFF3. Note that sign extension is very useful when one wants
to perform an arithmetic operation on two signed numbers of different lengths. For
example. the 16-bit signed number $0020 can be added with the 8-bit signed number
$El by sign-extending $E 1 as follows:

0020, ,=0000 0 0 0 0 0 0 I 0 0 0 0 0 (3 2 , 0)
Sign
extension

El, ,$I 1 1 1 1 1 1 I1 1 1 1 0 0 0 0 1(-31 10)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (+ I l O)
P w w w w

Ignore/ 0 0 0 I
c a w

Another example of sign extension is that to multiply a signed 8-bit number by
a signed 16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit
number, and then the instruction MULS.W can be used for 16 x 16 signed multiplication.
For unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number must
be zero-extended to 16 bits using a logical instruction such as AND before using the MUL
instruction. For example, suppose that MULS.W D0,Dl will be used to multiply the
low 8-bit contents of DO by the low 16-bit contents of D1 and that prior to execution of
this instruction, [DO.B] = $FF= -1 and [D1.W] = $0002 = +2. To perform this signed
multiplication, the 8-bit contents of D0.B must be sign-extended to 16 bits using the EXT.W
DO instruction so that [DO.W] = $FFFF = -1. The multiplication instruction MULS.W
D0,Dl can then be executed so that the 32-bit contents of D1 will contain the correct
result, FFFFFFFEH (-2). Now, to perform unsigned multiplication, MUL.W DO,Dl, with
the same data, the low 8-bit contents of DO must be zero-extended so that [DO.W] =

$OOFF (+255). This can be accomplished by using the logic AND instruction, which will
be covered in the next section. Note that after execution 0fAND.W #$OOFF,DO, the low 16
bits of register DO will contain $OOFF. The instruction MUL D0,Dl can then be executed
so that 32 bits of D1 will contain the correct 32-bit product, 000001FEH (+510), since
(D 1. W) = 0002H.

EXT.L Dn copies bit 15 of Dn to bits 16 through 31 of Dn. For example, if [DO.L] =

$08AOA205, then after execution of EXT.L DO, the 32-bit contents of register DO =

$FFFF A205 since bit 15 (sign bit) of DO is 1.
The NEGX (EA) instruction subtracts destination operand (EA) and the X-bit from
0. The result is stored in the destination operand. All condition codes are affected. For
example, consider NEG .L D2. If, prior to execution of this instruction, [D2.L] = 2,
X = 0, then after execution of NEGX.L D1, the contents of the destination operand,
D2 = 0 - 2 - 0 = -2 = $ FFFF FFFE.

The 68000 test instruction is illustrated by means of numerical

Consider TST.W (AO). If [AO] = 00300000,, and [300000,,] = FFFF,,, then after
TST.W (AO), the operation FFFF,, - 0000,, is performed internally by the 68000, Z is
cleared to 0, and N is set to 1. The V and C flags are always cleared to 0.

The 68000 test and set instruction is illustrated by means

TAS.B (EA) is generally used to synchronize two processors in multiprocessor data

Test Instruction
examples in the following.

Test and Set Instruction
of numerical examples in the following.

Assembly Language Programing with the 68000

Processor
1

141

RAM I, Processor
2

transfers. For example, consider two 68000-based microcomputers with shared RAM
as shown in Figure 6.1 1.

Suppose that it is desired to transfer the low byte of DO from processor 1 to the low
byte of D2 in processor 2. A memory location, TRDATA, can be used to accomplish this.
First, processor 1 can execute the TAS instruction to test the byte in the shared RAM with
the address TEST for zero value. If it is, processor 1 can be programmed to move the low
byte of DO into location TRDATA in the shared RAM. Processor 2 can then execute an
instruction sequence to move the contents of TRDATA from the shared RAM into the low
byte of D2. The following instruction sequence will accomplish this:

Processor 1 Routine
Proc-1 TAS.B TEST Proc-2 TAS.B TEST

Processor 2 Routine

BNE.B Proc-1 BNE.B Proc-2
M0VE.B D0,TRDATA M0VE.B TRDATA,D2
CLR.B TEST CLR.B TEST

Note that in these instruction sequences, TAS.B TEST checks the byte addressed
by TEST for zero. If [TEST] = 0, then Z is set to 1 ; otherwise, Z = 0 and N = 1. After
this, bit 7 of [TEST] is set to 1. Note that a zero value of [TEST] indicates that the shared
RAM is free for use, and the Z bit indicates this after TAS is executed. In each instruction
sequence, after a data transfer using the MOVE instruction, [TEST] is cleared to zero so
that the shared RAM is free for use by the other processor. To avoid testing the TEST byte
simultaneously by two processors, TAS is executed in a read-modify-write cycle. This
means that once the operand is addressed by the 68000 executing TAS, the system bus is
not available to the other 68000 until TAS is completed.

Arrays
and two-dimensional arrays are provided in the following.

The 68000 instructions and appropriate addressing modes to access one-

One-dimensional arrays (tables) can be accessed using the 68000 MOVE instruction
with an appropriate addressing mode. For example, consider a table of five elements
containing 5 bytes stored starting at the address $2000. The table is stored in memory
such that $2000 points to element 0, $2001 points to element 1, and $2004 points
to element 4. This is depicted in Figure 6.12(a).

An address register such as A0.L can be initialized with an element number to
read the element from the table into an 8-bit data register such as D1.B. For example,
if [AO.L] = 2, M0VE.B $2000(AO),D1 will load element 2 from address $2002 into
D1.B. Note that if [AO.L] = 4, then M0VE.B $2000 (AO),Dl will transfer element 4 into

142 Microprocessor Theory and Applications with 68000/68020 and Pentium

(a) 8-bit elements stored in memory

(b) 32-bit elements stored in memory

High Address

High Address

FIGURE 6.12 One-dimensional array stored in memory.

D1 .B.
Suppose that an array of five elements containing 32-bit data words is stored

starting at address $4000. This means that 4 bytes are needed to store each element.
That is, $4000 through $4003 will contain element 0, while address $4010 through address
4013 will store element 4. Hence, address $4000 will contain element 0, address 4004 will
contain element 1, address 4008 will contain element 2, and so on. This is shown in Figure
6.12 (b). Now, to move element 2 into DO.L, the following instruction sequence can be
used:

LEA.L ; Load the starting offset of the array into A0.L
M0VE.L #2, D1 ; Move element 2 into D 1 .L
LSL.L #2,D 1 ;Unsigned-multiply by 4 since a long word
M0VE.L ; Load 32-bit value of element 2 into D0.L

$00004000,AO

(AO,Dl.L),DO

The instruction, LSL.W #2,D1 in the above is covered in Section 6.6.3. LSL.W
#2,D1 logically shifts the 32-bit contents of D1 twice to the left. This is the same as
unsigned multiplication of a 32-bit number in D1 by 2* (or 4). This could have been
accomplished using the MUL (unsigned multiplication) instruction. Since the execution
time for MUL is much longer than for LSL, the instruction LSL is used for unsigned
multiplication. In the instruction sequence above, the starting address ($4000) of the table
is first loaded into a 32-bit address register such as AO. Element 2 is then transferred to an
index register such as D1 .L. Note that data register D1.L is used as an index register in the
M0VE.L (A0,Dl .L),DO instruction. Register D1 is multiplied (unsigned multiplication
since addresses are always positive) by 4 using the LSL.L instruction since each element
is 4 bytes (32 bits). The value of element 2 is then loaded into a 32-bit register such as
D0.L using MOVE (AO,Dl.L),DO.

Assembly Language Programing with the 68000 143

Next, consider two-dimensional arrays or matrices. For example, assume a 2x3 matrix
(two rows and three columns) as follows:

column 0 column 1 column 2
a [O,OI 11 a[0,21
a[1 $1 a[l , lI a[1921

Since memory is one-dimensional, this matrix is stored in memory using column-
major ordering.or row-major ordering .In column-major ordering, the elements are
stored column by column, starting with the first column:

In row-major ordering, the elements are stored in memory row by row, starting with
the first row:

a[0,0] --column 0 (start of array)
a[0,1]-- column 1
a[0,2]-- column 2
a[1,0]-- column 0
a[l,l]-- column 1
a[1,2]-- column 2

Since row-major ordering and subscripts start with 0 in the C language, the same
convention will be used here. Assume that each element in the matrix is 16-bit wide. Hence,
if the matrix is stored starting at address $2000, the matrix can be stored as row-major
ordering:

In the C language, which uses row-major ordering and subscripts starting with zero, one
can express displacement d of an element at row i and columnj as d = (i* t + j) * s,
where t is the total number of columns and s is the element size (1 for a byte, 2 for 16 bits,
and 4 for 32 bits). Now, to find the displacement of an element such as a[1,2] with each
element as 16 bits, the address can be determined as follows: Note that i = l , j = 2, t = 3
(since this is a 2x3 matrix), and s = 2 (16-bit element). Hence, d = (1 *3 + 2)*2 = 10 = $A.
Therefore, the address where element a[1,2] is stored = $2000 + $A = $200A. This verifies
the stored data. Now, to load element , a[1,2] into D0.W from the array, the following
68000 instruction sequence can be used:

144 Microprocessor Theory and Applications with 68000/68020 and Pentium

LEA.L ; Low 16 bits ofAO to hold 16-bit address $2000
;with upper 16 bits as zero

MOVE. W # 1 ,D2 ;Load i=l, row number into D2
MUL.W #3, D2 ; perform i*t, t = total columns =3
ADDQ.L #2,D2 ; compute i*t +j with j = 2, store result in D2.L
LSL.L #2,D2 ; unsigned multiply (i*t+j)*s by 4, and store in D2.L
M0VE.W (A0 , D2.L),DO ; Move 16-bit a[1,2] from address $200A into D0.W

$00002000,AO

EXAMPLE 6.5
the following C language program segments:

Write a 68000 assembly language program that implements each of

(a) i f (x>=y)
x = x + 10;

else y = y - 12;
where x is the address of a 16-bit signed integer and y is the address of a 16-bit signed
integer .

(b) sum = 0;
for (i = 0; i <= 9; I = i + 1)
sum = sum + a[i];

where sum is the address of the 16-bit result of addition.

Solution

(a) x EQU
Y EQU

LEA.L
LEA.L
M0VE.W
CMP.W
BGE.B
SUB1.W
BRA.B

THPRT ADD1.W
STAY JMP

100
200
x,AO ; Initialize A0
Y,Al ; Initialize A1
(AO),DO ; Move [XI into DO
(Al),DO ; Compare [XI with [y]
THPRT
12,(A 1) ; Execute else part
STAY

#10,(AO) ; Execute then part
STAY : Halt

(b) Assume that register A0 holds the address of the first element of the array.

SUM EQU
LEA.L
CLR.W
M0VE.W

LOOP ADD.W
DBF.W
M0VE.W

FINISH JMP

300 ; Initialize SUM to 300 for result
200,AO ; Point A0 to a[O]
DO ; Clear the sum to zero
#9,D1 ; Initialize D1 with loop limit
(AO)+,DO ; Perform the iterative summation
Dl ,LOOP

D0,SUM ; Store 16-bit result in address SUM
FINISH ; Halt

Note that in the above, condition F in DBF is always false. Hence, the program exits from

Assembly Language Programing with the 68000

the LOOP when D1 = -1. Therefore, the addition process is performed 10 times.

145

EXAMPLE 6.6 Write a 68000 assembly language program to find X/65535 ,,, where
Xis a 16-bit signed number stored in D0.W. Store the 32-bit result (quotient and remainder)
onto the user stack..

Solution

MULS.W DO,DO ; Compute X and store in D0.L
D1W.W #65535,D0 ; Since X and 655355 are both positive, use
M0VE.L DO,-(A7) ; unsigned division. Remainder in high word

FINISH JMP FINISH ; of DO and quotient in low word of DO. Push

EXAMPLE 6.7
execution of the following 68000 instruction sequence?

; D0.L to stack
What are the remainder, quotient, and register containing them after

MOVE. W #OFFFFH,D 1
DIVS. W #2,D 1

Solution

M0VE.W #OFFFFH,Dl ; D 1 = FFFFH = -1
D1VS.W #2,D1 ; D1/2=-1/2

High D1.W Low D1.W
I FFFFH I OOOOH I

16-bit 16-bit
remainder = quotient = 0
-110

EXAMPLE 6.8
two 64-bit numbers as follows:

Write a 68000 assembly language program at address $3000 to add

Solution

ORG $3000
ADD.L D1,D3 ; Add low 32 bits, store result in D3.L
ADDX.L DO,D2 ; Add with carry high 32 bits, store result

END JMP END ; Halt

146 Microprocessor Theory and Applications with 68000/68020 and Pentium

EXAMPLE 6.9 Write a 68000 assembly language program at address $2000 to add
four 32-bit numbers stored in consecutive locations from low to high addresses starting at
address $3000. Store the 32-bit result onto the user stack. Assume that no carry is generated,
due to the addition of two consecutive 32-bit numbers and A7 is already initialized.

Solution

ORG $3000
DC.L 12,334
ORG $2000
M0VEQ.L #3,DO ; Move 3 into DO
M0VEA.L #$3000,AO ; Initialize A0
CLR.L D1 ; Clear sum to 0

DBF.W D0,START ; perform loop
M0VE.L D1,-(A7) ; push result

START ADD.L (AO)+,Dl ; Add

FINISH JMP FINISH

EXAMPLE 6.10 Write a 68000 assembly language program at address $2000 to
add ten 32-bit numbers stored in consecutive locations starting at address $3000. Initialize
A6 to $00200504 and use the low 24 bits ofA6 as the stack pointer to push the 32-bit result.
Use only the ADDX instruction for adding two 32-bit numbers each time through the loop.
Assume that no carry is generated, due to the addition of two consecutive 32-bit numbers;
this will provide the 32-bit result. This example illustrates use of the 68000 ADDX
instruction.

Solution

ORG $3000
DC.L 2,3,7,5,1,9,6,4,6,1

START-ADR EQU $3000
ORG $2000

COUNT EQU 9
M0VEA.L #START-ADR,AO ;LOAD STARTING ADDRESS IN A0
M0VE.B #COUNT,DO ;USE DO AS A COUNTER
M0VEA.L #$00200504,A6 ; USE A6 AS THE SP
CLR.L D1 ;CLEAR D1
ADD1.B #O,D6 ; CLEAR X BIT

ADDX.L D3,Dl ;ADD NUMBERS USING ADDX
AGAIN M0VE.L (AO)+,D3 ; MOVE A 32 BIT NUMBER IN D3

DBF. W D0,AGAIN ;REPEAT UNTIL DO 1 - 1
M0VE.L D1 ,-(A6) ;PUSH 32-BIT RESULT ONTO STACK

FINISH JMP FINISH

Note that ADDX adds the contents of two data registers or the contents of two memory
locations using predecrement modes.

Assembly Language Programing with the 68000 147

EXAMPLE 6.11 Write a 68000 assembly program at address $2000 to multiply an
8-bit signed number in the low byte of D1 by a 16-bit signed number in the high word of
D5. Store the result in D3. Assume that the number is already stored in D1 .B.

Solution

ORG $2000
EXT. W D 1
SWAP.W D5
MULS.W D1,D5 ; MULTIPLY D1 WITH D5, STORE RESULT
M0VE.L D5,D3 ; COPY RESULT IN D3

; SIGN EXTENDS LOW BYTE OF D1
; SWAP LOW WORD WITH HIGH WORD OF D5

FINISH JMP FINISH

EXAMPLE 6.12 Write a 68000 assembly language program at address $2000 to
compute 2 Kr, where the X,’s and y’s are signed 16-bit numbers and N = 100. Store the
32-bit re& in D1. Assume that the starting addresses of the A’s and K’s are 3000,, and
4000,, respectively.

N

Solution

P
Q

EQU
EQU
ORG
M0VE.W
LEA.L
LEA.L
CLR.L

LOOP M0VE.W
MULS.W
ADD.L
DBF.W

FINISH JMP

$3000
$4000
$2000
#99,DO
P,AO

D1
(AO)+,D2
(A 1)+,D2
D2,D 1
D0,LOOP
FINISH

Q>A 1

; MOVE 99 INTO DO
; LOAD ADDRESS P INTO A0
; LOAD ADDRESS Q INTO A1
; INITIALIZE D1 TO ZERO
; MOVE [XI TO D2

; D1<-- SUM XiYi
; DECREMENT AND BRANCH
; HALT

; D2 <--[X]*[Y]

Note: To execute the program above, values for the Xi’s and E’s must be stored in memory
using assembler directive DC.W.

EXAMPLE 6.13 Write a 68000 assembly language program to convert temperature
from Fahrenheit to Celsius using the equation: C = [(F - 32)/9] x 5 ; assume that the low
byte of DO contains the temperature in Fahrenheit. The temperature can be positive or
negative. Store the result in DO.

Solution

EXT. W DO ; SIGN EXTEND (F) LOW BYTE OF DO
SUB1.W #32,DO ; PERFORM F-32
MULS. W #5 ,DO ; PERFORM 5 * (F-32)/9 AND STORE
D1VS.W #9,DO ; REMAINDER IN HIGH WORD OF DO

FINISH JMP FINISH ; AND QUOTIENT IN LOW WORD OF DO

148

EXAMPLE 6.14
equivalent to the following C language segment:
sum = 0;
for (i = O ; i <= 9; i = i + 1)
sum = sum + x[i] * y[i];
Assume that the arrays, x[i] and y[i] contain unsigned 16-bit numbers already stored in
memory starting at addresses $3000 and $4000 respectively. Store the 32-bit result at
address $5000.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Write a 68000 assembly program at address $1000 which is

Solution

ORG
X EQU
Y EQU
sum EQU

M0VE.W
LEA.L
LEA.L
LEA.L
CLR.L

LOOP M0VE.W
MULU.W
ADD.L
DBF.W
M0VE.L

FINISH JMP

$1000
$3000
$4000
$5000
#9,DO
x,AO

sum,A2
D5
(AO)+,D2
(A 1)+,D2
D2,D5
D0,LOOP

FINISH

Y,A 1

D54A2)

;USE DO AS A LOOP COUNTER
;INITIALIZE A0 WITH x
;INITIALIZE A1 WITH y
;INITIALIZE A2 WITH SUM
;CLEAR SUM TO 0
;MOVE X[i] INTO D2
;COMPUTE X[i] *y[i]
;UPDATE SUM

;STORE SUM IN MEMORY
;REPEAT UNTIL DO=- 1

EXAMPLE 6.15 Write a 68000 assembly language program at address $002000 to
add all the elements in a table containing eight 16-bit numbers stored in memory in
consecutive memory locations starting at the address $005000. Store the 16-bit result in
D1.W.

Solution

ORG
DC.W
DC.W
ORG
LEA.L
M0VE.L
M0VE.L
CLR.W
M0VE.W

LSL.L
ADDQ.L
M0VE.L
DBF. W
JMP

BACK ADD

END

$005000
1,2,3,4
5,6,7,8
$002000
$00005000
#O,DO
DO,D3
D1
#7,D2
(AO,DO.L),D 1
#1,DO
#1,D3
D3,DO
D2,BACK
END

,AO; A0 = Starting address of the table
; Move element number 0 into D0.L
; Copy element number 0 into D3.L
; Clear 16-bit sum in D1 to 0
; Initialize D2.W with loop count
;Add elements with sum in D1.W
; unsigned multiplication of element# by 2 forW
; Increment element number in D3.L by 1
; Copy element number in D0.L
; Decrement D2 and branch to BACK if D2 # - 1
: Halt

Assembly Language Programing with the 68000 149

EXAMPLE 6.16 Write a 68000 assembly language program at $1000 to find the
trace (sum of the elements in the diagonal) of a 3x3 matrix containing 16-bit words. Store
the 16-bit result in DO. Assume that the matrix is stored in row-major ordering starting at
an offset $4000 as follows:

$4000 a[O,O]
$4002 a[O,l]
$4004 a[0,2]
$4006 a[l,O]
$4008 a[l , l]
$400A a[1,2]
$400C a[2,0]
$400E a[2,1]
$4010 a[2,2]

Note that trace = a[O,O] + a[l , l] + a [2,2] and displacement, d = (i *t +j) *s = i*t*s +
j * s where i = row number,j = column number, t = total number of columns in the matrix,
s = element size. In this example, t = 3 for 3x3 matrix, s=2 since each element is 16-bit.
Hence, d= 3*(2*i) + 2*j = 6 * i + 2 *j. Hence, effective address where an element, aij will
be stored = A0 + 6*i + 2*j where A0 = starting address of the array, i = row number,j =

column number.

Solution

ORG
DC. W
DC.W
DC. W
ORG
M0VE.L
M0VE.L
M0VE.L
M0VE.L
M0VE.W
CLR.W
LEA.L

ADDA.L
ADD. W
ADDQ.L
M0VE.L
LSL.L
ADDQ.L
M0VE.L
LEA.L
DBF.W

BACK MULU.W

FINISH JMP

$1 000
$12, $56, $09
$78, $21389
$14, $21,$45
$1000
#O,DI
D 1 ,D4
#O,D2
D2,D6
#2,D7
DO
$4000,AO
#6,D6
D6,AO
(A0,Dl .L),DO
#1,D4
D4,Dl
#1,D1
#1,D2
D2,D6
$4000,AO
D7,BACK
FINISH

;Data arbitrarily chosen

; Load column number 0 into D 1
; Copy D1 into D4
; Load row number 0 into D2
;Copy D2 into D6
; initialize loop count
;sum=O
; load starting address into A0
; perform 6*i, result in D6.L
; add A0 with 6*i
; sum diagonal elements in D0.W
; Increment column number by 1
; save updated column# in D 1 .L
; Perform 2*j and save in D1 .L
; Increment row number by 1
; Copy updated row number into D6
; re-initialize A0 to $4000 since [AOIwas altered
; Decrement D7.W by 1, branch if [D7.W] f -1
; Halt

1 50

TABLE 6.9 68000 Logic Instructions

Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction Size Operation
AND (EA), (EA)

ANDI # data, (EA)

ANDI # data,, CCR
ANDI # data,,, SR
EOR Dn, (EA)

EORI # data, (EA)

OR1 # data, (EA)

ORI # data,, CCR

B, W, L [EA] AND [EA] -+ [EA];
[EA] cannot be address register

B, W, L [EA] AND # data -+ [EA];
([A] cannot be address register

B
W
B, w, L

[CCR] AND # data + [CCR]
[SR] AND# data + [SR]. Privileged Instruction.

[Dn] @ [EA]+ [EA];
[EA] cannot be address register

B, w, L [EA] @ # data -+ [EA];
[EA] cannot be address register

B, W, L
B, W, L

One’s complement of [EA] + [EA];
[EA] OR [EA] + [EA];
[EA] cannot be address register

B, W, L [EA] OR # data + [EA];
(EA) cannot be address register

B [CCR] OR # data, -+ [CCR]
ORI # data,,, SR W

Source (EA) in AND and OR can use all modes except An.

[SR] OR # data --f [SR], Privileged Instruction.

Destination (EA) in AND or OR or EOR can use all modes except An, relative, and
immediate.
Destination (EA) in ANDI, ORI, and EORI can use all modes except An, relative, and
immediate.

(EA) in NOT can use all modes except An, relative, and immediate.

6.6.3 Logic Instructions
The 68000 logic instructions include logic OR, EOR, AND, and NOT, as shown in Table
6.9. We now explain the logic instructions.

Consider AND1.B #$8F,DO. If prior to execution of this instruction, [DO.B] = $72,
then after execution of AND.B #$8F,DO, the following result is obtained:

[DO.B] = $72 = 0111 0010
AND $8F= 1000 1111

[DO.B] = 0000 0010
Z = 0 (Result is nonzero) and N = 0 (most significant bit of the result is 0). C and V

Assembly Language Programing with the 68000 151

are always cleared to 0, and X is not affected after logic operation. The condition codes
are similarly affected after execution of other logical instructions, such as OR, EOR, and
NOT.

The AND instruction can be used to perform a masking operation. If the bit value in a
particular bit position is desired in data (byte, word, or longword), the data can be
logically ANDed with appropriate data to accomplish this. For example, the bit value
at bit 2 of an 8-bit number 0100 1Y 10 (where an unknown bit value of Y is to be
determined) can be obtained as follows:

0 1 0 0 1 Y 1 0 -- 8-bit number
0 0 0 0 0 1 0 0 --Masking data AND

0 0 0 0 0 Y 0 0 -- Result
If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the result
is zero (Z=1) . The Z flag can be tested using typical conditional JUMP instructions
such as BEQ (Branch if Z = 1) or BNE (Branch if Z = 0) to determine whether Y
is 0 or 1. This is called a masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the least
significant bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd).
C0nsiderAND.W Dl,D5. If[Dl .W] = $0001 and [D5.W] = $FFFF, then afterexecution
of this AND, the low 16 bits of both D1 and D5 will contain $0001.
Consider AND1.B #$OO,CCR. If [CCR] = $01, then after this ANDI, register CCR will
contain $00.
Consider EOR1.W #2,D5. If prior to execution of this instruction,[D5.W] = $2342,
then after execution of EOR1.W #2,D5, the low 16-bit contents of D5 will be 2340H.
All condition codes are affected in the same manner as the AND instruction. The
Exclusive-OR instruction can be used to find the one’s-complement of a binary
number by XORing the number with all 1’s as follows:

0 1 0 1 1 l o o - - 8-bitnumber
XOR 1 1 1 1 1 1 1 I - - data

1 0 10 0 0 1 1 -- result (One’s-Complement ofthe 8-bit number 0 1 0 1 1 1 0 0)

ConsiderE0R.W Dl,D2. If[Dl.W] =FFFF,,and[D2.W] =$FFFF, thenafterexecution
of this EOR, register D2.W will contain $0000, and D1 will remain unchanged at
$FFFF.
Consider N0T.B D5. If [D5.B] = $02, then after execution of this NOT, the low byte
of D5 will contain $FD.
Consider 0R.B D2,D3. If prior to execution of this instruction, [D2.B] = $A2 and
[D3.B] = $5D, then after exection of 0R.B D2,D3, the content of D3.B is $FF. All
flags are affected, similar to the case with the AND instruction. The OR instruction
can typically be used to insert a 1 in a particular bit position of a binary number
without changing the values of the other bits. For example, a 1 can be inserted using
the OR instruction at bit 3 of the 8-bit binary number 0 1 1 1 0 0 1 1 without changing
the values of the other bits as follows:

152 Microprocessor Theory and Applications with 68000/68020 and Pentium

0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit 3 OR

0 1 1 1 1 0 1 1 --result
Consider OR1 #$1002,SR. If [SR] = $1 1 lD, then after execution of this ORI, register
SR will contain $1 1 1 F. Note that this is a privileged instruction because the high byte
of SR containing the control bits is changed and therefore can be executed only in the
supervisor mode.

6.6.4 Shift and Rotate Instructions
The 68000 shift and rotate instructions are listed in Table 6.10. Let’s look at them in
detail.

All the instructions in Table 6.10 affect N, Z, C, and X flags according to the result; V
is cleared to zero for all shift and rotate instructions except for ASL.
Note that in the 68000 there is no true arithmetic shift left instruction. In true arithmetic
shifts, the sign bit of the number being shifted is retained. In the 68000, the instruction
ASL does not retain the sign bit, whereas the instruction ASR retains the sign bit after
performing the arithmetic shift operation.
The basic concepts associated with shift and rotate instructions are covered in Chapter
5.

TABLE 6.10 68000 Shift and Rotate Instructions

Instruction Size Operation

ASL Dx,Dy

ASL # data,Dn

ASL (EA)

Shift [Dy] by the number of times to
left specified in Dx; the low 6 bits of
Dx specify the number of shifts from
0 to 63.
Same as ASL Dx, Dy, except that
the number of shifts is specified by
immediate data from 0 to 7.
(EA) is shifted 1 bit to left; the most
significant bit of (EA) goes to x
and c, and zero moves into the least
significant bit.

B, W,L

B, W, L

ASR Dx,Dy

Assembly Language Programing with the 68000

TABLE 6.10

ASR # data,Dn

ASR (EA)

LSL Dx,Dy

LSL # data,Dn

LSL (EA)

LSR Dx,Dy

LSR # data,Dn

LSR (EA)

ROL Dx Dy

ROL # data,Dn

ROL (EA)

Cont.

Arithmetically shift [Dy] to the right
by retaining the sign bit; the low 6 bits
of Dx specify the number of shifts
from 0 to 63.

Same as above except the number of
shifts is from 0 to 7.
Same as above except (EA) is shifted
once to the right.

Low 6 bits of Dx specify the number
of shifts from 0 to 63.

Same as above except that the number
of shifts is specified by immediate
data from 0 to 7.
(EA) is shifted 1 bit to the left.

Same as LSL Dx, Dy, except that the
shift is to the right.
Same as above except that the shift is
to the right by immediate data from
0 to 7.

Same as LSL (EA) except that the
shift is once to the right.

Low 6 bits of Dx specify the number
of times [Dy] to be rotated.
Same as above except that the
immediate data specifies that [Dn] to
be rotated from 0 to 7.
(EA) is rotated 1 bit to the left.

153

154

TABLE 6.10 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

ROR Dx,Dy B, w, L

ROR # data,Dn B, W, L Same as above except that the rotate
is to the right by immediate data from
0 to 7.
(EA) is rotated 1 bit to the right. ROR (EA) B, W, L

ROXL Dx,Dy B, w, L

Low 6 bits of Dx contain the number
of rotates from 0 to 63.

ROXL # data,Dn B, W,L Same as above except that the
immediate data specifies the number
of rotates from 0 to 7.
(EA) is rotated one bit to left. ROXL (EA) B, W, L

ROXR Dx,Dy B, w , L

Low 6 bits of Dx contain the number
of rotates from 0 to 63.

Same as above except rotate is to the
right by immediate data from 0 to 7.
Same as above except rotate is once
to the right.

Note: (EA) in ASL, ASR, LSL, LSR, ROL, ROR, ROXL, and ROXR can use all
modes except Dn, An, relative, and immediate.
Consider ASL.W Dl,D5. If [Dl],ow,6bits = $0002 and [D5],,,16bit, = $9FFO, then after
this ASL instruction, [D5],,, 16 bits = $7FCO, C = 0, and X = 0. Note that the sign of the
contents of D5 is changed from 1 to 0, and therefore, the overflow is set. The sign bit
of D5 is changed after shifting [D5] twice. For ASL, the overflow flag is set to 1 if the
sign bit changes during or after shifting. The contents of D5 are not updated after each
shift. The ASL instruction can be used to multiply a signed number by 2" by shifting
the number n times to the left; the result is correct if V = 0 whereas the result is
incorrect if V = 1. Since the execution time of the multiplication instruction is longer,
multiplication by shifting may be more efficient when multiplication of a signed number
by 2" is desired. In communication systems, the number of samples is normally chosen
by the designer as powers of 2. Hence, to multiply other parameters by the number of
samples, multiplication using a shift instruction rather than a multiplication instruction

ROXR # data,Dn

ROXR (EA)

B, W, L

B, W, L

Assembly Language Programing with the 68000 155

can be used.This may be very useful in real-time systems.

ASR retains the sign bit. For example, c0nsiderASR.W #2, DI . If [DI.W] = $FFE2,
then after this ASR, the low 16 bits of [Dl] = $FFF8, C = I , and X = 1. Note that the
sign bit is retained. ASR can be used to divide a signed number by 2" by shifting the
number n times to the right as long as a I is not shifted out of the least significant
bit.
ASL (EA) or ASR (EA) shifts (EA) 1 bit left or right, respectively. For example,
consider ASL.W (AO). If [AO] = $00002000 and [$002000] = $9001, then after
execution of this ASL, [$002000] = $2002, X = I , and C = I . On the other hand, after
ASR. W (AO), memory location $002000 will contain $CSOO, C = I , and X = 1.

The LSL and ASL instructions operate in the same way in the 68000 except that with
the LSL, V is always cleared to 0. As mentioned earlier, V is set to 1 for ASL if the
sign of the result is changed from the sign of the original value during or after shifting;
otherwise, V is cleared to 0.
LSL makes it possible to multiply an unsigned number by 2" by shifting the number
n times to the left; as long as a 1 is not shifted out of the most significant bit. Since
the execution time of the multiplication instruction is longer, unsigned multiplication
by LSL may be more efficient when multiplication of an unsigned number by 2" is
desired in applications such as communication systems.
Consider LSR.W #3,D1. If [DI.W] = 8000,,, then after this LSR, [DI.W] = IOOO,,,
X = 0, and C = 0. LSR can be used to divide an unsigned number by 2" by shifting
the number n times to the right as long as a 1 is not shifted out of the least significant
bit.

ASR or LSR allows us to divide a signed or an unsigned number by 2" by shifting
the number n times to the left as long as a 1 is not shifted out of the most significant
bit. Since the execution time of the division instruction is longer, signed division by
ASR or unsigned division by LSR may be more efficient when multiplication of an
unsigned number by 2" is desired in applications such as communication systems.
Consider R0L.B #2,D2. If [D2.B] = $BI and C = I , then, after this ROL, the low byte
of [D2] = $C6 and C = 0. On the other hand, with [D2.B] = $BI and C = I , consider
R0R.B #2,D2. After this ROR, low byte of register D2 will contain $6C and C = 0.
Consider R0XL.W D2,Dl. If [D2.W] = $0003, [DI.W] = $F201, C = 0, and X = 1
then after execution of this ROXL, [DI .W] = $900F, C = I , and X = 1.

EXAMPLE 6.17 Write a 68000 assembly language program at address $3000 that
will multiply a 32-bit unsigned number in D0.L by 4 to provide a 32-bit product, and
then, perform the following operations on the contents of D0.L:

Use only logic and shift instructions. Do not use multiplication or any other instructions.
Assume that the data is already in D0.L.

Set bits 0 and 3 to 1 without changing other bits in D0.L.
Clear bit 5 to zero without changing other bits in D0.L.

One's-complement bit 7 without changing other bits in D0.L.

156

TABLE 6.11 Bit Manipulation Instructions

Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction Size Operation
BCHG Dn, (EA) } B,L A bit in (EA) specified by Dn or immediate data
BCHG#data, (EA) is tested: the 1’s complement of the bit is reflected

in both the Z flag and the specified bit position.
BCLR Dn, (EA) A bit in (EA) specified by Dn or immediate data
BCLR# data, (EA) } is tested and the 1’s complement of the bit is

reflected in the Z flag: the specified bit is cleared
to zero.
A bit in (EA) specified by Dn or immediate data
is tested and the 1’s complement of the bit is
reflected in the Z flag: the specified bit is then
set to one.
A bit in (EA) specified by Dn or immediate data
is tested. The 1’s complement of the specified bit
is reflected in the Z flag.

B,L

BSET Dn, (EA)
BSET# data, (EA) }

B,L

BTST Dn, (EA)
BTST# data, (EA) }

B,L

(EA) in the above instructions can use all modes except An, PC relative,and
immediate.

If (EA) is memory location then data size is byte; if (EA) is Dn then data size is long
word.

If Dn is the destination, then the bit numbering is modulo 32 allowing bit manipulation
on all bits in Dn. If a memory location is the destination, a byte is read from that
location, the bit operation is performed using the bit number, modulo 8, and the byte
is written back to the location.
Only Z-flag is affected; N, V, C, and X are not affected. .

Solution

ORG $3000
LSL.L #2,DO ; Unsigned multiply DO by 4
0RI.L ; set bits 0 and 3 in D0.L to one
AND1.L #$FFFFFFDF,DO ; clear bit 5 in D0.L to zero
EOR1.L #$00000080,D0 ; ones complement bit 7 in DO

#$00000009,D0

FINISH JMP FINISH ; stop

6.6.5 Bit Manipulation Instructions
The 68000 has four bit manipulation instructions, and these are listed in Table 6.11. Let’s
look at them in detail.

In all of the instructions in Table 6.11, the one’s-complement of the specified bit is
reflected in the Z flag. The specified bit is ones complemented, cleared to 0, set to 1,
or unchanged by BCHG, BCLR, BSET, or BTST, respectively. In all the instructions
in Table 6.11, if (EA) is Dn, the length of Dn is 32 bits; otherwise, the length of the
destination is one byte memory.
Consider BCHG.B #2,$003000. If [$003000] = $05, then, after execution of this
BCHG, Z = 0 and [$003000] = $01.

Assembly Language Programing with the 68000 157

Consider BCLR.L #3,D1. If [Dl] = $F210E128, then after execution of this BCLR,
register D1 will contain $F2 1 OE 120 and Z = 0.
Consider BSET.B #O,(Al). If [All = $00003000 and [$003000] = $00, then after
execution of this BSET, memory location $003000 will contain $01 and Z = 1.

Consider BTST.B #2,$002000. If [$002000] = $02, then after execution of this BTST,
Z = 1, and [$002000] = $02; no other flags are affected.

EXAMPLE 6.18 Write a 68000 assembly language program that will multiply a
16-bit unsigned number in DO by 4 to provide a 32-bit product , and then perform the
following operations on the contents of DO:

Use only shift and bit manipulation instructions. Do not use any multiplication or any
other instructions. Assume that data is already stored in DO.

Set bits 0 and 3 to 1 without changing other bits in DO.
Clear bit 5 to zero without changing other bits in DO.

Ones-complement bit 7 without changing other bits in DO.

Solution

LSL.L #2,DO ; Unsigned multiply DO by 4
BSET.L #O,DO ; set bit 0 in D0.L to one
BSET.L #3,DO ; set bit 3 in D0.L to one
BCLR.L #5,DO ; clear bit 5 in D0.L to zero
BCHG.L #7,DO ; ones complement bit 7 in DO

FINISH JMP FINISH ; Halt

EXAMPLE 6.19 Write a 68000 assembly language program that will perform 5 x X
+ 6 x Y + [Y/8] -+ [D1 .L], wherexis an unsigned 8-bit number stored in the lowest byte of
DO and Y is a 16-bit signed number stored in the upper 16 bits of D 1. Neglect the remainder
of Y/8.

Solution
AND1.W
MULU.W
SWAP. W
M0VE.W
MULS.W
ADD.L
EXT.L
ASR.L
ADD.L

FINISH JMP

#$OOFF,DO
#5,DO
D1
D 1 ,D2
#6,D 1
DO,D 1
D2
#3,D2
D2,Dl
FINISH

;CONVERT X TO UNSIGNED 16-BIT
;COMPUTE UNSIGNED 5*X IN D0.L
;MOVE Y TO LOW 16 BITS IN D1
;SAVE Y TO LOW 16 BITS OF D2
;COMPUTE SIGNED 6*Y IN D1.L
;ADD 5*X WITH 6*Y
;SIGN EXTEND
;PERFORM Y/8;DISCARD REMAINDER
;PERFORM 5*X+6*Y +Y/8

6.6.6 Binary-Coded-Decimal Instructions
The 68000 instruction set contains three BCD instructions: ABCD for adding, SBCD for
subtracting, and NBCD for negating. They operate on packed BCD byte(s) and provide a
result containing one packed BCD byte. Note that packed BCD numbers are discussed in

158

TABLE 6.12

Microprocessor Theovy and Applications with 68000/68020 and Pentium

68000 Binary Coded Decimal Instructions

Instruction Operand Size Operation
B ABCD Dy, Dx [DxIlO + [DyllO + X -+ [Dx]

- ABCD - (Ay), -(AX) B (Ax)lo+ -(Ay)lO+X+(Ax)
SBCD Dy, Dx B [Dx]lO-[Dy]lO-X+ [Dx]
SBCD - (Ay), - (AX) B
NBCD (EA) B 0 - (EA)lO - X + (EA)lO

~ (Ax)lO - - (Ay)lO - X + (AX)

Chapter 1 (Section 1.2.3).
These instructions always include the extend (X) bit in the operation. They affect the
condition codes as follows: Z = 0 if result is nonzero; Z = 1 otherwise, C = 1 if a carry
(decimal) is generated; C = 0 otherwise; X is the same as C, N and V are undefined. The
BCD instructions are listed in Table 6.12. . Consider ABCD.B Dl,D2. If [Dl.B] = $25, [D2.B] = $15, and X = 0, then after

execution of this ABCD instruction, [D2.B] = $40, C = X = 0, and Z = 0 as follows:
[Dl.B] = $25 = 00100101
[D2.B] = $15 = 00010101

00111010

(EA) in NBCD can use all modes except An, relative, and immediate.

0 1 10 Add 6 for correction since invalid BCD
..

[D2.B] = 0 1000000 = $40, C = X = 0 since no carry, Z = 0 since result is nonzero

Consider SBCD.B -(A2),-(A3). If [A21 = $00002004, [A31 = $00003003, [$002003]
= $05, [$003002] = $06, and X = 1, then after execution of this SBCD instruction,
[$003002] = $00, C = X = 0, and Z = 1.
Consider NBCD.B (Al). If [All = [$00003000], [$003000] = $05, and C = X = 1, Z
= 1, then after execution of this NBCD instruction, [$003000] = $FB = -6,0 , C = X =

1 (borrow), Z = 0 (nonzero result).

EXAMPLE 6.20 Write a 68000 assembly language program at address $2000 to
add two words, each containing two ASCII digits. The first word is stored in two consecutive
locations (from LOW to HIGH), with the low byte pointed to by A0 at address 3000,,, and
the second word is stored in two consecutive locations (from LOW to HIGH), with the low
byte pointed to by A1 at 7000,6. Store the packed BCD result in D5.

Solution

ORG $2000
M0VEQ.L # 1 ,D2 ;#l INITIALIZE D2
M0VEA.W #$3000,AO ;#2 INITIALIZE A0
M0VEA.W #$7000,A1 ;#3 INITIALIZE A1

AND1.B #$OF,(Al)+ ;#5 CONVERT 2ND # TO UNPAC.BCD
START AND1.B #$OF,(AO)+ ;#4 CONVERT IST # TO UNPAC.BCD

DBF.W D2,START ;#6 DECREMENT AND BRANCH IF D2 + -1

Assembly Language Programing with the 68000 159

M0VE.B
M0VE.B
LSL.B
0R.B
M0VE.B
M0VE.B
LSL.B
0R.B
ADD1.B
ABCD.B

FINISH JMP

-(AO),D6
-(AO),D7
#4,D6
D7,D6
-(Al),D5
-(AI),D4
#4,D5
D4,D5
#O,DO
D6,D5
FINISH

;#7 GET HIGH UNPAC.BYTE OF IST#
;#8 GET LOW UNPAC. BYTE OF IST#
;#9 SHIFT IST# HIGH BYTE 4 TIMES
;# 10 D6=PACKED BCD BYTE OF IST#
;#11 GET HIGH UNPAC. BYTE OF 2ND#
;#12 GET LOW UNPAC. BYTE OF 2ND#
;#13 SHIFT 2ND # HIGH BYTE 4 TIMES
;#I4 D5 HAS PACKED BCD BYTE OF 2ND#

;# 16 D5.B =PACKED BCD RESULT
;# 15 CLEAR X-BIT

Note: The above program will be explained in the following. Note that the # sign along
with the line number is placed before each comment in order to explain the program.
Assume that the ASCII data to be added are $3432 and $323 1. The purpose of the program
is to convert the first number, ASCII $3432 to unpacked BCD $0402 and then to packed
BCD $42. Similarly, the second number, ASCII $3231 to unpacked BCD $0201, and
then to packed BCD $21. Finally, the two packed BCD numbers are added using 68000's
ABCD.B instruction.

Assume that [$3000] = $32, [$3001] = $34, [$7000] = $31, and [$7001] = $32.
Line #1 initializes D2 with a loop count for converting the numbers from ASCII to unpacked
BCD. Line #'s 2 and 3 initialize A0 and A1 with $00003000 and $00007000 respectively.
Line #'s 4 through 6 convert the 4 bytes of ASCII codes into unpacked BCD. Line#'s 7
through 14 convert the unpacked BCD numbers into packed BCD bytes. This is done by
logically shifting each high unpacked byte four times to the left, and then ORing with the
low unpacked byte. For example, consider unpacked BCD $0402 for the ASCII $3432.

The instruction LSL.B #4,D6 at Line #9 will convert unpacked byte $04 to $40,
and then 0R.B D7,D6 at line #I0 will provide packed $42, and store the result in D6.B.
Similarly, line #'s 11 through 14 will convert the second unpacked BCD $0201 into packed
BCD $2 1, and store it in D5.B. The instruction ADD1.B #O,DO at Line# 15 clears the X-bit
to 0. This is necessary since ABCD.B adds the packed BCD bytes along with the X-bit.
ABCD.B D6, D5 at line # 16 will add the two packed BCD bytes, and store the result $63
(packed) in D5.B.

EXAMPLE 6.21 Write a 68000 assembly language program at address $2000 to
subtract two 32-bit packed BCD numbers. BCD number 1 is stored at locations from
$003000 through $003003, with the least significant byte at $003003 and the most
significant byte at $003000. Similarly, BCD number 2 is stored at locations $004000
through $004003, with the least significant byte at $004003 and the most significant byte
at $004000. BCD number 2 is to be subtracted from BCD number 1. Store the packed BCD
result at addresses $005000 (the lowest byte of the result) through $005003 (the highest
byte of the result). In the program, first initialize loop counter D7 to 4, source pointer A0 to
$003000, source pointer A1 to $004000, and destination pointer A3 to $005000, and then
write a program to accomplish the above using these initialized values.

1 60 Microprocessor Theory and Applications with 68000/68020 and Pentium

Solution

ORG
DC.L
ORG
DC.L
ORG
M0VE.W
M0VEA.W
M0VEA.W
ADDA.W
ADDA.W
MOVEA. W
SUBQ.W
ADD1.B

LOOP M0VE.B
M0VE.B
SBCD.B
M0VE.B
DBF

FINISH JMP

$003000
$9922 1 133
$004000
$3355221 1
$2000

#4,D7
#$3000,AO
#$4000,A 1
D7,AO
D7,A 1
#$5000,A3
#1,D7
#O,D7
-(AO),DO
-(Al),Dl
D 1 ,DO
DO,(A3)+
D7,LOOP
FINISH

;NUMBER OF BYTES TO BE SUBTRACTED
;STARTING ADDRESS FOR FIRST NUMBER
;STARTTNG ADDRESS FOR SECOND NUMBER
;MOVE ADDRESS POINTERS TO THE END
;OF EACH 32 BIT PACKED BCD NUMBER
;LOAD POINTER FOR DESTINATION ADDR
;SUBTRACT D7 by 1 for DBF

;GET A BYTE FROM FIRST NUMBER
;GET A BYTE FROM SECOND NUMBER
;BCD SUBTRACTION, RESULT IN DO
;STORE RESULT IN DESTINATION ADDR
;CONTINUE UNTIL COUNTER HAS EXPIRED

;CLEAR X-BIT

Note that SBCD subtracts the contents of two data registers or the contents of two memory
locations using predecrement modes.

6.6.7 Program Control Instructions
Program control instructions include branches, jumps, and subroutine calls as listed in
Table 6.13.

Consider Bcc d. There are 14 branch conditions. This means that the cc in Bcc
can be replaced by 14 conditions providing 14 instructions: BCC, BCS, BEQ, BGE, BGT,
BHI, BLE, BLS, BLT, BMI, BNE, BPL, BVC, and BVS. It should be mentioned that some
of these instructions are applicable to both signed and unsigned numbers, some can only be
used with signed numbers, and some are applicable to only unsigned numbers.

After signed arithmetic operations, instructions such as BEQ, BNE, BVS, BVC,
BMI, and BPL can be used. On the other hand, after unsigned arithmetic operations,
instructions such as BCC, BCS, BEQ, and BNE can be used. It should be pointed out that
if V = 0, BPL and BGE have the same meaning. Similarly, if V = 0, BMI and BLT perform
the same function.

Assembly Language Programing with the 68000

TABLE 6.13

161

68000 Program Control Instructions

Instruction Size Oueration
Bcc d

BRA d

BSR d

DBcc Dn, d

JMP (EA)

JSR (EA)

RTR

RTS

B,W

B,W

B,W

W

unsized

unsized

unsized

unsized

If condition code cc is true, then PC + d -+ PC. The
PC value is current instruction location plus 2. d can be
8- or 16-bit signed displacement. If %bit displacement
is used, then the instruction size is 16 bits with the 8-bit
displacement as the low byte of the instruction word. If
16-bit displacement is used, then the instruction size is
two words with %bit displacement field (low byte) in the
instruction word as zero and the second word following
the instruction word as the 16-bit displacement.
There are 14 conditions such as BCC (Branch if Carry
Clear), BEQ (Branch if result equal to zero, i.e., Z = l),
and BNE (Branch if not equal, i.e., Z = 0). Note that the
PC contents will always be even since the instruction
length is either one word or two words depending on
the displacement widths.
Branch always to PC + d where PC value is current
instruction location plus 2. As with Bcc, d can be
signed 8 or 16 bits. This is an unconditional branching
instruction with relative mode. Note that the PC contents
are even since the instruction is either one word or two
words.
PC + - [SP]
PC + d -+ PC
The address of the next instruction following PC is
pushed onto the stack. PC is then loaded with PC +
d. As before, d can be signed 8 or 16 bits. This is a
subroutine call instruction using relative mode.
If cc is false, then Dn - 1 -+ Dn, and if Dn = - 1, then
PC + 2 + PC
I f D n f - 1 , then PC + d -+ PC; else PC + 2 .+ PC.
[EA] -+ PC
This is an unconditional jump instruction which uses
control addressing mode.
PC + - [SP]
[EA] + PC
This is a subroutine call instruction which uses control
addressing mode
[SP] + -+ CCR
[SP] + --f PC
Return and restore condition codes
Return from subroutine
[SP] + -+ PC

162

TABLE 6.13 Cont.

Microprocessor Theory and Applications with 68000/6%020 and Pentium

scc (EA) B If cc is true, then the byte specified by [EA] is set to all
ones; otherwise the byte is cleared to zero.

(EA) in JMP and JSR can use all modes except Dn, An, (An) f, - (An), and
immediate.

(EA) in SCC can use all modes except An, relative, and immediate.
The conditional branch instruction can be used after typical arithmetic instructions

such as subtraction to branch to a location if cc is true. For example, consider SUB.W
Dl,D2. Now if [Dl] and [D2] are unsigned numbers, then

BCC dcan be used if [D2] > [Dl]
BCS d can be used if [D2] I [Dl]
BEQ d can be used if [D2] = [Dl]
BNE d can be used if [D2] # [Dl]
BHI d can be used if [D2] < [Dl]
BLS d can be used if [D2] 5 [Dl]

On the other hand, if [Dl] and [D2] are signed numbers, then after SUB.W D1 ,D2,
the following branch instruction can be used:

BEQ d can be used if [D2] = [Dl]
BNE d can be used if [D2] # [Dl]
BLT d can be used if [D2] < [Dl]
BLE d can be used if [D2] I [Dl]
BGT d can be used if [D2] > [Dl]
BGE dcan be used if [D2] ? [Dl]

Now as a specific example, consider BEQ BEGIN. If current [PC] = $000200 and
BEGIN = $20, then after execution of this BEQ, program execution starts at $000220 if
Z = 1 ; if Z = 0, program execution continues at $000200. The instructions BRA and JMP
are unconditional jump instructions. BRA uses the relative addressing mode, whereas JMP
uses only the control addressing mode. For example, consider BRA.B START. If [PC] =

$000200 and START = $40, then after execution of this BRA, program execution starts at
$000240. Now consider JMP (Al) . If [All = $00000220, then after execution of this JMP,
program execution starts at $000220.

The instructions BSR and JSR are subroutine call instructions. BSR uses the relative
mode, whereas JSR uses the control addressing mode. Consider the following program
segment, assuming that the main program uses all registers and the subroutine stores
the result in memory.

Assembly Language Programing with the 68000 163

Main Program Subroutine
- SUB M0VEM.L DO-D7/AO-A6, - (SP)
-

-

Main body of
subroutine

- - 3 -

JSR SUB
START -

M0VEM.L (SP)+, DO-D7/AO-A6
RTS

Here the JSR SUB instruction calls the subroutine SUB. In response to JSR, the 68000
pushes the current PC contents called START onto the stack and loads the starting
address SUB of the subroutine into PC. The first MOVEM in the SUB pushes all
registers onto the stack, and after the subroutine is executed, the second MOVEM
instruction pops all the registers back. Finally, RTS pops the address START from the
stack into PC, and program control is returned to the main program. Note that BSR
SUB could have been used instead of JSR SUB in the main program. In that case, the
68000 assembler would have considered the SUB with BSR as a displacement rather
than as an address with the JSR instruction.
DBcc Dn,d tests the condition codes and the value in a data register. DBcc first checks
if cc (NE, EQ, GT, etc.) is satisfied. If cc is satisfied, the next instruction is executed.
If cc is not satisfied, the specified data register is decremented by 1; if [Dn] = -1, then
the next instruction is executed; on the other hand, if Dn # -1, then branch to PC + d
is performed. For example, consider DBNE.W D5,BACK with [D5] = 00003002,6,
BACK = -4, and [PC] = 002006,,. If Z = 1, then [D5] = 00003001,,. Because [D5]
-1, program execution starts at 002002,,. It should be pointed out that there is a
false condition in the DBcc instruction and that this instruction is the DBF (some
assemblers use DBRA for this). In this case, the condition is always false. This means
that after execution of this instruction, Dn is decremented by 1 and if [Dn] = -1, the
next instruction is executed. If [Dn] # -1, branch to PC + d.

Consider SPL.B(A5). If [A51 = 00200020,, and N = 0, then after execution of this
SPL, memory location 200020,, will contain 11 11 11 11,.

6.6.8 System Control Instructions
The 68000 system control instructions contain certain privileged instructions including
RESET, RTE, STOP and instructions that use or modify SR. Note that the privileged
instructions can be executed only in the supervisor mode. The system control instructions
are listed in Table 6.14.

(EA) in CHK can use all modes except An.

We now explain these instructions.

1 64

TABLE 6.14

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

68000 Svstem Control Instructions

Instruction Size Operation

RESET Unsized If supervisor state, then
assert reset line; else TRAP

RTE

STOP # data

ORI to SR
MOVE USP
ANDI to SR
EORI to SR
MOVE (EA) to SR

Unsized If supervisor state, then
restore SR and PC; else
TRAP

Unsized If supervisor state, then
load immediate data to SR
and then
STOP; else TRAP
These instructions
were discussed earlier

Trap and Check Instructions
TRAP # vector

TRAPV

CHIC (EA), Dn

Unsized PC + - (SP)
SR + - (SP)
Vector address + PC

Unsized TRAPifV= 1,
if Dn < 0 or Dn > (EA),
then TRAP;
else, go to the next
instruction.

W

Status Register

(Explained
earlier) 1

ANDI to CCR
EORI to CCR
MOVE (EA) to/from CCR
ORI to CCR
MOVE SR to (EA’I

When executed in the supervisor mode,the RESET instruction outputs a low signal on
the reset pin of the 68000 to initialize the external peripheral chips. The 68000 reset
pin is bidirectional. The 68000 can be reset by asserting the reset pin using hardware,
whereas the peripheral chips can be reset using the software RESET instruction.
M0VEA.L A7,An or M0VEA.L An,A7 can be used to save, restore, or change the
contents of the A7 in the supervisor mode. A7 must be loaded in the supervisor mode
because MOVE A7 is a privileged instruction. As an example, A7 can be initialized to
$00005000 in the supervisor mode using M0VEA.L #$00005000,Al

M0VE.L A1,A7

Assembly Language Programing with the 68000 165

Consider TRAP #n. There are 16 TRAP instructions, with n ranging from 0 to 15.
The hexadecimal vector address is calculated using the equation: hexadecimal vector
address = 80 + 4 x n. The TRAP instruction first pushes the contents of the PC and then
the SR onto the stack. The hexadecimal vector address is then loaded into PC. TRAP is
basically a software interrupt. The TRAP instruction can be executed in the user mode
to return control to the supervisor mode. This is usefid in calling operating system
routines from a user program. Thus, the TRAP instruction can be used for service calls
to the operating system. For application programs running in the user mode, TRAP can
be used to transfer control to a supervisor utility program. RTE at the end of the TRAP
routine can be used to return to the application program by placing the saved SR from
the stack, thus causing the 68000 to return to the user mode.

There are other traps that occur due to certain arithmetic errors. For example,
division by zero automatically traps to location 1416. On the other hand, an overflow
condition (i.e., if V = 1) will trap to address $OOOOlC if the instruction TRAPV is
executed.
The CHK.W (EA),Dn instruction compares [Dn] with (EA). If [Dn],,, , 6 bits< 0 or if
[Dn],,, 16 bits > (EA), a trap to location $00001 8 is generated. Also, N is set to 1 if
[Dn],,, 16 < 0, and N is reset to 0 if [DnIlow ,6 bits > (EA). (EA) is treated as a 16-bit
two’s-complement integer. Note that program execution continues if [DnIlow , 6 bits lies
between 0 and (EA).

Consider CHK.W (A5),D2. If [D2],,, ,6 bits = $0200, [A51 = $00003000, and
[$003000] = $0100, then after execution of this CHK, the 68000 will trap because
[D2.W] = $0200 is greater than [$003000] = $0100. The purpose of the CHK
instruction is to provide boundary checking by testing if the content of a data register
is in the range from zero to an upper limit. The upper limit used in the instruction
can be set equal to the length of the array. Then every time the array is accessed, the
CHK instruction can be executed to make sure that the array bounds have not been
violated.

The CHK instruction is usually placed after computation of an index value to
ensure that the index value is not violated. This permits a check of whether or not
the address of an array being accessed is within array boundaries when the address
register indirect with index mode is used to access an array element. For example, the
following instruction sequence permits accessing of an array with base address in A2
and array length of 50,, bytes:

-

CHK.W #49,D2
M0VE.B O(A2,D2. W),D3

Here, if the low 16 bits of D2 are less than 0 or greater than 49, the 68000 will trap to location
$001 8. It is assumed that D2 is computed prior to execution of the CHIC instruction.

166 Microprocessor Theory and Applications with 68000/68020 and Pentium

USP - 4
or

SSP - 4

USP - 2
or

SSP - 2

USP
or

SSP

Slack

0031 (H)

F200 (L)

Valid data

LOW Address

HIGH Address

FIGURE 6.13 68000 system stack.

6.6.9 68000 Stack
The 68000 supports stacks with the address register indirect postincrement andpredecrement
addressing modes. In addition to two system stack pointers (A7 and A77, all seven address
registers (AO-A6) can be used as user stack pointers by using appropriate addressing
modes. Subroutine calls, traps, and interrupts automatically use the system stack pointers:
USP (A7) when S = 0 and SSP (A7’) when S = 1. Subroutine calls push the PC onto the
system stack; RTS pops the PC from the stack. Traps and interrupts push both PC and SR
onto the system stack; RTE pops PC and SR from the stack.

The 68000 accesses the system stack from the top for operations such as subroutine
calls or interrupts. This means that stack operations such as subroutine calls or interrupts
access the system stack automatically from HIGH to LOW memory. Therefore, the system
SP is decremented by 2 for a word or 4 for a long word after a push and incremented by 2
for a word or 4 for a long word after a pop. As an example, suppose that a 68000 CALL
instruction (JSR or BSR) is executed when PC = $003 1F200; then after execution of the
subroutine call, the stack will push the PC as shown in Figure 6.13. Note that the 68000 SP
always points to valid data.

In 68000, stacks can be created by using address register indirect with postincrement
or predecrement modes. Typical 68000 memory instructions such as MOVE to/from can
be used to access the stack. Also, by using one of the seven address registers (AGA6) and
system stack pointers (A7, A7’), stacks can be filled from either HIGH to LOW memory,
or vice versa:
1. Filling a stack from HIGH to LOW memory (the top of the stack) is implemented
with predecrement mode for push and postincrement mode for pop.
2. Filling a stack from LOW to HIGH (the bottom of the stack) memory is
implemented with postincrement for push and predecrement for pop.

For example, the stack growing from HIGH to LOW memory addresses in which
A7 is used as the stack pointer is shown in Figure 6.14.

To push the 16-bit contents 0504,, of memory location 305016,,, the instruction
M0VE.W $3050,,,-(A7) can be used as shown in Figure 6.15. The 16-bit data item 0504,,
can be popped from the stack into the low 16 bits of DO by using M0VE.W (A7)+,DO.
Register A7 will contain 200504,, after the pop. Note that, in this case, the stack pointer
A7 points to valid data. Next, consider the stack growing from LOW to HIGH memory
addresses in which the user utilizes A6 as the stack pointer. This is depicted in Figure 6.16.
To push the 16-bit contents 2070,, of the low 16 bits of D5, the instruction M0VE.W D5,
(A6)+ can be used as shown in Figure 6.17. The 16-bit data item 2070,, can be popped
from the stack into the 16-bit contents of memory location 417024,, by using M0VE.W

Assembly Language Programing with the 68000 167

A7 20050416 Stack
20050416
20050616 Data 2
20050816 Data 1
20050A16 Data 0
20050(316 Bottom

FIGURE 6.14 68000 stack growing from HIGH to LOW memory.

A7
I

Stack

20050416

FIGURE 6.15 PUSH operation for the 68000 stack growing from HIGH to
LOW memory.

FIGURE 6.16 68000 stack growing from LOW to HIGH memory.

FIGURE 6.17

-(A6), $417024. Note that, in this case, the stack pointer A6 points to the free location
above the valid data.

PUSH operation for the 68000 stack growing from HIGH to
LOW memory.

N

EXAMPLE 6.22 Write a 68000 subroutine to compute Y = 5 xi2 IN. Assume the 4’s
are 16-bit signed integers and N = 100. The numbers are stored in consecutive locations.
Assume A0 points to the Xi's and A7 is already initialized. Store 32-bit result in D1 (1 6-bit

168 Microprocessor Theory and Applications with 68000/68020 and Pentium

remainder in high word of D1 and 16-bit quotient in the low word of Dl). Assume user
mode. Also, write the main program at address $2000 that will initialize A0 to $005000,
call the subroutine, and then stop.

Solution

Main Program
ORG
M0VEA.W
JSR

FINISH JMP

Subroutine
SQR M0VEM.L

CLR.L
M0VE.W

BACK M0VE.W
MULS.W
ADD.L
DBF. W
D1W.W
M0VEM.L
RTS

$2000
#$5000,AO
SQR
FINISH

D2/D3/AO,-(A7)
D1
#99,D2
(AO)+,D3
D3,D3
D3,Dl
D2,BACK
1 OO,D 1
(A7)+,D2/D3/AO

;Initialize A0 to $005000
;Call the subroutine

;SAVE REGISTERS
;CLEAR SUM
;INITIALIZE LOOP COUNT
;MOVE Xi’s INTO D3
;COMPUTE Xi**2 USING MULS
;SINCE Xi**2 IS ALWAYS +VE
;COMPUTE
;SUM OF Xi**2/N USING DIVU
;RESTORE REGISTERS

Note: In this program, either D I W or DIVS can be used for computing Xi**2/N if the
most significant bits of both N and total sum are 0; however, D I W must be used if the
most significant bits of either or both are 1. Also, to execute the program above, values for
Xi must be stored in memory using the assembler directive, DC.W.

6.7 68000 Delay Routine

Typical 68000 software delay loops can be written using MOVE and DBF instructions.
For example, the following instruction sequence can be used for a delay loop of 2 ms:

M0VE.W #count,DO
DELAY DBF.W D0,DELAY

Note that DBF.W decrements D0.W by 1, and if D0.W f -1, branches to DELAY,
if D0.W = -1, the 68000 executes the next instruction. Since DBF.W checks for D0.W for
- 1, the value of “count” must be one less than the required loop count. The initial loop
counter value of “count” can be calculated using the cycles (Appendix D) required to
execute the following 68000 instructions:

M0VE.W #n,DO (8 cycles)
DBF.W D0,DELAY (10/14 cycles)

Note that the 68000 DBF.W instruction requires two different execution times.
DBF.W requires 10 cycles when the 68000 branches if the content of D0.W is not equal to

Assembly Language Programing with the 68000 169

-1 after autodecrementing D0.W by 1. However, the 68000 goes to the next instruction and
does not branch when [DO.W] = -1 after autodecrementing D0.W by 1, and this requires 14
cycles. This means that the DELAY loop will require 10 cycles for “count” times, and the
last iteration will take 14 cycles.

Assuming a 4-MHz 68000 clock, each cycle is 250 ns. For a 2 millisecond delay,
total cycles =-= 8000. The loop will require 10 cycles for “count” times when D0.W
+ -1 and the last iteration will take 14 cycles when no branch is taken (D0.W = -1). Thus,
total cycles including the M0VE.W = 8 + 10 x (count) + 14 = 8000. Hence, count 798,,
= 031E16. Therefore, D0.W must be loaded with 798,, or 031E,,.

Now, to obtain delay of two seconds, the above DELAY loop of 2 millisecond can
be used with an external counter. Counter value =-= 1000. The following instruction
sequence will provide an approximate delay of two seconds:

M0VE.W # 1000,D 1 ;Initialize counter for 2 second delay
BACK M0VE.W #798,D0
DELAY DBF. W D0,DELAY ;20msec delay

SUBQ-W #I,DI
BNE.B BACK

Next, the delay time provided by the in
struction sequence above can be calculated. From Appendix D, the cycles required to
execute the following 68000 instructions:
M0VE.W #n,D1(8 cycles)

SUBQ.W #n, D1 (4 cycles)
BNE.B (1 0/8 cycles)

As before, assuming a 4-MHz 68000 clock, each cycle is 250 ns. The total time
from the instruction sequence for a two-second delay = execution time for M0VE.W +
1000 * (2 msec delay) + 1000 * (execution time for SUBQ.W) + 999* (execution time for
BNE.B for Z = 0 when D1 ! 0) + (execution time for BNE.B for Z = 1 when DI = 0 for
the last iteration) = 8 * 250ns + 1000 * 2msec + 1000 * 4 * 250ns + 999 * 10 * 250ns + 8
* 25011s 2.0035 seconds which is approximately 2 seconds discarding the execution times
of MOVE.W, SUBQ.W, and BNE.B.

1 70

Questions and Problems

Microprocessor Theory and Applications with 68000/68020 and Pentium

6.1

6.2

6.3

(b)

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

What are the basic differences between the 68000,68008,68010, and 68012?

What does a HIGH on the 68000 FC2 pin indicate?

(a)
occurs, what will the 68000 mode be?

If a 68000-based system operates in the user mode and an interrupt

If a 68000-based system operates in the supervisor mode, how can the mode be
changed to the user mode?

(a)
(b)

What is the purpose of 68000 trace and X flags?
How can you set or reset these flags?

Indicate whether the following 68000 instructions are valid or not. Justify your
answers.
(a) M0VE.B DO,(Al)
(b) M0VE.B D0,Al

How many addressing modes and instructions does the 68000 have?

What happens after execution of the following 68000 instruction?
M0VE.L D0,$000013

What are 68000 privileged instructions?

Identify the following 68000 instructions as privileged or nonprivileged:
(a) MOVE (A2),SR
(b) MOVE CCR,(A5)
(c) M0VE.L A7,A2

(a) Find the contents of locations $305020 and $305021 after execution of
MOVE D5,$305020. Assume that [D5] = $6A2FA150 prior to execution of this
68000 MOVE instruction.
(b) If [AO] = $203040FF, [DO] = $40F12560, and [$3040FF] = $2070, what
happens after execution of the 68000 instruction: MOVE (AO),DO?

Identify the addressing modes for each of the following 68000 instructions:
(a) CLR DO

(c) MOVE $2000(A2),D1
(b) M0VE.L (Al)+,-(A5)

Determine the contents of registers and memory locations affected by each of the
following 68000 instructions:
(a> MOVE (AO)+,Dl
Assume the following data prior to execution of this MOVE:
[AO] = $50105020 [$105021] = $51

Assembly Language Programing with the 68000

[Dl] = $70801F25
[$105020] = $50
(b) MOVEA D5,A2
Assume the following data prior to execution of this MOVEA:

[$lo50221 = $52
[$105023] = $7F

[D5] = $A725B600
[A21 = $5030801F

6.13

6.14

6.15

6.16

6.17

6.18

171

Find the contents of register DO after execution of the following 68000 instruction
sequence:

EXT. W DO
EXT.L DO

Assume that [DO] = $F2 15A700 prior to execution of the instruction sequence.

Write a 68000 assembly program to add a 16-bit number in the low word (bits
0-15) of D1 with another 16-bit number in the high word (bits 1C31) of D1. Store
the result in the high word of D 1.

Write a 68000 assembly program to add the top two 16 bits of the stack. Store the
16-bit result onto the stack. Assume the supervisor mode.

Write a 68000 assembly program to add two 48-bit data items in memory as shown
in Figure P6.16. Store the result pointed to by A1 . The operation is given by

$00 02 03 A1 07 20 -
$07 05 05 A3 OA 3A

Assume that the data pointers and the data are already initialized.

Write a 68000 assembly language program to subtract two 64-bit numbers as
follows:

[D7.L][D6.L] - [DO.L][Dl.L] + [D7.L][Dl.L]

Write a 68000 assembly language program to subtract a 24-bit number (x) stored
in low 24 bits of DO from another 24-bit number (y) stored in consecutive memory

15 8,7 0 Increasing
A04-1 g$Gy

FIGURE P6.16

172

6.19

6.20

6.2 1

6.22

6.23

6.24

6.25

6.26

6.27

6.28

Microprocessor Theory and Applications with 68000/68020 and Pentium

locations starting at $506080 (the highest byte at $506080 and the lowest byte at
$506082). Store the result in low 24 bits of D7.

Write a 68000 assembly language program to perform (X2 + Y2) where X is a
signed 8-bit number stored in low 8 bits of DO and Y is an unsigned 16-bit
number stored in low 16 bits of D1. Save the 32-bit result onto the supervisor
stack. Assume that the supervisor stack pointer is already initialized.

Write a 68000 assembly language program to multiply a 16-bit signed number
stored in the high word of D1 by an 8-bit signed number stored in the lowest byte
of D1. Store the result in D1 .L.

Write a 68000 assembly program to multiply a 16-bit signed number in the low
word of DO by an 8-bit unsigned number in the highest byte (bits 3 1-24) of DO.

Find the contents of D1 after execution of D1VS.W #6,D1. Assume that [Dl] =

$FFFFFFF7 prior to execution of the 68000 instruction. Identify the quotient and
remainder. Comment on the sign of the remainder.

Write a 68000 assembly program to divide a 16-bit signed number in the high
word of D1 by an 8-bit signed number in the lowest byte of D1.

Write a 68000 assembly program to compute the following:

I = 6 x J + KIM

where the locations $6000, $6002, and $6004 contain the 16-bit signed integers J,
K , and M. Store the result into a long word starting at $6006. Discard the remainder
of KIM.

Write a 68000 assembly program to compare two strings of 15 ASCII characters.
The first string is stored starting at $502030. The second string is stored at location
$3025 10. The ASCII character in location $502030 of string 1 will be compared
with the ASCII character in location $302510 of string 2, [$502031] will be
compared with [$302511], and so on. Each time there is a match, store $EEEE
onto the stack; otherwise, store $0000 onto the stack. Assume the user mode.

Write a 68000 assembly language program to insert a ‘ 1 ’ at bit 2 of D0.W without
changing the other bits if D0.W contains a negative number. On the other hand,
insert a ‘0’ at bit 2 of D0.W without changing the other bits if D0.W contains a
positive number.

Write a 68000 assembly program to divide a 9-bit unsigned number in the high 9
bits (bits 3 1-23) of DO by 8,0. Do not use any division instruction. Store the result
in DO. Neglect the remainder.

Write a 68000 assembly language program that will check whether the 16-bit
signed number in D0.W is positive or negative. If the number is positive, the

Assembly Language Programing with the 68000 173

6.29

6.30

6.3 1

6.32

6.33

program will multiply the 16-bit unsigned number in D l .W by 16, and provide a
32-bit result; otherwise, the program will set the lowest byte D1.B to all 1's. Use
only data movement, shift, bit manipulation, and program control instructions.
Assume that the 16-bit numbers are already loaded intoD0.W and D1 .W.

Write a subroutine in 68000 assembly language to compute

I00

i= 1
Z=C.X1

Assume that the$% are signed 8-bit and stored in consecutive locations starting at
$504020. Assume that A0 points to the $'s. Also, write the main program in 68000
assembly language to perform all initializations (A0 to $504020, A7 to $406020),
call the subroutine, and then compute 2/100. Assume supervisor mode.

Write a subroutine in 68000 assembly language program to compute the trace of
a 4 x 4 matrix containing 8-bit unsigned integers. Assume that each element is
stored in memory as a 16-bit number with upper byte as zero in the row-major
order form; that is, elements are stored in memory as row by row, and within a
row, elements are stored as column by column. Note that the trace of a matrix is
the sum of the elements of the leading diagonal.

Write a subroutine in 68000 assembly language to subtract two 32-bit packed BCD
numbers. BCD number 1 is stored at a location from $500000 through $500003,
with the least significant digit at $500003 and the most significant digit at $500000.
BCD number 2 is stored at a location from $700000 through $700003, with the
least significant digit at $700003 and the most significant digit at $700000. BCD
number 2 is to be subtracted from BCD number 1. Store the result as packed BCD
digits in D5.

Write a subroutine in 68000 assembly language to convert a three-digit unpacked
BCD number to binary using unsigned multiplication by 10, and additions. The
most significant digit is stored in a memory location starting at $3000, the next
digit is stored at $3001, and so on. Store the binary result (N) in D3. Note that
arithmetic operations for obtaining N will provide a binary result. Use the value
of the three-digit BCD number,

N = N 2 x 102+N1 x 10'+NO

= ((lOxN2) + N 1) x 10 +NO

Assume a 1 0-MHz 68000. Write a 68000 assembly language program to obtain
a delay routine for one millisecond. Using this one-millisecond routine, write a
68000 assembly language program to provide a delay for 10 seconds.

This Page Intentionally Left Blank

7
68000

HARDWARE AND
INTERFACING

In this chapter we describe hardware aspects of the Motorola 68000. Topics include 68000
pins and signals, clock and reset circuits, timing diagrams, and memory and I/O interfacing
techniques. Finally, the design of a 68000-based microcomputer is described along with
memory and I/O maps.

7.1 68000 Pins And Signals

The 68000 is usually packaged in one of the following:

68-terminal chip carrier
68-pin quad pack

68-pin grid array (PGA)

Figure 7.1 shows the 68000 pin diagram for a DIP. For reliable operation, unused
inputs should be connected to an appropriate signal level. Unused active LOW inputs should
be connected to the Vcc. Unused active HIGH inputs should be connected to GROUND.
Appendix C provides data sheets for the 68000 and support chips.

The 68000 is provided with two Vcc (+5 V) and two ground pins. Power is thus
distributed to reduce noise problems at high frequencies. Also, to build a prototype to
demonstrate that the paper design for the 68000-based microcomputer is correct, one must
use either wire-wrap or solder for the actual construction. A breadboard should not be
used, because at high frequencies (above 4 MHz), there will be noise problems due to stray
capacitances. The 68000 consumes about 1.5 W of power.

Do-D,, are the 16 data bus pins. All transfers to and from memory and I/O devices
are conducted over the 8-bit (LOW or HIGH) or 16-bit data bus depending - on the size of
the device. A,-A,, ~ are the 23 address lines. A, is obtained by encoding the UDS (upper data
strobe) and LDS (lower data strobe) lines.

The 68000 operates on a single-phase TTL-level clock at 4, 6, 8, 10, 12.5, 16.67,
or 25 MHz. The clock signal must be generated externally and applied to the 68000 clock
input line. An external crystal oscillator chip is required to generate the clock. Table 7.1
gives the clock timing specifications and Figure 7.2 shows the 68000 CLK wavform. The
clock is at a TTL-compatible voltage. The clock timing specifications provide data for three
different clock frequencies: 8, 10, and 12.5 MHz. The 68000 CLK input can be provided by
an external crystal oscillator or by designing an external circuit.

64-pin dual in-line package (DIP)

175

1 76 Microprocessor Theory and Applications with 68000/68020 and Pentium

A4 32 33 A,

FIGURE 7.1

TABLE 7.1

68000 pins and signals.

68000 Clock Timing Specifications

Characteristic Unit 4
~~

System control lines
Interrupt control lines

The 68000 signals can be divided into five hnctional categories:

Synchronous and asynchronous control lines

68000 Hardware and Interfacing 177

FIGURE 7.2 68000 clock input timing diagram and AC electrical
specifications.

DMA control lines

Status lines

7.1.1
The 68000 bus control is asynchronous; that is, once a bus cycle is initiated, the external
device must send a signal back to complete it. The 68000 also contains three synchronous
control lines that facilitate interfacing to synchronous peripheral devices such as Motorola’s
inexpensive 6800 family.

In synchronous operation bus control is synchronized or clocked using a common
system clock signal. In 6800 family peripherals, this common clock is the E clock signal,
depending on the particular chip used. With synchronous control, all READ and WRITE
operations must be synchronized with the common clock. However, this may create
problems when interfacing with slow peripheral devices. This problem does not arise with
asynchronous bus control.

Asynchronous operation is not dependent on a common clock signal. The 68000
utilizes the asynchronous control lines to transfer data between the 68000 and peripheral
devices via handshaking. Using asynchronous operation, the 68000 can be interfaced to
any peripheral chip regardless of the speed.

The 68000 has ~ three control lines to transfer data - over its bus in a synchronous
manner: E (enable), VPA (valid peripheral address), and VMA (valid memory address).
The E clock corresponds to the clock of the - 6800. The E clock is output at a frequency
that is one-tenth of the 68000 input clock. VPA is an input and tells the 68000 that a 6800
device is - being addressed and therefore that data transfer must be synchronized with the
E clock. VMA is the processor’s response to VPA VMA. is asserted when the memory
address is valid. This also tells the external device that the next data transfer over the data
bus will be synchronized with the E clock.

F A can be generated by decoding the address pins and address strobe (AS).
Note that the 68000 asserts AS LOW when the address on the address bus is valid. W A
is typically used as the chip select of the 6800 peripheral. This ensures that the 6800
peripherals are selected and deselected at the correct time. The 6800 peripheral interfacing
sequence is as follows:

Synchronous and Asynchronous Control Lines

--

1.
2.

The 68000 initiates a cycle by starting a normal read or write cycle. -
The 6800 peripheral defines the 68000 cycle by asserting the 68000 VPA input.
If is asserted as soon as possible after assertion of AS, then F A will be
recognized as being asserted after three cycles. If VPA is not asserted after

1 7 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

-
LDS

AS
-

6

FIGURE 7.3

cs
Odd

Memory

68000

DUD15

A1-A 23

-
UDS

-
three cycles, the 68000 inserts wait states until VPA - is recognized by the 68000
as asserted. DTACK should not be asserted while VPA is asserted. The 6800
peripheral must remove T A within one clock period after AS is negated.
The 68000 monitors enable (E) until it is LOW. The 68000 - then synchronizes all
READ and WRITE operations with the E clock. The VMA output pin is asserted
LOW by the 68000.
The 6800 peripheral waits until E is active (HIGH) and then transfers the data.
The 68000 waits until E goes to LOW (on a read cycle, the data is latched
as E - goes to LOW internally). The 68000 then negates VMA ,AS , UDS,
and LDS. The 68000 thus terminates the cycle and starts the next cycle.

3.

4.
5 . -- ~

D0-D7 : Do-D 7

- A 23 16 ' 41

8 D0-D 15 - Do-D7

b A 1 - 4 2 3
-

Even
Memory

The 68000 utilizes five lines to control address and data transfers asynchronous-
ly: AS (address - strobe), Ri% (readwrite), DTACK (data acknowledge), = (upper data
strobe), and LDS (lower data strobe).

The 68000 outputs AS to notify the peripheral device when data is to be
transferred. AS is active LOW when the 68000 provides a valid address on the address
bus. The W E output line indicates whether the 68000 is reading data from or writing
data into a peripheral device. W v is HIGH for read and LOW for write. DTACK is used
to tell the 68000 that a transfer is to be performed. When the 68000 wants to transfer data
asynchronously, it first activates the AS line and at the same time generates the required
address on the address lines to select the peripheral device.

Because the AS line tells the peripheral chip when to transfer data, the AS line
should be part of the address decoding scheme. After enabling AS , the 68000 enters the
wait state until it receives DTACK from the peripheral device selected. On receipt of
DTACK , the 68000 knows that the peripheral device is ready for data transfer. The 68000

TABLE 7.2
- -

Definitions of UDS and LDS
- -
UDS UDS Data Transfer Occurs Via: Address

1 0 Do-D, pins for byte Odd
0 1 D,-D,, pins for byte Even
0 0 Do-D,, pins for word or long word Even

68000 Hardware and Interfacing 179

then utilizes the W i and data lines to transfer data. UDS and LDS are defined in Table
7.2.

A, is encoded from UDS and LDS . When UDS is asserted, the contents of
even addresses are transferred on the high-order eight lines of the data bus, D,-D,,. - The
68000 internally shifts this data to the low byte of the register specified. When LDS is
asserted, the contents of odd addresses are transferred on the low-order eight lines of the
data bus, Do-D,. During word and long word transfers, both UDS and LDS are asserted and
information is transferred on - all 16 data lines, Do-D,, pins. Note that during byte memory
transfers, A, corresponds to UDS for even addresses (A, = 0) and to LDS for odd addresses
(A, = 1). The circuit in Figure 7.3 shows how even and odd addresses are interfaced to the
68000.

~ - -

- ~

-

7.1.2 System Control Lines
The 68000 has three control lines, BERR (bus error), HALT, and RESET, which are used
to control system-related functions. BERR is an input to the 68000 and is used to inform the
processor that there is a problem with the instruction cycle currently being executed. With
asynchronous operation, this problem may arise if the 68000 does not receive DTACK
from a peripheral device. An external timer can be used to activate the BERR pin if the
external device does not send DTACK within a certain period of time. On receipt of BERR,
the 68000 does one of the following:

Reruns the instruction cycle that caused the error

Executes an error service routine
The troubled instruction cycle is rerun by the 68000 if it receives a HALT signal

along with the BERR signal. On receipt of LOW on both the HALT and BERR pins, the
68000 completes the current instruction cycle and then goes into the high-impedance state.
On removal of both HALT and BERR (i.e., when both HALT and BERR are HIGH), the
68000 reruns the troubled instruction cycle. The cycle can be rerun repeatedly if both
BERR and HALT are enabled/disabled continually.

On the other hand, an error service routine is executed only if the BERR signal is
received without HALT. In this case, the 68000 will branch to a bus error vector address
where the user can write a service routine. If two simultaneous bus errors are received via
the BERR pin without HALT, the 68000 goes into the halt state automatically until it is
reset.

TABLE 7.3 Function Code Lines

FC2 FC 1 FCO Operation
0 0 0 Unassigned
0 0 1 User data
0 1 0 User program
0 1 1 Unassigned
1 0 0 Unassigned
1 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 InterruDt acknowledge

1 80 Microprocessor Theory and Applications with 68000/68020 and Pentium

The HALT line can also be used by itself to perform single stepping or to provide
DMA. When the HALT input is activated, the 68000 completes the current instruction and
goes into a high-impedance state until HALT is returned to HIGH. By enablingldisabling
the HALT line continually, single-stepping debugging can be accomplished. However,
because most 68000 instructions consist of more than one clock cycle, single stepping
using HALT is not normally used. Rather, the trace bit in the status register is used to
single-step the complete instruction.

One can also use HALT to perform microprocessor-halt DMA. Because the 68000
has separate DMA control lines, DMA using the HALT line will not normally be used. The
HALT pin can also be used as an output signal. The 68000 will assert the HALT pin LOW
when it goes into a halt state as a result of a catastrophic failure. The double bus error
(activation of BERR twice) is an example of this type of error. When this occurs, the 68000
goes into a high-impedance state until it is reset. The HALT line informs the peripheral
devices of the catastrophic failure.

The RESET line of the 68000 is also bidirectional. To reset the 68000, the RESET
and HALT pins must both be LOW for 10 clock cycles at the same time except initially
when Vcc is applied to the 68000. In this case, an external reset must be applied for at least
100 ms. The 68000 executes a reset service routine automatically for loading the PC with
the starting address of the program.

The 68000 RESET pin can also be used as an output line. A LOW can be sent
to this output line by executing the RESET instruction in the supervisor mode in order to
reset external devices connected to the 68000 RESET pin. Upon execution of the RESET
instruction, the 68000 drives the RESET pin LOW for 124 clock periods and does not
affect any data, address, or status registers. Therefore, the RESET instruction can be placed
anywhere in the program whenever the external devices need to be reset.

Upon hardware reset, the 68000 sets S-bit in SR to 1 and then loads the supervisor
stack pointer (A7') and the program counter (PC) from location $000000. In addition, the
68000 clears the trace bit in SR to 0 and sets bits I2 I1 I0 in SR to 11 1. No other registers
are affected. - parfition - 1

1 3-

16M user data - 4 - l
program

I I 16Msupe~isor I I

FIGURE 7.4 Partitioning 68000 address space using the FC2, FC1, and FCO pins

68000 Hardware and Interfacing 181

7.1.3 Interrupt Control Lines
IPLO, IPL1, and IPL2 are the three interrupt control lines. These lines provide for seven
interrupt priority levels (IPL2, IPLl, IPLO = 11 1 means no interrupt, and IPL2, IPLl, IPLO
= 000 means nonmaskable interrupt with the highest priority). If there are no interrupts in
the system, these three pins must be connected HIGH to disable the 68000’s interrupts. The
68000 interrupts are discussed later in the chapter.

7.1.4 DMA Control Lines
The BR (bus request), BG (bus grant), and BGACK (bus grant acknowledge) lines are used
for DMA purposes. If the system does not use DMA, the BR and BGACK pins must be
connected HIGH to disable the DMA function. The 68000 DMA is discussed later in the
chapter.

7.1.5 Status Lines
The 68000 has three output lines FC2, FCl, and FCO, calledfunction code pins. These
lines tell external devices whether user datdprogram or supervisor datdprogram is being
addressed. These lines can be decoded to provide user or supervisor programddata and
interrupt acknowledge as shown in Table 7.3. The FC2, FC1, and FCO pins can be used
to partition memory into four functional areas: user data memory, user program memory,
supervisor data memory, and supervisor program memory. Each memory partition can
directly access up to 16 MB, and thus the 68000 can be made to directly address up to 64
MB of memory. This is shown in Figure 7.4.

Note that both supervisor and user memory are needed for multitasking or
multiuser systems. However, one can design memory without using the FC2, FC1,
FCO pins in memory decoding logic for a single application or for systems requiring no
operating systems. In that case, the 68000 will always operate in the supervisor mode.
Upon hardware reset, the 68000 will operate in supervisor mode, and will continue to
operate in that mode.

-- -
--- ---

D n R = l K

74HC74

‘lock Q

To 68000 - CLK input

7.2

In this section we cover generation of the 68000 clock and reset signals in detail because
the clock signal and the reset pins are two important signals of any microprocessor.

7.2.1 68000 Clock Signals
As mentioned earlier, the 68000 does not include an on-chip clock generation circuitry.
This means that an external crystal oscillator chip is required to generate the clock. The
68000 CLK input can be provided by a crystal oscillator or by designing an external circuit.
Figure 7.5 shows a simple oscillator to generate the 68000 CLK input.

68000 Clock and Reset Signals

1 82 Microprocessor Theory and Applications with 68000/68020 and Pentium

This circuit uses two inverters connected in series. Inverter 1 is biased in its
transition region by the resistor R. Inverter 1 inputs the crystal output (sinusoidal) to provide
a logic pulse train at the output of inverter 1. Inverter 2 sharpens the wave and drives the
crystal. For this circuit to work, HCMOS logic must be used for the inverters. Therefore,
the 74HC04 inverter chip is used. The 74HC04 has high noise immunity and the ability
to drive 10 LS-TTL loads. A coupling capacitor should be connected across the supply
terminals to reduce the ringing effect during high-frequency switching of the HCMOS
devices. Note that the ringing occurs when a circuit oscillates for a short time due to the
presence of stray inductance and capacitance. In addition, the output of this oscillator is fed
to the CLK input of a D flip-flop (74HC74) to reduce the ringing further. A clock signal of
50% duty cycle at a frequency of one-half the crystal frequency is generated. This means
that this circuit with a 16-MHz crystal will generate an 8-MHz clock for the 68000.

1.2.2 68000 Reset Circuit
When designing a microprocessor’s reset circuit, two types of reset must be considered:
power-up and manual. These reset circuits must be designed using the parameters specified
by the manufacturer. Therefore, a microprocessor must be reset when its Vcc pin is
connected to power, called power-up reset. After some time during normal operation, the
microprocessor can be reset by the designer upon activation of a manual switch such as a
pushbutton. A reset circuit therefore needs to be designed following the timing parameters
associated typically with the microprocessor’s reset input pin specified by the manufacturer.
The reset circuit, once designed, is typically connected to the microprocessor’s reset pin.

Upon hardware reset, the 68000 sets the S-bit in SR to 1 and performs the
following:
1. The 68000 loads the 24-bit supervisor stack pointer (A7’) from addresses $000000

through $000003 with the highest byte from address $000001 and the lowest byte
from address $000003. Note that the contents of address $000000 are don’t cares. The
68000 loads the 24-bit PC from addresses $000004 through $000007 with the highest
byte from address $000005 and the lowest byte from address $000007. Note that the
contents of address $000004 are don’t cares. Typical 68000 assembler directives such
as DC.L can be used for this purpose. For example, to load $200128 into supervisor SP
and $3F1420 into PC, the following instruction sequence can be used:

ORG $00000000
DC.L $00200128
DC.L $003F 1420

2. The 68000 clears the trace bit in SR to 0 and sets the interrupt mask bits I2 I1 I0 in SR
to 11 1. No other registers are affected.

To cause a power-up reset, Motorola specifies that both the RESET and HALT
pins ofthe 68000 must be held LOW for at least 100 ms. This means that an external circuit
needs to be designed that will generate a negative pulse with a width of at least 100 ms
for both RESET and HALT. The manual RESET requires that the RESET and HALT pins
both be LOW for at least 10 cycles (1.25 microseconds for 8 MHz). In general, it is safer
to assert RESET and HALT for much longer than the minimum requirements. Figure 7.6
shows a typical 68000 reset circuit that asserts RESET and HALT LOW for approximately
200 ms. The 555 timer is used in the circuit.

The reset circuit in the figure utilizes the 555 timer chip and provides for both
power-up and manual resets by asserting the 68000 RESET and HALT pins for at least
200 ms. The computer designer does not have to know about the details of the 555 chip.

68000 Hardware and Interfacing

+5v

zz
1

183

+5 v

RA=IMO
IN9O4 GROUND vcc

VC~l/3VCc

7
J > TRIGGER DISCHARGE

V c T C 1 = 6 . 9 r F - OUTPUT THRESHOLD

+ - - switch

RESET CONTROL

555 Timer

-
+5v -

T c=o.18Lf
6

- +

To 68000 RESET pin

J - c w
To 68000 HALT pin

$c 65
7404 7407

FIGURE 7.6 68000 RESET circuit.

Instead, the designer should know how to use the 555 chip to generate the 68000 RESET
signal.

The 555 is a linear eight-pin chip. The TRIGGER pin is the input signal. When
the voltage at the TRIGGER input pin is less than or equal to 1/3 V,,, the OUTPUT pin is
HIGH. The DISCHARGE and THRESHOLD pins are tied together to R, and C. Note that
the values of R, and C determine the output pulse width. The CONTROL input pin controls
the THRESHOLD input voltage. According to the manufacturer’s data sheets, the control
input should be connected to a 0.01-pF capacitor whose other lead should be grounded.
Also, from the manufacturer’s data sheets, the output pulse width tpw = 1.1 RAC seconds.
The values of R, and C can be chosen for stretching out the pulse width.

An RC circuit is connected at the 555 TRIGGER pin. A slow pulse obtained by
charging and discharging the capacitor C, is applied at the 555 TRIGGER input pin. The
555 will generate a clean and fast pulse at the output. Capacitor C, is at zero voltage upon
power-up. This is obviously lower than 1/3 V,, with V,, = 5 V. Thus, the 555 will generate
a HIGH at the OUTPUT pin. The OUTPUT pin is connected through a 7404 inverter to
provide a LOW at the 68000 RESET and HALT pins.
The 7404 output is buffered via two 7407s (noninverting buffers) to ensure adequate

currents for the 68000 RESET and HALT pins. Note that the 7407 provides an open
collector output. Therefore, a 1-Kohm pull-up is used for each 7407. Now, let us explain
how the timing requirements for the 68000 RESET are satisfied.

As mentioned before, capacitor C, is initially at zero voltage upon power-up. C,
then charges to V,, after a definite time determined by the time constant, RC,. The charging
voltage across the capacitor is

Vc(t) = Vcc[1 - e-+q

1 84 Microprocessor Theory and Applications with 68000/68020 and Pentium

V,(t) must be less than or equal to VJ3 volts (1.7 V). To be on the safe side, let us assume
that V, = VJ4 = 514 = 1.25 V.

1 Hence, - - 1 - e - q 4 -
1

1 --
e R C i = 0.75

t Therefore, RC, = - 0.29
As mentioned earlier, it is desired to provide 200 ms (chosen arbitrarily; satisfying the
minimum requirements specified by Motorola) reset time for both power-up and manual
reset.

2oo ms = 689.65 ms 0.29 RC1 =

Hence, RC1 E 0.69 s
If R is arbitrarily chosen as 100 KO, then C, = 6.9 pF.

The 555 output pulse width can be determined using the equation tpw = 1.1 R, C.
Since tpw = 200 msec, hence R, C = 0.18 seconds. If R, = 1 MR (arbitrarily chosen) then C
= 0.181106 = 0.18 pF.

The reverse-biased diode (1N904) connected at the 555 TRIGGER input circuit
is used to hold the capacitor (C, charged to 1.25 V) voltage at 1.25 V in case V,, (obtained
using a power supply from AC voltage) drops below 5 V to a level such that the capacitor C,
may discharge through the 100-KR resistor. In such a situation, the diode will be forward
biased, essentially shorting out the 1 00-Kohm resistor, thus maintaining the capacitor
voltage at 1.25 V. In Figure 7.6, upon power-up, the capacitor C, charges to approximately
1.25 V. After some time, if the reset switch is depressed, the capacitor is short-circuited to
ground. The capacitor therefore discharges to zero.

This logic 0 at the 555 TRIGGER input pin will provide 200 ms LOW at the
68000 RESET and HALT input pins. This will satisfy the minimum requirement of 10
clock cycles (1.25 microseconds for a 8-MHz clock) at the 68000 RESET and HALT pins
for manual reset. The values of R and C, at the 555 TRIGGER input should be recalculated
for other 68000 clock frequencies for manual reset. Note that the 68000 power-up reset
time is fixed with a timing requirement of at least 100 ms, whereas the manual reset time
depends on the 68000 clock frequency and must be at least 10 clock cycles.

Another way of generating the power-up and manual resets is by using a Schmitt
trigger inverter such as the 7414 chip. Figure 7.7 shows a typical circuit.

Operation of the 68000 power-up and manual resets using the RC circuit in Figure
7.7 was described earlier. The purpose ofthe two 7414 Schmitt trigger inverters is primarily
to shape up a slow pulse generated by the RC circuit to obtain a fast and clean negative

68000 Hardware and Interfacing 185

+5 v
I +5 v

To 68000
RESETpin

To 68000

HALT pin
7407

- vcT 5.5pF 7414 7414
- switch (Schmitt- (Schrnitt-

-C Reset

- -L trigger trigger
inverter) inverter)

FIGURE 7.7

pulse. Two 7407 open-collector noninverting buffers are used to amplify currents for the
68000 RESET and HALT pins. Let us now determine the values of R and C.

When the input of the 7414 Schmitt trigger inverter is low (e.g., 0 V) , the output
will be HIGH, typically at about 3.7 V. For input voltage from 0 to about 1.7 V, the output
of the 7414 will be HIGH. Let us arbitrarily choose V, = 1.5 V to provide a low at the input
of the first 74 14 in the figure. As before,

68000 reset circuit using a Schmitt trigger.

~c = Vcc[l- e-+]

1 1.5 Hence, 1 - e - C = - 5
e - k = 0.7

Let us design the reset circuit to provide 200 ms reset time. Therefore, t = 200 ms.

-- - Oa2 - ln(0.7)

- Oe2 --0.36

RC

RC
--

Therefore, RC = 0.55 seconds
If R is chosen arbitrarily as 100 KO, then C = 5.5 pF,

7.3

The 68000 uses a handshaking mechanism to transfer data between the processors and
peripheral devices. This means that all these processors can transfer data asynchronously to
and from peripherals of varying speeds. During the read cycle, the 68000 obtains data from
a memory location or an I/O port. If the instruction specifies a word (such as M0VE.W
$020504,D1) or a long word (such as M0VE.L $030808,D0), - - the 68000 reads both upper
and lower bytes at the same time by asserting the UDS and LDS pins. When the instruction
is for a byte operation, the 68000 utilizes an internal bit to find which byte to read and then
outputs the data strobe required for that byte. -

For byte operations, when the address is even (A, = 0), the 68000 asserts UDS
and reads data via the D,-D,, pins into the low byte of the data register specified. - On the
other hand, when the address is odd (A, = l), the 68000 outputs a LOW on LDS and reads
data via the D,-D, pins to the low byte of the data register specified. For example, consider

68000 Read and Write Cycle Timing Diagrams

186 Microprocessor Theory and Applications with 68000/68020 and Pentium

M0VE.B - $507144, D5. The 68000 outputs a LOW on UDS (because A,, = 0) and a HIGH
on LDS. The memory chip's eight data lines must be connected to the 68000 D,-D,, pins.
The 68000 reads the data byte via the D,-D,, pins into the low byte of D5. Note that for
reading a byte from an odd address, the data lines of the memory chip - must be connected
to the 68000 Do-D, - pins. In this case, the 68000 outputs a LOW on LDS (because A, = 1)
and a HIGH on UDS, and then reads the data byte into the low byte of the data register.

Figure 7.8 shows the readwrite timing diagrams. During SO, address and data
signals are in the high-impedance state. At the start of S 1, the 68000 outputs the address on

~

n
9-
a"

I

FIGURE 7.8 68000 read and write cycle timing diagrams

68000 Hardware and Interfacing 187

its address pins (AI-A2J. During SO, the 68000 outputs FC2-FCO signals. AS is asserted
at the start of S2 to indicate a valid address on the bus. AS can be used at this point to latch
the signals on the address pins. The 68000 asserts UDS, LDS , and WE = 1 to indicate a
READ operation. The 68000 now waits for the peripheral device to assert DTACK. Upon
placing data on the data bus, the peripheral device asserts DTACK. The 68000 samples the
DTACK signal at the end of S4. If DTACK is not asserted by the peripheral device, the
processor automatically inserts a wait state(s) (W). -

However, upon assertion of DTACK, the 68000 negates the AS, UDS, and LDS
signals and latches the data from the data bus into an internal register at the end of the
next cycle. Once the peripheral device that has been selected senses that the 68000 has
obtained data from the data bus (by recognizing the negation of AS, UDS, or LDS), the
peripheral device must negate DTACK immediately so that it does not interfere with the
start of the next cycle. If DTACK is not asserted by the peripheral at the end of S4 (Figure
7.8, SLOW READ), the 68000 inserts wait states. The 68000 outputs valid addresses on the
address pins and keeps asserting AS, UDS, and LDS until the peripheral asserts DTACK.
The 68000 always inserts an even number of wait states if DTACK is not asserted by the
peripheral because all 68000 operations are performed using the clock with two states per
clock cycle. Note in Figure 7.8 that the 68000 inserts four wait states or two cycles.

As an example of word read, consider that the 68000 is ready to execute the
M0VE.W $602 122,DO instruction. The 68000 performs as follows:

1. At the end of SO the 68000 places the upper 23 bits of the address 602122,,
on A,-A,,. ~

2. At the end of S1, the 68000 asserts AS , UDS, and LDS.
3. The 68000 continues to output a HIGH on the R6- pin from the beginning

of the read cycle to indicate a READ operation.
4. At the end of SO, the 68000 places appropriate outputs on the FC2-FCO pins

to indicate either supervisor or user read.
5. If the peripheral asserts DTACK at the end of S4, the 68000 reads the contents

of 602122,, and 602123,, via the D8-D,, and Do-D, pins, respectively, into
the high and low bytes of D0.W at the end of S6. If the peripheral does not
assert DTACK at the end of S4, the 68000 continues to insert wait states.

--

--

-- -

-- -

--

Figure 7.9 shows a simplified timing diagram illustrating the use of DTACK for
interfacing external memory and I/O chips to the 68000. As mentioned before, the 68000
checks the DTACK input pin at the falling edge of S4 (three cycles), the external memory,
or I/O in this case, drives the 68000 DTACK input LOW, and the 68000 waits for one cycle
and latches data at the end of S6. However, if the 68000 does not find DTACK LOW at the
falling edge of S4, it waits for one clock cycle and then again checks DTACK for LOW.
If DTACK is LOW, the 68000 latches data after one cycle (the falling edge of S8). If the

68000 D m K
input driven -\ , f f
by external
memory and 110
chips
(Arbitarily chosen)

FIGURE 7.9 68000 CLK and DTACK signals.

The 68000
latches data at the falling
edge of S6 since D T K
is low at the falling edge
of s4.

188 Microprocessor Theovy and Applications with 68000/68020 and Pentium

68000 does not find DTACK LOW at the falling edge of S6, it checks for DTACK LOW at
the falling edge of S8 and the process continues. Note that the minimum time to latch data
is four cycles. This means that in the preceding example, if the 68000 clock frequency is 8
MHz, data will be latched after 500 ns because DTACK is asserted LOW at the end of S4
(375 ns). Note that DTACK can be asserted by AS if no wait states are required. This is
because AS goes LOW after approximately two clock cycles.

7.4 68000 Memory Interface

One of the advantages of the 68000 is that it can easily be interfaced to memory chips with
various speeds because it goes into a wait state if DTACK is not asserted (LOW) by the
memory devices at the falling edge of S4. A simplified schematic showing an interface of
a 68000 to two 2732s and two 6 1 16s is given in Figure 7.10.

The 2732 is a 4K x 8 EPROM and the 61 16 is a 2K x 8 static RAM. For a 4-MHz
clock, each cycle is 250 ns. Because the 68000 samples data at the falling edge of S4 (750
ns) and latches data at the falling edge of S6 (1000 ns), AS can be used to assert DTACK

From the 68000 timing diagram of Figure 7.8, AS goes LOW after approximately
two cycles (500 ns). ~ The time ~ delay between AS going LOW and the falling edge of S6
is 500 ns. Note that LDS and UDS must be used as chip selects as in Figure 7.10. They
must not be connected to A, of the memory chips ~ because in - that case, half of the memory
in each memory chip would be wasted. Note that LDS and UDS also go LOW after about
two cycles (500 ns).

In Figure 7.10, a delay circuit for DTACK is not required because both 2732 and
6 11 6 place data on the bus lines before the 68000 latches data. This is because the 68000
clock frequency is 4 MHz in this case. Thus, each clock cycle is 250 ns. The access times
of the 2732 and 61 16 are 200 ns and 120 ns, respectively. Because DTACK is sampled after
three clock cycles (3 x 250 ns = 750 ns), both the 2732 and 6116 will have adequate time
to place data on the bus for the 68000 to read.

For example, consider the even 2732 EPROM. 6% and AS are NORed and then
NANDed with inverted A,, to select this chip. With the 200-ns access time of the 2732,
data will be placed on the 68000 D,-D,, pins after approximately 720 nanoseconds (500 ns
for= or UDS + 10 ns for the NOR gate + 10 ns for the NAND gate + 200 ns for the 2732).
Therefore, no delay circuit for the 68000 DTACK is required because the 68000 latches
data from the D,-D,, pins after four cycles (1000 ns in this case). The timing parameters of
the 68000-2732 with various 68000 frequencies are shown in Table 7.4.

Next, consider the odd 6116 static RAM (SRAM) with the 4-MHz 68000. Note
that the 6 116 signals w (write enable), G (output enable), and E (chip enable) are decoded
as follows: When G = 0 and E=O= 0, then w = 1 for read and w = 0 for write. In this case,
LDS and AS are NORed and NANDed with A,, to select this chip. With the 120-ns access
time of the 61 16 RAM, data will be placed on the 68000 DO-D7 pins after approximately
640 ns (500 ns for AS or LDS + 10 ns for the NOR gate + 10 ns for the NAND gate + 120
ns for the 61 16). Because the 68000 latches data after four cycles (1 000 ns in this case), no
delay circuit for DTACK is required. The requirements for DTACK for the 68000/6116
for various 68000 clock frequencies can be determined similarly. In case a delay circuit for
DTACK is required, a ring counter with D flip-flops can be used.

Let us now determine the memory maps. Figures 7.1 l(a) and 7.11 (b) show the
68000 interface to even 2732 and odd 6 1 16 respectively. These figures are obtained from
Figure 7.10. When A,, = 0, UDS = 0 , s = 0, and W w = 1, the even 2732 of Figure 7.1 l(a)

68000 Hardware and Interfacing 189

1 1 . c
FIGURE 7.10 68000 interface to the 2732 16116.
will be selected by the 68000 to read data from the 68000's D,-D,, pins.

When A,, = 1, LDS = 0, AS = 0, the odd 61 16 of Figure 7.1 l(b) will be selected
by the 68000 to read (m =1) data from or write (W i =0) data to 68000 Do-D, pins. For
2732, the 68000 address pins A,,-A,, are don't cares (assume 0's). For 6116, the 68000
address pins A,,-A,,, and pin A,, are don't cares (assume 0's).
The memory map for the even 2732 can be determined as follows:

190 Microprocessor Theory and Applications with 68000/68020 and Pentium

r L b
- w

TABLE 7.4 68000-2732 Timing Example

Time before
68000 Clock first DTACK

-
CE

2732
(Even) -

a OE

DO -D 7 I
b

Case Frequency Cycle is sampled Comment

- (Odd) w- b W

DO-D7

1 12.5 MHz 80 ns 3 (W Not enough time
for 2732 to place
data on bus; needs
delay circuit for
DTACK

= 240 ns

2 16.67 MHz 60 ns 3(60) Same as case 1

3 25 MHz 40 ns 3(40) Same as case I
= 180 ns

= 120ns

8 ' ' b

DO'D7
(68000)

D8-D I5
(68000)

68000

%-A11

FIGURE 7.11(b) 68000 interface to an odd 6116.

68000 Hardware and Interfacing

2732 even

191

* ' A l l ' ' '
0 . . .

Don't cares;
assume 0s 2732

U ! + L e v e n
To select Can be 0s to 1s 2732

Address range: $000000, $000002, . . . , $001FFE

Similarly, the
determined as follows:

2732odd

memory for the odd 2732, even 61 16, and odd 61 16 can be

A , , 4 3 A12 A l l * - A , A ,
- 0

2732 Don't cares; To select Can be 0s to 1s
assume 0s 2732

Address range: $00000 1, $000003, . . . , $00 1 FFF

6116 even

A 2 2 ' s * 1 2 L A ~ ~ * + JAt
1
? CanbeOsto 1s

0 . . .
t- even

6116 Don't cares; To select Don't care;
assume 0s 6116 assume0

Address range: $002000, $002002, . . . , $002FFE
61 16 odd

A ~ 2 \ A 1 1 * q JAl0
1
? CanbeOsto 1s

0 . . .
odd
6116 Don't cares; To select Don't care;

assume 0s 6116 assume0

Address range: $002001, $002003, . .. , $002FFF
Static RAMs such as the 61 16 are used for small memory system. Also, note

that RAMs are needed when subroutines and interrupts requiring stack are desired in an
application. Note that linear decoding is used in Figure 7.10. Since the 68000 uses memory-
mapped 110, an unused address pin must be used to distinguish between memory and I/O.
If there is an 110 chip in Figure 7.10, an unused address pin such as A,, (arbitrarily chosen)
must be used to distinguish between memory and I/O. A,,= 0 and A,,=l can respectively
be used to select memory (2732 and 61 16) and the I/O chip.

192

7.5 68000 I/O

Microprocessor Theoiy and Applications with 68000/68020 and Pentium

In this section we cover I/O techniques associated with the Motorola 68000.

7.5.1 68000 Programmed I/O
As mentioned earlier, the 68000 uses memory-mapped I/O. Data transfer using I/O ports
(programmed I/O) can be achieved in the 68000 in one of the following ways:

68000/6821 Interface The Motorola 6821 is a 40-pin peripheral interface adapter
(PIA) chip. It is provided with an 8-bit bidirectional data bus (Do-D,), two register select
lines (RSO, RSl), readwrite (m) and reset (RESET) lines, an enable line (E), two 8-bit
I/O ports (PAO-PA7 and PBO-PB7), and other pins. Figure 7.12 shows the pin diagram of
the 682 1. There are six 682 1 registers. These include two 8-bit ports (ports A and B), two
data direction registers, and two control registers. Selection of these registers is controlled
by the RSO and RS1 inputs together with bit 2 of the control register. Table 7.5 shows how
the registers are selected. In the table, bit 2 in each control register (CRA-2 and CRB-2)
determines the selection of either an 110 port or the corresponding data direction register
when the proper register select signals are applied to RSO and RS 1. A 1 in bit 2 in CRA or

By interfacing the 68000 with an inexpensive slow 6800 I/O chip, such as the 6821

By interfacing the 68000 with its own family of I/O chips, such as the 68230

FIGURE 7.12 6821 pin diagram

68000 Hardware and Interfacing 193

TABLE 7.5 6821 Register Definition

Control Register Bits 2
RS 1 RSO CRA-2 CRB-2 Register Selected

0 0 1 X I/O port A
0 0 0 X Data direction register A
0 1 X X Control register A
1 0 X 1 I/O port B
1 0 X 0 Data direction register B
1 1 X X Control register B

X = don’t care.

CRB allows access of 110 ports; a 0 in bit 2 of CRA or CRB selects the data direction
registers.

Each I/O port bit can be configured to act as an input or output. This is accomplished
by sending a 1 in the corresponding data direction register bit for those bits that are to be
output and a 0 for those bits that are to be inputs. A LOW on the RESET pin clears all
registers to 0. This has the effect of configuring PAO-PA7 and PBO-PB7 as inputs.

Three built-in - signals in the 68000 provide an interface ~ with the 682 1 : enable (E),
valid memory address (VMA), and valid peripheral address (VPA). The enable signal (E) is
an output from the 68000. It corresponds to the E signal of the 682 1. This signal is the clock
used by the 682 1 to synchronize data transfer. The frequency of the E signal is one-tenth of
the 68000 clock frequency. This allows one to interface the 68000 - (which operates much
faster than the 6821) with the 6821. The valid memory address (VMA) signal is output by
the 68000 to indicate to the 6800 peripherals - that there is a valid address on the address
bus. The valid peripheral address (VPA) is an input to the 68000. This signal is used to
indicate that the device addressed by the 68000 is a 6800 peripheral. This tells the 68000 to
synchronize data transfer with the enable signal (E).

To configure and address a port, the following steps should be followed (seeTable
7.5):
1.
2.

3.
Let us now discuss how the 68000 instructions can be used to configure the 6821

ports. As an example, bit 7 of port A can be configured as an input, and bits 0-6 of port A
can be configured as outputs using the following instruction sequence:

BCLR.B #2,CRA 9 Address DDRA
M0VE.B #$7F,DDRA ; Configure port A
BSET.B #2,CRA 3 Address port A
Once the ports are configured to the designer’s specification, the 682 1 can be used

to transfer data from an input device to the 68000 or from the 68000 to an output device by
using the M0VE.B instruction as follows:

Clear bit 2 of the control register of the port.
Move data to the data direction register of the port to configure the port as input(s)
and/or output(s).
Set bit 2 of the control register of the port.

M0VE.B (EA), Dn 9 Transfer 8-bit data from an input port

M0VE.B Dn, (EA) 2 Transfer 8-bit data from the specified
to the specified data register Dn

3 data register Dn to an output port

194 Microprocessor Theory and Applications with 68000/68020 and Pentium

Figure 7.13(a) shows a block diagram of how two 6821s are interfaced to the
68000 to obtain four 8-bit I/O ports. Note that the least significant bit, A,, of the - 68000
address pin is internally - encoded to generate ~ two signals, the upper data strobe (UDS) and
lower data strobe (LDS). - For byte transfers, UDS is asserted if an even-numbered byte is
being transferred, and LDS is asserted for an odd-numbered byte. In Figure 7.13(a), when
- A,, = 1 and AS = 0, the OR gate output will be LOW. This OR gate output is used to assert
VPA . The inverted OR ~ gate output, in turn, makes CS 1 HIGH on both 682 1 s.

A LOW on VPA will tell the 68000 that the I/O device is 6800-type (6821 in
this - case) so that the - 68000 can use the E clock. In response, the 68000 generates a LOW
on VMA. Inverted VMA will make CS0 on both 6821s HIGH. Execution of an input or
output instruction with an even or odd port address will make UDS or LDS LOW. The
68000 will select the even or odd 682 1 accordingly.

- -

FIGURE 7.13(a) 68000/6821 Interface.

Port B 68000 E

68000 V m
(Even)

Do-D 7 68000 U E cs2

68000 @ -4
68000 A2

68000 A ,
FIGURE 7.13(b) 68000 interface to even 6821.

68000 Hardware and Interfacing 195

TABLE 7.6 I/O map

Port A CRA Port B CRB
or or
DDRA DDRJ3

6821(even) $400000 $400002 $400004 $400006
682 1 (odd) $40000 1 $400003 $400005 $400007

Figure 7.13(b) is obtained from Figure 7.13(a). Figure 7.13(b) shows 68000-even
682 1 interface along with pertinent connections. The addresses for Port A or DDRA for the
even 6821 can be obtained as follows:

“ ‘
X 1 X X * * * X X X X L O 0 =$400000

PgrrtA
DDRA U D S

Note that X’s are don’t cares, and are assumed 0’s.
Since the 68000 uses memory-mapped I/O, an unused address pin such as A,,

must be used to distinguish between memory and I/O. Note that A2, is chosen arbitrarily.
Pin A,, = 1 is chosen to select I/O while Pin A,, = 0 will select memory. This will also
ensure that the addresses for the ports and the reset vector are not the same.

Assuming that the don’t care address lines A,, and A,,-A, are Os, the addresses
for port B or DDRB, and control registers (CRA and CRB) for the even 6821 (A,, = 0) can

FIGURE 7.14 68230 pin diagram

196 Microprocessor Theory and Applications with 68000/68020 and Pentium

be obtained ; similarly, the addresses for the ports or data direction registers, and control
registers for the odd 6821 (A, = 1) can be determined. Table 7.6 shows the I/O map.

68000/68230 Interface The 68230 is a 48-pin I/O chip designed for the 68000
family of microprocessors. The 68230 offers various hnctions such as, programmed 110,
an on-chip timer, and a DMA request pin for connection to a DMA controller. Figure 7.14
shows the 68230 pin diagram. The 68230 can be configured in two modes of operation:
unidirectional and bidirectional. In the unidirectional mode, data direction registers
configure the corresponding ports as inputs or outputs. This is the programmed I/O mode
of operation.

Both 8- and 16-bit ports can be used. In the bidirectional mode, the 68230
provides data transfer between the 68000 and external devices via exchange of control
signals (known as handshaking). In this section we cover only the programmed I/O feature
of the 68230.

This 68230 ports can be configured in either unidirectional or bidirectional mode
by using bits 7 and 6 of the port general control register, PGCR (RO), as shown in Table
7.7. The other bits of the PGCR are defined for handshaking.

Modes 0 and 2 configure ports A and B as unidirectional or bidirectional 8-bit ports.
Modes 1 and 3, on the other hand, combine ports A and B to form a 16-bit unidirectional or
bidirectional port. Ports configured as unidirectional 8-bit must be programmed further as
submodes of operation using bits 7 and 6 of PACR (R6) and PBCR (R7) (see Table 7.8).
Note that X means don’t care. Nonlatched inputs are latched internally, but the values are
not latched externally by the 68230 at the port. Bit I/O is used for programmed I/O.

The submodes define the ports as parallel input ports, parallel output ports, or
bit-configurable I/O ports. In addition to these, the submodes further define the ports
TABLE 7.7 Port Configuration

I PGCRBits I I I
7 I 6 I Mode I

(unidirectional 16-bit)

(bidirectional 16-bit)

rABLE 7.8 Submodes of Operation

Submode Bit 7 of Bit 6 of
PACR or PACR or I Comment

_____________I Pin-definable double-buffered input or

Bit I/O (pin-definable single-buffered
outuut or nonlatched inuut)

RS5
0
0
0
0
0
0
0 1 1 1 0 1 0 1 1 PBDR, Port B Data Register (R9)

RS4 RS3 RS2 RSl Register Selected
0 0 0 0 PGCR, Port General Control Register (RO)
0 0 1 0 PADDR, Port A Data Direrction Register (R2)
0 0 1 1 PBDDR, Port B Data Direction Register (R3)
0 1 1 0 PACR, Port A Control Register (R6)
0 1 1 1 PBCR, Port B Control Register (R7)
1 0 0 0 PADR, Port A Data Register (R8)

as latched input ports, intenupt-driven ports, DMA ports, and ports with various I/O
handshake operations. Table 7.9 lists some of the 68230 registers. The registers required
for programmed I/O are considered in the following discussion. Note that 68230 register
select pins (RS5-RS 1) are used to select the 68230 registers. Figure 7.15 illustrates how to
obtain specific addresses for some of the 68230 I/O ports. For simplicity, port A and port
B of the 68230 will be considered to illustrate the concept of 68000 programmed I/O with
a typical 16-bit I/O chip.

The hardware schematic for the 68000/68230 interface is shown in Figure 7.15.
Note that since the 68000 uses memory-mapped I/O, an unused address pin such as A,,
must be used to distinguish between I/O and memory. In this case, A,, =1 is used to select
I/O while A,, = 0 will select memory. Also, this will ensure that the port addresses are
different from the 68000 reset vector addresses 000000,,-000007,,.The configuration in
the figure will provide even port addresses because 5 is used to enable the 68230 E.
The 68230 DTACK is an open-drain output. Hence, a pull-up resistor is required.

Note that A,, through A, are don’t cares and are assumed to be 0’s in the following.
Hence, from the figure, addresses for registers PGCR (RO), PADDR (R2), PBDDR (R3),
PACR (R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained as shown below.
For example, consider PGCR as follows:
Therefore, the address for PGCR is $800000. Similarly, the addresses for PADDR =

$800004, for PBDDR = $800006, for PACR = $80000C, for PBCR = $80000E , for
PADR = $800010, and for PBDR = $800012.

To configure a 68230 I/O port such as PADR or PBDR, the following steps should
be followed:

Clear bits 6 and 7 to 0 in PGCR.
Set bit 7 to 1 in PACR (for PADR) or in PBCR (for PBDR)
Move data to the data direction register of the port to configure the port as input(s)
and/or output(s).

198 Microprocessor Theory and Applications with 68000/68020 and Pentium

68000 ‘ I T

Oscillator 1 Crystal I

RS1 68230 EVEN

(Unidirectional 8-bit mode

D,-D,, Do- D7

l?,$T-lR/i -

RESET RESET

Reset E l Circuit

FIGURE. 7.15 68000168230 interface.

As an example, the following instruction sequence will select mode 0 and
submode 1X and configure bits 0-5 of port A as outputs, bits 6 and 7 of port A as inputs,
and port B as an input port:

PGCR EQU $800000
PADDR EQU $800004
PBDDR EQU $800006
PACR EQU $80000C
PBCR EQU $80000E

AND1.B #$3F,PGCR ; Select mode 0
BSET.B #7,PACR ; Port A bit I/O submode
BSET.B #7,PBCR ; Port B bit I/O submode
M0VE.B #$3F,PADDR ; Configure port A bits 0-5 as

; outputs and bits 6 and 7 as inputs
M0VE.B #$OO,PBDDR ; Configure port B as an input port

EXAMPLE 7.1 Draw a schematic showing connections between two 2732’s (even
and odd) and one 6821 (Odd) to a 4-MHz 68000 using relevant pins and signals. Determine
memory and I/O maps. Use linear decoding. Assume no interrupts and no DMA. Comment
on the unused input pins.

68000 Hardware and Interfacing

n-
68000 E-

-
RNV

CLK

199

E

cso Port B

Solution

-
VPA ,

RESET .
db--

~

~

The schematic is shown in Figure 7.16. Since no interrupts and no DMA are used, connect
IpL2 through pins to HIGH, BR to HIGH and BGACK to HIGH. Also with a 4-MHz
68000, the 2732's, no delay circuit is needed for DTACK . Hence, pin= is used to assert
DTACK .
The memory map for the even 2732 can be determined as follows:

2732even

(PSO - P87)

' * ' A 14 A 13 A12 A l l * A1 A , 0 . . .
U i + even

2732 Don't cares To select Can be 0's to 1's
assume 0's 2732

Address range: $000000, $000002, . . . , $001FFE

HALT VMA Do - D7
6 8 0 3 L Rf i E

A~-RSo 6821
A2-RS1 odd

6 8 0 0 0 E

68000 A13=

(Dats BUS >
Do-D7

0 ----I
68000

DTACK L*ri Oo- O7 Do- D7 >

FIGURE 7.16 Figure for Example 7.1

200

Similarly, the memory for the odd 2732 can be determined as follows:
2732odd

Microprocessor Theory and Applications with 68000/68020 and Pentium

* ' A l l ' * l A, 0 . . .
$ L o d d

2732 Don't cares To select Can be 0's to 1's
assume 0's 2732

Address range: $00000 1, $000003, . . . , $00 1 FFF
6821 odd

The addresses for Port A or DDRA for the even 6821 can be obtained as follows:
A,, A,, A,, A,, __._..._.. A,, A , A, A , A , A , A ,
x x x x IX x x L O 1 =$002001 +

DDRA odd6821

Note that X's are don't cares, and are assumed 0's.
Since the 68000 uses memory-mapped I/O, an unused address pin such as A,,

must be used to distinguish between memory and I/O. Note that A,, is arbitrarily chosen.
Pin A,, = 1 is chosen to select I/O while Pin A,, = 0 will select memory.

Assuming that the don't care address lines A,, through A,, are O's, the addresses
for the other I/O ports, control registers, and data direction registers for the odd 6821 (A, =

1) can be obtained. The I/O map is provided below:

Port A CRA Port B CRB
or or
DDRA DDRB

6821(odd) $002001 $002003 $002005 $002007

EXAMPLE 7.2 Write a 68000 assembly language program to drive an LED
connected to bit 7 of Port A based on a switch input at bit 0 of Port A. If the switch is HIGH,
turn the LED ON; otherwise turn the LED OFF. Assume a 68000/6821 microcomputer.
Use port addresses of your choice.

Solution

PORTA EQU
DDRA EQU
CRA EQU

BCLR.B
M0VE.B
BSET.B

START M0VE.B
R0R.B
M0VE.B
JMP

$00 1001
$00 100 1
$00 1003
#2,CRA address DDRA
#$80,DDRA ; Configure PORT A
#2,CRA Address PORT A
PORTA,DO Read switch
#1 ,DO Rotate switch status
D0,PORTA Output to LED
START , Repeat

68000 Hardware and Interfacing 20 1

EXAMPLE 7.3 A 68000/68230-based microcomputer is required to drive an LED
connected at bit 7 of port A based on two switch inputs connected at bits 6 and 7 of port B.
If both switches are equal (either HIGH or LOW), turn the LED ON; otherwise turn it OFF.
Assume that a HIGH will turn the LED ON and a LOW will turn it OFF. Write a 68000
assembly program to accomplish this.

Solution

PGCR EQU
PACR EQU
PBCR EQU
PADDR EQU
PBDDR EQU
PADR EQU
PBDR EQU

AND1.B
BSET.B
BSET.B
M0VE.B
M0VE.B
M0VE.B
AND1.B
BEQ.B
CMP1.B
BEQ.B
M0VE.B
JMP

LEDON M0VE.B
FINISH JMP

$800000
$80000C
$80000E
$800004
$800006
$8000 10
$800012
#$3F,PGCR
#7,PACR
#7,PBCR
#$80,PADDR
#O,PBDDR
PBDR,DO
#$CO,DO
LEDON
$ C 0, D 0
LEDON
#$OO,PADR
FINISH
#$80,PADR
FINISH

Select mode 0
Port A bit I/O submode
Port B bit I/O submode
Configure port A bit 7 as output
Configure port B bits 6 and 7 as inputs
Input port B
Retain bits 6 and 7
If both switches LOW, turn LED ON
If both switches HIGH, turn LED ON

Turn LED OFF

Turn LED ON

7.5.2 68000 Interrupt System
The 68000 interrupt I/O can be divided into two types: external and internal interrupts.

External Interrupts The 68000 provides seven levels of external ____ interrupts, 1
through __ 7. The external hardware provides an interrupt level using the pins IPLO, IPLl, and
IPL2. Like other microprocessors, the 68000 checks -- for and accepts interrupts only between
instructions. It compares the value of inverted IPLO- IPL2 with the current interrupt mask
contained in bits 10,9, and 8 of the status -- register.

If the value of the inverted IPLO- IPL2 is greater than the value of the current
interrupt mask, the 68000 acknowledges the interrupt and initiates interrupt processing. -
- Otherwise, the 68000 continues with the current interrupt. Interrupt request level -- 0 (IPLO-
- IPL2 all HIGH) indicates that no interrupt service is requested. An inverted IPL2, IPL1,
IPLO of 7 is always acknowledged. Therefore, interrupt level 7 is --- nonmuskuble. Note that
the interrupt level is indicated by the interrupt mask bits (inverted IPL2, IPL1, IPLO).

To ensure that an interrupt will be recognized, the following interrupting rules
should be considered:
1. The incoming interrupt request level must have a higher priority level than the mask

level -- set in the interrupt mask bits (except for level 7, which is always recognized).
2. The IPL2-IPLO pins must be held at the interrupt request level until the 68000

202 Microprocessor Theory and Applications with 68000/68020 and Pentium

acknowledges the interrupt by initiating an interrupt acknowledge (IACK) bus cycle.
Interrupt level 7 is edge-triggered. On the other hand, interrupt levels 1-6

(maskable interrupts) are level sensitive. However, as soon as one ofthem is acknowledged,
the processor updates its interrupt mask at the same level.

The 68000 does not have any EI (enable interrupt) or DI (disable interrupt)
instructions. Instead, the level indicated by I2 11 I0 in the SR disables all interrupts below
or equal to this value and enables all interrupts above. For example, if I2 I1 I0 = 100, then
interrupt levels 1 4 are disabled and 5-7 are enabled. Note that 12,11, I0 = 000 enables all
interrupts and 12,11, I0 = 1 1 1 disables all interrupts except level 7 (nonmaskable).

Once the 68000 has decided to acknowledge an interrupt, it performs several
steps:
1.
2.

Makes an internal copy of the current status register.
Updates the priority mask and address lines A,-A, with the level of the interrupt
recognized (inverted IpL pins) and then asserts AS to inform the external devices that
A,-A, has the interrupt level.
Enters the supervisor state by setting the S bit in SR to 1.
Clears the T bit in SR to inhibit tracing.
Pushes the program counter (PC) onto the supervisor stack.
Pushes the internal copy of the old SR onto the supervisor stack.
Runs an IACK bus cycle for vector number acquisition (to provide the address of the
service routine).
Multiplies the 8-bit interrupt vector by 4. This points to the location that contains the
starting address of the interrupt service routine.
Jumps to the interrupt service routine.

status word and program counter by popping them from the supervisor stack.

3 .
4.
5.
6.
7.

8.

9.
10. The last instruction of the service routine should be RTE, which restores the original

External logic can respond to the interrupt acknowledge in one of three ways: by
requesting automatic vectoring (autovector), by placing a vector number on the data bus
(nonautovector), or by indicating that no device is responding (spurious interrupt). -
Autovector (address vectors predefined by Motorola) If the hardware asserts VPA to
terminate the IACK bus cycle, the 68000 directs itself automatically to the proper interrupt
vector corresponding to the current interrupt level. No external hardware is inquired for
providing the interrupt address vector. Table 7.10 shows the various interrupt vectors for
autovector interrupts.
Nonautovector (user-definable address vectors via external hardware) The interrupting
device uses external hardware to place a vector number on data lines D,-D, and then
TABLE 7.10 Interrupt Vectors for Autovector Interrupts

I2 I1 I0
Level 1 +- Interrupt vector $19 for 0 0 1
Level 2 +- Interrupt vector $ lA for 0 1 0
Level 3 + Interrupt vector $ l B for 0 1 1

Level 4 c Interrupt vector $1C for 1 0 0
Level 5 +- Interrupt vector $1 D for 1 0 1
Level 6 c Interrupt vector $1 E for 1 1 0
Level 7 + Interrupt vector $ l F for 1 1 1

68000 Hardware and Interfacing

TABLE 7.11 68000 Interrupt Map

Vector Address Vector Number
Spurious interrupt

Autovector 1

203

$18
$19

$60, $62
$64, $66
$68, $6A
$6C, $6E
$70, $72
$74, $76
$78, $7A
$7C, $7E

$80 to $BC
$CO to $FC

$100 to $3FC

I Autovector 2 I $1A
$1B

I Autovector 6 I $1E
$1F

$20 to $2F
$30 to $3F

User interrupts $40 to $FF
I (nonautovector)

performs a DTACK handshake to terminate the IACK bus cycle. The vector numbers
allowed are $40 to $FF, but Motorola has not implemented protection on the first 64
entries, so that user interrupt may overlap at the discretion of the system designer.
Spurious Interrupt Another way to terminate an interrupt acknowledge bus cycle is with
the BERR (bus error) signal. Even though the interrupt control pins are synchronized to
enhance noise immunity, it is possible that external system interrupt circuitry may initiate
an IACK bus cycle as ~ a result of noise. Because no device is requesting interrupt service,
neither DTACK nor VPA will be asserted to signal the end of the nonexisting IACK bus
cycle. When there is no response to an IACK bus cycle after a specified period of time
(monitored by the user using an external timer), BERR can be asserted by an external
timer. This indicates to the processor that it has recognized a spurious interrupt. The
68000 provides 18H as the vector to fetch the starting address of this exception-handling
routine.

It should be pointed out that the spurious interrupt and bus error interrupt due to a
troubled instruction cycle (when no DTACK is received by the 68000) have two different
interrupt vectors. Spurious interrupt occurs when the BERR pin is asserted during interrupt
processing.

Internal Interrupts The internal interrupt is a software interrupt. This interrupt is
generated when the 68000 executes a software interrupt instruction (TRAP) or by some
undesirable events such as division by zero or execution of an illegal instruction.

68000 Interrupt Map The 68000 uses an 8-bit vector n to obtain the interrupt
address vector. The 68000 reads the long word located at memory 4*n. This long word is
the starting address of the service routine. Table 7.1 1 shows the interrupt map of the 68000.
Vector addresses $00 through $2E (not shown in the figure) include vector addresses for
reset, bus error, trace, divide by 0, and so on, and addresses $30 through $5C are unassigned.
The RESET vector requires four words (addresses 0 ,2 ,4 , and 6); the other vectors require
only two words. After hardware reset, the 68000 loads the supervisor SP high and low
words, respectively, from addresses 000000,, and 000002,,, and the PC high and low

204 Microprocessor Theory and Applications with 68000/68020 and Pentium

I- 1/02 (Autovector)

FIGURE 7.17

words, respectively, from 000004,, and 000006,,. The assembler directive DC (define
constant) can be used to load the PC and supervisor SP. For example, the following will
load A7' with $16F 128 and PC with $78 1624:

Autovector and nonautovector interrupts.

ORG $000000
DC.L $0016F128
DC.L $00781624

68000 Interrupt Address Vector Suppose that the user decides to write a service
routine starting at location $123456 using autovector 1. Because the autovector 1 address
is $000064 and $000066, the numbers $0012 and $3456 must be stored in locations
$000064 and $000066, respectively. This can be accomplished by using the assembler
directive DC.L as follows:

ORG $000064
DC.L $00123456

Note that from Table 7.1 1, n = $19 for autovector 1. Hence, the starting address of
the service routine is obtained from the contents of the address 4 x $19 = $000064.

Example of Autovector and Nonautovector Interrupts As an example to illustrate
the concept of autovector and nonautovector interrupts, consider Figure 7.17. In this figure,
I/O device 1 uses nonautovector and I/O device 2 uses autovector interrupts. The system is
capable of handling interrupts from seven devices (IPL2, IPLl, IPLO = 11 1 means no
interrupt) because an 8-to-3 priority encoder such as the 74LS148 is used.

The 74LS148 provides an inverted 3-bit output with input 7 as the highest
priority and input 0 as the lowest priority. Hence, if all eight inputs of the 74LS 148 are low
simultaneously, the three-bit output will be 000 (inverted 11 l), indicating a LOW on input

~-~

68000 Hardware and Interfacing

PortB

Bit 0 of
port A

205

a

1
I I

68000 based
Microcomputer

DO-D7

START

AID
Converter

Encoder

Conversion Complete

IPLO -I
FIGURE 7.18

7. In Figure 7.17, 1/01 and 1/02 from the interrupting devices are connected - to inputs 3
and 5 of the 74LS 148 encoder, respectively. This means that the device with 1/02 as - the
interrupting signal will generate level 5 autovectored interrupt, while the device with I/O 1
as the interrupting signal will generate a nonautovectored - interrupt.

Suppose that UO device 2 drives 1/02 LOW to activate line 5 of the 74LS148.
This, inturn, -- willgenerateaLOWoninput - 5 ofthe74LS148.ThiswillprovideOlO(inverted
101) on the IPL2, IPL1, and IPLO pins of the 68000, generating a level 5 autovectored
interrupt. When the 68000 decides to acknowledge the interrupt, it drives FCO-FC2 HIGH.
The - interrupt level is reflected on A,-A, - when AS - is activated by the 68000. The IACK5
and V02 signals are used to generate VPA . Once VPA is asserted, the 68000 obtains the
interrupt vector address using - autovectoring.

In the case of 1/01, line 3 of the priority encoder is activated to initiate a
nonautovectored - interrupt. By using appropriate logic, DTACK is asserted using IACK3
and I/O 1. The vector number is placed on D0--D, by enabling an octal buffer such as the
74LS244 using IACK3. The 68000 inputs this vector number and multiplies it by 4 to
obtain the interrupt address vector.

Interfacing a typical 8-bit A/D converter to a a 68000-based
- microcomputer - using autovector interrupt.

Interfacing a Qpical A/D Converter to a 68000 Using Autovector and Nonautovector
Interrupts Figure 7.18 shows the interfacing of a typical A/D converter to the
68000-based microcomputer using the autovector interrupt. In the figure, the A/D converter
can be started by sending a START pulse. The signal can be connected to line 4 (for
example) of the encoder.

Note that line 4 is 100, for IPL2, IPL1, IPL02, - which is a level 3 (inverted 100,)
interrupt. Conversion Complete can be used to assert VPA, so that after acknowledgment
of the interrupt, the 68000 will service the interrupt as a level 3 autovector interrupt. Note

-__-

206 Microprocessor Theory and Applications with 68000/68020 and Pentium

Port B

Bit 0 of
port A

~

DTACK

68000based
Microcomputer

-
IPL2

,-c2

Do-D 7

m

8

1
I

1

signal)

o-D I

TART

AID
Converter

:onversion Complete

FIGURE 7.19

that the encoder in Figure 7.18 is used for illustrative purposes. This encoder is not required
for a single device such as the AID converter in the example.

Figure 7.19 shows the interfacing of a typical A/D converter to the 68000-based
microcomputer using the nonautovector interrupt. In the figure, the 68000 starts the
AID converter as before. Also, the Conversion Complete signal is used to interrupt the
microcomputer using line 5 (IPL2, IPLl, IPL02= 10 I , which is a level 2 interrupt) of the
encoder. Conversion Complete can be used to assert DTACK so that, after acknowledgment
of the interrupt, FC2, FCI, FCO will become l l l , , which can be NANDed to enable an
octal buffer such as the 74LS244 in order to transfer an 8-bit vector from the input of the
buffer to the Do-D, lines of the 68000. The 68000 can then multiply this vector by 4 to
determine the interrupt address vector. As before, the encoder in Figure 7.19 is not required
for the single A/D converter.

7.5.3 68000 DMA
Three DMA control lines are provided with the 68000: BR (bus request), BG (bus grant),
and BGACK (bus grant acknowledge). The BR line is an input to the 68000. The external
device activates this line to tell the 68000 to release the system bus. At least one clock
period after receiving z, the 68000 will enable its BG output line to acknowledge the

Interfacing of a typical 8-bit A/D converter to 68000-based
microcomputer using nonautovector interrupt

~ - -

68000 Hardware and Interfacing 207

DMA request. However, the 68000 will not relinquish the bus until it has completed the
current instruction cycle. The external device must check the AS (address strobe) line to
determine completion of the cycle by the 68000. When AS becomes HIGH, the 68000 will
tristate its address and instruction data lines and will give up the bus to the external device.
After taking over the bus, the external device must enable the BGACK line, which tells the
68000 and other devices connected to the bus that the bus is being used. The 68000 stays
in a tristate condition until BGACK becomes HIGH.

7.6 68000 Exception Handling

A 16-bit microcomputer is usually capable of handling unusual or exceptional conditions.
These conditions include situations such as execution of an illegal instruction or division
by zero. In this section, the exception-handling capabilities of the 68000 are described.

The 68000 exceptions can be divided into three groups: 0, 1, and 2. Group 0
has the highest priority, and group 2 has the lowest priority. Within each group, there are
additional priority levels. A list of 68000 exceptions together with individual priorities is
as follows:

Group 0 Reset (the highest level in this group), address error (the next
level), and bus error (the lowest level)

Group 1 Trace (the highest level), interrupt (the next level), illegal op-code
(next level), and privilege violation (the lowest level)

Group2 TRAP, TRAPV, CHK, and ZERO DIVIDE (no individual
priorities assigned in group 2)

Exceptions from group 0 always override an active exception from group 1 or group 2.
Group 0 exception processing begins at the completion of the current bus cycle

(two clock cycles). Note that the number of cycles required for a READ or WRITE
operation is called a bus cycle. This means that if there is a group 0 interrupt during
an instruction fetch, the 68000 will complete the instruction fetch and then service the
interrupt. Group 1 exception processing begins at the completion of the current instruction.
Group 2 exceptions are initiated through execution of an instruction. Therefore, there are
no individual priority levels within group 2. Exception processing occurs when a group 2
interrupt is encountered, provided that there are no group 0 or group 1 interrupts.

When an exception occurs, the 68000 saves the contents of the program counter
and status register onto the stack and then executes a new program whose address is
provided by the exception vectors. Once this program is executed, the 68000 returns to the
main program using the stored values of program counter and status register.

Exceptions can be of two types: internal or external. The internal exceptions are
generated by situations such as division by zero, execution of illegal or unimplemented
instructions, and address error. As mentioned before, internal interrupts are called traps.
The external exceptions are generated by bus error, reset, or interrupt instructions. The
basic concepts associated with interrupts, relating them to the 68000, have already been
described. In this section we discuss the other exceptions.

In response to an exceptional condition, the processor executes a user-written
program. In some microcomputers, one common program is provided for all exceptions.
The beginning section of the program determines the cause of the exception and then
branches to the appropriate routine. The 68000 utilizes a more general approach. Each
exception can be handled by a separate program.

As mentioned earlier, the 68000 has two modes of operation: user state and

208 Microprocessor Theory and Applications with 68000/68020 and Pentium

supervisor state. The operating system runs in supervisor mode, and all other programs are
executed in user mode. The supervisor state is therefore more privileged. Several privileged
instructions, such as MOVE to SR can be executed only in supervisor mode. Any attempt
to execute them in user mode causes a trap.

Next, we discuss how the 68000 handles exceptions caused by external resets,
trap instructions, bus and address errors, tracing , execution of privileged instructions in
user mode, and execution of illegal/unimplemented instructions: -

The reset exception is generated externally. In response to this exception, the 68000
automatically loads the initial starting address into the processor.
The 68000 has a TRAP instruction, which always causes an exception. The operand
for this instruction varies from 0 to 15. This means that there are 16 TRAP instructions.
Each TRAP instruction has an exception vector. TRAP instructions are normally
used to call subroutines in an operating system. Note that this automatically places
the 68000 in supervisor state. TRAPS can also be used for inserting breakpoints in a
program. Two other 68000 instructions cause traps if a particular condition is true:
TRAPV and CHK. TRAPV generates an exception if the overflow flag is set. The
TRAPV instruction can be inserted after every arithmetic operation in a program in
order to cause a trap whenever there is the possibility of an overflow. A routine can be
written at the vector address for the TRAPV to indicate to the user that an overflow has
occurred. The CHK instruction is designed to ensure that access to an array in memory
is within the range specified by the user. If there is a violation of this range, the 68000
generates an exception.

A bus error occurs when the 68000 tries to access an address that does not belong to
the devices connected to the bus. This error can be detected by asserting the BERR pin
on the 68000 chip by an external timer when no DTACK is received from the device
after a certain period of time. In response to this, the 68000 executes a user-written
routine located at an address obtained from the exception vectors. An address error, on
the other hand, occurs when the 68000 tries to read or write a word (1 6 bits) or long
word (32 bits) in an odd address. This address error has a different exception vector
from the bus error.

The trace exception in the 68000 can be generated by setting the trace bit in the status
register. In response to the trace exception, the 68000 causes an internal exception
after execution of every instruction. The user can write a routine at the exception
vectors for the trace instruction to display register and memory contents. The trace
exception provides the 68000 with the single-stepping debugging feature.

As mentioned earlier, the 68000 has privileged instructions, which must be executed
in supervisor mode. An attempt to execute these instructions causes a privilege
violation.
Finally, the 68000 causes an exception when it tries to execute an illegal or
unimplemented instruction.

7.7 68000/2732/6116/682 1-Based Microcomputer

Figure 7.20 is a schematic of a 68000-based microcomputer with a 4K EPROM, a 4K
static RAM, and four 8-bit I/O ports. Let us explain the various sections of the hardware

68000 Hardware and Interfacing 209

schematic. Two ~ 2732 - and two 6116 chips are required to obtain the 4K EPROM and 4K
RAM. The LDS and UDS pins are ORed with the memory select signal to enable the chip
selects for the EPROMs and the RAMs. Address decoding is accomplished by using a 3 x

8 decoder (Full decoding). The decoder enables the memory or the I/O chips, depending
on the status of address lines A,2-A,4 and the AS line of the 6 8 0 0 0 . 3 is used to enable the
decoder. selects the EPROMs, 6 selects the RAMs, and selects the I/O ports.

I - - e Reset Circuit

PBO-PB7) Port B

Data Bus
:Do-D7) D8-DI5

FIGURE 7.20 68000-based microcomputer.

2 10 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

When addressing memory chips, the DTACK input of the 68000 must be asserted
for data acknowledge. The 68000 clock in the hardware schematic is 10 MHz. Therefore,
each clock cycle is 100 ns. In Figure 7.20,AS is used to enable the 3 x 8 decoder. The outputs
of the decoder are gated to assert 68000 DTACK. This means that AS is used indirectly to
assert DTACK. From the 68000 read timing diagram, AS goes LOW after approximately
two cycles (200 ns for the 10-MHz clock) from the beginning of the bus cycle. With no
wait states, the 68000 samples DTACK at the falling edge of S4 (300 ns), and if DTACK
is recognized, the 68000 latches data at the falling edge of S6 (400 ns). If DTACK is not
recognized at the falling edge of S4, the 68000 inserts a one-cycle (100 ns in this case) wait
state, samples DTACK at the end of S6, and, if DTACK is recognized, latches data at the
end of S8 (500 ns), and the process continues. Because the access time of the 2732 is 200
ns, data will not be available at the output pins of the 2732s until after approximately 400
ns. To be on the safe side, DTACK recognition by the 68000 at the falling edge of S6 (400
ns) and latching of data at the falling edge of S8 (500 ns) will definitely satisfy the timing
requirement. This means that the decoder output for EPROM select should go to LOW
at the end of S6. Therefore, a 200-11s delay (two cycles) for DTACK is assumed.

A delay circuit, as shown in Figure 7.21, is designed using two D flip-flops.
EPPOM select activates the delay circuit. The input is then shifted right 2 bits to obtain
a two-cycle wait state to allow sufficient time for data transfer. DTACK assertion and
recognition are delayed by 2 cycles during data transfer with EPROMs. Figure 7.22 shows
the timing diagram for the DTACK delay circuit. Note that DTACK goes LOW after about
two cycles if asserted by AS providing an erronous result. Therefore, DTACK must be
delayed.

When the EPROM is not selected by the decoder, the clear pin is asserted (the
output of the inverter), so Q is forced LOW and 6 is HIGH. Therefore, DTACK is not
asserted. When the processor selects the EPROMs, the output of the inverter is HIGH,
so the clear pin is not asserted. The D flip-flop will accept a high ~- at the input, 4 2 will be
HIGH, and 42 will be LOW. Now that 42 is LOW, it can assert DTACK. Q1 will provide
one wait cycle, and 42 will provide two wait cycles. Because the 2732 EPROM has a
200-ns access time and the microprocessor is operating at 10 MHz (1 00-ns clock cycle),
two wait cycles are inserted before asserting DTACK (2 x 100 = 200 ns). Therefore, @ can
be connected to the DTACK pin through an AND gate. No wait state is required for RAMs
because the access time for the RAMs is only 120 nanoseconds.

Four 8-bit I/O ports are obtained by using two 6821 chips. When the I/O ports are
DTACK

r D Q
-

-c>

1 WAIT 2 WAIT
STATE STATES +5V

D Q--
-

-
loMHz .. CLR

--+---- I

Q- -+ Q- -
CLR

EPROM
- I0 SELECT A

FIGURE 7.21 Delay circuit for DTACK

I I

68000 Hardware and Interfacing 211

CLK
10 MHz

I
EPROM - Sel.

I0

Q2 or
DTACK

FIGURE 7.22

selected, the VPA pin is asserted instead of DTACK. This will acknowledge to the 68000
that it is addressing a 6800-type peripheral. In response, the 68000 will synchronize all data
transfer with the E clock.

Timing diagram for the DTACK delay circuit.
-

The memory and I/O maps for the schematic are as follows:
Memory maps (all numbers in hex). A,, - A,, are don't cares and assumed to be 0s.

0-0 0 0 0 0-0

0-0 0 0 0 1-1

0-0 0 0 0 0-0

0-0 0 0 0 1-1

'42 , - '4 ,0 A,, A,, ' 4 1 3 A,,-A,
0-0 0 0 1 0-0

0-0 0 0 1 1-1

0-0 0 0 1 0-0

0-0 0 0 1 1-1

- -
LDS or UDS -

A0

0

0

1

1

A0

0

0

1

1

EPROM(even) = 4K

$000000, $000002, $000004, ... ,
$00 1 FFE

EPROM(odd) = 4K

$00000 1, $000003, $000005, . . . ,
$00 1 FFF
A,, is don't care for RAM (assume 0)
RAM(even)= 2K

$002000, $002002, ... , $002FFE

RAM(odd)= 2K

$002001, $002003, ... , $002FFF

2 12 Microprocessor Theory and Applications with 68000/68020 and Pentium

Note that upon hardware reset, the 68000 loads the supervisor SP high and low
words, respectively, from addresses $000000 and $000002 and the PC high and low words,
respectively, from locations $000004 and $000006. The memory map contains these reset
vector addresses in the even and odd 2732 chips.

Memory-mapped I/O (all numbers in hex). A,,-A,, and A,,-A, are don't cares and
assumed to be 0s.

A23-'4,,
0-0
0 4
0 4
0-0

A,, A,, A,,
0 1 0
0 1 0
0 1 0
0 1 0

A2 A, A0
0 0 0
0 1 0
1 0 0
1 1 0

Register Selected (Address) - Even
Port A or DDRA = $004000
CRA = $004002

Port B or DDRB = $004004
CRB = $004006
Register Selected (Address) - Odd

&O
0-0

0-0

0-0

0 1 0
0 1 0
0 1 0
0 1 0

0 4
0-0

0-0

0-0

0 0 1
0 1 1
1 0 1
1 1 1

Port A or DDRA = $00400 1

CRA=$004003
Port B or DDRB = $004005
CRB=$004007

-- -
For both memory and I/O chips, AS, UDS, and LDS must be used in chip select logic.
Note that:

1. For memory, both even and odd chips are required. However, for I/O
chips, an odd-addressed I/O chip, an even-addressed I/O chip, or both
- can be used, depending - on the number of ports required in an application.
UDS and/or LDS must be used in I/O chip select logic, depending on the
number of I/O chips used. The same chip select logic must be used for
both the even and its corresponding odd memory chip.
DTACK must be connected to an external input (typically, a signal from

the address decoding logic) to satisfy the timing requirements. In many
instances, 2 is connected directly to DTACK.
The 68000 must be connected to ROMs, EPROMs, and E*PROMs such
that the 68000 RESET vector address is included as part of the memory
map.

2.

3.

7.8 Multiprocessing with the 68000 Using the TAS Instruction and the AS
Signal

Earlier, the 68000 TAS instruction was discussed. The TAS instruction supports the software
aspects of interfacing two or more 68000s via a shared RAM. When TAS is executed, the
68000 AS pin stays LOW. During both the read and write portions of the cycle, 2 remains
LOW and the cycle starts as the normal read cycle. However, in the normal read, AS going
inactive indicates the end of the read. During execution of TAS, AS stays LOW throughout
the cycle, so AS can be used in the design as a bus-locking circuit. Due to the bus locking,
only one processor at a time can perform a TAS operation in a multiprocessor system. The

68000 Hardware and Interfacing

>

213

LED 0- PF l - p ..,
-
J Bit 0 of port B

High address

%ElTAsLoc1
TASLOC2

Section 2

TASLOCM
Section M Low

Address

(a) Shared RAM allocation

Execute
L

Subtract one
section length

available

(b) Flowchart forTAS
FIGURE 7.23 Memory allocation using TAS.

TAS instruction supports multiprocessor operations (globally shared resources) by checking
a resource for availability and reserving or locking it for use by a single processor.

The TAS instruction can therefore be used to allocate free memory spaces. The
shared RAM of the Figure 7.23(a) is divided into Msections. The first byte of each sec-
tion will be pointed to by (EA) of the TAS (EA) instruction. The TAS instruction execu-
tion flowchart for allocating memory is shown in Figure 7.23(b). In Figure 7.23(a), (EA)
first points to the first byte of section 1. The instruction TAS (EA) is then executed. The
TAS instruction checks the most significant bit (N bit) in (EA). N = 0 indicates that sec-
tion 1 is free; N = 1 indicates that section 1 is busy. If N = 0, section 1 will be allocated
for use. If N = 1 (section 1 is busy), a program will be written to subtract one section

+w

VX

VY
Comparator

68000/27321
61 16/6821

Microcomputer
FIGURE 7.24 Figure for Example 7.4

2 14 Microprocessor Theory and Applications with 68000/68020 and Pentium

length from (EA) to check the next section for availability. Also, (EA) must be checked
with the value TASLOCM. If (EA) < TASLOCM, no space is available for allocation.
However, if (EA) > TASLOCM, TAS is executed and the availability of that section is
determined. In a multiprocessor environment, the TAS instruction provides software sup-
port for interfacing two or more 68000s via shared RAM. The = signal can be used to
provide the bus-locking mechanism.

EXAMPLE 7.4
Figure 7.24 is required to perform the following:
(a)

Assume that the 680001273216 1 161682 1 microcomputer shown in

If Vx > Vy , turn the LED ON if the switch is open; otherwise, turn the LED
OFF. Write a 68000 assembly language program starting at address $000300 to
accomplish the above by inputting the comparator output via bit 0 of port B. Use
port A address = $002000, port B address = $002004, CRA = $002002, and CRB
= $002006. Assume that the LED is OFF initially.
Repeat part (a) using autovector level 7 and nonautovector (vector $40). Use port
A (address $002000) for the LED and switch as above with CRA = $002002.
Assume the supervisor mode. Write the main program and service routine in 68000
assembly language starting at addresses $000300 and $OOOAOO, respectively. Also,
initialize the supervisor stack pointer at $00 1200.

(b)

Solution

(a) Using Programmed YO.
language program can be written:

From Figure 7.24, the following 68000 assembly

CRA EQU $002002

PORTA EQU $002000
CRB EQU $002006

DDR EQU PORTA
PORTB EQU $002004
DDRB EQU PORTB

ORG $000300
BCLR.B #2,CRA ; Address DDRA
M0VE.B #2,DDRA ; Configure PORTA
BSET.B #2,CRA ; Address PORTA
BCLR.B #2,CRB ; Address DDRB
M0VE.B #O,DDRB ; Configure PORTB
BSET.B #2,CRB ; Address PORTB

LSR.B #l,DO ; Check
BCC.B COMP ; Comparator
M0VE.B PORTA,Dl ; Input switch
LSL.B #1,D1 ; Align LED data
M0VE.B D1,PORTA ; Output to LED

COMP M0VE.B PORTB,DO ; InputPORTB

LED JMP LED
(b) Using Autovector Level 7 (nonmaskable interrupt). Figure 7.25 shows the
pertinent connections for autovector level 7 interrupt.

68000 Hardware and Interfacing 215

Main program:
CRA EQU
PORTA EQU
DDRA EQU

ORG
BCLR.B
M0VE.B
BSET.B

WAIT JMP

Service routine:
ORG
M0VE.B
LSL.B
M0VE.B

FINISH JMP

Reset vector:
ORG
DC.L
DC.L

Service routine vector:
ORG
DC.L

$002002
$002000
PORTA
$000300
#2,CRA ; Address DDRA
#2,DDRA ; Configure PORTA
#2,CRA ; Address PORTA
WAIT ; Wait for interrupt

$OOOAOO
PORTA, D1 ; Input switch
#1, D1 ; Align LED data
D1, PORTA ; Output to LED
FINISH ; Halt

0
$0000 1200
$00000300

$00007C
$OOOOOAOO

Using nonautovectoring (vector $40). Figure 7.26 shows the pertinent connections for
nonautovectoring interrupt.

-
-

> IPL2
'- IPLl

.. > IPLO

Comparator > VPA

-

IPL2
IPL 1

IPLO

Comparator
68000/273 21

FIGURE 7.25 Example 7.4 using autovectoring

2 16 Microprocessor Theory and Applications with 68000/68020 and Pentium

+v

Comparator
3;-

68000127321
61 16/6821

FIGURE 7.26 Example 1.4 using nonautovectoring

2G Is

Main program:
CRA EQU
PORTA EQU
DDRA EQU

ORG
BCLR.B
M0VE.B
BSET.B
AND1.W

WAIT JMP

$002002
$002000
PORTA
$000300
#2,CRA
#2,DDRA
#2,CRA
#$OF8FF,SR
WAIT

Service routine:
ORG $OOOAOO
M0VE.B PORTA,Dl
LSL.B #$01,D1
M0VE.B D 1 ,PORTA

FINISH JMP FINISH

Reset vector:
OR 0
DC.L $00001200
DC.L $00000300

Service routine vector:
ORG $000 100
DC.L $OOOOOAOO

; Address DDRA
; Configure PORTA
; Address PORTA
; Enable interrupts
; Wait for interrupt

; Input switch
; Align LED data
; Output to LED
; Halt

A 74LS244

68000 Hardware and Interfacing

Questions and Problems

217

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

- -
Find LDS and UDS after execution of the following 68000 instruction sequence:

M0VEA.L #$0005A 123,A2
M0VE.B (A2),DO

~-
Determine the status o f s , FC2-FC0, LDS, UDS , and address lines immediately
after execution of the following instruction sequence (before the 68000 tristates
these lines to fetch the next instruction):

MOVE #$2050,SR
M0VE.B D0,$405060

Assume that the 68000 is in the supervisor mode prior to execution of the
instructions.

Assume a 16.67-MHz 68000 in Figure P7.3. Also, assume that data is ready at the
output pins of the memory chip at 300 ns. For the timing diagram of Figure P7.3,
determine the time at which data will be read by the 68000.

Write 68000 instruction sequence so that upon hardware reset, the 68000 will
initialize the supervisor stack pointer to lOOO,, and the program counter to
2000,,.

Write a 68000 service routine at address $1000 for a hardware reset that will
initialize all data registers to zero, address registers to $FFFFFFFF, supervisor
SP to $502078, and user SP to $1 F0524, and then jump to $7020FO.

Consider the following data prior to a 68000 hardware reset:
[DO] = $7F2A1620
[All = $6AB11057
[SR] = $001F

What are the contents of DO, A 1, and SR after hardware reset?

Suppose that three switches are connected to bits 0-2 of port A and an LED to bit
6 of port B. If the number of HIGH switches is even, turn the LED ON; otherwise,
turn the LED OFF. Write a 68000 assembly language program to accomplish
this.
(4
(b) Assume a 68000-68230 system.

Assume a 68000-682 1 system.

A 68000-68230 microcomputer-based microcomputer is required to drive the
LEDs connected to bit 0 of ports A and B based on the input conditions set by

FIGURE P7.3

2 18 Microprocessor Theory and Applications with 68000/68020 and Pentium

switches connected to bit 1 of ports A and B. The I/O conditions are as follows:
If the input at bit 1 of port A is HIGH and the input at bit 1 of port B
is LOW, the LED at port A will be ON and the LED at port B will be
OFF.

HIGH, the LED at port A will be OFF and the LED at port B will be
ON.

If the input at bit 1 of port A is LOW and the input at bit 1 of port B is

If the inputs of both ports A and B are the same (either both HIGH or both
LOW), both LEDs of ports A and B will be ON.

Write a 68000 assembly language program to accomplish this.

Bit 0 of portA

Bit 1 of p o w

Bit 2 of portA

Bit 3 of portA

Bit 4 of portA

68000/6821

PC

7.9 A 68000-6821-based microcomputer is required to test a NAND gate. Figure P7.9
shows the I/O hardware needed to test the NAND gate. The microcomputer is
to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and turn the LED ON connected at bit 3 of port A if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected at
bit 4 of port A. Write 68000 assembly language program to accomplish this.

+5v +5v

3 3 0 0 2 $ 3 3 0 0

LED I .En *

7.10 A 68000-68230-based microcomputer is required to add two 3-bit numbers stored
in the lowest 3 bits of DO and D1 and output the sum (not to exceed 9) to a
common-cathode seven-segment display connected at port A as shown in Figure
P7.10. Write 68000 assembly language program to accomplish this by using a
look-up table.

Bit 0
Bit 1
Bit 2

GND

d -
Bit 4

Bit 5
Bit 6 d

FIGURE P7.10

68000 Hardware and Interfacing 219

9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer.
Assume that the keyboard is connected to port A and the printer is connected to
port B. Store the EBCDIC codes for 0 to 9 starting at an address $003030, and use
this look-up table to write a 68000 assembly language program to accomplish the
above.

7.12

7.13

Assume the pins and signal shown in Figure P7.12 for the 68000, 68230(odd),
2764(odd and even). Connect the chips and draw a neat schematic. Determine
the memory map and I/O map (addresses for PGCR, PADDR, PBDDR, PACR,
PBCR, PADR, PBDR). Assume a 16.67-MHz internal clock on the 68000.

Assume the 68000 stack and register values shown in Figure P7.13 before the
occurrence -- of an interrupt. If an external device requests an interrupt by asserting
the IPL2, IPL 1, and IPLO pins with the value OOO,, determine the contents of A7'
and SR during interrupt and after execution of RTE at the end of the service
routine of the interrupt. Draw the memory layouts and show where A7' points to
and the stack contents during and after interrupt. Assume that the stack is not used
by the service routine.

-

CE

DTACK
DTACK - 0 0 - 0 7 -

Do-Dls
VPA

RESET HALT '407412 -

RESET
68000 2764 68230 (Odd)

FIGURE P 7.12

, Stack ,

$FF45C
$FF45E
$FF460
$FF462

A,' =$FF464

[PC]=$507080
[SR]=$2004

FIGURE P7.13

Voltage
measurement

68000/682 1
system

1 1 v

FIGURE P7.14

220 Microprocessor Theory and Applications with 68000/68020 and Pentium

FIGURE P7.15

7.14

7.15

7.16

In Figure P7.14, if V, > 12 V, turn an LED ON connected at bit 3 of port A. If V, <
11 V, turn the LED OFF. Using ports, registers, and memory locations as needed
and level 1 autovectored interrupt:
(a) Draw a neat block diagram showing the 68000/682 1 microcomputer and

the connections to ports in the diagram in Figure P7.14.
(b) Write the main program and the service routine in 68000 assembly

language. The main program will initialize the ports and wait for an
interrupt. The service routine will accomplish the task and stop.

Will the circuit in Figure P7.15 work? If so, determine the I/O port addresses for
PGCR, PADR, PADDR, PBDR, PBDDR, PACR, and PBCR. If not, comment
briefly, modify the circuit, and determine the port addresses. Use only the pins and
the signals shown. Assume all don’t cares to be 0’s.

Write a subroutine in 68000 assembly language using the TAS instruction to
find, reserve, and lock a memory segment for the main program. The memory
is divided into three segments (0, 1, 2) of 16 bytes each. The first byte of each
segment includes a flag byte to be used by the TAS instruction. In the subroutine, a
maximum of three 16-byte memory segments must be checked for a free segment
(flag byte = 0). The TAS instruction should be used to find a free segment. The
starting address of the free segment (once found) must be stored in A0 and the
low byte DO must be cleared to zero to indicate a free segment, and the program
control should return to the main program. If no free block is found, $FF must be
stored in the low byte of DO and the control should return to the main program.

ASSEMBLY LANGUAGE
PROGRAMMING WITH THE

68020
In this chapter we describe the fundamental concepts associated with assembly language
programming of the Motorola 68020 microprocessor. The 68020 contains new addressing
modes and several new instructions beyond those of the 68000. To present the 68020
instruction set in a simplified manner, some of the 68020 advanced instructions are not
covered. All 68000 assembly language programs can be executed by the 68020 without
modifications. Note that a background in the 68000 software described in Chapter 6 is
required before understanding the topics contained in this chapter.

8.1 Introduction

The 68020 was Motorola’s first 32-bit microprocessor. The design of the 68020 is based on
the 68000. The 68020 can perform a normal read or write cycle in three clock cycles without
wait states as compared to the 68000, which completes a read or write operation in four
clock cycles without wait states. As far as the addressing modes are concerned, the 68020
includes new modes beyond those of the 68000. Some of these modes are scaled indexing,
larger displacements, and memory indirection. Furthermore, several new instructions are
added to the 68020 instruction set, including the following:

Bit field instructions are provided for manipulating a string of consecutive bits with a
variable length from 1 to 32 bits.
Two new instructions are used to perform conversions between packed BCD and
ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits. This is covered in section 1.2 of Chapter 1.

Enhanced 68000 array-range checking (CHK2) and compare (CMP2) instructions are
included. CHK2 includes lower and upper bound checking; CMP2 compares a number
with lower and upper values and affects flags accordingly.
Four advanced instructions are included: CALLM, RTM, CAS, and CAS2. CALLM
(CALL module) and RTM (return from module) support modular programming, and
the two compare and swap instructions, CAS and CAS2, are provided to support
multiprocessor systems. These instructions are not covered in this chapter.

The 68030 and 68040 are two enhanced versions of the 68020. The 68030 retains
most of the 68020 features. It is a virtual memory microprocessor containing an on-
chip memory management unit (MMU). The 68040 expands the 68030 on-chip memory
management logic to two units: one for instruction fetch and one for data access. This

22 1

222 Microprocessor Theory and Applications with 68000/68020 and Pentium

speeds up the 68040’s execution time by performing logical-to-physical-address translation
in parallel. The on-chip floating-point capability of the 68040 provides it with both integer
and floating-point arithmetic operations at high speed. All 68000 programs written in
assembly language in user mode will run on the 68020,68030 or 68040. The 68030 and
68040 support all 68020 instructions except CALLM and RTM. Let us now focus on the
68020 microprocessor in more detail.

8.2 68020 Functional Characteristics

The MC68020 is designed to execute all user object code written for the 68000. Like the
68000, it is manufactured using HCMOS technology. The 68020 consumes a maximum of
1.75 W, It contains 200,000 transistors on a 318-inch piece of silicon. The chip is packaged
in a square (1.345-inch x 1.345-inch) pin grid array (PGA) and other packages. It contains
169 pins (1 14 pins used) arranged in a 13 x 13 matrix.

The 68020 must be operated at a minimum frequency of 8 MHz. Like the 680000,
it does not have any on-chip clock generation circuitry. The 68020 contains 18 addressing
modes and 101 instructions. All addressing modes and instructions of the 68000 are
included in the 68020. The 68020 supports coprocessors such as the 6888 1168882 floating-
point and 68851 MMU coprocessors. These and other functional characteristics of the
68020 are compared with the 68000 in Table 8.1.

TABLE 8.1 Functional Characteristics of 68000 vs. 68020

Characteristic 68000 68020
Technology
Number of
pins

Control unit

Clock
frequency

ALU
Address bus
size

HCMOS
64,68

Nanomemory (two-level
memory)
8 MHz, 10 MHz, 12.5 MHz,
16.67 MHz, 20 MHz, 25
MHz, 33 MHz
(4 MHz minimum
requirement)
One 16-bit ALU
24 bits with A, encoded from
UDS and LDS.
- -

HCMOS
169 (13 x 13 matrix; pins come
out at bottom of chip; 114 pins
currently used.)
Nanomemory (two-level memory)

12.5 MHz, 16.67 MHz, 20 MHz,
25 MHz, 33 MHz
(8 MHz minimum requirement)

Three 32-bit ALUs
32 bits with no encoding of A, is
required.

Assembly Language Programming with the 68020

TABLE 8.1 Cont.

223

Data bus size
The 68000 can only be
configured as 16-bit memory
(two 8-bit chips) via Do-D,
for odd addresses and D,-D,,
for even addresses during
byte transfers; for word and
long word, uses Do-D,,. The
I/O can be configured as byte
(one 8-bit I/O chip) or 16-bit
(two 8-bit I/O chips).

Instructions Instructions must be at even
addresses. Byte data can be
accessed at either even or
odd addresses while word
and long word data must be
at even addresses.

and data
access

Instruction None
cache

Directly 16 Megabytes
addressable
memory
Registers 8 32-bit data registers

7 32-bit address registers
2 32-bit SPs
1 32-bit PC (24 bits used)
1 16-bit SR

Barrel shifter No
Stack pointers A7 (User SP),A7’(Supervisor

The 68020 can be configured as
8-bit memory (a single 8-bit chip)
via D,,-D,, pins or 16-bit memory
(two 8-bit chips) via D,, - D,,
pins or 32-bit memory (four 8-bit
chips) via D,,-Do pins. I/O can be
configured as 8-bit or 16-bit or
32-bit.

Instructions must be accessed at
even addresses; data accesses can
be at either even or odd addresses
for .B, .W, .L.

128K 16-bit word cache. At start
of an instruction fetch, the - 68020
always outputs LOW on ECS
(early cycle start) pin and accesses
the cache. If instruction is found
in the cache, the 68020 inhibits
outputting LOW on AS pin;
otherwise, the 68020 sends LOW
on AS pin and reads instruction
from main memory.
4 Gigabytes (4,294,964,296 bytes)

8 32-bit data registers
7 32-bit address registers
3 32-bit SPs
1 32-bit PC (all bits used)
1 16-bit SR
1 32-bit VBR (vector base register)
2 3-bit function code registers
(SFC and DFC)
1 32-bit CAAR (cache address
register)
1 CACR (cache control register)
Yes. For fast-shift operations.
A7 (User SP), A7’(intenupt SP),

SP) A7” (Master SP)

224

TABLE 8.1 Cont.

Status register T, S, 12,11,10, X, N, Z, V, C

Microprocessor Theory and Applications with 68000/68020 and Pentium

TO, T1, S, M, 12,11,10, X, N, Z,
v, c

Coprocessor Emulated in software; that Can be directly interfaced to
interface is, by writing subroutines, coprocessor chips, and coprocessor

coprocessor functions such as functions such as floating-point
floating-point arithmetic can arithmetic can be obtained via
be obtained. 68020 instructions.

FC2,FCl, FC2,FCl,FCO=111 means FC2,FCl,FCO= 111 means
FCO pins interrupt acknowledge. CPU space cycle; then by

decoding A16-Al9, one can
obtain breakpoints, coprocessor
functions, and interrupt
acknowledge.

Some of the 68020 characteristics mentioned in Table 8.1 are deserving of further
explanation.
Three independent ALU’s are provided for data manipulation and address
calculations

A 32-bit barrel shift register (occupies 7% of silicon) is included in the 68020 for very
fast shift operations regardless of the shift count.
The 68020 has three SP’s. In the supervisor mode (when S = l), two SP’s can be
accessed. These are A7’(when M = 0) and A7” (when M = 1). A7’ (Interrupt SP) can
be used to simplify and speed up task switching for operating systems.
The vector base register (VBR) is used in interrupt vector computation. For example, in
the 68000, the interrupt vector address is obtained by using VBR + 4 x 8-bit vector.
The SFC (source function code) and DFC (destination function code) registers are 3
bits wide. These registers allow the supervisor to move data between address spaces.
In supervisor mode, 3-bit addresses can be written into SFC or DFC using instructions
such as MOVEC A2,SFC. The upper 29 bits of SFC are assumed to be zero. The
M0VES.W (EA),Dn instruction, such as MOVES.W(AO),DO can then be used to
move a word to DO from a location within the address space specified by SFC and
[AO]. The 68020 outputs [SFC] to the FC2, FC1, and FCO pins. By decoding these
pins via an external decoder, the desired source memory location addressed by [AO]
can be accessed.
The new addressing modes in the 68020 include scaled indexing, 32-bit displacements,
and memory indirection. The scaled index mode is an efficient way to index into an
array when the element size is 2,4, or 8 bytes. Ifthe displacement contains the starting
address of an array and the index register contains the subscript of the desired array
element, the 68020 will automatically convert the subscript into an index by applying
the scaling factor. To illustrate the concept of scaling, consider moving element 5 of
an array containing 16-bit elements starting at an address $5000 into D1.W. Note that
element 0 is the first element of the array stored at address $5000. Using the 68000,
the following instruction sequence will accomplish this:

M0VEA.W #$5000,AO ; Move starting address into A0

Assembly Language Programming with the 68020 225

M0VE.W #5, DO
LSL.W #1, DO
M0VEA.W (AO, DO.W),Dl;Move element 5 into D1.W

; Move element number into D0.W
; Multiply D0.W by 2 for Word

The scaled indexing mode can be used with the 68020 to perform the same as
follows:

MOVEA. W #$5000,AO
M0VE.W #5, DO
M0VEA.W (AO, D0.W * 2),D1

; Move starting address into A0
; Move element number into D0.W
;Move element 5 into D1.W

Note that [DO] is scaled by 2. Scaling by 1,2,4, or 8 can be obtained.

The new 68020 instructions include bit field instructions to better support compilers
and certain hardware applications, such as graphics, 32-bit multiply and divide
instructions, pack and unpack instructions for BCD, and coprocessor instructions. Bit
field instructions can be used to input A/D converters and eliminate wasting main
memory space when the A/D converter is not 32 bits wide. For example, if the A/D
is 12 bits wide, the instruction BFEEXTU $22320000 {2:13},DO will input bits 2-13
of memory location $22320000 into DO. Note that $22320000 is the memory-mapped
port, where the 12-bit A/D is connected at bits 2-13. The next A/D can be connected
at bits 14-25, and so on.
FC2, FC 1, FCO = 11 1 indicates the CPU space cycle. The 68020 makes CPU space
access for breakpoints, coprocessor operations, or interrupt acknowledge cycles. The
CPU space classification is generated by the 68020 based on execution of breakpoint
instructions or coprocessor instructions, or during an interrupt acknowledge cycle. The
68020 then decodes A,,-A,, to determine the type of CPU space. For example, FC2,
FCl, FCO = 11 1 and A,,, A,,, A,,, A,, = 0010 indicate coprocessor instructions.

For performing floating-point operation, the 68000 user must write subroutines using
the 68000 instruction set. The floating-point capability in the 68020 can be obtained
by connecting a floating-point coprocessor chip such as the Motorola 68881. The
68020 has two coprocessor chips: the 68881 (floating point) and the 6885 1 (memory
management). The 68020 can have up to eight coprocessor chips. When a coprocessor
is connected to the 68020, the coprocessor instructions are added to the 68020
instruction set automatically, and this is transparent to the user. For example, when the
68881 floating-point coprocessor is added to the 68020, instructions such as FADD
(floating-point add) are available to the user. The programmer can then execute the
instruction FADD FD0,FDl. Note that registers FDO and FDl are in the 68881. When
the 68020 encounters the FADD instruction, it writes a command in the command
register in the 68881, indicating that the 68881 has to perform this operation. The
68881 then responds to this by writing in the 68881 response register. Note that all
coprocessor registers are memory mapped. Hence, the 68020 can read the response
register and obtain the result of the floating-point add from the appropriate locations .

8.3 68020 Registers

Figure 8.1 shows the 68020 user and supervisor programming models.
The user model has fifteen 32-bit general-purpose registers (DO-D7 and AO-A6),

a 32-bit program counter (PC), and a condition code register (CCR) contained within the
supervisor status register (SR). The supervisor model has two 32-bit supervisor stack

226 Microprocessor Theory and Applications with 68000/68020 and Pentium

pointers (ISP and MSP), a 16-bit status register (SR), a 32-bit vector base register (VBR),
two 3-bit alternate function code registers (SFC and DFC), and two 32-bit cache-handling
(address and control) registers (CAAR and CACR). The user stack pointer (USP) A7,
interrupt stack pointer (ISP) A7’, and master stack pointer (MSP) A7” are system stack
pointers.

The status register, shown in Figure 8.2, consists of a user byte [condition code
register (CCR)] and a system byte. The system byte contains control bits to indicate that
the processor is in the trace mode (Tl, TO), supervisorhser state (S), and masterlinterrupt
state (M). The user byte consists of the following condition codes: carry (C), overflow (V),
zero (Z), negative (N), and extend (X).

The bits in the 68020 user byte are set or reset in the same way as those of the
68000 user byte. Bits 12,11,10, and S have the same meaning as those of the 68000. In the
68020, two trace bits (Tl, TO) are included, as opposed to one trace bit (T) in the 68000.
These two bits allow the 68020 to trace on both normal instruction execution and jumps.
The 68020 M-bit is not included in the 68000 status register.

The vector base register (VBR) is used to place the exception-processing vector
table basically anywhere in memory. VBR supports multiple vector tables so that each
process can manage independent exceptions properly. The 68020 distinguishes address
spaces as supervisorhser and prograddata. To support full access privileges in the
supervisor mode, the alternate function code registers (SFC and DFC) allow the supervisor
to access any address space by preloading the SFC/DFC registers appropriately. The cache
registers (CACR and CAAR) allow software manipulation of the instruction code. The
CACR provides control and status accesses to the instruction cache; the CAAR holds the
address for those cache control functions that require an address.

Assembly Language Programming with the 68020

C

vr
3 ll

-
m

E
Q)

g .Z
@- I

C

3

~m

r
4

FIGURE 8.1 68020 programming models.

8.4 68020 Data 'Qpes, Organization, and CPU Space Cycle

d u

227

As mentioned in Chapter 6, the 68000 supports data types of bits, BCD, bytes,
16-bit words, and 32-bit long words. In addition to these, four new data types are supported
by the MC68020. These are variable-width bit field, packed BCD digits, 64-bit quad words,
and variable-length operands. Data stored in memory is organized on a byte-addressable
basis, where the lower addresses correspond to higher-order bytes. The 68020 does not

228 Microprocessor Theory and Applications with 68000/68020 and Pentium

T I T ~ S ~ M ~ O ~ I ~ ~ I I ~ I O ~ O ~ O I O I X I N I Z I V I C ~
w

Zero 1 I 1 I
Extend
Interrupt priority mask
Masterhntermpt state
Supervisorhser state
Trace enable

I :Negative

TO - Trace on change of flow (BRA, JUMP,etc.)
TI - Trace all instructions
TI TO
0 0 No tracing S M

1 0 Trace on any instuction execution 1 0 ISP
1 1 Undefined; reserved 1 1 MSP
0 1 Trace on change of flow 0 x USP

FIGURE 8.2 68020 status register.

require data to be aligned on even boundaries, but data that is not aligned is transferred less
efficiently. Instruction words must be aligned on even byte boundaries. Figure 8.3 shows
how data is organized in memory.

The function code pins FC2, FC 1, and FCO define the user/supervisor program
and data in the same way as the 68000, except that FC2, FC1, FCO = 11 1 for the 68020
defines a new cycle, the CPU space cycle. Note that for the 68000, FC2, FCI, FCO
= 111 indicates the interrupt acknowledge cycle. The CPU space cycle is not intended
for general instruction execution, but is reserved for processor functions. Some of the
processor functions are breakpoint acknowledge, interrupt acknowledge, and coprocessor
communication. For example, the 68020 automatically sets FC2, FC1, FCO to 11 1 during
interrupt, and A,,,A,,,A,,,A,, = 1111 during this CPU space cycle would indicate an
interrupt acknowledge cycle.

8.5 68020 Addressing Modes

Table 8.2 lists the 68020's 18 addressing modes. Table 8.3 compares the addressing
modes of the 68000 with those of the 68020. Because 68000 addressing modes were
covered in detail in Chapter 6, the 68020 modes not available in the 68000 are provided in
the following discussion.

Assembly Language Programming with the 68020 229

Bit Data

Base Bit
Address Number

Bit Field Data
Bit

Nuyber

Address
Byte Integer Data
7 01 7 017 01 7 0

Byten-1 IMSB Byten LSBl B y t e n + l I Byten+2 I a
Address

Word Integer Data
Y

7 01 7 017 017 o 17 0

I Byten+3 Byten-1 I Word Integer I Byten+2 I
4

Address

Long Word integer Data

I Byten-1 I Long Word integer I Byten+4
7 0 (7 017 017 01 7 0 17 0

4
Address

Packed Binarv-Coded Data

Address

Unpacked Binary-Coded Data

4
Address

FIGURE 8.3

TABLE 8.2 68020 Addressing Modes

68020 memory data organization.

Mode Syntax

Register direct
Data register direct
Address register direct

Register indirect

Dn
An

230

TABLE 8.2 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Mode Syntax

Address register indirect (ARI)
Address register indirect with postincrement
Address register indirect with predecrement
Address register indirect with displacement

Register indirect with index

Address register indirect with index (8-bit
displacement)
Address register indirect with index (base
displacement)

Memory indirect

Memory indirect, postindexed
Memory indirect, preindexed

Program counter indirect with displacement
Program counter indirect with index

PC indirect with index (8-bit displacement)
PC indirect with index (base displacement)

Program counter memory indirect

PC memory indirect, postindexed
PC memory indirect, preindexed

Absolute

Absolute short
Absolute long

Immediate

(d8, An, Xn)

(bd, An, Xn)

(d8, PC, Xn)
(bd, PC, Xn)

(xxx).W
(xxx) . L
#data

Notes:
Dn =

An =

d8, =

d16

Xn =

bd =

data register, DO -D7
address register, AO-A6
2’s complement or sign-extended displacement; added as part
of effective address calculation; size is 8 (d8) or 16 (d16) bits;
when omitted, assemblers use a value of 0
address or data register used as an index register; form is
Xn.size * scale, where size is .W or .L (indicates index register
size) and scale is 1 ,2 ,4 , or 8 (index register is multiplied by
scale); use of size and/or scale is optional
2’s complement base displacement; when present, size can be
16 or 32 bits

Assembly Language Programming with the 68020

Addressing Modes Available

Data register direct

23 1

Syntax 68,000 68020

Dn Yes Yes

TABLE 8.2 Cont.

Mode Syntax

ARI with postincrement
ARI with predecrement
ARI with displacement (16-bit dim)

od = outer displacement, added as part of effective address
calculation after any memory indirection; use is optional with a
size of 16 or 32 bits

PC = program counter
<data> = immediate value of 8, 16, or 32 bits

() = effective address
[] = use as indirect address to long word address

ARI = Address Register Indirect

(An)+ Yes Yes
<An) Yes Yes
(d. An) Yes Yes

ARI with index (8-bit disp)
ARI with index (base disp; 0, 16, 32)
Memory indirect (postindexed)
Memory indirect (preindexed)
PC indirect with dim. (16-bit)

I Address register direct

(d, An, x n > Yes* Yes*
(bd, An, Xn) No Yes
([bd, An], Xn, 0 4 No Yes
([bd, An, xnl, od) No Yes
(d. PC) Yes Yes

Address register indirect (ARI) I Yes I Yes

PC indirect with index (8-bit disp)
PC indirect with index (base disp)
PC memory indirect (postindexed)
PC memorv indirect (preindexed)

(4 p c , xn> Yes* Yes*
(bd, PC, Xn) No Yes
([bd, PCI, Xn, 04 No Yes
(Tbd, PC, Xnl, od) No Yes

Absolute long
Immediate

(xxxxxxxx).L Yes Yes
#<data> Yes Yes

~ ~~

I Absolute short 1 (XXXX).W I Yes I Yes I

~

8.5.1 Address Register Indirect (A H) with Index and 8-Bit Displacement
Assembler syntax: (d8, An, Xn.size * scale)
EA = (An) + (Xn.size * scale) + d8
Xn can be W or L.

232 Microprocessor Theory and Applications with 68000/68020 and Pentium

If the index register (An or Dn) is 16 bits, it is sign-extended to 32 bits and multiplied by
1,2,4, or 8 to be used in EA calculations. An example is M0VE.W (0, A2, D2.W * 2),D1.
Suppose that [A21 = $50000000, [D2.W] = $1000, and [$50002000] = $1571; then after
the execution of this MOVE, [Dl],,, 16bits = $1571 because EA = $5000000 + $1000 * 2 +
0 = $50002000.

8.5.2 ARI with Index (Base Displacement, bd: Value 0 or 16 Bits or 32 Bits)
Assembler syntax: (bd, An, Xn.size * scale).

EA = (An) + (Xn.size * scale) + bd.
Base displacement, bd, has a value 0 when present or can be 16 or 32 bits.

Figure 8.4 shows the use of A N with the index Xn, and base displacement bd,
for accessing tables or arrays. An example is M0VE.W ($5000, A2, D1.W * 4), D5.
If [A21 = $30000000, [Dl.W] = $0200, and [$30005800] = $0174, then after execution
of this MOVE, [D5],,, 16 bits = $0174 because EA = $5000 + $30000000 + $0200 * 4 =

$30005800.

8.5.3 Memory Indirect
The memory indirect mode is distinguished from the address register indirect mode by the
use of square brackets in the assembler notation. The concept of memory indirect mode
is depicted in Figure 8.5. Here, register A5 points to the effective address $20000501.
Because CLR ([A5]) is a 16-bit clear instruction, 2 bytes in locations $20000501 and
$20000502 are cleared to 0.

The memory indirect mode can be indexed with scaling and displacements.
There are two types of memory indirect mode with scaled indexing and displacements:
postindexed memory indirect mode and preindexed memory indirect mode.

An T ’

Xn * Scale L

FIGURE 8.4 ARI with index and base displacement.

-r T I

$20000500 m XXOO

FIGURE 8.5 Memory indirect.

Assembly Language Programming with the 68020 233

For postindexed memory indirect mode, an indirect memory address is first
calculated using the base register (An) and base displacement (bd). This address is used for
an indirect memory access of a long word followed by adding a scaled indexed operand
and an optional outer displacement (od) to generate the effective address. Note that bd and
od can be zero, 16 bits, or 32 bits. In postindexed memory indirect mode, indexing occurs
after memory indirection.

An example is M0VE.W ([$0004,Al], D1.W * 2,2), D2. If [All = $20000000, [$2000004]
= $00003000, [Dl.W] = $0002, and [$00003006] = $1A40, then after execution of this
MOVE, intermediate pointer = (4 + $20000000) = $20000004, [$2000004], which is
$00003000 used as a pointer. Therefore, EA = $00003000 + $00000004 + 2 = $00003006.
Hence, [D2],,, 16bi t s= $1A40.

For the memory indirect preindexed mode, the scaled index operand is added to
the base register (An) and base displacement (bd). This result is then used as an indirect
address into the data space. The 32-bit value at this address is read and an optional outer
displacement (od) is added to generate the effective address. The indexing therefore occurs
before indirection.

As an example of the preindexed mode, consider several I/O devices in a system. The
addresses of these devices can be held in a table pointed to by An, bd, and Xn. The actual
programs for these devices can be stored in memory pointed to by the respective device
addresses plus od.

The memory indirect preindexed mode will now be illustrated by a numerical
example. Consider

If [All = $20000000, [DO.W] = $0004, [$2000000A] = $00121502, and [$00121504] =

$F124, then after execution of this MOVE, intermediate pointer = $20000000 + $0002
+ $0004*2 = $2000000A. Therefore, [$2000000A], which is $00121502, is used as a
memory pointer. Hence, [Dl]l,w 16bits= $F124.

8.5.4 Memory Indirect with PC
In this mode, PC (the program counter), rather than an address register, is used to form
the address. The effective address calculation is similar to memory indirect using address
register. The various types of memory index with mode are described below.

Assembler syntax: ([bd, An], Xn.size * scale, od)
EA = ([bd +An]) + (Xn.size * scale + od)

Assembler syntax: ([bd, An, Xn.size * scale], od)

EA = (bd, An + Xn.size * scale) + od

M0VE.W ([$0002, Al,DO.W*2], 2), D1

PC Indirect with Index (&Bit Displacement) The effective address is obtained by
adding PC contents, the sign-extended displacement, and the scaled indexed (sign-extended
to 32 bits if it is 16 bits before calculation) register.

For example, consider M0VE.W D2,(2,PC,Dl.W*2). If [PC] = $40000020, [Dl.W] =

$0020, and [D2.W] = $20A2, then after this MOVE, EA = 2 + $40000020 + $0020 *2 =

$40000062. Hence, [$40000062] = $20A2.

Assembler syntax: (d8,PC,Xn.size *scale), EA = [PC] + [Xnsize * scale] + d8

PC Indirect with Index (Base Displacement, bd) The address of the operand is
obtained by adding the PC contents, the scaled index register contents, and the base

234

displacement.
Assembler syntax: (bd,PC,Xn.size*scale), EA = [PC] + [Xn.size*scale] + bd, Xn and
bd are sign-extended to 32 bits if either or both are 16 bits.

As an example, consider M0VE.W (4,PC,D1 .W*2),D2. If [PC] = $20000004, [Dl.W] =

$0020, [$20000048] = $2560, then after this MOVE, [D2.W] = $2560.

Microprocessor Theory and Applications with 68000/68020 and Pentium

PC Indirect (Postindexed) An intermediate memory pointer in program space is
calculated by adding PC (used as a base register), and bd (base displacement). The 32-bit
contents of this address are used in the EA calculation. EA is obtained by adding the 32-bit
contents with a scaled index register and od (outer displacement). Note that bd, od, and
index register are sign-extended to 32 bits before being used in the calculation if one (or
more) of them is 16 bits before EA calculation.

Assembler syntax: ([bd,PC],Xn.size*scale,od), EA = ([bd + PC] + Xn.size * scale +

As an example, consider M0VE.W ([2,PC],Dl.W*4,0),Dl. If [PC] = $30000000, [Dl.W]
= $0010, [$300 00021 = $20400050, and [$20400090] = $A240, then after this MOVE,
[Dl.W] = $A240.

0 4

PC Indirect (Preindexed) The scaled index register is added to the PC and bd. The
sum is then used as an indirect address into the program space. The 32-bit value at this
address is added to od to find EA.

Assembler syntax: ([bd,PC,Xn.size*scale],od), EA = (bd + PC +Xn.size * scale) + od
where od, bd, and the index register contents are sign-extended to 32 bits if one (or
more) of them is 16 bits before EA calculation.

As an example, consider M0VE.W ([4,PC,Dl .W*2],4),D5. If [PC] = $50000000, [Dl .W]
= $0010, [$50000024] = $20507000, and [$20507004] = $0708, then after this MOVE,
[D5.W] = $0708.

EXAMPLE 8.1 The 68000 instruction sequence:

M0VEA.L 8(A7),AO
M0VE.W (AO),D3

is used by a subroutine to access a parameter whose address has been passed into A0 and
then moves the parameter to D3. Find the equivalent 68020 instruction.

Solution
M0VE.W ([8,A7]),D3

EXAMPLE 8.2 Write a 68020 assembly language program that will be used to
convert an ASCII code for a specific BCD number stored in register D0.B into its equivalent
EBCDIC code in D0.B. Assume that the ASCII codes for the 10 BCD numbers (0 through
9) are stored in a look-up table starting at an address $00002030. Also, assume that an
address $00001000 is passed into register A0 by a subroutine, and address $00001000
contains $00002000. Using A0 as the pointer, and along with the data above to access the
table, write a 68020 assembly language program to accomplish the above.

Assembly Language Programming with the 68020 235

Solution

ORG
DC.B
DC.B
ORG

DC.L
M0VE.W
LEA.L

M0VE.B

FINISH JMP

$00002030
$FO,$Fl ,$F2,$F3,$F4,$FS
$F6,$F7,$F8,$F9
$00001000 ;$00002000 stored at address

$00002000
#$35,DO
$OOOOlOOO,AO

([AO],DO. W),DO

FINISH ;Halt

;EBCDIC codes for the BCD numbers

;$00001000

;Move ASCII $35 into D0.W
;Load $00001000 into A0 to be used
;as pointer in memory indirect mode
; Load EBCDIC equivalent $F5 of the
;ASCII $35 into D0.B

The 68020 program above illustrates the concept of memory indirect addressing
mode. First, the EBCDIC codes for the 10 BCD numbers (0 through 9) are stored starting
at memory location $00002030 using the assembler directive DC.B. Next, the address
$00002000 is stored in address $0000100 using the DC.L directive. M0VE.W #$35,DO
moves $0035 (ASCII for 5) into the low 16 bits of DO. Note that BCD 5 is chosen arbitrarily.
A word instruction M0VE.W is used because the IDE assembler for the 68020 allows
word or long word for the index register. Hence, $35 is moved into D0.W using the
M0VE.W #$35,DO instruction. The correct operation of the program above is verified
using the debugger. After single stepping through the program, D0.W contains $F3.

EXAMPLE 8.3 Write a 68020 assembly language program at address $00002000 to
add all the elements in a table containing eight 16-bit numbers stored in memory in
consecutive memory locations starting at an address $00005000. Store the 16-bit result
in D1.W.

Solution

ORG
DC.W
DC.W
ORG
LEA.L
M0VE.L
CLR. W
MOVE. W

ADDQ.L
DBF.W

BACK ADD

END JMP

EXAMPLE 8.4

$00005000
1,29394
596,738
$00002000
$OOOO5OOO,AO
#O,DO
D1
#7,D2
(AO,DO.L*2),Dl
#1,DO
D2,BACK
END ; Halt

; A0 = Starting address of the table
; Move element number 0 into D0.L
; Clear 16-bit sum in D1 to 0
; Initialize D2.W with loop count
; Add elements with sum in D1 .W
; Increment element number in D0.L by 1
; Decrement D2 and branch to BACK if D2

Write a 68020 assembly language program at $0000 1000 to find the
trace (sum of the elements in the diagonal) of a 3x3 matrix containing 16-bit words. Store
the 16-bit result in DO. Assume that the matrix is stored in row-major ordering starting at

236

an address $00002000 as follows:

Microprocessor Theory and Applications with 68000/68020 and Pentium

$00002000
$00002002
$00002004
$00002006
$00002008
$0000200A
$0000200c
$0000200E
$000020 10

Note that trace = a[O,O] + a[l , l] + a [2,2] and displacement, d = (i *t +j) *s = i*t*s + j * s
where i = row number, j = column number, t = total number of columns in the matrix, s =

element size. In this example, t = 3 for 3x3 matrix, s=2 since each element is 16-bit. Hence,
d= 3*(2*i) + 2*j = 6 * i + 2 *j. Hence, effective address where each element au will be
stored = A0 + 6*i + 2*j where A0 = starting address of the array, i = row number, and j =

column number.

Solution

ORG
DC.W
DC.W
DC.W
ORG
M0VE.L
M0VE.L
M0VE.L
M0VE.L
M0VE.W
CLR.W
LEA.L

ADDA.L
ADD.W
ADDQ.L
ADDQ.L
M0VE.L
LEA.L
DBF.W

BACK MULU.W

FINISH JMP

$00002000
1,233
4,5,6
7,&9
$0000 1000
#O,D 1
D 1 ,D4
#O,D2
D2,D6
#2,D7 ; initialize loop count
DO ; s u m = O
$00002000,AO
#6,D6
D6,AO
(A0,DI .L*2),DO ; sum diagonal elements in D0.W
#1,D1
1 ,D2
D2,D6
$2000,AO
D7,BACK
FINISH ; Halt

; Load column number 0 into D1
; Copy D1 into D4
; Load row number 0 into D2
; copy D2 into D6

; load starting address into A0
; perform 6*i, result in D6.L
; add A0 with 6*i

; Increment column number by 1 in D 1 .L
; Increment row number by 1
; Copy updated row number into D6
; re-initialize A0 to $2000 since [AOIwas altered
; Decrement D7.W by 1, branch if [D7.W]

Assembly Language Programming with the 68020

TABLE 8.4 68020 New Instructions

237

Instruction Description
BFCHG Bit field change
BFCLR Bit field clear
BFEXTS Bit field signed extract
BFEXTU Bit field unsigned extract
BFFFO Bit field find first one set
BFNS Bit field insert
BFSET Bit field set
BFTST Bit field test
CALLM Call module
CAS Compare and swap
CAS2
CHK2
CMP2
cpBcc
cpDBcc
cpGEN Coprocessor general function
cpRESTORE Coprocessor restore internal state
cpSAVE Coprocessor save internal state
cpSETcc
cpTRAPcc
PACK Pack BCD
RTM Return from module
UNPK Unpack BCD

Compare and swap (two operands)
Check register against upper and lower bounds
Compare register against upper and lower bounds
Coprocessor branch on coprocessor condition
Coprocessor test condition, decrement, and branch

Coprocessor set according to coprocessor condition
Coprocessor trap on coprocessor condition

8.6 68020 Instructions

The 68020 instruction set includes all 68000 instructions plus some new ones. Appendix
E lists some of the 68020 instructions that will also run on the 68000. Some of the 68020
instructions are enhanced 68000 instructions. Over 20 new instructions are added to provide
new functionality. A list of these instructions is given in Table 8.4. In succeeding sections
we discuss the 68020 instructions listed next:

68020 new privileged move instructions

RTD instruction
CHWCHK2 and CMP/CMP2 instructions
TRAPcc instructions

Bit field instructions
PACK and UNPK instructions

238

Multiplication and division instructions

68000 enhanced instructions

Microprocessor Theory and Applications with 68000/68020 and Pentium

8.6.1
The 68020 new privileged move instructions can be executed by the 68020 in the supervisor
mode. These instructions are listed in Table 8.5. Note that Rc includes VBR, SFC, DFC,
MSP, ISP, USP, CACR, and CAAR. Rn can be either an address or a data register. The
operand size (.L) indicates that the MOVEC operations are always long words. Notice that
only register-to-register operations are allowed. A control register (Rc) can be copied to an
address or a data register (Rn), or vice versa. When the 3-bit SFC or DFC register is copied
into Rn, all 32 bits of the register are overwritten and the upper 29 bits are “0.”

The MOVES (move to alternate space) instruction allows the operating system to
access any address space defined by the function codes. It is typically used when an operating
system running in the supervisor mode must pass a pointer or value to a previously defined
user program or data space. The operand size (.S) indicates that the MOVES instruction
can be byte (.B), word (.W), or long word (.L). The MOVES instruction allows register-
to-memory or memory-to-register operations. When a memory to register move occurs,
this instruction causes the contents of the source function code register to be placed on the
external function hardware pins. For a register-to-memory move, the processor places the
destination function code register on the function code pins. The MOVES instruction can
be used to move information from one space to another.

68020 New Privileged Move Instructions

EXAMPLE 8.5 Find the contents of address $70000023 and the function code pins
FC2, FC1, and FCO after execution of M0VES.B D5,(A5). Assume the following data
prior to execution of this MOVES instruction: [SFC] = OOl,, [DFC] = 101, , [A51 =

$70000023, [D5] = $718F2A05, [$70000020] = $01, [$70000021] = $F1, [$70000022] =

$A2, [$70000023] = $2A

Solution

After execution of this MOVES instruction, FC2 FC 1 FCO = 10 1, and [$70000023]
= $05.

8.6.2 Return and Delocate Instruction
The return and delocate (RTD) instruction is useful when a subroutine has the responsibility
to remove parameters off the stack that were pushed onto the stack by the calling routine.
Note that the calling routine’s JSR (jump to subroutine) or BSR (branch to subroutine)
instructions do not automatically push parameters onto the stack prior to the call as do the

TABLE 8.5 68020 New privileged MOVE instructions

Instruction ODerand Size ODeration Notation
MOVE 16 SR + destination MOVE SR, (EA)
MOVEC 32 Rc + Rn M0VEC.L Rc, Rn

M0VEC.L Rn, Rc
MOVES 8, 16,32 Rn -+ destination using DFC M0VES.S Rn, (EA)

Source using SFC + Rn M0VES.S (EA),Rn

Rn --f Rc

Assembly Language Programming with the 68020 23 9

CALLM instructions. Rather, the pushed parameters must be placed there using the MOVE
instruction. The format of the RTD instruction is as follows:

Instruction

RTD
Operand Size Operation Notation

(SP) +- PC, SP + 4 + d -+ SP Unsized RTD # <disp>

As an example, consider RTD #8, which at the end of a subroutine deallocates 8
bytes of unwanted parameters off the stack, by adding 8 to the stack pointer and returns to
the main program. The size of the displacement is 16 bits.

Before CHK.L(AS), D3

D3 0 1 5 0 7 1 2 6

Memory

Operation After

Enter check
exception

service
routine

0 < D3.L > $01500000
: .N=O,TRAP

A5=$00710004 0 1 5 0 0 0 0 0 I CCR
X N Z V C

FIGURE 8.6 Illustration of the CHKL (A5),D3 instruction using numerical data

8.6.3 CHWCHK2 and CMP/CMP2 Instructions
The 68020 check instruction (CHK) compares a 32-bit two’s-complement integer value
residing in a data register (Dn) against a lower bound (LB) value of zero and against an
upper bound (UB) value of the programmer’s choice. The upper bound value is located at
the effective address (EA) specified in the instruction format. The CHK instruction has the
following format: CHK.S (EA),Dn where the operand size (.S) designates word (.W) or
long word (.L). If the data register value is less than zero (Dn < 0) or if the data register is
greater than the upper bound (Dn > UB), the processor traps through exception vector 6
(offset $1 8) in the exception vector table. Of course, the operating system or the programmer
must define a check service handler routine at this vector address. The condition codes after
execution of the CHK are affected as follows: If Dn < 0, then N = 1; if Dn > UB (upper
bound), then N = 0. If 0 I Dn I UB then N is undefined. X is unaffected and all other flags
are undefined and program execution continues with the next instruction.

The CHK instruction can be used to maintain array subscripts because all subscripts
can be checked against an upper bound (i.e., UB = array size - 1). If the subscript compared
is within the array bounds (i.e., 0 I subscript value I UB value), the subscript is valid and
the program continues normal instruction execution. If the subscript value is out of array
limits (i.e., 0 > subscript value or subscript value > UB value), the processor traps through
the CHK exception.

The purpose of the CHK instruction is to provide boundary checking by testing
if the content of a data register is in the range from zero to an upper limit. The upper limit
used in the instruction can be set equal to the length of the array. Then, every time the array
is accessed, the CHK instruction can be executed to make sure that the array bounds have
not been violated. The CHK instruction is usually placed after the computation of an index
value to ensure that the index value is not violated. This permits a check of whether or not
the address of an array being accessed is within array boundaries when address register
indirect with index mode is used to access an array element. For example, the following
instruction sequence permits accessing of an array with base address in A0 and an array

240

length of 100 bytes:

Microprocessor Theoly and Applications with 68000/68020 and Pentium

CHK. W #99,DO

M0VE.B (AO,DO.W),Dl

Here, if the low 16 bits of DO are less than 0 or greater than 99, the 68020 will trap to
location $0018. It is assumed that the value of the index register D2.W is computed prior
to execution of the CHK instruction.

EXAMPLE 8.6 Determine the effects of the execution of CHK.L (A5),D3, where
A5 represents a memory pointer to the array’s upper bound value. Register D3 contains the
subscript value to be checked against the array bounds. Assume the following data prior to
execution of this CHK instruction:

[D3] = $01507126
[A51 = $00710004
[$00710004] = $01500000

Solution

The long word array subscript value $01 507 126 contained in data register D3 is compared
against the long word UB value $01500000 pointed to by address register A5. Because the
value $01507126 contained in D3 exceeds the UB value $01500000 pointed to by A5, the
N bit is cleared. (X is unaffected and the remaining CCR bits are undefined.) This out-of-
bounds condition causes the program to trap to a check exception service routine. This is
depicted in Figure 8.6.

The operation of the CHK instruction is as follows:
Instruction I OperandSize I Operation I Notation

CHK I 16,32 I If Dn < 0 or Dn > source, then TRAP I CHK (EA), Dn

The 68020 CMP.S (EA), Dn instruction subtracts (EA) from Dn and affects the
condition codes without any result. The operand size designator (.S) is either byte (.B) or
word (.W) or long word (.L).

EA

EA+size U erbound

FIGURE 8.7 Lower and upper bounds for CHK2/CMP2

Assembly Language Programming with the 68020

Before CMP2.W(A2), D1

D1-

Memory

24 1

Operation After
Signed comparison CCR

-$5000<Dl.W &$SO00
:. c = 0

The CHK2 and the CMP2 instructions have similar formats:

CHK2.S (EA), Rn

45000 # Dl.W#+ $5000
A2=$00007000 -1 I :. z = 0

and

X is not

N and V
affected

CMP2.S (EA), Rn

They compare a value contained in a data or address register (designated by Rn) against
two bounds chosen by the programmer. The size of the data to be compared (.S) may be
specified as byte (.B), word (.W), or long word (.L). As shown in Figure 8.7, the lower
bound (LB) value must be located in memory at the effective address (EA) specified in
the instruction, and the upper bound (UB) value must follow immediately at the next-

higher memory address. That is, UB addr = LB addr + size, where size = B (+l), W (+2),
or L (+4).

If the register compared is a data register (i.e., Rn = Dn) and the operand size
(.S) is a byte or word, only the appropriate low-order part of the data register is checked.
If the register compared is an address register (i.e., Rn =An) and the operand size (.S) is a
byte or word, the bound operands are sign-extended to 32 bits and the extended operands
are compared against the full 32 bits of the address register. After execution of CHK2 and
CMP2, the condition codes are affected as follows:

Carry = 1 if the contents of Dn are out of bounds

Z = 1 if the contents of Dn are equal to either bound
= o otherwise

= o otherwise

W ' A2+2 = $00007002 I are undefined

FIGURE 8.8 Register and memory contents for Example 8.7.

-w Range of valid
values (signed)

FIGURE 8.9 Range of valid values for D1.W for Example 8.7.

When an upper bound equals the lower bound, the valid range for comparison
becomes a single value. The only difference between the CHK2 and CMP2 instructions is
that for comparisons determined to be out of bounds, CHK2 causes exception processing

242 Microprocessor Theovy and Applications with 68000/68020 and Pentium

utilizing the same exception vector as the CHK instructions, whereas the CMP2 instruction
execution affects only the condition codes.

In both instructions, the compare is performed for either signed or unsigned
bounds. The 68020 evaluates the relationship between the two bounds automatically to
determine which type of comparison to employ. If the programmer wishes to have the
bounds evaluated as signed values, the arithmetically smaller value should be the lower
bound. If the bounds are to be evaluated as unsigned values, the programmer should make
the logically smaller value the lower bound.

The following CMP2 and CHK2 instruction examples are identical in that they
both utilize the same registers, comparison data, and bound values. The difference lies in
how the upper and lower bounds are arranged.

$5000 # Dl.W#+ 93000
:. z = 0

EXAMPLE 8.7 Determine the effects of execution of CMP2.W (A2),Dl. Assume
the following data prior to execution of this CMP2 instruction:
[Dl] = $50000200, [A21 = $00007000, [$00007000] = $B000, and [$00007002] = $5000.

TRAP to
exception vector

Solution

Figure 8.8 shows register and memory contents before and after execution of
CMP2.W(A2),Dl. In this example, the word value $BOO0 contained in memory (as pointed
to by address register A2) is the lower bound and the word value $5000 immediately
following $BOO0 is the upper bound. Because the lower bound is the arithmetically smaller
value, the programmer is indicating to the 68020 to interpret the bounds as signed numbers.
The twos complement value $BOO0 is equivalent to an actual value of 45000 . Therefore,
the instruction evaluates the word contained in data register D1 ($0200) to determine
whether it is greater than or equal to the upper bound, +$5000, or less than or equal to
the lower bound, -$5000. Because the compared value $0200 is within bounds, the carry
bit (C) is cleared to 0. Also, because $0200 is not equal to either bound, the zero bit (Z) is
cleared. Figure 8.9 shows the range of valid values that D1 could contain.

A typical application for the CMP2 instruction would be to read in a number

Before CHK2. W(A2), D 1

D11 5 0 0 0 0 2 0 0 I
I I

Memory

I A2 = $00007000

A2+2 = $00007002

Operation
Unsigned comparison

Assembly Language Programming with the 68020 243

of user entries and verify that each entry is valid by comparing it against the valid range
bounds. In the preceding CMP2 example, the user-entered value would be in register D 1,
and register A2 would point to a range for that value. The CMP2 instruction would verify
whether the entry is in range by clearing the CCR carry bit if it is in bounds and setting the
carry bit if it is out of bounds.

EXAMPLE 8.8 Determine the effects of execution of CHK2.W (A2),DI. Assume
the following data prior to execution of this CHK2 instruction: [Dl] = $50000200, [A21 =

$00007000,
[$00007000] = $5000, and [$00007002] = $B000.

Solution

Figure 8.10 shows register and memory contents before and after execution
of CHK2.W(A2),Dl. This time, the value $5000 located in memory is the lower bound
and the value $BOO0 is the upper bound. Figure 8.11 shows the range of valid values that
DI could contain. Now, because the lower bound contains the logically smaller value,
the programmer is indicating to the 68020 to interpret the bounds as unsigned numbers,
representing only a magnitude.

Therefore, the instruction evaluates the word contained in register D1 ($0200)
to determine whether it is greater than or equal to the lower bound, $5000, or less than or
equal to the upper bound, $B000. Because the value being compared, $0200 is less than
$5000, the carry bit is set to indicate an out-of-bounds condition and the program traps
to the CHWCHK2 exception vector service routine. Also, because $0200 is not equal to
either bound, the zero bit (Z) is cleared. The figure above shows the range of valid values
that D 1 could contain.

A typical application for the CHK2 instruction would be to cause a trap exception
to occur if a certain subscript value is not within the bounds of some defined array. Using
the CHK2 example format just given, if we define an array of 100 elements with subscripts
ranging from 0 through 99,0, and if the two words located at (A2) and (A2 + 2) contain 50
and 99, respectively, and if register DI contains IOO,,,, execution of the CHK2instruction
would cause a trap through the CHWCHK2 exception vector. The operation of the CMP2
and CHK2 instructions are summarized in Table 8.6.

8.6.4 Trap-on-Condition Instructions
The new trap condition, TRAPcc instruction shown in Table 8.7 allows a conditional
trap exception on any of the condition codes shown in Table 8.8. These are the same
conditions that are allowed for the set-on-condition (SCC) and the branch-on-condition

TABLE 8.6 CMP2 and CHK2 Instructions

Instruction Operand Size Operation Notation
CMP2 8,16,32 Compare Rn < source - lower bound CMP2 (EA), Rn

or Rn > source - upper bound and set
CCR
If Rn < source - lower bound or Rn >
source - upper bound, then TRAP

CHK2 8, 16,32 CHK2 (EA), Rn

244 Microprocessor Theory and Applications with 68000/68020 and Pentium

(Bcc) instructions. The TRAPcc instruction evaluates the test condition selected based on
the state of the condition code flags, and if the test is true, the 68020 initiates exception
processing by trapping through the same exception vector as the TRAPV instruction (vector
7, offset $1C, VBR = VBR + offset). The trap-on-condition instruction format is

TRAPcc or TRAPcc.S #<data>

where the operand size (.S) designates word (.W) or long word (.L).
If either a word or a long word operand is specified, a one- or two-word immediate

operand is placed following the instruction word. The immediate operand(s) consists of
argument parameters that are passed to the trap handler to hrther define requests or services
that it should perform. If cc is false, the 68020 does not interpret the immediate operand(s)
but instead, adjusts the program counter to the beginning of the following instruction.
The exception handler can access this immediate data as an offset to the stacked PC. The
stacked PC is the next instruction to be executed.

Instruction
TRAPcc

Operand Size Operation Notation
None If cc, then TRAP TRAPcc
16 Same TRAPcc. W #<data>
32 Same TRAPcc.L #<data>

TABLE 8.8 Conditions for TRAPcc

Code Description Result
cc
cs
EQ
F

GE
GT
HI
LE
LS
LT
MI
NE
PL
T

vc
vs

Carry clear
Carry set
Equal
Never true
Greater or equal
Greater than
High
Less or equal
Low or same
Less than
Minus
Not equal
Plus
Always true
Overflow clear
Overflow set

Assembly Language Programming with the 68020 245

BFCLR

BFSET

BFCHG

BFEXTS

BFEXTU

8.6.5 Bit Field Instructions
The bit field instructions, which allow operations to clear, set, ones-complement, input,
insert, and test one or more bits in a string of bits (bit field), are listed in Table 8.9. Note
that the condition codes are affected according to the value in the field before execution of
the instruction. All bit field instructions affect the N and Z bits as shown for BFTST. That
is, for all instructions, Z = 1 if all bits in a field prior to execution of the instruction are
zero; Z = 0 otherwise. N = 1 if the most significant bit of the field prior to execution of the
instruction is 1; N = 0 otherwise. C and V are always cleared. X is always unaffected. Next,
consider BFFFO. The offset of the first bit set 1 in a bit field is placed in Dn; if no set bit is
found, Dn contains the offset plus the field width. Immediate offset is from 0 to 3 1, whereas
offset in Dn can be specified from -231 to 23’ - 1. All instructions are unsized.

The bit field instructions are useful for graphics or digital image processing,
and for managing disk storage. Because of the large amount of data in graphics or image
processing, data storage requirements can by reduced by packing data fields together where
the bit field instructions provide an efficient access to data. Also, the BFFFO instruction
can be used to find the first unused page in a virtual memory system. Hence, the BFFFO
instruction is useful in managing disk storage.

As an example, consider BFCLR $5002 (4: 12). Assume the memory contents of
Figure 8.12 prior to execution of BFCLR $5002{4:12}. Bit 7 of the base address $5002
has the offset value 0. Therefore, bit 3 of $5002 has the offset value 4. Bit 0 of location

TABLE 8.9 68020 Bit Field Instructions

1-32 0’s + Field BFCLR (EA)
{ offset:width}

1-32 1’s + Field BFSET (EA)
{ offset:width}

1-32 Field -+Field BFCHG (EA)
{ offset:width}

1-32 Field -+ Dn; BFEXTS (EA)

1-32 Field + Dn; BFEXTU (EA)

-

sign-extended {offset:width}, Dn

Notation
BFTST (EA)
{offset:width} I Instruction I Operand Size I Operation

Field MSB -+ N,
Z = 1 if all bits in field are
zero; Z = 0 otherwise

BFINS

BFFFO

Zero-extended {offset:width}, Dn
1-32 Dn -+ field BFINS Dn, (EA)

1-32 Scan for first bit-set in field BFFFO (EA)
{offset:width}

{offset:width). Dn

7 6 5 4 3 2 1 0 f Bit number
$5001
$5002

$5003
$5004

(Base address

FIGURE 8.12 Memory contents prior to execution of BFCLR $5002{4:12}.

246 Microprocessor Theory and Applications with 68000/68020 and Pentium

7 6 5 4 3 2 1 0
$5001
$5002

$5003
$5004

Width 12

FIGURE 8.13

$500 1 has the offset value - 1, bit 1 of $500 1 has the offset value -2, and so on. The example
BFCLR instruction just given clears 12 bits starting with bit 3 of $5002. Therefore, bits 0-3
of location $5002 and bits 0-7 of location $5003 are cleared to 0. The memory contents
after execution of BFCLR $5002{4:12} are shown in Figure 8.13.

The use of bit field instructions may result in memory savings. For example,
assume that an input device such as a 12-bit A/D converter is interfaced via a 16-bit port

of an 68020-based microcomputer. Now, suppose that 1 million pieces of data are
to be collected from this port. Each 12 bits can be transferred to a 16-bit memory location,
or bit field instructions can be used.

Memory contents after execution of BFCLR $5002{4: 12).

Using a 16-bit location for each 12 bits:
memory requirements = 2 x 1 million

= 2 million bytes
Using bit fields:

12 bits = 1.5 bytes

memory requirements = 1.5 x 1 million
= 1.5 million bytes

savings = 2 million bytes - 1.5 million bytes
= 500,000 bytes

EXAMPLE 8.9 Determine the effect of each of the following bit field instructions:

(a) BFCHG $5004{D5:D6}
(b) BFEXIU $5004{2:4},D5
(c) BFINS D4,(AO){D5:D6}
(d) BFFFO $5004{D6:4},D5

Assume the data shown in Figure 8.14 prior to execution of each of the given

Memory

A0 10000 5004 I
D5

D6 I 0000 000041

CCR 1-

$5004

D4 17125 F2141

FIGURE 8.14 Data prior to execution of each instruction in Example 8.9.

Assembly Language Programming with the 68020 247

instructions. Register contents are given in hex, CCR and memory contents in binary, and
offset to the left of memory in decimal.

Solution

(a) BFCHG $5004 {D5:D6}
Offset = - 1, width = 4

X N Z V C
CCR

(b) BFEXTU $5004 {2:4},D5
Offset = 2, width = 4

X N Z V C
CCR 1~
D5 (0 0 0 0 0 0 0 2 I

(c) BFINS D4,(AO) {D5:D6}
Offset = - 1, width = 4

X N Z V C Po/ CCR 1-
$5004 1 0 0

(d) BFFFO $5004 {D6:4},D5
Offset = 4, width = 4

X N Z V C
CCR

D5 [0 0 0 0 0 0 0 4 1

(Hex)

8.6.6 PACK and UNPK Instructions
The details of the PACK and UNPK instructions are listed in Table 8.10. Both instructions
have three operands and are unsized. They do not affect the condition codes. The PACK

TABLE 8.10 68020 PACK and UNPK Instructions

Instruction Operand Size Operation Notation
PACK 16-8 Unpacked source + #data PACK -(An), -(An),

-+ packed destination #<data>
PACK Dn,
Dn,#<data>

UNPK 8 - + 16 Packed source -+ UNPK -(An), -(An),
unpacked source #<data>
unpacked source + #data UNPK Dn,
-+ unpacked destination Dn,#<data>

248

instruction converts two unpacked BCD digits to two packed BCD digits:

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

5 1 2 1 1 8 7 4 3
Unpacked BCD: 0 0 0 0 1 BCDOlO 0 0 0 I BCDl

Packed BCD: 7-1
The UNPK instruction reverses the process and converts two packed BCD digits

to two unpacked BCD digits. Immediate data can be added to convert numbers from one
code to another. That is, these instructions can be used to translate codes such as ASCII or
EBCDIC to a BCD, and vice versa.

The PACK and UNPK instructions are useful when I/O devices such as an ASCII
keyboard and an ASCII printer are interfaced to an MC68020-based microcomputer.
Data can be entered into the microcomputer via the keyboard in ASCII codes. The PACK
instruction can be used with appropriate adjustments to convert these ASCII codes into
packed BCD. Arithmetic operations can be performed inside the microcomputer, and the
result will be in packed BCD. The UNPK instruction can be used similarly with appropriate
adjustments to convert packed BCD to ASCII codes for outputting to the ASCII printer.

EXAMPLE 8.10
and UNPK instructions:

Determine the effect of execution of each of the following PACK

(a) PACK DO,D5,#$0000

(c) UNPK D4,D6,#$3030
(b) PACK-(Al),-(A4),#$0000

(d) UNPK-(A3>,-(A2),#$3030

Assume the data shown in Figure 8.15 prior to execution of each of the instructions
above.

H

$507 324B5
$507124B6
$50712487
$50712488

FIGURE 8.15

A4 f-7
Data prior to execution of each of the instructions of Example 8.7

Assembly Language Programming with the 68020

Solution

(a) PACK DO,D5,#$0000

249

[DO]= 32 37
low
word

+ 00 00

32 37
J l l L

[D5]= 27

Note that ASCII code for 2 is $32 and for 7 is $37. Hence, this pack instruction converts
ASCII code to packed BCD.

(b) PACK -(Al),-(A4),$0000

[$5071 24B1]= 32 O K

3737
ku

:. [3005 OOAO] = 27 packed BCD

Hence, this pack instruction with the specified data converts two ASCII digits to their
equivalent packed BCD form.
(c) UNPK D4,D6,#$3030

[D4] = XXXXXX 35
03 05

33 35
+=

[D6] = XXXX 33 35
[D4] = W X X 35

Therefore, this UNPK instruction with the assumed data converts from packed BCD in D4
to ASCII code in D6; the contents of D4 are not changed.

(d) UNPK -(A3),-(A2),#$3030

[$5071 24B8] = 27

30 30
32 31

:. [$300500A2] = 37
[$300500A1] = 32

This UNPK instruction with the assumed data converts two packed BCD digits to their
equivalent ASCII digits.

EXAMPLE 8.11 Write a 68020 assembly language program at address $2000 to
add two words, each containing two ASCII digits. The first word is stored in D0.W and the
second word is stored in D1.W. Store the packed BCD result in D4.W.

250

Solution

Microprocessor Theory and Applications with 68000/68020 and Pentium

ORG
M0VE.W
M0VE.W
PACK
PACK
ADD1.B
ABCD.B

FINISH JMP

$2000
#$3536,DO ;Move two ASCII digits to low word of DO
#$3235,Dl ;Move two ASCII digits to low word of D1
DO,D3,#$0000 ;Convert D0.W into packed BCD byte in D3.B
Dl,D4,#$0000 ;Convert D1.W into packed BCD byte in D4.B
#O,DO ;Clear X-bit since ABCD instruction includes x-bit
D3,D4 ;Packed BCD addition. D4.B contains result
FINISH

Comparing this problem with Example 6.20, it can be concluded that since the 68000
does not have a PACK instruction to convert from ASCII to packed BCD, many more
instructions are needed for the conversion.

#$3536,DO loads two ASCII digits $35
(ASCII for 5) and $36 (ASCII for 6) into the low word of DO. The instruction M0VE.W
#$3235,D1 loads two other ASCII digits, $32 (ASCII for 2) and $35 (ASCII for 5) , into the
low word of D1. PACK DO,D3,#$0000 converts ASCII $3536 in D0.W into a packed
BCD byte $56 in D3.B. Similarly, PACK Dl,D4,#$0000 converts ASCII $3235 in D1.W
into a packed BCD byte $25 in D4.B. Since ABCD.B D3,D4 adds the packed BCD bytes
in D3.B and D4.B along with the X-bit, the X-bit is cleared to 0 before using the ABCD
instruction. ABCD.B D3,D4 performs the BCD addition as follows:

In the program above, M0VE.W

[D3.B] = $56 = 0101 0110
[D4.B] = $25 = 0010 0101

0111 1011

0 1 10 --Add 6 for BCD correction
....................

1000 0001 = $81 = [D4.B]
The result above is verified using the IDE68K debugger.

8.6.7 Multiplication and Division Instructions
Table 8.11 shows the signed and unsigned multiplication
instructions. In the table, (EA) can use all modes except An. The condition codes N, Z, and
V are affected; C is always cleared to 0, and X is unaffected for both MULS and MULU.
For signed multiplication, overflow (V = 1) can occur only for 32 x 32 multiplication,
producing a 32-bit result if the high-order 32 bits of the 64-bit product are not the sign
extension of the low-order 32 bits. In the case of unsigned multiplication, overflow (V = 1)
can occur for 32 x 32 multiplication, producing a 32-bit result if the high-order 32 bits of
the 64-bit product are not zero.

Both MULS and MULU have a word form and a long word form. For the word
form (16 x 16), the multiplier and multiplicand are both 16 bits and the result is 32 bits.
The result is saved in the destination data register. For the long word form (32 x 32), the
multiplier and multiplicand are both 32 bits and the result is either 32 or 64 bits. When the
result is 32 bits for a 32-bit x 32-bit operation, the low-order 32 bits of the 64-bit product
are provided.

68020 shows the 68020

Assembly Language Programming with the 68020

TABLE 8.11 68020 Signed and Unsigned Multiplication Instructions

25 1

Instruction Operand Size Operation
MULS.W (EA), Dn
or
MULU
MULS.L (EA), Dn (EA) * Dn -+ Dn
or Dn holds 32 bits of the result after
MULU multiplication. Upper 32 bits of the

result are discarded.
MULS .L (EA),Dh:Dn (EA) * Dn + Dh:Dn
or (EA) holds 32-bit multiplier before
MULU multiplication

Dh holds high 32 bits ofproduct after
multiplication.
Dn holds 32-bit multiplicand before
multiplication and low 32 bits of
product after multiplication.

16 x 16 + 32 (EA),6 * (Dn),, + (Dn),,

32 x 32 + 32

32 x 32 + 64

Table 8.12 shows the 68020 signed and unsigned division instructions , in which
the source is the divisor, the destination is the dividend.

In the table, (EA) can use all modes except An. The condition codes for either
signed or unsigned division are affected as follows: N = 1 if the quotient is negative; N = 0
otherwise. N is undefined for overflow or divide by zero. Z = 1 if the quotient is zero; Z =

0 otherwise. Z is undefined for overflow or divide by zero. V = 1 for division overflow; V =

0 otherwise. X is unaffected. Division by zero causes a trap. If overflow is detected before
completion of the instruction, V is set to 1, but the operands are unaffected.

Both signed and unsigned division instructions have a word form and three long
word forms. For the word form, the destination operand is 32 bits and the source operand
is 16 bits. The 32-bit result in Dn contains the 16-bit quotient in the low word and the
16-bit remainder in the high word. The sign of the remainder is the same as the sign of the
dividend.

For the instruction
D1VS.L (EA), Dq
or
DIVU

both destination and source operands are 32 bits. The result in Dq contains the 32-bit
quotient and the remainder is discarded.

For the instruction
D1VS.L (EA), Dr:Dq
or
DIVU

the destination is 64 bits contained in any two data registers and the source is 32 bits.
The 32-bit register Dr (DO-D7) contains the 32-bit remainder and the 32-bit register Dq
(DO-D7) contains the 32-bit quotient.

252

TABLE 8.12

Microprocessor Theory and Applications with 68000/68020 and Pentium

68020 Signed and Unsigned Division Instructions

Instruction Operation
D1VS.W (EA), Dn
or
D I W
D1VS.L (EA), Dq
or No remainder is provided.
DIVU
D1VS.L (EA),Dr:Dq 64/32 -+ 32r:32q
or
D I W
D1VSL.L (EA),Dr:Dq Dr/(EA) -+ 32r:32q
or Dr contains 32-bit dividend
D I W L

32/16 -+ 16r:16q

32/32 -+ 32q

For the instruction
D1VSL.L (EA), Dr:Dq
or
DIVUL

the 32-bit register Dr (DCkD7) contains the 32-bit dividend and the source is also 32 bits.
After division, Dr contains the 32-bit remainder and Dq contains the 32-bit quotient.

EXAMPLE 8.12
multiplication and division instructions.
(a)
(b)
(c)
(d)
(e)
(f)

Determine the effect of execution of each of the following

MULU.L #2,DS if [DS] = $FFFFFFFF
MULS.L #2,D5 if [D5] = $FFFFFFFF
MULU.L #2,DS:D2 if [DS] = $2ABC1800 and [D2] = $FFFFFFFF
D1VS.L #2,DS if [D5] = $FFFFFFFC
D1VS.L #2,D2:DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC
D1VSL.L #2,D6:D1 if [Dl] = $00041234 and [D6] = $FFFFFFFD

Solution

(a) MULU.L #2,D5 if [DS] = $FFFFFFFF

$FFFFFFFF
* $00000002

00000001 FFFFFFFE

V,= I Low 32-bit
since result in D5

this is
nonzero

--

Therefore, [D5] = $FFFFFFFE, N = 0 since the most significant bit of the result is 0, Z = 0
because the result is nonzero, V = 1 because the high 32 bits of the 64-bit product are not
zero, C = 0 (always), and X is not affected.

Assembly Language Programming with the 68020

(b) MULS.L #2,D5 if [D5] = $FFFFFFFF

253

$FFFFFFFF (-1)

$FFFFFFFF $= (-2)

* $00000002 (t2)

Result in D5

Therefore, [D5] = $FFFFFFFE, X is unaffected, C = 0, N = 1, V = 0, and Z = 0.

(c) MULU.L #2,D5:D2 if [D5] = $2ABC1800 and D2 = $FFFFFFFF

$FFFFFFFF
* $00000002

00000001 FFFFFFFE
DS D2
--

Here N = 0, Z = 0, V = 0, C = 0, and X is not affected.

(d) D1VS.L #2,D5 if [D5] = $FFFFFFFC

'FFFF FFFE
- 1 -

+2 4

[D5] = $FFFFFFFE, X is unaffected, N = 1, Z = 0, V = 0, and C = 0 (always).

(e) D1VS.L #2,D2:DO if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC

q = FFFF FFFE, r = 0000 0000
1-

2 4

[D2] = $00000000 = remainder, [DO] = $FFFFFFFE = quotient, X is unaffected, Z = 0, N
= 1, V = 0, and C = 0 (always).

(f) D1VSL.L #2,D6:D1 if [Dl] = $00041234 and [D6] = $FFFFFFFD

FFFFFFFF, r ='FFFFFFFF
0000 0002

-3

[D6] = $FFFFFFFF = remainder, [D 11 = $FFFFFFFF = quotient, X is unaffected, N = 1, Z
= 0, V = 0, and C = 0 (always).

EXAMPLE 8.13 Write a program in 68020 assembly language to multiply a 32-bit
signed number in D2 by a 32-bit signed number in D3 by storing the multiplication result
in the following manner:

254

TABLE 8.13 68000 Enhanced instructions

Microprocessor Theory and Applications with 68000/68020 a n d Pentium

Instruction Operand Size Operation
BRA label 8, 16, 32 PC + d + PC
Bcc label 8, 16, 32 If cc is true, then PC + d + PC;

else next instruction
BSR label 8, 16, 32 PC -+ -(SP); PC + d + PC
CMP1.S #data, (EA)
TST.S (EA)
LINKS An, -d 16,32
EXTB.L Dn 32 Sign-extend byte to long word

8, 16, 32
8, 16, 32

Destination - #data -+ CCR is affected
Destination - 0 + CCR is affected
An + -(SP); SP + An; SP + d -+ SP

(a) Store the 32-bit result in D2. Assume that the numbers are already in registers prior to
multiplication.
(b) Store the high 32 bits of the result in D3 and the low 32 bits of the result in D2. Assume
that the numbers are already in registers prior to multiplication.

Solution

(a)
MULS.L D3,D2

FINISH JMP FINISH
(b)

MULS.L D3,D3:D2
FINISH JMP FINISH

8.6.8 68000 Enhanced Instructions
Table 8.13 lists the 68000 enhanced instructions. In the table, S can be B, W, or L. In
addition to 8- and 16-bit signed displacements for BRA, Bcc, and BSR like the 68000, the
68020 allows signed 32-bit displacements. LINK is unsized in the 68000. (EA) in CMPI and
TST supports all 68000 modes plus PC relative. An example is CMP1.W #$2OOO,(START,
PC). In addition to EXT.W Dn and EXT.L Dn, like the 68000, the 68020 provides an
EXTB.L instruction.

8.6.9 68020 Subroutines
Like the 68000, the instructions, BSR and JSR are subroutine call instructions in the 68020.
BSR uses the relative addressing mode, whereas JSR uses the absolute addressing mode. As
mentioned in Chapter 6, the 68000 uses 16- and 24-bit addresses with the JSR instruction.
In addition to these addresses, the 68020 JSR instruction can use 32-bit address. Also, as
mentioned in Chapter 6, the 68000 BSR uses 8- and 16-bit displacements. The 68020 can
use 32-bit displacement in addition to 8-, and 16-bit displacements.

In order to illustrate the concept of subroutine CALL and RETURN instructions,
consider the following program segment assuming that the main program uses all registers
and that the subroutine stores the result in memory:

Assembly Language Programming with the 68020 255

Main Program Subroutine

- SUB M0VEM.L DO-D7/AO-A6, - (SP)

- -

JSR SUB -

START - -

Main body of
subroutine

- M0VEM.L (SP)+, DO-D7/A&A6

Here, the JSR SUB instruction calls the subroutine SUB. In response to JSR, the 68020
pushes the current PC contents called START onto the stack and loads the starting address
SUB of the subroutine into PC. The first MOVEM in the SUB pushes all registers onto the
stack, and after the subroutine is executed, the second MOVEM instruction pops all the
registers back. Finally, RTS pops the address START from the stack into PC, and program
control is returned to the main program. Note that BSR SUB could have been used instead
of JSR SUB in the main program. In that case, the 68020 assembler would have considered
the SUB with BSR as a displacement rather than as an address with the JSR instruction.

RTS

EXAMPLE 8.14 Write a subroutine in 68020 assembly language to implement the C
language assignment statement: p = p + q; where the addresses p and q hold two 16-digit
(64-bit) packed BCD numbers (N1 and N2). The main program will initialize addresses p and
q to $3000 and $4000, respectively. Address $3007 will hold the lowest byte of N1 with the
highest byte at address $3000, and address $4007 will contain the lowest byte of N2 with the
highest byte at address $4000. Also, write the main program at address $2000, which will
perform all initializations including address p (pointer A0 to $3000), address q (pointer A1 to
$4000), loop count (D 1 to 7), and then call the subroutine at $8000 and stop. The subroutine
will accomplish the task with the initialized values of AO, Al , and D1 in the main program.
Use ABCD.B for BCD addition with the predecrement mode. Assume the supervisor mode.
Note that the 68020 supervisor stack pointer is initialized upon hardware reset.

Solution

ORG
M0VEA.W
M0VEA.W
M0VE.W
JSR

STAY JMP
ORG

BCDADD LEA.L
LEA.L
ADD1.B

ALOOP ABCD.B
DBF.W
RTS

$2000
#$3000,AO
#$4000,A 1
#7,D 1
BCDADD
STAY
$8000
l(A0,Dl .W),AO
1 (A 1 ,D 1 .W),A 1
#O,DO

D 1 ,ALOOP
-(A1),-W)

; LOAD A0.L WITH $00003000
; LOAD A 1 .L WITH $00004000
; INITIALIZE COUNTER WITH 7
; CALL SUBROUTINE

;UPDATE A0
;AND A 1

;ADD
;X-BIT =O

256

Questions and Problems

Microprocessor Theory and Applications with 68000/68020 and Pentium

8.1 Name three new 68020 instructions that are not provided with the 68000.

8.2 Find the contents of the affected registers and memory locations after execution
of the 68020 instruction MOVE ($lOOO,A5,D3.W*4),Dl. Assume the following
data prior to execution of this MOVE: [A51 = $0000F210, [$00014218] = $4567,
[D3] = $00001002, [$0001421A] = $2345, and [Dl] = $F125012A.

8.3 Assume the 68020 memory configuration shown in Figure P8.3.

0

FIGURE P8.3

Find the contents of the affected memory locations after execution of M0VE.W
#$1234,([A 11).

8.4 Find the 68020 compare instruction with the appropriate addressing mode to
replace the following 68000 instruction sequence:

ASL.L #1 ,D5
CMP.L 0 (AO,D5.L),DO

8.5 Find the contents of DI, D2, A4, and CCR and the memory locations after
execution of each of the following 68020 instructions:

(a) BFSET $5000 {D1:10}
(b) BFWS D2, (A4) {Dl:D4}

Assume the data given in Figure P8.5
instructions.

prior to execution of each of these

Memory
7 I)

+ 8 l O l l 1011 I 1
+I61110111011

#J
1 0 0

[Dl] = $00000004, [D4] = $00000004
[D2] = $12345678, [A41 = $00005000

FIGURE P8.5

Assembly Language Programming with the 68020 257

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

Identify the following 68020 instructions as valid or invalid. Justify your
answers.
(a) DIVS AO,D 1
(b) CHK.B DO,(AO)
(c) M0VE.L DO,(AO)
Assume that [AO] = $102567 1 A prior to execution of the MOVE.

Determine the values of the Z and C flags after execution of each of the following
68020 instructions:
(a) CHK2.W (A5),D3
(b) CMP2.L $2001,A5
Assume the data shown in Figure P8.7 prior to execution of each of these
instructions:

Memory

$2000

2004

F l
[D3] = $02001740, [A51 = $0002004

FIGURE P8.7

Write a 68020 assembly language program to move two columns of 100 32-bit
numbers from A (i) to B (i). In other words, move A(0) to B(O), A(1) to B(l), and
so on from LOW to HIGH memory addresses. Assume A0 and A1 point to A (i) to
B (i) respectively.

Write a 68020 assembly program to add two 64-bit numbers in D 1 DO with another
64-bit number in D2D3. Store the result in DlDO.

Write a 68020 assembly language program at address $5000 to convert a word
consisting of two ASCII digits stored in the upper 16 bits of DO into a packed
BCD byte. Store the packed BCD result in the lowest byte of D1.

Write a program in 68020 assembly language to convert 10 packed BCD bytes
(20 BCD digits), stored in memory starting at address $00002000 and above,
to their ASCII equivalents and store the result in memory locations starting at
$FFFF8000.

Write a 68020 assembly program to multiply a 32-bit signed number in D5 by
another 16-bit signed number in D1. Store the 64-bit result in D5D1.

Write a program in 68020 assembly language to multiply a signed byte by a 32-bit
signed number to obtain a 64-bit result. Assume that the numbers are pointed to

258 Microprocessor Theory and Applications with 68000/68020 and Pentium

by the addresses that are passed on to the user stack by a subroutine pointed to by
(A7 + 6) and (A7 + 8). Store the 64-bit result in D2:Dl.

8.14 Write a program in 68020 assembly language to find the first one in a bit field
which is greater than or equal to 16 bits and less than or equal to 5 12 bits. Assume
that the number of bits to be checked is divisible by 16. If no 1’s are found, store
zero in D3; otherwise, store the offset of the first set bit in D3, and then stop.
Assume that A2 contains the starting address of the array, and D2 contains the
number of bits in the array.

8.15 Write a 68020 assembly language program that will convert a BCD number in
D0.B to a seven-segment code in D2.B using a lookup table containing the seven-
segment codes of the BCD numbers. Use common-cathode display. Assume that
the table is stored in memory starting at an address $00004000. --

3U

8.16 Write a subroutine in 68020 assembly language to compute Y =c
i= 1

Assume the X,’s are signed 32-bit numbers and the array starts at $500000F 1.
Store 32-bit quotient in D1, and 32-bit remainder in D2. Neglect overflow.

8.17 Write a subroutine in 68020 assembly language at address $00002000 that can be
called by a main program at address $00003000. The subroutine will compute
the 16-bit sum

where ak are diagonal elements of a 3x3 matrix, and k = 0 to 2. Assume that
each element in the matrix is signed 16-bit. Store the result in D0.W. The main
program will initialize A7 to $00000800, obtain the three diagonal elements
from memory stored starting at address $0000 1000 in row-major order, call the
subroutine, and then stop.

CakZ

8.18 Write a subroutine in 68020 assembly language at address $00003000 that can be
called by a main program at address $00006000. Assume supervisor mode. The
subroutine will compute the 32-bit sum

Y =cX; where i= 1 to 256.

Assume the X,’s are signed 32-bit numbers and the array starts at $5000002 1. Also,
write the main program that will initialize A7 to $0030 4000, A1 to $50000021,
initialize loop count, clear SUM to 0, call the subroutine, perform other operations
as necessary, divide Y by 256 (discard remainder), store 32-bit result in D1, and
then stop. Do not use any divide instructions.

8.19 It is desired to convert a four-digit unpacked BCD number to binary using the
following equation: binary value, V of the four-digit BCD number,

where N, is the most significant digit and No is the least significant digit.
Write a subroutine in 68020 assembly language at address $30708000 that will
compute 10* N where N is an unsigned 8-bit number in D0.B. The most significant
digit is stored in a memory location starting at address $00004000, and the least

V = N,*lOOO+N,*lOO+N, * 10+No

Assembly Language Programming & Designing with the 68020 259

significant is stored at address $00004003. Write the main program at address
$10000000 that will call the subroutine, and compute Vvia multiplications by 10
and additions as follows:

V = (((N, *lo) * 10) * 10) +((N, *lo) * 10) +(N, * 10) + N o .
The main program will first initialize A0 to $00004000, A7 to $00002000, SUM
in D1 .W to 0,obtain each digit from memory, call the subroutine as many times as
needed, store the 16-bit result in Dl.W, and then stop. Assume supervisor mode.

This Page Intentionally Left Blank

9
68020 HARDWARE AND

INTERFACING

In this chapter we describe the fundamental concepts associated with hardware aspects
of the Motorola 68020 microprocessor. Significant modifications have been made to the
68020 bus structure beyond those of the 68000. One of these enhancements is dynamic
bus sizing. Hence, this feature along with 68020 system design concepts are included.
Topics covered in this chapter include 68020 pins and signals, dynamic bus sizing, and
system design concepts. Finally, design concepts associated with a 68020-based voltmeter
and a 68020-based microcomputer interface to a hexadecimal keyboard and a seven-
segment display are covered. These topics are described in a simplified manner. Note that a
background in the 68000 software and hardware described in Chapters 6 and 7 is required
to understand the topics contained in this chapter.

9.1 Introduction

In this section we describe hardware aspects of the 68020. Topics include 68020 pins
and signals, aligned and misaligned transfers, dynamic bus sizing, and timing diagrams.
Numerous changes have been made to the 68020 bus structure. Note that the 68020 does
not support 6800-type I/O devices. As mentioned in Chapter 7, the 68000 supports both
6800-type I/O devices such as 6821 and 16-bit devices such as 68230. Also, the 68020 can
complete read or write bus cycles in three clock cycles without wait states. This is due to
enhancements made in the 68020 bus control logic. The 68000, on the other hand, requires
four cycles to complete read or write cycles without wait states.

9.1.1 68020 Pins and Signals
The 68020 is arranged in a 13 x 13 matrix array (1 14 pins defined) and fabricated in a pin
grid array (PGA) or other packages, such as an RC suffix package. Both the 32-bit address
(AO-A3,) and data (Do-D3,) pins of the 68020 are nonmultiplexed. The 68020 transfers data
with an 8-bit device via D,,-D,,, with a 16,bit device via D,,-D,, , and with a 32-bit device
via D,,-Do. Figure 9.1 shows the 68020 functional signal group. For reliable operation,
unused inputs should be connected to an appropriate signal level. Unused active LOW
inputs should be connected to Vcc. Unused active HIGH inputs should be connected to
GROUND.

Table 9.1 lists these signals along with a description of each. Ten Vcc (+5 V)
and 13 ground pins are used to distribute power in order to reduce noise. As stated above,
unused inputs should not be kept floating. Unused active LOW inputs should be connected
to Vcc. Unused active HIGH inputs should be connected to GROUND. Like the 68000, the
three function code signals FC2, FCl, and FCO identify the processor state (supervisor or
user) and the address space of the bus cycle currently being

26 1

262 Microprocessor Theory and Applications with 68000/68020 and Pentium

* 2 micron HCMOS process
* 200,000 transistors
* 114 Pins.
*Power Dissipation = 1.75W (max)

FIGURE 9.1

TABLE 9.1 Hardware Signal Index

68020 functional signal groups.

Signal Name
Address bus

Data bus

Function codes

Size

Read-modify-write
cycle
External cycle start
Operand cycle start

Address strobe
Data strobe

Readwrite
Data buffer enable
Data transfer and
size acknowledge

Mnemonic Function

I

I

FCO-FC2

SIZO/SIZ1

-
RMC

-
ECS
ocs -

-
AS
DS
-

-
R/W
DBEN
DSACKl/
DSACKl

32-bit address bus used to address any of
4,294,967,296 bytes.
32-bit data bus used to transfer 8, 16,24, or 32 bits
of data per bus cycle.
3-bit function code used to identify the address
space of each bus cycle.
Indicates the number of bytes remaining to be
transferred for this cycle; these signals, together
with A0 and Al , define the active sections of the
data bus.
Provides an indicator that the current bus cycle is
part of an indivisible read-modify-write operation.
Provides an indication that a bus cycle is beginning.
Identical operation to that of ECS except that OCS
is asserted only during the first bus cycle of an
operand transfer.
Indicates that a valid address is on the bus.
Indicates that valid data is to be placed on the data
bus by an external device or has been placed on the
data bus by the MC68020.
Defines the bus transfer as a 68020 read or write.
Provides an enable signal for external data buffers.
Bus response signals that indicate the requested
data. transfer operation are completed; in addition,
these two lines indicate the use of the external bus
port on a cycle-by-cycle basis.

- -

68020 Hardware and Interfacing

TABLE 9.1 Cont.

263

Cache disable
Interrupt priority
level
Autovector

Interrupt pending
Bus request

Bus grant

Bus grant
acknowledge
Reset
Halt

Bus error

Clock
Power supply

-
CDIS Dynamically disables the on-chip cache.
IPLO-IPL2 Provides an encoded interrupt level to the processor.
-~

AVEC

IPEND
BR

BG

-

-

BGACK

RESET
HALT

BERR

Requests an autovector during an interrupt
acknowledge cycle.
Indicates that an interrupt is pending.
Indicates that an external device requires bus
mastership.
Indicates that an external device may assume bus
mastership.
Indicates that an external device has assumed bus
control.
System reset.
Indicates that the processor should suspend bus
activity.
Indicates that an illegal bus operation is being
attempted.

CLK
vcc

Clock input to the processor.
+5 volt f 5% power supply.

Ground GND Ground connection.

TABLE 9.2 68020 Function Code Signals

FC2 FC1 FCO Cycle Type
0 0 0 Undefined, reserved
0 0 1 User data space
0 1 0 User program space
0 1 1 Undefined, reserved
1 0 0 Undefined, reserved
1 0 1 Supervisor data space
1 1 0 Supervisor program space
1 1 1 CPU space

executed except that the 68020 defines the CPU space cycle as shown in Table 9.2. Note
that in the 68000, FC2, FC1, FCO = 11 1 indicates the interrupt acknowledge cycle. In the
68020, it indicates the CPU space cycle. In this cycle, by decoding address lines A,,-A,,,
the 68020 can perform various types of functions, such as coprocessor communication,
breakpoint acknowledge, interrupt acknowledge, and module operations, as depicted in
Table 9.3.

Note that A,,, A,*, A,,, A,, = O O l l z to 1110, is reserved by Motorola. In the
coprocessor communication CPU space cycle, the 68020 determines the coprocessor type
by decoding A,,-AI3 as shown in Table 9.4.

264

TABLE 9.3

Microprocessor Theory and Applications with 68000/68020 and Pentium

Decoding of A,,-A,, Pins During a CPU Space Cycle

A,, A18 A,, A16 Function performed
0 0 0 0 Breakpoint acknowledge
1 0 0 1 Module operations
0 0 1 0 Coprocessor communication
1 1 1 1 Interrupt acknowledge

TABLE 9.4 CoDrocessor Communication During a CPU Space Cycle

A,, A14 A13 Coprocessor Type
0 0 0 6885 1 paged memory management unit
0 0 1 6888 1 floating-point coprocessor

-
Let us explain some of the other 68020 pins. The ECS (external cycle start) pin is a 68020
output pin. The 68020 asserts this pin during the first one-half clock - of every bus cycle to
provide the earliest indication of the start of a bus cycle. The use of ECS must be validated
later with AS, because the 68020 may start an instruction fetch cycle and then abort it if the
instruction is found in the cache. In the case of a cache hit, the 68020 does not assert AS,
but provides A,,-A 0, SIZl, SIZO, and FC2-FCO outputs.

The 68020 AVEC input is activated by an external device to service ~ an autovector
interrupt. The AVEC on the 68020 provides the same function as the VPA -- on the 68000 -
-- during autovector interrupt. The functions of other signals, such as AS, WW, IPL2 - IPLO,
BR, BG, and BGACK, are similar to those of the 68000.

The 68020 system control pins are fbnctionally similar to those of the 68000.
However, there are some minor differences. For example, for hardware reset, the RESET
and HALT pins need not be asserted simultaneously. Therefore, unlike the 68000, the
RESET and HALT pins are not required to be tied together in the 68020 system .

The RESET and HALT pins are bidirectional and open drain (external pull-up
resistances are required), and their functions are independent. When asserted by an external
circuit for a minimum of 520 clock periods, the RESET pin resets the entire system,
including the 68020. Upon hardware reset, the 68020 completes any active bus cycle in an
orderly manner and then performs the following:

Reads the 32-bit content of address $00000000 and loads it into the ISP (the contents
of $00000000 are loaded to the most significant byte of the ISP, and so on).
Reads the 32-bit contents of address $00000004 into the PC (contents of $00000004
to the most significant byte of the PC, and so on).
Sets the I2 I1 I0 bits of the SR to 1 1 1, sets the S bit in the SR to 1, and clears the T1,
TO, and M bits in the SR.

Clears the VBR to $00000000.
Clears the cache enable bit in the CACR.

No other registers are affected by hardware reset.
When the RESET instruction is executed, the 68020 asserts the RESET pin LOW

for 5 12 clock cycles, and the processor resets all the external devices connected to the

68020 Hardware and Interfacing 265

TABLE 9.5 Decoding of SIZO and SIZl Pins

SIZl SIZO Number of Bytes Remaining to be Transferred
0 1 Byte
I 0 Word
1 1 3 bytes
0 0 Long words

TABLE 9.6 Device Size Definition by DSACKO and DSACKl Pins

DSACKl DSACKO Device Size
0 0 32-bit device
0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

_ _ RESET pin. Software reset does not affect any internal register.
In asynchronous operation, the 68020 typically uses bus signals such as AS, DS,

DSACKl, and DSACKO to control data transfer. Using asynchronous operation, AS starts
the bus cycle and DS is used as a condition of valid data on a write cycle. Decoding SIZ1,
SIZO, A,, and A,, provides enable signals, which indicate the portion of the data bus that is
used in data transfer. The memory or I/O chip then responds by placing the requested data
on the correct portion of the data bus for a read cycle or latching the data on a write cycle
and asserting DSACKl and DSACKO, corresponding to the memory or I/O port size (8-,
16-, or 32-bit), to terminate the bus cycle.

SIZO and SIZl pins indicate the number of bytes remaining to be transferred for a
cycle; these signals, together with A, and A,, define the active sections of the data bus. The
decoding of SIZO and SIZl and the DSACKO and DSACKl pins are shown in Tables 9.5
and 9.6, respectively.

EXAMPLE 9.1 Determine the contents of PC, SR, MSP, and ISP after a 68020
hardware reset. Assume a 32-bit memory with the following data prior to the reset:
[$00000000] = $50001234, [$00000004] = $72152614, [MSP] = $27140124, [ISP] =

$61711420, [PC] = $35261271, and [SR] = $0301.

Solution

After hardware reset, the following are the memory and register contents:
[$00000000] = $50001234, [$00000004] = $72152614, [MSP] = $27140124, [ISP]
= $50001234, [PC] = $72152614, and [SR] = $2701. Note that [SR] = $2701 =

00100111000000012.ComparedwithFigure8.2,TlT0=00, S = l ,M=O,andI2,11,10=
1 1 1 ; other bits are not affected.

9.1.2 68020 Dynamic Bus Sizing
The 68020 offers a feature called dynamic bus sizing, which enables designers to use 8-,
16-, and 32-bit memory and I/O devices without sacrificing system performance. The SIZO,
SIZI, DSACKO, and DSACKl pins are used to implement the 68020 dynamic bus sizing.

266 Microprocessor Theory and Applications with 68000/68020 and Pentium

During each bus cycle, the external device indicates its width via DSACKO and DSACKl .
The DSACKO and DSACKl pins are used to indicate completion of the cycle. At the start
of a bus cycle, the 68020 always transfers data to lines D,-D,,, taking into consideration
that the memory or I/O device may be 8, 16, or 32 bits wide. After the first bus cycle, the
68020 knows the device size by checking the DSACKO and DSACKl pins and generates
additional bus cycles if needed to complete the transfer.

SlZl
SlZC

D X l
D S A C K O

MC68020
MPU

\l, A0

131 24123 16115 817 01

Enable
Logic

16
Brr

Complete Cycle, Port Size = 8 Bits
Complete Cycle, Port Size = 16 Ritc Lo

FCI Long Word Port

1

I I
I I

I
FIGURE 9.2 68020 dynamic bus sizing block diagram.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

68020 Hardware and Interfacing 267

Next, consider an example of dynamic bus sizing. The 4 bytes of a 32-bit data can
be defined as follows:

OPO OP 1 OP2 OP3

If this data is held in a data register Dn and is to be written to a memory or I/O location,
the address lines A, and A, define the byte position of data. For a 32-bit device, A,A, = 00
(addresses 0,4, 8, ...), A,Ao = 01 (addresses 1,5,9, ...), A,A, = 10 (addresses 2,6, 10, ...),
and A,Ao = 1 1 (addresses 3, 7, 11, . . .) will store OPO, OP1, OP2, and OP3, respectively.
This data is written via the 68020 D,,-Do pins. However, if the device is 16-bit, data is
always transferred as follows:

Finally, for an 8-bit device, both even- and odd-addressed bytes are transferred via pins
D3,-DZ4. The 68020 always starts transferring data with the most significant byte first.

Figure 9.2 is a functional block diagram for 68020 interfaces to 8-, 16-, and
32-bit memory and I/O devices. Note that 8-bit devices perform data transfer with the
68020 via D,,-D,, pins, 16-bit devices via D,,-D,, , and 32-bit devices via D,,-Do pins.
Aligned long word transfers to 8-, 16-, and 32-bit devices are shown in Figure 9.3. For a
32-bit device, an address starting with A,A, = 00 indicates a long word aligned transfer.
The 68020 instruction, M0VE.L D1,$50001234 is an example of an aligned long word
transfer since A,A, = 00. 68020 byte addressing is summarized in Figure 9.4. Figure 9.4
shows how four bytes of a 32-bit longword are transferred between the 68020 and a 32-bit
device, 16-bit device, or an 8-bit device.

Figure 9.5 shows misaligned long word transfers to 8-, 16-, and 32-bit devices.
The 68020 instruction M0VE.L D1,$50001235 is an example of a misaligned long word
transfer since A,A, = 01.

As an example of dynamic bus sizing, consider M0VE.L D1,$20107420. This
is a long word aligned transfer. In the first bus cycle, the 68020 does not know the size
of the device and hence outputs all combinations of data on pins D31-DO, taking into
consideration that the device may be 8, 16, or 32 bits wide. Assume that the content of D1
is $02A10512 (OPO = $02,0P1 = $Al, OP2 = $05, and OP3 = $12). In the first bus cycle,
the 68020 sends SIZl SIZO = 00, indicating a 32-bit transfer, and then outputs data on its
D3 1-DO pins as follows:

All even-addressed bytes via pins D,,-D,,
All odd-addressed bytes via pins D2,-D,,

If the device is %bit, it will take data $02 from pins D,,-D,, in the first cycle and will then
assert DSACKl and DSACKO as 10, indicating an 8-bit device. The 68020 then transfers
the remaining 24 bits ($A 1 first, $05 next, and $12 last) via pins D3,-DZ4 in three consecutive
cycles, with a total of four cycles being necessary to complete the transfer.
However, if the device is 16-bit, in the first cycle the device will take the 16-bit data $02A1
via pins D3,-DI6 and will then assert DSACKl and DSACKO as 01, indicating a 16-bit

268 Microprocessor Theory and Applications with 68000/68020 and Pentium

Pins
,SE1 SlZO A1 A0 m 1

32-Bit Slave 0 0 0 0 LO

_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - -
0 0 0 0 LO
1 0 1 0 Lo

0 0 0 Hi
I 1 1 0 1 Hi

16-Bit Slave
- _ _ _ _ _ _ - - - - - - - - -
--o- - _ - - - - - -

: l o 1 0 Hi
&Bit Slave

- - _ _ : - _ _ _ L _ _ _ - ' _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - - - - - - - - 0 1 1 1 Hi

Alignment: LONGWORD port - A1 = 0 and
A0 - 0 (mod4) or WORD port - A 0 - 0
(mod 2)

Routing 8 Duplication MUX

LO

Hi
Hi

LO

LO

Lo
Lo

- - - - -
- - - - - - - - - -

* Size pins indicates number of bytes remaining to complete the operand transfer.

FIGURE 9.3 Aligned long word transfer.

Example:
if SlZl = O then: 1st bus cycle, byte 1

SlZO = 0
AO= 1

wil l be accessed
2nd bus cycle, bytes 2.3
wil l be accessed
3rd bus cycle byte 4
wil l be accessed

Byte (8 - W Port

A31 -A0

SlZX = Y

FIGURE 9.4 MC68020 byte addressing.

68020 Hardware and Interfacing 269

Misalignment: LONGWORD
or A0 = 1 (not mod 4) or W O E port -A0 = 1
(not mod 2)

rt - A1 = 1
Register

Routing 8 Duplication MUX

Signal States on Every Bus Cycle

32-Bit Slave
Byte 3

16-Bit Slave

8-Bit Slave

- - - -
Byte 0
Byte 1
Byte 2
Byte 3 I

r - - - - ~ - - - -

These bytes must not be overwritten. Therefore, individual data strobes must be generated by external
hardware either at the phone or at the 68020.

FIGURE 9.5

device. The 68020 then transfers the remaining 16 bits ($05 12) via pins D,,-D,, in the next
cycle, requiring a total of two cycles for the transfer.
Finally, if the device is 32-bit, the device receives all 32-bit data $02A10512 via pins
D,,-Do and asserts DSACKl DSACKO = 00 to indicate completion of the transfer. Aligned
data transfers for various devices are shown in Figure 9.6.
Next, consider a misaligned transfer such as M0VE.W D1,$02010741 with [Dl] =

$20F107A4. The 68020 outputs $0707A4XX on its D3,-Do pins in its first cycle, where the
XX are don’t cares. Data transfers to various devices are summarized in Figure 9.7.

Misaligned long word transfer.

8-bit device:
31 0 -Bit number

~~

Register DI
68020pins D31 D24 SIZl SIZO A , A, DSACKl DSACKO

Second cycle 1 1 1 0 1
Third cycle 05 1 0 1 0

First cycle 0 0 0 0 1 0

Fourth cycle 0 1 1 1 1 0

1 0
1 0

16-bit device:
~~

68020pins D31 D24 4, D16 SIZl SIZO Al A, DSACKl DSACKO
First cycle m] 0 0 0 0 0 1
S e c o n d c y c l e m vl 1 0 1 0 0 1

32-bit device:
~~

68020 pins D3 1 Do SIZl SIZO A1 A, DSACKl DSACKO
First cycle 0 0 0 0 0 0

FIGURE 9.6 Aligned data transfers.

270 Microprocessor Theory and Applications with 68000/68020 and Pentium

8-bit device:
31 23 15 7 0 -Bit number

Register Dl I20 I F1 107 I A41
68020pins D,, Q4 SIZl SIZO AI Ao =O

First cycle 07 1 0 0 1 1 0
Secondcycle 0 1 1 0 1 0

16-bit device:
--
DSACKl DSACKO

0 1
0 1

First cycle
Second cycle

32-bit device:
--

68020pins D3] q4 D,, Q6DI5 D,D, Do SIZl SIZO Al A0 DSACKl DSACKO
First cycle I I 07 I A4 I 1 1 0 0 1 0 0

FIGURE 9.7 Misaligned data transfers.

(a) 32-bit memory: Note the misaligned transfer for 32-bit memory since A,A,= 11
for the starting address $20002053.

68020 pins D31 4 4 D23 46Dl5 SIZl SIZO A1 A0 DSACKl DSACKO
0 0 1 1 0 0
1 1 0 0 0 0

First cycle
Second cycle

(b) 16-bit memory

68020pins Djl q4 D,, Q6

First cycle
Second cycle

SIZl SIZO A1 A0 DSACKl DSACKO
0 0 1 1 0 1
1 1 0 0 0 1

0 1 1 0 0 1

(c) 8-bit memory

68020pins D31 D24 SIZl SIZO A1 A0 DSACKl DSACKO
--

First cycle 0 0 1 1 1 0
Second cycle 1 1 0 0 1 0

Third cvcle 6 1 1 0 0 1 1 0
Fourthc;cle 0 1 1 0 1 0

FIGURE 9.8 Solution for Example 9.2.

EXAMPLE 9.2 Determine the number of bus cycles, the bytes written to memory
(in hex), and signal levels ofA,, A,, DSACKl, DSACKO, SIZl, and SIZO pins that would
occur when the instruction M0VE.L Dl,(AO) with [Dl] = $50126124 and [AO] =

$20002053 is executed by the MC68020. Assume:
(a) 32-bit memory
(b) 16-bit memory
(c) 8-bit memory

68020 Hardware and Interfacing

@ & @

27 1

Solution See Figure 9.8.

9.1.3 68020 Timing Diagrams
Figure 9.9 (a) and (b) show typical 68020 read and write timing diagrams (general

form). The read and write cycle parameter specifications are provided in Table 9.7.
Note that in Figure 9.9, signals such as SIZ1, SIZO, DSACK1, DSACKO, Do- D,,,

A,, and A,, which distinguish data transfers between 8-, 16-, and 32-bit devices, are kept in
general form. A simplified explanation of the read and write timing diagrams of Figures
9.9 (a) and (b) are provided in the following.

Consider the read timing diagram of Figure 9.9(a). In response to executing a

so s1 s2 s3 s4 55

HALT

All
Asynchronous

Inputs

FIGURE 9.9(a)

272 Microprocessor Theory and Applications with 68000/68020 and Pentium

read instruction such as M0VE.L $50207080,D0 (address chosen arbitrarily), the 68020
places the 32-bit address on the A,,- A, pins during SO, outputs LOW on AS and DS
during S 1, and places a HIGH on the WE pin during SO, indicating a read operation. The
68020 then samples DSACKl and DSACKO at the falling edge of S2 (two cycles). The
pins DSACKl and DSACKO are asserted as 00 (32-bit memory) by the external memory
using parameter 31a of Table 9.7. Hence, no wait state(s) are required. Assuming that
the data is placed on the 68020’s D,, - Do pins, the 68020 reads data approximately at the
falling edge of S4 (three cycles). Note that all other relevant 68020 signals required during
the read operation shown in Figure 9.9(a) satisfy the timing parameters according to the

so s1 52 53 s4 s5

FIGURE 9.9(b) Write cycle

68020 Hardware and Interfacing 273

TABLE 9.7 Read and Write Cycle Specifications

specifications of Table 9.7.
Next, consider the write timing diagram of Figure 9.9(b). In response to executing

a write instruction such as M0VE.L D0,$50708000 (address arbitrarily chosen), the 68020
outputs the 32-bit address on the A3,- A,, pins during SO, outputs LOW on AS during
S2, and places a LOW on the W i pin during SO, indicating a write operation. The 68020
then samples DSACKl and DSACKO at the falling edge of S2 (two cycles). The pins
DSACKl and DSACKO are asserted as 00 (32-bit memory) by the external memory using
parameter 31a of Table 9.7. The 68020 places data on its D,, - D,, pins during S2, and
then asserts DS LOW using parameter 26 of Table 9.7. The external memory then writes
the data into the addressed memory location. Note that all other relevant 68020 signals
required during the write operation shown in Figure 9.9 (b) satisfy the timing parameters
according to the specifications of Table 9.7.

274

TABLE 9.7 cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Notes:
1. This n u m b can be reduced 10 5 nanoseconds if stmbes have equal=
2. Ifssyrchronour setup time (M7) requlremenls are salisfied. the DSACKx low to data W p time (Nl) and DSACKx low to

BERR low setup l i m e m c a n be ignored. The data must only satisfy the datain to clodc low setup lime (W7) for the
lollowing clodc cjcle. BERR must only satisfv the late BERR low to clock low setup lime (Y27A) kw the follow in^ clock wle.

3. This parameter specffles the maximum allowable skew between DSACKO 10 DSACKl asserted or DSACKt to DSACKO asserted.
specification #47 must be met by DSACKO lo DSACKl .

4. m n c a d DSACKx. BERR is an ssynchmnous input usiw the asynchmnous input sew time (M7).
5. DBEN may slay asserted WI consewtive write c y h
6. Aetual value depends on the clock input wavefm.
7. This is a n8w spedficalion that indicates the minimum high time for E S end O Z in the evem 01 an internal cache hit followed

immediately by a cache miss LY operand cyde.
8. This is a new spedficalion that guarantees operation with ltm MC68&StI which specifies a minimum lime form negated tos

asserted (specifica(ion #I 3A). Without thh SPedfiCaion. incorrect inlerprelation of spedRcat1cms #9A and 115 w!d i n h l e d that
the M C W Z O does not meet the MC68881 requirements.

9. This is a new W c a t b n lhat a l l o r m a m m dasigner lo guarantee data hdd limes on lhe oulpul skJe d data buffers that have
output maMe signals generated wi(h DBEN.

10. These are new specifications that allow system designers to guarantee that an alternate bus master has slopped driving (he bus
when the MC68020 regains control of the bus after an arbitration sequence.

-

9.2 68020 System Design

This section contains 68020 interfacing to 27C256 EPROM, LH62256C/CH SRAM, and
68230 I/O chips. Memory and I/O maps are also determined. As mentioned before, the
68020 uses only asynchronous bus cycles in which m, DSACKl, and DSACKO pins are
used as handshaking signals for data transfers. Also, for 16-bit or 32-bit memory or I/O

TABLE 9.8 Decoding Guide

68000 Address Pins Chip Selected

A,,
0
0

A,,
0

1

27C256
2256C/CH

1 N.C 68230
Note: N.C. Not Connected (A,8 is not connected to 68230)

68020 Hardware and Interfacing 275

chips, the correct byte enable must be produced to ensure that appropriate memory or I/O
chip(s) is enabled.

Note that both supervisor and user memory are needed for multitasking or
multiuser systems. However, one can design memory without using the FC2, FCl, and
FCO pins in memory decoding logic for a single application or for systems requiring no
operating systems. In that case, the 68000 will always operate in the supervisor mode.
Upon hardware reset, the 68020 will operate in the supervisor mode and will continue to
operate in that mode.

9.2.1
In the following, an 8-MHz 68020 is used. The system will contain four 27C256s (32K x

8 HCMOS EPROM with 120-ns access time) and four LH2256UCHs (32K x 8 CMOS
SRAM with 70 ns speed). Because EPROM or SRAM is 32 kB wide, the 68020 address
lines A,-A,, are used to address the EPROMs or SRAMs. The 68020 SIZ1, SIZO, A,, A,,
DSACKl, and DSACKO pins are utilized for selecting the memory chips.

Since the 68000 uses memory-mapped I/O, an unused address pin must be used
to distinguish between memory and I/O. To keep things simple, only one 68230 is used in
this design. The 68020 A,, pin will be used to select memory or I/O. A,, = 0 will select
the memory chips and A,, = 1 will select the I/O chip. The 68020 A,,, on the other hand,
will be used to select EPROM or SRAM. A,,= 0 will select 27C256, whereas A,, = 1 will
select 2256C/CH. Pins A,, and A,, are chosen arbitrarily. The memory and I/O decoding
is listed in Table 9.8.

Memory Decode Logic for Memory and I/O

To manipulate memory configuration, 32-bit data bus control byte enable logic
is incorporated to generate byte enable signals (DBBEI, DBBE2, DBBE3, - and DBBE4).

~~~ 

These byte enables are generated by using 68020’s SIZl, SIZO, A,, A,, and DS pins, as shown 

TABLE 9.9 Memorv Enables for 32-Bit Memorv 

1 

SIZl SIZO A, A, DBBEll DBBE22 DBBE33 DBBE44 
0 1 0 0 1 0 0 0 

0 1 0 1 0 0 
1 0 0 0 1 0 
1 1 0 0 0 1 

1 

0 0 0 1 1 0 0 
0 1 0 1 1 0 
1 0 0 0 1 1 
1 1 0 0 0 1 

1 0 0 1 1 1 0 
0 1 0 1 1 1 
1 0 0 0 1 1 
1 1 0 0 0 1 

0 0 0 0 1 1 1 1 
0 1 0 1 1 1 
1 0 0 0 1 1 
1 1 0 0 0 1 



276 Microprocessor Theory and Applications with 68000/68020 and Pentium 

in the individual logic diagrams of the byte enable logic. An FPGA can be programmed to 
implement this logic. 

Table 9.9 shows the memory enables for the 32-bit memory. Figure 9.10 shows 
the K-maps for the enable logic. A logic diagram can be drawn for generating the memory 
byte enable signals DBBEl, DBBE2, DBBE3, and DBBE4. 

9.2.2 68020-27C256 Interface 
The 68020 system with 32-bit EPROM consists of four 27C256s, each connected to its 
associated portion of the system data bus (D3,-D24, D,,-D,,, D,,-D,, and D,-Do). 68020 
pins A, through A,, are connected to A, through A,, of each 27C256. For example, 68020 A, 
is connected to A, of 27C256s, 68020 A, to A, of the 27C256s, and so on. A schematic of 
the 68020-27C256 interface is shown in Figure 9.11. Linear decoding is used for selecting 
memory banks to enable the appropriate memory chips. Figure 9.12 obtained from Figure 
9.1 1 shows the 68020 interface to EPROM #1. The 27C256 memory map can be determined 
from Figure 9.12 as follows: 

~~~ 

EPROM #1

A2 A, AO

assume 0's memory
= 0 to select 27C256

Note that the A,, pin of EPROM # 1 is connected to the 68020 A, pin, A1 pin of EPROM
1 is connected to the 68020 A, pin, and so on. Hence the address range for EPROM #1:

$00000000, $00000004, .. . , $0001FFFC and the 27C256 memory map:

EPROM # 1 $00000000, $00000004, . . . , $000 1 FFFC
EPROM #2 $0000000 1, $00000005, . . . , $000 1 FFFD
EPROM #3 $00000002, $00000006, . . . , $000 1 FFFE
EPROM #4 $00000003, $00000007, . . . , $000 1 FFFF

~~~ 

DSACKl and DSACKO are generated by ANDing the DBBE1, DBBE2, DBBE3, 
and DBBE4 outputs of the byte enable logic circuit. When one or more EPROM chips are 
selected, the appropriate enables (DBBEl- DBBE4) will be low, thus asserting DSACKl 
= 0 and DSACKO = 0. This will tell the 68020 that the memory is 32 bits wide. Data from 
the selected memory chip(s) will be placed on the appropriate data pins of the 68020. 

Let us discuss the timing requirements of the 68020-27C256 system. In response 
to execution of a READ instruction such as M0VE.L $00001234,DO, the 68020 checks 
DSACKl and DSACKO for LOW at the falling -- edge of S2 (two cycles). From the 68020 
timing diagram (in the Motorola manual), AS, DS, and all other output signals used in 
memory decoding go to LOW at the end of approximately one clock cycle. For an 8-MHz 
68020 clock, each cycle is 125 ns. From byte enable logic diagrams, a maximum of four 
gate delays (40 ns) are required. Therefore, the EPROM(s) selected will be enabled after 
165 ns (125 ns + 40 ns). With a 90-ns access time for the 27C256, the EPROM(s) will place 
data on the output lines after approximately 255 ns (1 65 ns + 90 ns). With an 8-MHz 68020 

~~ 



68020 Hardware and Interfacing 277 

1 1  1 

10 a 1 
_ -  

l R R F l l  = A ,  .A,  

K-MAP, 

----^ DBBE22- 
- A- K-MAP2 

A, 
DS 

SlZO 

SIZ 
SI 

K-MAP4 

DBBE44 = m . w 0 +  A , .  A, 
+SIZI* A,+SIZ!- SIZO.A, 

I 

FIGURE 9.10 

clock, DSACKl and DSACKO will be checked for LOW (32-bit memory) after two 
cycles (250 ns), and if LOW, the 68020 will latch data after three cycles (375 ns). Hence, 
no delay circuit is required for DSACKl and DSACKO. In case a delay circuit is required 
for the 68020 with a higher clock frequency, a ring counter can be used. 

9.2.3 68020- 2256C/CH (SRAM) Interface 
The Sharp LH2256C/CH is a 32K x 8 CMOS SRAM. The 2256C/CH READ and WRITE 
operations are decoded shown in Table 9.10. The 68020 system with 32-bit SRAM consists 
of four 2256C/CHs, each connected to its associated portion ofthe system data bus (D31-D24, 
D,,-D,,, Dl,-Ds, and D,-Do). 68020 pins A, through A,, are connected to A,, through A,, 
of each 2256C/CH. For example, 68020 A, is connected to A. of the 2256CiCHs , 68020 
A, to A, of the 2256C/CHs, and so on. A schematic of the 68020-2256C/CH interface is 
shown in Figure 9.13. 

K-maps for enable signals for memory. 



278 

- 
68020 OE 

A1 8 
- 

Do- 9 b CE - 
RNV 

#' 
- 

* % - A l 4  
DBBEI ~ 

Microprocessor Theory and Applications with 68000/68020 and Pentium 

8/ ' b 

91 9 4  

(68020) 

DBBEJ 

DBBE4 
- DSACK,, 

From 
Byte 
Enable 
Logic 

TABLE 9.10 Decoding Guide 
- - - 
CS OE WE Operation performed 
L L H READ 

L X L WRITE 
Note: X means don't care. 



68020 Hardware and Interfacing 279 

Linear decoding is used for selecting memory banks to enable the appropriate 
memory chips. Figure 9.14 obtained from Figure 9.13 shows the 68020 interface to SRAM 
#l .  The SRAM #1 memory map can be determined from Figure 9.14 as follows: 

0 . . .  

Don't cares 
u 

SRAM #1 

! L--Y--Jof~ 
To select Can be 0's to 1's SUM 

Note that the A, pin of SRAM # 1 is connected to the 68020's A, pin, the A, pin 
of SRAM # 1 is connected to the 68020's A, pin, and so on. Hence, the address range for 
SRAM #1: $00040000, $00040004, . . . , $0005FFFC. 

Hence, the 62256C memory map: 

SRAM # 1 $00040000, $00040004, . . . , $0005FFFC 
SRAM #2 $00040001, $00040005, . . ., $0005FFFD 
SRAM#3 $00040002, $00040006, . . ., $0005FFFE 
SRAM #4 $00040003. $00040007. . . .. $0005FFFF 

I ,  

As with EPROMs, DSACKl and DSACKO are generated by ANDing the 
DBBE1, DBBE2, DBBE3, and DBBE4 outputs of the byte enable ~~ logic circuit. When one 

~~~ 

or more SRAM chips are selected, the appropriate enables (DBBEl-DBBE4) will be low,
thus asserting DSACKl = 0 and DSACKO = 0. This will tell the 68020 that the memory is
32 bits wide. Data from the memory chip(s) selected will be placed on the appropriate data
pins of the 68020. Also, it can be shown that no delay circuits for DSACKl and DSACKO
are required since the 2256C/CH has read and write times of 70 ns each.

9.2.4 68020 Programmed I/O
The 68020 I/O-handling features are very similar to those of the 68000. This means that
the 68020 uses memory-mapped I/O, and the 68230 I/O chip can be used for programmed
I/O. In the hardware schematic for the 68020-68230 interface shown in Figure 9.15, A,,
is chosen to be HIGH to select the 68230 chip so that the port addresses are different
from the 68020 reset vector addresses 00000000,, - 00000006,,. The 68230 DTACK
is an open-drain output. Hence, a pull-up resistor is required. DTACK is used to assert
DSACKl DSACKO = 10 for indicating 8-bit I/O. Table 9.11 shows some of the 68230
register definitions.

Let us now determine the I/O map. Note that Ajl through A,, ,and A,, through A,
are don't cares and are assumed to be 0's in the following. Also, A,,= 1 for I/O. Hence,
from the figure, addresses for registers PGCR (RO), PADDR (R2), PBDDR (R3), PACR
(R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained as shown below. For
example, consider PGCR as follows:

280 Microprocessor Theory and Applications with 68000/68020 and Pentium

A , , A21 A,, A s A , A 3 A , A , Ao
= $00020000 0 0 0 1 0 , o 0 0 0 0 ,

v

RS5 - RSI

A1

Al ~ -
AS

-
F m

-
DS
SIZ‘
SIZ(

A

A ,

MC68020

A2- A1

D - D
24 3

D16- D2:

D8 - D
I !

D -Di
0

DSACK

DSACK

BYTE ENABLE LOGIC CIRCUIT 4

DBBEI

Logic

FIGURE 9.13 68020/2256C/CH interface.

68020 fi I WE

SRAM # 1

FIGURE 9.14 68020 interface to SRAM #l.

I To68020

D24- 41

’a

68020 Hardware and Interfacing

:LK

/
I A,, -

-
DS

A4
A3

4-
4-

68020 4
DSACK ,
-
DSACK <
9; D*4 < >
R /Ti >

-
RESET

28 1

>CLK

-
cs

RS,

RS4

R%

RS2
RSl

68230
(Unidirectional 8-bit mode]

-
DTACK

Do-D7
R I W

-
RESET

FIGURE 9.15 68020/68230 interface.

Therefore, address for PGCR = $00020000. Similarly, address for PADDR = $00020002,
address for PBDDR = $00020003, address for PACR = $00020006, address for PBCR =
$00020007 address for PADR = $00020008, address for PBDR = $00020009.
As an example, the following instruction sequence will select mode 0, submode lX, and
configure bits 0-5 of Port A as outputs, bits 6 and 7 of Port A as inputs, and port B as an
input port:

TABLE 9.11 Some 68230 Registers

Register Select Bits
RS5 RS4 RS3 RS2 RS1

0 0 0 0 0
0 0 0 1 0
0 0 0 1 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1

Register Selected
PGCR, port general control register (RO)
PADDR, port A data direrction register (R2)
PBDDR, port B data direction register (R3)
PACR, port A control register (R6)
PBCR, port B control register (R7)
PADR, port A data register (R8)
PBDR, port B data register (R9)

282 Microprocessor Theory and Applications with 68000/68020 and Pentium

PGCR
PADDR
PBDDR
PACR
PBCR
AND1.B
BSET.B
BSET.B
M0VE.B

M0VE.B

EQU
EQU
EQU
EQU
EQU
#$3F,PGCR
#7,PACR
#7,PBCR
#$3F,PADDR

#$OO,PBDDR

$00020000
$00020002
$00020003
$00020006
$00020007

; Select mode 0
; Port A bit I/O submode
; Port B bit I/O submode
; Configure port A bits 0-5 as
; outputs and bits 6 and 7 as inputs
; Configure port B as an input port

9.3 68020 Exception processing

The 68020 exceptions are hnctionally similar to those of the 68000 with some minor
variations. The 68020 exceptions can be generated by external or internal causes. Externally
generated exceptions include interrupts, bus errors, reset, and coprocessor-detected errors.
Internally generated exceptions are caused by certain instructions, address errors, tracing,
and breakpoints. Instructions that may cause internal exceptions as part of their instruction
execution are CHK, CHK2, CALLM, RTM, RTE, DIV, and all variations of the TRAP
instructions. In addition, illegal instructions, privilege violations, and coprocessor violations
cause exceptions. Table 9.12 lists the priority and characteristics of all 68020 exceptions.

The 68020 exception processing is similar to the 68000 with some minor
variations. In the 68020, exception processing occurs in four steps and varies according to
the cause of the exception. The four steps are summarized below:
1. An internal copy is made of the SR, and the S-bit set is to 1 for exception
processing. This means that the 68020 enters the supervisor state and tracing is disabled.
2. The vector number ofthe exception vector is determined from either the exception-
requesting peripheral (nonautovector) - or internally upon assertion of the AVEC (autovector)
input. Note that in the 68000, VPA is asserted for autovectoring. The VBR register points
to the base of the 1 -kJ3 exception vector table, which contains 256 exception vectors. The
68020 uses exception vectors as memory pointers to fetch the starting address of service
routines that handle the various exceptions.
3. The processor saves PC and SR onto the supervisor stack. For coprocessor
exceptions, additional internal state information is saved on the stack as well.
4. The final step is the same for all exceptions. The exception vector is determined by
multiplying the vector number by 4, and adding it to the contents of the VBR to determine
the memory address of the exception vector. The PC (and ISP for reset exception) is loaded
with the exception vector. The instruction located at the address given in the exception
vector is fetched and the exception-handling routine is thus executed.

Exception processing saves certain information on the top of the supervisor stack.
This information is called the exception stackfiame.

The 68020 provides six different stack frames. The sizes of these frames vary
from four words to 46 words depending on the exception. For example, the normal four-
word stack frame is generated by exceptions such as interrupts and privilege violations. A
six-word stack frame is generated by instruction-related exceptions such as CHWCHK2
and zero divide.

The 68020 utilizes the concept of two supervisor stacks pointed to by MSP and

68020 Hardware and Interfacing 283

ISP. The M-bit (when S = 1) determines the active supervisor stack pointer. The 68020
accesses MSP when S = 1, M = 0. The MSP can be used for program traps and other
exceptions, while the ISP can be used for interrupts. The use of two supervisor stacks
allows isolation of user processes or tasks and asynchronous supervisor I/O tasks.

The 68020 IPL2, IPL1, IPLO, AVEC, and IPEND pins are used as the 68020
hardware interrupt control signals (Figure 9.16). Like the -- 68000, the 68020 supports
seven levels of prioritized interrupts encoded by using the IPL2, IPL1, and IPLO pins.

In Figure 9.16, when interrupting priority levels 1 through 6 are requested,
the 68020 compares the interrupt level (inverted interrupt pins) to the interrupt mask to
determine whether the interrupt should be processed. An interrupt recognized as valid
does not force immediate exception processing; a valid interrupt causes IPEND to be
asserted, signaling to external devices that the 68020 -- has an interrupt - pending. The deskew
logic in Figure 9.17 continuously samples the IPL2, IPL1, and IPLO pins on every falling
edge of the clock, but deskews or latches an interrupt request when it remains at the same
level for two consecutive falling edges of the input clock. Figure 9.17 gives an example of
the 68020 interrupt deskewing logic.

Whenever the 68020 reaches an instruction execution boundary, it checks for a
pending interrupt. If it finds one, the 68020 begins an exception processing and executes
an interrupt acknowledge cycle with FC2, FC1, FCO = 11 1, andA,,,A,,,A,,,A,,= 11 11. The
68020 basic hardware interrupt sequence is shown in Figure 9.18.
Figure 9.19 shows the interrupt acknowledge flowchart. Before the interrupt acknowledge
cycle is completed, the 68020 must receive either AVEC, DSACKX, or BERR; otherwise,
it will execute wait states until one of these input pins is activated externally.

If AVEC is asserted, the 68020 obtains the vector address internally (autovectored)
automatically. If the 68020 DSACKX pins are asserted, the 68020 takes an 8-bit vector
from the appropriate data lines (D, -Do pins for a 32-bit device, D,,-D,, pins for a 16-bit
device, D31-D24 pins for an 8-bit device). These are nonautovectored interrupts, and the
68020 obtains the interrupt vector address by adding VBR with 4 * (8-bit vector).
Figure 9.20 shows an example of autovectored and nonautovectored interrupt logic.
Finally, if BERR is asserted, the interrupt is considered spurious and the 68020 assigns the
appropriate vector number for handling this.

-

9.4 68020-based Voltmeter

A 68020-based voltmeter is designed in this section. A 68020/27C256/62256/68230-based
microcomputer is used to implement the voltmeter to measure voltage in the range 0 to 5 V
and display the result in two decimal digits: one integer part and one fractional part. The
microcomputer will contain 16-bit I/O and will use two 68230 I/O chips; one containing
even port addresses and the other containing odd port addresses. Three 8-bit I/O ports are
used in the design. The two 8-bit ports (ports A and B) of the even 68230, and the 8-bit port
(port A) of the odd 68230 will be used.

The 68230 port addresses are chosen arbitrarily and are given below.

Ports used fiom the even 68230: PGCR = $00002000, PACR = $0000200C,
PBCR = $0000200E, PADDR = $00002004, PBDDR = $00002006, PADR =

$00002010 = port A, and PBDR = $00002012 = port B.

284 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

TABLE 9.12 Exception Priorities and Recognition Times

Exception priorities Time of recognition

Group0 .O Reset
Group 1 .O Address error

End of clock cycle

.1 Buserror
Group 2 .O BKPT #N, CALLM, CHK, CHK2, cp TRAPcc Within an instruction cycle

cp mid-instruction
cp protocol violation, divide-by-zero, RTE,

RTM, TRAP #N, TRAPV
Group 3 .O Illegal instruction, unimplemented LINE F, Before instruction cycle begins

Group 4 .O cp post-instruction End of instruction cycle
LINE A, privilege violation, cp preinstruction

.1 Trace

.2 Interrupt

MC68020

Status Register

Comparator

DESKEW
Logic

I '

- + IPEND

-
+ AVEC

- K O
-lpLl
- IPL2

FIGURE 9.16 68020 interrupt control signals.

Example: level 5 followed by level 7 request

CLOCK

-
IPLO 7
lPLl j
- .

- 1

IPL2

Level Sampled: 7 5 5 5 7 7 7 7
Level Deskewed: No Interrupt - k- 5 -+ ??*-- 7 ___)

FIGURE 9.17 68020 interrupt deskewing logic.

68020 Hardware and Interfacing 285

Interrupt Logic
Asserts A-

I Interrupting Devices I

Watchdog Timer Interrupt Logic
Asserts Provides

Vector Number;
Asserts DSACKx

Continue In
Current Program Set Appropriate

IPLO - IPL2 Lines

I

I MC68020 Finishes I

I

I Current Instruction
Normal Processing:

Acknowledge Interrupt

1) Compare Interrupt Request Level with
InterruaMask

2) SetRIWtoRead
3) Set Function Code to CPU Space to 11 1
4) Place Interrupt Level on A l , A2, and

5) Set Size to Byte
6) Assert AddresGtrobe (z) and

andA3. TypeField=lACK=A19-A16= 1111

Data Strobe (DS)

-

and Interrupt Level

Exception Processing

* I Request Interrupt I

b Provide Vector Information

Acquire Vector Information -
1) Latch V g o r Number

9.4.1
Figure 9.21 shows the schematic of the voltmeter using the 68020-based microcomputer.
The microcomputer is required to start the A/D converter at the falling edge of a pulse via bit

Voltmeter Design Using Programmed I/O

1) Place Vector Number of Least Significant
Byte o f m o r t (Depends on Port Size)

2) Assert DSACKx

1) Assert K C for Automatic Generation of
- or ~

VectorNumber

2) Negate DS and AS

Start Interrupt Processing

Release
__

1) Negate DSACKx

286 Microprocessor Theory and Applications with 68000/68020 and Pentium

PORTB

Bur Time Out

: r -
7 4 c- Vx
- ANALOG CONVERSION COMPLETE

(0 to 5 V)

-
- 0 4 VOLTAGE

- 8-bit
AID

1 4

-
- 7 - CONVERTER

1

-
Interrupt

A20A19 A16A15 A4A3 A l A0 /ml I:? - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 11 1 1 1 11 ________________. 1 I INT LVL 1 1 I - -
CPU Space #$F
Space (IACK)

FIGURE 9.20 68020 autovectored and nonautovectored interrupt logic.

START CONVERSION

TIL311

FIGURE 9.21 68020-based voltmeter using programmed I/O.

68020 Hardware and Interfacing 287

0 of port AA. When the conversion is completed, the A/D’s CONVERSION COMPLETE
signal will go to HIGH. During the conversion, the A/D’s CONVERSION COMPLETE
signal stays LOW.

Using programmed I/O, the microcomputer will poll the AID’S CONVERSION
COMPLETE signal. When the conversion is completed, the microcomputer will send a
LOW on the A/D converter’s OUTPUT ENABLE line via bit 1 to port AA and then input
the 8-bit output from A/D via port B and display the voltage (0 to 5 V) in two decimal
digits (one integer and one fractional) via port A on two TIL 3 11 displays. Note that the TIL
3 11 has an on-chip BCD-to-seven-segment decoder. The microcomputer will output each
decimal digit on the common lines (bits 0-3 of port A) connected to the ABCD inputs (‘A’
is the least significant bit and ‘D’ is the most significant bit) of the displays. Each display
will be enabled by outputting LOW on each LATCH line in sequence (one after another) so
that the input voltage V, (0 to 5 V) will be displayed with one integer part and one fractional
part. A 68020 assembly language program will accomplish this.

Because the maximum decimal value that can be accommodated in 8 bits is 255,,
(FF,6), the maximum voltage of 5 V will be equivalent to 255,,. This means the display in
decimal is given by

D = 5 x (input/255)

= input/5 1

= quotient +remainder -
Integer part

This gives the integer part. The fractional part in decimal is
F = (remainder15 l) x 10

= (remainder)/5

For example, suppose that the decimal equivalent of the 8-bit output of A/D is 200.
D = 20015 1 3 quotient = 3, remainder = 47

integer part = 3

fractional part, F = 47/5 = 9

Therefore, the display will show 3.9 V. The 68020 assembly language program using
programmed I/O can be written as follows:

PGCR
PACR
PBCR
PADDR
PBDDR
PORTA
PORTB
PGCRl
PACRl

$00002000
$0000200c
$0000200E
$00002004
$00002006
$0000201 0
$0000201 2
$00002001
$0000200D

288 Microprocessor Theory and Applications with 68000/68020 and Pentium

PADDRl
PORTAA

BEGIN

FINISH

EQU
EQU
AND1.B
BSET.B
BSET.B
M0VE.B
M0VE.B
AND1.B
BSET.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B
LSL.B
BCC
M0VE.B
M0VE.B
M0VE.B
AND1.L

D1VU.W

M0VE.W
SWAP.W
AND1.L

DIVU

0RI.W
AND1.W
M0VE.B
0RI.W
AND1.W
M0VE.B
JMP

$00002005
$000020 1 1
#$3F,PGCR ;

#7,PACR 2

#7,PBCR 2

#$FF,PADDR ;

#O,PBDDR 3

#$3F,PGCRl ;

#7,PACR1 9

#$03,PADDRl ;

#3,DO 9

D0,PORTAA ;

#2,DO
D0,PORTAA ;

PORTAA,DO ;

#1,DO
BEGIN
#O,DO 9

D0,PORTAA
PORTB,D 1 2

#$000000FF,D 1 ;

#51,D1 7

2

D 1 ,D2
D1 ,
#$000000FF,D 1 ;

,
#5,D1

#$20,D2 5

#$2F,D2
D2,PORTA 2

#$lO,D 1
#$ 1 F,D 1 2

D 1 ,PORTA 9

FINISH

Select mode 0
port A bit I/O
port B bit I/O
Configure port A as an output port
Configure port B as an input port
Select mode 0
port AA bit I/O
Configure port AA
Send 1 to START pin of A/D
and 1 to (OUTPUT ENABLE)
Send 0 to start pin
of A/D
Check conversion
Complete bit for HIGH

Send LOW to (OUTPUT ENABLE)

Input A/D data
Convert input data to 32-bit
unsigned number in D1
Convert data to
integer part
Save quotient (integer) in D2
Move remainder to low word of D1
Convert remainder to unsigned
32-bit number
Convert data to fractional part
Quotient (fraction) is in D1.W
Disable fractional display
Enable integer display
Display integer part
Disable integer display
Enable fractional display
Display fractional part

68020 Hardware and Interfacing 289

9.4.2
In this section the 68020-based voltmeter is designed using interrupt I/O (both nonmaskable
and maskable). The main program is written to initialize the 68230 control registers and
then start the A/D. The service routine will input the A/D data, display the result, and stop.
A 68020 assembly language program is written for both the main program and the service
routine.

Voltmeter Design Using Interrupt I/O

- 0 > START CONVERSION
~

PORTAA 1- OUTPUT ENABLE

-
- -

PORT - +I ‘)it 8-

-
~ L< 4 A / D
AVEC < ; + CONVERSION COMPLETE --

IPL2-IPLO < ’

Using Autovector Level 7 (Nonmaskable Interrupt) Figure 9.22 shows the
pertinent connections for Autovector level 7 interrupt. The A/D CONVERSION
COMPLETE signal is inverted, and then connected to 68020 IPL2 IPLl IPLO pins and to
the AVEC pin. Note that all addresses selectable by the user are chosen arbitrarily in the
following.

The main programs and service routines are written at addresses $00005000 and
$000 16000, respectively. Also, the interrupt stack pointer A7 ’ is initialized at $00006500.
These addresses are chosen arbitrarily. The main program in 68020 assembly language is
shown below.

c- v.

(0 to

ANALOG
VOLTAGE

PGCR
PACR
PBCR
PADDR
PBDDR
PORTA
PORTB
PGCRl
PACR 1
PADDR 1
PORTAA

$00002000
$0000200c
$0000200E
$00002004
$00002006
$000020 10
$000020 12
$0000200 1
$0000200D
$00002005
$0000201 1

68020 I270256
62256C/CH / 68230

FIGURE 9.22 68020-based voltmeter using nonmaskable interrupt YO.

290 Microprocessor Theory and Applications with 68000/68020 and Pentium

WAIT

BSET.B
BSET.B
M0VE.B
M0VE.B
AND1.B
BSET.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B
JMP

#7,PACR
#7,PBCR
#$FF,PADDR
#O,PBDDR
#$3F,PGCR1
#7,PACR 1
#$03,PADDRl
#3,DO
D0,PORTAA
#2,DO
D0,PORTAA
WAIT

; portAbit I/O
; portB bit I/O
;

;

; Select mode 0
; port AA bit I/O
; Configure port AA
; Send 1 to START pin ofA/D
; and 1 to (OUTPUT ENABLE)
; Send 0 to start pin
; o f N D
; Wait for interrupt

Configure port A as an output port
Configure port B as an input port

The 68020 assembly language program for the interrupt service routine is provided
below.

ORG $000 16000 9

M0VE.B #O,DO 2

M0VE.B D0,PORTAA
M0VE.B PORTB,D 1 9

AND1.L #$000000FF,D1 ;

DIVU. W #5 1 ,D 1 9

MOVE. W D 1 ,D2 2

SWAP.W D1
AND1.L #$000000FF,D1 ;

DIVU #5,Dl

0RI.W #$20,D2
AND1.W #$2F,D2
M0VE.B D2,PORTA 9

0RI.W #$lO,Dl 2

AND1.W #$lF,Dl 5

M0VE.B D 1 ,PORTA 9

FINISH JMP FINISH

Service routine starting address
Send LOW to (OUTPUT ENABLE)

Input A/D data
Convert input data to 32-bit
unsigned number in D1
Convert data to
integer part
Save quotient (integer) in D2
Move remainder to low word of D 1
Convert remainder to unsigned
32-bit number
Convert data to fractional part
Quotient (fraction) is in D1 .W
Disable fractional display
Enable integer display
Display integer part
Disable integer display
Enable fractional display
Display fractional part

68020 Hardware and Interfacing 29 1

Using 68020 assembler directive DC.L, the reset and service routine vectors can be written
as follows:

Reset Vector

ORG 0
DC.L $00006500 2 Initialize A7’
DC.L $00005000 2 Main program starting address

Service routine vector for nonmuskuble interrupt (autovector level 7):

ORG $0000007C ; Vector address for autovector level 7
DC.L $00016000

Note that in the above it is assumed that [VBR] = 0. Hence, the vector address for autovector
level 7 is $0000007C.

Using Nonautovectoring (Maskable Interrupt, Vector $40) Figure 9.23 shows
the pertinent connections for the nonautovectoring interrupt. All connections for the fdD
converter to ports AA and B and seven-segment displays to port A of the 68020-based -
microcomputer in Figure 9.23 will be the same as shown in Figure 9.2 1. The 68020 IPL2,
IPLl, IPLO pins are connected in such a way -- that IPL2, IPLl, - IPLO = 110 will interrupt the
68020 as 001 (level 1 interrupt) since the IPL2, IPL1, and IPLO pins are inverted internally.
In response to the interrupt, the 68000 automatically pushes PC and SR onto the stack and
generates FC2, FC 1, FCO = 11 1 (CPU space cycle) and A,,, A,,,A,,, A,,= 11 11, indicating
acknowledgment of the interrupt. These seven signals are NANDed in the figure to generate
a LOW interrupt acknowledge signal, which is used to enable an octal buffer such as
74HC244.

Vector number 40,, can be placed at the input of the octal buffer as shown in the
figure. A value of 10 is asserted at the 68020 DSACKl and DSACKO pins so that the
68020 will recognize the device as 8-bit and will input the vector number via the 68020’s
D3,- D,, pins. Hence, the output pins of the octal buffer are connected to the 68020,s D3,-
D,, pins.

The main programs and service routines are written at addresses $00005000 and
$000 16000 respectively. Also, the interrupt stack pointer A7 ’ is initialized at $00006500.
These addresses are chosen arbitrarily.The main program in 68020 assembly language is
provided below.

-- ---

PGCR
PACR
PBCR
PADDR
PBDDR
PORTA
PORTB
PGCRl

$00002000
$0000200c
$0000200E
$00002004
$00002006
$000020 10
$000020 12
$0000200 1

292 Microprocessor Theov and Applications with 68000/68020 and Pentium

PORTAA

PORTB

PORTA To Displays

TO AID (SEE FIGURE 9.21)

To data outputs of AID (SEE FIGURE 9.21)

COMPLETE
OF AID LI

i

FIGURE 9.23

I 68020-based I I :m I Microcomputer I
74HC244

\\\\
68020-based voltmeter using maskable interrupt I/O.

PACRl EQU
PADDR1 EQU
PORTAA EQU

ORG
AND1.B
BSET.B
BSET.B
M0VE.B
M0VE.B
AND1.B
BSET.B
M0VE.B
AND1.W
M0VE.B
M0VE.B
M0VE.B
M0VE.B

WAIT JMP

$0000200D
$00002005
$0000201 1
$00005000
#$3F,PGCR
#7,PACR
#7,PBCR
#$FF,PADDR
#O,PBDDR
#$3F,PGCR1
#7,PACR1
#$03,PADDRl
#F8FF,SR
#3,DO
D0,PORTAA
#2,DO
D0,PORTAA
WAIT

Main program starting address
Select mode 0
Port A bit I/O
Port B bit I/O
Configure port A as an output port
Configure port B as an input port
Select mode 0
Port AA bit I/O
Configure port AA
Enable interrupts
Send 1 to START pin of A/D
and 1 to (OUTPUT ENABLE)
Send 0 to start pin
of A/D
Wait for interrupt

The Service Routine is as follows:

ORG $000 16000 ; Service routine starting address
M0VE.B #O,DO ; Send LOW to ((OUTPUT ENABLE)
M0VE.B D0,PORTAA

68020 Hardware and Interfacing 293

TINISH

M0VE.B
AND1.L

D1VU.W

M0VE.W
SWAP. W
AND1.L

D I W

0RI.W
AND1.W
M0VE.B
0RI.W
AND1.W
M0VE.B
JMP

PORTB,Dl
#$000000FF,D 1

#51,D1

D1,D2
D1
#$000000FF,D 1

#5,D1

#$20,D2
#$2F,D2
D2,PORTA
#$lO,D 1
#$lF,D 1
D 1 ,PORTA
FINISH

Input A/D data
Convert input data to 32-bit
unsigned number in D 1
Convert data to
integer part
Save quotient (integer) in D2
Move remainder to low word of D1
Convert remainder to unsigned
32-bit number
Convert data to fractional part
Quotient (fraction) is in D1.W
Disable fractional display
Enable integer display
Display integer part
Disable integer display
Enable fractional display
Display fractional part

Using 68020 assembler directive DC.L, the reset and service routine vectors can be written
as follows:

Reset Vector:

ORG 0
DC.L $00006500 9 Initialize A7’
DC.L $00005000 7 Main program starting address

Starting address for the maskable interrupt (vector number $40):

ORG $000001 00 ; Vector address for vector number $40
DC.L $000 16000

Note above that it is assumed that [VBR] = 0. The vector address for vector # 40 = 4 * $40
= $100. Hence, the 32-bit address $00000100 is used as the starting address of the service
routine.

9.5 Interfacing a 68020-Based Microcomputer to a Hexadecimal Keyboard and
a Seven-Segment Display

In this section we describe the basics of interfacing a 68020-based microcomputer to a
hexadecimal keyboard and a seven-segment display.

294

9.5.1 Basics of Keyboard and Display Interface to a Microcomputer
A common method of entering programs into a microcomputer is via a keyboard. A popular
way of displaying microcomputer results is by using seven-segment displays. The main
functions to be performed for interfacing a keyboard are:

Sense a key actuation.
Debounce the key.
Decode the key.

Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged
in rows and columns. Figure 9.24 shows a 2 x 2 keyboard interfaced to a typical
microcomputer. In Figure 9.24 the columns are normally at a HIGH level. A key actuation
is sensed by sending a LOW (closing the diode switch) to each row one at a time via PA0
and PA1 of port A. The two columns can then be input via PB2 and PB3 of port B to see
whether any of the normally HIGH columns are pulled LOW by a key actuation. If so, the
rows can be checked individually to determine the row in which the key is down. The row
and column code for the key pressed can thus be found.

The next step is to debounce the key. Key bounce occurs when a key is pressed or
released-it bounces for a short time before making the contact. When bounce occurs, it
may appear to the microcomputer that the same key has been actuated several times instead
of just once. This problem can be eliminated by reading the keyboard after about 20 ms
and then verifying to see if it is still down. If it is, the key actuation is valid. The next step
is to translate the row and column code into a more popular code, such as hexadecimal or
ASCII. This can easily be accomplished by a program. Certain characteristics associated
with keyboard actuations must be considered while interfacing to a microcomputer.
Typically, these are two-key lockout and N-key rollover. The two-key lockout ensures that
only one key is pressed. An additional key depressed and released does not generate any
codes. The system is simple to implement and most often used. However, it might slow
down the typing because each key must be released fully before the next one is pressed
down. On the other hand, the N-key rollover will ignore all keys pressed until only one
remains down.

Now let us elaborate on the interfacing characteristics of typical displays. The
following functions are typically performed for displays:

Output the appropriate display code.
Output the code via right entry or left entry into the displays if there is more than
one display.
These functions can easily be realized by a microcomputer program. If there is

more than one display, the displays are typically arranged in rows. A row of four displays
is shown in Figure 9.25. In the figure, one has the option of outputting the display code
via right entry or left entry. If the code is entered via right entry, the code for the least
significant digit of the four-digit display should be output first, then the next-digit code,
and so on. The program outputs to the displays are so fast that visually all four digits will
appear on the display simultaneously. If the displays are entered via left entry, the most
significant digit must be output first and the rest of the sequence is similar to that of right
entry.

Two techniques are typically used to interface a hexadecimal display to the
microcomputer: nonmultiplexed and multiplexed. In nonmultiplexed methods, each
hexadecimal display digit is interfaced to the microcomputer via an I/O port. Figure
9.26 illustrates this method. BCD-to-seven-segment conversion is done in software.

Microprocessor Theory and Applications with 68000/68020 and Pentium

1.
2.

68020 Hardware and Interfacing 295

The microcomputer can be programmed to output to the two display digits in sequence.
However, the microcomputer executes the display instruction sequence so fast that the
displays appear to the human eye at the same time. Figure 9.27 illustrates the multiplexing
method of interfacing the two hexadecimal displays to the microcomputer. In the
multiplexing scheme, appropriate seven-segment code is sent to the desired displays on
seven lines common to all displays. However, the display to be illuminated is grounded.
Some displays, such as Texas Instrument's TIL 3 11, have an on-chip decoder. In this case,
the microcomputer is required to output 4 bits (decimal) to a display.

The keyboard and display interfacing concepts described here can be realized
by either software or hardware. To relieve the microprocessor of these functions,
microprocessor manufacturers have developed a number of keyboarddisplay controller
chips. These chips are typically initialized by the microprocessor. The keyboarddisplay
functions are then performed by the chip independent of the microprocessor. The number of
keyboarddisplay functions performed by the controller chip varies from one manufacturer
to another. However, these functions are usually shared between the controller chip and the

+15v

Port A

Port B

vlicrocomputer

t-

[+n - - -

[j- ~

FIGURE 9.24 vpical microcomputer-keyboard interface.

entry jo 0 0 m:;g
FIGURE 9.25 Row of four displays.

FIGURE 9.26

296 Microprocessor Theory and Applications with 68000/68020 and Pentium

, ~crocomputer \

PortA [

i
FIGURE 9.27 Multiplexed displays

microprocessor.

9.5.2 68020 Interface to a Hexadecimal Keyboard and a Seven-Segment

In this section a 68020-based microcomputer is designed to display a hexadecimal digit
entered via a keypad (16 keys). The microcomputer will contain 16-bit I/O and will use
two 68230 I/O chips; one containing even port addresses and the other containing odd port
addresses. Three 8-bit I/O ports are used in the design. The two 8-bit ports (ports A and B)
of the even 68230 and the 8-bit port (port A) of the odd 68230 will be used.

Figure 9.27 shows the hardware schematic. Ports A, B, and AA are configured as
follows:

Display

Port A is configured as an input port to receive the row-column code.

Port B is configured as an output port to display the key(s) pressed.
Port AA is configured as an output port to output zeros to the rows to detect a key
actuation.

chosen arbitrarily, and are provided in the The 68230 port addresses are
following:

Ports used-from the even 68230: PGCR = $00002000, PACR = $0000200C, PBCR =

$0000200E, PADDR = $00002004, PBDDR = $00002006, PADR = $00002010= port A ,
and PBDR = $00002012 = port B.
Ports used-from the odd 68230: PGCRl= $00002001, PACR1 = $0000200D, PADDRl=
$00002005, and PADRl = $0000201 1 = port AA.

The 68020 is assumed to run at 8 MHz. Debouncing is provided to avoid unwanted
oscillation caused by the opening and closing of key contacts. To ensure stability for the
input signal, a delay of 20 ms is used for debouncing the input.

Typical 68020 software delay loops can be written using MOVE and DBF
instructions. For example, the following instruction sequence can be used for a delay loop
of 2ms:

M0VE.W #count,DO
DELAY DBF.W D0,DELAY

Note that DBF.W in the above decrements D0.W by 1, and if D0.W # -1, branches
to DELAY; if D0.W = -1, the 68020 executes the next instruction. Since DBF.W checks for

68020 Hardware and Interfacing 297

D0.W for -1, the value of “count” must be one less than the required loop count. The initial
loop counter value of “count” can be calculated using the cycles (see the Motorola 68020
manual) required to execute the following 68000 instructions:

M0VE.W #n,DO (3 cycles)
DBF.W D0,DELAY (1 0 cycles)

Note that DBF.W requires 10 cycles when the 68020 branches if the content of
D0.W is not equal to -1 after autodecrementing D0.W by 1. However, the 68020 goes to the
next instruction and does not branch when [DO.W] = -1 after autodecrementing D0.W by
1, and this also requires 10 cycles. This means that the DELAY loop will require 10 cycles
for “(count + 1)” times.

Assuming an 8-MHz 68020 clock, each cycle is 125 ns. For a 2-ms delay, total
cycles = - = 16,000. Hence, total cycles including the M0VE.W = 3 + 10 x (count
+1) = 16,000. Hence, count 2 1599. Therefore, D0.W must be loaded with 1599,, for a
2-msec delay.

Now, to obtain a delay of 20 ms, the 2-ms DELAY loop above can be used with
an external counter. Counter value = - = 10. The following instruction sequence
will provide an approximate delay of 2 seconds:

2 msec

MOVE. W # 10,D 1 ;Initialize counter for 20-ms delay
BACK M0VE.W #1599,D0
DELAY DBF.W D0,DELAY ;2-msec delay

SUBQ.W #1 ,D 1
BNE.B BACK

Note that the 68020 instruction sequence above will provide a delay of 20 ms
discarding the execution times of M0VE.W #10,D1, SUBQ.W, and BNE.B instructions.

The 68020 assembly language program for interfacing the 68020-based
microcomputer to a hexadecimal keyboard and a seven-segment display follows. Note that
to explain the program, line numbers are included with the comments.

PGCR
PACR
PBCR
PADDR
PBDDR
PORTA
PORTB
PGCRl
PACRl
PADDRl
PORTAA
OPEN

$00002000
$0000200c
$0000200E
$00002004
$00002006
$000020 10
$000020 12
$00002001
$0000200D
$00002005
$000020 1 1
$FO ;#l Row/column codes if all

298 Microprocessor Theory and Applications with 68000/68020 and Pentium

PB3 Connected to D
PB2 Connected to C
PBI Connected t o B ~

68020 Based uC

PBO Connected to A

FIGURE 9.28 68020-based microcomputer interface to keyboard and display.

ORG $00005000

AND1.B #$3F,PGCR
BSET.B #7,PACR
BSET.B #7,PBCR
M0VE.B #O,PADDR

M0VE.B #$FF,PBDDR

AND1.B #$3F,PGCRl
BSET.B #7,PACRI
M0VE.B #$FF,PADDRI

M0VE.B #O,DO
M0VE.B D0,PORTB

SCAN-KEY M0VE.B D0,PORTAA

KEY-OPEN M0VE.B PORTA,Dl

2

;#2

;#3
;#4
;#5

;#6
;#7

;#8

9

>

,
9

;#9

;#lo
;#11

2

9

;#12

;#I3
;#I4

;#I5

keys are open
Starting address of the
program
Select mode 0
Port A bit I/O
Port B bit I/O
Configure port A as an
input port for hex
keyboard
Configure port B as an
output port
or seven segment display
Select mode 0
port AA bit I/O
Configure port AA for a hex
keyboard row controls are
opened
Send 0 to enable display
Initialize display with 0
Output 0s to rows of the
keyboard

Read PORTA

68020 Hardware and Interfacing 299

BACK
DELAY

KEY-CLOSE

BACK
DELAY 1

YEXT-ROW

DECODE

SEARCH

DONE

CMP.B
BNE.B
M0VE.W
M0VE.W
DBF.W
SUBQ.W
BNE.B
M0VE.B
CMP1.B
BEQ.B
M0VE.W
M0VE.W
DBF.W
SUBQ.W
BNE.B
M0VE.B
ADD1.B
R0XL.B
M0VE.B
M0VE.B
M0VE.B
M0VE.B

AND1.B
CMP1.B
BNE.B
M0VE.B
M0VE.B
ADDQ.B
JMP
M0VE.B
M0VE.W
M0VE.B
ADDQ.B

#OPEN,Dl
KEY-OPEN
#10,D1
#1599,D0
D0,DELAY
#1,D1
BACK
PORTA,DO
#OPEN,DO
KEY-CLOSE
#10,Dl
1599,DO
D0,DELAY 1
#1,D1
BACK
#$FF,D2
#O,D2
#I,D2
D2,D3
D2,PORTAA
PORTA,D2
D2,D4

#$FO,D2
#$FO,D2
DECODE

D3 ,D2
#$FF,D5
#1,D5
NEXT-RO W
#- 1 ,D6
#14,D7
#$OF,DO
1 ,D6

;#16
;#17
;#18
;#19
;#20
;#2 1
;#22
;#23
;#24
;#25
;#26
;#27
;#28
;#29
;#30
;#3 1
;#32
;#33
;#34
;#35
;#36
;#37

;#38
;#39
;#40
;#4 1
;#42
;#43
;#44
;#45
;#46
;#47
;#48

,

CMP.B (TABLE,D6.W),D4 ;#49
DBNE.W D7,SEARCH ;#50
M0VE.B D0,PORTB ;#5 1

Are all keys opened?
Repeat if closed
Debounce for 20 ms

Delay loop
Read port A
Are all keys closed?
Repeat if opened
Debounce again for 20 ms

Delay loop
Set D2.B to all 1s
Clear X-bit to 0
Set up row mask
Save row mask in D3.B
Set a row to zero
Read PORTA
Save rowlcolumn codes in
D4.B
Mask row code
Is coln code affected?
If yes, decode column code
Restore row mask in D2.B

Set X-bit to 1
Check next row
Initialize index register
Set up counter to 14
Initialize D0.B with F
Increment index
Index thru table of codes
Loop if not found
Get character,enable display
Display key pushed

300 Microprocessor Theory and Applications with 68000/68020 and Pentium

JMP SCAN-KEY ;#52 Return to scan another key
ORG $00005300 ;#53 Keyboard decode table

rABLE DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B
DC.B

$77
$B7
$D7
$E7
$7B
$BB
$DB
$EB
$7D
$BD
$DD
$ED
$7E
$BE
$DE
SEE

Code for F
Code for E
Code for D
Code for C
Code for B
Code for A

Code for 9
Code for 8
Code for 7
Code for 6

Code for 5
Code for 4
Code for 3
Code for 2
Code for 1
Code for 0

I the program, a decode table for keys 0 through F are stored at address $00005301
(chosen arbitrarily). The codes for the hexadecimal numbers 0 through F are obtained by
inspecting Figure 9.28. For example, consider key F. When key F is pressed and if a LOW
is output by the program to bit 0 of port AA, the top row and rightmost column of the
keyboard will be LOW. This will make the content of port A:

Bitnumber: 7 6 5 4 3 2 1 0

uu
7 7

Data : 0 1 1 1 0 1 1 1 = 7 T 6

Thus, a code of 77,, is obtained at port A when key F is pressed. Diodes are connected at
the 4 bits (bits 0-3) of port AA. This is done to make sure that when a 0 is output by the
program to one of these bits (row of the keyboard), the diode switch will close and will
generate a LOW on that row.

Now, if a key is pressed on a particular row that is LOW, the column connected to
this key will also be LOW. This will enable the programmer to obtain the appropriate key
code for each key.
Next, the assembly language program will be explained using the line numbers included
in the comment field.

Line #1 equates label OPEN to data $FO. This is because when all keys are up (no
keys are pushed) and 0’s are output to the rows in Figure 9.28, data input at port A will
be 11 110000 ($FO). Note that bits 0 -3 are connected to rows and bits 4-7 are connected to

68020 Hardware and Interfacing 301

columns of the keyboard. Line #2 includes the starting address of the program at $00005000.
This address is chosen arbitrarily.

Lines 3 through 1 1 configure port A as input and ports B and AA as output ports.
Lines 12 and 13 initialize the seven-segment display by outputting 0. Lines 14 through 17
check to see if any key is pushed. This is done by outputting 0’s to all rows via port AA,
and then inputting port A. If all keys are open, data at port A will be $FO. Hence, data at
port A is compared with $FO. If Z = 0, the program waits in a loop with label KEY-OPEN
until a key is pushed. When a key is closed, Z = 1, and the program comes out of the loop.
Lines 18 through 22 debounce the keys by providing a delay of 20 ms.

Lines 23 through 25 detect a key closure. The program inputs port A and, compares
input data with $FO. If Z = 1, the program waits in a loop with label KEYCLOSE until
a key is closed. If Z = 0, the program leaves the loop. Lines 26 through 30 provide
debouncing if a key closure is detected. It is necessary to determine exactly which key is
pressed. To do this, a sequence of row-control codes ($XE, $XD, $XB, and $X7, where X
is don’t care; the upper 4 bits are don’t cares) are output via port AA . Lines 3 1 through 34
initialize D2.B to all l’s, clear the X-bit to 0, and rotate D2.B through X once to the left to
contain the appropriate row control code. For example, after the first R0XL.B in line 33,
D2.B will contain 11 11 11 lO($FE). Note that the low 4 bits are the row-control code (the
upper 4 bits are don’t cares) for the first pass in the loop, labeled NEXTROW. Line 35
outputs this data to port AA to make the top row of the keyboard zero.

The row-column code is input via port A to determine if the column code changes
corresponding to each different row code. Line 36 inputs port A into D2.B. The top row
of the keyboard will be 0 if C or D or E or F is pushed. Line 37 saves this input data in
D4.B.

Lines 38 through 40 make the low 4 bits 0’s and retain the upper 4 bits. If the
column code is not $FO (changed), the input key is identified. The program then indexes
through a look-up table to determine the rowxolumn code saved in D0.B. If the code
is found, the corresponding index value, which equals the input key’s value (a single
hexadecimal digit), is displayed.

Suppose that key F is pushed. Line 37 will store the code $77 in D4.B. The
instruction CMP1.B at line 39 will make Z = 0. Hence, after execution of BNE.B at line 40,
the program branches to DECODE (line 45). Lines 45 through 50 compare the key code
saved in D4.B with $77 (data for F) stored at the address labeled TABLE ($00005300) in
the decode table. Since there is a match, the Z-flag will be 1. The program comes out of the
loop with the label SEARCH and outputs the character F to the seven-segment display at
line 5 1.

However, if no key in the top row is pushed, a 0 is output to the second row, and
the process continues. The program is written such that it will scan continuously for an
input key and update the display for each new input. The memory and I/O maps are chosen
arbitrarily.

302

Questions and Problems

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

Why is the 68020 provided with multiple Vcc and ground pins?

What is the purpose of each of the following 68020 pins?
(a) ECS and ocs (b) AS and DS

If there are no interrupts or DMA required in a 68020-based application, identify
whether you would connect each of the following 68020 pins to HIGH or LOW
or keep it floating: IPL2, IPL 1, IPLO, BR, BG, AND DGACK.

Identify the function performed by the 68020 when FC2, FC 1, FCO = 11 1 and A,,,
A,,, A,,, A,, = 11 11.

Assume a 25-MHz 68020 in Figure P9.5. Also, assume that data is ready at the
output pins of the 32-bit device at 300 ns. For the timing diagram of Figure P9.5,
determine the time at which data will be read by the 68020.

Assume the following data prior to execution of a 68020 hardware reset:
[$00000000] = $00004000, [$00000004] = $10007000, [ISP] = $23457180, [PC]
= $00405690, [VBR] = $12345678, [D4.L] = $45672368, and [SR] = $4020. Find
the contents of the memory locations and/or registers affected.

What is 68020 dynamic bus sizing?

Consider the 68020 instruction M0VE.B D1,$00000016. Find the 68020 data
pins over which data will be transferred if DSACKl DSACKO = 00. What are the
68020 data pins if DSACKl DSACKO = lo?

If a 32-bit data is transferred using the 68020’s M0VE.L D0,$50607011 instruction
to a 32-bit memory with [DO] = $81F27561, how many bus cycles are needed
to perform the transfer? What are A, and A, equal to during each cycle? What is
the SIZl ,SIZO code during each cycle? What bytes of data are transferred during
each bus cycle?

For a 16-bit device, use K-maps to express the memory enable lines DBBEl
(even) and DBBE2 (odd) in terms of 68020 A, SIZl, SIZEO, and DS signals
in minimized form. Note that all 68020 signals mentioned above may not be
necessary for each expression.

I

68020 DSACKl-\ I /---
-1 7 68020 DSACKO

FIGURE P9.5

68020 Hardware and Interfacing 3 03

9.11

9.12

9.13

Assume a 16-bit memory system. Draw a schematic connecting the even 27C256
to the 68020. Determine the memory map. Also, assume that A,,= 0 will select the
EPROMs and don’t cares to be 1 ’s. Use only the pins and signals shown in Figure
P9.11. Use DBBEl of the enable logic from Problem 9.10 to select the even
27C256.

Assume a 16-bit memory system. Draw a schematic connecting the 68020 to an
odd LH2256C/CH SRAM. Determine the memory map. Also, assume that A,, =

1 will select the SRAMs. Use only the pins and signals shown in Figure P9.12.
Use DBBE2 of the enable logic from Problem 9.10 to select the odd SRAM.
Assume don’t cares to be ones.

It is desired to connect the 68020 to an odd 68230 chip in a 16-bit system.
Assuming that A,, = 1 is used to select I/O, draw a schematic showing the
connections between the 68230 chip and the 68020, and obtain the I/O map for
68230 PGCR, PADDR, PACR, PADR, PBDDR, PBCR, and PBDR. Use the pins
and signals shown in Figure P9.13. Assume don’t cares to be 0’s. Use DBBE2 of
the enable logic from Problem 9.10 to select the odd 68230.

--
DSACKI ,DSACKO

D -D ,
0

m 27C256

68020

FIGURE P 9.11

r 68020

--
DSACKI ,DSACKO

“$ WE

A -A 14 LH256CICH
O f - SRAM

D -D , Lo
FIGURE P 9.12

3 04

9.14

9.15

Microprocessor Theory and Applications with 68000/68020 and Pentium

Write a 68020 assembly language program that will convert a BCD number
in D0.B to a seven-segment code using a look-up table containing the seven-
segment codes of the 10 BCD numbers. The program will then output this code
to a common-cathode display connected at 68230's port A as shown in Figure
P9.14. Assume that the look-up table is stored in memory starting at address
$00002000. Also, assume that A0 contains $0000 1000 and address $0000 1000
contains $000020000. Use A0 as the pointer in your program to access the table.

In Figure P9.15, if V, > 12 V, turn an LED ON connected at bit 3 of port A. If V,
< 11 V, turn the LED OFF. Using ports, registers, and memory locations as needed
and level 1 autovectored interrupt:
(a) Draw a neat block diagram showing a 68020/68230 microcomputer and
the connections in Figure P9.15 to 68230 ports.
(b) Write the main program and the service routine in 68020 assembly
language. The main program will initialize ports and wait for interrupt. The
service routine will accomplish the task and stop.

68020

FIGURE P 9.13

1
GND

FIGURE P9.14

Voltage
measurement

68020/68230
system

11v

FIGURE P9.15

10
ASSEMBLY LANGUAGE

PROGRAMMING WITH THE
PENTIUM: PART 1

In this chapter we describe the fundamental concepts associated with assembly language
programming with the Intel Pentium microprocessor. The first part of the Pentium’s
instruction set is introduced in this chapter. Topics include Pentium registers, addressing
modes, and data transfer and arithmetic instructions. Several examples of assembly
language programming using these instructions are provided.

Note that the Pentium contains 32 address pins and hence can directly address
232 or 4 Gigabytes (GB) of memory. This large addressing space allows the Pentium to
perform many operating system features, such as multitasking. The Pentium operates in
two modes of operation: real mode and protected mode.

The real mode appears to programmers as a fast 8086 with a few new instructions.
Like the 8086, the Pentium can directly address a maximum of one Megabyte (MB) of
main memory. Since DOS is a real mode operating system, a Pentium-based PC that boots
up into DOS operates in real mode. The real mode is the mode of operation of the Pentium
upon hardware reset.

While in the real mode, the protected mode can be selected via execution of a
single instruction. With a large directly addressable memory in protected mode, the Pentium
provides support for multitasking, virtual memory addressing, memory management and
protection, and control over instruction and data cache. Microsoft took advantage of these
features and designed the Windows operating system to run in protected mode.

To write programs in the protected mode, a background in operating systems
theory is required. Hence, real mode operation is emphasized in this book to present
programming concepts with the Pentium in a very simplified manner. Note that real mode
operation of the Pentium is widely used in many industrial applications.

The Pentium uses segmented memory in both real mode and, protected mode
utilizing segmentation. This means that each address used by the programmer (also called
“logical address”) consists of two components. In real mode, these components are a
16-bit segment and a 16-bit offset. The Pentium translates these two 16-bit components
for each logical address into a 20-bit physical address using on-chip hardware. In protected
mode, the Pentium uses 32-bit physical addresses, and the technique of translating each
logical address into a 32-bit physical address is quite different than real mode. Note that
the Pentium provides a special mechanism to use 32-bit offsets in real mode. Hence, both
16- and 32-bit offsets can be used in real mode.

305

306

10.1 Introduction

Microprocessor Theory and Applications with 68000/68020 and Pentium

The Intel Pentium is a 32-bit microprocessor based on their 80486. The 80486, on the other
hand, is an enhanced 80386. Hence, before proceeding further, an overview of the basic
features of the 80386 and 80486 will be helpful. The Intel 80386 was Intel’s first 32-bit
microprogrammed microprocessor. Its introduction in 1985 facilitated the introduction
of Microsoft’s Windows operating systems. The high-speed computer requirement of the
graphical interface of Windows operating systems was supplied by the 80386. Also, the
on-chip memory management of the 80386 allowed memory to be allocated and managed
by the operating system. In the past, memory management was performed by software.

The 80386 is based on Intel’s 16-bit microprocessor, the 8086. The 80386 is
software compatible with the 8086 at the object code level. The 80386 includes eight
32-bit general-purpose registers. The processor can handle 8-, 16-, and 32-bit data types.
It has separate 32-bit data and 32-bit address pins, and generates a 32-bit physical address.
The 80386 can address directly up to 4 GB (232) of physical memory. The 80386 can be
interfaced to external cache memory. The chip has 132 pins and is typically housed in
a pin grid array (PGA) package. The 80386 is designed using high-speed HCMOS I11
technology.

The 80386 is pipelined and can perform instruction fetching, decoding, execution,
and memory management functions in parallel. The on-chip memory management and
protection hardware translates logical addresses to physical addresses and provides the
protection rules required in a multitasking environment. The 80386 contains a total of 129
instructions. The 80386 protection mechanism, paging, and instructions to support them
are not present in the 8086.

The main differences between the 8086 and the 80386 are that the 80386 contains
32-bit addresses and data types and paging and memory management. To provide these
features and other applications, several new instructions are added in the 80386 instruction

TABLE 10.1 Basic Differences Between the 80486 and Original Pentium
MicroDrocessors

Feature 80486 Microprocessor Original Pentium Microprocessor
Address and data buses 32-bit address bus

32-bit data bus

Clock 25 to 100 MHz

Pipeline model Single
Type of Microprocessor Scalar
Internal cache 8K for both data and

instruction
Number of transistors 1.2 million
Performance at 66 MHZ 54 MIPS
in MIPS (millions of
instructions per second)
Number of Dins 168

32-bit address bus
64-bit data bus

60MHz, 66 MHz, 75 MHz, 90 MHz,
100 MHz, 120 MHz, 133 MHz, 150
MHz, 166 MHz, 200 MHz
Dual
Superscalar
8k for data and 8k for instruction

3.2 million
112 MIPS

273

Assembly Language Programming With The Pentium: Part I 307

set beyond those of the 8086.
is a 32-bit microprocessor.

It executes the complete instruction sets of the 80386 and the 80387DX floating-point
coprocessor. Unlike the 80386, the 80486 on-chip floating-point hardware eliminates the
need for an external floating-point coprocessor chip, and the on-chip cache minimizes the
need for an external cache and associated control logic.

The 80486 is object code compatible with the 8086 and 80386 microprocessors.
Like the 80386, the 80486 contains separate 32-bit address and 32-bit data pins.

The 80486 has an internal 8-kl3 cache memory. This provides fast access to
recently used instructions and data. The internal write-through cache can hold 8 kB of
data or instructions. The on-chip floating-point unit performs floating-point operations on
the 32-, 64-, and 80- bit arithmetic formats specified in the IEEE standard. The fetching,
decoding, execution, and address translation of instructions are overlapped within the
80486 processor using instruction pipelining. This allows a continuous execution rate
of one clock cycle per instruction for most instructions. Hence, the 80486 is a scalar
microprocessor.

The original Pentium was introduced in 1993. Intel could not name it the 80586
because of problems with trademarking the numbers. The Pentium is very similar to the
80486 except that it has a 64-bit data bus. The Pentium contains two independent pipelines
and has the capability of executing two instructions per cycle. Hence, the Pentium is a
superscalar microprocessor.

Table 10.1 summarizes the fundamental differences between the basic features
of the 80486 and the original Pentium. Like its predecessor, the 80486, the Pentium is
100% object code compatible with 8086/80386 systems. BICMOS (Bipolar and CMOS)
technology is used for the Pentium.

In December 1994, Intel detected a flaw in the Pentium chip while performing
certain division calculations. The Pentium is not the first chip that Intel has had problems
with. The first version of the Intel 80386 had a math flaw that Intel fixed before there were
any complaints. Some experts feel that Intel should have acknowledged the math problem
in the Pentium when it was first discovered and then offered to replace the chips. In that
case, the problem with the Pentium probably would have been ignored by users. However,
Intel was heavily criticized by computer magazines when the division flaw in the Pentium
chip was detected.

The flaw in the division algorithm in the Pentium was caused by a problem with a
look-up table used in the division. Errors occur in the fourth through the fifteenth significant
decimal digits. This means that in a result such as 5.78346, the last three digits could be
incorrect. For example, the correct answer for the operation 4,195,835 - (4,195,835 +
3,145,727) + (3,145,727) is zero. The Pentium provided the wrong answer: 256. IBM
claimed that this problem can occur once every 24 days. Intel eventually fixed the division
flaw in the Pentium.

The Pentium microprocessor contains the complete 80486 instruction set along
with some new ones that are discussed later. Pentium’s on-chip memory management unit
is completely compatible with that of the 80486.

Pentium’s on-chip floating-point hardware has been redesigned completely over
the 80486. Faster algorithms provide up to ten fold speed-up for common operations such
as add, multiply, and load. The two instruction pipelines and on-chip floating-point unit
are capable of independent operations. Each pipeline issues frequently used instructions
in a single clock cycle. The dual pipelines can jointly issue two integer instructions in one

Like the 80386, the 80486, introduced in 1989,

308 Microprocessor Theory and Applications with 68000/68020 and Pentium

clock cycle or one floating-point instruction (under certain circumstances, two floating-
point instructions) in one clock cycle.

Branch prediction is implemented in the Pentium by using two prefetch buffers,
one to prefetch code in a linear fashion and one to prefetch code according to the contents
of the branch target buffer (BTB), so the code required is almost always prefetched before
it is needed for execution. Note that the branch addresses are stored in the BTB.

There are two instruction pipelines, the U-pipe and the V-pipe, which are not
equivalent and interchangeable. The U-pipe can execute all integer and floating-point
instructions, whereas the V-pipe can execute only simple integer instructions and floating-
point exchange register contents (FXCH) instructions. The instruction decode unit decodes
the prefetched instructions so that the Pentium can execute them. The control ROM includes
the microcode for the Pentium processor and has direct control over both pipelines. A
barrel shifter is included in the chip for fast shift operations.

10.2 Pentium Registers

Figures lO.l(a) and lO.l(b) show the Pentium registers. The Pentium contains 8-, 16-,
and 32-bit registers classified into four groups: general-purpose registers, stack pointers
and index registers, extended instruction pointer and flag register, and Segment registers.
These are described next.

10.2.1 General-Purpose Registers
As shown in Figure lO.l(a), the Pentium has four 32-bit general-purpose registers:
EAX, EBX, ECX, and EDX. These registers can be used for arithmetic, logic, and other
operations as follows:

EAX, EBX, ECX, and EDX as four 32-bit registers

AX (low 16 bits of EAX), BX (low 16 bits of EBX), CX (low 16 bits of ECX), and DX
(low 16 bits of EDX) as four 16-bit registers

AH, AL, BH, BL, CH, CL, DH, and DL as eight 8-bit registers

as follows:
Some general-purpose registers perform specific functions for certain instructions

The uses of EAX, AX, and AL registers are assumed by some instructions. The I/O
(IN or OUT) instructions always use the EAX, AX, or AL for inputting or outputting
32-, 16- or 8-bit data from or to an VO port. Multiplication and division instructions
also use the EAX, AX, or AL.
The ECX or CX register is known as the counter register respectively in protected
mode and real mode because some instructions use these registers for a loop count for
iterative instructions.
The EDX or DX register is used during multiplication and division instructions. EDX
is used by 32 X 32 multiplication and 64 + 32 instructions. DX, on the other hand, is
used by 16 x 16 multiplication and 32 + 16 division instructions.

Note that BX can be used as a 16-bit pointer to memory while EAX, EBX, ECX,
and EDX can be used as 32-bit pointers to memory.

10.2.2
The Pentium stack pointer registers can be used as 32-bit or 16-bit registers as follows:

Stack Pointers and Index Registers

Assembly Language Programming With The Pentium: Part 1 309

General Registers

EBX EX

T P BP

ESI SI

ED1 DI

I

I I

I I I

I

I
ESP SP

Segment Registers

Status and Instruction Registers

Extended F!ags (EFLAGS)

FIGURE lO.l(a): Pentium registers: Applications register set

16-bi FLAGS register

bksted task flag-X
YO prlvilage kvelX

Drectlonal flaa-C

31 2 2 2 1 20 19 18 17 1 6 1 5

000 0 ID VIP VIF AC VM RF 0 NT I O U OF DF IF TF SF ZF 0 AF 0 PF 1 CF

I 0

Virtual 8086 nwde-Xl

bksted task flag-X
YO prlvilage kvelX

Cirecllonal flag-C
hterrupt enabk-X

Trap flag-S
Sgn flag-S
zero flag-S

Auxilary c a y - S
Farlty flag-S
carry flag-S

Resume flag-x

4C = Assignment F!a
JIF =Virtual hterrupPF!ag
VIP = Vnual hterrupt Rnding
ID = ID Flag S=status flag; (=controlflag; X=system flag

hterrupt enable-X
Trap flag-S
Sgn flag-S
zero flag-S

FIGURE 10.1@): Pentium registers: EFLAGS register

FIGURE 10.1 Pentium Registers

ESP and EBP as 32-bit system stack pointer and 32-bit user stack pointer respectively
in protected mode
SP and BP as 16-bit system stack pointer and 16-bit user stack pointer respectively in
real mode (the stack pointer registers are typically used for stack operations)

ESI and ED1 as 32-bit registers
SI and DI as 16-bit registers [the index registers (SI, DI, ESI, EDI) can also be used as
general-purpose registers or memory pointers or by string instructions]

The Pentium index registers can be used as 32- or 16-bit registers as follows:

3 10

10.2.3
The extended instruction pointer (EIP) contains the offset address relative to the start of
the current code segment of the next sequential instruction to be executed in protected
mode. The low-order 16 bits of EIP is named IP and is useful when the Pentium executes
instructions in real mode. The flag register is a 32-bit register, named EFLAGS is shown
in Figure 10.1 (b). The low-order 16 bits of EFLAGS is named FLAGS. The Pentium flags
in the EFLAGS register are grouped into three types: status flags, control flags, and system
flags. In the real mode, the status flags and control flags are used. The system flags along
with status and control flags are used in the protected mode.

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Extended Instruction Pointer and Flag Register

The status flags include CF, PF, AF, ZF, SF, and OF.
AF (the auxiliary carry flag) is set to 1 if there is a carry due to addition of the low 4
bits into the high 4 bits or a borrow due to the subtraction of the low 4 bits from the
high 4 bits of a number; otherwise, AF = 0. This flag is used by BCD arithmetic
instructions.

CF (the carry flag) is set to 1 if there is a carry from addition or a borrow from
subtraction; otherwise, CF = 0.
OF (the overflow flag) is set to 1 if there is an arithmetic overflow (i.e., if the size of
the result exceeds the capacity of the destination location) ; otherwise, OF = 0. Note
that overflow, OF = C, @ C, where C, is the final carry and C, is the previous carry.
An interrupt on overflow instruction is available to generate an interrupt indicating the
occurrence of an overflow.
SF (the sign flag) is set to 1 if the most significant bit of the result is 1 indicating
a negative number; SF = 0 if the most significant bit of the result is 0 indicating a
positive number.
PF (the parity flag) is set to 1 if the result has even parity; PF = 0 when the result has
odd parity.
ZF (the zero flag) is set to 1 if the result is zero; ZF = 0 for a nonzero result.

The Pentium has 3 control bits in the flag register that can be set or cleared by the
programmer:
Setting DF (the direction flag) to 1 causes string instructions to autodecrement; clearing
DF to 0 causes string instructions to autoincrement.

Setting IF (the interrupt flag) to 1 causes the Pentium to recognize external maskable
interrupts; clearing IF to 0 disables these interrupts.

Setting TF (the trap flag) to 1 places the Pentium in the single-step mode. In this mode,
the Pentium generates an internal interrupt after execution of each instruction. The
user can write a service routine at the interrupt address vector to display the contents
of desired registers and memory locations. The user can thus debug a program.

The system flags control I/O, maskable interrupts, debugging, task switching, and
enabling of virtual 8086 execution in a protected, multitasking environment.
IOPL (I/O privilege level) is a 2-bit field that supports the Pentium protection
feature.
NT (nested task) controls the IRET operation. If NT = 0, a usual return from interrupt
is taken by the Pentium by popping EFLAGS, CS, and EIP from the stack. If NT = 1,
the Pentium returns from an interrupt via task switching.

RF (resume flag) is used during debugging.

Assembly Language Programming With The Pentium: Part I 311

VM (virtual 8086 mode): when the VM bit is set to 1, the Pentium executes 8086
programs. When the VM bit is 0, the Pentium operates in protected mode.

AC (alignment check): When the AC bit is set to 1, the Pentium operates in alignment
check mode and generates exceptions when reference is made to an unaligned memory
address.

VIF (virtual interrupt flag) is a copy of the interrupt flag bit.
VIP (virtual interrupt pending) is used in multitasking to provide the operating system
with virtual interrupt flags and interrupt pending information.
ID (identification) gives the ability to set and clear the ID flag. It indicates that
the processor supports the CPUID instruction. The CPUID instruction provides
information to the software about the Pentium microprocessor, such as its version
number and manufacturer.

10.2.4 Segment Registers
The six 16-bit segment registers (CS, SS, DS, ES, FS, and GS) generate memory addresses
when combined with certain registers in the Pentium. These registers support the segmented
memory mechanism of the Pentium. In this mechanism, memory is divided into segments
in which each segment is a small section of the memory. The Pentium, at any time, can
point to six segments of the main memory.

A program contains instructions and data. The Pentium uses segmented memory
to store instructions in a code segment and the data portion of the program in a data
segment. The CS register points to the code segment while the DS register points to the
data segment. The SS register points to the stack segment. The three other data segment
registers, ES, FS, and GS, are used in a similar manner as the DS register. These registers
can be used if the program needs additional memory for storing data.

A segment register works differently in the real and protected modes of operation.
Let us discuss them in the following.

10.3 Modes of Operation

The Pentium has two primary processing modes: real and protected. In addition, the
Pentium microprocessor is provided with a system management mode (SMM), which
allows one to design for low power usage. SMM is entered through activation of an
external interrupt pin (system management interrupt, SMI#). Real mode is the mode of
operation of the processor upon hardware reset. This mode appears to programmers as a
fast 8086 with a few new instructions. The architecture of the Pentium processor in the real
mode is identical to that of the 8086 microprocessor. Protected mode is the normal 32-bit
application of the Pentium. All instructions and features of the Pentium are available in
this mode only. While in protected mode, the pentium can execute “real address” mode
instructions directly in a protected, multitasking environment using a feature called the
Virtual 8086 mode (also called V86 mode). Virtual 8086 is not really a Pentium mode, but
an attribute that can be enabled for any task with appropriate software while in protected
mode. This feature allows the Pentium to go back and forth repeatedly between the
protected and V86 modes at a fast speed. When entering into V86 mode, the Pentium can
execute an 8086 program. The processor can then leave V86 mode and enter the protected
mode to execute a Pentium program.

3 12 Microprocessor Theoly and Applications with 68000/68020 and Pentium

As mentioned before, the Pentium enters the real mode upon hardware reset. The
Pentium contains a control register called CRO to facilitate mode switching. In the real
mode, the protection enable (PE) bit at bit 0 in the 32-bit control register, CRO is cleared
to zero. Setting the bit 0 in control register, CRO (PE bit) by executing a MOV instruction
such as MOV CRO,reg32 will place the Pentium in protected mode. Note that reg32 can
be one of the Pentium’s 32-bit general-purpose registers, such as EAX. Also, data cannot
be moved into CRO using the immediate mode. When the Pentium is in protected mode,
setting the VM (virtual mode) bit in the flag register (the EFLAGS register) places the
Pentium in the V86 mode. The real and protected modes of the Pentium are described in
more detail below.

10.3.1 Real Mode
The real mode is provided with the Pentium to run programs for the 8086. In real mode
operation, the Pentium can address a maximum of 1 MB of the main memory directly using
a 20-bit physical address. This means that the starting physical address is OOOOOH and the
last addressable physical address is FFFFFH. In this mode, the Pentium uses a segmented
memory. Two components, a segment value and an offset value, are required to specify a
memory location (referred to as a logical address) in segmented memory organization.
The programmer uses the logical addresses. The Pentium’s on-chip hardware translates a
logical address to its corresponding 20-bit physical address by shifting the contents of the
segment register four times to the left, and then adding the 16-bit offset to it. There are
some advantages to working with the segmented memory. First, after initializing the 16-bit
segment registers, the Pentium has to deal only with offsets. That is, the Pentium has to
manipulate and store 16- and 32-bit offsets. Second, because of memory segmentation,
the Pentium can be used effectively in time-shared systems. For example, in a time-shared
system, several users may share one Pentium. Suppose that the Pentium works with one
user’s program for, say, 5 ms. After spending 5 ms with one of the other users, the Pentium
returns to execute the first user’s program. Each time the Pentium switches from one
user’s program to the next, it must execute a new section of code and new sections of data.
Segmentation makes it easy to switch from one user program to another.

In real mode, the Pentium’s main memory can be divided into 16 segments of 64
kB each (16 x 64 kB = 1 MB). A segment may contain codes or data. The Pentium uses
16-bit registers to address segments. For example, to address codes, the code segment
(CS) register must be initialized in some manner (to be discussed later). A 16-bit Pentium
register called the instruction pointer (IP), which is similar to the program counter of a
typical microprocessor, addresses each location in a code segment linearly. Because the
size of the IP is 16 bits, the segment size is 64 kl3 (2 9 . Similarly, a 16-bit data segment
register (DS, ES, FS,or GS) must be initialized to hold the segment value of a data segment.
The contents of certain 16-bit registers are designed to hold a 16-bit offset in a 64-kB data
segment. One of these address registers can be used to address each location linearly once
the data segment is initialized by an instruction.

To access the stack segment in real mode, the Pentium’s 16-bit stack segment
(SS) register must be initialized; the 64-kB stack is addressed linearly by a 16-bit stack
pointer (SP) register. Note that the stack memory must be a readwrite (RAM) memory.
Whenever the programmer reads from or writes to the Pentium stack, two components
of a memory address must be considered: a segment value and an offset value. The SS
register points to the current stack. The 20-bit physical stack address is calculated from
the SS and SP for stack instructions such as PUSH and POP. The programmercan

Assembly Language Programming With The Pentium: Part I 313

shifted 16-BIT SEGMENT SELECTOR I 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 +

20-bit physical address

16-BIT IP or Offset 0 0 0 0 16-bit IP
or

16 -bit offset

x

- -
19 18 17 1615 1413 12 11 10 9 8 7 6 5 4 3 2 1 0

I W Fully overlapped

Contiguous

Physical

memory ? t t .T t
OOOOOH 20000H 40000H 60000H 80000H

FIGURE 10.3 Example of Pentium memory segments.

FIGURE 10.2 Pentiurn address translation in real mode.
create a programmer’s stack with the BP (base pointer) instead of the SP for accessing the
stack using the based addressing mode. In this case, the 20-bit physical stack address is
calculated from BP and SS.

The Pentium assembly language program works with two components in real
mode while accessing memory. These two 16-bit components (the contents of a 16-bit
segment register and a 16-bit offset or IP) form a logical address. As mentioned before,
the programmer writes programs using these logical addresses in assembly language
programming. The Pentium logically shifts the contents of the 16-bit segment register four
times to left, and then adds the 16-bit IP or 16-bit offset to obtain the 20-bit physical address
in the real mode.This is depicted in Figure 10.2. Note that because of the possibility of a
carry, the resulting linear address may have as many as 21 bits. However, the carry (bit 20)
is discarded and 20 bits are used as the linear address.

As an example, consider a logical address with the 16-bit code segment (C S)
register contents of 2050H and the 16-bit Pentium instruction pointer (IP) containing a
value of 0004H. When the Pentium executes this program and encounters the logical
address, it will generate the 20-bit physical address as follows: Since the 16-bit contents of
IP = 0004H, the 16-bit contents of code segment = 2050H, and the 16-bit contents of code
segment value after shifting logically four times to the left = 20500H, the 20-bit physical
address generated by the Pentium on the address bus is 20504H.

The segments can be contiguous, partially overlapped, fully overlapped, or
disjointed. An example of how five segments (0 through 4), may be stored in physical
memory is shown in Figure 10.3. In this example, segments 0 and 1 are contiguous

3 14 Microprocessor Theory and Applications with 68000/68020 and Pentium

(adjacent), 1 and 2 are partially overlapped, 2 and 3 are fully overlapped, and 2 and 4 are
disjointed.

Every segment must start on 16-byte memory boundaries. Typical examples of
values of segments should then be selected based on physical addresses starting at 00000,,,
OOOlO,,, 00020,,, 00030,,, . . ., FFFFO,,. A physical memory location may be mapped into
(contained in) one or more logical segments. For example, consider a physical address
32040H. This address can be mapped as offset 2040H in segment 3000H or as offset
2000H in segment 3004H. Note that many applications can be written simply to initialize
the segment registers and then forget them.

A segment can be pointed to by more than one segment register. For example, the
DS and ES may point to the same segment in memory if a string located in that segment
is used as a source segment in one string instruction and a destination segment in another
string instruction. Note that for string instructions, a destination segment must be pointed
to by the ES. One example of six currently addressable segments is shown in Figure
10.4.

In summary, the Pentium has six segment registers: CS, SS, DS, ES, FS, and
GS. The four data segment registers (DS, ES, FS, and GS) can access four separate data
segments. In the real mode, some examples of the default segment registers with the
corresponding 16-bit offsets or values shown in Table 10.2 are shown.

In real mode, the Pentium obtains the 20-bit physical address as follows:

For instructions: 16-bit segment register, CS and 16-bit offset in IP.

0060

ss

GS

FS

ES

DS

cs

{

{
offset

0080

0050

{
offset

0070

{

Physical address

OO8OO16

00700,,

00600 ,,

00500,,

00400,,

00300,,

FIGURE 10.4

TABLE 10.2

Six currently addressable Pentium segments.

Some Examples of Registers and Offsets in Real Mode

Segment Register 16-bit Offset
cs IP
DS
ss SP or BP

BX, SI, DI, 16-bit value

Assembly Language Programming With The Pentium: Part I 315

DESCRIPTOR TABLE

I I

\i/ u

ALdNdRApss -1
FIGURE 10.5 Segment translation.

For data: 16-bit segment register, DS and 16-bit offset in BX, SI, DI, or an offset
value.

For system stack: 16-bit segment register, SS and 16-bit offset in SP.
For user stack: 16-bit segment register, SS and 16-bit offset in BP.

10.3.2 Protected Mode
In the protected mode, the Pentium uses 32-bit addresses. In this mode the Pentium supports
both segmentation and paging. Paging is useful for implementing virtual memory. Note that
paging is transparent to the application program, whereas segmentation is not. Pentium’s
paging feature will not be described here. Rather, a brief overview of the protected mode
segmented memory architecture is provided.

In the proteced mode, Pentium’s on-chip segment translation hardware translates
a logical address into a 32-bit linear address. The mechanism of generating physical
addresses in the protected mode is quite different from that of the real mode. As mentioned
before, in real mode, the Pentium generates 20-bit physical addresses by shifting 16-bit
segment registers four times to the left, and then adding to a 16-bit offset.

Accessing a large memory of 4 GB in the protected mode requires a change of
segment plus offset addressing technique used in the real mode. While accessing memory
in the protected mode, the Pentium still uses offset to obtain information in a memory
segment. However, it does not use the segment register directly. Instead, the contents of
the segment register are used as an index (upper 13 bits of the selector) to a table. Hence,
during the segment translation process, the contents of the segment register are used as an
index into a segment descriptor table to obtain a descriptor. Segment descriptors contain
the 32-bit segment base address, its size, and access rights. The Pentium adds a 16- or

TABLE 10.3 Some Examples of Registers and Offsets in Protected Mode

Segment Register 32-bit Offset

cs EIP
DS
ss ESP or EBP

EAX, EBX, ECX, EDX, E‘SI, EDI, an offset value

3 16 Microprocessor Theory and Applications with 68000/68020 and Pentium

32-bit offset to the 32-bit base address to translate a logical address to its corresponding
linear address. This is depicted in Figure 10.5. The on-chip paging translation hardware
then translates the linear address into a 32-bit physical address. If no paging is used, the
linear address is the same as the physical address. In the protected mode, some examples
of the default segment registers with the corresponding 32-bit offsets or values shown in
Table 10.3 are shown.

10.4 Pentium data Organization

The Pentium microprocessor contains instructions that can operate on various types of data.
These data types include bit, byte, 16-bit word, and 32-bit doubleword. Shift and rotate
instructions typically operate on bits. Bytes are stored in Pentium’s 8-bit registers such as
AH, AL, BH, BL,CH, CL, DH, and DL. Word data types are stored in Pentium’s 16-bit
registers AX, BX, CX, DX, SI, DI, and BP. Also, each of the 16-bit registers AX, BX,
CX, and DX can hold 2 bytes. For example, 8-bit registers AH and AL will contain 23H
(the upper byte) and 45H (the lower byte) of the 16-bit data 2345H stored in the 16-bit
register AX. Doubleword (32-bit) data types are normally stored in 32-bit registers such
as EAX, EBX, ECX, EDX, ESI, EDI, and EBP.

The memory of a Pentium-based microcomputer is organized as bytes. In the
real mode, each byte is addressed uniquely with 20-bit addresses of 00000,,, OOOOl,,, . , .
,FFFFF,,. A Pentium word in memory consists of any two consecutive bytes; the low-
addressed byte is the low byte of the word, and the high-addressed byte contains the high
byte as follows:

Low byte of the word

Address 02000,6

High byte of the word

Address 0200 1 16

1 0216

The 16-bit word at the even address 02000,, is A102,,. Next, consider a word stored at an
address 30151,, as follows:

Low byte of the word High byte of the word
2E16

Address 301511.5 Address 3015216
The 16-bit word stored at the odd address 30151,, is 462E,,.

The Pentium assigns the low address to the low byte of a 16-bit register and
the high address to the high byte of the 16-bit register for 16-bit transfers between the
Pentium and main memory. This is called little-endian byte ordering. In contrast, Motorola
microprocessors such as the 68020 use big-endian byte ordering,, in which the 68020
assigns the high address to the low byte of a 16-bit register and the low address to the high
byte of the 16-bit register for 16-bit transfers between the 68020 and main memory.

10.5

The assembly language program is translated into binary via a program called an assembler.
The assembler program reads each assembly instruction of a program as ASCII characters

Assembly Language Programming with the Pentium

Assembly Language Programming With The Pentiurn: Part 1

TABLE 10.4 Conversion of HLT into Its Binary Op-Code

3 17

Assembly Code

Binary Form of ASCII
Codes as Seen by
the Assembler

Binary Op-Code
Created by the
Assembler

H 0100 1000
L 0100 1100
T 0101 0100

1111 0100

and translates them into the respective binary op-codes. For example, the Pentium assembler
translates the HLT instruction into its binary op-code is 11 11 0100 (F4 in hex) as depicted
in Table 10.4.

An advantage of the assembler is address computation. Most programs use
addresses within the program as data storage or as targets for jumps or calls. When
programming in machine language, these addresses must be calculated by hand. The
assembler solves this problem by allowing the programmer to assign a symbol to an
address. The programmer may then reference that address elsewhere by using the symbol.
The assembler computes the actual address for the programmer and fills it in automatically.
One can obtain hands-on experience with a typical assembler for a microprocessor by
downloading it from the Internet.

As mentioned in Chapter 5, each line in an assembly language program includes
four fields:
1. Label field
2. mnemonic or op-code field
3. Operand field
4. Comment field
The assembler ignores the comment field but translates the other fields. The label

field must start with an uppercase alphabetic character.
The assembler must know where one field starts and another ends. Most assemblers

allow the programmer to use a special symbol or delimiter to indicate the beginning or end
of each field. Typical delimiters used are spaces, commas, semicolons, and colons:

To handle numbers, most assemblers including the Pentium assembler, consider
all numbers as decimal numbers unless specified. Most assemblers will also allow binary,
octal, or hexadecimal numbers. The user must define in some way the type of number
system used. This is generally done by using a letter following the number. Typical letters
used are B for binary, Q for octal, and H for hexadecimal. Typical assemblers, such as the
MASM32, require hexadecimal numbers to start with a digit (0 through 9). A 0 is typically
used if the first digit of the hexadecimal number is a letter. This is done to distinguish
between numbers and labels. For example, typical assemblers will normally require the
number F3H to be represented as OF3H; otherwise, the assembler will generate an error.
Assemblers use pseudoinstructions or directives to make the formatting of the edited text
easier. These directives are not translated directly into machine language instructions.
Typical assembler directives are discussed in the following.

Spaces are used between fields.
Commas (,) are used between addresses in an operand field.

A semicolon (;) is used before a comment.

A colon (:) is used after a label.

3 18

ORIGIN (ORG)
anywhere in memory. Typical ORG statements are

Microprocessor Theory and Applications with 68000/68020 and Pentium

The directive ORG lets the programmer place the programs

ORG 7000H
CLC

Most assemblers assign a value of zero to starting address of a program if the programmer
does not define this by means of an ORG.

Equate (EQU) The EQU assigns a value in its operand field to an address in its label
field. This allows the user to assign a numerical value to a symbolic name. The user can
then use the symbolic name in the program instead of its numerical value. Atypical example
of EQU is START EQU 0200H, which assigns the value 0200H in hexadecimal to the label
START.

Typical assemblers, such as the MASM32 (used to assemble Pentium programs in
this book), require hexadecimal numbers to start with a digit. A 0 is used if the first digit of
the hexadecimal number is a letter; otherwise, an error will be generated by the assembler.
This is done to distinguish between numbers and labels. For example, TEST EQU OA5H
will assign A5 in hex to the label TEST.

Define Byte (DB)
certain byte value. For example,

will store the data value 45 hex to the address START. The DB directive can be used to
generate a table of data as follows:

The directive DB is generally used to set a memory location to a

START DB 45H

ORG 7000H
TABLE DB 20H,30H,40H,50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex, and 50
hex occupy the next three memory locations. Therefore, the data in memory will look like
this:

7000 20
7001 30
7002 40
7003 50

Define Word (DW)
two memory locations. For example,

The directive DW is typically used to assign a 16-bit value to

ORG 7000H
START DW 4AC2H

will assign C2 to location 7000 and 4A to location 700 1. It is assumed that the assembler
will assign the low byte first (C2) and then the high byte (4A). The DW directive can be
used to generate a table of 16-bit data as follows:

ORG 8000H
POINTER DW 5000H,6000H,7000H

Assembly Language Programming With The Pentium: Part I 319

In this case, the three 16-bit values 5000H, 6000H, and 7000H are assigned to memory
locations starting at the address 8000H. That is, the array would look like this:

8000 00
800 1 50
8002 00
8003 60
8004 00
8005 70

Define Doubleword (DD) Similar to DB and DW, the directive DD is typically
used to assign a 32-bit value to four memory locations. The directive DD can be used to
create a table in memory containing 32-bit data.

END
program.

The directive END indicates the end of the assembly language source

.CODE The .CODE directive is used to indicate the start of a code segment.

.DATA The .DATA directive is used to indicate the start of a data segment.

.MODEL The .MODEL directive tells the assembler the type of program being
created. Two examples of model types are SMALL and FLAT. SMALL programs contain
one code segment and one data segment with 16-bit addressing. FLAT programs, on the
other hand, contains one code segment and one data segment with 32-bit addressing. All
Pentium assembly language programs in this book are either SMALL or FLAT. Also,
STDCALL must be included with a model for inclusion of assembler’s standard library
routines required to assemble the programs.

To develop Pentium assembly language programs in this book, MASM32
assembler and OllyDebugger simulator are used. These programs are very user friendly,
and can be downloaded from the Internet free of charge, using the following web sites.

MASM32 http://www.assemblercode.com/masm32/m32v9r.zip

OllyDebugger http://www.ollybg.de/odbg 1 1O.zip
The zip files for the MASM32 and OllyDebugger are provided in a CD. The

CD also contains a tutorial showing a step-by-step procedure for installing, assembling,
and debugging a typical Pentium assembly language program using the MASM32 and
OllyDebugger. Most of the Pentium programming examples in this book are assembled
using the MASM32 and debugged using OllyDebugger. Screen shots are provided on the
CD verifying correct operation of all assembly language programs via simulations using
test data.

As an example, a typical program for adding two 16-bit numbers written in
Pentium assembly language is shown below.

LABEL FIELD MNEMONIC FIELD OPERAND FIELD COMMENT FIELD
,486
.MODEL SMALL,STDCALL ; Model type and calling
.CODE ; convention

; include 486 instruction set

320

START MOV AX, 1 ; Move 1 intoAX
MOV BX,2 ; Move 2 into BX
ADD AX,BX ; Add contents of AX with

HLT

Microprocessor Theory and Applications with 68000/68020 and Pentium

; BX

END START ; End of program

The assembly language program above called a sourcefile contains all instructions
required to execute a program. The assembler converts the source file into an object file
containing the binary codes or machine codes that the Pentium will understand. In typical
assemblers, including the Pentium, the source file must be stored with a file extension
called .ASM. Suppose that the programmer stores the source file above as SUM.ASM. To
assemble the program, SUM.ASM is presented as input to the assembler. The assembler
typically generates two files: SUM.OBJ and SUM.LST.

The SUM.OBJ is an objectfile, a binary file containing the machine code and data
that correspond to the assembly language program in the source file (SUM.ASM). The
object file includes additional information about relocation and external references. The
object file is not normally ready for execution.

The SUM.LST, a listfile, shows how the assembler interprets the source file.
SUM.LST may be displayed on the screen. Suppose that the source file SUM.ASM is
assembled at CS = 0040H, and IP = lOOOH using the MASM32. The SUM.LST file is as
follows:

0040 1000 START:
0040 1000 66B80 100 MOV AX,1
00401 004 66BB0200 MOV BX,2
00401008 6603C3 ADD AX,BX
0040 1 OOB F4 HLT

The first column gives the default CS and IP values where codes are stored.
These values are generated automatically by the MASM32. For example, the machine
code (66B80100H) for the first instruction, MOV AX,1 is stored in CS:IP = 0040H: 1000H.
Since this instruction takes 4 bytes, the machine code for the next instruction, MOV BX,2
starts at CS:IP = 0040H: 1004H. Note that the comment fields in the SUM.ASM file are not
translated by the MASM32.

To develop a large program by a group of programmers, each programmer
may write a portion of the whole program. The individual programs must be tested and
assembled to ensure their proper operation. When all portions of the program are verified
for correct operation, their object files must be combined into a single object program using
a linker, a program that checks each object file and finds certain characteristics, such as the
size in bytes and its proper location in the single object program. The linker also resolves
any issues in regard to cross-references to labels. Also, a library of object files is typically
used to reduce the size of the source file. The library files may contain frequently used
subroutines and/or sections of codes. Rather than writing these codes repeatedly in the
source file, a special pseudoinstruction is used to tell the assembler that the code must be
inserted at the linking time by the linker. When linking is completed, the final object file
is called an executable (.EXE)file. Finally, a program called the loader can be used to load
the .EXE file in memory for execution.

Assembly Language Programming With The Pentium: Part I

10.6 Pentium Addressing Modes

Assembly language programs in Pentium typically contain two logical parts: data and code.
The ways of specifying the locations of the operands are called addressing modes. Note
that an operand may typically be immediate data, or data stored in a Pentium’s register or
in a data segment.

Several instruction types along with a number of addressing modes and data types,
make the Pentium a very powerhl microprocessor. For simplicity, most of the examples of
addressing modes described below use the Pentium instruction MOV destination,source.
This instruction transfers the contents of a source (register or a memory location) into a
destination (register or a memory location).

Also, when a physical address is generated by the Pentium in the real mode, a
20-bit value appears on Pentium’s low 20 of the total 32 address pins. Note that Pentium
address pins A2 A1 A0 are encoded from the byte enable pins, BE7# through BEO#. As
mentioned earlier, this 20-bit physical address is generated by the Pentium using two
components (logical address) provided by the programmer. These components are a 16-bit
segment value and a 16-bit offset value. The Pentium shifts the segment four times to left
and then adds the offset to generate a 20-bit physical address.

When accessing a memory location, the programmer must provide a segment value
and an offset value. Data transfer instructions such as MOV use the data segment register
(DS) as default; the offset is provided by the contents of certain registers (mentioned
before) or an offset value. For instructions, the 20-bit physical address is computed from
CS and IP. For stack operations, SS and SP are used automatically to compute the physical
address for the system stack.

The programmer can initialize the data segment registers (DS, ES, FS, GS) and
the stack segment register (SS) using AX, BX, CX, or DX. For example, to initialize DS to
5000H, the following instruction sequence can be used:

32 1

MOV BX,5000H
MOV DS.BX

These segment registers cannot be initialized with immediate data. Also, CS
cannot be initialized via programming. CS is typically initialized upon hardware reset. Note
that while accessing a memory location, initialization of a segment register is required for
generation of the 20-bit physical address. This will ensure correct execution of a program.

10.6.1
Although the 32-bit offsets are designed for protected mode applications, 32-bit offsets can
be used for real mode applications. In the real mode, these 32-bit offsets must fall within
the 64-kB range (0000H-FFFFH) used within a segment. This means that the contents
of a 32-bit register holding an offset must be between OOOOOOOOH and OOOOFFFFH. The
advantage is that an extended register may be used as a base register or an index register or
both in the same instruction. However, the ESP register is the only one that may be used
as a base register, and cannot be used as an index register.

Sixteen- and 32-bit addresses (offsets) and data can be mixed using two override
prefixes:

Pentium’s 32-Bit Addressing in Real Mode

66H Oprand size override prefix
67H Address size override prefix

322 Microprocessor Theoly and Applications with 68000/68020 and Pentiurn

In the real mode, the value of a 32-bit offset may not exceed 65,535 (64K). This
means that the low 16-bit of a 32-bit register can be used to hold the 16-bit offset in real
mode. Both 16- and 32-bit data and offsets can be used in real mode, as illustrated below
by examples.

The Pentium assembler (MASM32) translates the following instruction with
32-bit data:

MOV EAX,20007 15AH

into machine code: B85A7 10020.

ECX, and a 32-bit offset in EBX:
The Pentium assembler translates the following instruction with a 32-bit operand,

MOV ECXJEBX]

into machine code: 8BOB.

prefixes above as shown in the examples below.
However, one can use 16-bit data and offsets for the Pentium assembler using the

The assembler translates the following instruction with a 16-bit operand, AX:

MOV AX,2

into machine code: 66B80200.
The Pentium assembler automatically inserts 66H (Operand size override prefix).
The assembler translates the following instruction with 16-bit operand CX:

MOV CX,[EBX]

into machine code: 668BOB.
The Pentium assembler automatically inserts 66H (operand size override prefix).

Next, Pentium assembler translates the instruction with 16-bit offset

MOV EAX, [BX]

into machine code: 678B07.
The Pentium assembler automatically inserts 67H (address size override prefix).

Note that both override prefixes can be mixed in an instruction as illustrated in the
following. For example, the Pentium assembler translates the following instruction with a
16-bit offset and 16-bit operand:

MOV DX,[BX]

into machine code: 67668B 17
In this case, the Pentium assembler automatically inserts 6766 for address and operand
override prefixes.

The Pentium provides various addressing modes to access instruction operands.
Operands may be contained in registers, within the instruction op-code, in memory, or
in I/O ports. The Pentium has 13 addressing modes, which can be classified into five
groups:

Assembly Language Programming With The Pentium: Part I 323

1. Register and immediate modes (two modes)
2. Memory addressing modes (seven modes)
3. Port addressing mode (two modes)
4. Relative addressing mode (one mode)
5. Implied addressing mode (one mode)

The addressing modes are illustrated utilizing Pentium instructions with directives
of a typical assembler. Note that in the following, parentheses, () are used to indicate the
contents of a Pentium register or a memory location.

10.6.2 Register and Immediate Modes
Register Mode. In register mode, source operand, destination operand, or both may
be contained in Pentium’s 8-, 16-, or 32-bit registers. For example, MOV EAX,EBX

Table 10.5 Memory Addressing Modes for 16-bit Offset
Memory Addressing Offset Value Assembler Syntax

Direct Contained in instruction [offset]

Indirect
Register Indirect
Based
Indexed SI(orD1) + d
Based Indexed

Contained in BX or BP or SI or DI [BX] or [BPI or [SI] or [DI]
BX (or BP) + d [BX + d] or [BP + d]

[SI + d] or [DI + d]
[BX + SI + d] or [BP+ SI + d] or
[BX + DI+ d] or [BP + DI+ d]

BX + SI + d or BP+ SI + d or
BX + DI + d or BP+ DI + d

In the above ‘d’ is displacement

Table 10.6 Memory Addressing Modes for 32-Bit Offset

Memory Addressing Offset Value Assembler Syntax

Direct Contained in instruction [offset]

Indirect
Register Indirect Contained in base [Base]
Based Contained in (base + d) [Base + d]
Indexed Contained in (index * s + d)
Based Indexed Contained in (base + index + d)
(with no scaling)

[Index*s + d]
[Base + index + d]

Based Indexed Contained in (base + index * s + d) [Base + index * s + d]
(with scaling)

In the above, ‘d’is displacement, Scale factol; s = I or 2 or 4 or 8, base = EAXor EBXor ECX
or EDX or ESI or EDI or EBP or E S e and index = EAX or EBX or ECX or EDX or ESI or EDI
or EBP ESP cannot be used as index register. Effective address = segment register + base +
(index * s) + d.

324 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

moves the 32-bit contents of EBX into EAX, MOV AX,BX moves the 16-bit contents of
BX into AX, and MOV AH,BL moves the 8-bit contents of BL into AH. In these examples,
both operands are in register mode.

Immediate Mode. In the immediate mode, 8-, 16-, or 32-bit data can be specified as
part of the instruction. For example, MOV ECX,2A715062H moves the 32-bit data
2A7 15062H into register ECX. Similarly, MOV DX, 4COOH moves the 16-bit data 4COOH
into register DX. On the other hand, MOV BH, 2DH moves 8-bit data 2DH into register
BH.

10.6.3 Memory Addressing Mode
The Pentium provides several addressing modes while accessing data in memory. Note that
the programmer must specify a logical address to identify a memory location. Recall that
the logical address contains two components: a segment value and an offset value. Memory
addressing modes vary in how they specify the offset.

The memory addressing modes available for 16-bit offsets are the same as for
the 8086. Tables 10.5 and 10.6 list the memory addressing modes for 16-bit and 32-bit
offsets, respectively. Note that for memory indirect addressing with 32-bit offset (Table
10.6), the offset within the segment selected is the sum of maximum four components:
a displacement, a base register, an index register, and a scaling factor of 1, 2, 4, or 8. The
offset that results from adding these components is called an effective address. Note that
all general purpose registers can be used as index registers. ESP cannot be used as an index
register.
The various memory addressing modes are described below. Note that the numerical
valuesare chosen arbitrarily for illustrative purposes.

Memory Direct Addressing. The direct addressing mode includes the offset directly
in the instruction. A typical Pentium instruction such as the MOV transfers data between
an 8-bit register such as AL ,or a 16-bit register such as BX, or a 32-bit register such as
EDX, and an offset located in the data segment. Memory-to-memory transfers are not
allowed.

For example, MOV [2000H],AL, in real mode, transfers 8-bit contents ofAL into
a 20-bit physical address computed from the segment register DS and offset 2000H. Typical
assemblers use square brackets around the offset 2000H to indicate that the contents of the
memory location are at an offset 2000H from the segment DS.

Next, consider MOV BX, [SOOOH] in real mode. This instruction moves the
contents of a 20-bit physical address computed from the segment register DS and offset
5000H to BX.

Finally, consider MOV [3000H], ECX in real mode. If (DS) = 2000H, (ECX) =

12345678H, (23000H) = OlH, (23001H) = 02H, (23002H) = 03H, and (23003H) = 04H,
then after execution of MOV [3000H],ECX, the byte contents of four 20-bit physical
addresses will be [23000H] = 78H, [23001H] = 56H, [23002H] = 34H, and [23003H] = 12H.

Register Indirect Addressing. In the register indirect mode, the offset is contained
in one of the 16- or 32-bit general-purpose registers. The offset of a memory operand may
be taken directly from one of the base or index 16-bit registers (BX, BP, SI, DI) or 32-bit
registers (EAX, EBX, ECX, EDX,ESI, EDI, EBP). Note that 16-bit registers AX, CX, DX,
and SP and the 32-bit register ESP cannot be used indirectly to hold 16-bit or 32-bit offset,
respectively.

Assembly Language Programming With The Pentium: Part I 325

Next, consider MOV CX,[BX] in real mode. Ifprior to execution ofthe instruction,
(DS) = 2000H, (BX) = 0004H, and (20004H) = 24H, (20005H) = 02H, then, after execution
of MOV CX,[BX], the contents of CH and CL are 02H and 24H respectively. Note that the
segment register used in MOV CXJBX] can be overridden, such as MOV CX,ES:[BX].
Now, the MOV instruction will use ES instead of DS. If prior to execution of MOV
CX,ES:[BX], (BX) = 0004H, (ES) = 1000H, and (10004H) = 02H, (10005H) = OOH, then
after MOV CX,ES:[BX] , the register CX will contain 0002H.

Typical examples of indirect addressing using 32-bit registers for offset include
MOV DXJECX] and MOV [EAX],EBX. Next, consider as an example MOVAX,[EDX]
in real mode. Note that in real mode, the contents of EDX can have a value between
OOOOOOOOH and OOOOFFFFH. If prior to execution of this instruction, (AX) = F092H,
(EDX) = 00002000H, (DS) = 3000H, (32000H) = 20H, and (32001H) = 30H, then after
execution of MOV AX,[EDX], the 16-bit register AX will contain 16-bit data 3020H;
(AH) = 30H, (AL) = 20H. Note that all numerical values in the above are chosen arbitrarily
for illustrative purposes.

For register indirect addressing mode using BX, DI, or SI to contain the 16-bit
offset, the DS register is used as the segment register by default. The SS register is used
as a default segment register if BP is used indirectly to hold the 16-bit offset. For a 32-bit
offset, the DS is used by default as the segment register if EAX, EBX, ECX, EDX, ESI,
or ED1 is used to hold the 32-bit offset; SS is used as a default segment register if EBP is
used to hold the 32-bit offset.
Note that in the real address mode the contents of the 32-bit register holding the offset must
be between OOOOOOOOH and OOOOFFFFH.

The size of the data is typically specified by the register size when one of the
operands is a register. For example, MOV BH, [SI] in the real mode transfers the 8-bit
contents of a 20-bit physical address computed from 16-bit offset in SI and the segment
register DS into BH. Note that in this case, the 8-bit register specifies the 8-bit data size.
However, there are certain instances in which the size of the data needs to be specified by
assembler directives BYTE PTR, WORD PTR, or DWORD PTR. For example, MOV
BYTE PTR [BX], 50H defines the location addressed by offset in BX and the segment
register, DS as a byte. The instruction, MOV WORD PTR [BX],5 in the real mode will
treat the location addressed by the 20-bit physical address computed from BX and DS
as 16-bit. This means that this instruction will convert decimal number 5 into 16-bit as
0000000000000101 in binary, and then transfer this data into 16-bit memory. Similarly,
MOV DWORD PTR [SI],70 specifies the memory location as 32-bit.

Based Addressing. For 16-bit offset, the effective address is the sum ofadisplacement
value (0 or signed 8-bit or signed 16-bit) and the contents of register BX or BP. The signed
8-bit displacement gives a range of -128,, to +127,,, with 0 being positive. The signed
16-bit, on the other hand, provides a range of -32768,, to + 32767,,, with 0 being positive.
Note that if the displacement is g-bit, and the register is 16-bit, the displacement is sign-
extended to 16 bits before adding it to the 16-bit register. Typical example includes MOV
[BX + 31, AL.

Assume real mode. If prior to execution of this instruction, (BX) = 0200H, (DS)
= 5000H, (50203H) = A2H, and (AL) = 05H, then after execution of this instruction, the
contents of 20-bit physical address 50203H will be 05H. Note that a typical assembler uses
either MOV [BX+3], AL or MOV 3 [BX],AL.

For a 32-bit offset, the effective address is the sum of a displacement value (0

326 Microprocessor Theory and Applications with 68000/68020 and Pentium

or signed 8-bit or signed 32-bit) and the contents of a base register. A typical example
include MOV [ECX + 81, EDX. Assume the real mode. Note that ECX + 8 in real mode
can have a maximum value of 0000FFFFH. If prior to execution of this instruction, (ECX)
= 00000200H, (DS) = 3000H, (30208H) = A2H, (30209H) = 05H, (3020AH) = 06H,
(3020BH) = 02H, and (EDX) = 0102F305H, then after execution of this instruction, the
contents of the four affected 20-bit physical addresses will be as follows: (30208H) = 05H,
(30209H) = F3H, (3020AH) = 02H, and (3020BH) = 01H. Ifthe displacement is %bit, and
the register is 32-bit, the displacement is sign-extended to 32 bits before adding it to the
32-bit register.

Next, consider MOV AX,[BX+4] in real mode. This instruction moves the
contents of the 20-bit physical address computed from a segment register and BX + 4 into
AX. The segment register is DS (when the content of BX is used as offset), or SS (when
the content of BP is used as offset). The content of BX is unchanged. The displacement (4
in this case) can be unsigned 16-bit or signed 8-bit. This means that if the displacement is
%bit, the Pentium sign-extends this to 16-bit. Segment register SS is used when the stack
is accessed; otherwise, this mode uses segment register DS. When memory is accessed,
the 20-bit physical address is computed from BX and DS. On the other hand, when the
stack is accessed, the 20-bit physical address is computed from BP and SS. Note that BP
may be considered as the user stack pointer while SP is the system stack pointer. This
is because SP is used automatically by some Pentium instructions (such as the CALL
subroutine).

Displacement
I 02H F NAME0

I Y---
Base Register

- EA

2000H

2001 H

2002H

3000H

3001 H

3002H

using based mode

(a) Accessing a fixed record stored in different places in memory using based mode

BP=SP

Temporary stack for local

SP (top of stack)

Using BP as the stack pointer using based mode

variables BP-6
BP-8

Low address

(b)
FIGURE 10.6 Uses of based addressing mode.

Assembly Language Programming With The Pentium: Part I 327

Based addressing mode is useful when one wants to access the same record type
among several occurrences in a data structure which may be stored at different places
in memory. For example, consider Figure 10.6(a). In the figure, personal records of N
employees are stored starting at an offset 2000H. Assume that each record type is 8 bits
wide. For example, the element “salary” of the employee with NAME 0 can be loaded
into an 8-bit register such as AL of the Pentium using the instruction MOV AL, [ALPHA
+ BX], where ALPHA is the 8-bit displacement 02H and BX contains the starting address
of RECORD 0. Now, to access the salary of RECORD N, the programmer simply changes
the contents of BX to 3000H.

The based addressing mode with BP is also a very convenient way to
access stack data in the real mode, as shown in Figure 10.6(b). BP can be used as a
stack pointer in SS to access local variables. Consider the following instruction sequence
(chosen arbitrarily to illustrate the use of BP for stack):

PUSH
MOV
PUSH
SUB
MOV
MOV
MOV
ADD
POP
POP

BP
BP,SP
cx
SP, 6
[BP-41, BX
[BP-61, AX
[BP-81, DX
SP, 6
cx
BP

2 Save BP
; Establish BP
9 Save CX
;
;
;
;
; Deallocate stack
; Restore CX
; Restore BP

Allocate three words of stack for local
variables. Push BX onto stack.
using BP. Push AX onto stack using
BP. Push DX onto stack using BP

This mode can also be used to access an element in an array. Assume the real
mode. Assume that an array of 50 bytes is stored in memory at an offset 3000H in DS. Note
that the first element in the array is element 0 and the last element is element 49. Now, to
access, say, element 4 in the array, register BX can be initialized with offset 3000H and the
instruction MOV CL,[BX + 41 can be executed to read element 4 from the array into CL.

Indexed Addressing. In this mode, the 16-bit effective address is calculated from
the sum of a displacement value and the contents of register SI or DI. For example, MOV
AX,[SI + 61 in real mode moves the 16-bit contents ofthe 20-bit physical address computed
from SI + 6 and the segment register into AX. The segment register is DS. The content of
SI is unchanged. The displacement (6 in this case) can be signed 8- or 16-bit. This means
that the displacement can be positive or negative. Note that if the displacement is 8-bit, and
the register is 16-bit, the displacement is sign-extended to 16 bits before adding it to the
16-bit register. This mode can be used to access an array when the size of each element is
a byte.

TABLE 10.7 Sample Array

Offset (Hex) Memory Contents (Hex)

00002000H 0507H
00002002H F214H
00002004H 5171H
00002006H 1234H

328 Microprocessor Theory and Applications with 68000/68020 and Pentium

For 32-bit offset, the scaled indexed with displacement mode can be used. In this
case, the effective Address = (index * scale factor) + displacement. Note that ESP cannot
be used as index register. A typical example is MOV EBX, [ESI*2 + lOH]. Assume the real
mode. If prior to execution of this instruction, (EBX) = 02030405H, (ESI) = 00000030H,
(DS) = 1000H, (10070H) = 02H, (10071H) = B7H, (10072H) = 24H, and (10073H) = 07H,
then after execution of this instruction, (EBX) = 0724B702H.

Based Indexed Addressing with No Scaling. The 16-bit effective address is
computed from the sum of a base register (BX or BP), an index register (SI or DI), and a
displacement. For example, MOV AX,[4 + BX + SI] moves the 16-bit contents of the
20-bit physical address computed from the segment register and (BX) + (SI) + 4 into AX.
The segment register is DS. In this mode, 32-bit effective address = base + index +
displacement. A typical example is MOVALJEAX + ESI + 21. This mode can also be used
to access an array when each element size is a byte.

Based Indexed with scaling. In this mode, 32-bit effective address = base + (index
* scale)+ displacement. A typical example is MOV DX, [EAX + ESI*2 + 101. This mode
can be used to access two-dimensional arrays such as matrices. This mode can also be used
to access an array when the element size is 2,4, or 8 bytes. The base register can address
the beginning of the array, the index register can hold the subscript (the element number in
the array), and the Pentium automatically converts the element number into an index by
applying the scaling factor. Note that scaling is only allowed for 32-bit offsets.

For example, consider the array shown in Table 10.7 at offset 00002000H in the
real mode containing four 16-bit elements (0 through 3). Now, to read an element from this
array, the based indexed with scaling addressing mode can be used. First, a base register
such as EAX can be loaded with the starting offset 00002000H using the instruction, MOV
EAX,00002000H. To load F214H (element l), an index register such as EDX can be
loaded with 1 (the element number) using the instruction MOV EDX, 1. Since the size of
the element is 16 bits (2 bytes), a scaling factor of 2 can be used to load element 1 into
register BX using the instruction MOV BX, [EAX + 2*EDX]. Note that this instruction
loads the 16-bit contents of offset 00002002H (00002000H + 2 * 1) which is F214H, into
BX. The Pentium assembly language program to accomplish this is

00401000 B800200000 MOV EAX,00002000H
00401005 BAO1000000 MOV EDX,l
0040 1 OOA 668B 1 C50 MOV BX,[EAX+EDX*2]
00401 OOE F4 HLT

Similarly, element 3 (1234H) can be loaded into a 16-bit register such as CX using the
following assembly language program:

00401000 B800200000 MOV EAX,00002000H
00401005 BA03000000 MOV EDX,3
0040100A 668BlC50 MOV BXJEAX + EDX*2]
0040 1 OOE F4 HLT

String Addressing. This mode uses index registers. In real mode, SI is assumed to
point to the first byte or word (16-bit) or doubleword (32-bit) of the source string, and DI

Assembly Language Programming With The Pentium: Part I 329

is assumed to point to the first byte or word (16-bit) or doubleword (32-bit) ofthe destination
when a string instruction is executed. The SI or DI is incremented (DF = 0) or decremented
(DF = 1) automatically by 1 for byte, 2 for word, or 4 for doubleword to point to the next
byte or word or doubleword, depending on DF. An example of string addressing mode is
MOVSW. The default segment register for the source is DS with SI pointing to the source
string, and it may be overridden; the segment register used for the destination must be ES
with DI pointing to the destination string and ES cannot be overridden. An example is
ES:MOVSW. In this case, both source and destination strings will use ES as the segment
register. Next, consider a numerical example of string mode. Assume the real mode. If (DF)
= 0, (DS) = 3000H, (SI) = 0020H, (ES) = 5000H, (DI) = 0040H, (30020H)= 30H, (30021H)
= 05H, (50040H) = 06H, and (50041H) = 20H, then after this MOVSW, (50040H) = 30H,

Low address
‘I Fi> 0 0 2 0 H 1 0 0 1 * i

0022H A 0 9 8 H
0024H 7 6 9 8 H

Low address
‘I Fi> 0 0 2 0 H 1 0 0 1 * i

0022H A 0 9 8 H
0024H 7 6 9 8 H

High address

fDS13-H)

DI I I Low address

0048Hlp=q High address

!FS=5000H.D110040H)

FIGURE 10.7 (a) Source and Destination strings Prior to execution of MOVSW.

15 0

Low address

’I -022H 0020H 3 0 0 5 H

’ 0024H

High address

SOURCE STRING (DS=3000H,SI=0020H)

15 0

I I Low address

0040H 3 0 0 5 H

I High address I
DESTINATION STRING (ES=5000H.DI=0040HI

FIGURE 10.7 (b) Source and Destination strings After execution of MOVSW.

330

(50041H) = 05H, (SI) = 0022H, and (DI) = 0042H.
Figures 10.7 (a) and 10.7 (b) respectively show data in the source and destination

strings prior to and after execution of MOVSW. All numerical values in the figures are
chosen arbitrarily. Note that for 16-bit offset, SI and DI contain offsets for both source and
destination strings while for 32-bit offset, ESI and ED1 contain offsets for both source and
destination strings. Also, for 32-bit offset in real mode, the contents of ESI and ED1 vary
from OOOOOOOOH to 0000FFFFH.

Microprocessor Theory and Applications with 68000/68020 and Pentium

10.6.4 Port Addressing Mode
Two I/O port addressing modes can be used: direct port and indirect port. In either case,
8- or 16- or 32-bit I/O transfers must take place via AL or AX or EAX, respectively. In
directport mode, the port number is an 8-bit immediate operand to access 256 ports. For
example, IN AL,O2H moves the contents of 8-bit port 02H to AL. OUT 04H,AX, on the
other hand, outputs the 16-bit contents of AX into 16-bit port 0405H. Finally, IN EAX,02H
will input the 32-bit contents of a 32-bit port 02030405H into EAX.

In indirectport mode, the port number is taken from DX, allowing 64 kI3 or 32K
words of ports. For example, suppose that (DX) = 0020H, (port 0020H) = 02H, and (port
002 1 H) = 03H; then after IN AX,DX, register AX contains 0302H. On the other hand, after
IN AL,DX, register AL contains 02H. Next, consider, IN EAX,DX. Prior to execution of
this instruction, if (DX) = 0050H, (port 0050H) = OlH, (port 005 1H) = 02H, (port 0052H)
= 03H, (port 0053H) = 04H, then after execution of PJ EAX, DX, register EAX will
contain 04030201 H.

10.6.5 Relative Addressing Mode
Instructions using the relative addressing mode specify the operand as a signed 8-bit
displacement relative to IP. An example is JNC START. This instruction means that if
carry = 0, IP is loaded with the current IP contents plus the 8-bit signed value of START;
otherwise, the next instruction is executed.

An advantage of the relative mode is that the destination address is specified
relative to the address of the instruction after the conditional jump instruction. Since the
Pentium conditional Jump instructions do not contain an absolute address, the program
can be placed anywhere in memory which can still be executed properly by the Pentium.
A program that can be placed anywhere in memory and can still run correctly is called a
relocatable program. It is a good practice to write relocatable programs.

The Pentium contains a 1-byte unconditional JMP instruction with a 1- or 2-byte
displacement that adds to the instruction pointer (IP). A JMP with an 8-bit displacement
called a short jump has a range of -128 to +127 bytes, with 0 being positive. A JMP with
a 16-bit displacement, called a nearjump has a range of -32768 to +32767 bytes, with 0
being positive. The Pentium assembler determines automatically whether the Jump is short
or near based on the size of the displacement. Finally, a JMP with a 32-bit displacement
has a range of +2 to -2 GB. Note that a 32-bit displacement can be used only in the protected
mode. Conditional and Unconditional Jumps are covered in more detail in Chapter 11.

10.6.6 Implied Addressing Mode
Instructions using the implied addressing mode have no operands. An example is CLC,
which clears the carry flag to zero.

Assembly Language Programming With The Pentium: Part 1

10.7 Pentium Instructions

33 1

The Pentium instruction set contains no-operand, single-operand, two-operand, and
three-operand instructions. Except for string instructions that involve array operations,
the Pentium instructions do not permit memory-to-memory operations. The Pentium
instructions can be classified into nine groups:

1. Data transfer instructions
2. Arithmetic instructions
3.
4. String instructions
5 . Unconditional transfer instructions
6. Conditional branch instructions
7. Iteration control instructions
8. Interrupt instructions
9. Processor control instructions

Logic, bit manipulation, set on condition, shift, and rotate instructions

Instruction groups 1 and 2 are covered in this chapter. Instruction groups 3 through
9 are included in Chapter 11. Appendix F provides Pentium instruction format and timing.
Appendix H shows some of the Pentium’s instruction set. Let us now explain some of the
Pentium instructions (Groups 1 and 2) with numerical examples in real mode. Note that in
the following examples, parentheses () are used to indicate the contents of a register or a
memory location. As mentioned in section 10.6.3 (memory addressing modes), segment
override prefix can be used in any instruction with any memory addressing mode to
override the default segment register. Most memory instructions use DS as the default
segment register. The segment override prefix can be used to change DS to ES, FS, GS,
or SS. Note that CS cannot be overridden. This means that JUMP and CALL instructions
cannot be prefixed.

Consider MOV AXJSI]. This instruction transfers the 16-bit contents of a
memory location addressed by the offset in SI, and the segment register is DS. The
segment register DS can be changed to ES using the instruction MOV AX,ES: [SI]. Next,
consider MOV [BPI, CH. This instruction transfers 8-bit data in CH into a memory location
addressed by BP in SS. The default segment register is SS. The segment register SS can
be changed to DS using the instruction MOV DS: [BP],CH.

10.7.1 Data Transfer Instructions
Table 10.8 lists most of Pentium’s data transfer instructions.

In the table, the data transfer instructions move single bytes, 16-bit words, and
32-bit doublewords between a register, a memory location, or an I/O port. Let us explain
some of the instructions in Table 10.8.

332

TABLE 10.8

Microprocessor Theory and Applications with 68000/68020 and Pentium

Pentium Data Transfer Instructions
General Purpose

MOV d, s (d) +- (s) MOV byte or word

MOVSX dest, src Move and sign-extend

MOVZX dest, src Move and zero-extend

PUSH operand PUSH operand into stack

PUSHA PUSH all 16-bit registers

PUSHAD PUSH all 32-bit registers

POP operand POP operand off stack

POPA POP all 16-bit registers

POPAD POP all 32-bit registers

XCHG reg/mem, reg/mem

XLAT

(reg/mem) * (redmem); No
mem to mem.

AL + (20 bit address computed
from AL, BX, and DS) in real
mode

Input / Output

IN A, DX or Port Input byte or word or
doubleword

OUT DX or Port, A Output byte or word or
doubleword

Address Object

LEAreg, mem LOAD Effictive Address

LDSreg, mem LOAD pointer using DS

LESreg, mem LOAD pointer using ES

LFS reg, mem LOAD pointer using FS

Assembly Language Programming With The Pentium: Part I 333

TABLE 10.8 Cont.
LGSreg, mem LOAD pointer using GS

LSSreg, mem LOAD pointer using SS

Flag Transfer

LAHF LOAD AH register from flags

SAHF STORE AH register in flags

PUSHF

POPF

PUSH lower 16 bits of Flag
register

POP lower 16 bits of Flag
register off the stack

dest = “regl6” or “reg32” src = “reg8” or “mem8” or
d = “mem”, “reg” or “segreg” “reg 16” or “meml6”

s = “data” or “mem” or “reg”
or “segreg”

A = EAX, AX, or AL

MOV CX,DX copies the 16-bit contents of DX into CX. MOV AX,2025H moves
immediate data 2025H into the 16-bit register AX. MOV CH,[BX] moves the 8-bit
contents of a memory location addressed by BX in segment register DS into CH. If
prior to execution of this instruction, (BX) = 0050H, (DS) = 2000H, and (20050H)
= 08H, then after execution of the MOV CH,[BX] instruction, the contents of CH
will be 08H. MOV [BP + 61,CX moves the 16-bit contents of CX into two memory
locations addressed by the sum of register BP and displacement 6 in segment register
SS (CL to the first location and CH to the next location). For example, if (CX) =

5009H, (BP) = 0030H, (SS) = 3000H, then, after execution of the MOV [BP + 61,CX
instruction, (30036H) = 09H and (30037H) = 50H. Next, consider MOV ECX,ESI. If
prior to execution of this instruction, (ECX) = 50A00050H and (ESI) = 7C002000H,
then after execution of the MOV ECX,ESI instruction, (ECX) = 7C002000H and the
contents of ESI are 7C002000H (unchanged).
Next, consider MOVSX and MOVZX instructions as follows:

MOVSX dest, src Move and sign-extend
MOVZX dest, src Move and zero-extend

regl6, reg8
regl6, mem8
reg32, reg8

reg32, mem8
reg32, reg16
reg32, meml6

334 Microprocessor Theory and Applications with 68000/68020 and Pentium

MOVSX reads the contents of the effective address or register as a byte or a word
from the source, sign-extends the value to the operand size of the destination (1 6 or 32
bits), and stores the result in the destination. No flags are affected. MOVZX, on the
other hand, reads the contents of the effective address or register as a byte or a word,
zero-extends the value to the operand size of the destination (16 or 32 bits), and stores
the result in the destination. No flags are affected. For example, consider MOVSX
BX,CL. If (CL) = 81H and (BX) = 21AFH, then, after execution of this MOVSX,
register BX contains FF81H and the contents of CL do not change. Now, consider
MOVZX CX,DH. If (CX) = F237H and (DH) = 85H, then after execution of this
MOVZX, register CX contains 0085H and DH contents do not change.

Pentium PUSH operand or POP operand instruction writes or reads register or data to
or from the stack respectively. The data may be any 16- or 32-bit register, 8-, 16- or
32-bit immediate data, segment registers (except CS), or 16- or 32-bit contents of
memory. In the real mode, for 16-bit operand, the SP is decremented by 2 for PUSH
and incremented by 2 for POP ; for 32-bit operand, the SP is decremented by 4 for
PUSH and incremented by 4 for POP. Note that SS:SP is used to address stack for real
mode while SS:ESP is used to address stack for the protected mode.
As an example, consider PUSH BX. If prior to execution of this instruction, (BX) =

0200H, (SP) = 3000H, (SS) = 4000H, (42FFFH) = OlH, and (42FFEH) = 78H then
after execution of PUSH BX instruction, memory locations 42FFFH and 42FFEH
will contain 02H and OOH, respectively, and the contents of SP will be 2FFEH.
This is depicted in Figure 10.8. Next, consider POP AX. If prior to execution of
this instruction, (SS) = 4000H, (SP) = 3000H, (AX) = 0050H, (43001H) = OlH, and
(43002H) = 05H, then after execution of POP AX, (AX) = 0501H, and (SP) = 3002H.
This is depicted in Figure 10.9.

For 16-bit data, each Pentium stack segment is 64kB long and is organized as 32K
16-bit words. The lowest byte (valid data) of the stack is pointed to by the 20-bit
physical address computed from current SP and SS. This is the lowest memory
location in the stack (top of the stack) where data is pushed. The Pentium can have

15 0 Before PUSH BX
STACK I 7 4 Physical Address ss LGC

BX

42FFEH
42FFFH

I I 15 n

15 0
SP -1

I

Afler PUSH BX

I sTACK 01 Physical Address

I) Z F F E j r l 4 2 F F E H
2FFFH 02H 42FFFH

FIGURE 10.8 Pentium PUSH BX operation

Assembly Language Programming With The Pentium: Part 1 335

15 0

AX ' k j
SP %$
1

ss

AX

SP

15 0
1-

I

Before POP AX

]7sTAcK~I Physical Address
2FFEH 42FFEH

42FFFH

43001H
43002H

2FFFH

3001H
3002H

After POP AX

42FFEH
42FFFH

2FFEH
2FFFH
3000H Old Stack TO 43000H

43001H
43002H

3001H
--f 3002H

FIGURE 10.9 Pentium POP AX operation

several stack segments; however, only one stack segment is active at a time.
When the Pentium uses 16-bit data for PUSH and POP operations from the top of the
stack, the Pentium PUSH instruction first decrements SP by 2 and then the 16-bit
data is written onto the stack. Therefore, the Pentium stack grows from high to low
memory addresses of the stack. On the other hand, when 16-bit data is popped from
the top of the stack using the Pentium POP instruction, the Pentium reads 16-bit data
from the stack into the specified register or memory, the Pentium increments the SP
by 2. Note that the 20-bit physical address computed from SP and SS always points to
the last data pushed onto the stack. Memory locations can also be saved and restored
using PUSH and POP instructions without using any Pentium 16-bit registers. Finally,
one must POP registers in the reverse order in which they are PUSHed. For example,
if the registers BX, DX, and SI are PUSHed using

PUSH BX
PUSH DX
PUSH SI

then the registers must be popped using

POP SI
POP DX
POP BX

The PUSHA instruction saves all the 16-bit register onto the stack in the following
order AX, CX, DX, BX, SP, BP, SI, and DI. The SP is then decremented by 16.
The PUSHAD instruction pushes all 32-bit registers onto the stack in the order EAX,
ECX, EDX, EBX, ESP, EBP, ESI, and EDI. The POPA instruction pops all 16-bit
registers from the stack in the order DI, SI, BP, SP, BX, DX, CX, and AX. The SP is
then incremented by 16. Note that the value popped for SP is discarded. This is done

336 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

to keep the SP unchanged. The POPAD instruction, on the other hand, pops all 32-bit
registers from the stack in the order EDI, ESI, EBP, ESP, EBX, EDX, ECX, and EAX.
The value popped for ESP is discarded.

PUSH d8 instruction pushes 8-bit immediate data onto the stack. The SP is then
decremented by 1. PUSH d16 instruction, on the other hand, pushes 16-bit immediate
data onto the stack. The SP is then decremented by 2. PUSH d32 instruction, on the
other hand, pushes 32-bit immediate data onto the stack. The SP is then decremented
by 4.
As an example, consider PUSH 3000H. If prior to execution of this instruction, (SS)
= 4000H, (SP) = 3000H, (42FFFH) = OlH, and (42FFEH) = OSH, then after execution
of PUSH 3000H, (42FFFH) = 30H, (42FFEH) = OOH, and (SP) = 2FFEH.
XCHG has three variations: XCHG reg,reg, XCHG mem,reg, or XCHG reg, mem.
Both operands cannot be memory locations. XCHG instruction is used to exchange
the 8-, 16-, or 32-bit contents of two operands. Note that segment registers are not
allowed in the XCHG instruction. Also, the segment for the memory location must be
in DS. Consider XCHG AX,BX. This instruction exchanges the contents of 16-bit
register BX with the contents of AX. If prior to execuction of the XCHG AX,BX
instruction, (AX) = 2050H and (BX) = 70AOH, then after execution of the XCHG AX,
BX instruction, (AX) = 70AOH, and (BX) = 2050H. Next, consider XCHG [SI], CX.
If prior to excecution of the XCHG [SI], CX instruction, (SI)= 0050H, (DS) = 2000H,
(CX) = SOOOH, (20050H) = 56H, and (20051H) = 78H, then after execution of the
XCHG [SI],CX instruction, (CX) = 7856H, (20050H) = OOH, and (2005 1H) = SOH.
XLAT can be used to employ an index in a table or for code conversion. This instruction
utilizes DS:BX to hold the starting address of the table in memory consisting of 8-bit
data elements. AL should be the unsigned index into a table addressed by DS:BX.
No flags are affected. The index in the table is assumed to be in the AL register. Note
that the XLAT instruction is the same as MOV AL,[AL + BX]. For example, if (BX)
= 0200H, (AL) = 04H, and (DS) = 3000H, then after XLAT, the contents of location
30204H will be loaded into AL. The XLAT instruction can be used to convert from
one code to another. This is illustrated in Example 10.3. The XLATB instruction
should be used if BX is always resident in the DS segment. Note that DS cannot be
overridden if XLATB is used while XLAT instruction allows for the possibility of
segment override.

The IN and OUT instructions of the Pentium use only the registers AL, AX, or EAX
to transfer data between an I/O port (register) and the microprocessor. Two types of
110 addressing are used:

1. Direct addressing

For 8-bit port:

For 16-bit port:

For 32-bit port:

2. Indirect addressing

IN AL, PORT
OUT PORT, AL
IN AX, PORT
OUT PORT, AX
IN EAX, PORT
OUT PORT, EAX

Assembly Language Programming With The Pentium: Part I 337

For 8-bit port:

For 16-bit port:

For 32-bit port:

IN AL, DX
OUT DX, AL
IN AX, DX
OUT DX, AX
IN EAX, DX
OUT DX, EAX

Consider direct port addressing, in which the 8-, 16-, or 32-bit port address is specified
directly as part of the instruction. For example, IN AL,38H inputs 8-bit data from
port 38H into AL. On the other hand, the instruction IN AX,38H inputs 16-bit data
from ports 38H and 39H into AX. The instruction OUT 38H,AL outputs the contents
of AL to port 38H. The instruction OUT 38H,AX outputs the 16-bit contents of AX
to ports 38H and 39H. For indirect port addressing, the port address is specified in the
DX register. Assume that (DX) = 3 124H in all the following examples.

IN AL,DX inputs 8-bit data from an 8-bit port addressed by 3 124H into AL.
IN AX,DX inputs 16-bit data from two 8-bit ports addressed by 3 124H and 3 125H
into AX.
IN EAX,DX inputs 32-bit data from four 8-bit ports addressed by 3 124H, 3125H,
3126H, and 3127H into EAX.
OUT DX,AL outputs 8-bit data from AL into an 8-bit port addressed by 3 124H.
OUT DX,AX outputs 16-bit data from AX into two 8-bit ports addressed by
3124H and 3125H.
OUT DX,EAX outputs 32-bit data from EAX into four 8-bit ports addressed by
3124H, 3125H, 3126H, and 3127H.

Indirect port addressing allows up to 65,536 ports with addresses from OOOOH to
FFFFH. The port addresses in indirect port addressing can be calculated dynamically
in a program. For example, assume that an Pentium-based microcomputer is connected
to three printers via three separate ports. Now, to output to each of the printers, separate
programs are required if fixed port addressing is used. However, with indirect port
addressing, one can write a general subroutine to output to the printers and then supply
the address of the port for a particular printer in which data output is desired to register
DX in the subroutine.
LEA is used to load 16-bit or 32-bit offset into a specified register. As an example,
LEA BX, 3000H has the same meaning as MOV BX,3000H. On the other hand, if (SI)
= 2000H, then LEA BX, [SI + 41 will load 2004H into BX while MOV BX, [SI+4]
will initialize BX with the contents of offset 2004H in DS. LEA can be used when
address computation is desirable in a program.
LDS, LES, LFS, LGS, and LSS are similar to LEA except that they load a specified
register as well as the segment register indicated. Next, consider LDS SI,[DI]. This
instruction loads SI and DS from memory. For example, if (DS) = 2000H, (DI) =

OOlOH, (20010H) = 0200H, and (20012H) = OlOOH, then, after LDS SI,[DI] , SI and
DS will contain 0200H and OlOOH, respectively. Note that LDS, LES, LFS, and LGS
can be used with a 32-bit extended register. Typical examples are LDS EBXJESI],
LFS EAX, [ECX], and LSS ESP, [EDI].
LAHF loads the lower byte of the FLAGS register into AH. This will enable the
programmer to check the state of the flags. For example, if the contents of the lower
byte of the FLAGS register is 43H, then after execution of the LAHF instruction,

338 Microprocessor Theory and Applications with 68000/68020 and Pentium

(AH) = 43H.

SAHF is used to store the contents of AH into the lower byte of the FLAGS register.
This will load a new set of flags into the FLAGS register of Figure 10.1 (b).
PUSHF pushes the lower 16 bits of the EFLAGS register onto the stack. Suppose,
prior to execution of PUSHF, (SS) = 3000H, (SP) = OOOOH, and (FLAGS register) =

0083H. This means that the 20-bit physical address pointing to the valid data in the
stack is 30000H. After execution of the PUSHF instruction, the stack address will be
decremented by 2 and (2FFFFH) = OOH, and (2FFFEH) = 83H. Note that the lower
byte is pushed to the lower address and the upper byte is pushed to the higher address.
This is because Pentium follows the little endian format.

POPF pops 16 bits from the stack and places them in the FLAGS register.

EXAMPLE 10.1 Determine the effect of each of the following Pentium
instructions:
(a) MOVSX ECX,E7H
(b) MOVZX ECX,E7H
(c) MOVSX AX,DL if (AX) = 2000H, (DL) = 75H
(d)MOV CL,ES:[BP] if (CL) = 32H, (SS) = 2000H, (DS) = 5000H, (ES) =

1000H, (GS) = 4000H, (BP) = 0030H, (10030H) = F2H, (20030H) = 07H, and (40030H)
= 02H.

Solution

(a) (ECX) = FFFFFFE7H since the most significant bit of E7H is 1, bits 8 through 3 1 of
ECX are 1’s.
(b) (ECX) = 000000E7H since this instruction moves E7H to the lowest byte of ECX, and
then zero extends (write 0’s) from bits 8 to 3 1 of ECX.
(c) (AX) = 0075H since this instruction moves 75H to the lower byte ofAX, and then zero-
extends or write 0’s from bits 8 through 15 of AX.
(d) (CL) = F2H since ES instead of SS is used as the segment register. Hence, the contents
of physical address 10030H are moved to CL.

EXAMPLE 10.2 Determine the effect of each of the following Pentium
instructions:
(a) PUSH [BX] if (DS) = 2000H, (BX) = 0200H, (SP) = 3000H, (SS) = 4000H, (20200H)
= 20H, (2020 1 H) = 01 H, (42FFFH) = 0 1 H, and (42FFEH) = 20H
(b) POPA if (SS) = 2000H, (SP) = 2FFOH, and (22FFOH) through (22FFFH) = 07H

Solution

(a) After execution of PUSH [BX], memory locations 42FFFH and 42FFEH will contain
01H and 20H, respectively, and the contents of SP will be 2FFEH.

(b) After POPA, a set of two consecutive bytes, 0707H from locations (22FFOH) through
(22FFFH), will be loaded into Pentium’s 16-bit registers in the order DI, SI, BP, SP
(discarded), BX, DX, CX, and AX. The contents of SP are incremented by 16 (10H) to

Assembly Language Programming With The Pentium: Part I

point to 3000H.

339

EXAMPLE 10.3 Assume a Pentium-based microcomputer with an ASCII keyboard
is connected to port A and an EBCDIC printer is connected to port B. Suppose that it is
desired to enter numerical data via the ASCII keyboard and then print them on the EBCDIC
printer. Use addresses for Port A and Port B as 60H and 68H respectively. Write a Pentium
assembly language program to accomplish this.

Solution

Note that numerical data entered into this microcomputer via the keyboard will be in
ASCII code. Since the printer only understands EBCDIC code, an ASCII-to-EBCDIC
code conversion program is required. As discussed in Section 1.2.2 in Chapter 1, the ASCII
codes for numbers 0 through 9 are 30H through 39H, while the EBCDIC codes for numbers
0 to 9 are FOH to F9H. The EBCDIC codes for the numbers 0 to 9 can be stored in a table
starting at an offset 2030H, data can be input from the keyboard using IN AL,PORTA, then
the ASCII data converted to EBCDIC using an XLAT instruction, and output to port B
using OUT PORTB,AL. The assembly language for the code conversion program is

.486

.MODEL

.DATA
ORG
DB
.CODE

START
PORTA EQU
PORTB EQU

MOV
IN
XLAT
OUT
HLT

END START

SMALL,STDCALL

2030H
OFOH,OF 1 H,OF2H,OF3H,OF4H,OF5H,OF6H,OF7H,OF8H,OF9H

60H
68H
BX,2000H ;INITIALIZE BX
AL,PORTA ;INPUT ASCII DATA

PORTB,AL ;OUTPUT TO EBCDIC PRINTER
;OBTAIN EBCDIC CODE FROM TABLE

Disassembly of the program above using the MASM32 is as follows:

0040 1000 START
00401000 66BB0020 MOV BX,2000H
0040 1004 E460 IN AL,PORT
00401006 D7 XLAT
0040 1007 E668 OUT PORTB,AL
00401009F4 HLT

In the program, a table is created at offset 2030H in the data segment containing the
EBCDIC codes for the BCD numbers 0 through 9. The assembler directive DB is used for
the purpose. Note that assemblers generally require that hexadecimal numbers start with
a digit. A 0 is typically used if the first digit of the hexadecimal number is a letter. This

340 Microprocessov Theory and Applications with 68000/68020 and Pentium

is done to distinguish between numbers and labels. For example, most assemblers will
require the number F5H to be represented as OF5H. This is the reason that each EBCDIC
code in the table contains a leading 0.

Now, suppose that the number 4 is pushed on the ASCII keyboard connected to
PORT A. The instruction IN AL,PORTA inputs 34H (ASCII for 4) into register AL. The
instruction XLAT, which is equivalent to MOV AL,[BX + AL], transfers the contents of
memory offset 2034H (BX + AL) into AL. This means that F4H (the contents of offset
2034H in the table) will be moved into AL. The instruction OUT PORT B,AL outputs F4H
(EBCDIC for 4) into PORT B, where the EBCDIC printer is connected. Hence, the printer
prints the number 4.

EXAMPLE 10.4 Write a Pentium assembly language program to clear 50,, consecutive
bytes from LOW to HIGH addresses starting at offset IOOOH. Assume that DS is already
initialized.

Solution

.486

.MODEL SMALL,STDCALL

.CODE

MOV BX, 1 OOOH ;initialize BX to 1 OOOH
MOV CX,50 ;initialize loop count to 50

AGAIN: MOV BYTE PTR[BX],O ;clear memory byte to 0
INC BX ;update pointer
LOOP AGAIN ;decrement CX and loop until CX = 0
HLT ;halt

START:

END START

The instructions INC and LOOP in the program above are described later. The
instruction MOV BX, lOOOH initializes BX with offset lOOOH (offset lOOOH is chosen
arbitrarily). The instruction MOV CX,50 initializes the loop counter CX with 50. MOV
BYTE PTR[BX],O clears a memory byte addressed by the contents of BX in DS to 0. INC
BX increments BX by 1 to point to the next memory byte. LOOP AGAIN decrements CX
by 1 and checks for CX = 0. If CX # 0, the program returns to label AGAIN. The program
stops when CX = 0.

10.7.2 Arithmetic Instructions
Table 10.9 shows the Pentium arithmetic instructions. These instructions basically include
addition, subtraction, signed and unsigned multiplication and division operations.

Typical microprocessors utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set of
microprocessors typically include the same ADD and SUBTRACT instructions for both
unsigned and signed numbers. The interpretations of unsigned and signed ADD and
SUBTRACT operations are performed by the programmer. More detailed coverage is
provided in chapter 5.

Unsigned and Signed multiplication and division operations can be performed
using various algorithms. Typical 32-bit microprocessors such as the Pentium contain

Assembly Language Programming With The Pentium: Part 1

TABLE 10.9 Pentium Arithmetic Instructions

34 1

I Addition 1

ADC a, b Add with carry (a) +- (a) + (b) + CF

XADD a, b Exchange and Add (a) +- (a) + (b), (b) +- original (a)

INC reg/mem Increment by one (reg/mem) +- (reg/mem) + 1

AAA ASCII adjust after addition

DAA Decimal adjust [AL], to be used
after ADD or ADC

I Subtraction I
SUB a, b Subtract (a) + (a) - (b)

SBB a, b Subtract with borrow (a) + (a) - (b) - CF

DEC reg/mem Decrement by one (reg/mem) + (reg/mem) - 1

NEG reg/mem Negate (reg/mem) + 0 - (reg/mem)

CMP a, b Compare (a) - (b) + Flags are affected. No result.

CMPXCHG a, b Compare and Exchange

AAS ASCII adjust after subtraction

DAS Decimal adjust (AL) after
subtraction

I Multiplication

MUL reg/mem
(unsigned) word (unsigned)

Multiply byte or word or double for 8 X 8

(AX) t (AL) * (regWmem8)

or for 1 6 X 16

(reg16/mem16)
(DX : AX)+(AX) *

342

TABLE 10.9 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

IMUL reg/mem Integer multiply byte or word or for 3 2 x 3 2
(signed) double word (signed) (EDX:EAX)t(EAX)*

(reg32hem32)

AAM ASCII adjust after
multiplication

I Division 1
DIV reghem
(unsigned) word unsigned

Divide byte or word or double 16 + 8 bit; (AX)t(AX)l(reg8/mem8)

(AH)+ remainder
(AL) t quotient

32+16bit;(DX:AX) t(DX:AX)/(reg16 or
mem 16)

or (DX) t remainder,
(AX) t quotient

IDIV reghem Integer divide byte or word 64+32bit;
(signed) (signed) (EDX:EAX) t (EDX:EAX)/(reg32 or

mem32)
(EAX) = quotient, (EDX) = remainder.

AAD ASCII adjust before division
Sign-Extension I

CBW Sign-extend byte in AL to word
in AX

CWD Sign-extend AX to 32 bits in
DX:AX

CWDE Sign extend 16-bit contents of
AX to 32-bit double word in
EAX

Sign extend a 32-bit double
word in EAX to a quadword
(64 bits) in EDX:EAX

CDQ

a= “reg” or “mem”, b = “reg” or “mem” or “data”.

separate instructions for performing these multiplication and division operations. These
topics along with some multiplication and division algorithms are covered in Chapter 5.

Assembly Language Programming With The Pentium: Part I

Let us explain some of the instructions in Table 10.9.

343

Consider ADD a,b. The destination operand ‘a’ can be memory or register, while the
source operand ‘b’ can be memory, register, or immediate data. This instruction adds
source and destination data and stores the result in destination. The operand sizes
can be 8-, 16-, or 32-bit. There is no ADD mem,mem instruction. All flags in the low
byte of the Flag register are affected. Typical examples include ADD CL,DL, ADD
BL,[SI], ADD AX,BX, ADD CX,25A7H, ADD [BP],AX, ADD EAX,ECX, ADD
BYTE PTR [SI],5 and ADD EDXJEAX]. For example, consider ADD CL, DL. If
prior to execution of this instruction, (CL) = 20H, (DL) = 03H, then, after ADD
CL,DL, the contents of register CL = 20 + 03 = 23H; CF = 0, PF = 0 (result with odd
parity), AF = 0 (intermediate carry from bit 3 to bit 4 is 0), ZF = 0 (nonzero result), SF
= 0 (most significant bit of the result is zero), and OF = 0 since C , (carry final) = 0 and
C, (carry previous) = 0. Note that as mentioned in chapter 1, overflow, V = C, @C,.
Consider ADC a,b. The destination operand ‘a’ can be memory or register while the
source operand ‘b’ can be memory, register, or immediate data. This instruction adds
source and destination data along with the carry flag and stores the result in destination.
The operand size can be 8-, 16-, or 32-bit. There is no ADC mem,mem instruction. All
flags in the low byte of the Flag register are affected. For example, if (AX) = 0020,,,
(BX) = 0300,,, CF = 1, (DS) = 2O2O,,, and (20500) = OlOO,,, then after execution of
ADCAX,[BX], thecontentsofregisterAX=0020+0100+ 1 =0121,,; CF=O,PF=O
(result with odd parity), AF = 0, ZF = 0 (nonzero result), SF = 0 (most significant bit of
the result is zero), and OF = 0 since C, (carry final) = 0 and C, (carry previous) = 0.
Consider XADD a,b. The destination operand ‘a’ can be memory or register while the

source operand ‘b’ can be memory, register, or immediate data. This instruction adds the
source to the destination, stores the result in the destination, and copies the original value
of the destination into the source. The operand sizes can be 8-, 16-, or 32-bit. There is no
XADD mem,mem instruction. For example, if (AH) = 20H, and (BL) = 03H, then after
execution of XADD AH, BL instruction, (AH) = 20H + 03H = 23H, and (BL) = 20H.
Consider SUB a,b. The destination operand ‘a’ can be memory or register while
the source operand ‘b’ can be memory, register, or immediate data. This instruction
subtracts source data from destination data, and stores the result in destination. The
operand sizes can be 8-, 16-, or 32-bit. There is no SUB mem, mem instruction.
Typical examples include SUB BH, DL, SUB CX, DX, SUB AX, 2, SUB EAX, EBX
and, SUB [EDX], ECX. All flags in the low byte of the Flag register are affected. For
example, if (AH) = 03H, (BL) = 02H, then, after SUB AH,BL, the contents of register
AH = 03H - 02H = 01H.

1 1 1 1 1 10 +- intermediate carries
Using two’s-complement subtraction, (AH) = 0000 001 1 (+3)
Add twos complement of 2 (DL) = + 1111 1110(-2)

0000 0001
.......................

final carry -, 1

The final carry is one’s-complemented after subtraction to reflect the correct
borrow. Hence, CF = 0. Also, PF = 0 (odd parity; number of 1 ’s in the result is l), AF
= 1 (intermediate carry from bit 3 to bit 4 is l), ZF = 0 (nonzero result), SF = 0 (most
significant bit of the result is zero), and OF = C, 0 C, = 1 0 1 = 0. Similarly, SUB
EBX, 4 subtracts immediate data 4 from the 32-bit contents of EBX, and stores the
result in EBX. All flags are affected.

344 Microprocessor Theory and Applications with 68000/68020 and Pentium

Consider SBB a,b. The destination operand ‘a’ can be memory or register while
the source operand ‘b’ can be memory, register, or immediate data. This instruction
subtracts source data and the carry flag from destination data, and stores the result in
destination. The operand sizes can be 8-, 16-, or 32-bit. There is no SBB mem , mem
instruction. All flags in the low byte of the flag register are affected. For example, if
(CH) = 03H, (DL) = 02H, and CF = 1, then, after SBB CH,DL, the contents of register
CH 1 03H - 02H - 1 = OOH.

11 11 11 1 + intermediate carries
Using two’s complement subtraction, (CH) = 0000 001 1 (+3)
Add two’s complement of 3 (DL plus CF) = + 11 11 1101 (-3)

final carry + 1 0000 0000

The final carry is one’s-complemented after subtraction to reflect the correct borrow.
Hence, CF = 0. Also, PF = 1 (Even parity; number of 1’s in the result is 0 and 0 is an
even number), AF = 1, ZF = 1 (Zero Result), SF = 0 (Most Significant bit of the result
is zero), and OF = C,O C, = 1 0 1 = 0.

NEG reg/mem subtracts the contents of a register or a memory location from 0. In
other words, this instruction finds the two’s-complement of the data contained in the
operand field. The operand size can be 8-, 16-, or 32-bit. Typical examples include
NEG CL, NEG DX, NEG BYTE PTR [SI], NEG EAX, and NEG DWORD PTR
[ECX]. As an example, consider NEG ECX. If (ECX) = FFFFFFFFH, then after
execution of NEG ECX, the contents of ECX are 00000001H. All flags are affected.
Consider INC reg/mem. This instruction increments the contents of a register or a
memory location by 1. The operand size can be 8-, 16-, or 32-bit. The INC reg/mem
instruction affects SF, ZF, AF, OF, and PF. This instruction does not affect CF (carry
flag). Typical examples include INC AH, INC BP, INC EDX, INC BYTE PTR[SI],
and INC DWORD PTR[EAX].
Consider DEC reg/mem. This instruction decrements the contents of a register or

a memory location by 1. The operand size can be 8-, 16-, or 32-bit. DEC reg/mem
instruction affects SF, ZF, AF, OF, and PF. Like INC mendreg, this instruction does
not affect CF (carry flag) . Typical examples include DEC AH, DEC BP, DEC EDX,
DEC BYTE PTR[SI], and DEC DWORD PTR[EAX].

Consider the CMP a,b instruction. The destination operand ‘a’ can be memory or
register, while the source operand ‘b’ can be memory, register, or immediate data.
This instruction subtracts source from destination, providing no result of subtraction;
all status flags are affected based on the result. The operand sizes can be 8-, 16-, or
32-bit. There is no CMP mem,mem instruction. Note that the SUBTRACT instruction
provides the result and also affects the status flags. Consider CMP DH,BL. If prior
to execution of the instruction, (DH) = 40H and (BL) = 30H, then after execution of
CMP DH,BL, the flags are CF = 0, PF = 0, AF = 0, ZF = 0, SF = 0, and OF = 0; the
result 10H is not provided. Suppose that it is desired to find the number of matches
for an 8-bit number in a Pentium register such as DL in a data array of 50 bytes in
memory pointed to by BX in DS. The following instruction sequence with CMP
DL,[BX] rather than SUB DL,[BX]can be used :

Assembly Language Programming With The Pentium: Part I 345

MOV
MOV

START: CMP
JZ

JMP
MATCH: INC
DOWN: INC

LOOP

AL,O
CX,50

MATCH
DLSBXI

DOWN
AL
BX
START

; Clear AL to 0, AL to hold number of matches
; Initialize array count
; Compare the number to be matched in DL
; with a data byte in the array. If there is
; a match, ZF=l. Branch to label MATCH.
; Unconditional jump to label DOWN.
; increment AL to hold number of matches.
; Increment BX to point to next data byte.
; Decrement CX by 1, go back to START if
; CX # 0. If CX = 0, go to the next instruction
; AL contains the number of matches

In the above, if SUB DL,[BX] were used instead of CMP DL,[BX], the number to
be matched needed to be loaded after each subtraction because the contents of DL
would have been lost after each SUB. Since we are only interested in the match rather
than the result, CMP DL,[BX] instead of SUB DL,[BX] should be used in the above.

Consider CMPXCHG a,b. The destination operand ‘a’ can be memory or register, while
the source operand ‘b’ can be memory, register, or immediate data. This instruction
compares the destination withAL (for 8-bit), AX (for 16-bit) or EAX (for 32-bit). If they
are equal, the contents of the source are transferred to the destination. If they are not equal,
the contents of the destination are moved into AL (for 8-bit), AX (for 16-bit), or EAX (for
32-bit). The operand sizes can be 8-, 16-, or 32-bit. There is no CMPXCHG mem,mem
instruction. As an example, consider CMPXCHG BL,DH. If prior to execution of this
instruction, (AL) = F2H, (BL) = F2H, and (DH) = 05H, then after execution of the
CMPXCHG BL,DH instruction, (BL) = 05H since (BL) = (AL) = F2H.

DAA is used to adjust the result of adding two packed BCD numbers in AL using ADD
or ADC to provide a correct packed BCD number. If, after the addition, the low 4 bits of
the result in AL are greater than 9 (or ifAF = l), the DAA adds 6 to the low 4 bits ofAL.
On the other hand. if the high 4 bits of the result in AL are greater than 9 (or if CF = l),
DAA adds 6 to the high 4 bits in AL. Consider the following instruction sequence:

MOV AL,29H
ADD AL,54H
DAA

; Move 29H into AL
; Add 29H with 54H and store the result in AL
; Decimal adjust AL to provide the correct packed BCD result

The details of the result obtained by the instruction sequence above are provided in
the following:

(AL) = 29H = 0010 1001 (Packed BCD 29, same as 29H)
Add 54H = 0101 0100 (Packed BCD 54, same as 54H)

(AL) = 01 11 1101
01 10 Add 6 (BCD correction by DAA since low 4 bits

------------- of the sum in AL are greater than 9)

1000 001 1 = 83H correct packed BCD result since 29 + 54 = 83

Note that packed BCD is covered in section 1.2.3 of Chapter 1.

346 Microprocessor Theory and Applications with 68000/68020 and Pentium

DAS may be used to adjust the result of subtraction in AL of two packed BCD numbers
using SUB or SBB to provide the correct packed BCD. If, after the subtraction, the
low 4 bits of the result in AL is greater than 9 (or if AF = l), then the DAS subtracts 6
from the low 4 bits of AL. On the other hand. if the high 4 bits of the result in AL are
greater than 9 (or if CF = l), then DAS subtracts 6 from AL While performing these
subtractions, any borrows from low and high 4 bits are ignored. For example, consider
subtracting packed BCD 55 in DL from packed BCD 94 in AL: Packed BCD 55 = 55H
= 0101 0101, and Packed BCD 94 = 94H = 1001 0100,.

Packed BCD 94 (94H) = 1001 0100
Add Two’s complement of 0101 0101 (55H) = 1010 1011

Ignore Carry -1 001 1 11 11= 3FH
The invalid BCD digit (F) in the low 4 bits of the result can be corrected by subtracting
6 from F:
Low4bits= F = 1111

-6 = 1010

ignore carry -1

The following Pentium instruction sequence will accomplish this:

1001 This will provide the correct packed BCD result of 39 (94
- 55 = 39).

MOV AL,94H ; Move 94H into AL
MOV DL,55H ; Move 55H into DL
SUB AL,DL ;(AL) = 3FH
DAS ;(AL) = 39H

Consider CBW. This instruction extends the sign from the AL register to the AH
register. For example, if AL = Fl,,, then after execution of CBW, register AH will
contain FF,, because the most significant bit of F1H is 1. Note that the sign extension
is very useful when one wants to perform an arithmetic operation on two signed
numbers of different lengths. For example, the 16-bit signed number 0020,, can be
added with the 8-bit signed number E l H by sign-extending E l as follows:

0020 , ,=0000 0 0 0 0 0 0 1 0 0 0 0 0 (3 2 1 0)
El , ,$l 1 1 1 1 1 111 1 1 1 0 0 0 0 1(-31 10)

wwww

Sign
extension

Ignore 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 (+l l0)

c a w

Another example of sign extension is that to multiply a signed 8-bit number by a
signed 16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit
number and then the instruction IMUL can be used for 16 x 16 signed multiplication.
For unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number
must be zero-extended to 16 bits using logical instruction such as AND before using
the MUL instruction.
For example, suppose that IMUL BX will be used to multiply the 8-bit contents ofAL
by the 16-bit contents of BX. If prior to execution of this instruction, (AL) = FFH =

Assembly Language Programming With The Pentium: Part I 347

-1 and (BX) = 0002H = +2. To perform this signed multiplication, the %bit contents
of AL must be sign-extended to 16 bits using the CBW instruction so that (AX) =

FFFFH = - 1. The multiplication instruction IMUL BX can then be executed so that the
contents of DX:AX will be the 32-bit correct result, FFFFFFFEH (-2).
Now, to perform unsigned multiplication MUL BX with the same data, the %bit
contents of AL must be zero-extended so that (AX) = OOFFH (+255). This can be
accomplished by the instruction MOV AH,O. The instruction MUL BX can then be
executed so that DX:AX will contain the correct 32-bit product, 000001FEH (+5 10)
since (BX) = 0002H.
CWD sign-extends the AX register into the DX register. For example, if (DX) =

08AOH and (AX) = A205H, then after execution of CWD, (DX) = FFFFH and (AX)
= A205H since the most significant bit (sign bit) of AX is 1.
CWDE sign-extends the AX register into the upper 16 bits of EAX. For example,
if (EAX) = A5020277H, then after execution of CWDE, (EAX) = 00000277H since
(AX) = 0277H with the sign bit (bit 15) = 0.
CDQ sign-extends the EAX register into the EDX register. This provides a 64-bit result
in EDX: EAX. For example, if (EDX) = 2F00 A7FFH and (EAX) = OFFF FFFFH,
then after execution of CDQ, (EDX) = OOOOOOOOH and (EAX) = OFFF FFFFH.
For 8-bit by 8-bit signed or unsigned multiplication between the contents of a memory
location and AL, assembler directive BYTE PTR can be used. Example: IMUL BYTE
PTR[BX]. On the other hand, for 16-bit by 16-bit signed or unsigned multiplication
between the 16-bit contents of a memory location and register AX, assembler directive
WORD PTR can be used. Example: MUL WORD PTR[SI].
Consider 16 x 16 unsigned multiplication, MUL WORD PTR [BX]. If (BX) = 0050H,
(DS) = 3000H, (30050H) = 0002H, and (AX) = 0006H, then after MUL WORD PTR
[BX], (DX) = OOOOH and (AX) = 000CH.

MUL mem/reg provides unsigned 8 x 8 or unsigned 16 x 16 multiplication. Consider
MUL BL. If (AL) = 20,, and (BL) = 02,,, then after MUL BL, reg is te rm will contain
0040,,.
IMUL medreg provides signed 8 x 8 or signed 16 x 16 multiplication. As an example,
if (CL) = FDH = -3,,, and (AL) = FEH = -2,,,, then, after IMUL CL, register AX
contains 0006H.
Consider IMUL DH. If (AL) = FF,, = - l lo and (DH) = 02,,, then, after IMUL DH,
register AX will contain FFFE,, (-210).

Consider IMUL regl6,regl6/mem16, imm8/imm16. This is an immediate signed
multiplication. This is a three-operand instruction. The first operand is the 16-bit
destination register, the second operand is a register or memory location containing
the 16-bit multiplicand, and the third operand is either 8- or 16-bit immediate data
as the multiplier. If the immediate data is 8 bits, this instruction automatically sign-
extends to 16 bits before multiplication. Also, after multiplication, the low 16 bits of
the product is provided. Typical example is IMUL BX, CX,2534H. Note that there is
no unsigned multiplication instruction of this type.
Consider MUL reg32/mem32. This instruction multiplies the 32-bit contents of EAX
by the 32-bit contents of a 32-bit register or memory location. This is an unsigned

348 Microprocessor Theory and Applications with 68000/68020 and Pentium

multiplication. The 64-bit product is placed in EDX:EAX. IMUL reg32/mem32 works
in the same way as the MUL reg32/mem32 except that the multiplication is signed.
Typical examples include MUL EDX, IMUL EBX, and IMUL DWORD PTR
[ECX].

DIV medreg performs unsigned division and divides (AX) or (DX:AX) registers by
reg or mem. For example, if (AX) = 0005H and (CL) = 02H, then after DIV CL, (AH)
=.01H = remainder and (AL) = 02H = quotient.

Consider DIV BL. If (AX) = 0009H and (BL) = 02H, then after DIV BL,
(AH) = remainder = 0 1 H
(AL) = quotient = 04H

IDIV medreg performs signed division and divides 16-bit contents ofAX by an 8-bit
number in a register or a memory location, or 32-bit contents of DX:AX registers by
a 16-bit number in a register or a memory location. Consider IDIV CX. If (CX) =

2 and (DXAX) = -510 = FFFFFFFBH, then, after this IDIV, registers DX and AX will
contain

DX A x
I FFFF I FFFE I

16-bit 16-bit quotient
remainder = = -210
-1 10

Note that in the Pentium, after IDIV, the sign of remainder is always the same as the
dividend unless the remainder is equal to zero. Therefore, in this example, because the
dividend is negative (-510), the remainder is negative (-1 lo).

For 16-bit by 8-bit signed or unsigned division of the 16-bit contents of AX by 8-bit
contents of a memory location, assembler directive BYTE PTR can be used. Example:
IDIV BYTE PTR[BX]. On the other hand, for 32-bit by 16-bit signed or unsigned
division of the 32-bit contents of DXAX by the 16-bit contents of a memory location,
assembler directive WORD PTR can be used. Example: MUL WORD PTR[SI].

Consider IDIV WORD PTR [BX]. If (BX) = 0020H, (DS) = 2000H, (20020H) =

0004H, and (DX) (AX) = 00000011H, then, after IDIV WORD PTR [BX],
(DX) = remainder = 000 1 H
(AX) = quotient = 0004H

Consider DIV reg32/mem32. This instruction divides the 64-bit contents of EDX:EAX
by the 32-bit contents of a register or a memory location. The division is unsigned.
After the division, the 32-bit remainder is in EDX, and the 32-bit quotient is in EAX.
The instruction IDIV reg 32/mem32 works in the same way as the DIV reg32/mem32
except that the division is signed. Typical examples include IDIV EBX, DIV DWORD
PTR [ESI], and DIV ECX.
Consider the AAA instruction. The addition of two one-digit ASCII numbers will
not provide meaninghl information. For example, if 35H (ASCII for 5) is added with

Assembly Language Programming With The Pentium: Part I 349

39H (ASCII for 9), the sum will be 6EH. This is not a useful number. The result of
adding 5 and 9 in ASCII should have been the ASCII equivalent of 14, which is
3 134H. If the sum 6EH is saved in AL, and if the instruction AAA is executed, the
contents of AL (6EH) will be converted to correct unpacked BCD (0104H) in AX.
Note that the AAA instruction first checks the contents of AL, adjusts the lower four
bits to provide the correct BCD result. Furthermore, the AAA instruction then clears
the upper four bits of AL to 0. Finally, the AAA instruction clears AH to 0 (AH = OOH)
if the result is less than or equal to 9, and adds 1 to AH (AH = 01H) if the result is
greater than 9. Only CF and AF are affected.

The following example illustrates how the AAA instruction provides the correct
BCD result:
(AL)=6EH= 0110 1110

01 10 Add 6 for BCD correction

0111 0100=74HinAL.

Since AAA clears upper 4 bits to 0, AL will contain 04H.
Also, because the low 4 bits of AL are greater than 9 (EH) prior to the execution of
AAA, the contents of AH = 01 H after execution of AAA. Hence, (AX) after execution
of AAA = 0104H. Note that 0104H can be converted to 3134H (ASCII for 14H) by
adding 3030H.

Next, consider adding 32H (ASCII for 2) and 35H (ASCII for 5). The result will
be 67H. If the result is saved in AL and the AAA instruction is executed, AX will
contain 0007H as follows: (AL) = 67H = 0 1 10 01 11 will be converted to 07H in AL by
the AAA instruction. Also, since the low 4 bits of AL are 7 (less than 9), the AAA
instruction clears AH to 0 so that (AH) = OOH. Hence, (AX) = 0007H.

Numerical data received by a Pentium-based microcomputer from an ASCII
keyboard is in ASCII codes, which for numbers 0 to 9 is 30H through 39H. Two
8-bit data items can be entered into a Pentium-based microcomputer via the ASCII
keyboard. The ASCII codes for these data items (with 3 as the upper 4 bits of each
data byte) can be added. The AAA instruction can then be used to provide the correct
unpacked BCD. Suppose that the ASCII codes for 6 (36H) and 5 (35H) are entered
into a Pentium-based microcomputer via the keyboard. These ASCII codes can be
added and then the result can be adjusted to provide the correct unpacked BCD using
the AAA instruction. The unpacked BCD can then be converted to ASCII by adding
3030H. The following instruction sequence will accomplish this:

;
; Result (CL) = 6BH

MOV AL,CL ; Move ASCII result
; into AL because AAA
; adjusts only (AL)

ADD CL,DL ; (CL) = 36H = ACSII for 6
(DL) = 35H =ASCII for 5

AAA ; (AX) = OlOlH, unpacked for 11
ADD AX,3030H ; Convert result to ASCII (3 13 1H)

Note that in to print the result 11 on an ASCII printer, (AX) = OlOlH is added with
3030H to provide 3 13 lH, the ASCII code for 1 1. Note that unpacked BCD numbers
are covered in Section 1.2.3 in Chapter 1.

350 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Consider the AAS instruction. This instruction is similar to AAA except that it is
used to adjust AX after an ASCII subtraction using SUB or SBB. Suppose that (AX)
= 0038H and (DH) = 32H = ASCII for 2. With this data, after execution of SUB
AL,DH, the contents of AL will be 06H. After execution of AAS, the result is not
changed since the the low 4 bits of AL (6) are less than 9. Hence, the final value of
AX is 0006H. Adding 3030H to AX, the contents of AX will be 3036H (ASCII for the
number 06).
Now, suppose that (DH) = 39H and (AX) = 0035H. After execution of SUB AL,DH,
register AL will contain FCH as follows:

(AL) = 35H = 0010 0011
Add 2’s complement of (DH), 39H = 1101 1001

11 11 1100 = FCH = (AL)

After execution of AAS, the upper 4 bits of AL (F) are cleared to zero so that (AL) =

OCH, and the number in AH is decremented by 1 so that AH will contain FFH (-1).
Also, after execution of the AAS instruction, 6 is subtracted from C (since C is greater
than 9) as follows:

Low 4 bits of AL = C,, = 1100
Add 2’s complement of 6 = 101 0

Carry is 1’s complemented to 0 +- 1 01 10

Hence, AL will contain 06H, and FFH in AH indicates that a borrow has occurred.
Note that 5 - 9 = -6 (after BCD correction). AL will contain 36H (ASCII for 6) after
adding 30H to AL.
Consider the AAM instruction. The AAM instruction adjusts the product of two
unpacked BCD digits in AX. If (AL) = 03H (unpacked BCD for 3) = 0000001 1, and
(CH) = 08H (unpacked BCD for 8) = 0000 lOOO,, then, after MUL CH, the contents
of AX are 00000000000 1 1000, (00 1 SH), and after using AAM, the contents of AX
are 00000010000001 00, = unpacked BCD 0204. The following instruction sequence
accomplishes this:

MUL CH
AAM

Note that the Pentium does not allow multiplication of two ASCII codes. Therefore,
before multiplying two ASCII bytes received from an ASCII keyboard, one must
make the upper 4 bits of each one of these bytes zero, multiply them as two unpacked
BCD digits, and then use AAM to convert the binary product to unpacked BCD. The
unpacked BCD product can be converted back to ASCII by adding the product with
3030H. For example, by adding 3030H with 0204H, the result 3234H (ASCII for 24)
is obtained. The result 24 in decimal can then be printed on an ASCII printer.
Consider the AAD instruction. The AAD instruction converts two unpacked BCD
digits in AH and AL to an equivalent binary number in AL. AAD must be used before
dividing two unpacked BCD digits in AX by an unpacked BCD byte. For example,
consider dividing (AX) = unpacked BCD 0408H (48H packed BCD) by (DH) = 06H.
(AX) must first be converted to binary by using AAD in order to use the binary division
instruction DIV. The register AX will then contain 0030H = 48H Packed BCD. After

Assembly Language Programming With The Pentium: Part I 35 1

DIV DH, the contents of AL = quotient = 08H (unpacked BCD), and the contents of
AH = remainder = OOH. The following instruction sequence will accomplish this:
MOV DH,6 ; Move divisor 6 into DH
MOV AX, 0408H ; Move dividend 0408H into AX
AAD ; Convert AX contents to binary (0030H)
DIV DH ; (AL) = quotient = 08H. remainder = OOH

Note that packed and unpacked BCD are covered in Section 1.2.3 in Chapter 1.
One-dimensional arrays (tables) can be be accessed using Pentium MOV instructions
with the appropriate addressing mode. For example, consider a table of of five
elements containing 5 bytes stored starting at an offset 2000H in DS. The table is
stored in memory such that 2000H points to element 0,2001H points to element 1,
and 2004H points to element 4. This is depicted in Figure 10.10. An index register
such as DI can be initialized with the element number to read an element from
this array into an 8-bit register such as CL. For example, if (DI) = 2, then MOV
CLJ2000H + DI] will load element 2 from offset 2002H into CL. On the other hand,
if (DI) = 4, then MOV CL,[2000H + DI] transfers element 4 into CL.

Suppose that an array of 10 elements containing 32-bit data words is stored
starting at an offset 4000H. This means that 4 bytes are needed to store each element.
That is, offset 4000H through 4003H will contain element 0 while offset 4024H
through 4027H will store element 9. Hence, offset 4000H will contain element 0,
offset 4004 will contain element 1, Offset 4008 will contain element 2, and so on. The
based indexed addressing mode with a scaling of 4 can be used to access the array
since the element size is 4 bytes (32 bits). Now, to move element 2 into EAX, the
following instruction sequence can be used:

MOV ECX,00004000H ; Load starting offset of the array into ECX
MOV EDX,2 ; Move element number 2 into EDX
MOV EAXJECX +EDX*4] ; Load value of element 2 into EAX

In the instruction sequence above, the starting offset (4000H) of the table is first loaded
into a 32-bit register such as ECX. The element number (2) is then transferred to EDX.
Register EDX is scaled by 4 since each element is 4 bytes (32 bits). The value of element 2
is then loaded into a 32-bit register such as EAX using MOV EAX,[ECX + EDX*4].
Note that arithmetic operations can be performed on array elements in a table. This is

I
2000H

2001 H

2002H

2003H

2004H

Lowaddress

element 1

element 4

I High address

One dimensional array stored in memory

I
I

FIGURE 10.10

352

illustrated in Example 10.18.

matrix (two rows and three columns) as follows:

Microprocessor Theory and Applications with 68000/68020 and Pentium

Next, consider two-dimensional arrays or matrices. For example, assume a 2 x 3

Since memory is one-dimensional, this matrix is stored in memory using column-major or
row-major ordering. In column-major ordering the elements are stored column by column,
starting with the first column:

In row-major ordering the elements are stored in memory row by row, starting with the
first row:

a[0,0] --column 0 (start of array)
a[0,1]-- column 1
a[0,2]-- column 2
a[1 ,O]-- column 0
a[1,1]-- column 1
a[1,2]-- column 2

Since row-major ordering and subscripts start with 0 in C language, the same convention
will be used here.
Assume that an offset 2000H addresses the first element a[O,O] of the array. This means
that offset 2000H points to the first element of the array, a[O,O]. In the C language, which
uses row-major ordering and subscripts starting with zero, one can express displacement d
of an element at row i and column j as d = (i* t + j) * s, where t is the total number of
columns and s is the element size (1 for byte, 2 for 16-bit, and 4 for 32-bit).
Now, to find the displacement of element a[1 ,O] assuming that each element is 16-bit, the
offset can be determined as follows. Note that i = 1 , j = 0, t = 3 (since 2 x 3 matrix), and
s=2 (16-bit element). Hence, d = (1*3 + 0)*2 = 6. Therefore, the offset where element
a[1 ,O] is stored = 2000H + 6 = 2006H. Hence, the matrix above with row-major ordering
can be stored with starting offset 2000H as follows:

2000H a[O,O]
2002H a[O,l]
2004H a[0,2]
2006H a[1,0]
2008H a[l , l]
200AH a[1,2]

Assembly Language Programming With The Pentium: Part I 353

Next to load element , a[1 ,O] into BX from the array, the following Pentium
instruction sequence can be used:

MOV

MOV
MOV
MOV
MUL
ADD
CWDE

MOV

ESI,00002000H

cx, 0
DL, 1
AL,3
DL
AX,CX

; Low 16 bits of ESI to hold 16-bit offset
; 2000H with upper 16 bits as zero
; Load j = 0, column number into CL
; Load i= 1, row number into DL
; Load t = 3 into AL
;compute i*t, result in AX
;compute i*t+j, result in AX
; sign-extend AX into EAX so that all upper
; 16 bits are 0
; Move 16-bit a[l,O] from offset 00002006H
; into BX

BXJESI + EAX*2]

Note that arithmetic operations can be performed on array elements of a two-dimensional
matrix. This is illustrated in Example 10.19.

EXAMPLE 10.5 Determine the effect of each of the following Pentium
instructions:
(a) CBW (b) CDQ (c) IMUL BX, DX, OFFH (d) DIV CH Assume the following data
prior to execution of each of these instructions independently (assume that all numbers are
in hexadecimal): (CX) = 0300H, (EAX) =A2130091H, and (EDX) = 52F10002H.

Solution

(a) CBW sign-extends the AL register into the AH register. Because the content of
AL is 91H, the sign bit is 1. Therefore, after CBW, (AX) = FF91H.
(b) CDQ sign-extends EAX into EDX, providing a 64-bit result EDX:EAX. Since
the sign bit (the most significant bit of EAX is 1, the content of EDX is FFFFFFFFH.
(c) IMUL BX,DX,OFFH first sign-extends FFH to FFFFH (16-bit) and interprets this
as a signed number (-1). It then performs signed multiplication between the contents of
DX (0002H) and FFFFH and provides the low 16 bis of the answer as FFFEH (-2) in BX.
The upper 16 bits of the product are discarded.
(d) Before unsigned division, CH contains 03,, and AX contains 145,, (91H).
Therefore, after DIV CH, (AH) = remainder = 01H and (AL) = quotient = 48,, = 30H.

EXAMPLE 10.6
C language program structure:

if (x >= y)
X'X+ 10;

else y = y - 12;

Write a Pentium assembly language program for the following

Assume that x and y are addresses of two 16-bit signed integers.

3 54

Solution

Microprocessor Theory and Applications with 68000/68020 and Pentium

Assume addresses x and y are initialized with the contents of the Pentium memory locations
addressed by offsets BX and SI in segment register DS.

.486

.MODEL SMALL,STDCALL

.CODE

MOV AX,[BX] ; Move (x) into AX
CMP AX,[SI] ; Compare (x) with (y)
JGE TEN

SUB WORD PTR[SI], 12 ; Execute else part
JMP FINISH

TEN: ADD WORD PTR[BX],lO ;execute then part
FINISH: HLT ; halt
END START

START

;jump to TEN if (x) is greater than or equal
; to (Y)

EXAMPLE 10.7
C language program structure:

sum = 0;
for (i = 0; i <= 9; i = i + 1)
sum = sum + a[i];

Write a Pentium assembly language program for the following

Assume that sum is the address of the 16-bit result.

Solution

Assume register SI holds the address of the first element of the array while BX
contains the offset of the sum.

.486

.MODEL

.CODE

MOV
MOV

AGAIN: MOV
ADD
ADD
LOOP

START

HLT
END START

SMALL,STDCALL

CX, 10 ;initialize CX to loop count of 10
WORD PTR [BX],O ;sum = 0
AXSSII ; move a[i] into AX
[BXI,AX ; sum = sum + a[i]
SI,2 ; increment SI to point to address of next a[i]
AGAIN ; decrement cx by 1, go back to AGAIN until

;cx=o
; If cx = 0, stop

EXAMPLE 10.8 Write a Pentium assembly program to find (X2)/255 where X is an
8-bit signed number stored in CH. Store the 16-bit result onto the stack. Initialize SS and
SP to 1 OOOH and 2000H, respectively.

Assembly Language Programming With The Pentium: Part I

Solution

FFH

355

OOH

.486

.MODEL SMALL,STDCALL

.CODE

MOV AX,1000H ; Initialize SS
MOV SS,AX ; to lOOOH
MOV SP,2000H ; Initialize SP to 2000H
MOV AL,CH ; Move X into AL
IMUL CH ; Compute X**2 and store in AX
MOV CL,255 ; Since X**2 and 255 are both positive, use
DIV CL ; unsigned division. Remainder in AH
PUSH AX ; and quotient in AL. Push AX to stack
HLT

START:

END START

EXAMPLE 10.9
after execution of the following Pentium assembly language program?

What are the remainder, quotient, and registers containing them

.486
.MODEL SMALL,STDCALL
.CODE

MOV AH,OFFH
MOV AL,OFFH
MOV CX,2
IDIV CL
HLT

START:

END START

Solution

MOV AH,OFFH ; AH = FFH
MOV AL,OFFH
MOV CX,2

; AL = FFH, hence AX = FFFFH = - 1

IDIV CL ; AX I C L = -112

AH AL

EXAMPLE 10.10
numbers in CX and DX and store the result in offset lOOOH addressed by DI.

Write a Pentium assembly language program to add two 16-bit

356

Solution

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

.486

.MODEL

.CODE

MOV
MOV
MOV
ADD
MOV
HLT

START

END START

;Includes 486 instruction set

: Start of code
SMALL,STDCALL ;Specifies memory model

DX,OO 12H
CX,0094H
DI, 1 OOOH
DX,CX
[DII,DX

; Move 0012H into DX
; Move 0094H into CX
; Initialize DI with lOOOH
; Add Dx with CX, Store result in DX
; Store result in memory

:End of code
; stop

EXAMPLE 10.11 Write a Pentium assembly language program to add four 16-bit
numbers stored in consecutive locations starting at a 32-bit offset pointed to by EBX. Store
the 16-bit result in AX. Use ADC instruction for addition. Initialize DS to 5000H, and EBX
to 00001000H.

Solution

.486

.MODEL FLAT,STDCALL

.CODE

MOV AX,5000H ; Initialize AX
MOV DS,AX ; Initialize DS
MOV EBX,00001OOOH ; Initialize BX to OOOOlOOOH
MOV c x , 4 ; Initialize loop count
MOV AX90
CLC ; clear carry

INC EBX ; Update pointer. INC does not

INC EBX ; Update pointer
LOOP START ; Decrement CX & loop
HLT ; stop

PROG:

; Initialize AX to 0 to store 16-bit sum

START ADC AXSEBXl ; Add

; affect CF

END PROG
EXAMPLE 10.12 Write a Pentium assembly language program to add two 64-bit
numbers. Assume that ESI and ED1 contain the starting offsets of the numbers. Store the
result in memory pointed to by EDI. Initialize DS to 3000H, ESI to 0, and ED1 to 8.

Solution

.486 ;Includes 486 instruction set

.MODEL FLAT, STDCALL ;Specifies memory model

.DATA
DATA1 DW OFFFFH ;DATA1 low

Assembly Language Programming With The Pentium: Part I

DW
DW
DW

DATA2 DW
DW
DW
DW
.CODE

MOV
MOV
MOV
MOV
MOV
CLC

START: MOV
ADC
INC
INC
INC
INC
INC
INC
INC
INC
DEC
JNZ
HLT

BEGIN:

END BEGIN

OFFFFH
OFFFFH
OFFFFH
OFFFFH
OFFFFH
OFFFFH
OFFFFH

AX, 3000H
DS,AX
DX,2
ESI,O
EDI,8

EAX,[ESI]
[EDI],EAX
ESI
ESI
ESI
ESI
ED1
ED1
ED1
ED1
DX
START

;DATA1 high

;DATA2 low

;DATA2 high

; Start of code

;Initialize DS to 3000H
;Load 2 into DX
;Initialize ESI to 0
;Initialize ED1 to 8
;Clear Carry to 0
;Load DATA 1 into AX
;Add both data with carry
;Update pointers
;by 4 for 32-bit

;Update pointers
;by 4 for 32-bit

;decrement DX by 1
;Jump to start if ZF is 0
;Stop if ZF = 1
;End of code

357

In the program above, ESI and ED1 are added with 4 using the INC instruction four times
rather than ADD SI,4 and ADD DI,4. This is because the INC instruction does not affect the
carry flag, whereas the ADD instruction does. Note that the ADC [EDI], EAX instruction is
used to add two 32-bit data with the carry flag. For adding high 32-bit numbers, the carry
flag must not be altered. Hence, INC rather than ADD is used. Also, JNZ START checks
whether ZF is 0 or 1. Note that ZF =1 when DEC DX decrements DX to 0. In that case,
the program will execute HLT and stop. However, if ZF = 0 (i.e., DX is not decremented
to 0 by DEC DX), the program loops back to START.
EXAMPLE 10.13 Write a Pentium assembly language program to multiply two
32-bit unsigned numbers to provide a 64-bit result. Assume that the two numbers are
stored in ECX and EDX.

Solution

.486

.MODEL SMALL, STDCALL

.CODE
PROG:

3 5 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

MOV EAX,EDX ;Move first data into EAX
MUL ECX ;(EDX:EAX)<--(EAX] * [ECX)
HLT ; stop

END PROG

EXAMPLE 10.14 Write a Pentium assembly language program to multiply two
8-bit signed numbers stored in the same 16-bit register, AX; AH holds one number and AL
holds the other number. Store the 16-bit result in DX.

Solution

.486

.MODEL SMALL,STDCALL

.CODE
PROG:

IMUL AH ;(AH)*(AL)-->(AX)
MOV DX,AX ;Store result in DX
HLT

END PROG

EXAMPLE 10.15 Write a Pentium assembly program that converts a temperature
(signed) from Fahrenheit degrees stored at an offset contained in SI to Celsius degrees.
The program stores the 8-bit integer, which is part of the result at an offset contained in DI.
Assume that the temperature can be represented by one byte and that DS is already
initialized. The source byte is assumed to reside at offset 2000H in the data segment, and
the destination byte at an offset of 3000H in the same data segment. Use the formula C =

(F-32)/9 x 5

Solution

.486

.MODEL

.CODE

MOV
MOV
MOV
CBW
SUB
MOV
IMUL
MOV
IDIV
MOV
HLT

PROG:

END PROG

SMALL, STDCALL

SI,2000H
DI,3000H
AL,[SII

AX,32
c x , 5
cx
c x , 9
cx
[DII,AL

; Initialize source pointer
; Initialize destination pointer
; Get degrees F
; Sign extend
; Subtract 32
; Get multiplier
; Multiply by 5
; Get divisor
; Divide by 9 to get Celsius
; Put result in destination
; stop

Assembly Language Programming With The Pentium: Part 1 359

Write a Pentium assembly program to implement the following EXAMPLE 10.16
C language program loop:

sum = 0;
for (i = 0; i <=99; i = i + 1)
sum = sum + x[i] * y[i];

The assembly language program will compute where the 4 ' s and x ' s are signed
8-bit numbers stored at offsets 4000H and 5000H, respectively. Initialize DS at 2000H.
Store the 16-bit result in DX. Assume no overflow.

I00

Solution

,486
.MODEL
.CODE

MOV
MOV
MOV
MOV
MOV
MOV

START: MOV
IMUL
ADD
INC
INC
LOOP
HLT

END PROG

PROG:

EXAMPLE 10.17

SMALL,STDCALL

AX,2000H
DS,AX
cx, 100
BX,4000H
SI,5000H
DX,OOOOH

BYTE PTR [SI]
DX,AX
BX
SI
START

ALSBXI

;Initialize
;Data Segment to 2000H
;Initialize loop count
;Initialize pointer of Xi
;Initialize pointer of Yi
;Initialize sum to 0
;Load data into AL
;Signed 8x8 multiplication
;Sum XiYi
;Update pointer
;Update pointer
;Decrement CX & loop

Write a Pentium assembly language program to add two words;
each contains two ASCII digits. The first word is stored in two consecutive locations with
the low byte pointed to by SI at offset 0300H, and the second word is stored in two
consecutive locations with the low byte pointed to by DI at offset 0700H. Store the
unpacked BCD result in memory location pointed to by DI.

Solution

,486
.MODEL SMALL, STDCALL
.CODE

MOV AX,2000H
MOV DS,AX
MOV c x , 2
MOV SI,0300H

PROG:
;initialize ;data segment
;at 2000H
;initialize loop count
;initialize SI

360 Microprocessor Theory and Applications with 68000/68020 and Pentium

MOV DI,0700H
START: MOV ALSSII

ADD ALSDII
AAA
MOV [DII,AL
INC SI
INC DI
LOOP START
HLT

END PROG

;initialize DI
;load data into AL
;perform addition
;ASCII adjust
;store result
;update pointer
;update pointer
;decrement CX & loop
;halt

EXAMPLE 10.18 all the
elements in a table containing eight 16-bit elements stored in memory addressed by
offset 00005000H. Store the 16-bit result in DX.

Write a Pentium assembly language program to add

Solution

START:

BACK:

END

.486
.MODEL
.DATA
ORG
DW
DW
.CODE

MOV

MOV
MOV
MOV
MOV
ADD
INC
MOV
LOOP
HLT
START

EXAMPLE 10.19

FLAT,STDCALL

EAX,00005000H

EBX,O
EDI,EBX
DX,O
CX,8
DX,[EAX+EBX*2]
ED1
EBX,EDI
BACK

; Load starting address of table into
; EAX
; Move element number 0 into EBX
; Copy element number 0 into ED1
; Clear 16-bit sum to 0
; Initialize CX with loop count
; Add elements with sum in DX
; Increment element in ED1 by 1
; Copy element number in EBX
; Branch to BACK until CX=O

Write a Pentium assembly language program to find the trace
(sum of the elements in the diagonal) of a 3 x 3 matrix containing 16-bit words. Store the
16-bit result in DI. Assume that the matrix is stored in row-major ordering starting at an
offset 1000H:

lOOOH a[O,O]
1002H a[0,1]
1004H a[0,2]
1006H a[1,0]
1008H a[1,1]

Assembly Language Programming With The Pentium: Part 1

lOOAH a[1,2]
lOOCH a[2,0]
lOOEH a[2,1]
lOlOH a[2,2]

361

Note that trace = a[O,O] + a[l , l] + a[2,2] and displacement, d = (i *t +j) *s = i *t*s +j*s
where i = row number, j = column number, t = total number of columns in the matrix, and s
= element size. In this example, t = 3 for 3x3 matrix, and s = 2 since each element is 16-bit.
Hence, d = 3*(2*i) + 2*j = 6 * i + 2 *j. Hence, the offset where each element, aij will be
stored = A0 + 6*i +2*j where A0 = starting offset of the array, i = row number, and j =

column number.

Solution

START:

BACK:

END

,486
.MODEL
.DATA
ORG
DW
DW
.CODE

MOV
MOV
MOV
MOV
MOV
MOV

MUL

ADD
ADD
INC

INC
MOV

LOOP
HLT
START

FLAT,STDC ALL

EBX,O
ESI,O
c x , 3
BP,O
EDI,0000 1 OOOH
AX.6

SI

ED1,EAX
BP,[EDI+EBX*2]
EBX

ESI
EDI,0000 1 OOOH

BACK

; Load column number 0 into EBX
; Load row number 0 into ESI
; Initialize CX with loop count
; Clear sum in BP to 0
; Load starting address into ED1
; EAX will contain 00000006H
; Perform 6*i
; Since DX is 0, result in AX,
; hence, in EAX
; Add ED1 with 6*i
; sum diagonal elements in BP
; Increment column number in EBX

; Increment row number in ESI by 1
; Re-initialize ED1 to 1 OOOH since
; (EDI) was altered
; Branch to BACK until CX = 0

; by 1

362

Questions and Problems

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

10.1

10.2

10.3

10.4

10.5

10.6

Assume the real mode. If (DS) = 1000H, (SS) = 2000H, (CS) = 3000H, (BP)
= OOOFH, and (BX) = OOOAH before execution of the following Pentium
instructions:
(a) MOV CX,[BX]
(b) MOV DX,[BP]

Find the 20-bit physical address after execution of each of the instructions
above.

If (DS) = 205FH and OFFSET = 0052H, what is the 20-bit physical address in
real mode?

In a Pentium system in real the mode, segments land 2 both contain addresses
00 100H40200H. What are these segments called?

Determine the addressing modes for the following Pentium instructions:
(a) CLC
(b) CALL WORDPTR[BX]
(c) MOV AX,DX
(d) ADC EBX,[EAX+4*ESI +2000H]

Assume the following Pentium register contents

(EBX) = 0000 1 OOOH
(ECX) = 04000002H
(EDX) = 20005000H

prior to execution of each of the following Pentium instructions. Determine the
contents of the affected registers andlor memory locations after execution of each
of the following instructions and identify the addressing modes:
(a)
(b)

MOV [EBX * 41 [ECX],EDX
MOV [EBX * 21 [ECX + 2020H1,EDX

Determine the effect after execution of
instructions:
(a) MOVZX EAX,CH

each of the following Pentium

Prior to execution of this MOVZX instruction, assume

(EAX) = 80001234H
(ECX) = 00008080H

(b) MOVSX EDX,BL
Prior to execution of this MOVSX assume

(EDX) = FFFFFFFFH
(EBX) = 0521 8888H

Assembly Language Programming With The Pentium: Part 1 363

10.7

10.8

10.9

10.10

10.11

10.12

10.13

10.14

Find the overflow, direction, interrupt, trap, sign, zero, parity, and carry flags after
execution of the following Pentium instruction sequence:

MOV AH,OFH
SAHF

What is the content of AL after execution of the following Pentium instruction
sequence?

MOV BH,33H
MOV AL,32H
ADD AL,BH
AAA

What happens after execution of the following Pentium instruction sequence?
Comment.

MOV DX,OOlFH
XCHG DL,DH
MOV AX,DX
IDIV DL

What are the remainder, quotient, and registers containing them after execution of
the following Pentium instruction sequence?

MOV AH,O
MOV AL,OFFH
MOV CX,2
IDIV CL

Determine the effect after execution of each of the following Pentium
instructions.

(b) MOVSX ECX,E7H
Assume (EAX) = FFFFFFFFH, (ECX) = F 1257 124H, and (EDX) = EEEEEEEEH
prior to execution of each of these instructions.

(4 CDQ

Write the Pentium instruction sequence to clear the trap flag in the FLAGS
register without affecting the other flags.

Write a Pentium assembly program to find the minimum value of a string of
10 signed 8-bit numbers using indexed addressing. Assume that offset 5000H
contains the first number.

Write a Pentium assembly language program that will convert a BCD number in AL
to a seven-segment code using a look-up table containing the seven-segment codes of
the BCD numbers. Use a common-cathode display. Assume that the table is stored in
memory starting at offset 2000H. Use the XLAT instruction. Initialize DS to 3000H.

364

10.15

10.16

10.17

10.18

10.19

10.20

10.21

0.22

0.23

10.24

10.25

10.26

Microprocessor Theory and Applications with 68000/68020 and Pentium

Write a Pentium assembly program to add a 64-bit number in ECX: EDX with
another 64-bit number in EAX: EBX. Store the result in EAX: EDX.

Write a Pentium assembly language program to subtract two 64-bit numbers.
Assume that SI and DI point to the low words of the numbers.

Write a Pentium assembly program to add a 16-bit number stored in BX (bits 0
to 7 containing the high-order byte of the number and bits 8 to 15 containing the
low-order byte) with another 16-bit number stored in CX (bits 0 to 7 containing
the low-order 8 bits of the number and bits 8 thorough 15 containing the high-
order 8 bits). Store the result in AX.

Write a Pentium assembly program to add twenty five 16-bit numbers stored in
consecutive memory locations starting at displacement OlOOH in DS = 0020H.
Store the 16-bit result onto the stack. Initialize SS to 2000H, SP to 1000H, and
DS to 0020H.

Write a Pentium assembly language program to subtract a 24-bit number (x) stored
in low 24 bits of EAX from another 24-bit number (y) stored in consecutive
memory locations starting at offset 6080H in BX (the highest byte at 6082H and
the lowest byte at 6080H). Store the 24-bit result in the low 24 bits of EAX;
ignore the highest byte of EAX.

If (EBX) = 0123A212H and (EDX) = 46B12310H, then what are the contents of
EBX and EDX after execution of the Pentium instruction XADD EBX,EDX?

If (BX) = 271AH, (AX) = 712EH, and (CX) = 1234H, what are the contents of
AX after execution of the Pentium instruction CMPXCHG CX.BX?

Write a Pentium assembly language program to perform (X2 + Y2) where X is
a signed 8-bit number stored in CL and Y is an unsigned 16-bit number stored
in low 16 bits of SI. Save the 32-bit result onto the stack. Assume SP is already
initialized.

Write a Pentium assembly language program to multiply a 16-bit signed number
stored in AX by an 8-bit unsigned number stored in the low BL.Store the 32-bit
result in BX:CX.

Assume that AL, CX,and DXBX contain a signed byte, a signed word, and a
signed 32-bit number, respectively. Write a Pentium assembly language program
that will compute the signed 32-bit result: AL - CX + DXBX -+ DXBX.

Write a Pentium assembly language program to multiply a signed 8-bit number
in AL by a signed 32-bit number in ECX. Store 64-bit result in EDX:EAX.

Write a Pentium assembly program to multiply the top two 16-bit unsigned words
of the stack. Store the 32-bit result onto the stack. Initialize SS to 5000H and SP
to 0020H.

Assembly Language Programming With The Pentium: Part 1

10.27

3 65

Write a Pentium assembly language program to convert 255 degrees in Celsius in
BL to Fahrenheit degrees and store the value in AX. Use the equation

F= (C/5) * 9 + 32

10.28 Write a Pentium assembly program to divide an 8-bit signed number in CH by an
8-bit signed number in CL. Store the quotient in CH and the remainder in CL.

10.29 Write a Pentium assembly program to divide a signed 32-bit number in DX:AX
by an 8-bit unsigned number in BH. Store the 16-bit quotient and 16-bit remainder
in DX and AX respectively.

This Page Intentionally Left Blank

ASSEMBLY LANGUAGE
PROGRAMMING WITH THE

PENTIUM: PART 2
In this chapter we provide the second part of the Pentium’s instruction set. Topics include
logic, bit manipulation, set on conditions, shift and rotate, unconditional transfers including
subroutine calls/returns, conditional branch, iteration control, interrupt, and processor
control instructions. Several assembly language programming examples using most of
these instructions are provided. Finally, delay routines using Pentium’s instructions are
covered.

11.1

The logic, bit manipulation, set on condition, shift, and rotate instructions of the Pentium
are listed in Table 1 1.1. Let us explain some of the instructions in the table.

Logic, Bit Manipulation, Set on condition, Shift, and Rotate Instructions

The NOT mem/reg instruction finds the one’s complement of the operand. That is, this
TABLE 11.1 Pentiurn Logic, Bit Manipulation, Set on condition, Shift and

Logic Instructions

Rotate Instructions

NOT reg / mem (reg / mem) t NOT (reg / mem)
AND a, b
OR a, b
XOR a, b
TEST a, b

Operands d and s are defined later in this chapter.

(a> - (a>AND (b)
(a> - (a) OR (b)
(a) - (a) XOR (b>
(a) AND (b); no result, flags are affected.

Bit Manipulation Znstructions

BSF d,s Bit Scan Forward
BSR d,s Bit Scan reverse
BT d,s Bit Test
BTC d,s
BTR d,s
BTS d,s

Bit test and complement
Bit test and reset
Bit test and set

367

368

TABLE 11.1 Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Set on condition Instructions

SETcc reg / mem8 If condition code, cc is true, then load
operand byte with 01H; otherwise, clear
operand byte to OOH

Shift logical/arithmetic left byte, word,
or doubleword

Shifi Instructions 1
SHL/SAL reg / mem, CNT

SHWSAR reg / mem, CNT Shift 1ogicaVarithmetic right byte, word,
or doubleword

Operands x, y and z for SHLD and SHRD
are defined later in this chapter.
SHLD x,y,z Double precision Shift Left
SHRD x.v.z Double precision Shift Right

I Rotate Instructions 1
ROL reg / mem, CNT
ROR reg / mem, CNT
RCL reg / mem, CNT

RCR reg / mem, CNT

Rotate left byte, word, or doubleword
Rotate right byte, word, or doubleword
Rotate through cany left byte, word, or
doubleword
Rotate through carry right byte, word, or
doubleword

a = “reg” or “mem,” b = “reg” or “mem” or “data.” medreg in shift and rotate instructions
can be 8-, 16- or 32-bit register or memory location. CNT represents the number of times
to be shifted. CNT = imm8, or contained in low 5 bits of CL. The value in CNT may
vany from 1 to 3 1. Zero or negative shifts and rotates are illegal.

instruction converts all 0’s to l’s, and vice versa. No flags are affected. The operand
medreg can be 8-, 16-, or 32-bit. Typical examples include NOT BL, NOT AX, NOT
EDX, and NOT DWORD PTR [EBX]. As an example, consider NOT BL. If prior
to execution of this instruction, the contents of BL = 2AH = 0010 IOIO,, then after
execution of NOT BL, the contents of BL = 1101 0101, = D5H.
AND a,b performs bit-by-bit logical AND operation between the two operands and
stores the result in the destination operand. The destination operand ‘a’ can be memory
or register while the source operand ‘b’ can be memory, register, or immediate data.
The operand sizes can be 8-, 16-, or 32-bit. Typical examples include AND DL, AH,
AND AX, BX, AND EAX, EDX, AND EDI, 2134A500H, and AND WORD PTR
[SI],4. As an example, consider the AND BH,8FH instruction. If prior to execution
of this instruction, (BH) = 72H, then after execution of AND BH,8FH, the following
result is obtained:

(BH) = 72H = 01110010
AND 8FH= 10001111

(BH) = 00000010

Assembly Language programming with the Pentium; Part 2 369

ZF = 0 (result is nonzero), SF = 0 (most significant bit of the result is 0), and PF = 0
(result has odd parity). CF, AF, and OF are always cleared to 0 after a logic operation.
The status flags are similarly affected after execution of other logic instructions, such
as OR, XOR, NOT, and TEST.
The AND instruction can be used to perform a masking operation. If the bit value in a
particular bit position is desired in a word, the word can be logically ANDed with
appropriate data to accomplish this. For example, the bit value at bit 2 of an 8-bit
number OlOOlYlO (where an unknown bit value of Y is to be determined) can be
obtained as follows:

0 1 0 0 1 Y 1 0 -- 8-bit number
AND 0 0 0 0 0 1 0 0 --masking data

0 0 0 0 0 Y 0 0 -- result
.....................

If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the
result is zero (flag Z = 1). The Z flag can be tested using typical conditional JUMP
instructions such as JZ Cjump if Z = 1) or JNZ Cjump if Z = 0) to determine whether
Y is 0 or 1. This is called a masking operation. The AND instruction can also be
used to determine whether a binary number is ODD or EVEN by checking the least
significant bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd).

OR a,b performs bit-by-bit logical OR operation between the two operands and
stores the result in the destination operand. The destination operand ‘a’ can be memory
or register, while the source operand ‘b’ can be memory, register, or immediate data.
The operand sizes can be 8-, 16-, or 32-bit. All flags are affected. Typical examples
include OR CL, AH, OR AX, DX, OR ESI, EDX, OR EAX, 2F34A500H, and OR
WORD PTR [BX], 4. As an example, consider OR DL,AH. If prior to execution of
this instruction, (DL) = A2H and (AH) = 5DH, then after exection of OR DL,AH,
the content of DL is FFH. The flags are affected in the same manner as the AND
instruction. The OR instruction can typically be used to insert a 1 in a particular
bit position of a binary number without changing the values of the other bits. For
example, a 1 can be inserted using the OR instruction at bit 3 of the 8-bit binary
number 0 1 1 1 0 0 1 1 without changing the values of the other bits as follows:

0 1 1 1 0 0 1 1 -- 8-bit number
0 0 0 0 1 0 0 0 -- data for inserting a 1 at bit 3 OR

0 1 1 1 1 0 1 1 --Result

XOR a,b performs bit-by-bit Exclusive-OR operation between the two operands and
stores the result in the destination operand. Destination operand ‘a’ can be memory or
register while the source operand ‘b’ can be memory, register, or immediate data. The
operand sizes can be 8-, 16-, or 32-bit. All flags are affected. Typical examples include
XOR CL,BL, XOR SI,BX, XOR ECX,EDX, XOR EBX,24C4A500H or XOR BYTE
PTR [DI],2AH.
As an example, consider XOR CX,2. If prior to execution of this instruction,(CX) =

2342H, then after execution of XOR CX,2, the 16-bit contents of CX will be 2340H.

370 Microprocessor Theory and Applications with 68000/68020 and Pentium

All flags are affected in the same manner as the AND instruction. The Exclusive-OR
instruction can be used to find the ones complement of a binary number by XORing
the number with all 1’s as follows:

0 1 0 1 1 1 0 0 - - 8-bit number
1 1 1 1 1 1 1 1 - - data XOR

1 0 1 0 0 0 1 1 --resUlt(one’scomplementofthe8-bitnum~O1011100)

TEST a,b performs a bit-by-bit logical AND operation between the two operands
but does not store the result in the destination operand; the flags are affected in the
same manner as the AND instruction. The destination operand ‘a’ can be memory or
register while the source operand ‘b’ can be memory, register, or immediate data. The
operand sizes can be 8-, 16-, or 32-bit. Typical examples include TEST DL,AH, TEST
CX,BX, TEST EBX,EDX, TEST EDI,2C34A500H, and TEST WORD PTR [DI],4.
As an example, consider TEST CL,O5H. This instruction logically ANDs (CL) with
00000101, but does not store the result in CL. All flags are affected.
BSF d,s takes the form:

BSF d 9 s

reg16 , reg16/mem16
reg32 , reg32lmem32

The source operand (s) can be 16- or 32-bit register or memory location. The destination
operand (d) can be a 16- or 32-bit register. This instruction scans the bits of the source
operand (s) starting with the least significant bit (bit 0) in order to find the first bit that
equals 1. The bit number of the first 1 found is stored in d, and the ZF flag is cleared to
0. The ZF is set to 1 if the whole 16- or 32-bit number is 0, and in that case, the contents
of any register or memory location do not change. The other flags OF, SF, AF, PF, and
CF are undefined. For example, consider BSF EBX,EDX. If (EDX) = 01241240H,
then after execution of the BSF EBX,EDX instruction, (EBX) = 00000006H and ZF
= 0 since (EDX) is nonzero. Bit 6 in EDX (contained in the lower byte of EDX) is the
first 1 found when (EDX) is scanned from the right.
Consider BSR d,s . Operands d and s for BSR are the same as BSF. The source operand
(s) can be 16- or 32-bit register or memory location. The destination operand (d) can
be a 16- or 32-bit register. This instruction scans the bits of the source operand, (s)
starting with the most significant bit (bit 3 1 or bit 15) to find the first bit that equals 1.
The bit number of the first one found is stored in ‘d’, and the ZF is set to 1 if the whole
16- or 32-bit number is 0; otherwise, the ZF flag is cleared to 0. The other flags OF, SF,
AF, PF, and CF are undefined. For example, consider BSR AX,CX. If (CX) = 25F 1 H,
then after execution of the BSF AX, CX instruction, (AX) = 13 ,,, = OOODH since bit 13
is the first bit set to 1 when scanned from left. ZF = 0 since (CX) is nonzero.

Assembly Language programming with the Pentium; Part 2

BT (bit test) takes the form :

37 1

BT d, S

regl6, reg16
mem16, reg16
reg 16, imm8
mem16, imm8
reg32, reg32
mem32, reg32
reg32, imm8
mem32, imm8

BT assigns the bit value of the destination operand d, specified by the source operand
s (bit offset) to the carry flag. Only CF is affected. CF contains the value of the bit
selected. If operand ‘s’ is immediate data, only 8 bits are allowed in the instruction.
This operand is taken modulo 32; hence, the range of immediate bit offset is from 0 to
3 1. This permits any bit within a register to be selected. If d is a register, the bit value
assigned to CF is defined by the value of the bit number defined by s taken modulo the
register size. Note that BSF and BSR instructions do not provide modulo operands.
For memory bit strings, immediate field gives only the bit offset within a word or
doubleword. When accessing a bit in memory, the Pentium may access four bytes
starting from the memory address given by: Effective Address + (4* (Bit offset DIV
32)) for a 32-bit operand size or two bytes starting from the memory address given by:
Effective Address + (2 * (Bit offset DIV 16)) for a 16-bit operand size.
Next, as an example, consider BT EAX,2. If (EAX) = FFFF0080H, then after BT
EAX,2, the CF will be cleared to 0 since bit 2 of EAX is 0. Next, consider BT ECX,33.
If (ECX) = 1234081FH, then after BT ECX,33, because the immediate data (s) is 33,,,
bit 1 (the remainder of 33/32 = bit 1 of ECX) is reflected in CF, and therefore CF =

1.
BTC (bit test and complement) takes the form

BTC d.s

where d and s have the same definitions as for the BT instruction. The bit of d defined
by s is reflected in CF. After CF is assigned, the same bit of d defined by s is one’s-
complemented. The Pentium determines the bit number from s (whether s is immediate
data or register) and d (whether d is register or memory) in the same way as for the
BT instruction.
BTR (bit test and reset) takes the form

BTR d,s

where d and s have the same definitions as for the BT instruction. The bit of d defined
by s is reflected in CF. After CF is assigned, the same bit of d defined by s is reset to
0. Everything else applicable to the BT instruction also applies to BTR.

372 Microprocessor Theory and Applications with 68000/68020 and Pentium

BTS (bit test and set) takes the form

BTS d,s

BTS is the same as BTR except that the bit in d specified by s is set to 1 after the
bit value of d defined by s is reflected in CF. Everything else applicable to the BT
instruction also applies to BTS.
Consider SETcc reg8 / mem8. This instruction checks the specified condition and sets
a byte in medreg to 0 1 H if true or reset the byte in medreg to OOH if false. Appendix
F lists the various conditions used with the SETcc instruction. Typical examples of
this include SETC medreg (set byte in operand if the carry flag is l), SETZ m e d
reg (set byte in operand if the zero flag is l), and SET0 mem/reg (set byte in operand
if the overflow flag is 1). Note that medreg can be a byte located in memory or in
the lowest byte of the general register. No flags are affected. As an example, consider
SETZ BL. If (BL) = 52H and ZF = 1, then, after this instruction is executed, (BL) =

01H. On the other hand, if ZF = 0, then, after execution of this instruction, (BL) = OOH.
The other SETcc instructions can be explained similarly.

The basic concepts associated with shift and rotate operations are covered in Chapter
5. In this section, some of the Pentium shift and rotate instructions are illustrated by
means of numerical examples. Consider SHR mem/reg,CNT which has the following
operands:

SHR reg/mem ,CNT

reg8/mem8 ,imm8
regl6/mem16 ,CL

reg16/mem16 ,imm8
reg32/mem32 ,CL
reg32/mem32 ,imm8

reg8/mem8 ,CL

SHR medreg,CNT instruction performs logical right shift on the contents of the
destination operand (mendreg) specified by the shift count in the source operand. The
source operand can be 8-bit immediate data or contained in register CL. The shift
count may vary from 1 to 3 1. If a shift count greater than 3 1 is attempted, only the
bottom five bits of the shift count are used. When CL is the shift count, its contents
do not change after execution of the shift instruction. Figure 11.1 shows the operation
of SHR mem/reg,CNT. Note that the least significant bit shifted out goes to CF (the
carry flag) and 0 is shifted into the most significant bit. Finally, the content of register
or memory is shifted to right based on the shift count. As an example, consider the
following instruction sequence:

MOV CL,2
SHR DL,CL

The above instruction sequence is equivalent to SHR DL, 2.

Assembly Language programming with the Pentium; Part 2 373

If prior to execution of the instruction sequence above, the contents of DL are 97H
and CF = 0, then after execution of this instruction sequence , (DL) = 25H and CF = 1.

SHR can be used to divide an unsigned number by 2" by shifting the number n times
to the right as long as a 1 is not shifted out of the least significant bit. Since execution
time of the unsigned division instruction (DIV) is longer, unsigned division by SHR
may be more efficient.
SHL mem/reg,CNT works in the same way as the SHR medreg,CNT except that
the contents of m e d r e g are logically shifted to the left. Operation of the instruction
SHL m e d r e g , CNT is shown in Figure 1 1.1. This instruction has the same operands
as SHR medreg, CNT. As an example, consider SHL BL, 1. This instruction logically
shifts the contents of BL one bit to the left. Suppose that prior to execution of this
instruction, if (BL) = A l H and CF = 0, then after SHL Bl,l, the contents of BL are
42H and CF = 1.
SHL can be used to multiply an unsigned number by 2" by shifting the number, n
times to the left as long as a 1 is not shifted out of the most significant bit. Since the
execution time of the unsigned multiplication instruction (MUL) is longer, unsigned
multiplication by SHL may be more efficient.
Figure 1 1.2 shows the operations of SAR medreg,CNT or SAL medreg,CNT. These
instructions have the same operands as the SHR medreg, CNT. SAR can be used to
divide a signed number by 2" by shifting the number n times to right as long as a 1 is
not shifted out of the least significant bit. Since execution time of the signed division
instruction (IDIV) is longer, signed division by SAR may be more efficient.
SAL and SHL perform the same operation except that SAL sets OF to 1 if the sign
bit of the number being shifted changes during or after shifting. SAL can be used to
multiply a signed number by 2" by shifting the number n times to left; the result is
correct if OF = 0 while the result is incorrect if OF = 1. Since the execution time of
the signed multiplication instruction (IMUL) is longer, multiplication by SAL may be
more efficient.
Multiplication and division by shifting a binary number by 2" is desirable in applications
such as communication systems. Note that in communication systems,the number of
samples is normally chosen by the designer as powers of 2. Hence, to multiply or
divide other parameters by the number of samples, multiplication or division using
shift instructions rather than Pentium's multiplication or division instructions (MUL,
IMUL, DIV, IDIV) are desirable. This may be very useful in real-time systems.

ROL mem/reg,CNT rotates (mem/reg) left by the specified number of bits (Figure
11.3). The operands are the same as the SHR mem/reg,CNT. The number of bits to
be rotated is either 8-bit immediate data or contained in CL. For example, if CF =

0, (BX) = OOlOH, and (CL) = 03H then, after ROL BX, CL, register BX will contain
0080H and CF = 0. On the other hand, ROL BL, 5 rotates the 8-bit contents of BL
five times to the left. ROR mem/reg, CNT is similar to ROL except that the rotation is
to the right (Figure 11.3).
Figure 11.4 shows the operations of the instructions, RCL medreg,CNT and RCR
mem/reg, CNT.
Consider SHLD x,y,z and SHRD x,y,z instructions. The operands for these
instructions are as follows:

374 Microprocessor Theory and Applications with 68000/68020 and Pentium

SHR SHL

31, 15 or 7 31, 1 5 0 r 7 ... 1 0

FIGURE 11.1 SHR and SHL instructions.

SAR SAL

31, 15 o r 7 31, 1 5 o r 7 ... 1 0

+J u. . LW4

FIGURE 11.2 SAR and SAL instructions.

FIGURE 11.3 ROL and ROR instructions.

RCL RCR

31, 15 Or 7 31, 15 Or7 Tm/ y q
FIGURE 11.4 RCL and RCR instructions.

SHLD x, Y9 Z Shift left double
SHRD x, Y, Z Shift right double

regl6, regl6, imm8
meml6, regl6, imm8
regl6, regI6, CL
meml6, regl6, CL
reg32, reg32, CL

Assembly Language programming with the Pentium; Part 2 375

mem32, reg32, CL
reg32, reg32, imm8
mem32, reg32, imm8

For both SHLD and SHRD, the shift count is defined by an immediate byte or the
contents of CL. These operands are taken modulo 32 to provide a number between 0
and 3 1 by which to shift. Note that modulo 32 means that a shift count of 34 will shift
the data twice (34/32 = remainder of 2).

SHLD shifts the contents of d:s by the specified shift count, with the result stored
back into d; d is shifted to the left by the shift count with the low-order bits of d filled
from the high-order bits of s. The bits in s are not altered after shifting. The carry flag
becomes the value of the bit shifted out of the most significant bit of d. If the shift
count is zero, this instruction works as a NOP. For the specified shift count, the SF, ZF,
and PF flags are set according to the result in d. CF is set to the value of the last bit
shifted out. OF and AF are undefined.

SHRD shifts the contents of ds by the specified shift count to the right with the
result stored back into d. The bits in d are shifted right by the shift count, with the
high-order bits filled from the low-order bits of s. The bits in s are not altered after
shifting. If the shift count is zero, this instruction operates as a NOP. For the specified
shift count, the SF, ZF, and PF flags are set according to the value of the result. CF is
set to the value of the last bit shifted out. OF and AF are undefined.

As an example, consider SHLD BX, DX, 2. If (BX) = 183FH and (DX) =

OIFlH, then after execution ofthis SHLD instruction, (BX) = 60FCH, (DX) = OlFlH
(unchanged), CF = 0, SF = 0, ZF = 0, and PF = 1. Similarly, the SHRD instruction can
be illustrated.

EXAMPLE 11.1 It is desired to multiply a 32-bit unsigned number in EBX by 4
to provide a 32-bit product and then perform the following operations on the contents of
EBX:

Assume data is already stored in EBX.
(a) Write a Pentium assembly language program to accomplish the above using only logic
and shift instructions. Do not use any multiplication or any other instructions.
(b) Write a Pentium assembly language program to accomplish the above using only
bit manipulation and shift instructions. Do not use multiplication, logic, or any other
instructions.

Set bits 0 and 3 to 1 without changing other bits in EBX.
Clear bit 30 to zero without changing other bits in EBX.

Ones-complement bit 5 without changing other bits in EBX.

Solution

(a)
.486
.MODEL FLAT,STDCALL
.CODE

SHL EBX,2
START:

; Unsigned multiply EBX by 4

376 Microprocessor Theory and Applications with 68000/68020 and Pentium

OR
AND EBX,OBFFFFFFFH ; clear bit 30 in EBX to zero
XOR EBX,00000020H ; ones complement bit 5 in EBX

EBX,00000009H ; set bits 0 and 3 in EBX to one

HLT ; stop
END START
(b)

.486

.MODEL FLAT,STDCALL
CODE

SHL EBX,2 ; Unsigned multiply EBX by 4
BTS EBX,O ; set bit 0 in EBX to one
BTS EBX,3 ; set bit 3 in EBX to one
BTR EBX,30 ; clear bit 30 in EBX to zero
BTC EBX,5 ; ones complement bit 5 in EBX

START:

HLT ; stop
END START

EXAMPLE 11.2 Write a Pentium assembly language program that will perform :
5 x X + 6 x Y + (Y/8) -+ (BP)(BX) where X is an unsigned 8-bit number stored at offset
OlOOH and Y is a 16-bit signed number stored as two bytes at offsets 0200H and 0201H
respectively. Neglect the remainder of Y/8. Store the result in registers BX and BP. BX
holds the low 16 bits of the 32-bit result and BP holds the high 16 bits of the 32-bit result.
Initialize DS to 1000H.

Solution

.486

.MODEL

.CODE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MUL
ADD
MOV
MOV
MOV
SAR
CWD
ADD
ADC

START:

SMALL,STDCALL

AX, 1 OOOH
DS,AX
S1,Ol OOH
DI,0200H
ALSSII
BX,O
CL,5
CL
BX,AX
BP,O
=,PI1
CL,3
Ax,CL

BX,AX
BP,DX

;Initialize DS

;Pointer to X
;Pointer to Y
;Move X to AL
;Clear 16-bit sum to zero

;Unsigned MUL, (AX) = 5*X
;Sum 5*X with BX
;Convert 5*X to unsigned 32-bit
;Move Y to AX

;Divide by 8
;Convert Y/8 into 32-bit in (DX)(AX)
;Sum 5*X and Y/8
;in BP BX

Assembly Language programming with the Pentium; Part 2

MOV AX,[DI] ;Move Y to AX
MOV CX,6

ADD BX,AX ;32-bit result
ADC BP,DX ;in BP BX
HLT ;Halt

IMUL CX ;(DX)(AX) <- 6*Y

END START

377

11.2 String Instructions

Table 11.2 lists the Pentium string instructions. Note that string means that an array of
data bytes, 16-bit words, or 32-bit doublewords is stored in consecutive memory locations.
String instructions are available to MOVE, COMPARE, or SCAN for a value as well as
to move string elements to and from AL, AX, or EAX. The instructions in Table 11.2,
contain “repeat” prefixes that cause these instructions to be repeated in hardware, allowing
long strings to be processed much faster than if done in a software loop.

Let us explain some of the instructions in Table 11.2.

MOVSB, MOVSW, or MOVSD moves 8-, 16-, or 32-bit data from the memory
location addressed by SI in DS to the memory location addressed by DI in ES. SI
and DI are incremented automatically by 1 for byte, 2 for word, and 4 for doubleword
if DF = 0; on the other hand, if DF = 1, then registers SI and DI are automatically
decremented by 1 for byte, 2 for word, and 4 for doubleword. The instruction CLD
can be used to clear the DF flag to 0 while the STD sets the DF flag to one. Automatic
incrementing or decrementing of SI and DI will enable the programmer to move
data between two strings from low to high addresses or from high to low addresses
in memory. As mentioned in Chapter 10, the default segment register for source is DS,
and it may be overridden; the segment register used for the destination must be ES,
and cannot be overridden. An example is ES:MOVSW. In this case, both source and
destination strings will use ES as the segment register.

Note that for 16-bit offset, SI and DI contain offsets for both source and destination
strings while for 32-bit offset, ESI and ED1 contain offsets for both source and
destination strings. Also, for 32-bit offset in real mode, the contents of ESI and ED1
vary from OOOOOOOOH to OOOOFFFFH; this means that SI and DI contain offsets for
doubleword string instructions such as MOVSD in real mode since low 16 bits of ESI
and ED1 are the same as SI and DI.

TABLE 11.2 Pentium String Instructions

REP
REPE I REPZ.
REPNE I REPNZ
MOVSB I MOVSW I MOVSD
SCASB ISCASW I SCASD
LODSB ILODSW I LODSD
STOSB /STOSW/ STOSD

Repeat MOVS or STOS until CX = 0
Repeat CMPS or SCAS until ZF = 1 or CX = 0
Repeat CMPS or SCAS until ZF = 0 or CX = 0
Move byte or word or doubleword string
Scan byte or word or doubleword string
Load from memory into AL or AX or EAX
Store AL or AX or EAX into memory

378 Microprocessor Theory and Applications with 68000/68020 and Pentium

As an example of MOVS instruction, consider MOVSW. If (DF) = 0, (DS) =

1000H, (ES) = 3000H, (SI) = 0002H, (DI) = 5000H. Assume that the contents of
offset pointed to by SI =0002H in DS = lOOOH are 1234H. That is, (physical address
10002H) = 1234H. This is depicted along with other data (chosen arbitrarily) in the
Figure 11.5 (a).
Now, after execution of the MOVSW instruction along with the above data, the
contents of offset pointed to by DI = 5000H in ES = 3000H are 1234H. That is
(physical address 35000H) = 1234H. Also, The contents of SI and DI are incremented
(since DF =0) by 2 for word. Hence, (SI) = 0004H, and (DI) = 5002H. This is depicted
in Figure 11.5 (b).
Assuming (10002H) = 1234H, the following Pentium instruction sequence will
accomplish the above:

CLD ;DF = 0
MOV AX,1000H ;DS = lOOOH
MOV DS,AX
MOV BX,3000H ;ES = 3000H
MOV ES,BX
MOV SI,0002H ;Initialize SI to 0002H
MOV DI,5000H ;Initialize DI to 5000H
MOVSW

Note that DS (source segment) in MOVS instruction can be overridden while the
destination segment, ES is fixed, cannot be overridden. For example, the instruction
ES: MOVSW will override the source segment, DS by ES while the destination
segment remains at ES so that data will be moved in the same extra segment, ES.
REP repeats the string instruction (such as MOVS) follows until the CX register is
decremented to 0. As mentioned before, REP is implemented in hardware for faster
operation. Next, consider moving (offset 1000H) to (offset SOOOH), (offset 1001H)
to (offset 5001H), and so on. Note that (offset 1000H) indicates the contents of offset
lOOOH in DS (source string) while (offset 5000H) means the contents of offset 5000H
in ES (destination string). Assume (DS) = 2000H and (ES) = 4000H. The following
Pentium assembly language program using LOOP instruction for moving 50 bytes
from source to destination (from low to high addresses) will accomplish this:

I

FIGURE 11.5 (a) Source and destination strings prior to execution of
MOVSW instruction

Assembly Language programming with the Pentium; Part 2 379

SI

DI

15
7

SOURCE STRING IDS = lWOH, SI = 0004H) 1 1 Low address
0002H 1 2 3 4 H

High address

, q
DESTINATION STRING IES = 3000H,Dl= M02H)

45 0

Low address

High address

FIGURE 11.5(b) Source and destination strings after execution of MOVSW
instruction

.486

.MODEL SMALL, STDCALL

.CODE

CLD

MOV AX,2000H ;DS = 2000H
MOV DS,AX
MOV BX,4000H ;ES = 4000H
MOV ES,BX
MOV SI,1000H ;Initialize SI to lOOOH
MOV DI,5000H ;Initialize DI to 5000H
MOV CX,50 ;Initialize CX to 50

LOOP BACK ;decrements CX by 1

START
; Clear DF to 0 for autoincrementing SI and DI by 1
; for byte move

BACK: MOVSB ;Move a byte from source to destination

;and goes to label BACK if CX f 0. If CX = 0, goes
;to the next instruction. Thus, 50 bytes are moved

HLT ; stop
END START

The above assembly language program can be replaced using REP prefix as follows:

.486

.MODEL SMALL, STDCALL

.CODE

CLD

MOV AX,2000H ;DS = 2000H
MOV DS,AX
MOV BX,4000H ;ES = 4000H

START
;Clear DF to 0 for autoincrementing SI and DI by 1
; for byte move

380

END

Microprocessor Theory and Applications with 68000/68020 and Pentium

MOV ES,BX
MOV S1,lOOOH ;Initialize SI to lOOOH
MOV DI,5000H ;Initialize DI to 5000H
MOV CX,50 ; Initialize CX to 50
REP MOVSB ; Move a byte from source array to destination

; array in the direction based on DF. REP prefix
; decrements CX by 1
; and executes MOVSB 50 times.
; Thus, 50 bytes are moved.

HLT ; stop
START

Next, consider moving string data from high to low addresses. For example, suppose it
is desired to move 8-bit data from (offset 2006H) to (offset 5008H), (offset 2005H) to
(offset 5007H), and so on. The following Pentium assembly language program using
LOOP instruction for moving 50 bytes from source to destination (from high to low
addresses) will accomplish this:

.486

.MODEL

.CODE

STD
START:

MOV
MOV
MOV
MOV
MOV
MOV
MOV

LOOP
BACK: MOVSB

HLT
END START

SMALL. STDCALL

AX,2000H
DS,AX
BX,4000H
ES,BX
SI,2006H
DI,5008H
CX,50

BACK

;Set DF to 1 for autodecrementing SI and DI by 1
;for byte move
;DS = 2000H

;ES = 4000H

;Initialize SI to 2006H
;Initialize DI to 5008H
; Initialize CX to 50
;Move a byte from source array to destination
;array in the direction based on DF. LOOP
;decrements CX by 1
;and goes to label BACK if CX f O.If CX = 0,
;goes to the next instruction. Thus, 50 bytes are moved
;Stop

The above program can be replaced using REP prefix as follows:

,486
.MODEL SMALL, STDCALL
.CODE

STD

MOV AX,2000H ;DS = 2000H

START:
;Set DF to 1 for autodecrementing SI and DI by 1
;for byte move

Assembly Language programming with the Pentium; Part 2

MOV DS,AX
MOV BX,4000H ;ES = 4000H
MOV ES,BX
MOV SI,2006H ;Initialize SI to 2006H
MOV DI,5008H ;Initialize DI to 5008H
MOV CX,50 ;Initialize CX to 50
REP MOVSB ;Move a byte from source array to destination

; array in the direction based on DF. REP prefix
; decrements CX by 1
; and executes MOVSB 50 times.
; Thus, 50 bytes are moved.

HLT ; stop
END START

38 1

CMPSB or CMPSW or CMPSD in real mode subtracts without any result (affects
flags accordingly) 8- , 16-, or 32-bit data in the source memory location addressed
by SI in DS from the destination memory location addressed by DI in ES. SI and DI
are incremented or decremented depending on the DF flag. For example, if (DF) = 0,
(DS) = 1000H, (ES) = 3000H, (SI) = 0002H, (DI) = 0004H, (10002H) = 1234H, and
(30004H) = 1234H then, after CMPSW, CF = 0, PF = 1, AF = 1, ZF = 1, SF = 0, OF =

0, (10002H) = 1234H, and (30004H) = 1234H, (SI) = 0004H, and (DI) = 0006H. Note
that SI and DI are used as source and destination pointers for 16-bit offsets while ESI
and ED1 are used as source and destination pointers for 32-bit offsets.

Consider SCASB / SCASW / SCASD. This compares the memory addressed by (DI)
in ES with AL or AX or EAX. If (DI) = OOOOH, (ES) = 2000H, (DF) = 0, (20000H)
= 05H, and (AL) = 03H, then, after SCASB, register DI will contain OOOlH because
(DF) = 0 and all flags are affected based on the operation (AL) - (20000H). Hence, OF
= 0, SF = 1, ZF = 0,AF = 0, PF = 0, and CF = 1.
REPE/REPZ or REPNEREPNZ prefix can be used with CMPS or SCAS to cause
one of these instructions to continue executing until ZF = 0 (for the REPNEREPNZ
prefix) or CX = 0. The prefixes REPE and REPZ also provide similar purpose. If
CMPS is prefixed with REPE or REPZ, the operation is interpreted as “compare while
not end-of-string (CX # 0) or strings are equal (ZF = l).” If CMPS is preceded by
REPNE or REPNZ, the operation is interpreted as “compare while not end-of-string
(CX # 0) or strings not equal (ZF = O).” Thus, repeated CMPS instructions can be used
to find matching or differing string elements.
If SCAS is prefixed with REPE or REPZ, the operation is interpreted as “scan while
not end-of-string (CX # 0) or string-element = scan-value (ZF = 1)” This form may
be used to scan for departure from a given value. If SCAS is prefixed with REPNE
or REPNZ, the operation is interpreted as “scan while not end-of-string (CX # 0) or
string-element is not equal to scan-value (ZF = O).” This form may be used to locate
a value in a string.
LODSB or LODSW or LODSD loads a byte into AL or a word into AX or a
doubleword into EAX respectively from a string in memory addressed by SI in DS ;
SI is then automatically incremented or decremented by lfor byte, 2 for word, or 4
for doubleword based on DF. For example, prior to execution of LODSB, if (SI)=

3 82 Microprocessor Theory and Applications with 68000/68020 and Pentium

0020H, (DS) = 3000H, (30020H) = 05H, DF = 0, then after execution of LODSB, data
05H is loaded into AL; SI is then automatically incremented to 0021H since DF = 0.
STOSB or STOSW or STOSD stores a byte in AL or a word in AX, or a doubleword

in EAX respectively into a string memory addressed by DI in ES. DI is then
automatically incremented or decremented by 1 for byte, 2 for word, or 4 for
doubleword based on DF.

EXAMPLE 11.3 Write a Pentium assembly language program to compare a source
string of SO,,, words from low to high addresses pointed to by an offset lOOOH in the data
segment at 2000H with a destination string pointed to by an offset 3000H in the extra
segment at 4000H. The program should be halted as soon as a match is found or the end of
string is reached.

Solution

.486

.MODEL SMALL, STDCALL

.CODE

MOV AX,2000H
MOV DS,AX
MOV AX,4000H
MOV ES,AX
MOV SI, lOOOH
MOV DI,3000H
MOV CX,50
CLD

START:

REPNE CMPSW

HLT
END START

;Initialize
;Data Segment at 2000H
;Initialize
;ES at 4000H
;Initialize SI at lOOOH for DS
;Initialize DI AT 3000H for ES
;Initialize CX
;Clear DF so that
$1 and DI will
;autoincrement
;after compare
;Repeat CMPSW until CX=O or
;until compared words are equal
;Halt

Note: REPNE CMPSW instruction in the above program will automatically
decrement CX by 1, and checks whether ZF = 1. The CMPSW instruction is executed CX
times if CX is not equal to 0 or strings are not equal (ZF = 0). This means that as soon as
a match is found (ZF=l), the program will go to the next instruction (HLT). However, if
no match is found (ZF = 0), the instruction, CMPSW will be executed CX times, and the
program will then go the next instruction (HLT).

11.3 Unconditional Transfer Instructions

Unconditional transfer instructions transfer control to a location either in the current
executing memory segment (intrasegment) or in a different code segment (intersegment).
Table 11.3 lists the unconditional transfer instructions.

The jump instruction in Table 11.3 can be either intrasegment or near JMP (Jump

Assembly Language programming with the Pentium; Part 2 383

within the current code segment; only IP changes) or intersegment or far JMP (Jump from
one code segment to another code segment; both CS and IP contents are modified). The
programmer can use NEAR and FAR directives to indicate intrasegment and intersegment
Jump instructions.

Intrasegment Jump can have an operand with a short label (signed 8-bit
displacement), near label (signed 16-bit displacement), reg16 or meml6. For example,
the short label and near label operands use relative addressing mode. This means that the
Jump is performed relative to the address of the JMP instruction. For jumps with short
label, IP changes and CS is fixed. JMP disp8 adds the second object code byte (signed &bit
displacement) to (IP + 2), and (CS) is unchanged. With an 8-bit signed displacement, jump
with a short label operand is allowed in the range from -128 to +127 (0 being positive) from
the address of the JMP instruction. Near label operand allows a JMP instruction to have a
signed 16-bit displacement with a range -32K to +32K bytes from the address of the JMP
instruction. An example of JMP short label or near label is JMP START.

The Pentium assembler automatically computes the value of the displacement
START at assembly time. The programmer does not have to worry about it. Based upon
the displacement size of START (in this case), the assembler determines whether the JMP
is to be performed with short or near label. Short or Near Jumps are used in real mode. In
protected mode, the Pentium can use a range of -2 Gigabytes to +2 Gigabytes.

The short jump and near jump are relocatable since they use relative addressing
mode. This means that if the code segment moves to a new address in memory, the
distance between the jump instruction, and the jump address stays the same. Thus, the
code segment can easily be moved to anywhere in memory without modification. This is
very convenient for the programmer.

In order to illustrate the concept of short jump, consider the following Pentium
instruction sequence along with machine code provided by the MASM32 assembler:

1000
1000 6683C303
1004 668BC 1
1007 660BCA
lOOA 6623D8
lOOD EB06
lOOF SAC8
1011 6683C105
1015 6683EB05
1019 EBEC
lOlB F4

START:
ADD
MOV

AND
JMP
MOV
ADD

DOWN: SUB
JMP
HLT

BACK: OR

BX, 3
AX, CX
CX, DX
BX, AX
DOWN
CL, AL
cx, 5
BX, 5
BACK

Note that all instructions, addresses, and data are arbitrarily chosen. The first jump
instruction (JMP DOWN) at offset 1 OODH (automatically generated by the assembler) has
a machine code EB06H. This instruction unconditionally jumps to address DOWN. The
machine code EB06H means that the opcode for JMP is EBH, and the relative displacement
value is 06H (positive value meaning forward jump). This is a short jump since the range
is between -128 and + 127. Note that the instruction pointer normally points to the next
instruction. Hence, at offset 100DH, the IP will contain 100FH. The displacement 06H is
added to lOOFH to find the offset value where the program will unconditionally jump. The
jump offset is calculated as follows:

3 84

TABLE 11.3 Pentium unconditional transfers

Microprocessor Theory and Applications with 68000/68020 and Pentium

JMP displreglmem Unconditional jump
CALL disp/reg/mem Call subroutine
RET or RET dim 16 Return from subroutine

1 OOFH = 0001 0000 0000 11 1 1
+ 06H = 0000 0000 0000 0 1 10 (sign-extendedd to 16 bits)

Hence, the instruction jumps to offset 1015H. This is verified in the above
instruction sequence.
Next, consider the second jump instruction, JMP BACK. The machine code for this
instruction at offset 1019H is EBECH where EBH is the opcode, and ECH is the signed
displacement value. Since ECH is a negative number (-20), this is a backward jump. Note
that the instruction pointer normally points to the next instruction. Hence, at offset 10 19H,
the IP will contain 101BH. The displacement 20 is subtracted from lOlBH to find the
offset value where the program will unconditionally jump. The jump offset is calculated
as follows:

lOlBH= 0001 0000 0001 1011
+ ECH= 1111 1111 1110 1100(sign-extendeddto 16bits)

1007H= 71 00010000 0000 0111
Ignore final carry

The jump offset is 1007H which is verified in the above instruction sequence. In
the case of the short jump, the relative displacement is signed 8-bit contained in a byte with
a range of -128 to +127 (0 being positive). When the jump offset is outside this range, but
in the same segment, a near jump is used, and the jump offset is two bytes long.

JMP reg specifies the jump offset by the 16- or 32-bit contents of of a register. This
is an indirect jump. In the real mode, the contents of the specified register are transferred
directly into the IP. The range for this JMP is from -32K to +32K bytes from the address
of the JMP. An example of JMP reg is JMP SI which copies the contents of SI into IP. SI
contains the 16-bit displacement. In the real mode, JMP EBX can also be used to hold the
jump offset in the low 16 bits of EBX. However, in the protected mode, since 32-bit offset
is needed, EBX will contain the 32-bit offset, and the code segment can be 4 Gigabytes
long.

An example of JMP meml6 is JMP [DI] which uses the contents of DI as the
address of the memory location containing the offset. This offset is placed into IP. The
physical address is computed from this IP value and the current CS value.

Jump with FAR PTR directive uses a 32-bit immediate operand ; the first 16 bits
are loaded into IP while the next 16 bits are loaded into CS. An example of farjump is JMP
FAR PTR BEGIN which unconditionally branches to a label BEGIN in a different code
segment. Finally, JMP mem32 indirectly specifies the offset and the code segment values.
IP and CS are loaded from the 32-bit contents of four consecutive memory locations; each

Assembly Language programming with the Pentium; Part 2 385

memory location contains a byte. As an example, JMP FAR PTR [SI] loads IP and CS with
the contents of four consecutive bytes pointed to by SI in DS.
The Pentium CALL instructions provide the mechanism to call a subroutine into operation
while the RETinstruction placed at the end of the subroutine transfers control back to the
main program. There are two types of Pentium CALL instruction. These are near, or
intrasegment CALL (IP changes, CS is fixed) ,and far, or intersegment CALL (both IP
and CS are changed).
Near and Far CALLs are defined by the various operands of the CALL instruction. For
example, the three operands NEAR PROC, mem 16, and reg 16 define intrasegment CALLs
to a subroutine. Upon execution of the intrasegment CALL with any of the three operands,
the Pentium pushes the current contents of IP onto the stack; the SP is then decremented by
2. The saved IP value is the offset that contains the next instruction to be executed in the
main program. The Pentium then places a new 16-bit value (offset of the first instruction
in the subroutine) into IP. The three types of operands for the intrasegment CALL will
be discussed next.
These are near CALL, CALL mem 16, and CALL reg 16.
As an example of near CALL, consider the Pentium instruction sequence shown below:

.486

.MODEL SMALL, STDCALL

.CODE

MOVE BX,5 ; Start of the main program

CALL MULTI ; Call the subroutine in the same segment

BEGIN:

HLT

MULTI PROC NEAR ; Start of the subroutine, MULTI

RET

MULTI ENDP
END BEGIN

In the above, the main program, and the subroutine called MULTI are located in the
same code segment. The assembler directive NEAR in the statement CALL NEAR PROC
specifies the CALL instruction with relative addressing mode in the same code segment.
This means that NEAR determines a 16-bit displacement, and the offset is computed
relative to the address of the CALL instruction. With 16-bit displacement, the range of
the CALL instruction is limited to -32766 to + 32765 (0 being positive). The Pentium
uses 32-bit offset in protected mode with a range of -2Gigabytes to +2 Gigabytes. Since
this subroutine is in the same code segment as the main program containing the CALL
instruction, the contents of CS are not altered to access it. Note that use of the assembler
directive NEAR in the statement MULTI PROC NEAR tells the Pentium assembler that
the main program and the subroutine are located in the same code segment.

The instructions CALL meml6 and CALL reg16 specify a memory location or
a 16-bit register such as BX to hold the offset to be loaded into IP. Thus, these two CALL

386 Microprocessor Theory and Applications with 68000/68020 and Pentium

instructions use indirect addressing mode. An example of CALL meml6 is CALL [BX]
which loads the 16-bit value stored in the memory location pointed to by BX into IP. The
physical address of the offset is calculated from the current DS and the contents of BX.
The first instruction of the subroutine is contained in the address computed from new IP
value and current CS. Next, typical examples of CALL reg16 are CALL BX and CALL
BP; these instructions load the 16-bit contents of BX or BP into IP. The starting address
(physical address) of the subroutine is computed from the new value of IP and the current
CS contents. Note that intrasegment CALL instructions are used when the main program
and the subroutine are located in the same code segment.

Intersegment CALL instructions are used when the main program and the
subroutine are located in two different code segments. The two intersegment CALL
instructions are CALL FAR PTR and CALL mem32. These instructions define a new offset
for IP and a new value for CS. Upon execution of these two instructions, the Pentium
pushes the current contents of IP and CS onto the stack, the new values of IP and CS are
then loaded. For example consider CALL FAR PTR MULTI which loads the new value of
IP from the next two bytes, and the new value of CS from the following two bytes. As an
example, consider the following Pentium instruction sequence:

.486

.MODEL SMALL, STDCALL

.CODE

MOV cx, 2 ; Start of the main program
START:

CALL FAR PTR MULTI ; Call the subroutine in a different code seg

_ _ _ _ _ _
RET

MULTI ENDP
END START

Since this subroutine is in a different code segment from the CALL instruction,
the contents of CS must be altered to access it. Use of the assembler directive FAR in the
statement MULTI PROC FAR tells the Pentium assembler that the main program and the
subroutine are located in different code segments.

CALL FAR PTR [SI] stores the pointer for the subroutine as four bytes in data
memory. The location of the first byte of the four-byte pointer is specified indirectly by one
of the Pentium registers (SI in this case). In this example, in real mode, the 20-bit physical
address of the first byte of the four-byte pointer is computed from DS and SI. Finally,
CALL FAR PTR [BX] pushes CS and IP onto the stack and loads IP and CS with the
contents of four consecutive bytes pointed to by BX.

Assembly Language programming with the Pentium; Part 2 387

RET instruction is usually placed at the end of a subroutine which pops IP (pushed
onto the stack by the intrasegment CALL instruction) or both IP and CS (pushed onto the
stack by the intersegment CALL instruction), and returns control to the main program.
RET disp 16, on the other hand, adds 16-bit value (disp 16) to SP after placing the return
address into IP (for intrasegment CALL) or into IP and CS (for intersegment CALL). The
main objective of inclusion of the 16-bit displacement operand with the RET instruction is
to discard the parameters that were saved onto the stack before execution of the subroutine
CALL instruction.

EXAMPLE 11.4 Write a subroutine in Pentium assembly language which can be
called by a main program in the same code segment. The subroutine will multiply a signed
16-bit number in CX by a signed 8-bit number in AL. The main program will perform
initializations (DS to 5000H, SS to 6000H, SP to 0020H, BX to 2000H, SI to OOOOH, and
DI to 0004H)), call this subroutine, store the result in two consecutive memory words, and
stop. Assume SI and DI contain pointers to the signed 8-bit and 16-bit data respectively.
Store 32-bit result in a memory location pointed to by BX.

Solution

.486

.MODEL

.CODE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
MOV
MOV
HLT

MULTI PROC
CBW
IMUL
RET

MULTI ENDP
END BEGIN

EXAMPLE 11.5

BEGIN:
AX, 5000H
DS, AX
AX, 6000H
SS, AX
SP, 0020H
BX, 2000H
SI, OOOOH
DI, 0004H
AL, [SII
c x , P I 1

[BXI, DX
MULTI

[BX+2], AX

NEAR

cx

; Initialize Data Segment at
; 5000H
; Initialize SS at
; 6000H
; Initialize SP at 0020H
; Initialize BX at 2000H
; Initialize SI
; Initialize DI
; Load 8-bit data intoAL
; Load 16-bit data into CX
; Call MULTI subroutine
; Store high word of result
; Store low word of result
; Halt
; Define MULTI as near subroutine
; Sign extend AL

; Return
; End of procedure

; [DX] [AX] < - - [AX]*[CX]

SMALL, STDCALL

Write a subroutine in Pentium assembly language in the same code
segment as the main program to implement the C language assignment statement: p = p +
q; where addresses p and q hold two 16-digit (64-bit) packed BCD numbers (N1 and N2).
The main program will initialize addresses p and q to DS:2000H and DS:3000H respectively.

388 Microprocessor Theory and Applications with 68000/68020 and Pentium

Address DS:2007H will hold the highest byte of N1 with the lowest byte at address
DS:2000H while address DS:3007H will hold the highest byte of N2 with the lowest byte
at address DS:3000H. Also, write the main program which will perform all initializations
including DS to 2000H, SS to 6000H, SP to 0020H, SI to 2000H, DI to 3000H, loop count
to 8 and, then call the subroutine.

Solution

.486

.MODEL

.CODE

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL
HLT

PBCD PROC
CLC

START MOV
MOV
ADC
DAA
MOV
INC
INC
LOOP
RET

PBCD ENDP
END BEGIN

EXAMPLE 11.6

BEGIN:

SMALL, STDCALL

AX,2000H
DS,AX
AX,6000H
SS,AX
SP,0020H
CX,8
SI,2000H
DI,3000H
AL,O
PBCD

NEAR

ALSSII
BLSDII
AL,BL

[DII,AL
SI
DI
START

;Initialize Data segment at 2000H

;Initialize Stack segment at 6000H

;Initialize SP at 0020H
;Initialize Count
;Initialize pointer to N1 -> q
;Initialize pointer to N2 -> p
;Clear SUM to 0
;Call PBCD subroutine

;Clear Carry
;Move Data to AL
;Move Data to BL
;Add intoAL
;BCD adjust (AL) and AL contains the result
;Store result in [DI]
;Update pointers
;Update pointers

;Return

Write a subroutine in Pentium assembly language which can be
called by a main program in a different code segment. The subroutine will compute CX,2 /
N. Assume the X,’s are 16-bit signed integers , N = 100 and, CX,Z is 32-bit wide. The
numbers are stored in consecutive locations. Assume SI points to the X,’s. The subroutine
will initialize SI to 4000H, compute CX,Z / N, and store 32-bit result in DX:AX (16-bit
remainder in DX and 16-bit quotient in AX). Also, write the main program which will
initialize DS to 2000H, SS to 6000H, SP to 0040H, call the subroutine, and stop.

Assembly Language programming with the Pentium; Part 2

Solution

.486

.MODEL SMALL, STDCALL

.CODE

MOV AX,2000H
MOV DS,AX
MOV AX,6000H
MOV SS,AX
MOV SP,0040H
CALL FAR PTR SQRDIV
HLT
.CODE

BEGIN:

SQRDIV PROC FAR
MOV
MOV
MOV
MOV

MOV
BACK: MOV

IMUL

ADD

ADC

INC
INC
LOOP

MOV
MOV
MOV
DIV

RET
SQRDIV ENDP
END BEGIN

cx, 100
BX,OOOOH
SI,4000H
DI.3000H

WORD PTR[DI],O

WORD PTR[SI]
AXSSII

BX,AX

SI
SI
BACK

DXSDII
AX,BX
c x , 100
cx

; Main program code segment

;Initialize Data segment at 2000H

;Initialize Stack segment at 6000H

; Initialize SP to 0040H
;Call SQRDIV subroutine

; subroutine code segment

389

11.4 Conditional Branch Instructions

;Initialize CX to 100
;Clear low 16-bit sum to zero
;Initialize pointer of Xi
;Initialize pointer DI of High 16-bit sum
;in memory
;Clear 16-bit location addressed by DI to zero
;Load Xi into AX
;Signed multiplication Xi*Xi, 32-bit result
;in DXAX
;Add low 16-bits of (Xi **2) in AX to low
; 16-bit sum
;Add with CF, high word of (Xi**2) in DX
;to high word of sum
;Update pointer
;twice for WORD
;Jump and decrement CX. If CX not zero,
;go to START
;If CX = 0, store high 16-bits of sum in DX
;Store low 16-bits of sum in AX
;Load 100 into CX
;unsigned division since both (Xi**2) and
;lo0 are positive. Perform DX:AX / CX.
:Return

All Pentium conditional branch instructions use 8- bit displacement with a branch range
of -128 to +127, (0 being positive) or 16-bit displacement with a branch range of -32766
to + 32765 (0 being positive. The structure of a typical conditional branch instruction is
as follows:

390 Microprocessor Theory and Applications with 68000/68020 and Pentium

If condition is true,
then IP t IP + displacement,
otherwise IP t IP + 2 and execute next instruction.

There are two types of conditional branch instructions. In one type, the various
relationships that exist between two numbers such as equal, above, below, less than, or
greater than can be determined by the appropriate conditional branch instruction after
a COMPARE instruction. These instructions can be used for both signed and unsigned
numbers. When comparing signed numbers, terms such as “less than” and “greater than”
are used. On the other hand, when comparing unsigned numbers, terms such as “below
zero” or “above zero” are used.

Table 11.4 lists the Pentium signed and unsigned conditional branch instructions.
Note that in Table 11.4, the instructions for checking which two numbers are “equal” or
“not equal” are the same for both signed and unsigned numbers. This is because when two
numbers are compared for equality, irrespective of whether they are signed or unsigned,
they will provide a zero result (ZF = 1) if they are equal and a nonzero result (ZF = 0) if
they are not equal. Therefore, the same instructions apply for both signed and unsigned
numbers for “equal to” or “not equal to” conditions. The second type of conditional branch
instructions is concerned with the setting of flags rather than the relationship between two
numbers. Table 11.5 lists these instructions.
Now, in order to check whether the result of an arithmetic or logic operation is zero,
nonzero, positive or negative, did or did not produce a carry, did or did not produce parity,
or did or did not cause overflow, the following instructions should be used: JZ, JNZ, JS,
JNS, JC, JNC, JP, JNP, JO, JNO. However, in order to compare two signed or unsigned
numbers (a in address A or b in address B) for various conditions, we use CMP A, B, which
will form a - b. and then one of the instructions in Table 11.6.

Now let us illustrate the concept of using the preceding signed or unsigned
instructions by an example. Consider clearing a section of memory word starting at B up to
and including A, where (A) = 3000H and (B) = 2000H in DS = 1000H, using the following

TABLE 11.4 Pentium Signed and Unsigned Conditional Branch Instructions
Signed

Name Alternate Name

JE disp JZ disp
(JUMP if equal)
JNE disp JNZ disp
(JUMP if not equal)
JG disp JNLE disp
(JUMP if greater)

(JUMP if result zero)

(JUMP if not zero)

(JUMP if not less or
eaual)

Unsipned

Name Alternate Name

JE disp JZ disp
(JUMP if equal)
JNE disp JNZ disp
(JUMP if not equal)
JA disp JNBE disp
(JUMP if above)

(JUMP if zero)

(JUMP if not zero)

(JUMP if not below or
eaual)

JGE disp JNL disp
(JUMP if greater or
equal)

(JUMP if not less)

JL disp JNGE disp
(JUMP if less than)

JLE disp JNG disp
(JUMP if less or
equal)

(JUMP if not greater or
equal)

(JUMP if not greater)

JAE disp JNB disp
(JUMP if above or
equal)
JB disp JNAE disp
(JUMP if below)

JBE disp JNA disp
(JUMP if below or
equal)

(JUMP if not below)

(JUMP if not above or
equal)

(JUMP if not above)

Assembly Language programming with the Pentium; Part 2 39 1

TABLE 11.5 Pentium Conditional Branch Instructions Affecting Individual
Flags

JC disp8
JNC disp8
JP disp8
JNP disp8
JO disp8
JNO disp8
JS disp8
JNS disp8
JZ disp8
JNZ disp8

JUMP if carry, i.e., CF = 1
JUMP if no carry, i.e., CF = 0

JUMP if parity, i.e., PF = 1
JUMP if no parity. i.e., PF = 0
JUMP if overflow, i.e., OF = I

JUMP if no overflow, i.e., OF = 0

JUMP if sign, i.e., SF = 1
JUMP if no sign, i.e.. SF = 0

JUMP if result zero, i.e.. ZF = 1

JUMP if result not zero, i.e., ZF = 0

TABLE 11.6 Pentium Instructions to be used after CMP A, B; a and b are
data.

Signed “a ’’ and “b ” Unsigned “a” and “b ”

JGE disp8 i f a 2 b JAE disp8 1fa2b
JL disp8 i f a < b JB disp8 i f a < b
JG disp8 i f a > b JA disp8 i f a > b
JLE d i s ~ 8 i f a l b JBE dim8 i f a l b

instruction sequence:
MOV AX, 1OOOH
MOV DS,AX ;Initialize DS
MOV BX,2000H
MOV CX,3000H

INC BX
INC BX
CMP CX,BX
JGE AGAIN

AGAIN: MOV WORD PTR[BX], OOOOH

JGE treats CMP operands as twos complement numbers. The loop will terminate
when BX = 3002H. Now, suppose that the contents ofA and B are as follows: (A) = 8500H
and (B) = 0500H.
In this case, after CMP CX,BX is first executed,

(CX) - (BX) = 8500H - 0500H
= 8000H
= 1000000000000000

t
SF = 1 i.e., a negative number

Because 8000,, is a negative number, the loop terminates.

numbers (positive numbers) and uses the following instruction sequence:
The correct approach is to use a branch instruction that treats operands as unsigned

392 Microprocessor Theory and Applications with 68000/68020 and Pentium

MOV
MOV
MOV
MOV

AGAIN: MOV
INC
INC
CMP
JAE

AX, 1 OOOH
DS,AX initialize DS
BX,0500H
CX,8500H
WORD PTR[BX],OOOOH
BX
BX
CX,BX
AGAIN

JAE will work regardless of the values ofA and B.
Also, note that addresses are always positive numbers (unsigned). Hence,

unsigned conditional jump instruction must be used to obtain the correct answer. The
examples above are included for illustrative purposes.

11.5 Iteration Control Instructions

Table 1 1.7 lists iteration control instructions. All these instructions have relative addressing
modes. Also, these instructions use CX register as a 16-bit counter in real mode, and ECX
register as a 32-bit counter in protected mode. In this section, iteration control instructions
in real mode will be discussed. LOOP disp8 decrements the CX register by 1 without
affecting the flags and then acts in the same way as the JMP dsp8 instruction except that if
CX + 0, then the JMP is performed: otherwise, the next instruction is executed. The LOOP
uses signed 8-bit displacement.

LOOPE (loop while equal)/LOOPZ (loop while zero) decrements CX by 1 without
affecting the flags. The contents of CX are then checked for zero, and the zero flag (ZF),
which results from execution of previous instruction, is checked for 1. If CX + 0 and ZF
= 1, the loop continues. If either CX = 0 or ZF = 0, the next instruction after LOOPE or
LOOPZ is executed. The following Pentium instruction sequence compares an array of 50
bytes with data byte OOH. As soon as a match is not found or the end of the array is reached,
the loop exits. The LOOPE instruction can be used for this purpose. The following Pentium
instruction sequence illustrates this.

MOV S1,START ; Intitialize SI with the starting offset of

DEC SI
;the array

MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPE BACK

BACK: PJC SI ;Update pointer

LOOPNE (LOOP while not equal) / LOOPNZ (Loop while not zero) is similar to LOOPE/
LOOPZ except that the loop continues if CX # 0 and ZF = 0. On the other hand, If CX =

0 or ZF = 1, the next instruction is executed. The following Pentium instruction sequence
compares an array of 50 bytes with data byte OOH for a match. As soon as a match is
found or the end of the array is reached, the loop exits. LOOPNE instruction can be used
for this purpose. CX = 0 and ZF = 0 upon execution of the CMP instruction 50 times in

Assembly Language programming with the Pentium; Part 2 393

the following would imply that data byte OOH was not found in the array. The following
Pentium instruction sequence illustrates this.

MOV S1,START ; Intitialize SI with the starting offset of

DEC SI
MOV CX,50 ; Initialize CX with array count

CMP BYTE PTR[SI],OOH ; Compare array element with OOH
LOOPNE BACK
START jumps to label START if CX = 0. This is normally used to skip a loop as follows:

; the array

BACK: INC SI ; Update pointer

JCXZ

.....................
JCXZ DOWN ; If CX is already 0, skip the loop

; addressed by SI
BACK: SUB WORD PTR[SI], 4 ; Subtract 4from the 16-bit contents

ADD SI,2 ; Update SI to point to next value
LOOP BACK ; Decrement CX by 1 and loop

DOWN: ; until CX = 0

11.6 Interrupt Instructions

Table 11.8 shows the interrupt instructions. INT n is a software interrupt instruction.
Execution of INT n causes the Pentium to push current CS, IP, and flags onto the stack,
and loads CS and IP with new values based on interrupt type n; an interrupt service routine
is written at this new address. IRET at the end of the service routine transfers control to the
main program by popping old CS, IP, and flags from the stack.

The interrupt on overflow is a type 4 (n = 4) interrupt. This interrupt occurs if
the overflow flag (OF) is set and the INTO instruction is executed. The overflow flag
is affected, for example, after execution of a signed arithmetic (such as IMUL, signed
multiplication) instruction. The user can execute an INTO instruction after the IMUL.
If there is an overflow, an error service routine written by the user at the type 4 interrupt
address vector is executed.

The IRET instruction is used in the real mode and is typically placed at the end of

TABLE 11.7

LOOP disp8
Pentium Iteration Control Instructions

Decrement CX by 1 without affecting the flags and
branch to label if CX # 0; otherwise, go to the next
instruction.
Decrement CX by 1 without affecting the flags and
branch to label if CX # 0 and ZF = 1; otherwise (CX=O
or ZF=O), go to the next instruction.
Decrement CX by 1 without affecting the flags and
branch to label if CX + 0 and ZF = 0; otherwise (CX=O
or ZF=l), go to the next instruction.
JMP if register CX = 0; else go the next instruction..
Jump if ECX = 0; else go to the next instruction.

LOOPE/LOOPZ disp8

LOOPNE/LOOPNZ disp8

JCXZ disp8
JECXZ disp8

394 Microprocessor Theory and Applications with 68000/68020 and Pentium

an interrupt service routine. The IRET pops IP, CS, and flags (lowest byte) from the stack.
Interrupt instructions are discussed in detail in Chapter 12.

11.7 Processor Control Instructions

Table 1 1.9 shows some of the processor control instructions. Let us explain some of the
instructions in the table.

The LOCK prefix allows the Pentium to ensure that another processor does not take
control of the system bus while it is executing an instruction that uses the system bus.
The LOCK prefix is placed in front of an instruction so that when the instruction is
executed, the Pentium outputs a LOW on the LOCK # pin for the duration of the next
instruction. This lock signal is connected to an external bus controller which prevents
any other processor from taking over the system bus. Thus the LOCK prefix is used in
multiprocessing. A typical example of a locked instruction is L0CK:MOV CL, [BX].

ENTER and LEAVE are used with stack frames used to pass parameters to a subroutine
through the stack. The ENTER imml6,imm8 instruction creates a stack frame. The
data imm8 defines the nesting depth of the subroutine and can be from 0 to 3 1. The
value 0 specifies the first subroutine only. Data imm8 defines the number of stack
frame pointers copied into the new stack frame from the preceding frame. After the
instruction is executed, the Pentium uses EBP as the current frame pointer and ESP as

TABLE 11.8 Pentium Interrupt Instructions

INT n Software interrupt instructions.
(n can be 0-255,,)

INTO Interrupt on overflow
IRET Interrupt return (Real mode)

(INT 32,, - 255,, available to the user.)

TABLE 11..9 Pentium Processor Control Instructions

ENTER
STC
CLC

Set carry CF t 1
Clear carry CF t 0

CMC -
Complement carry, CF t CF

STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag
NOP No operation
HLT Halt
LOCK
ENTER Create stack frame
LEAVE
BOUND

Lock bus during next instruction

Reverses the action of ENTER; High level procedure exit
Check array index against bounds

Assembly Language programming with the Pentium; Part 2 395

the current stack pointer. Data imml6 specifies the number of bytes of local variables
for which stack space is to be allocated. If imm8 is zero, ENTER pushes the frame
pointer EBP onto the stack; ENTER then subtracts the first operand, imml6, from the
ESP and sets EBP to the current ESP.

For example, a procedure with 28 bytes of local variables would have an ENTER
28,O instruction at its entry point and a LEAVE instruction before every RET. The 28
local bytes would be addressed as offset from EBP. Note that the LEAVE instruction
sets ESP to EBP and then pops EBP. The Pentium uses BP (the low 16 bits of EBP)
and SP (the low 16 bits of ESP) for 16-bit operands and uses EBP and ESP for 32-bit
operands.
The BOUND instruction ensures that a signed array index is within the limits specified
by a block of memory containing an upper and a lower bound. The Pentium provides
two forms of the BOUND instruction:

BOUND reg 16,mem32
BOUND reg32,mem64

The first form is for 16-bit operands. The second form is for 32-bit operands and is
included in the Pentium instruction set. For example, consider BOUND ED1,ADDR.
Suppose that (ADDR) = 32-bit lower bound dl and (ADDR + 4) = 32-bit upper bound
d,. If, after execution of this instruction, (EDI) < dl or > 4, the Pentium traps to
interrupt 5; otherwise, the array is accessed.

The BOUND instruction is usually placed following the computation of an index
value to ensure that the limits of the index value are not violated. This permits a
check to determine whether or not an address of an array being accessed is within
the array boundaries when the register indirect with index mode is used to access an
array element. For example, the following instruction sequence will allow accessing
an array with base address in ESI, index value in EDI, and an array length of 50 bytes;
assuming that the 32-bit contents of memory location, 20000100,, and 20000104,, are
0 and 49, respectively:

BOUND EDI, 20000 1 OOH
MOV EAX,[EDI] [ESI]

11.8 Pentium Delay routine

Typical Pentium software delay loops can be written using MOV and LOOP instructions.
For example, the following instruction sequence can be used for a delay loop:

MOV CX,count
DELAY: LOOP DELAY

required to execute the following Pentium instructions (Appendix F):
The initial loop counter value of “count” can be calculated using the cycles

MOV reg/imm (1 cycle)
LOOP label (5/6 cycles)

Note that the Pentium LOOP instruction requires two different execution times.
LOOP requires six cycles when the Pentium branches if the CX is not equal to zero after

396 Microprocessor Theory and Applications with 68000/68020 and Pentium

autodecrementing CX by 1. However, the Pentium goes to the next instruction and does
not branch when CX = 0 after autodecrementing CX by 1, and this requires five cycles.
This means that the DELAY loop will require six cycles for (count - 1) times, and the last
iteration will take five cycles.

For a 1 00-MHz Pentium clock, each cycle is 10 ns. For 2 ms, total cycles = -
= 200,000. The loop will require six cycles for (count - 1) times when CX + 0, and five
cycles will be required when no branch is taken (CX = 0). Thus, total cycles including the
MOV = 1 + 6 x (count - 1) + 5 = 200,000. Hence, count s 33,333,0. Therefore, CX must
be loaded with 33,333,,.

Now, in order to obtain delay of 2 seconds, the above DELAY loop of 2 ms can
be used with an external counter. Counter value = (2 sec)/(2 msec) = 1000. The following
instruction sequence will provide an approximate delay of 2 seconds:

MOV DX, 1000 ; Initialize counter for 2 second delay
BACK: MOV CX,33333
DELAY: LOOP DELAY ; 2 msec delay

DEC DX
JNE BACK

Next, the delay time provided by the instruction sequence ;,eve can be calculated.
From Appendix F, we obtain the number of cycles required to execute the following
Pentium instructions:

MOV reg / imm (1 cycle)
DEC reg 16 (1 cycle)
JNE (1 cycle)

As before, assuming a 100-MHz Pentium clock, each cycle is Ions. The total
time from the above instruction sequence for 2-second delay = execution time for MOV
+ 1000 * (2 msec delay) + 1000 * (execution time for DEC) + 1000* (execution time
for JNE) = 1 * 10 ns + 1000 * 2 msec + 1000 * 1 * lOns + 1000 * 1 * lOnss 2 seconds
discarding the execution times of MOV, DEC, and JNE.

Assembly Language programming with the Pentium; Part 2

Questions and Problems

397

11.1

11.2

11.3

11.4

11.5

11.6

11.7

It is desired to multiply a 32-bit unsigned number in ECX by 16 to provide
a 32-bit product and then perform the following operations on the contents of
ECX: Set bit 30 of ECX to 1 if the 32-bit unsigned number in register EBX
contains an odd number; one’s-complement bit 30 of ECX if the 32-bit unsigned
number in register EBX contains an even number. Assume that data are already
stored in EBX and ECX.
(a) Write a Pentium assembly language program to accomplish the above.
Do not use any multiplication or bit manipulation instructions.
(b) Write a Pentium assembly language program to accomplish the above.
Do not use any multiplication, or logic instructions.

Find the contents of AX, DX, CF, SF, ZF, and PF after execution of the Pentium
instruction SHRD AX,DX,3. Assume the following data prior to execution of
SHRDAX,DX,3: (AX) = 2700H, (DX) =A271H, CF = 0, SF = 1, ZF = 1, and PF
= 0.

Write a Pentium assembly program to divide a 28-bit unsigned number in the
high 28 bits of DX AX by 8,,,. Do not use a divide instruction. Store the quotient
in the low 28 bits of DX AX. Discard the remainder.

Write a Pentium assembly language program that will check whether the 16-bit
signed number in AX is positive or negative. Ifthe number is positive, the program
will multiply the 16-bit unsigned number in BX by 16 and provide a 16-bit result;
otherwise, the program will load 01H into BL. Use only shift, bit manipulation,
and program control instructions. Assume that the 16-bit numbers are already
loaded into AX and BX.

Write a Pentium assembly language program to insert a ‘ 1 ’ at bit 2 of BX without
changing the other bits if BX contains a negative number. On the other hand,
insert a ‘0’ at bit 2 of BX without changing the other bits if BX contains a positive
number.

Write a Pentium assembly program to move 100 words from a source with offset
OOlOH in ES to a destination with offset OlOOH in the same extra segment.

Write a Pentium assembly language program to compare two strings of 15 ASCII
characters from LOW to HIGH memory. The first character (string 1) is stored
starting at offset 5000H in DS= 0020H followed by the string. The first character
of the second string (string 2) is stored starting at 6000H in ES = 1000H. The
ASCII character in the first location of string 1 will be compared with the first
ASCII character of string 2, and so on. As soon as a match is found, store OOEEH
onto the stack; otherwise, store OOOOH onto the stack.. Initialize SS to 0500H and
SP to 2000H.

398

11.8

Microprocessor Theory and Applications with 68000/68020 and Pentium

Write a Pentium assembly language program to move two columns of 100 32-bit
numbers from A (i) at offset 4000H in DS to B (i) at offset 5000H in ES from
LOW to HIGH memory. In other words, move A (1) to B (I), A (2) to B (2), and
so on.

11.9 Write a subroutine in Pentium assembly language that can be called by a main
program in the same code segment. The subroutine will compute the 16-bit sum

Cab2
where a, are diagonal elements of a 3 x 3 matrix and k = 0 to 2. Assume that each
element in the matrix is signed 8-bit. The subroutine will store the 16-bit result
in DX. The main program will initialize DS to 1000H, SS to 5000H, SP to 0800H,
obtain the three diagonal elements from memory stored starting at offset 2000H
in row-major order, obtain the diagonal elements, call the subroutine, perform all
other necessary steps, and then stop.

11.10 Write a subroutine in Pentium assembly language that can be called by a main
program in a different code segment. The subroutine will compute the 16-bit
sum

i= 1

Assume the 4 ’ s are unsigned 8-bit numbers and are stored in consecutive
locations starting at offset 0050H. Also, write the main program that will initialize
DS to 2020H, SS to 0020H and SP to 1000H, SI to 0050H, DI to 0400H, call this
subroutine to commte

I00

i= I
C ”

I00

and store the 16-bit result (8-bit remainder and 8-bit quotient) in two consecutive
memory bytes starting at offset 0400H, and then stop.

1 1.11 Write a subroutine in Pentium assembly language that can be called by the main
program in the same code segment to compute Y =C x,.
Assume that the 4 ’ s are unsigned 32-bit numbers and the array starts at
00005021H. The main program will initialize SUM in EDX to 0, pointer ESI to
00005021H, DS to 7000H, SS to 0300H, SP to 4000H, loop count to 256, call the
subroutine, compute (YR56), store 32-bit result in EDX, and then stop. Discard
the remainder. Do not use any division instructions.

256

11.12 It is desired to convert a four-digit unpacked BCD number to binary using the
following equation: binary value, V of the four-digit BCD number,

D, * 1000 +D, * 100 + D, * 10 + D,
where D, is the most significant digit and D, is the least significant digit.
Write a subroutine in Pentium assembly language that will compute 10* D
where D is an unsigned 8-bit number in AL. The main program will be located
in the same code segment as the subroutine. The most significant digit is stored
in a memory location starting at offset 4000H, and the least significant is stored
at offset 4003H. The main program will call the subroutine , and compute V via
multiplications by 10 and additions as follows:

V =

Assembly Language programming with the Pentium; Part 2 399

V = (((D3 * 10) * 10) * 10) + ((D2 * 10) * 10) + (D, * 10) +Do.
The main program will first initialize DS to 6000H, SS to 1000H, SP to OO8OH,
SUM in DX to 0, obtain each digit from memory, call the subroutine as many
times as needed, store the 16-bit result in DX, and then stop.

11.13 Assume a 100-MHz Pentium. Write a Pentium assembly language program to
obtain adelayroutine for 40 milliseconds. Using this 40-msec routine, write another
Pentium assembly language program to provide a delay for 80 seconds.

This Page Intentionally Left Blank

12
PENTIUM HARDWARE AND

INTERFACING
In this chapter we describe hardware aspects of the Intel Pentium. Topics include
Pentium pins and signals, timing diagrams, and memory and 110 interfacing techniques.
Finally, design concepts associated with a Pentium-based voltmeter and Pentium-based
microcomputer interface to a hexadecimal keyboard and a seven-segment display are
covered.

12.1 Pentium Pins and Signals

The Pentium contains 273 pins packaged in a ceramic pin grid array (PGA). The pins
are arranged in a 21 x 21 matrix. Figure 12.1 shows a selected group Pentium pins. Note
that the pin diagram of the figure contains a total of 2 12 pins. The other pins (not shown in
Figure 12.1) provide functions such as parity check for address / data, and cache control.
Appendix H provides the pin diagram and a description of all the pins.

To explain Pentium’s interface to EPROMs, SRAMs, and I/O in a simplified
manner, a selected group of relevant pins and signals are included in Figure 12.1. The ‘#’
symbol at the end of the signal name or the ‘-’ symbol above a signal name indicates the
active or asserted state when it is LOW. When the symbol ‘#’ is absent after the signal name
or the symbol ‘-’ is absent above a signal name, the signal is asserted when HIGH. Pins
labeled NC (not connected) must remain unconnected.

For reliable operation, unused inputs should be connected to an appropriate signal
level. Unused active LOW inputs should be connected to Vcc. Unused active HIGH inputs
should be connected to GROUND. There are 50 Vcc and 49 GND pins. These multiple
power and ground pins are used to distribute power in order to reduce noise. Preferably, the
circuit board should contain Vcc and GND planes.

A brief description of the pins and signals depicted in Figure 12.1 is provided
below.

CLK pin provides basic timing for the Pentium. Its frequency is the internal
operating frequency of the Pentium and requires TTL levels. An external clock oscillator
is required to generate the clock. A20M# input pin must be asserted when the Pentium is in
the real mode. The address space of the Pentium may wrap around at one megabyte in the
real mode. The A20M# pin forces wraparound if enabled. The Pentium can directly address
1 MB of main memory in real mode. However, with a segment value of FFFFH, and an
offset value of FFFFH, the physical address would be FFFFOH + FFFFH = lOFFEFH (one
megabyte + 65519 bytes). The Pentium which can form addresses up to 20 bits long in
real mode, truncates the uppermost bit which wraps this address to OFFEFH. Note that the
Pentium does not truncate this bit if A20M# is not enabled. Upon assertion of the A2OM#
pin, the Pentium masks the address bit A20 before performing lookup to the internal cache

40 1

402 Microprocessor Theory and Applications with 68000/68020 and Pentium

BRDY# 4

HOLD 1
PENTIUM

MICROPROCESSOR
RESET

I

\DDRESS BUS A3 - A 31 *
BEW - BE7#

,IQ b BYTE ENABLES
"

ADS# .
W/R#

DIG#

M/10#

. . -

FIGURE 12.1
or driving a memory cycle on the bus. The effect of assertingA20M# in the protected mode
is undefined.

The bidirectional pins D63-DO provides the 64-bit data bus. Pins D7-DO specify
the least significant byte of the data bus, while pins D63-D56 specify the most significant
byte ofthe data bus. During read operation, the Pentium samples the data bus when BRDY#
is returned. During a write operation, the Pentium drives the data lines during the T2 clock
(second cycle) for that write cycle for nonpipelined operation.

The BRDY# (burst ready) input pin indicates that the external device has presented
valid data on the data pins in response to a read or that the external device has accepted
data from the Pentium in response to a write. Any number of wait states can be added to
Pentium bus cycles by maintaining BRDY# inactive.

HOLD and HLDA pins are used for DMA transfers. Another bus master can take
complete control of the Pentium bus after asserting the HOLD input pin. In response to
HOLD, the Pentium will complete ail outstanding bus cycles, float most of the input/output
pins, and then assert HLDA.

The Pentium contains two interrupt pins: INTR (maskable) andNMI (nonmaskable)
pins. NMI is leading-edge sensitive, whereas INTR is level sensitive. When INTR is
asserted and if the IF bit in the EFLAGS is 1, the Pentium (when ready) responds to the
INTR by performing two interrupt acknowledge cycles, and at the end of the second cycle
latches an 8-bit vector on DO-D7 to identify the source of the nterrupt.

For power-up reset, the Pentium RESET pin must be HIGH for at least one
millisecond after Vcc and the clock have reached their specified levels. The Pentium is

Pentium processor with selected signals.

Pentium Hardware and Interfacing 403

reset manually by asserting the RESET pin HIGH by a pushbutton for at least 15 CLK
periods. The RESET signal is level sensitive. Since the power-up reset is much higher than
the manual reset, the reset circuit should be designed using the power-up reset time of 1
msec which will satisfy the minimum time for both power-up and manual reset.

After hardware RESET, the Pentium will start executing instructions at address
FFFF FFFOH. When the first intersegment JUMP or CALL instruction is executed, address
lines A20-A3 1 will be driven LOW for CS-relative memory cycles and the Pentium will
only execute instructions in the lower one Megabyte of physical memory. This allows the
system designer to use a ROM or EPROM at the top of physical memory to initialize the
system.

The Pentium asserts the ADS# (address status) pin to indicate that a new valid bus
cycle is currently being driven. ADS# is used by external bus circuitry as the indication
that the Pentium has started a bus cycle. The Pentium outputs LOW on the ADS# pin to
indicate a valid bus cycle. W/R#, D/C#, and M/IO# output pins specify the type of bus
cycle being performed by the Pentium.

Note that the W/R# pin, when HIGH, identifies a write cycle and, when LOW,
indicates a read cycle. The D/C# pin, when HIGH, identifies the data cycle, and when
LOW, indicates the code cycle. The M/IO# pin differentiates between memory and I/O
cycles. The Pentium outputs a HIGH on the M/IO# pin for a memory-oriented instruction,
and outputs a LOW on this pin for IN or OUT instruction.

Address pins A3-A31 along with byte enable signals BEO# through BE7# are
used to generate physical memory or I/O port addresses. Using the pins, the Pentium can
directly address 4 gigabytes by physical memory (OOOOOOOOH through FFFFFFFFH) in
the protected mode.

The byte enable outputs are used in conjunction with the address lines to provide
physical memory and I/O port addresses. The byte enable outputs, BE7# through BEO# of
the Pentium, define which bytes of D63-DO are utilized in the current data transfer. These
definitions are given in Table 12.1. Address pins A3 1- A3 along with byte enable signals
(BE7#-BEO#) form the address bus and define the physical addresses of memory or VO ports.

12.2 Pentium READ and WRITE Timing Diagrams

The Pentium supports several different types of read and write (bus) cycles. The simplest
type of bus cycle is a single-transfer noncacheable 64-bit cycle without wait states. Figure
12.2 shows the timing diagram for nonpipelined read and write cycles without wait states
in Pentium’s real mode.

In order to explain the timing diagram of Figure 12.2 in a simplified manner,
suppose that a 64-bit SRAM system is interfaced to the Pentium. Assume that eight 32K

TABLE 12.1 Pentium Byte Enables and Associated Data Bytes
BE7# is low when data is transferred via D63-D56
BE6# is low when data is transferred via D55-D48
BE5# is low when data is transferred via D47-D40
BE4# is low when data is transferred via D39-D32
BE3# is low when data is transferred via D3 1 - D24
BE2# is low when data is transferred via D23- D16
BE 1 # is low when data is transferred via D 15-D8
BEO# is low when data is transferred via D7-DO

404 Microprocessor Theory and Applications with 68000/68020 and Pentium

X 8 SRAM chips (SRAM 0 through SRAM 7) are connected as follows. SRAM 0 will
be enabled by Pentium BEO# with eight output lines of the SRAM connected to Pentium
D7-DO pins, SRAM 1 will be enabled by Pentium BE1# with eight output lines of the
SRAM connected to D15-D8 pins, and so on. The Pentium will assert BEO# when A2 A1
A0 bits of the address are 000. On the other hand, the Pentium will assert BE1# when A2
A1 A0 bits of the address are 001, and so on.

Next, consider a read operation such as the Pentium instruction MOV BL,[1001 HI
or a write operation such as the Pentium instruction MOV [1001H1,AL. Assume (DS) =

3000H. The 20-bit physical address is 31001H. These values are arbitrarily chosen. The
Pentium in real mode performs the following steps in Figure 12.2:
1. The Pentium initiates the cycle by asserting the ADS# pin in T1 (the first clock in
the bus cycle).
2. Since A2 A1 A0 = 001 in 31001H, the Pentium outputs LOW on BEl# pin (not
shown in the figure), and also outputs upper 17 bits of 3 lOOlH on A19-A3 pins.
3. The Pentium outputs a LOW on the W/R# pin for read and outputs a HIGH on the
W/R# pin for write.
4. For a zero wait-state transfer, the Pentium checks the BRDY# input pin (returned
by the external device) in the second clock cycle of the bus cycle. BRDY# indicates that
the external device has presented valid data on the DATA pins (D 15 -D8 pins in this case
since BEl# is asserted) or the external device has accepted data in response to a write. If
the system is not ready to drive or accept data, wait states can be added to these cycles by
not returning BRDY# to the Pentium at the end of the seco.nd clock. Note that the Pentium
will assert BE1# pin since the 20-bit address is 3 lOOlH (not shown in Figure 12.2) for the
byte read or write operation to enable the appropriate memory chip.

< READ > < WRITE >
T1 T2 T1 T2 T1 T2 T I

A19- A3

W/R# I I / I / I

BRDY#

DATA
(D31-DO PINS)

FIGURE 12.2 Pentium Read and Write Timing Diagrams.

Pentium Hardware and Interfacing 405

TABLE 12.2 Generating A2- A0 from BE7#- BEO# (X means don’t care)

A2 A1 A0 BE7# BE6# BE5# BE4# BE3# BE2# BEl# BEO#
0 0 0 X X X X x x x 0
0 0 1 X X X X x x 0 1
0 1 0 X X X X x o 1 1
0 1 1 X X X X 0 1 1 1
1 0 0 X X X 0 1 1 1 1
1 0 1 X X 0 1 1 1 1 1
1 1 0 X 0 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1 1 1

12.3

The Pentium can be interfaced to 8-, 16-, 32-, and 64-bit memories. Pentium’s I/O is
accessible in 8-, 16-, or 32-bit quantities. This section contains Pentium’s interface to
27C256 (32K x 8 EPROM), Sharp LH52256CKH (32K x 8 SRAM), and Intel 82C55 I/O
chips. Memory and I/O maps are also determined.

12.3.1 Memory Interface
As mentioned before, the Pentium contains 64 data pins (D63 -DO), 29 address pins (A3 1-
A3), 8 byte enable pins (BE7#-BEO#). Address pins A2, A1 , and A0 are not provided with
the Pentium. They are encoded from BE7#-BEO# pins. Table 12.2 shows generation of A2,
A1 , and A0 from BE7#-BEO# pins. Note that decimal number, n in BEn# represents A2 A1
A0 in binary. For example, 7 in BE7# means that A2 A1 A0 = 11 1 (7,, = 11 1J.

In order to illustrate how data is transferred via Pentium’s data pins using BE7#-
BEO# , consider the instruction such as MOV CL, [5007H] with (CS) = lOOOH in real
mode. The 20-bit physical address is 15007H. Note that all numerical values in this section
are arbitrarily chosen. Since the address bits, A2 A1 A0 = 11 1, = 7,,, the Pentium outputs
a LOW on BE7# ,8-bit data will be transferred from address 15007H to CL via Pentium’s
D63 -D56 pins (Table 12.1). From Tables 12.1 and 12.2, it can be concluded that each byte
enable pin, BE7# through BEO# is associated with a specific value of A2 A 1 AO, and the
value of A2 A 1 A0 specifies how data should be routed to which data pins

As mentioned before, the Pentium can be interfaced to 64-, 32-, 16-, and 8-bit
memories. Since the Pentium’s data bus is 64-bit, external byte swap circuitry are needed to
route data to appropriate data pins for memories smaller than 64 bits. For 64-bit memories,
each 64-bit quadword begins at a byte address that is a multiple of 8. A31-A3 pins are
used as an 8-byte quadword select, and BE7#-BEO# pins select individual bytes within a
word. This means that for 64-bit memories, Pentium’s A31-A3 pins are used to address
eight 8-bit memory chips such as 27C256, and BE7# -BEO# pins select individual bytes
at the appropriate section(s) of the 64-bit data bus. Figure 12.3 shows a block diagram of
Pentium’s interface to 64-bit memory.

Assume a Pentiud27C256 EPROM system in a 64-bit configuration in real
mode. Note that in order to provide 64-bit memory, eight 27C256’s will be connected
to Pentium’s 64-bit data bus. Let us call the 27C256 enabled by BEO# as EPROMO, the
27C256 enabled by BEl# as EPROM1, and so on. The data output pins of EPROMO will
be connected to Pentium D7 -DO pins, the data output pins of EPROM1 will be connected

Pentium’s interface to memory and I/O

406 Microprocessor Theory and Applications with 68000/68020 and Pentium

PENTIUM~~

PROCESSOR

I I
D63;DO \

/ ,
‘ 64-BIT

MEMORY

A31 4 3 , BE7#-BEO#
\

/ ,

I I

FIGURE 12.3

to Pentium D15 -D8 pins, and so on.
Next, consider the Pentium instruction, MOV CL, [0003H] with (CS) = OlOOH

in real mode. The 20-bit physical address is 01003H. In order to execute this instruction,
the Pentium generates the high 17 bits of the address on its A3 1- A3 pins while low three
address bits are encoded from BE3#. This is because the Pentium does not have A2- A0
pins on the chip. Since bits 2 through 0 of the address 01003H are 01 1, (3H), BE3# pin of
the Pentium must be used to enable the EPROM3 chip connected to D3 1 -D24 pins. No
external routing circuit is required. This is because both memory and Pentium’s data bus
are 64-bit wide.

The concept of aligned and misaligned transfers for 64-bit memory will be covered
in the following. Consider Pentium instruction, MOV EAX, [0004H] with (DS) = OlOOH
in real mode. The 20-bit physical address is 01004H. Assume Pentiud27C256 64-bit
EPROM configuration. Since A2 A1 A0 = 100, EPROM4 through EPROM7 are enabled
by BE4# through BE7# respectively. The contents of address 01004H are transferred via
TABLE 12.3

Pentium Processor with 64-Bit Memory.

When BE3’# is active (X means don’t care) for 32-bit memory

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# BE3’#
0 X X X o x X X 0

TABLE 12.4 When BE2’# is active (X means don’t care) for 32-bit memorv

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# BE2’#
X 0 X X x o X X 0

TABLE 12.5 When BEl’# is active (X means don’t care) for 32-bit memory

BE7# BE6# BE5# BE4# BE3# BE2# BEl# BEO# BE1’#
X X 0 X x x 0 X 0

TABLE 12.6 When BEO’# is active (X means don’t care) for 32-bit memorv

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# BEO’#
X X X 0 x x X 0 0

Pentium Hardware and Interfacing 407

D39 -D32 pins, the contents of 01005H are transferred via D47 -D40 pins, and so on. The
32-bit data will be transferred to EAX in one cycle. This is called aligned transfer.

Next, consider a misaligned transfer . Assume that the Pentium executes MOV
BX, [0007H] with (DS) = 0200H in real mode. The 20-bit physical address is 02007H. This
is a misaligned transfer, and will require two cycles. In the first cycle, the Pentium outputs
LOW on BE7#, and BE7# will enable EPROM7. The byte contents of address 02007H will
be transferred into BL. In the second cycle, BEO# will enable EPROMO, and the contents
of 02008H will be transferred into BH.

Memories that are 32-bit wide require external logic for generating A2, and
BE3’# - BEO’#. Pins BE3’#-BEO’# are decoded as shown in Tables 12.3 through 12.6.
Note that four 8-bit memory chips such as four 27C256,s will provide a 32-bit EPROM
system. For example, consider 32-bit memories, Pentium’s A31- A3 pins are used to
address four 8-bit memory chips and BE7#-BEO# pins are used to select individual bytes
at the appropriate section(s) of the 64-bit data bus. Since Pentium data bus is 64-bit wide, a
routing logic circuit must be designed for interfacing 32-bit memories. Address bit 2 along
with the appropriate byte enable signals need to be generated by external hardware (Byte
Select Logic circuit). The external circuit must be designed to generate A2 using Table
12.2, and to generate new byte enable signals BE3’# through BEO’# using Tables 12.3
through 12.6.

As an example of 32-bit memory, consider the Pentium instruction, MOV CL,
[0002H] with (DS) = OlOOH in real address mode. The 20-bit physical address is 01 002H.
In order to execute this instruction, the Pentium outputs the high 17 bits of the address on
its A19- A3 pins, and low three bits of the address are generated by the byte select logic.
Since bits 0, 1, 2 of the address are 010 (2H). This means A2= 0, and AlAO =lo. The
external circuit is designed in such way that A2AlAO = 010 will make BE2’# = 0. Since
BE2# is used to obtain BE2’# (Table 12.4), the 8-bit contents of the address 01002H will
be routed to the D23- D 16 pins of the Pentium.

16-bit memories are organized as arrays of physical words (16 bits). Note that two
8-bit memory chips such as two 27C256,s will provide a 16-bit EPROM system. Address
bits A2 and A1 can be decoded from the byte enables according to Tables 12.7 and 12.8.
Note that BLE# will be LOW for even addresses while, BHE# will be LOW for odd
addresses.

Address bits A2- A0 of the physical address can be decoded from the byte enables
according to Table 12.2. The byte enables can be decoded to generate BLE# (byte low
enable) and BHE# (byte high enable) to address 16-bit memory (Tables 12.7 and 12.8).

To address 8-bit memories, the lower three address lines (A2-AO) must be decoded
from the byte enables as shown in Table 12.2. Suppose that it is desired to connect an 8-bit
EPROM such as the 27C256 (32K X 8) to the Pentium. Note that the 27C256 will contain
all addresses according to the EPROM map. Since the Pentium contains 64 data pins,
external byte swapping logic must be designed for memories less than 64-bit for routing
data to the appropriate data lines.

Figure 12.4 shows the Pentium address bus interface to 64-, 32-, 16-, and 8-bit
memories. Figure 12.5 shows the Pentium data bus interface to 32-, 16-, and 8-bit wide
memories. External byte swapping logic is needed on the data lines so that data is supplied
to and received from the Pentium on the correct data pins (Table 12.1).

Pentium’s interface to typical EPROM and SRAM chips in a 64-bit configuration
in real mode are covered later in this section. Hence, basic concepts associated with
Pentium’s interface to 64-bit memory in the real mode will be discussed in more detail in

408 Microprocessor Theory and Applications with 68000/68020 and Pentium

TABLE 12.7 When BLE# is active (X means don’t care) for 16-bit memory

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# BLE#
X X X X x x X 0 0
X X X X x o 1 1 0
X X X 0 1 1 1 1 0

TABLE 12.8 When BHE# is active (X means don’t care) for 16-bit memory

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BEO# BHE#
X X X X x x 0 X 0
X X X X o x 1 1 0
X X 0 X 1 1 1 1 0
0 X 1 1 1 1 1 1 0

PENTIUMTM
PROCESS0

A31 -A3

BE7# - BEO#

A2, BEY# - BEO’#

BYTE
SELECT
LOGIC

BHE#, BLE#, A2, A1

64-BIT
MEMORY

r l 32-BIT
MEMORY Ii
16-BIT

MEMORY

8-BIT
MEMORY

FIGURE 12.4 Addressing 32, 16’8-Bit Memories.

Pen tium Hardware and Interfacing 409

7
A31A3 BE'I#-BEO#

64-BIT DATA
ASSEMBLY LOGIC

FIGURE 12.5

the following. As mentioned in the last section, the Pentium address and data lines are not
multiplexed. There is a total of 29 address pins (A3 1-A3) on the chip. Note that A2, A1 ,
A0 are decoded internally to generate eight byte enable outputs, BE7# through BEO#.

All data transfers occur as a result of one or more bus cycles. Data sizes of 8-bit
(byte), 16-bit (word), 32-bit (doubleword), and 64-bit (quadword) may be transferred.
Data may be accessed any byte boundary, but two cycles may be required for misaligned
data transfers. The Pentium address pins A2 , A1 and A0 specify the eight addresses of an
8-byte (64-bit) quadword on the data pins as shown in Figure 12.6. Note that for 64:bit
memory, each bank can have a maximum of 128K byte of memory in real mode.

Data Bus Interface to 32,16, and 8-bit Memories.

41 0 Microprocessor Theory and Applications with 68000/68020 and Pentium

BYTE 7 BYTE 6 BYTE 5 BYTE4 BYTE 3 BYTE2 BYTE 1 BYTE0 Data Pins

BANK 7 BANK 2 BANK 1
128 Kbyte 128 Kbyte 128 Kbyte One Megabyte

BANK 0
128 Kbyte

FFFFIH

FFFFOH

00008H
OOOOOH

D 7 -DO

BEI# BE2# BEl# B D#

FIGURE 12.7 Pentium’s one Megabyte of main memory in real mode divided
into 8 memory banks of 128K X 8 (20-bit physical addresses
are shown inside the memory banks in the Figure).

The contents of the memory addresses in increments of 8, which include 0, 8, 16

which include 1,9,17, with A2AlAO = 001, are transferred over D8-Dl5. On the other
hand, the contents of memory addresses 2, 10, 18, ... with A2AlAO = 010, are transferred
over D16-D23, and the contents of memory addresses 7, 15, 23, ... with A2AlAO = 111,
are transferred over D56-D63. Note that A2AlAO pins are encoded from BE7# -BEO#.

In real mode, the maximum size of the main memory is one megabyte (20-bit
physical address). This one megabyte of memory can be divided into eight memory banks
of 128K X 8 memory in a 64-bit configuration as depicted in Figure 12.7. The concepts
associated with aligned and misaligned transfers in a 64-bit memory are discussed in the
following.

For example, consider the Pentium instruction, MOV BL,[0002H] with (DS) =

0300H in real mode. The 20-bit physical address is 03002H. The Pentium outputs LOW
on BE2# and HIGH on BEO#, BE1# and BE3# through BE7#, and the content of location
03002H is read into BL in a single bus cycle. This is an aligned transfer for 8-bit data.
On the other hand, when the Pentium executes a 16-bit MOVE instruction such as MOV
AX,[0008H] with (DS) = lOOOH in real mode. The 20-bit physical address is 10008H. The
Pentium will drive BEO# and BE 1 # to low. The locations 10008H and 10009H are read
into AL and AH via Do-D, and D,-D,, respectively in a single cycle (aligned transfer). For
32-bit transfer, suppose the Pentium executes a MOVE instruction from an aligned address
such as MOV EAX,[0050H] with (DS) = 2000H in real mode. The 20-bit physical address
is 200050H. The Pentium will drive all bus enable pins (BEO# -BE3#) to low and reads four
bytes of memory locations 20050H through 20053H into EAX. This is an aligned transfer,
and is completed by the Pentium in a single bus cycle.

The Pentium performs misaligned transfers in two cycles. For example, consider

... with A2AlAO = 000, are transferred over DO-D7. Similarly, the contents of addresses

Pentium Hardware and Interfacing 41 1

the Pentium executing a misaligned word MOVE instruction such as MOV AX,[0007H]
with (DS) = 1 OOOH in real mode. The 20-bit physical address is 10007H. The Pentium will
drive BE7# to low in the first bus cycle and reads the byte contents of location 10007H
(bank 7) into AL in the first bus cycle. The Pentium will then drive BEO# to low in the
second bus cycle and reads the byte contents of location 10008H (bank 0) into AH. This
is a misaligned transfer, and is completed by the Pentium in two bus cycles.

A 32-bit misaligned transfer such as MOV EAX,[0006H] with (DS) = 2000H also
takes two bus cycles. In the first bus cycle, the Pentium asserts BE6# and BE7#, and reads
the byte contents of addresses 20006H and 20007H from banks 6 and 7 into lower 16 bits
of EAX respectively. In the second cycle, the Pentium asserts BEO# and BE 1 # to LOW and
then reads the contents addresses 20008H and 20009H into upper 16-bits of EAX. This is
a misaligned transfer, and is completed by the Pentium in two bus cycles.

To manipulate memory configuration, 64-bit data bus control byte enable logic is
incorporated to generate eight byte enable signals (BE7# - BEO#). These byte enables are
generated internally by the Pentium by using A2 , A1 , and A0 pins as shown in Table 12.2.

For memory-mapped I/O, the concepts described above can be used to determine
memory addresses for I/O ports. However, for standard I/O, the port addresses are
determined using Pentium’s M/IO# pin to distinguish between memory and I/O.

12.3.2 Pentiurn-EPROM Interface
The Pentium system is designed with 256K x 8 EPROM consisting of eight 27C256’s
(64-bit EPROM configuration), each connected to its associated portion of the Pentium’s
64-bit data bus (D63-D56 , D55-D48, D47-D40 , D39-D32 , D31-D24 , D23-Dl6,
D 15-D8 , and D7-DO). Pentium pins A3 through A1 7 are connected to A0 through A 14 of
each 27C256. For example, Pentium A3 is connected to A0 of the 27C256’s , Pentium A4
to A1 of the 27C256’s, and so on. A schematic of the Pentium-27C256 interface is shown
in Figure 12.8. Note that the size of each 27C256 is 32K X 8.

Both A20M# and BRDY# input pins of the Pentium are asserted by the output
of the OR gate. The inputs of the OR gate are M/IO# (inverted), WW#, and A18 (inverted)
pins. A18 = 1 will select EPROMs, and A18 = 0 is used to select SRAMs. Note that the
A20M# pin must be asserted in Pentium’s real mode in order to mask the A20 pin so that
the Pentium emulates the address wraparound at 1 MB of main memory. Also, the BRDY#
is asserted since this will indicate to the Pentium that one or more EPROM chips has
presented valid data on the data pins in response to a read. Linear decoding is used for
selecting memory banks to enable the appropriate memory chips.
The pertinent connections for EPROM #O obtained from Figure 12.8 are shown in Figure
12.9. The memory map for EPROM #O can be determined as follows:

EPROM #O

A19 A18 A17 A16 A 15A 3 A2A1 A 0

Don’t care A’ can be OIs to lIs For EPROM
assume 1 for selecting EPROM

Note that theAO pin of EPROM # 0 is connected to Pentium A3 pin, A1 pin of EPROM
1 is connected to Pentium A4 pin, and so on: hence the address range for EPROM #O

O 18=1 .

4 12

COOOOH, C0008H, . . . , FFFF8H and the 27C256 memory map:

Microprocessor Theory and Applications with 68000/68020 and Pentium

- -

0 0 0

CE OE
EPROM #7

EPROM #O
EPROM # 1
EPROM #2
EPROM #3
EPROM #4
EPROM #5
EPROM #6
EPROM #7

- - - - - -
CE OE CE OE CE OE

EPROM #2 EPROM #I EPROM #O

COOOOH, C0008H, . . ., FFFFSH
COOOlH, C0009H, .. ., FFFF9H
C0002H, COOOAH ,.... .,FFFFAH
C0003H, COOOBH ,....., FFFFBH
C0004H, COOOCH ,....., FFFFCH
C0005H, COOODH ,....., FFFFDH
C0006H, COOOEH ,....., FFFFEH
C0007H, COOOFH,.. ..., FFFFFH

A o - A I 4 b - 4

As far as the timing parameters are concerned, the access time of 27C256 is 90
ns. Since a LOW on BRDY# input tells the Pentium that an external memory such as
27C256 has presented valid data on the data pins in response to a READ. From the timing
diagram in Figure 12.2, BRDY# is sampled in the T2 state (approximately 20 ns for a
100-MHz Pentium). Also, any number of wait states can be added to Pentium bus cycles
by maintaining BRDY# inactive. Using typical propagation delay times of the OR gate
and the inverter as 10 ns, data will be available at the output pins of each 27C256 after
approximately 120 ns (two OR delays + one inverter delay + access time of 27C256).
Hence, for 100-MHz Pentium, delaying BRDY# pin by at least 120 ns - 20 ns (since the
Pentium checks BRDY# pin for LOW after 2 cycles) = 100 ns is necessary. With this delay,
valid data will be available at the output pins of the 27C256 at the appropriate time. The
delay circuit can be obtained using a ring counter (see Figure 7.20).

.AO-A14 b-07

Ai 8

M110#
WIR#

MOM#

BRDW

BEW
BEl#
BE2#

BE7#

PENTIUM

A 3 - A i 7

0 5 6 - D6:

D16- D2:

D 8 -D i !

D Q - D 7

'8 8 '8
<

<
0
0

. I J
I

,
8

c I I

FIGURE 12.8 Pentium l27C256 Interface.

Pentium Hardware and Interfacing 413

I D- D7

EPROM #O
A3 -A17 Ao- A14

To Pentium +--
D- D7

FIGURE 12.9

12.3.3 Pentium-SRAM interface
The Pentium system is designed with 256K x 8 SRAM consisting of eight

52256CKH's (64-bit SRAM configuration), each connected to its associated portion of
the Pentiurn's 64-bit data bus (D63-D56 , D55-D48, D47-D40 , D39-D32 , D31-D24
, D23-Dl6 , D15-D8 , and D7-DO). Pentium pins A, through A,, are connected to A.

Pentium interface to EPROM #O.

FIGURE 12.10 PentiumISRAM interface.

41 4

TABLE 12.9 Decoding Guide

Microprocessor Theoly and Applications with 68000/68020 and Pentiurn

- - -
CE OE WE ODeration Derformed
L L

~

H READ
L X L WRITE
L H H OUTPUT DISABLE
Note: X means don’t care

through A,., of each of the 52256CKH’s. For example, Pentium A3 is connected to A0 of
the 52256C/CH’s, Pentium A4 to A1 of the 52256C/CH’s, and so on. A schematic of the
Pentium-52256C/CH interface is shown in Figure 12.10. Sharp LH52256C/CH is a 32K
x 8 CMOS SRAM. The LH52256C/CH READ and WRITE operations are decoded as
shown in Table 12.9.

The A20M# and BRDY# input pins of the Pentium are both asserted by the
OR gate. The inputs of the OR gate are inverted M/IO# and A18 pins. A18 = 0 will
select SRAMs. A1 8 = 1 is used to deselect SRAMs and to select EPROMs. Note that the
A20M# pin must be asserted in Pentium’s real mode in order to mask the A20 pin so that
the Pentium emulates the address wraparound at 1 MB of main memory. Also, the BRDY#
is asserted since this will indicate to the Pentium that one or more SRAM chips has
presented valid data on the data pins in response to a read or that the SRAM has accepted
the Pentium data in response to a write operation.

Linear decoding is used for selecting memory banks to enable the appropriate
memory chips. The pertinent connections for SRAM #O obtained from Figure 12.10 are
shown in Figure 12.1 1. The 52256C/CH memory map can be determined as follows:

SRAM #O memory map

A19 A H A17 A M A15A 3 A z A ~ A o

Don’t care - 1. l o L o -u
assume 1 for Can be 0’s to 1’s ForSRAM

selecting SRAM # O

Note that the A0 pin of SRAM #O is connected to the Pentium A3 pin, the A1 pin of SRAM
#1 is connected to the Pentium A4 pin, and so on: hence, the address range for S U M #O
80000H, 80008H, . . . , BFFF8H and the 52256C/CH memory map:

SRAM #O
SRAM #1
SRAM #2
SRAM #3
SRAM #4
SRAM #5
SRAM #6
SRAM #7

80000H, 80008H, . . ., BFFFSH
8000 1 H, 80009H, . . . ,BFFF9H
80002H, 8000AH ,....., BFFFAH
80003H, 8000BH ,.... ,BFFFBH
80004H, 8000CH ,.... ,BFFFCH
80005H, 8000DH ,.... ,BFFFDH
80006H, 8000EH ,....., BFFFEH
80007H, 8000FH ,....., BFFFFH

As far as the timing parameters are concerned, the read and write cycle times
of the 52256C/CH are 70 ns. Note that a LOW on the BRDY# input tells the Pentium

Pentium Hardware and Interfacing

M/IO# --f>\

415

WIR#

SRAM #O

FIGURE 12.11 Pentium interface to SRAM #O.

that the SRAM 52256C/CH has presented valid data on the data pins in response to a
READ or that the SRAM 52256C/CH has accepted the Pentium data in response to a write
operation.

From the timing diagram of Figure 12.2, BRDY# is sampled in the T2 state
(approximately 20 ns for a 100-MHz Pentium). Also, any number of wait states can be
added to Pentium bus cycles by maintaining BRDY# inactive. Using typical propagation
delay times of the OR gate and the inverter as 10 ns, data will be read or written by each
of the 52256C/CH’s after approximately 90 ns (one OR delay + one inverter delay + the
52256C/CH cycle time). Hence, for a 100-MHz Pentium, delaying BRDY# pin by at least
90 ns - 20 ns (since the Pentium checks BRDY# pin for LOW after 2 cycles) = 70 ns is
necessary. With this delay, valid data will be available at the output pins of the 52256C/CH
at the appropriate time. The delay circuit can be obtained using a ring counter (see Figure
7.21).

12.3.4 Pentium Programmed I/O
The Pentium uses either standard I/O or memory-mapped I/O. The standard I/O uses the
instructions IN and OUT. The standard I/O can transfer either 8- or 16-bit data to or from a
peripheral device. All I/O transfers using standard I/O between the Pentium and peripheral
devices take place via AL for 8-bit ports, AX for 16-bit ports, and EAX for 32-bit ports.
I/O port addressing can be done either directly or indirectly. Two I/O port addressing modes
can be used: direct port and indirect port. In either case, 8-, or 16-, or 32-bit I/O transfers
must take place via AL, AX, or EAX, respectively.

In direct port mode, the port number is an 8-bit immediate operand to access 256
ports. For example, IN AL,02H moves the contents of the 8-bit port 02H to AL. OUT
04H,AX outputs the 16-bit contents of AX into the 16-bit port 0405H; and IN EAX,02H
will input the 32-bit contents of the 32-bit port 02030405H into EAX.

In indirect port mode, the port number is taken from DX, allowing 64K bytes
or 32K words of ports. For example, suppose that (DX) = 0020H, (port 0020H) = 02H,
and (port 0021H) = 03H. Then, after IN AX,DX, register AX contains 0302H. After IN
AL,DX, register AL contains 02H. Next, consider, IN EAX,DX. Prior to execution of this
instruction, if (DX) = 0050H, (port OOSOH) = OlH, (port 0051H) = 02H, (port 0052H) =

03H, and (port 0053H) = 04H, then after execution of IN EAX, DX, register EAX will
contain 0403020 1 H.

In memory-mapped I/O, ports are mapped as memory locations. An unused
address pin rather than M/IO# pin should be used to distinguish between memory and
I/O. In other words, the M/IO# pin is not used in memory-mapped I/O. Also, in memory-
mapped I/O, a memory read such as MOV reg8,mem and,a memory write such as MOV
mem,reg8 instructions are used as input and output instructions respectively. IN and OUT

A, A,
0 0
0 1
1 0
1 1

Port Name
PortA
PortB
POrtC
Control register

41 6 Microprocessor Theory and Applications with 68000/68020 and Pentium

instructions are not used in memory-mapped I/O. Note that any 8-, 16-, or 32-bit general-
purpose register and memory modes can be used in memory-mapped I/O for 8-, 16-, or
32-bit ports. For example, MOV CL,[SI] will input an 8-bit port defined by SI and DS into
CL. MOV [BX], AX, on the other hand, will output the 16-bit data in AX to a 16-bit port
addressed by the 20-bit address computed from BX and DS. Finally, MOV ECX, [DI]
will input a 32-bit port defined by DI and DS into ECX.

In standard I/O, the I/O address space consists of 216 (64K) individually addressable
8-bit ports; any two consecutive 8-bit ports can be treated as a 16-bit port, and any four
consecutive ports can be a 32-bit port. This means that using standard I/O, the program can
specify the following:

Note that VO port addresses F8H through FFH are reserved by Intel. I/O ports to these
addresses must not be assigned.

The Pentium programmed I/O capability will be explained in the following
paragraphs using the 82C55 CMOS I/O chip. The 82C55 chip is a general-purpose
programmable I/O chip. The 82C55 has three 8-bit VO ports: ports A, B, and C. Ports A
and B are latched 8-bit ports for both input and output. Port C is also an 8-bit port with
latched output, but the inputs are not latched.

Port C can be used in two ways: It can be used either as a simple I/O port or as a
control port for data transfer using handshaking via ports A and B.

The Pentium configures the three ports by outputting appropriate data to the 8-bit
control register. The ports can be decoded by two 82C55 input pins A, and A,, in Table
12.10. The definitions of the control register are shown in Figure 12.12.

Bit 7 (D,) of the control register must be 1 to send the definitions for bits 0-6
(Do-D,) as shown in the diagram. In this format, bits Do-D,, are divided into two groups: A
and B. Group A configures all 8 bits of port A and the upper 4 bits of port C; group B defines
all 8 bits of port B and the lower 4 bits of port C . All bits in a port can be configured as a
parallel input port by writing a 1 at the appropriate bit in the control register by the Pentium
OUT instruction, and a 0 in a particular bit position will configure the appropriate port as
a parallel output port. Group A has three modes of operation: modes 0, 1, and 2. Group B
has two modes: modes 0 and 1. Mode 0 for both groups provides simple I/O operation for
each of the three ports. No handshaking is required. Mode 1 for both groups is the strobed
I/O mode used for transferring I/O data to or from a specified port in conjunction with
strobes or handshaking signals. Ports A and B use the pins on port C to generate or accept
these handshaking signals. Mode 2 of group A is the strobed bidirectional bus I/O and may
be used for communicating with a peripheral device on a single 8-bit data bus for both
transmitting and receiving data (bidirectional bus I/O). Handshaking signals are required.

256 8-bit ports numbered 0 through 255.

128 16-bit ports numbered 0,2,4, 252,254.

64 32-bit ports numbered 0,4, 8, 248,252.

Pentium Hardware and Interfacing

7 6 5 4 3 2 1 1)

+

Pentium Hardware and Interfacing

7 6 5 4 3 2 1 0

Mode

Port C (upper
4 bits)

1 = input
0 = output

Port A
1 = input
0 = output

Mode selection

select

1= active
flag

I I

00 = mode 0
01 = mode 1 I lX= mode 2

I

t

417

'-4 bits)
1 = input

Mode selection
0 = mode 0

FIGURE 12.12 82C55 control register.

Interrupt generation and enable/disable functions are also available.

as follows:
When D7 = 0, the bit setheset control word format is used for the control register

reset flag
0 = active 0 = reset

Bit select
0 - 7

This format is used to set or reset the output on a pin of port C or when it is
desired to enable the interrupt output signals for handshake data transfer. For example, the
8 bits (OXXXllOO) will clear bit 6 of port C to zero. Note that the control word format
can be output to the 82C55 control register by using the Pentium OUT instruction. Now,
let us define the control word format for mode 0 more precisely by means of a numerical
example. Assume that the control word format is 100000 10,. With this data in the control
register, all 8 bits of port A are configured as outputs and the 8 bits of port C are also
configured as outputs. All 8 bits of port B, however, are defined as inputs. On the other
hand, outputting 1001 101 1, into the control register will configure all three 8-bit ports (A,
B, and C) as inputs.

Next, the I/O map for the 82C55 is determined. Figure 12.13 shows pertinent
connections between the Pentium and the 82C55.
As mentioned before, I/O port addresses F8H through FFH are reserved by Intel. 110
ports to these addresses must not be assigned. Hence, A7= 0 is used to select the 82C55.
In Figure 12.13, the Pentium outputs LOW on its M / E pin (M / E = 0) when it executes an
IN or OUT instruction. M / E = 0 and A7 = 0 will produce a LOW (output of the OR gate
in Figure 12.13) on the cs pin of the 82C55. The 82C55 will thus be selected. Since the
Pentium encodes A2A 1 A0 from BEO#, the address bits A2A 1 A0 will be 000.

41 8 Microprocessor Theory and Applications with 68000/68020 and Pentium

Using Pentium A, and A, pins for port addresses, the I/O map for the 82C55 chip can
be determined as shown in Table 12.11. Note that an unused address pin to distinguish
between memory and I/O is not required in standard I/O. This is accomplished by the M/
10# pin of the Pentium.

Pentium D 0- D7

Pentium A 3

Pentium A 4

Pentium M11W

Pentium A 7

Pentium BEO#

Pentium W/R#

EXAMPLE 12.1 Write a Pentium assembly language program to drive an LED
connected to bit 7 of port A based on a switch input at bit 0 of port A. If the switch is HIGH,
turn the LED ON: otherwise. turn the LED OFF. Assume a Pentium /82C55-based

DO- '7

PortA < 1; >
AO

Port6 < /; >
POrtC < /; >

A1

-
cs

-
WR

RD
-

microcomputer.

Solution

.486

.MODEL

.CODE
PORTA EQU
CTLREG EQU
BEGIN:
BACK: MOV

OUT
rN
MOV
MOV
OUT
MOV
ROR
OUT
JMP

END BEGIN

EXAMPLE 12.2

SMALL,STDCALL

60H
78H

AL,90H
CTLREG,AL
AL,PORTA
BL,AL
AL,80H
CTLREG,AL
AL,BL
AL, 1
PORTA,AL
BACK

set PORTA as input
read switch
save switch status

set PORTA as output
get switch status
rotate switch status
output to LED
repeat

A Pentium-82C55-based microcomputer is required to drive an

Reset 82c55 I Pentium Reset

FIGURE 12.13 82C55 interface to the Pentium.

Pentium Hardware and Interfacing 419

TABLE 12.11 82C55 I/O Map (X indicates don’t cares, assume 1’s)

Port Name I Address
Port A

0 X X 0 0 0

Port A

Port B
0 X X w 0 0 0 =68H

Port B

Port c
0 0 0 =70H

Port c
Control Register

0 0 0 =78H w
Control
register

LED connected to bit 2 of port B based on two switch inputs connected to bits 6 and 7 of
port A. Ifboth switches are either HIGH or LOW, turn the LED ON; otherwise, turn it OFF.
Assume a HIGH will turn the LED ON and a LOW will turn it OFF. Write a Pentium
assembly language program to accomplish this.

Solution

PORTA
PORTB
CNTRL
BEGIN:

BACK:

LEDON:

END

.486

.MODEL SMALL,STDCALL

.CODE
EQU 60H
EQU 68H
EQU 78H

MOV AL,90H 2

OUT CNTRL,AL 2

IN AL,PORTA 2

AND AL,OCOH 2

JPE LEDON
9

MOV AL,OOH
OUT PORTB,AL 2

JMP BEGIN 9

MOV AL,04H 2

OUT PORTB,AL
JMP BACK
BEGIN

Configure port A as input
and port B as output
Input port A
Retain bits 6 and 7
If both switches are either
HIGH or LOW, turn the LED ON
Otherwise turn the
LED OFF
Repeat
Turn LED
ON

420

12.3.5
Interrupts occur at random times during the execution of a program in response to external
events. Exceptions occur when instructions are executed that provoke exceptions. Interrupts
are used to handle events external to the Pentium. Exceptions handle conditions detected
by the Pentium in the course of executing instructions such as division by zero.

There are two sources for interrupts and two sources for exceptions in the
Pentium:
1. Nonmaskable (NMI) and Maskable interrupt (INTR)
2. Pentium-detected exceptions such as division by zero, and programmed exceptions
such as the INTO (interrupt on overflow) instruction

In the real mode, the Pentium assigns every interrupt a type code so that the
Pentium can identify it. Interrupts can be initiated by external devices or internally by
software instructions or by exceptional conditions such as attempting to divide by zero.
Interrupts and exceptions in the real mode work in the same way as the 8086. Interrupts
and exceptions call interrupt procedures through an interrupt table. The Pentium multiplies
the interrupt or exception identifier (type code) by 4 to obtain an address into an interrupt
table. When an interrupt occurs, the Pentium pushes the current values of the flag, CS and
IP registers onto the stack, disables interrupts, clears the TF flag, and transfers control to
the location specified in the interrupt table. An IRET instruction at the end of the service
routine pops IP, CS, and flag registers from the stack and returns control to the main
program.

Upon hardware reset, the Pentium is in real mode, and the addresses for the
interrupt pointer table are the same as the 8086 (addresses OOOOOH through 003FFH). In
the real mode, if desired, addresses for the interrupt pointer table can be changed by an
instruction such as LIDT. The LIDT instruction can be used to change the base and the
limit values in the IDTR register. Note that the location and size of the interrupt pointer
table depend on the contents of the Pentium IDTR register. Also, the Pentium reports some
exceptions differently when executing in the real mode than when executing in protected
mode.

In the following, interrupts and exceptions in the real mode are covered. Also, the
addresses for the interrupt pointer table upon hardware reset are assumed.
Predefined Interrupts The Pentium contains several predefined interrupts; the first
five are:

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Pentiurn Interrupts and Exceptions in Real Mode

Type 0: INTO Divide by zero
Type 1: INTl Single step
Type 2: INT2 Nonmaskable interrupt (NMI pin)
Type 3: INT3 Breakpoint
Type 4: INT4 Interrupt on overflow

The interrupt vectors for these five interrupts are predefined by Intel. The user
must provide the desired IP and CS values in the interrupt pointer table. The user may also
initiate these interrupts through hardware or software. If a predefined interrupt is not used
in a system, the user may assign some other function to the associated type.

The Pentium is interrupted automatically whenever a division by zero is attempted.
This interrupt is nonmaskable and is implemented by Intel as part of the execution of the
divide instruction.

Pentium Hardware and Interfacing 42 1

Once TF is set to 1, the Pentium automatically generates a type 1 interrupt after
execution of each instruction. The user can write a service routine at the interrupt address
vector to display memory locations and/or register to debug a program. Single-step mode
is nonmaskable and cannot be enabled by the STI (enable interrupt) or disabled by the CLI
(disable interrupt) instruction. The TF can be set to 1 as follows:

PUSHF Save flags
MOV BP, SP
OR [BPI, OlOOH

Move [SP] to [BPI
Set TF to one

POPF , Pop flags
The nonmaskable interrupt is initiated via the Pentium NMI pin. It is edge triggered

(LOW to HIGH) and must be active for two clock cycles to guarantee recognition. It is
normally used for catastrophic failures such as a power failure. The Pentium obtains the
interrupt vector address by automatically executing the INT2 (type 2) instruction internally.

The type 3 interrupt is used for breakpoints and is nonmaskable. The user inserts
the 1-byte instruction INT3 into a program by replacing an instruction. Breakpoints are
useful for program debugging.

The interrupt on overflow is a type 4 interrupt. This interrupt occurs if the overflow
flag (OF) is set and the INTO instruction is executed. The overflow flag is affected, for
example, after execution of a signed arithmetic (such as IMUL, signed multiplication)
instruction. The user can execute an INTO instruction after the IMUL. Ifthere is an overflow,
an error service routine written by the user at the type 4 interrupt address vector is executed.
Internal Interrupts The user can generate an interrupt by executing the interrupt
instruction INT an. The INT nn instruction is not maskable by the interrupt enable flag
(IF). The INT nn instruction can be used to test an interrupt service routine for external
interrupts. Type codes 32-255 can be used.
External Maskable Interrupts The Pentium maskable interrupts are initiated via
the INTR pin. These interrupts can be enabled or disabled by STI (IF = 1) or CLI (IF = 0),
respectively. If IF = 1 and INTR active (HIGH) without occurrence of any other interrupts,
the Pentium, after completing the current instruction, generates interrupt acknowledge
cycles twice, each time for about one cycle..

The state of address bit 2 (as decoded from byte enables) distinguishes the first
and second interrupt acknowledge cycles. During the first interrupt acknowledge cycle, the
Pentium drives BE4# (A2 A1 A0 = 100) to LOW, BE7# - BE5# to HIGH, BE3# - BEO# to
HIGH, and A3 1 - A3 to LOW. During the second interrupt acknowledge cycle, the Pentium
drives BEO# (A2 A1 A0 = 000) to LOW, BE7# - BEl# to HIGH, and A3 1 - A3 to LOW.
This means that BE4# = 0 and BEO# = 1 during the first interrupt acknowledge cycle
whereas BE4# = 1 and BEO# = 0 during the second interrupt acknowledge cycle.

Interrupt acknowledge cycles are terminated when the external system returns
BRDY#. The first interrupt bus cycle indicates that an interrupt acknowledge cycle is in
progress and allows the system to be ready to place the interrupt type code on the next
interrupt acknowledge bus cycle. Data returned during the first cycle is ignored. The
Pentium does not obtain information from the bus during the first cycle. The external
hardware must place the type code on the Do-D, pins of the Pentium’s data bus during the
second cycle.

Figure 12.14 shows a simplified interconnection between the Pentium and
the 74HC244 for servicing the INTR. Inverted BE4# and BEO# are ORed to enable the
74HC244 to place type code nn (32 to 255) on the Pentium’s DO - D7 pins. A delay circuit
may be required for BRDY#.

422 Microprocessor Theory and Applications with 68000/68020 and Pentium

Interrupt Procedures Once the Pentium has the interrupt type code (via the bus for
hardware interrupts, from software interrupt instructions INT nn, or from the predefined
interrupts), the type code is multiplied by 4 to obtain the corresponding interrupt vector in
the interrupt vector table. The 4 bytes of the interrupt vector are the least significant byte
of the instruction pointer, the most significant byte of the instruction pointer, the least
significant byte of the code segment register, and the most significant byte of the code
segment register. During the transfer of control, the Pentium pushes the flags and current
code segment register and instruction pointer onto the stack. The new CS and IP values are
loaded. Flags TF and IF are then cleared to zero. The CS and IP values are read by the
Pentium from the interrupt vector table.
Interrupt Pointer Table The interrupt pointer table provides interrupt address
vectors (IP and CS contents) for all the interrupts. There may be up to 256 entries for the
256 type codes. Note that INTO through INT4 are predefined interrupts, INT32 through
INT255 can be used for internal and maskable interrupts, and INT5 through INT31 are
reserved by Intel for system use. Each entry consists of two addresses, one for storing IP
and the other for storing CS. Note that in the Pentium each interrupt address vector is a
20-bit address obtained from IP and CS.

To service an interrupt, the Pentium calculates the two addresses in the pointer
table where IP and CS are stored for a particular interrupt type as follows:

-
-

I

For INT nn

BEO#
BRDY#

PENTIUM-BASED
MICROCOMPUTER

<type code

8 Pentium
// A ’ low data bus <

0 0 - D,

8 /

The address for IP = 4 x nn and the address for CS = 4 x nn + 2. For example, consider
INT2 (for NMI): Address for IP = 4 x 2 = 00008H, Address for CS = 00008 + 2 = OOOOAH
The values of IP and CS are loaded from locations 00008H and OOOOAH in the pointer
table. Similarly, the IP and CS addresses for other INT nn are calculated, and their values
are obtained from the contents of these addresses in the pointer table in the real address
mode (Table 12.12).
Interrupt service routines should be terminated with an IRET (interrupt return) instruction,

74HC244
C

Enable

nn of
< INT nn

32-255

BE4## DO- Di’l?

FIGURE 12.14 Servicing the INTR in the real mode.

Pentium Hardware and Interfacing 423

which pops the top three stack words into the IP, CS, and flags registers, thus returning
control to the right place in the main program.

IP
cs
IP
cs
IP

....................................

....................................

....................................

....................................

....................................

12.4 Pentium-based voltmeter

OOOOOH
00002H
00004H
00006H
00008H

In this section, a Pentium-based voltmeter is designed to measure voltage in the range 0 to
5 V and display the result in two decimal digits: one integer part and one fractional part.
Both programmed I/O and interrupt I/O are used. Assume that the microcomputer contains
EPROM and RAM. Note that the microcomputer must contain RAM for stack in order to
service interrupt.

The following I/O port addresses are used in the assembly language programs:
82C55 control register = 78H, port A = 60H, port B = 68H, and port C = 70H. These port
addresses are arbitrarily chosen.

Typical assembler directives such as ORG SEGREG:OFFSET or ORG CS:IP
for the Hewlett-Packard HP 64XXX microcomputer development system are used in the
assembly language programs for initializing DS and OFFSET or CS, and IP.

Because the maximum decimal value that can be accommodated in 8 bits is 255,,
(FF16), the maximum voltage of 5 V will be equivalent to 255,,. This means that the display
in decimal is given by

D = 5 x (InpuU255)

= Input6 1

=Quotient +Remainder
Integer part

This gives the integer part. The fractional part in decimal is

TABLE 12.12 Pentium Interrupt Pointer Table

Interrupt Type Code

0

1

2

I 1
003FCH I 003FEH

................................... 255

424 Microprocessor Theory and Applications with 68000/68020 and Pentium

START CONVERSION

OUTPUT ENABLE

CONVERSION COMPLETE

data AID
CONVERTER

FIGURE 12.15 Pentium-based voltmeter using programmed YO.

F = (Remainded5 1)x 10

Y (Remainder)/S

For example, suppose that the decimal equivalent of the 8-bit output of A/D is 200.
D = 200/5 1 3 Quotient = 3, Remainder = 47

Integer part = 3

Fractional part, F = 47/5 = 9

Therefore, the display will show 3.9 V.

12.4.1
Figure 12.15 shows the block diagram for programmed I/O. The microcomputer is required
to start the A/D converter at the falling edge of a pulse via bit 0 of port C. When the
conversion is completed, the A/D’s “conversion complete” signal will go to HIGH. During
the conversion, the AD’S “CONVERSION COMPLETE” signal stays LOW.
Using programmed I/O, the microcomputer is required to poll the A/D’s “conversion
complete” signal. When the conversion is completed, the microcomputer will send a LOW
on the A/D converter’s “OUTPUT ENABLE” line via bit 1 to port C and then input the
8-bit output from A/D via port B and display the voltage (0 to 5 V) in two decimal digits
(one integer and one fractional) via port A on two TIL 3 11 displays.

Note that the TIL 311 has an on-chip BCD to seven segment decoder. The
microcomputer will output each decimal digit on the common lines (bits 0-3 of port A)
connected to the ABCD inputs (‘D’ is the most significant bit and ‘A’ is the‘least significant
bit) of the displays. Each display will be enabled by outputting LOW on each LATCH line
in sequence (one after another) so that the input voltage V, (0 to 5 V) will be displayed with
an integer part and a fractional part. The Pentium assembly language program follows.

Pentium-based voltmeter using programmed I/O

Pentium Hardware and Interfacing 425

.486

.MODEL

.CODE
START:

ORG
PORTA EQU
PORTB EQU
PORTC EQU
2NTRL EQU

MOV
OUT
MOV
OUT
MOV
OUT

3EGIN: IN
ROL
JNC
MOV

OUT
IN
MOV

MOV
DIV
MOV
XCHG
MOV

MOV
DIV
MOV
MOV
OR
AND
OUT
MOV

SMALL.STDCALL

0FEOOH:OI OOH
60H
68H
70H
78H
AL,8AH
CNTRL,AL
AL,03H
PORTC,AL
AL,02H
PORTC,A
AL,PORTC
AL, 1
BEGIN
AL,OOH

PORTC,AL
AL,PORTB
AH,O

DL,5 1
DL
CL,AL
AH,AL
AH,O

BL,5
BL
DL,AL
AL,CL
AL,20H
AL,2FH
PORTA,AL
AL,DL

CS=FEOOH, IP=O1 OOH

Configure PORTA, PORTB
and PORTC
Send 1 to START pin of A/D
and 1 to (OUTPUT ENABLE)
Send 0 to start pin
of AID
Check conversion
Complete bit for HIGH

Send LOW to (OUTPUT
ENABLE)

Input A/D data
Convert input data to 16-bit
unsigned number in AX
Convert data to
integer part
Save quotient (integer) in CL
Move remainder to AL
Convert remainder to unsigned
16-bit number
Convert data to
fractional part
Save quotient (fraction) to DL
Move integer part
Disable fractional display
Enable integer display
Display integer part
Move fractional part

426 Microprocessor Theory and Applications with 68000/68020 and Pentium

OR AL, 1 OH ; Disable integer display
AND AL, 1 FH ; Enable fractional display
OUT PORTA,AL ; Display fractional part
HLT

END START

12.4.2 Pentium-based voltmeter using NMI
In this section, the voltmeter is designed using NMI (Nonmaskable interrupt). The main
program is written to initialize the 82C55 control register, and also, to start the A/D. The
service routine will input the A/D data, display the result, and stop. A Pentium assembly
language program is written for the main program and the service routine. The memory
locations are arbitrarily chosen. The service routine for the NMI is written starting at
IP=2000H, CS=1000H. In Figure 12.15, connect the “conversion complete” to Pentium
NMI; all other connections in Figure 12.15 will remain unchanged. Note that all addresses
selectable by the user are chosen arbitrarily in the following. The SS and SP are initialized
arbitrarily to 3900H and lOOOH respectively. The main program and service routine in
Pentium assembly language for NMI are as follows:

BEGIN:
PORTA
PORTB
PORTC
CNTRL

.486

.MODEL

.DATA
ORG
DW
DW
.CODE

EQU
EQU
EQU
EQU
ORG
MOV
MOV
MOV
MOV
MOV
MOV
OUT
MOV

SMALL,STDCALL

0000H:0008H ;

2000H ,
1 OOOH

60H
68H
70H
78H
0FEOOH:OlOOH ;

AX,3900H 2

ss,AX
AX,OOOOH 2

DS,AX
SP, 1 OOOH 2

AL,8AH
CNTRL,AL
AL,03H >

DS = OOOOH, Offset = 0008H
Initialize IP = 2000H, CS = lOOOH
for Pointer Table

CS = FEOOH, IP = 0 1 OOH
Initialize
stack segment
Initialize
data segment
Initialize SP

Configure PORTA, PORTB
and PORTC
Send 1 to START pin of A/D

Pentiurn Hardivare and Interfacing 427

DELAY

END

OUT

MOV
OUT
JMP
.CODE
ORG

MOV

OUT
IN
MOV
MOV
DIV
MOV
XCHG
MOV
MOV
DIV
MOV
MOV
OR
AND
OUT
MOV
OR
AND
OUT
HLT
BEGIN

PORTC,AL

AL,02H
PORTC,AL
DELAY

1000H:2000H

AL,OOH

PORTC,AL
AL,PORTB
AH,O
DL,5 1
DL
CL,AL
AH,AL
AH,O
BL,5
BL
DL,AL
AL,CL
AL,20H
AL72FH
PORTA,AL
AL,DL
AL, 1 OH
AL, 1 FH
PORTA,AL

and 1 to (OUTPUT ENABLE)
Send 0 to start pin
of AID
Wait for interrupt

CS = 1000H, IP = 2000H
Start Program at
CS = 1000H, IP = 2000H

Send LOW to (OUTPUT ENABLE)

Input AID data
Convert input to 16-bit unsig.num.
Convert data to
integer part
Save quotient (integer) in CL
Move remainder to AL
Conv. remainder to 16-bit unsigned
Convert data to
fractional part
Save quotient (fraction) to DL
Move integer part
Disable fractional display
Enable integer display
Display integer part
Move fractional part
Disable integer display
Enable fractional display
Display fractional part
stop

12.4.3 Pentium-based voltmeter using INTR
All connections in Figure 12.15 will be the same except AD’S “conversion complete”
to Pentium INTR as shown in Figure 12.16. All other connections in Figure 12.15 will
remain unchanged. INT FFH is used. In response to INTR, the Pentium pushes CS, IP and
flags onto the stack, and generates two interrupt acknowledge cycles; BE4# is LOW during
the first interrupt acknowledge cycle and HIGH during the second interrupt acknowledge
cycle. Hence, inverted BE4# and BEO# are ORed to obtain the interrupt acknowledge
output.

428 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

An octal buffer such as 74HC244 can be enabled by inverted BE4# to transfer
FF,, in this case (can be entered via eight DIP switches connected to +5 V through a 1 KR
resistor) to the input of the octal buffer. The output of the octal buffer is connected to the
DO-D7 lines of the Pentium. A delay circuit may be required for BRDY# to terminate the
interrupt acknowledge cycles.

The Pentium executes INT FFH and goes to the interrupt pointer table to load the
contents of physical addresses 003FCH (logical address: CS = OOOOH, IP = 03FCH) and
003FEH (logical address: CS = OOOOH, IP = 03FEH) to obtain IP and CS for the service
routine respectively. Since it is desired to write the service routine at IP = 2000H and
CS = 1000H; these IP and CS values must be stored at addresses 003FCH and 003FEH,
respectively. All user selectable addresses are chosen arbitrarily. The SS and SP are
arbitrarily initialized to 3900H and 8500H, respectively.

The main program and service routine in Pentium assembly language for INTR are as
follows:

START:
PORTA
PORTB
PORTC
CNTRL

.486

.MODEL

.DATA
ORG
DW
DW
.CODE

EQU
EQU
EQU
EQU
ORG
MOV
MOV
MOV
MOV
MOV
MOV
OUT
STI
MOV
OUT
MOV
OUT

SMALL,STDCALL

0000H:03FCH
2000H
1 OOOH

60H
68H
70H
78H
OF300H:Ol OOH
AX,3900H
SS,AX
AX,OOOOH
DS,AX
SP,8500H
AL,8AH
CNTRL,AL

AL,03H
PORTC,AL
AL,02H
PORTC,AL

;
; Initialize IP = 2000H,
;

DS = OOOOH, Offset = 03FCH

CS = lOOOH for Pointer Table

CS = F300H, IP = OlOOH
Initialize
stack segment
Initialize
data segment
Initialize SP
Configure port A, port B,
and port C
Enable Interrupt
Send one to start pin of A/D

;

;

and one to (OUTPUT ENABLE)
Send zero to start pin of A/D

Pentium Hardware and Interfacing 429

I
Connected to
"Conversion

complete"
pin of AID

8,
DO-D7 / I

- lNTR BRDY#

BE4#
BEO#

74HC244

m
Pentium I 82055 8-bit type
Microcomputer /code vector

FIGURE 12.16 Hardware interface for the Pentium INTR

DELAY JMP DELAY ; Wait for interrupt
.CODE
ORG 1000H:2000H ; CS = 1000H, IP = 2000H
MOV AL,O ; SendLOWto
OUT PORTC,AL ; (OUTPUT ENABLE)
IN AL,PORTB ; InputA/D data
MOV AH,O ; Convert input data to

MOV DL,5 1 ; Convertdata
DIV DL ; to integer part
MOV CL,AL ; Save quotient (integer) in CL
XCHG AH,AL ; Move remainder to AL
MOV AH,O ; Convert remainder to unsigned

MOV BL,5 ; Convertdata
DIV BL ; to fractional part
MOV DL,AL ; Save quotient (fraction) in DL
MOV AL,CL ; Move integer part
OR AL,20H ; Disable fractional display
AND AL,2FH ; Enable integer display
OUT PORTA,AL ; Display integer part
MOV AL,DL ; Move fractional part
OR AL, 1 OH ; Disable integer display
AND AL, 1 FH ; Enable fraction display
OUT PORTA,AL ; Display fractional part

; 16-bit unsigned number in Ax

; 16-bit

HLT ; stop
END START

430

12.5

Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Interfacing a Pentium-based Microcomputer to a Hexadecimal Keyboard
and a Seven Segment Display

In this section we describe the characteristics of the Pentium-based microcomputer used
with a hexadecimal keyboard and a seven-segment display.

12.5.1
A common method of entering programs into a microcomputer is via a keyboard. A popular
way of displaying results by the microcomputer is by using seven-segment displays. The
main functions to be performed for interfacing a keyboard are:

Sense a key actuation.

Debounce the key.
Decode the key.

Let us now elaborate on keyboard interfacing concepts. A keyboard is arranged
in rows and columns. Figure 12.17 shows a 2 x 2 keyboard interfaced to a typical
microcomputer. In Figure 12.17, the columns are normally at a HIGH level. A key
actuation is sensed by sending a LOW (closing the diode switch) to each row one at a time
via PA0 and PA1 of port A. The two columns can then be input via PB2 and PB3 of port B
to see whether any of the normally HIGH columns are pulled LOW by a key actuation. If
so, the rows can be checked individually to determine the row in which the key is down.
The row and column code for the key pressed can thus be found.

The next step is to debounce the key. Key bounce occurs when a key is pressed
or released-it bounces for a short time before making the contact. When this bounce
occurs, it may appear to the microcomputer that the same key has been actuated several
times instead of just once. This problem can be eliminated by reading the keyboard after
about 20 ms and then verifying to see if it is still down. If it is, the key actuation is
valid. The next step is to translate the row and column code into a more popular code
such as hexadecimal or ASCII. This can be accomplished easily by a program. Certain
characteristics associated with keyboard actuations must be considered while interfacing
to a microcomputer. Typically, these are two-key lockout and N-key rollover. Two-key
lockout ensures that only one key is pressed. An additional key depressed and released
does not generate any codes. The system is simple to implement and most often used.
However, it might slow down the typing because each key must be fully released before
the next one is pressed down. On the other hand, the N-key rollover will ignore all keys
pressed until only one remains down.

Now let us elaborate on the interfacing characteristics of typical displays. The
following functions are typically performed for displays:

Basics of Keyboard and Display Interface to a Microcomputer

Output the appropriate display code.
Output the code via right entry or left entry into the displays if there is more than one
display.

These functions can easily be realized by a microcomputer program. If there is
more than one display, the displays are typically arranged in rows. A row of four displays
is shown in Figure 12.18. In the figure, one has the option of outputting the display code
via right or left entry. If the code is entered via right entry, the code for the least significant
digit of the four-digit display should be output first, the next-digit code, and so on. The
program outputs to the displays are so fast that visually all four digits will appear on the
display simultaneously. If the displays are entered via left entry, then the most significant

Pentiurn Hardware and Interfacing

digit must be output first and the rest of the sequence is similar to the right entry.
Two techniques are typically used to interface a hexadecimal display to the

microcomputer: nonmultiplexed and multiplexed. In nonmultiplexed methods, each
hexadecimal display digit is interfaced to the microcomputer via an I/O port. Figure
12.19 illustrates this method. BCD-to- seven-segment conversion is done in software.
The microcomputer can be programmed to output to the two display digits in sequence.
However, the microcomputer executes the display instruction sequence so fast that the
displays appear to the human eye at the same time. Figure 12.20 illustrates the multiplexing
method of interfacing the two hexadecimal displays to the microcomputer. In the
multiplexing scheme, appropriate seven-segment code is sent to the desired displays on
seven lines common to all displays. However, the display to be illuminated is grounded.
Some displays, such as Texas Instrument's TIL 3 11, have an on-chip decoder. In this case,
the microcomputer is required to output 4 bits (decimal) to a display.

The keyboard and display interfacing concepts described here can be realized
by either software or hardware. To relieve the microprocessor of these functions,
microprocessor manufacturers have developed a number of keyboard/display controller
chips. These chips are typically initialized by the microprocessor. The keyboarddisplay
functions are then performed by the chip independent of the microprocessor. The amount of
keyboarddisplay functions performed by the controller chip varies from one manufacturer
to another. However, these functions are usually shared between the controller chip and the
microprocessor.

12.5.2 Hexadecimal Keyboard and Seven-Segment Display Interface to a

In this section, a Pentium-based microcomputer is designed to display a hexadecimal digit
entered via a keypad (1 6 keys). The microcomputer will contain one 82C55 I/O chip along
with EPROMs and SRAMs.

Figure 12.21 shows the hardware schematic. Port A, port B, and port C are
configured as follows:

43 1

Pentium-Based Microcomputer

port A is configured as an input port to receive the row-column code.
port B is configured as an output port to display the key(s) pressed.
port C is configured as an output port to output zeros to the rows to detect a key

I I

FIGURE 12.17 '@pica1 microcomputer-keyboard interface.

432 Microprocessor Theory and Applications with 68000/68020 and Pentium

Port A -
-

0

1

PortB :

Microcomputer 1: 7

entry --+El 0 0 0 t : ; g
FIGURE 12.18 Row of four displays.

i+{I 111 1 - 1 III 1-1 1
GND

GND
" '

Port A

Port B

Microcomputer

I

Note that to explain the program , line numbers are included with the comments.
In the program, a decode table for the keys (0 through F) are stored in a table

starting at an address $4000 (arbitrarily chosen) with a label named TABLE. The codes for
the hexadecimal numbers 0 through F are obtained by inspecting Figure 12.21.

actuation.
The Pentium is assumed to run at 100 MHz. Debouncing is provided to avoid

unwanted oscillation caused by the opening and closing of the key contacts. To ensure
stability for the input signal, a delay of 20 ms is used for debouncing the input.

The program begins by performing all necessary
initializations. Next, it makes sure that all the keys are opened (not pressed). A delay
loop of 20 ms is included for debouncing, and the following instruction sequence is used
(Section 11 3):

MOV DX,10
BACK: MOV CX,33333
DELAY: LOOP DELAY

DEC DX
JNE BACK

The Pentium assembly language program for interfacing the Pentium-based
microcomputer to a hexadecimal keyboard and a seven-segment display follows:

Pentiurn Hardware and Interfacing 433

For example, consider key F. When key F is pressed and if a LOW is output by
the program to bit 0 of port C, the top row and rightmost column of the keyboard will be
LOW. This will make the content of port A

:

Hex Displa

on-chip
decoder

-
Latch

AB FD
I

/

Bitnumber: 7 6 5 4 3 2 1 0

W U
7 7

Data : 0 1 1 1 0 1 1 1 =77, ,

- C Y 4 D Y P E Y” Y ,

PB4

7

-
I ~ L -

1 -
2-

PB3

Thus, a code of 77,, is obtained at Port A when the key F is pressed. Diodes are
connected at the 4 bits (bits 0-3) of port C. This is done to make sure that when a 0 is output
by the program to one of these bits (row of the keyboard), the diode switch will close and
will generate a LOW on that row.

Now, if a key is pressed on a particular row that is LOW, the column connected to
this key will also be LOW. This will enable the programmer to obtain the appropriate key
code for each key.
Next, the assembly language program will be explained by using the line numbers included
in the comment field.

Line #1 contains the code for key F, and the decode table is stored starting at
address 4000H.

Line #2 equates the label OPEN to the data FOH. This is because when all keys
are up (no keys are pushed) and 0’s are output to the rows in Figure 12.24, data input at
port A will be 11 110000 (FOH). Note that bits 0 -3 are connected to rows and bits 4-7 are
connected to columns of the keyboard.

Line 3 initializes DS to 0100H. This value is chosen arbitrarily.
Lines 4 through 6 configure port A as an input port, and ports B and C as output

PB3 connected to D
PB2 connected to c Pemtium-

Microco

FIGURE 12.21 Pentium-based microcomputer interface to keyboard and
display.

434 Microprocessor Theory and Applications with 68000/68020 and Pentium

ports. Line 7 initializes the seven-segment display by outputting 0. Lines 8 through 10
check to see if any key is pushed. This is done by outputting 0’s to all rows via port C, and
then inputting port A. If all keys are open, the data at port A will be FOH. Hence, the data at
port A is compared with FOH. If Z = 0, the program waits in a loop with label KEY-OPEN
until all keys are up. When all keys are open, Z = 1, and the program comes out of the
loop. Lines 11 and 12 debounce the keys by providing a delay of 20 ms.

Lines 13 through 15 detect a key closure. The program inputs port A, and compares
input data with FOH. If Z = 1, the program waits in a loop with the label KEY-CLOSE
until a key is closed. If Z = 0, the program leaves the loop. Lines 16 and 17 provide
debouncing if a key closure is detected.

It is necessary to determine exactly which key is pressed. To do this, a sequence of
row-control codes (XEH, XDH, XBH, and X7H, where X represents don’t care; the upper
4 bits are don’t cares) are output via port C . Lines 18 through 21 initialize AL to all l’s,

TABLE

BEGW:
PORTA
PORTB
PORTC
ZNTRL
3PEN

.486

.MODEL

.DATA
ORG
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
.CODE

EQU
EQU
EQU
EQU
EQU

SMALL,STDCALL

4000H
77H 2

OB7H 9

OD7H ,
OE7H 2

07BH 9

OBBH 9

ODBH ,
OEBH 9

7DH
OBDH 2

ODDH 2

OEDH 2

7EH 9

OBEH
ODEH 9

OEEH

60H 2

68H 2

70H 9

78H ,
OFOH 9

#I Code for F
Code for E
Code for D
Code for C
Code for B
Code for A
Code for 9
Code for 8

Code for 7
Code for 6
Code for 5
Code for 4
Code for 3

Code for 2
Code for 1
Code for 0

Hex keyboard input (row/column)
LED displayskontrols
Hex keyboard row controls
Control register
#2 Row/column codes if all keys

Pentiurn Hardware and Interfacing 435

START:

SCAN-KEY:

KEY-OPEN:

BACK:
DELAY 1 :

KEY-CLOSE:

BACK:
DELAY2:

NEXTRO W:

DECODE:

MOV
MOV
MOV
OUT
SUB
OUT
SUB
OUT
IN
CMP
JNZ
MOV
MOV
LOOP
DEC
JNZ
IN
CMP
JZ
MOV
MOV
LOOP
DEC
JNZ
MOV
CLC
RCL
MOV
OUT
IN
MOV
AND
CMP
JNZ
MOV
STC
JMP
MOV

BX,O 1 OOH
DS, BX
ALQOH
CNTRL,AL
AL, AL
PORTB,AL
AL,AL
PORTC,AL
AL, PORTA
AL, OPEN
KEY-OPEN
DX, 10
c x , 33333
DELAY 1
DX
BACK
AL, PORTA
AL, OPEN
KEY-CLOSE
DX, 10
cx, 33333
DELAY2
DX
BACK
AL, OFFH

AL, 1
CL, AL
PORTC, AL
AL,PORTA
DL, AL
AL, OFOH
AL, OFOH
DECODE
AL, CL

NEXT-RO W
SI, -1

are opened
#3 initialize DS

#4 Config ports A, B, C as ilolo

#5 Clear AL
#6 Enablelinitialize display
#7 Clear AL
Set row controls to zero
#8 Read PORTA
#9 Are all keys opened?
10 Repeat if closed

#11 Delay of 20 ms
12 key opened

13 read PORTA
14 Are all keys closed?
15 repeat if opened
#16 delay of 20 ms

#17 Debounce key closed

#18 SetALtoall 1’s
#19 clear carry
#20 Set up row mask
#21 Save row mask in CL
#22 Set a row to zero
#23 Read PORTA
#24 Save rowlcoln codes in DL
#25 Mask row code
#26 Is coln code affected?
#27 If yes, decode coln code
#28 Restore row mask to AL
#29 if no, set carry
#30 Check next row
#3 1 Initialize index register

436 Microprocessor Theory and Applications with 68000/68020 and Pentium

MOV
SEARCH: INC

CMP

LOOPNE
DONE: MOV

OUT
JMP

END BEGIN

CX, OOOFH 3

SI 9

DL,[4000H+SI] ;

2

SEARCH 2

AL,CL 9

3

PORTB,AL 3

SCAN-KEY ;

9

#32 Set up counter
#33 Increment index
#34 Index thru table of
codes
#35 Loop if not found
#36 get character and enable
display
#37 display key
#38 Return to scan another key
input

clear the carry to 0, and then rotate AL through the carry bit once tothe left to contain the
appropriate row control code. For example, after the first RCL in line 20, AL will contain
1 1 1 1 1 1 10 (FEH). Note that the low 4 bits are the row-control code for the first pass in the
loop labeled NEXT-ROW. Line 22 outputs this data to port C to make the top row of the
keyboard 0.

The rowxolumn code is input via port A to determine if the column code changes
corresponding to each different row code. Line 23 inputs port A into AL. The top row
of the keyboard will be 0 if C or D or E or F is pushed. Line 24 saves this input data in
D4.B.

Lines 25 through 27 make the low 4 bits to 0’s and retain the upper 4 bits. If the
column code is not FOH (changed), the input key is identified. The program then indexes
through a look-up table to determine the rowxolumn code saved in DL. If the code
is found, the corresponding index value, which equals the input key’s value (a single
hexadecimal digit), is displayed.

Suppose that key F is pushed. Line 24 will store the code 77H in DL. The instruction
CMP AL,OFO at line 26 will make Z = 0. Hence, after execution of JNZ DECODE at line
27, the program branches to DECODE (line 3 I). Lines 3 1 through 35 compare the key
code saved in DL with $77 (data for F) stored at address 4000H (label TABLE) in the
decode table. Since there is a match, the Z-flag will be 1 . The program comes out of the
loop withthe label SEARCH and outputs the character F to the seven-segment display at
line 37.

However, if no key is pushed in the top row, a 0 is output to the second row, and
the process continues. The program is written such that it will scan continuously for an
input key and update the display for each new input. The memory and I/O maps are chosen
arbitrarily.

Pentium Hardware and Interfacing

Questions and Problems

43 7

12.1

12.2

12.3

12.4

12.5

12.6

12.7

Why is the Pentium provided with multiple Vcc and ground pins?

What is the purpose of each of the following Pentium pins?
(a) BRDY# and A20M# (b) BEO#-BE7#

If there are no interrupts or DMA required in a Pentium-based application, identify
whether you would connect each of the following Pentium pins to HIGH or LOW
or keep it floating: NMI, INTR, HOLD, and HLDA.

Identify the signals along with the levels for indicating Pentium’s interrupt
acknowledge cycles.

Identify each of the following instructions as aligned or misaligned transfer for
64-bit memory with (DS) = 0100H. Briefly explain for each case how data
will be transferred via which data pins (D63- DO) by the Pentium using BE7# -
BEO#.
(a) MOV DH,[1001H]
(b) MOV CX,[0052H]
(c) MOV EDX,[0126H]

Assume that eight 27C256s are interfaced to a Pentium to obtain a 64-bit EPROM
system. Connect one 27C256 to the Pentium in such a system to obtain the
memory map for the real mode. Show only the connections for the pins shown in
Figure P12.6. Assume all unused address lines to be zeros, and also that A19 =

0 will select EPROMs. Note: use only the bus enable pin, BE7# among BE7# -
BEO# in the address decoding logic.

Assume that eight LH2256CKHs are interfaced to a Pentium to obtain a 64-bit
SRAM system. Connect one LH2256C/CH SRAM to the Pentium in such a
system to obtain a memory map forthe real mode. Show only the connections
for the pins shown in Figure P12.7. Assume that A19= 1 will select the SRAMs.
Also, assume that all unused address lines to be 1 ’s. Note: use only the bus enable
pin, BE7# among BE7# - BEO# in the address decoding logic.

I
&-A 14 I PD7

27C256
Pentium A3- 431

FIGURE P12.6

43 8

12.8

12.9

12.10

Microprocessor Theory and Applications with 68000/68020 and Pentium

Pentiurn

- O E 4 I
&-A14 “‘1 SRAM

-1 LH2256C/CH I
FIGURE P12.7

Pentium

Milo# kI
FIGURE P12.8
Interface one 82CSS to a Pentium to obtain the I/O map. Use Pentium A6 and
AS pins to select 82C55 I/O ports, and BE5# among BE7# - BEO# in the address
decoding logic. Show only the connections for the pins shown in Figure P12.8.
Assume all unused address lines to be zeros and that A7 = 1 will select the
82C55.

Assume a Pentiud82C55 microcomputer. Suppose that four switches are
connected at bits 0 through 3 of port A and an LED is connected at bit 4 of port B.
If the number of LOW switches is even, turn the port B LED ON; otherwise, turn
the port B LED OFF. Write a Pentium assembly language program to accomplish
this. Do not use any instructions involving the parity flag.

A Pentiud82CSS-based microcomputer is required to drive the LEDs
connected to bit 0 of ports A and B based on the input conditions set by switches
connected to bit 1 of ports A and B. The I/O conditions are as follows:

If the input at bit 1 of port A is HIGH and the input at bit 1 of port B is low,
the LED at port A will be ON and the LED at port B will be OFF.

If the input at bit 1 of port A is LOW and the input at bit 1 of port B is HIGH,
the LED at port A will be OFF and the LED at port B will be ON.
If the inputs at both ports A and B are the same (either both HIGH or both
LOW), both LEDs at ports A and B will be ON.

Write a Pentium assembly language program to accomplish this. Do not use any
instructions involving the parity flag. Assume all segment register are initalized.

Pentium Hardware and Interfacing 439

12.11

12.12

12.13

12.14

Write a Pentium assembly language program to turn an LED OFF connected to
bit 2 of port A of a Pentiud82C55 microcomputer and then turn it ON after a
delay of 20 seconds. Assume that the LED is ON initially.Assume 100-MHz
Pentium.

A Pentiud82C55-based microcomputer is required to test a NAND gate. Figure
P12.12 shows the YO hardware needed to test the NAND gate. The microcomputer
is to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and turn the LED ON connected to bit 3 of port A if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected to
bit 4 of port A. Write a Pentium assembly language program to accomplish this.

A Pentiud82C55 microcomputer is required to add two 3-bit numbers in AL and
BL and output the sum (not to exceed 9) to a common cathode seven-segment
display connected to portA as shown in Figure P12.13.Write a Pentium assembly
language program to accomplish this by using a look-up table. Do not use the
XLAT instruction.Initialize DS to 3000H.

A Pentiud82C55-based microcomputer is required to input a number from 0 to
9 from an ASCII keyboard interfaced to it and output to an EBCDIC printer.
Assume that the keyboard is connected to port A and the printer is connected to
port B. Write a Pentium assembly language to accomplish this. Use the XLAT
instruction. Use the Port addresses as follows: port A = 60H, port B = 68H,
Control Register = 78H.

r I + 5 v + 5 v

330 330 R

LEDZZ

Bit 3 of PorUr

Bit 4 of PorUr 7 Bit 4 of Po

FIGURE P12.12 (Assume that both LEDs are OFF initially.)

FIGURE. P12.13

440 Microprocessor Theory and Applications with 68000/68020 and Pentium

Volage
measurement,
VM l 2 - q g 7 E 11v

12v x

-D
Y

ToINTR of
Pentiud82C55
microcomputer

FIGURE P12.15

In Figure P 12.15, if V, > 12 V, turn the LED ON connected at bit 4 of port A.
On the other hand, if V, < 11 V, turn the LED OFF. Use ports, registers, and
memory locations of your choice. Draw a hardware block diagram showing the
microcomputer and the connections of the figure to its ports. Write a service
routine in Pentium assembly language at CS = lOOOH and, IP = 2000H. Assume
that all segment registers are already initialized. Also, write the main program at
CS = 3000H and IP = 0050H that will initialize SP to 2050H, initialize ports, and
wait for interrupts. Use assembler directive ORG CS:IP to initialize CS and IP.
Assume vector addresses after Pentium’s hardware reset.

12.15

12.16 Repeat Problem 12.14 using the Pentium NMI interrupt.

12.17 What are the factors to be considered for interfacing a hex keyboard to a
microcomputer?

12.18 Will the circuit shown in Figure P12.18 work? If so, determine the I/O map
using memory-mapped I/O in hex. If not, justify briefly, modify the circuit, and
determine the I/O map using memory-mapped I/O in hex. Use only the pins
and signals provided. Assume all don’t cares to be zeros. Note that the I/O map
includes the addresses for port A, port B, port C, and the control register. Do not
change any connection in Figure P 12.18. You may connect unconnected signals
to HIGH, GROUND, or to other signals as appropriate. You may use logic gates
if necessary. Assume no interrupts or DMA. Use pins and signals as needed.
Assume real mode.
Using the logical port addresses, write a Pentium assembly language to input a
switch connected at bit 7 of Port A, and output to an LED connected bit 7 of Port
B. Initialize DS to 0010H.

Pentium Hardware and Interfacing 44 1

-
-
- INTR

WIO# Pentium

D8- D15

W/R#

Pentium Pentium A A 4 j F h
Pentium A 3

Pentium A - 0 7 G 2A

I I

Pentium A10

Pentium A Port B

82C55 po*cr
FIGURE P12.18

This Page Intentionally Left Blank

APPENDIX

ANSWERS TO SELECTED
PROBLEMS

ChaDter 2

2.1

2.4 (a)
(4

(b)
2.6 (a)

2.11

ChaDter 3

3.5 (a)
(b)
(c)

(b)
3.8 (a)

3.9

3.11

3.12 (a)

Microprocessor: CPU in a single chip.

Single- chip Microcomputer : microprocessor, memory, and I/O in a single
chip.

sign = 0, carry = 0, zero = 0, overflow = 0.
sign = 1, carry = 0, zero = 0, overflow = 1.

20BE
(20BE) = 05, (20BF) = 02.

Scalar microprocessor can execute one instruction per cycle. Intel 80486 is a
scalar microprocessor.
Superscalar microprocessor can execute more than one instruction per cycle.
Intel Pentium is a superscalar microprocessor.

16,3 84
128 chips
4 bits

20
6 x 64 decoder

Maximum Directly Addressable Memory = 16 Megabytes;
14 unused address pins Available.

Memory Chip # 1 ECOOH - EDFFH
Memory Chip #2 F200H - F3FFH

ROM Map: OOOOH - 07FFH
RAM Map: 2000H - 27FFH

443

444 Microprocessor Theory and Applications with 68000/68020 and Pentium

3.21 Cache Tag Field = 1 -bit
Cache Index Field = 12-bits
Cache Data Field = 32-bits

3.23

ChaDter 4

4.2

Cache word size = 36 bits.

Using standard I/O, the microprocessor uses an output pin such as M/% pin
to distinguish between memory and I/O. Also, the microprocessor uses IN
and OUT instructions to perform I/O operation in standard I/O.
Using memory-mapped I/O, the microprocessor uses an unused address pin
to distinguish between memory and I/O. The ports are mapped as memory
locations. Memory-oriented instructions are used for performing I/O
operation.

Intel microprocessors can use either standard or memory-mapped I/O while
Motorola microprocessors can use only memory-mapped 110.

4.4 Memory-mapping provides the physical addresses for the microcomputer’s
main memory while memory-mapped I/O maps port addresses into memory
locations.

4.7 Interrupt address vector is the starting address of the service routine,

4.10 Internal interrupt is generated by exceptional conditions such as division by
zero where external interrupts are initiated via microprocessor’s interrupt pins.

ChaDter 5

5.2 Yes.

5.3 No.

5.7 Use the following identities:

a @ a = 0 and a @ 0 = aand (a @ b) @ a = b

5.8

5.9

Product = 0000 0000 0000 0 100,

Quotient = -8, Remainder = -1. The sign of the remainder is the same as the
sign of the dividend unless remainder is zero.

ChaDter 6

6.2 Supervisor mode.

6.7 TRAP occurs since odd address.

Appendix A: Answers to Selected Problems

6.9(c) Privileged

6.13 $0000 0000

6.14 MOVE. W D 1 ,DO
SWAP D1
ADD DO,D 1
SWAP D1

FINISH JMP FINISH

6.23 SWAP D1
MOVE D1,DO
EXT.L DO
SWAP D1
EXT. W D 1
DIVS D 1 ,DO

FINISH JMP FINISH

Chapter 7

-
7.2 AS = 0, FC2FClFCO = 101

- -
LDS = 1, UDS = 0

7.12 Memory map:
even 2764 $000000,$000002, ..., $003FFE
odd 2764 $000001,$000003, ..., $003FFF

68230 I/O map: PGCR = $004001,
PADDR = $004005 PBDDR = $004007,
PACR = $00400D PBCR = $00400F,
PADR = $00401 1 PBDR = $0040 13

8.2 (D1.W) = $4567

445

8.4 CMP.L (O,AO,D5.L*2),DO

446

8.9

Microprocessor Theory and Applications with 68000/68020 and Pentium

ADD.L D3,DO
ADDX.L D2,Dl

FINISH JMP FINISH

ChaDter 9

9.8 *32-bit device: Byte data will be transferred via 68020 D,, - D, pins.
*%bit device: Byte data will be transferred via D,, - D,, pins.

ChaDter 10

10.2 20642H

10.4 (a) Implied

10.6 (a) (EAX) = 00000080H

10.8 (AL) = 05H, unpacked BCD for 5.

10.14
.486
.MODEL FLAT,STDCALL
.CODE

ADD EDX,EBX
ADC EAX,ECX
HLT

PROG:

END PROG

10.21 (AX) = 1234H

10.28
.486
.MODEL SMALL,STDCALL
.CODE

MOV AL,CH
CBW
IDIV CL
MOV CL,AH
MOV CH,AL
HLT

PROG:

END PROG

Appendix A: Answers to Selected Problems 447

10.29
.486
.MODEL SMALL,STDCALL
.CODE

XCHG BL,BH
MOV BH,O
IDIV BX
XCHG DX,AX
HLT

PROG:

END PROG

ChaDter 11

11.3

PROG:

START

DIVIDE:

END

11.6

.486

.MODEL

.CODE

MOV
CLC
RCR
RCR
LOOP
MOV
CLC
RCR
RCR
LOOP
HLT
PROG

SMALL,STDCALL

c x , 4

DX, 1
AX, 1
START
c x , 3

DX, 1
Ax, 1
DIVIDE

Assuming segment registers are already initialized
.486
.MODEL SMALL,STDCALL
.CODE

CLD
MOV SI, OOlOH
MOV DI, OlOOH
MOV cx, 1 00
ES: REPMOVSW
HLT

PROG:

END PROG

448 Microprocessor Theory and Applications with 68000/68020 and Pentium

11.7

PROG:

11.8

START:

END

PROG:

END

.486

.MODEL SMALL,STDCALL

.CODE

MOV BX,0020H
MOV DS,BX
MOV BX, lOOOH
MOV ES,BX
MOV AX,0500H
MOV ss,Ax
MOV SP,2000H
MOV CX, 15
MOV SI,5000H
MOV DI,6000H
CLD
REPNE CMPSB
JZ START
MOV AX,OOOOH
PUSH AX
HLT
MOV AX,OOEEH
PUSH A x
HLT
PROG

.486

.MODEL SMALL,STDCALL

.CODE

MOV SI,4000H
MOV DI,5000H
MOV CX,100
CLD
REP MOVSD
HLT
PROG

Appendix A: Answers to Selected Problems

ChaDter 12

12.9
.486
.MODEL SMALL,STDCALL
.CODE

PROG:

BACK:

START:

LEDON:

END

12.12

MOV
MOV
OUT
MOV
IN
RCR
JC
INC
DEC
JNZ
RCR
JNC
MOV
OUT
HLT
MOV
OUT
HLT
PROG

CL,4
AL,90H
CNTRL,AL
BL,O
AL,PORTA
AL, 1
START
BL
CL
BACK
BL, 1
LEDON
AL,O
PORTB,AL

AL, 1 OH
PORTB.AL

.486

.MODEL SMALL,STDCALL

.CODE
PROG:

MOV
OUT
MOV
MOV
OUT
NOP
IN
RCR
JC
MOV
OUT
NOP
IN
RCR
JNC
MOV

AL,89H
CNTRL,AL
CL,3
AL,OFFH
PORTB,AL

AL,PORTC
AL,CL
LED
AL,OFEH
PORTB,AL

AL,PORTC
AL,CL
LED
AL,OFDH

449

450 Microprocessor Theory and Applications with 68000/68020 and Pentium

OUT
NOP
IN
RCR
JNC
MOV
OUT
NOP
IN
RCR
JNC
MOV
OUT
HLT

LED: MOV
OUT
HLT

END PROG

PORTB,AL

AL,PORTC
AL,CL
LED
AL,OFCH
PORTB,AL

AL,PORTC
AL,CL
LED
AL, 1 OH
PORTA, AL

AL,08H
PORTA.AL

APPENDIX

GLOSSARY
Absolute Addressing:
instruction.

This addressing mode specifies the address of data with the

Accumulator:
available with 8-bit microprocessors.

Register used for storing the result after most ALU operations;

Address: A unique identification number (or locator) for source or destination of
data. An address specifies the register or memory location of an operand involved in the
instruction.

Addressing Mode:
address of source and destination operands in an instruction.

The manner in which a microprocessor determines the effective

Address Register: A register used to store the address (memory location) of data.

Address Space: The number of storage location in a microcomputer’s memory that
can be directly addressed by the microprocessor. The addressing range is determined by
the number of address pins provided with the microprocessor chip.

American Standard Code for Information Interchange (ASCII):
commonly used with microprocessors for representing alphanumeric codes.

Analog-to-Digital (AD) Converier:
equivalent.

An 8-bit code

Transforms an analog voltage into its digital

AND gate: The output is 1, if all inputs are 1 ; otherwise the output is 0.

Arithmetic and Logic Unit (ALU):
logic operations on two n-bit numbers.

A digital circuit which performs arithmetic and

ASIC:
Normally reduces the total manufacturing cost of a product by reducing chip count.

Application Specific IC. Chips designed for a specific, limited application.

Assembler:
language program.

A program that translates an assembly language program into a machine

45 1

452

Assembly Language:
semi-English-language statement.

Microprocessor Theory and Applications with 68000/68020 and Pentium

A type of microprocessor programming language that uses a

Asynchronous Operation:
is initiated upon completion of the previous step.

The execution of a sequence of steps such that each step

Asynchronous Serial Data Transmission:
to be synchronized with the receiving device.

The transmitting device does not need

Autodecrement Addressing Mode: The contents of the specified microprocessor
register are first decremented by n (1 for byte, 2 for 16-bit, and 4 for 32-bit) and then the
resulting value is used as the address of the operand.

Autoincrement Addressing Mode: The contents of a specified microprocessor
register are used as the address of the operand first and then the register contents are
automatically incremented by n (1 for byte, 2 for 16-bit, and 4 for 32-bit).

Barrel Shifter: A specially configured shift register that is normally included in
32-bit microprocessors for cycle rotation. That is , the barrel shifter shifts data in one
direction.

Base address:
to absolute (machine) addresses.

An address that is used to convert all relative addresses in a program

Baud Rate: Rate of data transmission in bits per second.

Binary-Coded Decimal (BCD):
9, by their corresponding 4-bit binary number.

The representation of 10 decimal digits, 0 through

Bit:
possible states (one or zero, on or off, true or false).

An abbreviation for a binary digit. A unit of information equal to one of two

Block Transfer DMA: A peripheral device requests the DMA transfer via the DMA
request line, which is connected directly or through a DMA controller chip to the
microprocessor. The DMA controller chip completes the DMA transfer and transfers the
control of the bus to the microprocessor.

Branch: The branch instruction allows the computer to skip or jump out of program
sequence to a designated instruction either unconditionally or conditionally (based on
conditions such as carry or sign).

Breakpoint: Allows the user to execute the section of a program until one of the
breakpoint conditions is met. It is then halted. The designer may then single step or
examine memory and registers. Typically breakpoint conditions are program counter
address or data references. Breakpoints are used in debugging assembly language
programs.

Appendix B: Glossary 453

Buffer: A temporary memory storage device deigned to compensate for the different
data rates between a transmitting device and a receiving device (for example, between a
CPU and a peripheral). Current amplifiers are also referred to as buffers.

Bus: The typical
microcomputer interface includes separate buses for address, data, control, and power
functions.

A collection of wires that interconnects computer modules.

Bus Arbitration: Bus operation protocols (rules) that guarantee conflict-free access
to a bus. Arbitration is the process of selecting one respondent from a collection of several
candidates that concurrently request service.

Bus Cycle:
operations.

The period of time in which a microprocessor carries out read or write

Cache Memory: A high speed, directly accessible, relatively small, semiconductor
readwrite memory block used to store datdinstructions that the microcomputer may need
in the immediate future. Increases speed by reducing the number of external memory reads
required by the processor. Typical 32 and 64-bit microprocessors are normally provided
with on-chip cache memory.

CD (Compact Disc) Memory:
information.

Optical memory. Uses laser and stores audio

Central Processing Unit (CPU):
register section, and control unit. CPU in a single chip is called microprocessor.

The brains of a computer containing the ALU,

Chip: An Integrated Circuit (IC) package containing digital circuits.

CISC: Complex Instruction Set Computer. The Control unit is designed using
microprogramming. Contains a large instruction set. Difficult to pipeline compared to
RISC.

Clock:
a microcomputer system. Analogous to heart beats of a human being.

Timing signals providing synchronization among the various components in

CMOS:
compared to TTL.

Complementary MOS. Dissipates low power, offers high density and speed

Combinational Circuit:
memory.

Output is provided upon application of inputs; contains no

Compiler:
programming language into machine language that is understandable to the processor.

A program which translates the source code written in a high-level

Condition Code Register:
overflow based on ALU operations.

Contains information such as carry, sign, zero, and

454

Control Unit:
(fetched) from the main memory into the Instruction Register.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Part of the CPU; its purpose is to translate or decode instructions read

Coprocessor: A companion microprocessor that performs specific functions such as
floating-point operations independently from the microprocessor to speed up overall
operations.

Cycle Stealing DMA: The DMA controller transfers a byte of data between the
microcomputer's memory and a peripheral device such as the disk by stealing a clock cycle
of microprocessor.

Data: Basic elements of information represented in binary form (that is, digits
consisting of bits) that can be processed or produced by a microcomputer. Data represents
any group of operands made up of numbers, letters, or symbols denoting any condition,
value, or state. Typical microcomputer operand sizes include: a word, which typically
contains 2 bytes or 16-bits; a long word, which contains 4 bytes or 32 bits; a quad word,
which contains 8 bytes or 64 bits.

Data Register:
and from a peripheral device.

A register used to temporarily hold operational data being sent to

Debugger: A program that executes and debugs the object program generated by the
assembler or compiler. The debugger provides a single stepping, breakpoints, and program
tracing.

Decoder: A chip, when enabled, selects one of 2" output lines based on n inputs.

Digital to Analog (D/A) Converter: Converts binary number to analog signal.

Diode: Two terminal electronic switch.

Direct Memory Access (DMA): A type of inputJoutput technique in which data can
be transferred between the microcomputer memory and external devices without the
microprocessor's involvement.

Directly Addressable Memory: The memory address space in which the
microprocessor can directly execute programs. The maximum directly addressable memory
is determined by the number of the microprocessor's address pins.

DRAM: See Dynamic RAM.

Dynamic RAM:
since capacitors can hold charges for a few
circuitry.

Stores data as charges in capacitors and therefore, must be refreshed
milliseconds. Hence, requires refresh

EAROM (Electrically Alterable Read-only Memory): Same as EEPROM or E2
PROM. Can be programmed one line at a time without removing the memory from its
sockets. This memory is also called read-mostly memory since it has much slower write

Appendix B: Glossary

times than read times.

455

Editor:
or high-level languages.

A program that produces an error-free source program, written in assembly

EEPROM or Ez PROM: Same as EAROM (see EAROM).

Effective Address:
by the addressing mode.

The final address used to carry out an instruction. Determined

Emulator:
is, mimic) another microcomputer system.

A hardware device that allows a microcomputer system to emulate (that

Encoder:
and n outputs.

Performs reverse operation of a decoder. Contains a maximum of 2" inputs

EPROM (Erasable Programmable Read-only Memory): Can be programmed
and erased all programs in an EPROM chip using ultraviolet light. The chip must be
removed from the microcomputer system for programming.

Exception Processing: Includes the microprocessor's processing states associated
with interrupts, trap instructions, tracing, and other exceptional conditions, whether they
are initiated internally or externally.

Exclusive-OR: The output is 0, if inputs are same; otherwise; the output is 1.

Exclusive-NOR: The output is 1, if inputs are same; otherwise, the output is 0.

Extended Binary-Coded Decimal Interchange Code (EBCDIC): An 8-bit code
commonly used with microprocessors for representing alphanumeric codes. Normally used
by IBM.

Firmware:
from hardwired control (purely hardware method).

Microprogram is sometimes referred to as firmware to distinguish it

Flag(s):
carry, zero, and overflow.

An indicator, often a single bit, to indicate some conditions such as trace,

Flash Memory:
Used in cellular phones and digital cameras.

Utilizes a combination of EPROM and EEPROM technologies.

Flip-Flop: One-bit memory.

FPGA:
individual logic blocks along with all interconnections.

Field Programmable Gate Arrays. This chip contains several smaller

Gate: Digital circuits which perform logic operations.

456 Microprocessor Theory and Applications with 68000/68020 and Pentium

Handshaking: Data transfer via exchange of control signals between the
microprocessor and an external device.

Hardware:
system.

The physical electronic circuits (chips) that make up the microcomputer

Hardwired Control: Used for designing the control unit using all hardware.

HCMOS: High speed CMOS. Provides high density and consumes low power.

Hexadecimal Number System: Base-16 number system.

High-Level Language: A type of programming language that uses a more
understandable human-oriented language such as C.

HMOS:
provides increased density and speed in VLSI circuits.

High-density MOS reduces the channel length of the NMOS transistor and

Immediate Address:
itself.

An address that is used as an operand by the instruction

Implied Address:
instruction.

An address is not specified, but is contained implicitly in the

In-Circuit Emulation: The most powerhl hardware debugging technique;
especially valuable when hardware and software are being debugged simultaneously.

Index: A number (typically 8-bit signed or 16-bit unsigned) is used to identify a particular
element in an array (string). The index value typically contained in a register is utilized by
the indexed addressing mode.

Indexed Addressing:
sum of the address and the contents of the index register. Used to access arrays.

The effective address of the instruction is determined by the

Index Register: A register used to hold a value used in indexing data, such as when
a value is used in indexed addressing to increment a base address contained within an
instruction.

Indirect Address: A register holding a memory address to be accessed.

Instruction:
contains instructions and data.

Causes the microprocessor to carry out an operation on data. A program

Instruction Cycle:
out while executing an instruction.

The sequence of operations that a microprocessor has to carry

Instruction Register (IR):
a 32-bit microprocessor.

A register storing instructions; typically 32 bits long for

Appendix B: Glossary 457

Instruction Set: Lists all the instructions that the microcomputer can execute.

Interleaved DMA:
bus when the microprocessor is not using it.

Using this technique, the DMA controller takes over the system

Internal Interrupt:
and division by zero.

Activated internally by exceptional conditions such as overflow

Interpreter:
response to each high-level statement in order to carry out the function.

A program that executes a set of machine language instructions in

Interrupt I/O: An external device can force the microcomputer system to stop
executing the current program temporarily so that it can execute another program known
as the interrupt service routine.

Interrupts: A temporary break in a sequence of a program, initiated externally or
internally, causing control to jump to a routine, which performs some action while the
program is stopped.

I/O (Input/Output):
data between the microcomputer system and an external device.

Describes that portion of a microcomputer system that exchanges

I/O Port:
microcomputer to external peripherals.

A register that contains control logic and data storage used to connect a

Inverting Buffer: Perfoms NOT operation. Current amplifier.

Keyboard:
(rows x columns).

Has a number of push button-type switches configured in a matrix form

Keybounce:
small period of time (about 10-20 ms) before settling down.

When a mechanical switch opens or closes, it bounces (vibrates) for a

Large-Scale Integration (LSI): An LSI chip contains 100 to 1000 gates.

LED:
2 . 4 ~ drop across it.

Light Emitting Diode. Typically, a current of 10 ma to 20 ma flows at 1 . 7 ~ to

Logic Analyzer:
gathers data on the fly and displays it.

A hardware development aid for microprocessor-based design;

Logical Address Space:
range.

All storage locations with a programmer’s addressing

Loops: A programming control structure where a sequence of microcomputer
instructions are executed repeatedly (looped) until a terminating condition (result) is
satisfied.

45 8

Machine Code:
understands.

Microprocessor Theory and Applications with 68000/68020 and Pentium

A binary code (composed of 1 ’s and 0’s) that a microcomputer

Machine Language:
binary or hexadecimal numbers.

A type of microprocessor programming language that uses

Macroinstruction:
complete microprogram. Example includes assembly language instructions.

Commonly known as an instruction; initiates execution of a

Macroprogram: The assembly language program.

Mask: A pattern of bits used to specify (or mask) which bit parts of another bit
pattern are to be operated on and which bits are to be ignored or “masked” out. Uses
logical AND operation.

Mask ROM:
manufacturing process; its contents cannot be changed by user.

Programmed by a masking operation performed on the chip during the

Maskable Interrupt:
instructions.

Can be enabled or disabled by executing typically the interrupt

Memory: Any storage device which can accept, retain, and read back data.

Memory Access Time:
memory.

Average time taken to read a unit of information from the

Memory Address Register (MAR): Stores the address of the data.

Memory Cycle Time: Average time lapse between two successive read operations.

Memory Management Unit (MMU):
and protection functions.

Hardware that performs address translation

Memory Map:
addressable main memory.

A representation of the physical locations within a microcomputer’s

Memory-Mapped I/O: I/O ports are mapped as memory locations, with every
connected device treated as if it were a memory location with a specific address.
Manipulation of I/O data occurs in “interface registers” (as opposed to memory locations);
hence there are no input (read) or output (write) instructions used in memory-mapped I/O.

Microcode: A set of instructions called “microinstructions” usually stored in a ROM
in the control unit of a microprocessor to translate instructions ofa higher-level programming
language such as assembly language programming.

Microcomputer:
unit.

Consists of a microprocessor, a memory unit, and an input/output

Appendix B: Glossary 459

Microcontroller:
Digital) and D/A (Digital to Analog) converters in the same chip.

Typically includes a microcomputer, timer, A/D (Analog to

Microinstruction: Most microprocessors have an internal memory called control
memory. This memory is used to store a number of codes called microinstructions. These
microinstructions are combined to design the instruction set of the microprocessor.

Microprocessor:
microcomputer.

CPU on a single chip. The Central Processing Unit (CPU) of a

Microprocessor Development System:
hardware and software for microcomputer-based system.

A tool for designing and debugging both

Microprocessor-Halt DMA: Data transferisperformedbetween the microcomputer’s
memory and a peripheral device either by completely stopping the microprocessor or by a
technique called cycle stealing.

Microprogramming: The microprocessor can use microprogramming to design the
instruction set. Each instruction in the Instruction register initiates execution of a
microprogram stored typically in ROM inside the control unit to perform the required
operation.

Monitor: Consists of a number of subroutines grouped together to provide
“intelligence” to a microcomputer system. This intelligence gives the microcomputer
system the capabilities for debugging a user program, system design, and displays.

Multiplexer:
on the output.

A hardware device which selects one of n input lines and produces it

Multiprocessing: The process of executing two or more programs in parallel,
handled by multiple processors all under common control. Typically each processor will
be assigned specific processing tasks.

Multitasking: Operating system software that permits more than one program to
run on a single microprocessor. Even though each program is given a small time slice in
which to execute, the user has the impression that all tasks (different programs) are
executing at the same time.

Multiuser:
access the system on a time-sharing basis.

Describes a computer operating system that permits a number of users to

Nanomemory : Two-level ROM used in designing the control unit.

Nested Subroutine:
subroutine calls another subroutine.

A commonly used programming technique in which one

Nibble: A 4-bit word.

460

Non-inverting Buffer:

Microprocessor Theory and Applications with 68000/68020 and Pentium

Input is same as output. Current amplifier.

Nonmaskable Interrupt: Occurrence of this type of interrupt cannot be ignored by
microcomputer and even though interrupt capability of the microprocessor is disabled. Its
effect cannot be disabled by instruction.

Non-Multiplexed: A non-multiplexed microprocessor pin that assigns a unique
function as opposed to a multiplexed microprocessor pin defining two functions on time-
shared basis.

Object Code:
by a compiler, assembler, or interpreter.

The binary (machine) code into which a source program is translated

Ones Complement: Obtained by changing 1 ’s to ‘ O’s, and 0’s to 1 ’s of a binary number.

One-Pass Assembler: This assembler goes through the assembly language program
once and translates the assembly language program into a machine language program.
This assembler has the problem of defining forward references. See Two-Pass Assembler.

Op Code (Operation Code):
performed.

Part of an instruction defining the operation to be

Operand: A datum or information item involved in an operation from which the
result is obtained as a consequence of defined addressing modes. Various operand types
contain information, such as source address, destination address, or immediate data.

Operating System:
management. Typical resources include microprocessors, disks, and printers.

Consists of a number of program modules to provide resource

Page:
of these blocks is called a page and contains several addresses.

Some microprocessors, divide the memory locations into equal blocks. Each

Parallel Operation:
operation.

Any operation carried out simultaneously with a related

Parallel Transmission: Each bit of binary data is transmitted over a separate wire.

Parity: The number of 1’s in a word is odd for odd parity and even for even parity.

Peripheral:
through communication channels.
printers, and modems.

An I/O device capable of being operated under the control of a CPU
Examples include disk drives, keyboards, CRT’s,

Personal Computer:
individual for word processing and Internet applications.

Low-cost, affordable microcomputer normally used by an

Physical Address Space:
microprocessor.

Address space is defined by the address pins of the

Appendix B: Glossary 46 1

Pipeline: A technique that allows a microcomputer processing operation to be
broken down into several steps (dictated by the number of pipeline levels or stages) so that
the individual step outputs can be handled by the microcomputer in parallel. Often used to
fetch the processor’s next instruction while executing the current instruction, which
considerably speeds up the overall operation of the microcomputer. Overlaps instruction
fetch with execution.

Pointer:
the address of (or points to) a required item of data or subroutine.

A storage location (usually a register within a microprocessor) that contains

Polled Interrupt:
multiple interrupt system.

A software approach for determining the source of interrupt in a

POP Operation: Reading from the top or bottom of stack.

Port:
devices.

A register through which the microcomputers communicate with peripheral

Primary or Main Memory: Storage that is considered as part of the microcomputer.
The microcomputer can directly execute all instructions in the main memory. The maximum
size of the main memory is defined by the number of address pins in the microprocessor.

Privileged Instructions:
microprocessor in the supervisor (operating system) mode.

An instruction which can only be executed by the

Processor Memory:
when a computation is in progress.

A set of microprocessor registers for holding temporary results

Pfogram: A self-contained sequence of computer software instructions (source
code) that, when converted into machine code, directs the computer to perform specific
operations for the purpose of accomplishing some processing task. Contains instructions
and data.

Program Counter (PC):
instruction to be executed in a program.

A register that normally contains the address of the next

Programmed I/O:
transfers between the microcomputer system and external devices.

The microprocessor executes a program to perform all data

PROM (Programmable Read-only Memory):
using proper equipment. Once programmed, its contents cannot be altered.

Can be programmed by the user by

Protocol: A list of data transmission rules or procedures that encompass the timing,
control, formatting, and data representations by which two devices are to communicate.
Also known as hardware “handshaking”, which is used to permit asynchronous
communication.

462

PUSH Operation:

Microprocessor Theory and Applications with 68000/68020 and Pentium

Writing to the top or bottom of stack.

Random Access Memory (RAM):
are volatile in nature (in other words, information is lost when power is removed).

Areadwrite memory. RAMS (static or dynamic)

Read-Only-Memory (ROM): A memory in which any addressable operand can be
read from, but not written to, after initial programming. ROM storage is nonvolatile
(information is not lost after removal of power).

Reduced Instruction Set Computer (RISC): A simple instruction set is included.
The RISC architecture maximizes speed by reducing clock cycles per instruction. The
control unit is designed using hardwired control. Easier to implement pipelining.

Register: A high-speed memory usually constructed from flip-flops that are directly
accessible to the microprocessor. It can contain either data or a specific location in memory
that stores word(s) used during arithmetic, logic, and transfer operations.

Register Indirect: Uses a register which contains the address of data.

Relative Address:
in a routine or program.

An address used to designate the position of a memory location

RISC: See Reduced Instruction Set Computer.

Routine: A group of instructions for carrying out a specific processing operation.
Usually refers to part of a larger program. A routine and subroutine have essentially the
same meaning, but a subroutine could be interpreted as a self-contained routine nested
within a routine or program.

Scalar Microprocessor:
clock cycle per instruction for most instructions. The 80486 is a scalar microprocessor.

Provided with one pipeline. Allows execution rate of one

Scaling:
of typical 32- and 64-bit microprocessors.

Multiplying an index register by 1,2,4 or 8. Used by the addressing modes

Schmitt Trigger: An analog circuit that provides high noise immunity.

SDRAM:
control signals and address inputs are sampled by the SDRAM by a common clock.

Synchronous DRAM. This chip contains several DRAMS internally. The

Secondary Memory Storage: An auxiliary data storage device that supplements
the main (primary) memory of a microcomputer. It is used to hold programs and data that
would otherwise exceed the capacity of the main memory. Although it has a much slower
access time, secondary storage is less expensive. Examples include floppy and hard
disks.

Sequential Circuit: Combinational circuit with memory.

Appendix B: Glossary 463

Serial Transmission:
by bit.

Only one line is used to transmit the complete binary data bit

Server: Large computer performing actual work on the Internet.

Seven-Segment LED:
numbers.

Contains an LED in each of the seven segments.Can display

Single-Chip Microcomputer:
on a chip.

Microcomputer (CPU, memory, and input/output)

Single-chip Microprocessor: Microcomputer CPU (microprocessor) on a chip.

Single Step:
examine contents of memory locations and registers.

Allows the user to execute a program one instruction at a time and

Software: Programs in a microcomputer.

Source Code: The assembly language program written by a programmer using
assembly language instructions. This code must be translated to the object (machine) code
by the assembler before it can be executed by the microcomputer.

SRAM: See Static RAM.

Stack: An area of readwrite memory typically used by a microcomputer during
subroutine calls or occurrence of an interrupt.The microcomputer saves in the stack the
contents of the program counter before executing the subroutine or program counter
contents and other status information before executing the interrupt service routine. Thus,
the microcomputer can return to the main program after execution of the subroutine or the
interrupt service routine. The stack is a last idfirst out (LIFO) readwrite memory (RAM)
that can also be manipulated by the programmer using PUSH and POP instructions.

Stack Pointer: A register used to address the stack.

Standard I/O: Utilizes a control pin on the microprocessor chip typically called the
M / E pin, in order to distinguish between inputloutput and memory; IN and OUT
instructions are used for inputloutput operations.

Static RAM:
refreshed. Information is lost upon power failure unless backed up by battery.

Also known as SRAM. Stores data in flip-flops; does not need to be

Status Register:
processor.

A register which contains information concerning the flags in a

Subroutine: A program carrying out a particular function and which can be called
by another program known as the main program. A subroutine needs to be placed only
once in memory and can be called by the main program as many times as the programmer
wants.

464

Superscalar Microprocessor:
more than one instruction per clock cycle. The Pentium is a superscalar microprocessor.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Provided with more than one pipeline and executes

Supervisor State: When the microprocessor processing operations are conducted at
a higher privilege level, it is usually in the supervisor state. An operating system typically
executes in the supervisor state to protect the integrity of “basic” system operations from
user influences.

Synchronous Operation:
clock period.

Operations that occur at intervals directly related to a

Synchronous Sequential Circuit:
and the previous states stored in flip-flops.

The present outputs depend on the present inputs

Synchronous Serial Data Transmission:
a clock signal.

Data is transmitted or received based on

Tracing:
(debugging) of the program’s execution.

Allows single stepping. A dynamic diagnostic technique permits analysis

Transistor: Electronic switch; performs NOT; current amplifier.

Tristate Buffer: Has three output states: logic 0, 1, and a high-impedance state.
This chip is typically enabled by a control signal to provide logic 0 or 1 outputs. This type
of buffer can also be disabled by the control signal to place it in a high-impedance state.

Two’s Complement:
replacing each 0 with a 1 and each 1 with a 0 and adding one to the resulting number.

The two’s complement of a binary number is obtained by

Two-Pass Assembler: This assembler goes through the assembly language program
twice. In the first pass, the assembler assigns binary addresses to labels. In the second pass,
the assembly program is translated to the machine language. No problem with forward
branching.

User State: Typical microprocessor operations processing conducted at the user
level. The user state is usually at lower privilege level than the supervisor state. In the user
mode, the microprocessor can execute a subset of its instruction set, and allows protection
of basic system resources by providing use of the operating system in the supervisor state.
This is very useful in multiuser/multitasking systems.

Vectored Interrupts: A device identification technique in which the highest priority
device with a pending interrupt request forces program execution to branch to an interrupt
routine to handle exception processing for the device.

Very Large Scale Integration (VLSI): a VLSI chip contains more than 1000 gates.
More commonly, a VLSI chip is identified by the number of transistors rather than the gate
count.

Appendix B: Glossary 465

Virtual Memory: An operating system technique that allows programs or data to
exceed the physical size of the main, internal, directly accessible memory of the
microcomputer. Program or data segmentdpages are swapped from external disk storage
as needed. The swapping is invisible (transparent) to the programmer. Therefore, the
programmer does need not to be concerned with the actual physical size of internal memory
while writing the code.

Word: The bit size of a microprocessor refers to the number of bits that can be
processed simultaneously by the basic arithmetic and logic circuits of the microprocessor.
A number of bits taken as a group in this manner is called a word.

This Page Intentionally Left Blank

APPENDIX

C
MOTOROLA 68000 AND

SUPPORT CHIPS

@ MOTOROLA

Advance Information 1
lCBlT MICROPROCESSING UNIT

PROGRAMMING MODEL

MC6800014
(4 MHZ)

MC68000I.6
(6 MHz)

MC68000110
(10 MHZ)

I '

IHIGH-DENSIN, N-CHANNEL.
SILICON-GATE DEPLEXQN LOAOI

I)&BIT
MICROPROCESSOR

64-pln dual in-line package

DZ 3

E S 7
L T S
a i E 9

~

OTACK I0
BG 11

m I2

vcc
CLK
GND

HALT
R Z T

YHA
E

VPA

- -

-
m
m -
lPLl
IPLO

FC2
FCI

FCO
A1
A2

A3
A1

-

467

468 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

66-Terminal Chip Carrier

68-Pin Quad Pack

-013
-0ia
-015
-GNO
-GND
-423 - A22
- A 2 1
-"CC
- 4i0 - A 1 9

-p18
- A 1 7
-416

- A i A
- A 1 3

- A 1 5

68-pin grid array

f o 0 0 0 0 0 0 0 0 0
H C . I C I K O A 1 A1 A4 A6 A 1 A9 H C .

nfnn IRO fct NC. 12 A5

0 0 0
0 0

A 1 3 A 1 1 A16

A 1 5 A17

I' 0 -0 Q
I lPTf IRl

0 0
CLK GHO

0 0 0 0
0 0 0 0
00 03 06 09

02 04 05 07

0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

A I I A19

Y c c A 2 0

GNO A l l

011 L13 A 2 2

OII 014 015

01 010 011

I 1 1 4 5 6 7 8 9 10

Appendix C: Motorola 68000 and Support Chips 469

MO7WROLA
~~

Advance Information

(HIGH-DENSITY N-CHANNEL
SILICON-GATE1 MC68T30 PARALLEL INTERFACElTlMER

MC68230l.8
MC68230110

The MC68230 Parallel Inlerlacel Tlmer provfdes versatile double bul
Iejed parallel interlaces and an operating sysiem oriented tmr to
MC68000 systems The patallel interfaces operate in unidirectional or
bidirectional modes either 8 or 16 bits wide In the unidirectional
modes an associated data direction regislei determines whether the
port pins are inputs or outpiits In the bidirectional modes the data
direction registers are ignored and Ihe direction 1s determined
dynamically by the slate 01 lour handshake Dins These programmable
handshake pins provide an merlace flexible enough lor connection to a
wide vartety 01 low medium or high speed peripherals or other com
puler systems The PI/T ports allow use 01 vectored or autovectored In-
ierrupts and also provtde a DMA Requesl pin lor connectaon to the
MC68dtc) Dlrect Memory Access Controller or a similar Circuit The PI11
llmei contains a 24 bit wide counter and a 5 bii prescaler The timer
may be clocked by the Svslem clock IPIIT CLK pin1 or by an external
clock (TIN pint and a 5 bit prescaler can be used It can generate
per#od<c mierrupis a square wave or a single mterrupi alter a pro
gramrned nme pertod Also i t can be used lor elapsed time measure
rnent or as a device wdtchdog

MC68000 Bus Compatible

Port Modes Include
811 110
Unidireclonal 8-841 and 16-811
Bidireciional 8 841 and 16-811

Selectable Handshaking Options

24-Bd Programmable Timer
Soltware Programmable Timer Modes
Contains Interrupt Vector Generation Logic

Separate Port and Timer lnterrupl Service Requests
Registers are ReadIWrite and Directly Addressable

Registers are Addressed lor MOVEP lMove Peripheral1 and DMAC
Compatibilitv

PARALLEL INTERFACElTlMER

L SUFFIX
CtRAMlC PACKAGE

P SUFFIX CASE 740

PLASTIC PACKAGE

AVAILARLE 2082

PIN ASSIGNMENT

470 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

CharanHmics

@ MOTOROLA

Symbol Valw Unit

PERIPHERAL INTERFACE ADAPTER (PIA)

The MC6821 Peripheral Inlertace Adapter provides the universal
means of interfacing peripheral equipment 10 the M680C lam!ly of
microprocessors This device 8s capable of interlacing the MPU to
peripherals through two 8 bit UldrreCtiOnal peripheral data buses and
lour control hnes No ealernal logic IS requfred lor mrertacmg to most
peripheral devices

The lunctional configuration 01 the PIA is programmed by thc MPU
during syslem inii~alizar!or. Each ot the peripheral data lines can be pro
grammed :o act as an mput or output and each of the tour con-
trol'inlerrupt lines may be p:ogrammed tor one of several control
modes This allows a high degree of flexibility In the overall Operation of
the interface
0 8 8tt Bidirectional Data Bus tor Cornmuntcation with the

MPU
0 Two Bidirectional 8 Bit auses tor Interlace 10 Peripherals

0 Two Programmable Control Registers
0 Two Programmable Data Direction Reghsiers
0 Four Individually-Controlled Interrupt Input Lines. Two

0 Handshake Control Logic tor Input and Output Peripheral

0 High Impedance Three Slate and Olrect Transistor Drive

0 Program Controlled ln ter rwt and Interrupt Dtsable Capabilitv

0 CMOS Drive Capabtlity on Side A Peripheral Lines

0 Two TTL Drive Capability c n All A and B Side Buffers
0 TTL Comoatlble

0 Staiic Operation

Usable as Peripheral Control Outputs

Operation

Peripheral Llnes

MC&l MC63A21 MCG621
MC6821C Mi68A21C MC68821C

MAXIMUM RATINGS

T A 0-10 70 "C
-40 10.85

Ceramic
Plastic
Cerdip

Supply Volrage I vcc 1 - 0 3 1 0 + 7 0 I v
Input Volrage I v,, 1-0310 + 1 0 I v
Ooeratino Temoeratwe Ranae I I T I 10 T H I

M

Bo

@JA 'C'*

1 - , - a , I

THERMAL CHARACTERISTICS
Chv.cui.tic I Symbol I v.lw I u*

Thermal Resistance I I I

This device conlam C8rcuwv 10 pioiecl the lnpuls agamst damage due 10 hqh
slalic voliages or electroc fedds. however. ti 8s adwed that normal orecautoons
be taken lo avold application 01 any voltage hlgher lhan rnaxomum-raid
vortages to this high-impedance crrcu8i Reltabtlatv 01 operatton IS enhanced 81
unured mouts are lied to an appropriale logic voltage 11 e , ellher V s s 01 Vccl

MC6821
(1.0 MHz)

I (2.0 MHZ)

MOS
IN-CHANNEL. SILICON-GATE,

DEPLETION LOAD)

PERIPHERAL INTERFACE
ADAPTER

L SUFFIX
CERAMIC PACKAGE

C I S E 715 1 S SUFFIX
CERDIP PACKAGE

CASE 73.

P SUFFIX
PLASTIC PACKAGE

CASE i l l

I PIN ASSIGNMENT

Appendix C: Motorola 68000 and Support Chips 47 1

lRQA

D O

D 1

D2

0 3

DO

D 5

0 6

D 7

38

Expanded block diagram of the MC6821

Data Bur
Buffers
IDBBI

27

26

40 C A I

39 C A 2

Interrupt Status
t

Control
R.p#rter A

(C R A)

\ ~ a t a Direction
Register A
(D O R A)

A

u - -

v c c * Pln 20

v s s i Pln 1

c s o 22 -
c s 1 24

Select
RSO 36

RS1 3 5
Control R/% 21

m 34

Enable 25

2 P A 0

3 P A 1

4 P A 2

Peripherel 5 P A 3

Registar A

3
m

a
-
3

C -

6 P A 4

7 P A 5

8 P A 6

9 P A 7

Interface

- 1 0 PBO

output - 1 1 P B l - 12 PB2 Roomer B
lORBl

- 1 3 P 6 3 - 14 PB4 - t--c 15 PBS

- 1 6 P B 6

- 1 7 PB7

p\

Peripheral
Interface

B

-

Data Direction

18 CB1

1 9 C B 2
Control B 1-6 37 4

472 Microprocessor Theory and Applications with 68000/68020 and Pentium

PIA INTERFACE SIGNALS FOR MPU

The PIA interfaces to the M8800 bus with an 8-bit bidirec
tional data bus, three chip select lines. two register select
lines, two interrupt request lines, a readlwrite line. an enable
line and a reset line To ensure proper operation with the
MC8800. MCGBM. or MC6808 microprocessors, VMA
should be used as an actwe part of the address decoding

Bidirectional DN (WD7) - The bidirectional data lines
iDCLD71 allow the transfer of data between the MPU and the
PIA The data bus output drivers are threestate devices that
remain in the high-impedance (off1 state except when the
MPU performs a PIA read operation The readlwrite line is in
the read Ihighl state when the PIA is selected lor a read
operation

Enable (El - The enable pulse, E. is the only timing
slgnal that is supplied to the PIA Timing of all other signals
is referenced to the leading and trailing edges of the E pulse

RbedlWrite - This signal is generated by the
MPU to control the direction of data transfers on the data
bus A low state on the PIA readlwrite line enables the input
buffers and data is transferred from the MPU to the PIA on
the E slgnal 11 the device has been selected A high on the
readlwrite line sets up the PIA for a transfer of data to the
bus The PIA output buffers are enabled when the proper ad-
dress and the enable pulse E are present

-
- The active low RESET line is used to reset a11

register bits in the PIA to a logical zero (low1 This line can be
used as a power-on reset and as a master reset during
system operation

Chip Seleca (CSO, CSl. and K2) - These three input
signals are used to select the PIA CSO and CS1 must be
high and m m u s t be IOVI for selection 01 the device Data
transfers are then performed under the control of the enable
and readlwrite signals The chip select lines must be stable

lor the duration of the E pulse The device is deselected
when any of the chip selects are in the inactive state

R e g b Selects (RSO and RSO - The two register
select lines ara used lo select the various registers inside the
PIA These two lines are used in conjunction with internal
Control Registers to select a panicular register that is to be
written or read

The register and chip select lines should be stable for the
duration of the E pulse while in the read or write cycle

Interrupt Requa (m and W B t - The active low In-
terrupt Request lines I m A and ml act to interrupt the
MPU either directly or through interrupt priority circuitry
These lines are "open drain" (no load device on the chip1
This permits all interrupt request lines to be tied together in a
wireOR configuration

Each Interrupt Request line has two internal interrupt flag
bits that can cause the Interrupt Request line to go low Each
flag b11 is associated with a particular peripheral interrupt
line Also,Iour interrupt enable bits are provided in the PIA
which may be used to inhibit a parlicular interrupt from a
peripheral device

Servicing an interrupt by the MPU may be accomplished
by a software routine that. on a prioritized basis, sequentially
reads and tests the two control registers in each PIA for in-
terrupt flag bits that are set

The interrupt flags are cleared (zeroed) as a result 01 an
MPU Read Peripheral Data Operation of the corresponding
data register After being cleared. the interrupt flag bit cdn
not be enabled to be set until the PIA is deselected during an
E pulse The E pulse is used to condition the interrupt control
lines (CAI. CA2, C B l . CB2) When these lines are used as
interrupt inputs. at least one E pulse must occur from the in-
active edge to the active edge of the interrupt input signal to
condition the edge sense network If the interrupt flag has
been enabled and the edge sense circuit has been properly
conditioned, the interrupt flag will be set on the next active
transition of the interrupt input pin

PIA PERIPHERAL INTERFACE LINES

The PIA provides two &bit bidirectional data buses and
four interruptlcontrol lines for interfacing to peripheral
devices

Srcion A Paiptuml D M lPA(LPA7I - Each of the
peripheral data lines can be programmed to act as an input or
output Thls is accomplished by setting a "1" in the cor-
responding Data Direction Register bit for those lines which
are to be outputs A "0" in a bit of the Data Direction
Register causes the corresponding peripheral data line to act
as an input During an MPU Read Peripheral Data Operation.
the data on peripheral lines programmed to act as inputs a p
pears directly on the corresponding MPU Data Bus lines In
the input mode, the internal pullup resistor on these lines
represents a maximum of 1 5 standard TTL loads

The data in Output Register A will appear on the data lines
that are programmed to be outputs A logical "1" written in-
to the register will cause a "high" on the corresponding data

line while a "0' results in a "low " Data in Output Register A
may be read by an MPU "Read Peripheral Data A ' operation
when the corresponding lines are programmed as outputs
This data will be read property if the voltage on the
peripheral data lines is greater than 2 0 volts fM a logic "1"
output and less than 0 8 volt for a logic "0" output Loading
the output lines such that the voltage on these lines does not
reach full voltage causes the data transferred into the MPU
on a Read operation to differ from that contained in the
respective bit of Output Register A

s.ccion B P.riphral D N (PWPB7) - The peripheral
data 1in.s in the B Section of the PIA Can be programmed to
act as eitlier inputs or outputs in a similar manner to PA&
PA7 They have threestate capabiity. allowing them to enter
a high-impedance state when the peripheral data line is used
as an input In addition. data on the peripheral data lines

Appendix C: Motorola 68000 and Support Chips 473

PEW87 will be read properly from those lines programmed
as outputs BYen if the voltages are below 2 0 volts for a
"high" or above 0 8 V lor a "low" As outputs. these lines
are compatible with standard TTL and may also be used as a
sourca of up to 1 milliampere at 1 5 volts to directly drive the
base of a tran5iStOr Swltcti

l n m p t Input (CAI and CBll - Peripheral input lines
CAl and CB1 are input only lines that set the interrupt flags
of the control registers The active transition for these
signals IS also programmed by the two control registers

Pmphaal Control IcA2) - The peripheral control line
CA2 can be programmed to act as an interrupt input or as a

peripheral control output 4s an output. this line IS competi-
ble with standard TTL, as an input the internal pullup resistor
on this line represents 1 5 standard TTL loads The function
of this signal line is programmed with Control Register A

Peripheral Control lCB2l - Peripheral Control line CB2
may also be programmed lo act as an interrupt input or
peripheral control output As an input, this line has high in-
put impedance and is compatible with standard TTL As an
output it is compatible with standerd TTC and may also be
used as a source of up to 1 milliampere at 1 5 volts to directly
drive the base of a transistor switch This line is programmed
by Control Register B

INTERNAL CONTROLS

INITIALIZATION
A AESET has the effect of zeroing all PIA registers This

will set PA(ZPA7. PBQPB7, CA2 and CB2 as inputs. and all
interrupts disabled The PIA must be configured during the
restart program which follows the reset

There are six locations within the PIA accessible to the
MPU data bus two Peripheral Registers. two Data Direction
Registers. and two Control Registers Selection of these
locations is controlled by the RSO and R S l inputs together
with bit 2 in the Control Register. as shown in Table E 1

Details of posslble configurations of the Data Direction
and Control Register are as follows

TABLE 6.1 INTERNAL ADDRESSING
Control

Loc.rimn Selected

Daia Direciion Rqtrier A

Conirol Register A

Perophwal Register 8

1 1 0 1 x 1 0 Data DtreciGon Regtrier 8

l I 1 I X 1 x 1 Control Rqwer 8

x : D0"'l Care

PORT A-8 HAROWARE CHARACTERISTCS
As shown in Figure W, the MCBB21 has a pair of 110 ports

whose characteristics differ greatly. The A side is designed
to drive CMOS logic to normal 3J% to 70% levels, and incor-
porates an internal pullup device that remains connected
even in the input mode. Because of this. the A wde requires
more drive current in the input mode than Port B. In con-
trast, the B side uses a normal threestate NMOS buffer
which Cannot pullup to CMOS levels without external
resistors. Thm B side Csn drive extra loads such as Darl-
ingtons without problem. When the PIA comes out of reset,
the A port represents inputs with pullup resistors. whereas
the B side (input mode also) wll float high or low, depending
upon the load connected to it.

Notice the differences between a Port A and Port B read
operation when in the output mode When reading Port A.
the actual pin is read, whereas the B side read comes from an
output latch, ahead of the actual pin

CONTROL REGISTERS (CRA and CRB)
The two Control Registers (CRA and CRBl allow the MPU

to control the operation of the four peripheral control lines
CAI, CA2. CB1, and CB2 In addition they allow the MPU to
enable the interrupt lines and monitor the status of the inter-
rupt flags Bits 0 through 5 01 the two registers may be writ-
ten or read by the MPU when the proper chip select and
register select signals are applied Bits 6 and 7 of the two
registers are read only and are modified by external interrupts
occurfing on control lines CA1. CA2. CB1, or CB2 The for-
mat of the control words is shown in Figure B 3

DATA DIRECTION ACCESS CONTRW BIT ICRA-2 end
CRB-21

Bit 2, in each Control Register ICRA and CRBI. deter-
mines selection of eilher a Peripheral Output Register or the
corresponding Data Direction E Register when the proper
register select signals are applied to AS0 and AS1 A "1 ' in
bit 2 allows access of the Peripheral Interface Register. while
a "0' causes the Data Direction Register to be addressed

ln twpt FI.or (CRA-6, CRA-7. CRBS, and CRB-7) -
The four interrupt flag bits are set by active transitions of
signals on the lour Interrupt and Peripheral Control lines
when those lines are programmed to be inputs These bits
cannot be set drrectly from the MPU Oata Bus and are reset
indirectly by a Read Peripheral Data Operation on the ap-
propriate Section

Control of CA2 and CB2 Pwiphaal Control Lines ICRA-3,
CRA4, CRA-I, CRB-3, CRB4, and CRB-51 - Bits 3,4, and
5 of the two control registers are used to control the CA2 and
CB2 Peripheral Control lines These bits determine if the con-
trol lines will be an interrupt input or an output control
signal If bit CRA-5 ICRB-51 is low, CA2 (CB21 is an interrupt
input line similar to CAI ICE11 When CRA-5 ICRB-5) is
high. CA2 ICBZI becomes an output signal that may be used
to control peripheral data transfers When in the output
mode, CAZ and CBZ have slightly different loading
characieristics

474 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Control of CA1 and CB1 Interrupt Input Lina (CRAO,
CRB-1. CRA-1, and CRB-1) - The two lowest.order bits of
the control registers are used to control the Interrupt input
lines CAI and CB1 Oils CRA 0 and CRB-0 are used to

enable the MPU interrupt stgnals and lm, respec-
lively Bits CRA 1 and CRB-1 determine the active transmon
of the interrupl input slgnals CA1 and CB1

FIGURE 8.2 PORT A AND PORT B EQUIVALENT CIRCUITS

Purr A Poll 8
"CC "CC

10-lnpur Pint

Appendix C: Motorola 68000 and Support Chips 475

l-pt Fbg IRQAlBll - IMC 71
b l - 0

bl P 1

IR0AIB)l set by high-tolow lrnnsition on CAl
ICE11
IROAIBIl set by low-to-high transition on CA1
ICE11

I I I

CAI lCBl l lntrrupt R q w k Enlb*/Mub*
W-0 Disables IROAIEI MPU Interrupt by CAI

lcB11 active transition 1

W- 1 Enable IROAKII MPU Interrupt by CAI ICE11
actwe transition

1 IROA(E1 wtll m u r on ~ 1 x 1 (MPU genscatedl postlive
transition of W if CAI ICBlI active transition oc-
curred while interrupt was disabled

b o ,

IROAIBI 1 Intmpt flq IMC 71
Goes h!gn on active transotton of CAI ICB11. Automa-
ttcally cleared by MPU Read of Output Register AlBl
May also be cleared by hardware Reset

b7 b6 b5 M b3 bZ b l
b n t r d Rqmm CAZ ICEZI OOR CAI ICB1) IROAlEIl IROAWZ

Flag Control ACCESS Control . Flag

IRQAlBIZ Inlewum F l q (M 61
When CA2 ICE21 is an input. IROAlBl goes high on ac
twe transition CA2 ICEZI. Automatically cleared by
MPU Read of Output Register AlBI May also be bZ = 0 Data Direction Register selected
cleared by hardware Reset
CAZ ICB21 Established as Output lb5= 11
2 = 0 not aflected by CAZ ICBZI transitions

IROAIBI

I
CAZ (CBZ) ENblihhd I outlnlc bv M= 1

[Note that operation 01 CA2 and CB2 Output
b5 b3 lunctions are not !dentcall

CA2
b3-0 R u d Suobb w*h CAI R a t o m

CA2 goes low on first high-lo-low
E transmon lollowmg an MPU read
of Output Register A. returned high
by neat active CAI transition. as
specified by bit 1

R u d Slrobe with E R r t a e
CAZ goes low on first high-tolow
E transition ldlowmg an MPU read
of Output Register A. returned high
by next high-tolow E 1ianSiliOn dur-
ing a deselect

b3- 1

CEZ
b3=O: wrlu SVob. Wkh CEl A-

CBZ goes low on lirst low-to-high
E transmon lollowing an MPU write
snto Outwt Register 8: returned
high by the next active CB1 transi-
tlon as soecitled by bit 1 CRB.b7
must first be cleared by a read 01
data
W h Sab. vl(h E R M n
CBZ gws low on first low-lo-high
E transition ldlowinq an MPU Wlite
into Output Register 0. returned
nigh by the next lowto-high E tran-
sition following an E pulse whch
occurred while the part was d e ~
w k t e d .

b3= 1

T
5 b3

S.(IR.rt cA2 ICE21
CAZ ICEZI goes low as MPU WrlleS

b3-0 Inlo Control Rqiste~.
CAZ ICE21 goes hgh a3 MPU writes
b3- 1 into Control Register

1 1 L
C

I

CA2 lCBZl EmMiihd IS Input bv M-0

0

b3=0 Disables IROAlAl MPU Interrupt by
CAZ Ice21 active transition *

b3- 1 Enables IROAlBl MPU Interrupt by
CA2 ICE21 active transition

'IROAIBI wdl occur on next IMPU general
led1 posmve transif~on 01 b3 if CAZ lCB21
actwe transition occurred while interrupt
was disabled

__c Dsrenninw Actiw CAZ ICBZl Tran*cion f a

IROAlB12 set by high.10 low trans(.
tion on CAZ ICBZI
IROAIEIZ set by low-lo-high tranY
t~on on CA2 ICBZI

Sminp lntmum Flag IROAIBIZ - (Bit MI
M=O

b4= 1

476 Microprocessor Theory and Applications with 68000/68020 and Pentium

@ MO-ROLA

16K BIT STATIC RANDOM ACCESS MEMORY

The MCM6116 is a 16.m bit Static Random Access Memory
organized as 2048 words by 8 bits. fabricated uslng Motorola’s high-
performance silicon gate CMOS IHCMOSI technology It uses a design
approach which provides the simple timing features associated with ful
ly static memories and the reduced power associated with CMOS
memories This means low standby power without the need for clocks.
nor reduced dap ra te due to cycle times that exceed access time

Chip Enable IEl controls the powWdown feature It is not a clock but
ralher a Chip control that atfects power consumption In less than a cy
cle time after Chip Enable IEI goes high. the part automatically reduces
11s power requirementsand remains in this low power standby as long
as the Chip Enable (El remains high The automatic power down
leature causes no perlormance degradation

The MCMGt16 IS in a 24 pin dual in-line package with the industry
standard JEDEC approved pinout and IS pinout compatible with the in
dustry standard 16K EPROM/ROM
0 Single + 5 V S ~ p p l ~

0 2048 Words by 8 Bit Operation
0 HCMOS Technologv
0 Fully Static No Clock or Timing Strobe Required
0 Maximum Access Time MCM611612 - 120 ns

MCM6116-15 - 150 ns
MCM6116-20 - 203 ns

0 Power Dissipation 70 mA Maximum IActiveI
15 mA Maximum (Standby TTL Lwelsl
2 mA Maximum IStandby)

0 Low Power Version Also Available - MCM61L16
0 Low Voltage Data Retention lMCM61L16 Onlyl

50 r A Maximum

BLOCK MAGRAM

A I Plnn-vcc
A 1 P n 12.VSS
A3
A4
A5
A6
A1

I I

I MCM6116

HCMOS

2 , W x 8 BIT
STATIC RANDOM
ACCESS MEMORY

ICOMPLEMENTARY MOSl

PIN ASSIGNMENTS

A?

A0

A5

A4

A3

A2

At

A0

DO0

DO1

DO2

VSS

. ..Write Er+h
............................. output GUM

. ..Chip E N M .
vcc P o r n t +5vt

Appendix C: Motorola 68000 and Support Chips

Voltage on Any Pin With Respect 10 V s s

DC Output Current

Power Dissipation

Operating Temperature Range

Storaqe Temperature Range

477

- 1 0 1 o r 7 0 v
20 m A

12 Watt
0 10 +70 "C

-65 I0 + 153 OC

ABSOLUTE MAXIMUM RATINGS lSee Note1

Symbol

vcc
vss

VIL

Paramnn

Supply Voltage

Input Voltage VIH

Rning I vdue 1 Unit
Temwrature Under Bias I - 1 o t o t B O I 'C

Min Typ Max Unit
4 5 5 0 5 5 v
0 0 0 v

2 2 3 5 6 0 V

- 1 0 ' - 0 8 v

Parameter

Input Leakage Current I V c c = 5 5 V. Vin=GND to V c c i I lLl l
Output Leakage Current I E = V l u or F = V ! u V l / n = G N D to V c r l Iltnl

inputs agalnst damage 8ue to hlgh stattc
voltages or electrc fields. however. 11 1s ad-
vised that normal PreCaut?onS be taken to
avoid applcation of any voltage htgher than
maximum rated vollages 10 thls hlgh-
impedance c!rcut.

MCM6116 MCMSlLl6
Min I Typ' I Max Min I Typ' 1 Max

- 1 - 1 1 - 1 - I 1 LA

- 1 - 1 1 - 1 - 1 1 uA

NOTE Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are ex.
ceeded Functional operatton should be restrcted to RECOMMENDED OPERAT
ING CONDITIONS Exposure to hlgher than recommended voltages for extend
ed periods of time could allect devce reliabilitv

Standby Power t E = VIHI

SUPP~V Current t E a V c c - 0 2 V . v , , r V ~ ~ - 0 2 V o r V , , ~ O 2 v l

Output Low Voltage l l o L = 2 1 mA1

Output High Voltage UOH= - 1 0 mAl"

.. _ _ L I L I J
Is6 - 5 15 - 5 12 mA

lSBt - 20 2030 - 4 100 LA

VOL - - 0 4 - - 0 4 v
VOH 2 4 - ~ 2 4 - - v

Cheracterinic

Input Capacitance exceut E
InputIOulput CapacLtance and E Input Capacitance

.. . .,. . . - -- , I .-, , I I I -

Operating Power Supply Current I € = VIL. 11/0=0 rnAl I ICC 1 - 1 3 5 1 7 0) - 1 3 5 1 5 5] m A

Averaae Operatinu Current Mlnlmum cvcle. dutv= 100% I lrm I - 1 35 I 70 I - I 35 I 6 I rnA

Symbol Typ Max Unit

Cin 3 5 PF

c I / O 5 7 pF

Mod.
Standby

Read

Write Cycle 11 I

Write Cycle 12)

E G W VccCurnnt DO

H x x 1SB. 1sB1 High Z
L L H 'cc a
L H L 1cc D

L L L k c D

418 Microprocessor Theory and Applications with 68000/68020 and Pentium

AC OPERATING CONDITIONS AND CHARACTERISTICS
‘Full operamg Loltage and lemprrdiure unless otherwise noted I

I!rpd* PUlSP level5 1 5 VOlIS

I r ~ u i H s s dwi Fail T r p ~ , Ions 0 u ’ ~ u t Load 1 TTLGaleandC~=tWpF
0 Vd i l io 3 5 Vollh I-’.vdt a->d Output Timmg Reference Levels

WRITE CYCLE

TIMING PARAMETER ABBREVIATIONS

signal name lrom which interval IS defined

signal name 10 which mterval IS deflned
transition direction lor second signal

transition direction for f m t signal - 4
The fransilion delinitaons used in lhls data sheet are

H = transition 10 high
L = !ransitton to low
V = transition to walld
X = transillon 10 Invalid or don’i care
Z = lranbitton 10 011 lhlgh impedance1

TIMING LIMITS
The table of timing values shows either a minimum or a

maxrnuni limit lor each parameter Input requirements are
specilied lrom the external system point 01 view Thus. ad-
dress setup t m e 1s shown as a mmmum Since the svslem
must supplv at least that much lime leven though mosr
devices do no1 require it1 On the other hand, responses lrom
the memory are specilied horn !he devlce point of vlew
Thus, !he access time IS shown as a maximum Since the
device never provides data later than that time

APPENDIX

Addts3ling Mode
Raghter

Dn Data Register Direct
An Address Register Direct

lAnl Address Register Indirect
MUWV

(An1 +
- 1Anl
dlAnl

Address Register Indirect with Postincrement
Address Register Indirect with Predecrernent
Address Rwisler Indirect with Disolacement

D

Byle. word Long

010101 010101
010101 010101

411101 812101
41 1 I01 812101
61 1 101 1012101
812lOl 12l3101

68000 EXECUTION TIMES

d(An. 1x1.
xxx w
xxx L
d1PCl

d1PC 1x1.
l a x x

D.l INTRODUCTION

Address Register Indirect with Index 10(2/0l 1413101
Absolute Short 812101 121310)

Absolute Long 1213101 18l4IOl
Program Counter with Displacement 8l2/01 12l3101
Program Counter with Index 10(2/0l 14WOI
Immediate 411/01 812101

This Appendix contains listings of the instruction execution times in terms of external
clock (CLK) perlods. In this data, it is assumed that both memory read and write cycle
times are four clock periods. A longer memory cycle will cause the generation of wait
states which must be added to the total instruction time.

The number of bus read and write cycles for each instruction is also included with the
timing data. This data is enclosed in parenthesis following the number of clock periods
and is shown as: (rlw) where r is the number of read cycles and w is the number of write
cycles included in the clock period number. Recalling that either a read or write cycle re-
quires four clock periods, a timing number given as 18(3/1) relates to 12 clock periods for
the three read cycles, plus 4 clock periods for the one write cycle, plus 2 cycles required
for some internal function of the processor.

NOTE
The number of periods includes instruction fetch and all applicable operand
fetches and stores.

D.2 OPERAND EFFECTIVE ADDRESS CALCULATION TlMlNO

*The w e 01 the index register (1x1 does not affect execution time

479

Table D-1 lists the number of clock periods required to compute an Instruction’s effective
address. It Includes fetchlng of any extension words, the address computation, and
fetching of the memory operand. The number of bus read and write cycles is shown in
parenthesls as (rlw). Note there are no write cycles Involved in processing the effective
address.

480 Microprocessor Theory and Applications with 68000/68020 and Pentium

. - [A n)
dl An)
dlAn, ! X I *
X X X w
xxx L

dlPCI
dlPC. 1x1.
l X X X

D.3 MOVE INSTRUCTION EXECUTION TIMES

1012/01 1012/01 1412/1l 1412/1) 1412/11 18(3/1l P l3 /1 l 1813/11 P14/11
1213/01 1213/0l 1613/11 1813/11 1613/11 P (4 l l I P l4 /1 l 2014/11 2415/11

1413/01 1413/01 1813/1l 1813/1l 1813/11 P14/11 2414/11 2214/11 2815/11
1213/01 1213/Ol 16l3/11 1613/11 1613/11 2014/11 22l4/1l 2014/11 2415111
1614/01 18(4/0l P(4/11 2014/11 P I 4 l l l 2415/11 2615/11 2415/11 2816/11

1213/01 1213/01 1613/11 16l3/11 1613/1l 2014/1l 22(4/1l 2014/11 2415111
1413/01 1413/01 1813/11 1813/11 1813/1l P 1 4 l l l 2414/11 2214/11 2815/11
812/01 8WO1 1212111 1212/11 1212/11 1613/11 1813/11 1613/ll 2014111

Tables D-2 and D-3 indicate the number of clock periods for the move instruction. This
data includes instruction fetch, operand reads, and operand writes. The number of bus
read and write cycles is shown in parenthesis as (rlw).

dlPC1
dlPC. 1x1.
l x x x

Table D-2. Move Byte and Word lnstructlon Execution Tlmes

16l4/01 1014/01 2414/21 2414121 2414/21 2815/2l 3015/21 2815/21 3215/2l
18l4/01 1814/Ol 2614/2l 2614/2l 2814/2l 3015/21 3215/21 3015/2l 3416/2l
1213/01 1213/Ol 2013/21 2013/2l 20(3/21 2414/21 2614/2l 2414121 2815/21

Source 1- IT
1613/11

'The w e UI !he index register Iix) does not affect execulion lime

Table D.3. Move Long Instruction Execution Times

*The size of the index register 11x1 does not affect execution time

Appendix D: 68000 Execution Times 48 1

The number of clock periods shown in Table 0-4 Indicates the time required to perform
the operations, store the results, and read the next instruction. The number of bus read
and write cycles is shown in parenthesis as (rlw). The number of clock periods and the
number of read and write cycles must be added respectively to those of the effective ad-
dress calculation where indicated.

in Table 0-4 the headings have the following meanings: An =address register operand,
Dn =data register operand, ea =an operand specified by an effective address, and
M = memory effective address operand.

Table DJ. Standard Instruction Execution Time8

~ ~~ ~

NOTES
+ add effective address Calculation time
t word or long only

indicates maximum value
The base time of six clock periods is increased to eight if the effective address mode 15

register direct or immediate (effective address time should also be added1
Only available effective address mode is data register direct

DIVS, DlVU - The divide algonthm used by the MC88000 provides less than 10% difference
between the best and worst case timings

MULU n= the number of ones in the cea>
MULS n- concalanate the cea> with a zero as the LSB, n is the resullanl number of

10 or 01 patterns in the 17-bit MU~CB, I e , worst case happens when the
source is $5656

MULS. MULU - The multiply algorithm requires 38+2n clocks where n is defined as

482 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Byte, Word

Long

Byte, Word

Lono

CMPl

EOAl

D.5 IMMEDIATE INSTRUCTION EXECUTION TIMES

812101 - 812/01+
1413101 - 121310) +
812101 - 1212111+

16W01 - 2013/21+

The number of clock periods shown in Table D-5 includes the time to fetch immediate
operands, perform the operations, store the results, and read the next operation. The
number of bus read and write cycles is shown in parenthesis as (rlw). The number of
clock periods and the number of read and write cycles must be added respectively to
those of the effective address calculation where indicated.

In Table D-5, the headings have the following meanings: # = immediate operand,
Dn =data register operand, An =address register operand, and M = memory operand.
SR = status register.

Table D-5. Immediate lnrtructlon Execution Time8

Instruction Size
Byte. Word 812101 1212111+

161310) 20(3121+
Byte. Word 41 1/01 811 101. 811111+

81 1 101 81 1 I01 1211/21+
Byte. Word 81210) 1212111+

ADD0

Lona 161310)

+add effective address calculation time
'word only

Appendix D: 68000 Execution Times 483

Instruction

ASR, ASL

LSR. LSL

ROR. ROL

ROXR. ROXL

D.6 SINQLE OPERAND INSTRUCTION EXECUTION TIMES

Sue R b p i n a M W W

Byte. Word 8 + 2n(l lO) 8(1111+
Long 8 + 2nl110l

Byte. Word 6 + ZnI110) 811/11+
8 + 2n11/01 Long -

Byte. Word 6 + 2nI1/01 811111 +
Long 8 + ZnlllOl -

Byte. Word 6 + 2n11101 8 l111 l+
Lona 8 + 2n1110)

-

-

Table D-6 lndlcates the number of clock periods for the slngle operand Instructlons. The
number of bus read and wrlte cycles is shown in parenthesls as (rlw). The number of
clock perlods and the number of read and wrlte cycles must be added respectlvely to
those of the effective address calculation where indicated.

Table D6. Slngle Operand Instruction Executlon Times

+add effective address calculation time

D.7 SHlFTlROTATE INSTRUCTION EXECUTION TIMES

Table D-7 lndlcates the number of clock perlods for the shift and rotate Instructions. The
number of bus read and wrlte cycles Is shown In parenthesls as (rlw). The number of
clock perlods and the number of read and wrlte cycles must be added respectively to
those of the effective address calculation where Indicated.

Table 0.7. Shlftlbtate Instruction Execution Times

+ edd effective addrexi calculation time
n is the shift count

484 Microprocessor Theory and Applications with 68000/68020 and Pentium

RTS
STOP

SWAP
TRAPV

0.12 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

- 1614101 -
- 41010) -
- U110) -
- A1 1 Ifll -

Tables D-12 and D-13 indicate the number of clock periods for the following
miscellaneous instructions. The number of bus read and write cycles is shown in paren-
thesis as (rlw). The number of clock periods plus the number of read and write cycles
must be added to those of the effective address calculation where indicated.

Tabla D-12. Mlscollaneous lnatruction Exocutlon Tlmos

InrtrUCtiOn

MOVEP

S i Ragimr-Marocy (ManmydR.gLur

Lona 241214) welo)
Word 1M2121 I 161410)

Appendix D: 68000 Execution Times 485

0.13 EXCEPTION PROCESSINQ EXECUTION TIMES

Table 0 1 4 indicates the number of clock periods for exception processing. The number
of clock periods includes the time for ail stacking, the vector fetch, and the fetch of the
first two Instruction words of the handier routine. The number of bus read and write
cycles is shown in parenthesis as (rlw).

Table 0-14. Exception Processing Execution Times

TRAP Instruction

TRAPV Instruction I 3414/3)
+add effective address calculation time
*The interrupt acknowledge cycle IS assumed

to take four clock periods
'*=tes the time from when RESET and

HALT are first sampled as negated TO when
instruction execulion starts

This Page Intentionally Left Blank

APPENDIX

68000 / SELECTED 68020
INSTRUCTION SET

Instruction Sue Length (words) Operation

ABCD - (Ay), - (AX) B 1 - [Ay] 10 + - [AX] 10 + X -+ [AX]
ABCD Dy, Dx B 1 [DyllO + [DxIlO +X + Dx
ADD (EA), (EA) B,W, L 1 [EA] + [EA] + EA
ADDA (EA), An w, L 1 [EA] + An -+ An
ADD1 #data, (EA) B,W, L 2 for B, W data + [EA] + EA

ADDQ #data, (EA) B, W, L 1 data + [EA] + EA
3 for L

ADDX - (Ay), - (AX) B, W, L 1 - [Ay] + - [AX] + X -+ [AX]
ADDX Dy, Dx B, W, L 1 Dy + Dx + X + Dx
AND (EA), (EA) B, W, L 1 [EA] AND [EA] -+ EA
ANDI #data, (EA) B,W, L 2 for B, W data AND [EA] -+ EA

3 for L
ANDI #data& CCR B 2 data8 AND [CCR] + CCR
ANDI #datal6, SR W 2 data16 AND [SR] -+ SR if s = 1;

else trap

D, I I] e o ASL Dx, Dy B, W, L 1
uu

nurnhcr ofshiftr derrrniincd hy [D r]

-
ASL #data, Dy B, W, L 1

ASR Dx, Dy B, W, L 1

487

488 Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction S u e Length (words) Operation

ASR #data, Dy

ASR (EA)

BCC d

BCHG Dn, (EA)

BCHG #data. (EA)

BCLR Dn (EA)

BCLR #data, (EA)

BCS d

BEQ d

BFCHG (EA), {offset :
width}
(68020)

BFCLR (EA), {offset :
width}
(68020)

BFEXTS (EA) {offset :
width}, Dn (68020)

BFEXTU (EA) {offset :
width}, Dn (68020)

BFFFO (EA) {offset
width}, Dn (68020)

BFINS Dn, (EA) {offset
: width} (68020)

BFSET (EA), {offset :
width}
(68020)

B, W (68000 and
68020)
L (68020)

B, L

B, W (68000 and
68020)
L (68020)

B, W (68000
and 68020)
L (68020)

unsized

1

1

1 for B, 2 for W, 3 for L

1

L

1

2

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

L

uy
. . .

nurnbcr ol’rhilir dcwrrnincd
hy irnrncdiarc dirr

flL (E A l L’X c
qhift OIICC

Branch to PC + d if carry = 0; else
next instruction

[bit of [EA], specified by Dn]’
-+Z
[bit of [EA] specified by Dn]’ +
bit of [EA]

Same as BCHG Dn, [EA] except
bit number is specified by
immediate data

[bit of [EA]]’ + Z
0 -+ bit of [EA] specified by Dn

Same as BCLR Dn, [EA] except
the bit is specified by immediate
data

Branch to PC + d if carry = 1; else
next instruction

Branch to PC + d if Z = 1; else
next instruction

NOT (Field) + Field

unsized 2 0’s + Bit Field of destination

2 unsized

unsized 2

unsized 2

unsized 2

unsized 2

Sign-extend Bit Field of

Source-+ Dn

Zero-extend Bit Field of

Source+ Dn

Bit Field of Source Bit Scan+

Dn

Dn+ Bit Field of destination

1’s + Bit Field o f destination

Appendix E: 68000 /Selected 68020 Instruction Set 489

Instruction Size Length (words) Operation

BHI d

BLE d

BLS d

BLT d

BMI d

BNE d

BPL d

BRA d

BSET Dn, (EA)

BSET #data, (EA)

BFTST (EA) {offset : unsized
width}
(68020)

BGE d B, W (68000 and
68020)
L (68020)

B, W (68000
and 68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B,W (68000 and
68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B, W (68000
and 68020)
L (68020)

B, W (68000 and
68020)
L (68020)

B, L

BGT d

BSR d

BTST Dn, (EA)

BTST #data, (EA)

BVC d

BVS d

2

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 2 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

1

B, W (68000 and
68020)
L (68020)

B, L I

1 for B, 2 for W, 3 for L

B,W (68000 and
68020)
L (68020)

B, W (68000 and
68020)
L (68020)

1 for B, 2 for W, 3 for L

1 for B, 2 for W, 3 for L

Obtain the specified bit field and
set condition codes.

Branch to PC + d if greater than
or equal; else next instruction

Branch to PC + d if greater than;
else next instruction

Branch to PC + d if higher; else
next instruction

Branch to PC + d if less or equal;
else next instruction

Branch to PC + d if low or same;
else next instruction

Branch to PC + d if less than; else
next instruction

Branch to PC +d if N = 1 ; else
next instruction

Branch to PC +d if Z = 0; else
next instruction

Branch to PC + d if N = 0; else
next instruction

Branch always to PC + d

[bit of [EA]]’ + Z
1 + bit of [EA] specified by Dn

Same as BSET Dn, [EA] except
the hit is specified by immediate
data

PC + - [SP]
PC + d + PC

[bit of [EA] specified by Dn]’
-+z
Same as BTST Dn, [EA] except
the bit is specified by data

Branch to PC + d if V = 0; else
next instruction

Branch to PC + d if V = 1 ; else
next instruction

490 Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction S u e Length (words) Operation

CHK (EA), Dn W for 68000,
68020 68020
W and L for
68020

1 for both 68000 and If Dn < 0 or Dn > [EA], then trap

CHK2 (EA), An w, L 2 If An < source - Lower bound or
(68020) An > Source - Upper bound then

TRAP

CHK2 (EA), Dn B, W, L 2 If Dn < source - Lower bound or
(68020) Dn > Source - Upper bound then

TRAP

CLR(EA) B,W, L 1 O - t E A

CMP (EA), Dn B, W, L

CMP (EA), An w, L

CMPI #data, (EA) B, W, L

CMPM (Ay) +, (Ax) + B, W, L

CMP2 (EA),An w , L
(68020)

CMP2 (EA),Dn B, W, L
(68020)

DBCS Dn, d

DBEQ Dn, d

DBF Dn, d

DBGE Dn, d

DBGT Gn, d

DBHIDn, d

DBLE Dn, d

DBLS Dn, d

DBLT Dn, d

DBMl Dn, d

DBNE Dn, d

W

W

W

W

W

\V

W

W

W

W

W

1 Dn - [EA] +Affect all condition
codes except X

1 An - [EA] + Attect all condition
codes except X

[EA] -data +Affect all flags 2 for B, W
3 for L except X-bit

1

2

2

2

2

2

2

2

2

2

2

2

2

2

[Ax]+ - [Ay]+ -t Affect all flags
except X; update Ax and Ay

Compare An < Source - Lower
bound or An > Source - Upper
bound and Set Condition Codes.

Compare Dn < Source - Lower
bound or Dn > Source - Upper
bound and Set Condition Codes.

Same as DBCC except condition
i s C = 1

Same as DBCC except condition
i s Z = 1

Same as DBCC except condition
is always false

Same as DBCC except condition
is greater or equal

Same as DBCC except condition
is greater than

Same as DBCC except condition
is high

Same as DBCC except condition
is less than or equal

Same as DBCC except condition
is low or same

Same as DBCC except condition
is less than

Same as DBCC except condition
i s N = 1

Same as DBCC except condition
z=o

Appendix E: 68000 /Selected 68020 Instruction Set 49 1

Instruction Sue Length (words) Operation

DBPL Dn, d

DBT Dn, d

DBVC Dn, d

DBVS Dn, d

DIVS (EA), Dn
(Both 68000 and 68020)

DIVS (EA), Dq (68020)

DIVS (EA), Dr :Dq
(68020)

DIVSL (EA), Dr :Dq
(68020)

DIVU (EA), Dn
(Both 68000 and 68020)

DlVU (EA), Dq (68020)

DIVU (EA), Dr :Dq
(68020)

DIVUL (EA), Dr :Dq
(68020)

EORI #d8, CCR

EORI #d16, SR

EXG Rx, Ry

EXTDn (68000 and
68020)

EXTB Dn (68020)

JMP (EA)

JSR (EA)

LEA (EA), An

LINK An, # -d
d = 16-bit for 68000
d = 16-bit or 32-bit for
68020

W

W

w

w

W

L

L

L

W

L

L

L

B

W
L

w, L

L

Unsized

Unsized

L

Unsized

2

2

2

2

I

2

2

2

1

2

2

2

2

2

1
1

1

1

1

1

2

Same as DBCC except condition
N = O

Same as DBCC except condition
is always true

Same as DBCC except condition
i s V = O

Same as DBCC except condition
i s V = 1
Signed division

[DnI,z/[EAl,, +
[Dn] 0-15 =quotient
[Dn] 16-3 1 = remainder

32132 -+ 32q

64/32 + 32r : 32q

32/32 + 32r : 32q

Signed division
[Dnl 32/LEA1 16 +
[Dn] 0-15 =quotient
[Dn] 16-3 1 = remainder

32132 + 32q

64/32 + 32r : 32q

32132 + 32r : 32q

d8 Q CCR -+ CCR

d16 Q SR + SR if S = 1 ; else trap

Rx W R Y

Extend sign bit of Dn from 8-bit
to 16-bit or from 16-bit to 32-bit
depending on whether the operand
size is B or W

Extend sign bit of Dn from 8-bit
to 32-bit

[EA]+ PC
Unconditional jump using address
in operand

PC + - [SP]; [EA] + PC
Jump to subroutine using address
in operand

[EA] +An

An t- [SP]; SP +An; SP-d
-+ SP

492 Microprocessor Theory and Applications with 68000/68020 and Pentiurn

Instruction Size Length (words) Operation

LSL Dx, Dy

LSL #data, Dy

LSL (EA)

LSR Dx, Dy

LSR #data, Dy

LSR (EA)

MOVE An. A7

MOVE A7, An
MOVE (EA), CCR

MOVE CCR, (EA)

MOVE (EA), SR

MOVE SR, (EA)

MOVEC Rc, Rn (68020)
Note: Rn =An or Dn,
Rc = Control reg such
as VBR
MOVEC Rn, Rc (68020)
Note: Rn =An or Dn,
Rc = Control reg such
as VBR
MOVEM register list,
(E N
MOVEM (EA), register
list
MOVEP Dx, d (Ay)
MOVEP d (Ay), Dx
MOVEQ #d8, Dn
MOVES (EA), Rn
(68020)
Note: Rn =An or Dn
MOVES Rn, (EA)
(68020)
Note: Rn =An or Dn

MULS(EA),(Dn) (Both
68000 and 68020)

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2
2

1

2

2

1

Same as LSL Dx, Dy except
immediate data specify the
number of shifts from 0 to 7

Same as LSL Dx, Dy except left
shift is performed only once

0-1 I DY
u . . .

Same as LSR except immediate
data specifies the number of shifts
from 0 to 7

Same as LSR, Dx, Dy except the
right shift is performed only once
If S = I, then An -+ A7; else
TRAP
[A71 +An if S=l; else TRAP

[EA] -+ CCR

CCR + [EA]
If S = I, then [EA] + SR; else
TRAP
If S = I, then SR + [EA]; else
TRAP
If S = 1, Rc +Rn; else TRAP

If S = 1, Rn +Rc; else TRAP

Register list + [EA]

[EA] -+ register list

Dx + d[Ay]
d[Ay] + Dx
d8 sign extended to 32-bit + Dn
If S=l, Source [SFC]+Rn ; else
TRAP

If S=l, Rn+Destination [DFC];
else TRAP

Signed 16 x 16 multiplication
LEAi16 * LDnl 16 + LDnl 32

Appendix E: 68000 /Selected 68020 Instruction Set 493

MULU (EA),Dh:Dn
(68020)

NEC (EA)
NEGX (EA)

NOP
NOT (EA)

OR (E M (EA)
OR1 #data, (EA)

O N #d8, CCR
ORI #d16, SR

PACK -(AX), -(Ay),
#data (68020)
PACK Dx, Dy, #data
(68020)

PEA (EA)

RESET

ROL Dx, Dy

L

B

W

Unsized

Unsized

L

Unsized

2

1
1

1
1

1

2 for B, W
3 for L
2

2

Instruction Sue Length (words) Operation

MULS(EA),Dn (68020) L 2 Signed 32 x 32 multiplication
[EAIIZ * P I , , + [Dnl,, ; Upper
32 bits of the result are ignored.

MULU(EA),(Dn) W 1 Unsigned 16 x 16 multiplication

MULU(EA),Dn (68020) L 2 Unsigned 32 x 32

(Both 68000 and 68020) [EAI,, * [D ~ I , , -+ [D ~ I , ,

multiplication[EA] 32 * [Dn] 32 +
[Dn] lz ; Upper 32 bits of the result
are ignored.
Unsigned multiplication, 32 X 32
+64 (EA) * Dn + Dh:Dn
0 - [EA] + EA
0 - [EA] - X + EA

2

2

1

1

1

ROL #data, Dy B, W, L 1

ROL (EA) B, W, L 1

ROR Dx, Dy B, W, L 1

ROR #data, Dy B, w, L 1

ROR (EA) B, W, L 1

No operation
[EA]’ + EA
[EA]OR[EA] + EA
data OR[EA] + EA

d8 OR CCR + CCR
If S = 1, then dl6VSR -> S R else
TRAP

Source (Unpacked BCD) + data
+ Destination (Packed BCD)
Source (Unpacked BCD) + data
+ Destination (Packed BCD)

[EA] 16 sign extend to 32 bits

If S = 1, then assert RESET line;
else TRAP

+ - [SP]

Same as ROL Dx, Dy except
immediate data specifies number
of times to be rotated from 0 to 7
Same as ROL Dx, Dy except [EA]
is rotated once -
Same as ROR Dx, Dy except the
number of rotates is specified by
immediate data from 0 to 7
Same as ROR Dx, Dy except [EA]
is rotated once

494 Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction S u e Length (words) Operation

ROXL Dx, Dy B, w, L 1

ROXL #data, Dy B, W L

ROXL (EA) B, W L

1 Same as ROXL Dx, Dy except
immediate data specifies number
of rotates from 0 to 7

Same as ROXL Dx, Dy except
[EA] is rotated once

I ROXR Dx, Dy B, W L

ROXR #data, Dy 1 Same as ROXR Dx, Dy except
immediate data specifies number
of rotates from 0 to 7

Same as ROXR Dx, Dy except
[EA] is rotated once

If S = 1, then [SP] + + SR; [SP] +
+ PC, else TRAP

[SP] + + c c ; [SP] + -+ PC

[SP] + + PC

- (Ax)lO - (Ay)lO - X + (AX)

[Dx] 10 - [Dy] 10 - X -+ Dx

If C = 0, then 1s + [EA] else 0s
+ LEA1
Same as SCC except the condition
i s C = l

Same as SCC except if Z = 1

Same as SCC except condition is
always false

Same as SCC except if greater or
equal

Same as SCC except if greater
than

Same as SCC except if high

Same as SCC except if less or
equal

Same as SCC except if low or
same

Same as SCC except if less than
Same as SCC except if N = 1

Same as SCC except if Z = 0

Same as SCC except if N = 0

ROXR (EA) 1

RTE Unsized 1

RTR

RTS

SBCD -(Ay), -(AX)

SBCD Dy, Dx

SCC (EA)

Unsized

Unsized

B

B

B

SCS (EA) B 1

B

B

SGE (EA) B 1

SGT (EA) B 1

SHI (EA)

SLE (EA)

B

B

SLS(EA) B 1

SLT (EA)

SMI (EA)

SNE (EA)

SPL(EA)

Appendix E: 68000 /Selected 68020 Instruction Set 495

Instruction Size Length (words) Operation

ST (EA)

STOP #data

SUB (EA), (EA)

SUBA (EA), An

SUB1 #data, (EA)

SUBQ #data, (EA)

SUBX - (Ay), -(AX)

SUBX Dy, Dx

SVC (EA)

SVS (EA)

SWAP Dn

TAS (EA)

TRAP #vector

TRAPV

TST (EA)

UNLK An

UNPK -(Ax), -(AY),
#data (68020)

UNPK Dx,Dy, #data

B

Unsized

B, W, L

W,L

B, W, L

B, W, L
B, W, L

B, W, L
B

B

w
B

Unsized

Unsized

B,W, L

Unsized

Unsized

Unsized

1

2

1

1

2 for B, W
3 for L
1

1
1

1
1

1
1

1

1

1

1

2

2

Same as SCC except condition
always true

If S= 1, then data + SR and stop;
TRAP if executed in user mode

[EA] - [EA] + EA

An - [EA] + An

[EA] ~ data -+ EA

[EA] - data + EA

- [AX] - [Ay] - X + [AX]

Dx - Dy-X + Dx

Same as SCC except if V = 0

Same as SCC except if V = 1

Dn[31:16]t,Dn[15:0]

[EA] tested; N and Z are affected
accordingly; 1 + bit 7 of [EA]

(vector) + PC; 16 TRAP

If V = 1, then TRAP; else next
instruction

[EA] - 0 + condition codes
affected; no result provided

An -+ SP; [SP]+ +An

Source (Packed BCD) + data -+
Destination (Unpacked BCD)

Source (Packed BCD) + data +

PC + - [SSP], SR + - [SSP],

(68020) Destination (Unpacked BCD)

This Page Intentionally Left Blank

APPENDIX

TTTTTTTT TTTTTTTT mod T I l r/m

PENTIUM INSTRUCTION
FORMAT AND TIMING

ss Index base d32 I 16 18 I none data32 I 16 18 I none

Table F-2, Table F-3, and Table F-5 list all instructions along with instruction encoding
diagrams and clock counts.

E l . INTEGER INSTRUCTION FORMAT AND TIMING

The following sections explain how to use each of the columns of Table F-2.

Format

All instruction encodings are subsets of the general instruction format shown in Figure
F-1 . Instructions consist of one or two primary opcode bytes, possibly an address specifier
consisting of the mod r/m byte and scale-index-base byte, a displacement if required, and
an immediate data field if required.
Within the primary opcode or opcodes, smaller encoding fields may be defined. These fields
vary according to the class of operation. The fields define such information as direction of
the operation, size of displacements, register encoding, or sign extension.

Almost all instructions referring to an operand in memory have an addressing mode byte
following the primary opcode byte(s). This byte, the mod r/m byte, specifies the address
mode to be used. Certain encodings of the mod r/m byte indicate that a second addressing

Figure F-1. General Instruction Format

497

498 Microprocessor Theory and Applications with 68000/68020 and Pentium

Field Name

d

byte, the scale-index-base byte, follows the mod r/m byte to fully specify the addressing
mode.

Description Number of Bits

SDecifies direction of data oueration 1

Addressing modes can include a displacement immediately following the mod r/m byte or
scale-index-base byte. If a displacement is present, the possible sizes are 8, 16, or 32 bits.
If the instruction specifies an immediate operand, the immediate operand follows any
displacement bytes. The immediate operand, if specified, is always the last field of the
instruction.

sreg3

tttn

Figure F-1 illustrates several of the fields that can appear in an instruction, such as the mod
field and the r/m field, but the figure does not show all fields. Several smaller fields also
appear in certain instructions, sometimes within the opcode bytes themselves. Table F-0 is
a complete list of all fields appearing in the instruction set. Subsequent tables list the values
for each of the fields.

Table F-1. Fields within Instructions

Segment register specifier for CS, 3
SS, DS, ES, FS, GS
For conditional instructions, speci- 4

W

eee

fies a condition asserted or a condi-
tion negated
Specifies if data is byte of full-sized
(full-sized is either 16 or 32 bits)

1

I
~~ ~

Specifies a special-purpose (test, I debug. or control) register

0
1

reg

reg field
mod r/m or mod ss index base field

mod r/m or mod ss index base field
reg field

r General register specifier 13

00 1
010

S

reserved DR1
CR2 DR2

Specifies if an immediate data field
must be sign-extended

sreg2 Segment register specifier for CS,
SS, DS. ES

source and which is the destination.

Encoding of Operation Direction (d) Field

Id ISource I Destination 1

Encoding of Special-Purpose Register (eee) Field

eee I Control Register I Debug Register

loo0 I CRO 1 DUO I

Appendix F: Pentium Instruction Format and Timing 499

01 1
100
101

-
I eee I Control Register I Debug Register 1

CR3 DR3
CR4 reserved
reserved reserved

111
I l l 0 1 reserved I DR6

reserved DR7
1

reg Field

000

Register Selected During
16-Bit Data Operations

Register Selected During
32-Bit Data Operations

AX EAX

I I I I
N0TE:Do not use reserved encodings.

Encoding of reg Field When w Field is Not Present in Instruction

00 1
010
01 I

CX ECX
DX EDX
BX EBX

110
111

I I

100 I SP I ESP

SI ESI
DI ED1

101 I BP I EBP

S

0
1

Effect on Effect on
Immediate Data8 Immediate Data16 or Data32

None None
Sign-extend data8 to fill 16-bit or 32-bit None
destination

tttn
0000
000 1

I0010 I B, NAE I Below, Not above or equal 1

Mnemonic Condition
0 Overflow
NO No overflow

I0011 I NB, AE I Not below, Above or equal

500 Microprocessor Theory and Applications with 68000/68020 and Pentium

0100
0101
0110

I tttn I Mnemonic I Condition I
E, z Equal, Zero
NE, NZ
BE. NA

Not equal, Not zero
Below or eaual, Not above

1000
1001
1010
1011

I0111 I NBE, A I Not below or equal, Above I
S Sign
NS Not sign
P, PE Parity, Parity Even
NP, PO Not parity, Parity Odd

1101
1110
1111

I1100 I L, NGE 1 Less than, Not greater than or equal to I
NL, GE
LE, NG
NLE, G

Not less than, Greater than or equal to
Less than or equal to, Not greater than
Not less than or eaual to, Greater than

w Field

0

1

For any given instruction performing a data operation, the instruction is executing as a
32-bit operation or a 16-bit operation. Within the constraints of the operation size, the w
field encodes the operand size as either one byte or the full operation size, as shown in the
following table.

Encoding of Operand Length (w) Field

Operand Size During 16-Blt Operand Size During 32-Blt

8 bits 8 bits
16 bits 32 bits

Data Operations Data Operations

Clock Counts

To calculate elapsed time for an instruction, multiply the instruction clock count as listed in
the tables by the processor clock period (for example, 15 ns for a 66-MHz processor).
The clock count tables assume that data and instruction access hit their respective caches.
A cache miss forces the processor to run an external bus cycle. The 64-bit burst bus of the
Pentium processor is defined as r-b-w, where:

r= The number of clocks in the first cycle of a burst read or the number of clocks per data
cycle in a nonburst read.

b= The number of clocks for the second and subsequent cycles in a burst read.

w= The number of clocks for a write.

The fastest bus the Pentium processor can support is 2-1-2, assuming zero wait states. The
clock counts in the cache miss penalty column assume a 2- 1-2 bus. For slower busses, add
r - 2 clocks to the cache miss penalty for the first quadword accessed. Other factors also
affect instruction clock counts.

Appendix F: Pentium Instruction Format and Timing 501

To simplify the tables, the following assumptions are made:

1. The external bus is available for reads or writes at all times. Otherwise, add clocks
to reads until the bus is available. The processor stalls if the write buffers become full and
the external bus is busy. In that case, add clocks to writes until the bus becomes available.

2.
buffers become empty. For the worst case, add w clocks.

If the write buffers become full, subsequent writes are delayed until the write

3. Accesses are aligned. Add three clocks to each misaligned access.

4.
miss.

Operands are in the data cache. Add 3 + (number of wait states) for each cache

5. The target of a jump is in the code cache. If not, add r clocks for accessing the
destination instruction of a jump. If the destination instruction is not completely contained
in the first qword read, add a maximum of 3b clocks. If the destination instruction is not
completely contained in the first 32-byte burst, add a maximum of another r + 3b clocks.
The penalty for branch misprediction is three clocks.

6. Cache fills complete before subsequent accesses to the same line. If a read misses
the cache during a cache fill due to a previous read or prefetch, the read must wait for the
cache fill to complete. If a read or write accesses a cache line still being filled, it must wait
for the fill to complete.

7. Page translation hits in TLB. A TLB miss typically adds from 13 to 28 clocks to the
instruction depending on whether the Accessed or Dirty bit of the page entries needs to be
set in memory. This assumes that neither page entry is in the data cache and that a page

fault does not occur during address translation.

8.
Clock Counts Table for extra clocks if an interrupt is detected.

No exceptions are detected during instruction execution. Refer to the Interrupt

9. Instructions that read multiple consecutive data items (for example, task switch,
POPA, etc.) and miss the cache are assumed to start the first access on a 32-byte boundary.
If not, an extra cache line fill may be necessary, which may add up to r + 3b clocks to the
cache miss penalty.

10. No address generation interlocks (AGI). AGIs occur when a register being used as part
of an address calculation is the destination register of a previous instruction in either the
pipelines. AGIs cause a one clock delay.

The following abbreviations are used in the clock count columns:

TS
Taskswitch Clock Counts Table.

The time for a task switch, which depends on the target TSS type as shown in the

502 Microprocessor Theory and Applications with 68000/68020 and Pentium

INT The time for an interrupt, which depends on processor mode and type of gate used, as
shown in the Interrupt Clock Counts Table.

Task Switch Clock Counts Table

From

32-Bit, 16-Bit, or V86 TSS
32-Bit, 16-Bit, or V86 TSS
32-Bit, 16-Bit, or V86 TSS

Method I Value of TS I
To

32-Bit TSS 85
16-Bit TSS 85
V86 TSS 71

InterruDt Clock Counts Table

Method

I Real Mode
Protected Mode
InterruptlTrap gate, same level
InterruptlTrap gate, different level
Task gate
Virtual 8086 Mode
InterrupdTrap, same level
InterruptlTrap gate, different level

I Task gate

Cache Hit

11

25
42
1 7 + T S

13
54
1 7 + T S

Value of INT

Miss Penal6

3

6
12
3

3
12
3

Notes

9
9
9,lO

10

Notes

The following abbreviations in the Notes column help to interpret the other columns:

16/32 Clocks apply to 16- and 32-bit modes respectively

L/NL
MN/MX Clocks shown define a range from minimum to maximum
P
R
RV/P
T/NT
U/L
1.

2.
4.

5.

Clocks apply to loop and no loop cases respectively

Clocks apply to protected mode
Clocks apply to real-address mode
First clock applies to real and V86 mode; second applies to protected mode
Clocks apply to taken and not taken cases respectively
Clocks apply to unlocked and locked cases respectively
Assuming that the operand address and stack address fall in different cache
interleaves.
Always locked. Always forced to miss cache.
Clocks = { quotient(count/operand length) } *7 + 9 = 8 if count 5, operand length
(8/ 1 6/32).
Clocks = { quotient(count/operand length)}*7 + 9 = 9 if count operand length
(8/ 16/32).

Appendix F: Pentium Instruction Format and Timing 503

Instruction

AAA - ASCII Adjust after
Addition

AAD-ASCIIAdjustAX
before Division

AAM-ASCIIAdjustAX
after Multiply

AAS - ASCII Adjust AL
after Subtraction

8.

9.
10.

12.
13.

14.
15.
16.
21.
23.
24.
25.

Format

00 1 1 01 1 1

1101 0101 : 0000 1010

1101 0100: 0000 1010

00 1 1 1 1 1 1

Penalty for cache miss: add 2 clocks for every stack value copied to the new stack
frame.
Add 8 clocks for each load of an unaccessed descriptor.
Refer to Task Switch Clock Counts Table for value of TS.
For notes 12 - 13:b = 0 - 3, nonzero byte number;
i = 0 - 1, nonzero nibble number; n = 0 - 3, nonzero bit number in nibble.
Clocks= 8 + 4(b + 1) + 3(i + 1) + 3(n + 1) = 6 if second operand = 0.
Clocks= 9 + 4(b + 1) + 3(i + 1) + 3(n + 1) = 7 if second operand = 0.
For notes 14 - 15: n = bit position (0 - 3 1).
Clocks= 7 + 2(32 - n) = 6 if second operand = 0.
Clocks= 8 + 2(32 - n) = 7 if second operand = 0.
Assuming that the two string addresses fall in different cache interleaves.
Refer to the Interrupt Clock Counts Table for value of INT.
Add r + 3b for instruction cache miss. Add 3 for branch misprediction.
Clocks shown define a range from minimum to maximum.
Add r + 3b for instruction cache miss.

reg2 to regl
memory to register
register to memory

Pairing

0001 OOlw : 11 regl reg2
0001 OOlw : mod reg r/m
0001 OOOw : mod reg r/m 3 U/L

1
2

The following abbreviations are used in the Pairing column:

PV
NP
UV Pairable in either pipe
PU

Pairable if issued to V-pipe
Not pairable, executes in U-pipe

Pairable if issued to U-pipe

Table F-2. Integer Clock Count Summary

ADC -ADD with Carry I

Clocks

3

10

18

3

Notes

I l l I immediate to register 1000 OOsw : 11 010 reg : im- I mediate data
I immediate to accumulator I 000 1 0 1 Ow : immediate data I 1 I I

504

Table F-2. Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction

immediate to memory

ADD -Add

Format Clocks

1000 OOsw : mod 010 r/m :
immediate data

3

reg 1 to reg2
reg2 to regl
memory to register 1 0000 OOlw : mod reg r/m I i
register to memory
immediate to register

immediate to accumulator

0000 OOOw : mod reg r/m
1000 OOsw : 11 000 reg : im-
mediate data
0000 OlOw : immediate data

~ ~~

0000 OOOw : 11 regl reg2
0000 OOlw : 11 regl reg2

1
1

l 3 immediate to memory 1000 OOsw : mod 000 r/m :
immediate data

reg 1 to reg2
reg2 to regl
memory to register
register to memory

AND - Logical AND I I
0010 OOOw 11 regl reg2
0010 OOlw 11 regl reg2
00 10 00 1 w mod reg r/m
0010 OOOw : mod reg r/m

1
1
2
3

I 1 immediate to register 1000 OOsw : 11 100 reg : im-
mediate data

immediate to accumulator I 0010 OlOw : immediate data I 1
immediate to memory l 3 1000 OOsw : mod 100 r/m :

immediate data
ARPL -Adjust RPL Field
of Selector 1 0110 0011 : 11 regl reg2 from register
from memory 01100011: modreg r/m
BOUND - Check Array 0 1 10 00 10: mod reg dm
Against Bounds

if within bounds 1 j
if out of bounds I
BSF - Bit Scan Forward

reg 1, reg2 0000 1111 : 1011 1100 11
reg2 regl

6-34

doubleword 6-42

Notes

U/L

U/L

u/L I

U/L

U/L

MNIMX,
12
MN/MX,
12

Appendix F: Pentium Instruction Format and Timing

Table F-2. Cont.

1 BSWAP - Byte Swap BT
' - Bit Test

register, immediate data

505

doubleword

Instruction I Format 1 Clocks

7-72

Notes

~ 0 0 ~ 1 1 1 :TO11 ll00mod memory, reg
reg r/m

word 6-35 MN/MX,
13
MN/MX,
13
MN/
MX,14

doubleword

doubleword

memory, reg 0000 1111 : 1011 1101: mod
reg r/m

word 7-40 MN/
MX, 15
MN/
MX, 15

0000 1111 : 1100 1 reg 1

00001111 1011 1010:11 100
reg: imm8

4

4 memory, immediate imm8
data
reg 1, reg2

0000 1111 1011 1010: mod
100 r/m :
0000 1111 : 10100011 : 11
reg2 regl
0000 1111 : 10100011: mod
reg r/m

4

memory, reg 9

BTC - Bit Test and
Complement

register, immediate data 0000 1111 : 1011 1010 11 111
reg: imm8

7

0000 1111: 1011 1010: mod
111 rlm:

8 UIL memory, immediate imm8
data
reg 1, reg2

memory, reg

7 0000 1111 : 1011 1011 : 11
reg2 regl
0000 1111 : 1011 1011: mod
reg r/m

13 U/L

I register, immediatedata I0000 1111: 1011 1010: 11 17
110 reg: imm8

memory, immediate imm8 I data
0000 1111: 1011 1010: mod
110r/m:

8 UIL

506 Microprocessor Theory and Applications with 68000/68020 and Pentium

Table F-2. Cont.

Instruction I Format

reg 1, reg2 0000 1111 : 1011 0011 : 11
reg2 regl
0000 1111: 1011 0011: mod
reg r/m

memory, reg + BTS - Bit Test and Set

0000 1111 : 1011 1010: 11 I 101 reg: imm8
register, immediate data

~~

memory, immediate imm8
data
reg 1, reg2

memory, reg

CALL - Call Procedure
(in same segment)

direct

0000 1111: 1010 1011: 11
reg2 regl
0000 1111 : 1010 1011 :mod
reg r/m

11 10 1000 : full displacement

memory indirect
CALL - Call Procedure
(in other segment)

direct

to same level
thru gate to same level

11 11 11 11 :mod 010 r/m

1001 1010 : unsigned full
offset, selector

to inner level, no parameters I
to inner level, x parameters
(d)words
to TSS
thru task gate
indirect 1111 1111 : mod011 r/m
to same level I
thru gate to same level
to inner level, no parameters
to inner level, x parameters
(d)words + to TSS
thru task gate

Clocks Notes

7

13 U/L

7

8 U/L

7

13 U/L

1 23
2 I23

I I

P,9,23,24

P,9,25
45+2x P,9,25

5-14 I P,9,23,24 I

22+TS I P,10,9,25 I

Appendix F: Pentium Instruction Format and Timing 507

rable F-2. Cont.

CWDE - Convert Word to

Notes

16

U/L

U/L

CBW - Convert Byte to
Word
CWDE - Convert Word to
Dou bleword
CLC - Clear Carry Flag
CLD - Clear Direction
Flag
CLI - Clear Interrupt
Flag
CLTS - Clear Task-
Switched Flag in CRO
CMC - Complement
Carry Flag
CMP - Compare Two
Operands
regl with reg2
reg2 with regl
memory with register
register with memory
immediate with register

immediate with accumulator
immediate with memory
CMPS/CMPSB/CMPSW/
CMPSD - Compare String
Operands
CMPXCHG - Compare
and Exchange
regl , reg2

memory, reg

CMPXCHGSB - Compare
and Exchange 8 Bvtes
memory, reg
_ _ _ ~

CWD - Convert Word to
Dword COQ - Convert
Dword to Qword

1001 1000

1 1 1 1 1000

1111 1000

1111 1010

0000 1111 : 0000 0110

1111 0101

0011 lOOw: 11 regl reg2
0011 lOlw : 11 regl reg2
00 11 1 OOw : mod reg r/m
0011 lOlw : mod reg r/m
1000 OOsw : 11 111 reg : im-
mediate data
00 1 1 1 1 Ow : immediate data
1000 OOsw : mod 11 1 r/m
101 001 1 w

0000 1111 : 1011 ooow: 11
reg2 regl
0000 1111 : 1011 OOOw: mod
reg r/m

0000 1111 : 11000111 :mod
reg r/m
1001 1001

3

2
2

7

10

2

I

1 I

2
2

I 1

I 5

l o I u/L

508 Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction

DAA - Decimal Adjust AL
after Addition

DAS - Decimal Adjust AL
after Subtraction

DEC - Decrement by 1

Table F-2. Cont.

Format

00 10 0 1 1 1

0010 11 11

Or
memory
DIV - Unsigned Divide

accumulator by register

0100 1 reg 1
1111 l l l w : mod 001 r/m 3 U/L

1111 Ol lw: 11 110reg

accumulator bv memorv

word 25
doubleword
1111 Ollw :mod 110r/m

L=O

divisor -

ENTER - Make Stack
Frame

level (L)
for Procedure Parameters

byte 17
word 25
doubleword 41
1100 1000 : 16-bit displace-
ment : 8-bit

IDIV - Signed Divide I I I I

L = 1
L> 1
HLT - Halt

15
1 5 + 2 L 8

1111 0100

I doubleword 146 I I

accumulator by register
divisor -

1111 Ollw : 11 111 reg

word 30
byte 22

I doubleword I 46 I

accumulator by memory
divisor -

1111 Ollw :mod 111 r/m
byte 22
word 30

IMUL - Signed Multiply

accumulator with register
multiplier -

1111 Ollw : 11 101 reg
bvte 11

Appendix F: Pentium Instruction Format and Timing 509

Table F-2. Cont.

I Format I Clocks I Notes

doubleword
1111 Ollw :mod 101 reg
bvte

Instruction

10

11

I word

word
doubleword

10
10

I word
doubleword
0000 1111 : 1010 1111 : 11 :
regl reg2

I regl with reg2

multiplier - - bvte
word
doubleword

register with memory I 0000 1111 : 1010 1111: mod
reg r/m

I multiplier -

doubleword
regl with imm. to reg2 0110 lOsl : 11 regl reg2:

immediate data
multiplier - byte

word
I doubleword I 1
01 10 lOsl : mod reg r/m :
immediate data I mem. with imm. to reg

multiplier - +
I INC - Increment by 1

memory

INT - Single-Step Interrupt
13

1100 1100

I 1100 1110 I I I INTO - Interrupt 4 on
Overflow

14 I21,25 1
I 0000 11 1 1 : 0000 1000 I 1 5 I

5 10 Microprocessor Theory and Applications with 68000/68020 and Pentium

direct
register indirect
memory indirect

rable F-2. Cont.

Instruction Format

INVLPG - Invalidate TLB
Entry 111 r/m

IRETDRETD - Interrupt
Return

real mode or virtual 8086
mode

0000 1 11 1 : 0000 0001 : mod

11 00 1 1 11

1 1 10 1001 : full displacement
1111 1111 : 11 100reg
1111 1111 :mod lOOr/m

to same level
thru call gate ro same level
thru TSS

4-13
18
19 + TS

Clocks Notes

~~

29

7

protected mode I
to same level I 10-19

27 to outer level
to nested task
Jcc -Jump if Condition is

8-bit displacement 01 11 tttn : 8-bit displacement

P,9,25
10 + TS

1 23 I
1 I 23 full displacement 0000 1 11 1 : 1000 tttn : full

displacement
JCXZ/JECXZ - Jump on
CWECX Zero I ment

11 10 001 1 : 8-bit displace- 615 T/NT,23 I
I address size prefix differentiates JCXZ from JECXZ I
JMP - Unconditional Jump
(to same segment)

I 1110 1011 : 8-bit displace- I ment
1

23 I
1

2
2

JMP - Unconditional
Jump (to other segment)

1110 1010 : unsigned full I offset, selector
direct intersegment 3

I to same level I 13-12
18 thru call gate ro same level

thru TSS
thru task gate

P,9,25

P, 10,9,25
19 + TS
20 + TS

I indirect intersegment I 1111 1111: mod 101 r/m I 4 R,23 I

P,10,9,25 I

Appendix F: Pentium Instruction Format and Timing

Table F-2. Cont.

511

Format
1001 1111

0000 1111: 0000 0010: 11
reg1 reg2
00001111 :00000010:mod
reg r/m
11000101: modregdm

Instruction
LAHF - Load Flags into AH
Register
LAR - Load Access Rights
Byte
from register

Clocks Notes
2

8

8

4-13 9.24 I LEA - Load Effective Ad-
dress

0000 1111: 00000000: 11
010 reg
0000 0000 : mod 010 r/m

LEAVE - High Level Proce-
dure Exit

9

9

I LES - Load Pointer to ES

0000 1111 : 00000001 : 11
110 reg
0000 1111 : 0000 0001 : mod
110 r/m
1111 0000

LFS - Load Pointer to FS

8

8

1

LGDT - Load Global De-
scriptor Table Register

1010 ll0w

LGS -- Load Pointer to GS

2

LIDT - Load Interrupt
Descriptor Table Register

11 10 0010 : 8-bit displace-
ment

LLDT - Load Local De-
scriptor Table Register

5/6 L/NL,23

LDTR from register

I LDTR from memory
LMSW - Load Machine
Status Word
from register

from memory

LOCK -Assert LOCK#
Signal Prefix
LODS/LODSB/LODS W/
LODSD- Load String Op-
erand
LOOP - Loop Count

I 1 1000 1101: mod reg r/m

13
1100 1001

010 r/m
0000 1111 : 1011 0101 :mod
reg r/m

4-13 I I 9,24 I
0000 1111: 0000 0000 : 11
010 reg

6

5 12 Microprocessor Theory and Applications with 68000/68020 and Pentium

rable F-2. Cont.

Instruction

LOOPZLOOPE - LOOP
Count while Zeromqual

Count while not Zeromqual

LSL - Load Segment Limit

LOOPNZLOOPNE - LOOP

Format Clocks Notes

11 10 0001 : 8-bit displace- 7/8 L/NL,23
ment
1 11 0 0000 8-bit displacement 7/8

I

I
from register

from memory

LSS - Load Pointer to SS

0000 1111 : 0000 0011 : 11
regl reg2
0000 1111 : 0000 0011 : mod
reg rlm
0000 1111 : 1011 0010: mod
reg r/m

8 I
8 I

LTR - Load Task Register

from register

from memory

0000 1111 : 0000 0000 : 11
011 reg
0000 11 11 : 0000 0000: mod
011 r/m

MOV - Move Data

regl to reg2
reg2 to reg 1
memory to reg

1000 lOOw : 11 regl reg2
1000 lOlw : 11 regl reg2
1000 lOlw : mod reg r/m

reg to memory I 1000 lOOw : mod reg r/m I 1 I
immediate to reg llOOO11w: l l000reg: im-

mediate data
Or
immediate to memory

memory to accumulator

accumulator to memory

MOV - Move to/from Con-
trol Registers

I CRO from register

CR2 from register

CR3 from register

101 1 w reg : immediate data
1100 Ollw : mod 000 r/m :
immediate data
1010 OOOw : fill displace-
ment
10 10 00 1 w : full displace-
ment

1
1

1

1

0000 1111 : 0010 0010: 11
000 reg
0000 1111 : 00100010: 11
0 1 Oreg
0000 1111 : 00100010: 11
011 reg

11

12

21

Appendix F: Pentium Instruction Format and Timing

Table F-2. Cont.

513

Format Clocks I Notes Instruction

CR4 from register 00001111:00100010: 11
100 reg l4 I

register from CRO-4 0000 1111 : 0010 0000: 11
eee reg

MOV - Move to/from De-
bug Registers
DRO-3 from register 0000 1111 : 00100011 : 11

eee reg.
DR4-5 from register 0000 1111 : 00100011 : 11

eee reg I 12

DR6-7 from register 0000 1111 : 00100011 : 11
eee reg l 1 I

register from DR6-7
l 1 I 0000 1111 : 0010 0001: 11

eee reg
0000 1111 : 0010 0001: 11
eee reg
0000 1111: 00100001: 11
eee reg

register from DR4-5
l2 I

register from DRO-3 I 2 +
2- 1 11 8- 17 RVlP.9.24

MOV - Move to/from Seg-
ment Registers

reg to segment reg
reg. to SS

1000 1110: 11 sreg3 reg
1000 1110 : 11 sreg3 reg
1000 11 10: mod sreg3 r/m 3 1 9 2 4 memory to segment reg

;-12/ 8-17 I RV/P,9,24 1000 1 11 0 : mod sreg3 r/m
1000 1100 : 11 sreg3 reg
1000 1100 : mod sreg3 r/m

memory to SS

segment reg to reg
segment reg to memory
MOVS/MOVSB/MOVSW/ 1010 OlOW
MOVSD - Move Data from
String to String

MOVSX - Move with Sign-
Extend

reg2 to reg 1 0000 1111 : 1011 l l l w : 11
regl reg2

3 I
memory to reg 0000 1111 : 1011 l l l w : mod

reg rlm
3 I

MOVZX - Move with Zero-
Extend

reg2 to regl 0000 1111 : 1011 Ollw : 11
regl reg2

5 14

Table F-2. Cont.

Microprocessor Theory and Applications with 68000/68020 and Pentium

Instruction

memory to reg

MUL - Unsigned Multipli-
cation of AL or AX

accumulator with register

Clocks I Notes Format

0000 1111 : 1011 Ollw :mod
reg r/m

1111 Ollw : 11 1OOreg

multiplier - byte
word
doubleword

reg 1 to reg2
reg2 to reg 1
memorv to register

0000 lOOw : 11 regl reg2
0000 lOlw : 11 regl reg2
0000 10 1 w : mod reg r/m

1
1
2

multiplier - I byte I l l I 1
word
doubleword

accumulator with memory 1111 O l l w : mod 1OOreg

I NEG - Two’s Complement
Negation

memory I 1111 Ollw : mod 011 r/m 13

IP - NO Operation I 1001 0000
NOT - One’s Complement
Negation

memory 1111 Ollw : mod010r/m I ; 1111 Ol lw: 11 010reg

register to memory I 0000 lOOw : mod reg r/m 13 I U/L
immediate to register 1000 OOsw : 11 001 reg : im- 1

mediate data I
immediate to accumulator I 0000 1 low : immediate data I 1 I
immediate to memory 1000 OOsw : mod 00 1 r/m :

immediate data
3

POP - Pop a Word from
the Stack

reg 1000 1111:ll OOOreg 1

memory I 1000 1111: mod 000 r/m 13

Appendix F: Pentium Instruction Format and Timing 515

Table F-2. Cont.

POP - Pop a Segment Reg-
ister from the Stack

Format Clocks Notes

,000 sreg2 11 1 3-12 9,24 I segment reg CS, DS, ES
I segment reg ss 000 sreg2 11 1 3-121 8-17 RV/P,9,24

3-12 9.24 ,0000 1111: 10 sreg3 001
0110 0001 5

I POPF/POPFD - Pop Stack
into

1001 1101 4/14 RVIP

I FLAGS or EFLAGS Reg-
ister
PUSH - Push Operand
onto the Stack

I 1111 1111 :1111Oreg
0101 Oreg 1
1111 1111 :mod 110rIm 2 1
01 10 1 OsO : immediate data 1 immediate

PUSH - Push Segment
Register onto the Stack

1 segment reg CS,DS,ES,SS
segment reg FS,GS
PUSHA/PUSHAD - Push

General Registers

000 sreg2 110
0000 1111: 10sreg3 000 1

~~

0110 0000 5

I PUSHFPUSHFD - Push
Flags

1001 1100 319 RVIP

Register onto the Stack
RCL - Rotate thru Carry
Left

1101 OOOw: 11 010reg 1 reg by 1
memory by 1
reg by CL

1101 OOOw : mod 010 rlm 3
7-24 MN/Mx,4

MNlMX.5 1101 OOlw : mod 010 rlm
llOOOOOw: 11 010reg:
imm8 data
1100 OOOw : mod 010 rlm :
imm8 data

9-26
8-25 MN/MX,4

10-27 MN/Mx,5

5 16 Microprocessor Theory and Applications with 68000/68020 and Pentium

7
9 + 4 c

Table F-2. Cont.

RCR - Rotate thru Carry

reg by 1

16

I memory by 1 1101 OOOw : mod011 r/m I 3 I I
reg by CL
memory by CL
reg by immediate count

MN/Mx,4
MN/Mx,5
MN/Mx,4

10-27 MN/Mx,5

20-24

1101 OOlw : 11 011 reg
1101 OOlw : mod011 r/m
1100 OOOw : 11 011 reg:
imm8 data
1100 OOOw : mod 011 r/m :
imm8 data
0000 1111: 0011 0010

memory by immediate count

RDMSR - Read from

Specific Register

I REP LODS - Load String 1111 0011 : 010 l l0w I I I

REP MOVS - Move String 1111 0011 : 1010 OlOW
I c = o 16 I = REP STOS - Store String

I13 I16
13 + c I16

I

1111 0011 : 1010 l0lw

I 9 + c I
1111 0011: lOlO0llw I I I REPE CMPS - Compare

String

(Find Non-Match)

c = o I I C > O

I REPE SCAS - Scan String 1111 0011 : 1010 l l l w I I I I yi: Non-AL/AX/EAX)

7
I C > O 1 8 + 4 c 116
REPNE CMPS - Compare

String (Find Match) c 1111 0010 : 1010 Ollw

1111 0010: 1010 l l l w I I I REPNE SCAS - Scan String

Appendix F: Pentium Instruction Format and Timing

Table F-2. Cont.

517

Format Instruction

l k Z E G G E 7
Clocks Notes

8 + 4c
rc = 0

16
17 I

RET - Return from Proce-

1100 001 1
1100 0010 : 16-bit displace-
ment

I I

1100 1011 1 4 I R.23 1
I to same level I 4-13 I P,9,23,24 I

?-+r P,9,25 to outer level
adding immediate to SP 1100 1010 : 16-bit displace-

ment
4-13 to same level

to outer level
ROL - Rotate (not thru
Carry) Left

reg by 1

23

memory by 1 1101 OOOw : mod 000 r/m I 3 I I
1101 OOlw: 11 000reg
1101 OOlw : mod 000 r/m
llOOOOOw: 11 000reg:
imm8 data
1100 OOOw : mod 000 dm :
imm8 data

I I

1101 OOOw : 11 001 reg I 1 I I
h e m o r y by 1 1101 OOOw : mod 001 r/m I 3 I I

1101 OOlw: 11 001 reg
1101 OOlw : mod 001 r/m
1100 OOOw : 11 001 reg:
imm8 data

1
~~ ~~

1100 OOOw : mod 001 r/m :
imm8 data

5 18 Microprocessor The0 y and Applications with 68000/68020 and Pentium

1101 OOOw : 11 111 reg
1101 OOOw :mod 111 r/m
1101 OOlw : 11 111 reg

Table F-2. Cont.

RSM - Resume from

Management Mode

1
3
4

Format Clocks Notes

0000 1111 : 1010 1010 1

0000 1111 : 1001 mn: 11 000
reg

1

I SAHF - Store AH into
Flags l 2 1001 1110

SAL - Shift Arithmetic I Left
same instruction as SHL I

SAR - Shift Arithmetic
Right

1101 OOlw :mod 111 rlm I 4 I I memory by CL

I 1 1100 OOOw : 11 111 reg:
imm8 data

reg by immediate count

memory by immediate count 1100 OOOw : mod 111 r/m :
imm8 data

SBB - Integer Subtraction
with Borrow

0001 100w : 11 regl reg2 1
0001 lOlw : 11 regl reg2
0001 lOlw : mod reg r/m
000 1 1 OOw : mod reg r/m I register to memory

immediate to register I 1000 OOsw : 11 011 reg: im- 1
mediate data I

I immediate to accumulator 0001 1 low : immediate data I 1 I I
U/L immediate to memory 1000 OOsw : mod 01 1 r/m :

immediate data

14
1101 l l l w SCASISCASBISCASWI

SCASD
- Scan String
SETcc - Byte Set on Con-
dition

0000 1111 : 1001 tttn: mod
000 r/m

2 I I I

~~~ ~ ~ ~~ 

memory 

I SGDT - Store Global 00001111:00000001:mod 4 
000 r/m I 



Appendix F: Pentium Instruction Format and Timing 

Table F-2. Cont. 

519 



520 

Table F-2. Cont. 

Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instruction Format 

imm8 
register by CL 0000 1111 : 1010 1101 : 11 

reg2 regl 
memory by CL I0000 1111 : 1010 1101 :mod 

reg r/m 
SIDT - Store Interrupt 0000 11 11 : 0000 0001 : mod I 001 r/m 
Descriptor Table Register I 
SLDT - Store Local De- 
scriptor Table Register 

to register 0000 1111: 00000000: 11 I 000 reg 
to memory 0000 1 11 1 : 0000 0000 : mod 

000 r/m 
SMSW - Store Machine 
Status Word 

to register 0000 1111 : 00000001:11 I looreg 
to memory 00001111 :00000001:mod I 100 r/m 

STOS/STOSB/STOSW/ 1010 lOlw 
STOSD 

- Store String Data I 
STR - Store Task Register 

to register 0000 1111 : 0000 0000 : 11 
001 reg 

to memory 0000 11 11 : 0000 0000 : mod 

reg2 to reg 1 10010 l01w : 11 reg1 reg2 

mediate data 

Clocks Notes 

4 I 
I 5 

I 4 

2 I 
2 I 
4 I 
4 I 

3 I 

~1 I 
b I 



Appendix F: Pentium Instruction Format and Timing 

Table F-2. Cont. 

52 1 

I memory and register 
immediate and register 

immediate and accumulator 
immediate and memory I 
VERR - Verify a Segment 

register 

memory 

VERW - Verify a Segment 

register 

memory 

and 

Invalidate Data Cache 
WRMSR - Write to 
Model- 

I Specific Register 
XADD - Exchange and I Add 

reg 1, reg2 I 
memory, reg I 
XCHG - Exchange Regis- 
terMemory with Register 

regl with reg2 
accumulator with reg 

Format 

1000 OOsw : mod 101 r/m : 
immediate data 

1000 OlOw : 11 regl reg2 
1000 0 1 Ow : mod reg r/m 
1111 Ol lw:  11 000reg: im- 
mediate data 
10 10 1 OOw : immediate data 
11 11 01 lw : mod 000 r/m : 
immediate data 

0000 1111 : 0000 0000 : 11 
100 reg 
0000 1111 : 0000 0000: mod 
100 r/m 

0000 1111 : 0000 0000 : 11 
101 reg 
0000 11 11 : 0000 0000 
mod 101 r/m 
1001 1011 
0000 1111: 0000 1001 

0000 1111 : 0011 0000 

0000 1111 : 1100 ooow : 11 
reg2 regl 
0000 1111 : 1100 OOOw : mod 
reg r/m 

1000 Ollw : 11 regl reg2 
1001 0 reg 



522 

Table F-2. Cont. 

Microprocessor Theory and Applications with 68000/68020 and Pentium 

Format 

1000 Ollw : mod reg r/m 
Instruction 

memorv with reg 
Clocks Notes 

3 2 

0011 OOlw : 11 regl reg2 
001 1 OOlw : mod reg r/m 
001 1 OOOw : mod reg r/m 
1OOOOOsw: 11 110reg:im- 
mediate data 
00 1 1 0 1 Ow : immediate data 

1 
2 
3 U/L 
1 

1 

1111 0000 
01100110 

1 
1 

0010 0110 
0110 0100 
0110 0101 

1 
1 
1 

I N T + 9  
I N T + 9  
I N T + 9  

21 

21 

1101 0111 

14 I XLATKLATB - Table 
Look-up Translation 

I regl to reg2 0011 O O O ~ :  11 regl reg2 I 1 I I 

I immediate to accumulator 

IUlL I immediate to memory 1000 OOsw : mod 110 r/m : 
immediate data 

I Prefix Bytes 

address size b 01 10 011 1 11 

I oDerand size 
I CS segment override 0010 1110 I 1  1 
I DS segment override 0011 1110 

I SS segment override 0011 0110 I 1  
I r ~ ~ + 1 4  121 External Interrupt 

NMI - Non-Maskable Inter- I*T+6 l 2 I  I 
INT+40 21 I Page Fault 

Virtual 8086 Mode Excep- 
tions 
CLI 

I STI e PUSHF 

I IRET 
IIN 



Appendix F: Pentium Instruction Format and Timing 523 

Table F-2. Cont. 

Instruction Format I I 
I IN - Input 

from: 
fixedpod 1110 OlOw : 
number I VOd 

Ivariableport ~111Ol lOw 
OUT - Out- 

number :port 
variable port 1 1 10 1 1 1 w 
INS-Input 0110 llOw + from DX Port 
OUTS- 0110 l l l w  
Output to DX 

lPo* I 
REPINS- 1111 0011 
Input String :0110 

REPOUTS 1111 0011 + String 
- output :o 1 10 

l l l w  I 

Real 
Mode 

7 

7 

12 

12 
9 

13 

11 
+3c 

13 + 
4c 

Notes 4 
21 I 

21 I 



524 

NOTES: 
1. 
2. 
3. 
on second operation. 

Microprocessor Theory and Applications with 68000/68020 and Pentium 

Two clock cache miss penalty in all cases. 
c = count in CX or ECX 
Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty 



APPENDIX 

G 
PENTIUM INSTRUCTION SET 
IN REAL MODE (SELECTED) 

Instructions Interpretation Comments 

AAA ASCII adjust AL after addition This instruction has implied 
addressing mode; this instruction 
is used to adjust the content of 
AL after addition of two ASCII 
characters. 

AAD ASCII adjust for division This instruction has implied 
addressing mode; converts two 
unpacked BCD digits in AX into 
equivalent binary numbers in 
AL; AAD must be used before 
dividing two unpacked BCD 
digits by an unpacked BCD byte. 

AAM ASCII adjust after 
multiplication 

This instruction has implied 
addressing mode; after 
multiplying two unpacked BCD 
numbers, adjust the product in 
AX to become an unpacked 
BCD result; ZF, SF, and PF are 
affected. 

AAS ASCII adjust AL after This instruction has implied 
subtraction addressing mode used to adjust 

AL after subtraction of two ASCII 
characters. 

ADC mem, data mem t mem + data + CF Data can be 8-, 16- or 32-bit; 
mem uses DS as the segment 
register; all flags are affected. 

525 



526 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation Comments 

ADC reg, data reg t r e g  + data + CF Data can be 8-, 16- or 32-bit; 
register cannot be segment 
register; all flags are affected. 

ADD medreg medreg 1 t medreg 2 + Memory or register can be 8- , 16, 
or 32-bit; all flags are affected; 
no segment registers are allowed 
as source or destination; mem 
uses DS as segment register; all 
flags are affected; no memory-to- 
memory ADD is permitted. 

1, medreg 2 medreg 1 

ADD mem, data mem t mem + data 

ADD reg, data reg t reg + data 

Mem uses DS as the segment 
register; data can be 8-, 16-, or 
32-bit; all flags are affected. 

Data can be 8- , 16, or 32-bit; no 
segment registers are allowed; all 
flags are affected. 

AND medreg medreg 1 t medreg 1 AND This instruction logically ANDs 
8- , 16- or 32-bit data in medreg 
1 with 8- or 16- or 32-bit data in 
medreg  2; all flags are affected; 
OF and CF are cleared to zero; 
no segment registers are allowed; 
no memory-to-memory operation 
is allowed; mem uses DS as the 
segment register. 

1, medreg 2 medreg 2 

AND mem, data mem t m e m  AND data Data can be 8-,  16-or 32-bit; 
mem uses DS as the segment 
register; all flags are affected 
with OF and CF always cleared 
to zero. 

AND reg, data reg t reg AND data Data can be 8- , 16-, or 32-bit; 
reg cannot be segment register; all 
flags are affected with OF and CF 
cleared to zero. 

BSF redmem, 
redimm8 

Bit Scan Forward. 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 527 

Instructions 

BSR reg/mem, 
reg/imm8 

Interpretation Comments 

Bit Scan Reverse. 

BT reglmem, 
reg/imm8 

BTC reg/mem, 
reg/imm8 

BTR reg/mem, 
reg/imm8 

BTS reg/mem, 
reg/imm8 

CALL LABEL 

CALL reg 16 

CALL mem 16 

CALL FAR 
PTR LABEL 

CALL a subroutine in the 
same segment addressed by 
the contents of a 16-bit general 
register 

CALL a subroutine addressed 
by the content of a memory 
location pointed to by 
Pentium’s 16-bit register such 
as BX, SI, and DI 

Bit Test. 

Bit Test and Complement. 

Bit Test and Reset. 

Bit Test and Set. 

Call a subroutine called 
“LABEL”in the same segment 
with signed 16-bit displacement 
(intrasegment CALL). 

The Pentium decrements SP by 2 
and then pushes IP onto the stack, 
then specified 16-bit register 
contents (such as BX, SI, and 
DI) provide the new value for IP; 
CS is unchanged (intrasegment 
CALL). 
The Pentium decrements SP by 2 
and pushes IP onto the stack; the 
Pentium then loads the contents 
of a memory location addressed 
by the content of a 16-bit register 
such as BX, SI, and DI into IP; 
CS is unchanged (intrasegment 
CALL). 

CALL a subroutine in another 
segment. FAR PTR indicates 
that the subroutine called 
‘LABEL‘ is in another segment, 
and both CS and IP change. 
(intersegment CALL). 



528 Microprocessor Theoty and Applications with 68000/68020 and Pentium 

Instructions 

CBW 

CDQ 

CLC 

CLD 

CLI 

CMC 

CMP medreg  1, 
medreg  2 

CMP medreg,  
data 

CMPSB 

Interpretation Comments 

Convert a byte to a word Extend the sign bit (bit 7) of AL 
register into AH. 

Convert a doubleword to a Extend the sign bit (bit 3 1) of 
quadword EAX register into EDX:EAX. 

C F t O  Clear carry to zero. 

D F t O  Clear direction flag to zero. 

IF t 0 Clear interrupt enable flag to zero 
to disable maskable interrupts. 

CF t NOT CF One’s complement carry. 

medreg  1 - medreg  2, flags reg can be 8- or 16- or 32-bit; no 
are affected memory-to-memory comparison 

allowed; result of subtraction 
is not provided; all flags are 
affected. 

[medreg] - data, flags are 
affected 

Subtracts 8 - ,  16-, or 32-bit data 
from mem or reg and affects 
flags; no result is provided. 

FOR BYTE 
(SI) - (DI), flags are affected 
SI t SI f 1 
D I t D I ?  1 

8- , 16, or 32-bit data addressed 
by DI in ES is subtracted 
from 8- , 16- , or 32-bit data 
addressed by SI in DS and flags 
are affected without providing 
any result; if DF = 0, then SI 
and DI are incremented by one 
for byte, two for word, four for 
doubleword; if DF = 1, then SI 
and DI aredecremented by one 
for byte, two for word, four for 
doubleword; the segment register 
ES in destination cannot be 
overridden. 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 529 

Instructions Interpretation 

CMPSD FOR DOUBLE WORD 
(SI) - (DI), flags are affected 
SI t SI f 4 
DI t DI f 4  

CMPSW FOR WORD 
(SI) - (DI), flags are affected 
SI t SI f 2 
DI t DI f 2 

CWDE Convert a word to 32 bits in 
EAX 

DAA Decimal adjust AL after 
addition 

DAS Decimal adjust AL after 
subtraction 

DEC mem / reg medreg t medreg - 1 

DIV medreg 16/8 bit divide: 
AX 

((unsigned mem8 / reg8 

AH+ Remainder 
AL t Quotient 
32/16 bit divide: meml6/regl6 

DX t Remainder, 
AX+ Quotient 

division) 

DX AX 

Comments 

Extend the sign bit of AX (bit 15) 
into EAX. 

This instruction uses implied 
addressing mode; this instruction 
converts contents of AL into 
BCD; DAA should be used after 
addition of two packed BCD 
bytes. 

This instruction uses implied 
addressing mode; converts the 
contents of AL into BCD; DAS 
should be used after subtraction 
of two packed BCD bytes. 

used to decrement an 8-, 
16-, or 32-bit register (except 
segment registers) by 1. Can also 
decrement 8- or 16-, or 32-bit 
contents of memory by 1; does 
not affect the carry flag. 

Medreg is 8-bit for 16-bit 
by 8-bit divide and 16-bit for 
32-bit by 16-bit divide; this is 
an unsigned division; no flags 
are affected; division by zero 
automatically generates an 
internal interrupt. 



530 Microprocessor Theoly and Applications with 68000/68020 and Pentium 

Instructions 

HLT 

IDIV medreg  

IMUL m e d r e g  

IN AL, DX 

IN AX, DX 

IN AL, PORT 

IN AX, PORT 

INC m e d r e g  

INT n (n can be 
zero thru 255) 

Interpretation Comments 

(continued) 
64/32 bit divide: mem32 1 reg32 

EDXEAX 

EDX t Remainder, 
EAX t Quotient 
HALT Halt 

Same as DIV m e d r e g  Signed division. 

Same as MUL m e d r e g  Signed multiplication. 

A L t P O R T  (DX) Input AL with the 8-bit content of 
a port addressed by DX; this is a 
one-byte instruction. 
Input AX with the 16-bit content 
of a port addressed by DX 
and DX + 1 ; this is a one-byte 
instruction. 

AX t PORT (DX) 

AL t PORT 

AX t PORT 

Input AL with the 8-bit content of 
a port. 

Input AX with the 16-bit content 
of a port. 

mem t mem + 1 or reg t reg 
+ 1  

Can be used to increment a byte, 
word or doubleword in memory 
or an 8-, 16-, or 32-bit register 
content by 1 ; segment registers 
cannot be incremented by this 
instruction; does not affect the 
carry flag. 

SP t SP - 2 ,(SP) t Flags 
IF t 0, TF t 0 
SP t SP - 2, (SP) t cs 
CS t 4*n + 2 
S P t  SP-2 
(SP) t IP 
I P t 4 * n  

Software interrupts can be used 
as supervisor calls; that is, request 
for service from an operating 
system; a different interrupt type 
can be used for each type of 
service that the operating system 
could supply for an application 
or program; software interrupt 
instructions can also be usedfor 
checking interrupt service 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 53 1 

INTO Interrupt on Overflow 

Instructions Interpretation Comments 

(continued) 
routines written for hardware- 
initiated interrupts. 
Generates an internal interrupt if 
OF = 1; executes INT 4; can be 
used after an arithmetic operation 
to activate a service routine if OF 
= 1 ; when INTO is executed and 
if OF = 1, operations similar to 
INT n take place. 

IRET Interrupt Return POPS IP, CS and Flags from 
stack; IRET is used as return 
instruction at the end of a service 
routine for both hardware and 
software interrupts. 

JNJNBE disp 8 Jump if above/jump if not 
below or equal 

Jump if above/jump if not 
below or equal with 8-bit 
signed displacement; that is, the 
displacement can be from -l28,,, 
to +127,,, zero being positive; 
JA and JNBE are the mnemonic 
which represent the same 
instruction; Jump if both CF and 
ZF are zero. 
Same as JNJNBE except that the 
Jump is taken if CF = 0. 

JAE/JNB/JNC Jump if above or equaVjump if 
not below/jump if no carry disp 8 

JB/JC/JNAE Jump if below/jump if carry/ 
jump if not above or equal 

Same as JNJNBE except that the 
jump is taken CF = 1. disp 8 

JBE/JNA disp 8 Jump if below or equayjump if 
not above 

Same as JNJNBE except that the 
jump is taken if CF = 1 or ZF = 0. 

JCXZ disp 8 Jump if CX = 0 Jump if CX = 0; this instruction is 
useful at the beginning of a 1 oop 
to bypass the loop if CX = 0. 

JE/JZ disp 8 Jump if equaVjump if zero Jump if equal or if zero. Same as 
JA/JNBE except that the jump is 
takenifZF= 1. 



532 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions 

JG/JNLE disp 8 

Interpretation 

Jump if greatedjump if not less 
or equal 

Comments 

Jump if greater than or not less 
than or equal. Same as JNJNBE 
except that the jump is taken if 
((SF 0 OF) or ZF) = 0. 

JGE/JNL disp 8 

JL/JNGE disp 8 

JLE/JNG disp 8 

JMP Label 

JMP reg16 

JMP mem 16 

Jump if greater or equal/ jump 
if not less 

Jump if less/Jump if not greater 
nor equal 

Jump if less or equal/ jump if 
not greater 

Unconditional Jump with a 
signed 8-bit (SHORT) or signed 
16-bit (NEAR) displacement in 
the same segment 

IP +reg 16; CS is unchanged 

IP t mem; CS is unchanged 

Same as JNJNBE except that the 
jump is taken if (SF 0 OF) = 0. 

Same as JNJNBE except that the 
jump is taken if (SF 0 OF) = 1. 

Same as JNJNBE except that the 
jump is taken if ((SF 0 OF) or 
ZF) = 1. 

The label START can be 
signed 8-bit (called SHORT 
jump) or signed 16-bit (called 
NEAR jump) displacement; the 
assembler usually determines 
the displacement value. The 
assembler adds the signed 
displacement to IP; CS is 
unchanged; therefore, this JMP 
provides a jump in the same 
segment (intrasegment jump). 

Jump to an address specified 
by the contents of a 16-bit 
register such as BX, SI, and DI 
in the same code segment; in 
the example JMP BX, register 
BX is loaded into IP and CS is 
unchanged (intrasegment jump). 

Jump to an address specified by 
the contents of a 16-bit memory 
location addressed by 16-bit 
register such as BX, SI, and DI; 
in the example, JMP [BX] copies 
the content of a memory location 
addressed by BX in DS into IP; CS 
is unchanged (intrasegment jump). 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 533 

Instructions 

JMP FAR PTR 
Label 

JNE/JNZ disp 8 

JNO disp 8 

JNP/JpO disp 8 

JNS disp 8 

JO disp 8 

JP/JPE disp 8 

JS disp 8 

LAHF 

Interpretation Comments 

Unconditionally jump to another 
segment. Both IP and CS 
change(intersegment Jump). 

Jump if not equayjump if not 
zero 

Jump if not overflow 

Jump if no parity/jump if parity 
odd 

Jump if not sign 

Jump if overflow 

Jump if parity/jump if parity 
even 

Jump if sign 

[AH] t Flag low-byte 

LDS reg, mem reg t (mem) 
DS t (mem + 2) 

Same as JNJNBE except that the 
jump is taken if ZF = 0. 

Same as JNJNBE except that the 
jump is taken if OF = 0. 

Same as JNJNBE except that the 
jump is taken if PF = 0. 

Same as JNJNBE except that the 
jump is taken if SF = 0. 

Same as JNJNBE except that the 
jump is taken if OF = 1. 

Same as JNJNBE except that the 
jump is taken if PF = 1. 

Same as JNJNBE except that the 
jump is taken if SF = 1. 

This instruction has implied 
addressing mode; it 1 oads AH 
with the low byte of the flag 
register; no flags are affected. 

Load a 16-bit register (AX, BX, 
CX, DX, SP, BP, SI, DI) with the 
content of specified memory and 
load DS with the content of the 
location that follows; no flags 
are affected; DS is used as the 
segment register for mem. 



534 Microprocessor Theory and Applications with 68000/68020 and Pentium 

LES reg, mem reg+ (mem) 
ES t (mem+ 2) 

Instructions Interpretation Comments 

LEA reg, mem reg t offset portion of address LEA (load effective address) 
loads the value of the source 
operand rather than its content 
to register (such as SI, DI, BX) 
which are allowed to contain 
offset for accessing memory; no 
flags are affected. 
DS is used as the segment register 
for mem; in the example LES 
DX, [BX], DX is loaded with 
16-bit value from a memory 
location addressed by 20-bit 
physical address computed from 
DS and BX; the 16-bit content of 
the next memory is loaded into 
ES; no flags are affected. 

LFS reg, mem reg t (mem) 
FS t (mem+ 2) 

LGS reg, mem reg]+- (mem) 
GS t (mem+ 2) 

DS is used as the segment register 
for mem; in the example LFS DX, 
[BX], DX is loaded with 16-bit 
value from a memory location 
addressed by 20-bit physical 
address computed from DS and 
BX; the 16-bit content of the next 
memory is loaded into FS; no 
flags are affected. 

DS is used as the segment register 
for mem; in the example LGS 
DX, [BX], DX is loaded with 
16-bit value from a memory 
location addressed by 20-bit 
physical address computed from 
DS and BX; the 16-bit content of 
the next memory is loaded into 
GS; no flags are affected. 

LSS reg, mrm reg t (mem), SS t (mem+ 2) DS is used as the segment register 
for mem; in the example LSS DX, 
[BX], DX is loaded with 16-bit 
value from a memory location 
addressed by 20-bit physical address 
computed from DS and BX; the 
16-bit content of the next memory is 
loaded into SS; no flags are affected. 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 535 

Instructions Interpretation Comments 

LOCK LOCK bus during next 
instruction 

Lock is a prefix that causes the 
Pentium to assert its bus LOCK 
signal while following instruction 
is executed; this signal is used 
in multiprocessing; the LOCK 
pin of the Pentium can be used 
to LOCK other processors off 
the system bus during execution 
of an instruction; in this way, 
the Pentium can be assured of 
uninterrupted access to common 
system resources such as shared 
RAM. 

LODSB FOR BYTE 
AL t (SI) 
SI t SI f 1 

Load 8-bit data into AL or 16-bit 
data into AX or 32-bit data into 
EAX from a memory location 
addressed by SI in segment DS; 
if DF = 0, then SI is incremented 
by 1 for byte , 2 for word, or 4 
for doubleword after the load; if 
DF = 1, then SI is decremented 
by 1 for byte, 2 for word, or 4 for 
doubleword ; LODS affects no 
flags. 

LODSW FOR WORD 
AX t (SI), SI t SI k 2 

LODSD FOR DWORD 

EAX t (SI), SI t SI f 4 

LOOP disp 8 Loop if CX not equal to zero Decrement CX by one, without 
affecting flags and loop with 
signed 8-bit displacement (from 
-128 to +127, zero being positive) 
if CX is not equal to zero. 

LOOPE/I.OOPZ Loop while equal/loop while Decrement CX by one without 
disp 8 zero affecting flags and loop with signed 

8-bit displacement if CX is equal to 
zero, and if ZF = 1 which results fi-om 
execution of the previous instsuction. 



536 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions 

LOOPNE/ 
LOOPNZ disp 8 

MOV medreg  
2, medreg  1 

Interpretation Comments 

Loop while not equal/loop 
while not zero 

Decrement CX by one without 
affecting flags and loop with 
signed 8-bit displacement if CX 
is not equal to zero and ZF = 0 
which results from execution of 
previous instruction. 

medreg  2 t m e d r e g  1 mem uses DS as the segment 
register; no memory-to-memory 
operation allowed; that is, MOV 
mem, mem is not permitted; 
segment register cannot be 
specified as source or destination; 
no flags are affected. 

MOV mem. data mem t data 

MOV reg, data reg t data 

MOV segreg, segreg t m e d r e g  
medreg  

MOV medreg,  m e d r e g  t segreg 
segreg 

MOVSB FOR BYTE 

SI t SI f 1 
( D W  (SII) 

mem uses DS as the segment 
register; 8- or 16-, or 32-bit 
data specifies whether memory 
location is 8- or 16-, or 32-bit; no 
flags are affected. 

Segment register cannot be 
specified as reg; data can be 
8- 16-, or 32-bit; no flags are 
affected. 

mem uses DS as segment 
register; used for initializing DS, 
ES, FS, GS, and SS; no flags are 
affected. 
mem uses DS as segment register; 
no flags are affected. 

Move 8-bit or 16- or 32-bit 
data from the memory location 
addressed by SI in segment DS 
location addressed by DI in ES; 
segment DS can be overridden 
by a prefix but destination 
segment must be ES and cannot 
be overridden; if DF = 0, then SI 
is incremented by one for byte or 
incremented by two for word, or 
incremented by four for 



Appendix G: Pentiurn Instruction Set In Real Mode (Selected) 537 

Instructions Interpretation Comments 

(Continued) 
doubleword; if DF = 1, then SI 
is decremented by one for byte 
or two for word, or four for 
doubleword. 

MOVSW FOR WORD 
( D W  (SI) 
SI t SI * 2 

MOVSD FOR DOUBLEWORD 
( D I ) t  (SI) 
SI t SI f 4 

MUL medreg 
(unsigned 
multiplication) FOR 16 x 16 affected; unsigned multiplication. 

FOR 8 x 8 
AX t AL * memWreg8 

DX:AX t AX * meml6/regl6 
FOR 32 x 32 
EDX:EAX t EAX * mem32/ 
reg32 

medreg can be 8- , 16-, or 
32-bit; only CF and OF are 

NEG medreg 

NOP No Operation 

NOT reg reg t NOT reg 

NOT mem mem t NOT mem 

medreg can be 8-,  16 or 32-bit; 
performs two’s complement 
subtraction of the specified 
operand from zero, that is, two’s 
complement of a number is 
formed; all flags are affected 
except CF = 0 if (medreg) is 
zero; otherwise CF = 1. 

Pentium does nothing 

mem and reg can be 8- or 16-bit; 
segment registers are not allowed; 
no flags are affected; ones 
complement reg. 

mem uses DS as the segment 
register; no flags are affected; 
ones complement mem. 



538 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation 

OR medreg  1, 
medreg  2 

medreg  1 t 
medreg  1 OR m e d r e g  2 

OR mem, data mem t mem OR data 

OR reg, data reg t reg OR data 

OUT DX, AL PORT(DX) t AL 

OUT DX, AX PORT (DX) t AX 

OUT PORT, AL PORT t AL 

OUT PORT, AX PORT t AX 

POP d 

POP mem mem t (SP),SP t S P  + 2 

POP reg reg+ (SP) ,SP t SP+ 2 

POP segreg segreg t (SP) 
SP t S P  + 2 

Comments 

No memory-to-memory operation 
is allowed; mem or reg1 or reg2 
can be 8- , 16 -, or 32-bit; all 
flags are affected with OF and 
CF cleared to zero; no segment 
registers are allowed; mem uses 
DS as segment register. 

mem and data can be 8- , 16-, or 
32-bit; mem uses DS as segment 
register; all flags are affected with 
CF and OF cleared to zero. 

reg and data can be 8- , 16-, or 
32-bit; no segment registers are 
allowed; all flags are affected with 
CF and OF cleared to zero. 

Output the 8-bit contents of AL 
into an I/O Port addressed by the 
16-bit content of DX. 

Output the 16-bit contents of AX 
into an I/O Port addressed by the 
16-bit content of DX. 

Output the 8-bit contents of AL 
into the Port. 

Output the 16-bit contents of AX 
into the Port. 

POP word off stack. 

mem uses DS as the segment 
register; no flags are affected. 

Cannot be used to POP segment 
registers or flag register. 

POP CS is illegal. 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 539 

Instructions Interpretation Comments 

POPF Flags t (SP) This instruction pops the top 
S P t S P + 2  two stack bytes in the16-bit flag 

register. 

POPA POP all 16-bit registers. 

POPAD POP all 32-bit registers. 

POPF 

POPFD 

POP lower 16 bits of Flag register 
off the stack. 

POP 32 bits of EFLAG register 
off the stack. 

PUSH word into stack. PUSH mem/reg/ 
segreg 

PUSH mem 

PUSH reg 

PUSH segreg 

PUSHF 

PUSHFD 

PUSHW data1 6 

PUSHD 

SPt SP-2 
(SP) t mem 

S P t S P - 2  
(SP) t reg 

S P t S P - 2  
(SP) tsegreg 

S P t S P - 2  
(SP) +Flags 

mem uses DS as segment register; 
no flags are affected; pushes 
16-bit memory contents. 

reg must be a 16-bit register; 
cannot be used to PUSH segment 
register or Flag register. 

PUSH CS is illegal. 

This instruction pushes the 16-bit 
Flag register onto the stack. 

PUSH 32 bits of EFLAG register. 

PUSH immediate 16-bit data. 

PUSH immediate 32-bit data. 



540 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation Comments 

RCL medreg,  ROTATE through carry left FOR BYTE 
CL or imm8 byte or word or doubleword 

in m e d r e g  by shift count 
specified by low five bits of 
CL or imm8. 

FOR WORD 

. . . .  
For doubleword, rotate operation 
is performed on 32-bit mem or 
reg. 

RCR medreg,  
CL or imm8 

ROTATE through carry right 
byte or word or doubleword 
in m e d r e g  by shift count 
specified by low five bits of 
CL or imm8. 

RET POPS IP for intrasegment 
CALLS 

POPS IP and CS for 
intersegment CALLS 

FOR BYTE 

. . .  
FOR WORD 

For doubleword, rotate operation 
is performed on 32-bit mem or 
reg. 

The assembler generates an 
intrasegment return if the 
programmer has defined the 
subroutine as NEAR; for 
intrasegment return, the following 
operations take place: IP t 
(SP), SP t SP + 2; on the other 
hand, the assembler generates 
an intersegment return if the 
subroutine has been defined as 
FAR; in this case, the following 
operations take place: [IP] t 
(SP), SP t SP + 2, cs t (SP), 
SP t SP + 2; an optional 16-bit 
displacement ‘START’ can be 
specified with the intersegment 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 54 1 

Instructions Interpretation Comments 

(Continued) 
return such as RET START; in 
this case, the 16-bit displacement 
is added to the SP value; this 
feature may be used to discard 
parameter pushed onto the stack 
before the execution of the CALL 
instruction. 

ROL medreg, ROTATE through carry left FOR BYTE 
CL or imm8 byte or word or doubleword 

in medreg by shift count 
specified by low five bits of 
CL or imm8. 1 

FOR WORD 
15 0 

I . . . . . .  
! J  . . . . . .  

For doubleword, rotate operation 
is performed on 32-bit mem or 
reg. 

ROR medreg, ROTATE through carry right FOR BYTE 
CL or imm8 byte or word or doubleword 

specified by low five bits of 
CL or imm8. 

in medreg by shift count Tm-+a 
FOR WORD 

1s 0 . . . . . . .  ICtJ '&. . . . . .  .J + 
For doubleword, rotate operation 
is performed on 32-bit mem or 
reg. 

SAHF Flags t AH This instruction stores the 
contents of the AH register in 
the 1 ow-byte of the flag register; 
OF, DF, IF, and TF flags are not 
affected. 



542 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation Comments 

SAL memheg, SHIFT arithmetic left byte or FOR BYTE 
CL or imm8 word or doubleword in m e d  

reg by the shift count specified 
by low 5 bits of CL or imm8. 

For doubleword, SAL operation is 
performed on 32-bit mem or reg. 

SAR medreg,  SHIFT arithmetic right byte or FOR BYTE 
CL or imm8 word or doubleword in mend n 

reg by the shift count specified L m  
by low 5 bits of CL or imm8. . . .  

FOR WORD 

Q m , + m  
For doubleword, SAR operation 
is performed on 32-bit mem or 
reg. 

SBB medreg  1, 
medreg  2 

m e d r e g  1 t m e d r e g  1 - 
[medreg 2 - CF 

Same as SUB m e d r e g  1, r n e d  
reg 2 except this is a subtraction 
with borrow. 

SBB mem, data mem t mem - data - CF Same as SUB mem, data except 
this is a subtraction with borrow. 

SBB reg, data 

SCASB 

[reg] +[reg] - data - CF 

FOR BYTE, AL - (DI), flags 
are affected,DI t DI f 1 

Same as SUB reg, data except this 
is a subtraction with borrow. 
8- or 16- or 32-bit data addressed 
by DI in ES is subtracted from 
8- , 16- or 32-bit data in AL or 
AX or EAX. Flags are affected 
without affecting AL or AX or 
EAX or string data; ES cannot be 
overridden; if DF = 0, then DI is 
incremented by one for byte, two 
for word, or four for doubleword; 
if DF = 1, then DI is decremented 



Appendix G: Pentium Instruction Set In Real Mode (Selected) 543 

Instructions Interpretation Comments 

(Continued) 
by one for byte , two for word, or 
four for doubleword. 

SCASW FOR WORD,AX - (DI), flags 
are affected,DI t DI f 2 

SCASD FOR DWORD 
EAX - (DI), flags are affected, 
DI t DI f 4 

SETcc medreg If condition code cc is true, then 
load operand byte. 

SHL medreg, 
CL or imm8 

SHIFT logical left byte or word Same as SAL mendreg, CL 
or doubleword in mendreg by except overflow is cleared to zero. 
the shift count in CL or imm8. 

SHLD reg/mem, 
reg, imm8 or CL 

SHRD reg/mem, 
reg, imm8 or CL 

Double Precision shift left. 

Double Precision shift right. 

SHR medreg, SHIFT logical right byte or FOR BYTE 
CL or imm8 word or doubleword in me& 7 0 

O + n b p J  reg by the shift count specified . . .  
by low 5 bits of CL or imm8. FOR 

l c ,  n 

STC 

STD 

STI 

C F t  1 

D F t  1 

IF t 1 

o-wl I I 1-pF-J . . . . .  
For doubleword, SHR operation 
is performed on 32-bit mem or 
reg. 
Set carry to one. 

Set direction flag to one. 

Set interrupt enable flag to one to 
enable maskable interrupts. 



544 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation 

STOSB FOR BYTE 
(DI) t AL 
DI t DI f 1 

STOSW FOR WORD 
(DI) t AX,DI t DI f 2 

STOSD FOR DWORD 
(DI) t EAX, DI t DI k 4 

SUB medreg 1, 
medreg 2 medreg 21 

mem/reg 1 t m e d r e g  1 - 

SUB mem, data mem t mem - data 

SUB reg, data reg t reg - data 

TEST mendreg 
1, medreg 2 

mendreg 1 - medreg 2, no 
result; flags are affected 

Comments 

Store 8-bit data from AL , 16-bit 
data from AX, or 32-bit data from 
EAX into a memory location 
addressed by DI in segment ES; 
segment register ES cannot be 
overridden; if DF = 0, then DI is 
incremented by one for byte, two 
for word or four for doubleword 
after the store; if DF = 1, then 
DI is decremented by one for 
byte , two for word, or four for 
doubleword after the store. 

No memory-to-memory SUB 
permitted; all flags are affected; 
mem uses DS as the segment 
register. 

Data can be 8- , 16-, or 32-bit; 
mem uses DS as the segment 
register; all flags are affected. 

Data can be 8-, 16,or 32-bit; all 
flags are affected. 

No memory-to-memory TEST is 
allowed; no result is provided; all 
flags are affected with CF and OF 
cleared to zero; mem, reg 1 
(Continued) 
or reg 2 can be 8-, 16-, or 32-bit; 
no segment registers are allowed; 
mem uses DS as the segment 
register. 



Appendix G: Pentiurn Instruction Set In Real Mode (Selected) 545 

Instructions Interpretation 

TEST mem, data mem - data, no result; flags are 
affected 

TEST reg, data reg AND data; no result; flags 
are affected 

WAIT Pentium enters wait state 

XADD m e d  
reg,medreg source t original dest 

dest t dest + source, 

XCHG medreg, reg f) reg, reg f) mem, 
medreg mem f) reg 

XCHG reg,reg reg f) reg 

XLAT AL t ( A L  + BX) 

Comments 

Mem and data can be 8- ,  
16-, or 32-bit; no result is 
pr0vided;flagsareaffected with CF 
and OF cleared to zero; mem uses 
DS as the segment register. 

reg and data can be 8-, 16-, or 
32-bit; no result is provided; all 
flags are affected with CF and 
OF cleared to zero; reg cannot be 
segment register. 

Causes CPU to enter wait state 
if the Pentium TEST pin is high; 
while in wait state, the Pentium 
continues to check TEST pin 
for low; if TEST pin goes back 
to zero, the Pentium executes 
the next instruction; this feature 
can be used to synchronize the 
operation of the Pentium to an 
event in external hardware. 

Exchange and Add. 

reg and mem can be both 8- , 
16-, or 32-bit; mem uses DS as 
the segment register; reg cannot 
be segment register; no flags are 
affected; no mem to mem. 

reg can be 8-, 16-, or 32-bit; reg 
cannot be segment register; no 
flags are affected. 

This instruction is useful for 
translating characters from one 
code such as ASCII to another 
such as EBCDIC; this is a no- 
operand instruction and is called 
an instruction with implied 
addressing mode; the instruction 



546 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Instructions Interpretation Comments 

(Continued) 
loads AL with the contents of a 
20-bit physical address computed 
from DS, BX, and AL; this 
instruction can be used to read 
the elements in a table where 
BX can be loaded with a 16-bit 
value to point to the starting 
address (offset from DS) and AL 
can be loaded with the element 
number (0 being the first element 
number); no flags are affected; the 
XLAT instruction is equivalent to 
MOV AL, [AL] [BX]. 
No memory-to-memory operation 
is allowed; mem or reg 1 or reg 
2 can be 8 - ,  16-, or 32-bit; all 
flags are affected with CF and OF 
cleared to zero; mem uses DS as 
the segment register. 

XOR medreg 1, mem/reg 1 + mem/reg 1 @ 

medreg 2 mem/reg 2 

Data and mem can be 8-, 16-, 
or 32-bit; mem uses DS as the 
segment register; mem cannot 
be segment register; all flags are 
affected with CF and OF cleared 
to zero. 

Same as XOR mem, data. 



SSA SSA SSA SSA SSA SSA SSA SSA SSA 9ZV alOH MKI 1M301 03UE #C3 

OLV ZLV rLV OLV SLV DZV ZZV ?ZV 1938#Z39@NOZV 1039 AOYd 1HSIl14ODA 
000 00000000 0 0 0 0 

000 00000000 0 0 0 0 
EV LV ev LLV cbv ELI LLV siv err 018 zi~et3~e~vimsn3i mwsnessA aaA 
00 000 00000000 0 0 0 0 

aaA SSA ssa csa 
000 0 

=A Lsa sra Lsa 
000 0 

000 0 
rca zra em rda sw Lca sha ora *&a osa eza zca Lza cda oza oia SI 
000 0 000 00000 000 O( 

zsa osa rca sea eta Lza s1a zta om sa oza Lea sza sza zza eLa L, 
000 0 000 00000 000 0( 

, 
Lda CEO Oda 

a 

M 

A 

n 
1 

5 

n 

0 

d 

N 

W 

1 

n 

r 

H 

D 

4 

3 

a 

3 

E 

V 

SNOILLdm3S'3a 
NId aNV LnONId EUnILN'3d 

H 
XIaN'3ddv 



548 

Pinout 

Microprocessor Theory and Applications with 68000/68020 and Pentium 

0 0 0  0 0 0  0 0 0  0 0 0 0 0 0 0 0  0 0 0 o w  
BT1 BTI A4 V a  V a  V a  V a  V a  V a  V a  Voc V a  V a  V a  Vec Voc UD PCD bPaW U!N 

A 

n 

C 

D 

E 

F 

a 

tl 

J 

I( 

L 

Y 

N 

I 

C 

I 

8 

1 

I 

t 

t 

a 20 19 18 17 16 15 14 1s 12 11 10 9 8 7 6 I 4 S 2 1 

W M W S  

Bottom View 

( 
DPIDym 0 0 0 2  m 
o o o g  
0 0 0 2  
0 0 0 2  
0 0 0 2  
o o o g  

o o o p  

o o o g  

V a  Osr Dp 

V a  V n  D5l 

Dll V a  Dll 

V a  V a  DQ 

vec yr rn 

V a  V a  DM RBET 

V a  V n -  PEN# 

Vcs V a  W 

V a V a l M S s u I  

V a  V n  K: 

V a  V a  NC 

D o - K :  m r  

0 0 0  0 

0 0 0  0 

0 0 0  0 

0 0 0  0 

Figure H-2. PentiumTM Processor Pinout 
Table H-1. PentiumTM Processor Pin Cro 

Bottom View) 
i Reference Tab1 .e 

Signal 

A20M# 
ADS# 

AHOLD 

AP 
APCHK# 

BEO# 
BE1# 
BE2# 
BE3# 
BE4# 
BE5# 
BE6# 
BE7# 

! by Pin Name 

Location I 
I 

U05 I 
I 

I 

W03 I 
I +I 

U06 
I 

vo 1 I +I 
U07 
wo 1 I 



Appendix H: Pentium Pinout and Pin Descriptions 549 

Table H-1. Cont. 

A28 
A29 
A30 
A3 1 
D4 
D5 

V06 
v20 
W05 
V19 

C04 
GO3 

D3 
D33 

F03 
C17 

D34 
D35 

C19 
D17 

D36 
D3 7 

C18 
D16 

D3 8 
D39 

D19 
D15 D10 

D11 

C13 
E05 D40 

D4 1 
D14 
B19 

D42 
D43 

D20 
A20 

D44 
D45 

D2 1 
A2 1 

D46 
D47 

e18 
B20 

D48 
D49 

B2 1 
F19 

Signal Location 
BOFF# 

I A18 I u11 BP3 I B03 i 1 1  
BTO 
BT 1 I w21 1 A22 U09 

A23 I u20 I -1 
A26 

BUSCHK# 
CACHE# 

I A27 I v21 CLK I K18 1 {I 
E04 

I D16 I DO6 I 

I D19 
I D20 I DO7 I 

D50 c20  D2 1 C16 



5 50 Microprocessor Theory and Applications with 68000/68020 and Pentiurn 

D5 1 
D52 

Table H-1. Cont. 

Signal Location 
F18 
c 2  1 

D53 
D54 

G18 
E20 

D55 
D56 

G19 
H2 1 

D57 

D58 

F20 
518 

D59 
D60 

H19 
L19 

D6 1 
IV 

K19 
BO 1 

KEN# 
LOCK# 

503 
V03 

M/IO# 
NA# 

A02 
KO3 

NMI 
PCD 

N19 
W04 

SCYC 
SMI# 

R04 
P18 

SMIACT# 
TCK 

TO5 
TO4 

TDI 
TDO 

T2 1 
s 2  1 

Signal I Location 

I D27 I DO9 I 
ID28 -1 D11 I 
I D29 I C09 

-1 D12 I 

PCHK# 

PMOBPO 
PMlBP1 

DP5 
DP6 

EWBE# 

FLUSH# u02 
RESET 
R/S# R18 

H ITM# I+] 
I IERR# I c02 I TMS I P19 I 



Appendix H: Pentium Pinout and Pin Descriptions 

Table H-1. Cont. 

55 1 

Signal 
TRST# 

Signal Location Location 
S18 

WB/WT# 
W/R# 

M02 
NO3 

I o 1  I INV 

IU 
INC 

502 

L03, N04, 
Q19, R19, 
S19. T18 

Signal 
VCC 

Location 
A04,A05,F21,G01,R21,S01, W17, W18 A06,A07,A08,Al 1 ,A12,A13, 
A14,A15,A16,A17,A18,001, D01, E01, G21, H01,J21, K21, L21, M21, 
N01,N21, Pol, P21, 001,018, 021, R01, T01,U01, W06, W07, W08, W09, 
W10, W11, W12, W13, W14, W15, W16,W17,W18 

VSS B05, B06,B07,B08,Bll,Bl2,B13,B14, B15,B16,B17,B18,E02,F02, 
G02, G20, H02,H20, JOl,J20, K01, K02, K20, LO1, L20, M01, M20, N02, 
N20, P02, P20, Q02, Q20, R02, R20, S02, T02, V07, V08, V09, V10, V11, 
V12,V13, V14, V15, V16, V17, V18 

H.2. Design Notes 

For reliable operation, always connect unused inputs to an appropriate signal level. Unused 
active low inputs should be connected to VCC. Unused active HIGH inputs should be 
connected to GND. 

No Connect (NC) pins must remain unconnected. Connection of NC pins may result in 
component failure or incompatibility with processor steppings. 

Note: The No Connect pin located at LO3 (BRDYC#) along with BUSCHK# are sampled by 
the Pentium processor at RESET to configure the I/O buffers of the processor for use with 
the 82496 Cache Controller/82491 Cache SRAM secondary cache as a chip set (refer to 
the 82496 Cache Controller/82491 Cache SRAM Data Book for Use with the PentiumTM 
Processor for further information). 

H.3. Quick Pin Reference 

This section gives a brief functional description of each of the pins. For a detailed 
description, see the Hardware Interface chapter in this manual. Note that all input pins 
must meet their AC/DC specifications to guarantee proper functional behavior. In this 
section, the pins are arranged in alphabetical order. The functional grouping of each pin is 
listed at the end of this chapter. 

The # symbol at the end of a signal name indicates that the active, or asserted state occurs 



552 Microprocessor Theory and Applications with 68000/68020 and Pentium 

when the signal is at a low voltage. When a # symbol is not present after the signal name, 
the signal is active, or asserted at the high voltage level. 

Table H-2. 

Svmbol 

A20M# 

A3 1 -A3 

ADS# 

AHOLD 

AP 

APCHK# 

BE7#- 
BEO# 

BOFF# 

Quick Pin Reference 

I/O 

0 

I 

I/O 

0 

0 

I 

Name and Function 

When the address bit 20 mask pin is asserted, the PentiumTM 
Processor emulates the address wraparound at one Mbyte which 
occurs on the 8086. When A20M# is asserted, the Pentium 
processor masks physical address bit 20 (A20) before perform- 
ing a lookup to the internal caches or driving a memory cycle on 
the bus. The effect of A20M# is undefined in protected mode. 
A20M# must be asserted only when the processor is in real 
mode. 

As outputs, the address lines of the processor along with the byte 
enables define the physical area of memory or I/O accessed. The 
external system drives the inquire address to the processor on 

The address status indicates that a new valid bus cycle is cur- 
rently being driven by the Pentium processor. 
In response to the assertion of address hold, the Pentium proces- 
sor will stop driving the address lines (A3 1 -A3), and AP in the 
next clock. The rest of the bus will remain active so data can be 
returned or driven for previously issued bus cycles. 

A31-A5. 

Address parity is driven by the Pentium processor with even par- 
ity information on all Pentium processor generated cycles in the 
same clock that the address is driven. Even parity must be driven 
back to the Pentium processor during inquire cycles on this pin in 
the same clock as EADS# to ensure that the correct parity check 
status is indicated by the Pentium processor. 
The address parity check status pin is asserted two clocks after 
EADS# is sampled active if the Pentium processor has detected 
a parity error on the address bus during inquire cycles. APCHK# 
will remain active for one clock each time a parity error is de- 
tected. 
The byte enable pins are used to determine which bytes must be 
written to external memory, or which bytes were requested by 
the CPU for the current cycle. The byte enables are driven in the 
same clock as the address lines (A3 1-3). 

The backoff input is used to abort all outstanding bus cycles 
that have not yet completed. In response to BOFF#, the Pentium 
processor will float all pins normally floated during bus hold in 
the next clock. The processor remains in bus hold until BOFF# is 
negated at which time the Pentium processor restarts the aborted 
bus cycle(s) in their entirety. 



Appendix H: Pentium Pinout and Pin Descriptions 553 

Table H-2. 

Symbol 

DP7-DPO 

EADS# 

EWBE# 

FERR# 

FLUSH# 

FRCMC# 

HIT# 

Cont. 

w e *  
I/O 

0 

I 

I 

0 

Name and Function 

These are the data parity pins for the processor. There is one for 
each byte of the data bus. They are driven by the Pentium proces- 
sor with even parity information on writes in the same clock as 
write data. Even parity information must be driven back to the 
Pentium processor on these pins in the same clock as the data to 
ensure that the correct parity check status is indicated by the Pen- 
tium processor. DP7 applies to D63-D56, DPO applies to D7-DO. 
This signal indicates that a valid external address has been driven 
onto the Pentium processor address pins to be used for an inquire 
cycle. 
The external write buffer empty input, when inactive (high), in- 
dicates that a write cycle is pending in the external system. When 
the Pentium processor generates a write, and EWBE# is sampled 
inactive, the Pentium processor will hold off all subsequent 
writes to all E or M-state lines in the data cache until all write 
cycles have completed, as indicated by EWBE# being active. 
The floating point error pin is driven active when an unmasked 
floating point error occurs. FERR# is similar to the ERROR# 
pin on the Intel387 math coprocessor. FERR# is included for 
compatibility with systems using DOS type floating point error 
reporting. 
When asserted, the cache flush input forces the Pentium proces- 
sor to writeback all modified lines in the data cache and invali- 
date its internal caches. A Flush Acknowledge special cycle will 
be generated by the Pentium processor indicating completion of 
the writeback and invalidation. If FLUSH# is sampled low when 
RESET transitions from high to low, tristate test mode is entered. 
The Functional Redundancy Checking MasterKhecker mode 
input is used to determine whether the Pentium processor is 
configured in master mode or checker mode. When configured as 
a master, the Pentium processor drives its output pins as required 
by the bus protocol. When configured as a checker, the Pentium 
processor tristates all outputs (except IERR# and TDO) and 
samples the output pins. The configuration as a mastedchecker is 
set after RESET and may not be changed other than by a subse- 
quent RESET. 
The hit indication is driven to reflect the outcome of an inquire 
cycle. If an inquire cycle hits a valid line in either the Pentium 
processor data or instruction cache, this pin is asserted two clocks 
after EADS# is sampled asserted. If the inquire cycle misses 
Pentium processor cache, this pin is negated two clocks after 
EADS#. This pin changes its value only as a result of an inquire 
cycle and retains its value between the cycles. 



554 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Table H-2. 

Symbol 

HITM# 

HLDA 

HOLD 

[BT 

[ERR# 

Cont. 

VP," 
3 

3 

D 

Name and Function 

The hit to a modified line output is driven to reflect the outcome 
of an inquire cycle. It is asserted after inquire cycles which 
resulted in a hit to a modified line in the data cache. It is used to 
inhibit another bus master from accessing the data until the line is 
completely written back. 

The bus hold acknowledge pin goes active in response to a hold 
request driven to the processor on the HOLD pin. It indicates that 
the Pentium processor has floated most of the output pins and 
relinquished the bus to another local bus master. When leaving 
bus hold, HLDA will be driven inactive and the Pentium proces- 
sor will resume driving the bus. If the Pentium processor has bus 
cycle pending, it will be driven in the same clock that HLDA is 
deasserted. 
In response to the bus hold request, the Pentium processor will 
float most of its output and input/output pins and assert HLDA 
after completing all outstanding bus cycles. The Pentium proces- 
sor will maintain its bus in this state until HOLD is deasserted. 
HOLD is not recognized during LOCK cycles. The Pentium 
processor will recognize HOLD during reset. 
The instruction branch taken pin is driven active (high) for one 
clock to indicate that a branch was taken. This output is always 
driven bv the Pentium Drocessor. 
The internal error pin is used to indicate two types of errors, 

If 
a parity error occurs on a read from an internal array, the Pentium 
processor will assert the IERR# pin for one clock and then shut- 
down. If the Pentium processor is configured as a checker and a 
mismatch occurs between the value sampled on the pins and the 
corresponding value computed internally, the Pentium proces- 
sor will assert IERR# two clocks after the mismatched value is 
returned. 

internal parity errors and functional redundancy errors. 



Appendix H: Pentium Pinout and Pin Descriptions 555 

Type* 
I 

Table H-2. 

Name and Function 

This is the ignore numeric error input. This pin has no effect 
when the NE bit in CRO is set to 1. When the CRONE bit is 
0, and the IGNNE# pin is asserted, the Pentium processor will 
ignore any pending unmasked numeric exception and continue 
executing floating point instructions for the entire duration that 
this pin is asserted. When the CRONE bit is 0, IGNNE# is not 
asserted, a pending unmasked numeric exception exists (SW.ES 
= l), and the floating point instruction is one of FINIT, FCLEX, 
FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or FSETPM, 
the Pentium processor will execute the instruction in spite of the 
pending exception. When the CRONE bit is 0, IGNNE# is not 
asserted, a pending unmasked numeric exception exists (SW.ES 
= l), and the floating point instruction is one other than FINIT, 
FCLEX, FSTENV, FSAVE, FSTSW, FSTCW, FENI, FDISI, or 
FSETPM, the Pentium processor will stop execution and wait for 
an external interrupt. 

I 

I 

the internal caches, write buffers, and floating point registers 
retain the values they had prior to INIT. INIT may NOT be used 
in lieu of RESET after power-up. If INIT is sampled high when 
RESET transitions from high to low the Pentium processor will 
perform built-in self test prior to the start of program execution. 
An active maskable interrupt input indicates that an external in- 
tempt  has been generated. If the IF bit in the EFLAGS register i! 

The Pentium processor initialization input pin forces the Pentium 
processor to begin execution in a known state. The processor 
state after INIT is the same as the state after RESET except that 

I 

active until the first interrupt acknowledge cycle is generated to 
assure that the interrupt is recognized. 
The invalidation input determines the final cache line state (S 
or I) in case of an inquire cycle hit. It is sampled together with 
the address for the inquire cycle in the clock EADS# is sampled 
active. 

0 

- 
0 

The u-pipe instruction complete output is driven active (high) 
for 1 clock to indicate that an instruction in the u-pipeline has 
completed execution. This pin is always driven by the Pentium 
processor. 
The v-pipe instruction complete output is driven active (high) 
for one clock to indicate that an instruction in the v-pipeline has 
completed execution. This pin is always driven by the Pentium 
processor. 



556 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Table H-2. Cont. 

Symbol 

KEN# 

LOCK# 

M/IO# 

NA# 

NMI 

PCD 

PCHK# 

PEN# 

Type” 
I 

0 

0 

I 

I 

0 

0 

I 

Name and Function 
The cache enable pin is used to determine whether the current 
cycle is cacheable or not and is consequently used to determine 
cycle length. When the Pentium processor generates a cycle that 
can be cached (CACHE# asserted) and KEN# is active, the cycle 
will be transformed into a burst line fill cycle. 
The bus lock pin indicates that the current bus cycle is locked. 
The Pentium processor will not allow a bus hold when LOCK# 
is asserted (but AHOLD and BOFF# are allowed). LOCK# goes 
active in the first clock of the first locked bus cycle and goes in- 
active after the BRDY# is returned for the last locked bus cycle. 
LOCK# is guaranteed to be deasserted for at least one clock 
between back to back locked cycles. 
The Memory/Input-Output is one of the primary bus cycle defini- 
tion pins. It is driven valid in the same clock as the ADS# signal 
is asserted. M/IO# distinguishes between memory and I/O cycles. 
An active next address input indicates that the external memory 
system is ready to accept a new bus cycle although all data trans- 
fers for the current cycle have not yet completed. The Pentium 
processor will drive out a pending cycle two clocks after NA# is 
asserted. The Pentium processor supports up to 2 outstanding bus 
cycles. 
The non-maskable interrupt request signal indicates that an exter- 
nal non-maskable interrupt has been generated. 
The page cache disable pin reflects the state of the PCD bit in 
CR3, the Page Directory Entry, or the Page Table Entry. The 
purpose of PCD is to provide an external cacheability indication 
on a page by page basis. 
The parity check output indicates the result of a parity check on a 
data read. It is driven with parity status two clocks after BRDY# 
is returned. PCHK# remains low one clock for each clock in 
which a parity error was detected. Parity is checked only for the 
bvtes on which valid data is returned. 
The parity enable input (along with CR4.MCE) determines 
whether a machine check exception will be taken as a result of 
a data parity error on a read cycle. If this pin is sampled active 
in the clock a data parity error is detected, the Pentium proces- 
sor will latch the address and control signals of the cycle with 
the parity error in the machine check registers. If in addition 
the machine check enable bit in CR4 is set to “l”, the Pentium 
processor will vector to the machine check exception before the 
beginning of the next instruction. 



Appendix H: Pentium Pinout and Pin Descriptions 557 

Table H-2. Cont. 

Symbol 

PM/BP[ 1 
:01B 
P[3:2] 

PRDY 

PWT 

RIS# 

RESET 

SCYC 

SMI# 

SMI- 
ACT# 

Type* 
0 

0 

0 

D 

3 

Name and Function 

For more information on the performance monitoring pins, see 
Appendix A. 
The breakpoint pins BP[ 1 :O] are multiplexed with the Perfor- 
mance Monitoring pins PM[l:O]. The PB1 and PBO bits in the 
Debug Mode Control Register determine if the pins are config- 
ured as breakpoint or performance monitoring pins. The pins 
come out of reset configured for performance monitoring (for 
more information see Auuendix A). 
The PRDY output pin indicates that the processor has stopped 
normal execution in response to the R/S# pin going active, or 
Probe Mode being entered (see Appendix A for more informa- 
tion regarding Probe Mode). This pin is provided for use with the 
Intel debug port described in the “Debugging” chapter. 
The page write through pin reflects the state of the PWT bit in 
CR3, the Page Directory Entry, or the Page Table Entry. The 
PWT pin is used to provide an external writeback indication on a 
page by page basis. 
The R/S# input is an asynchronous, edge sensitive interrupt used 
to stop the normal execution of the processor and place it into an 
idle state. A high to low transition on the R/S# pin will interrupt 
the processor and cause it to stop execution at the next instruction 
boundary. This pin is provided for use with the Intel debug port 
described in the “Debugging” chapter. 
Reset forces the Pentium processor to begin execution at a known 
state. All the Pentium processor internal caches will be invali- 
dated upon the RESET. Modified lines in the data cache are not 
written back. 
FLUSH#, FRCMC# and INIT are sampled when RESET transi- 
tions from high to low to determine if tristate test mode or 
checker mode will be entered, or if BIST will be run. 
The split cycle output is asserted during misaligned LOCKed 
transfers to indicate that more than two cycles will be locked 
together. This signal is defined for locked cycles only. It is unde- 
fined for cvcles which are not locked. 
The system Management Interrupt causes a system management 
interrupt request to be latched internally. When the latched SMI# 
is recognized on an instruction boundary, the processor enters 
System Management Mode. 
An active system management interrupt active output indicates 
that the processor is operating in System Management Mode 
(SMM). 



558 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Table H-2. 

Symbol 

TCK 

TDI 

TDO 

TMS 

TRST# 

W/R# 

WB/WT# 

Cont. 

Type" 
I 

I 

0 

I 

I 

0 

I 

Name and Function 

The testability clock input provides the clocking function for the 
Pentium processor boundary scan in accordance with the IEEE 
Boundary Scan interface (Standard 1149.1). It is used to clock 
state information and data into and out of the Pentium processor 
during. boundarv scan. 
The test data input is a serial input for the test logic. TAP instruc- 
tions and data are shifted into the Pentium processor on the TDI 
pin on the rising edge of TCK when the TAP controller is in an 
appropriate state. 
The test data output is a serial output of the test logic. TAP 
instructions and data are shifted out of the Pentium processor on 
the TDO pin on the falling edge of TCK when the TAP controller 
is in an aumomiate state. 
The value of the test mode select input signal sampled at the 
rising edge of TCK controls the sequence of TAP controller state 
changes. 
When asserted, the test reset input allows the TAP controller to 
be asynchronously initialized. 
Writemead is one of the primary bus cycle definition pins. It is 
driven valid in the same clock as the ADS# signal is asserted. 
W E #  distinguishes between write and read cycles. 
The writeback/writethrough input allows a data cache line to be 
defined as write back or write through on a line by line basis. As 
a result, it determines whether a cache line is initially in the S or 
E state in the data cache. 

NOTE: the pins are classified as Input or Output based on their function in Master Mode. 
See the Functional Redundancy Checking section in the 'Error Detection' Chapter for 
further information. 

H.4. PIN REFERENCE TABLES 

Table H-3. Output Pins 

Name I ActiveLevel 

ADS# I LOW 
APCHK# I LOW 
BE7#-BEO# 

BT3-BTO 
CACHE# I LOW 

When Floated I 
Bus Hold. BOFF# I 

Bus Hold, BOFF# I 
Bus Hold, BOFF# I 



TDO 

Table H-4. Input Pins 

d a  All states except Shift-DR and Shift-IR 



560 Microprocessor Theory and Applications with 68000/68020 and Pentium 

d a  
md input/output 

Table H-4. 

Function 

Clock 
Initialization 

Cont. 

Pins 

CLK 
RESET. INIT 

I INTR HIGH Asynchronous 
HIGH Svnchronous I INV EADS# 

I KEN# LOW I Synchronous I First BRDY#/NA# 

I NA# LOW I Synchronous Bus State I T2,TD,T2P 
I NMI HIGH I Asynchronous i Pullup 

Synchronous 
Asynchronous 

HIGH Asvnchronous I RESET 
I SMI# LOW I Asynchronous Pullup I 

Pullup 1 Pullup 
d a  
d a  S ynchronousl 

I TCK 
Pullup Synchronous1 

TCK 
Asynchronous 
Synchronous 

Pullup 
First BRDY#/NA# 

Table H-5. Input/Output Pins 

Name I Active Level I (when an input) 
When Floated I I A3 1 -A3 d a  Address hold, Bus Hold, 

BOFF# 

I AP 
d a  Address hold, Bus Hold, EADS# 

BOFF# I 
I D63-DO d a  Bus Hold, BOFF# I BRDY# I 
I DP7-DPO 
NOTE: All output 
and checker mode 

Bus Hold, BOFF# I BRDY# 
'ins are floated during tristate test mode (except TDO) 
d TDO). 

I 

H.5. 

Table H-6 organizes the pins with respect to their function. 

Pin Grouping According To Function 

Table H-6. Pin Functional Grouping 

I Address Bus I A3 1 -A3, BE7# - BEO# I 



Appendix H: Pentiurn Pinout and Pin Descriptions 

Table H-6. Cont. 

561 

I Address Mask 
I 

Data Bus 
Address Parity 
Data Paritv 
Internal Parity Error 

I System Error 

I Cache Control 
I 

I Bus Arbitration 
I 

Interrupts 
Floating Point Error Reporting 
System Management Mode 
Functional Redundancy Checking 

I TAP Port 
Breakpoinflerformance Monitor- I inn 

1 A20M# I 
D63-DO 
AP, APCHK# 

, DP7-DPO. PCHK#. PEN# 
IERR# 1 

PCD, PWT 
KEN#, WB/WT# I 
AHOLD, EADS#, HIT#, HITM#, INV 
FLUSH# 
EWBE# I 
BOFF#, BREQ, HOLD, HLDA I 

FRCMC# (IERR#) 
TCK, TMS, TDI, TDO, TRST# I 
PMO/BPO, PM 1/BP 1, BP3-2 I 
BT3-BT0, IU, IV, IBT 
R/S#, PRDY 

H.6. Output Pin Grouping According To When Driven 

This section groups the output pins according to when they are driven. 

Group 1 

The following output pins are driven active at the beginning of a bus cycle with ADS#. 
A3 1 - A3 and AP are guaranteed to remain valid until AHOLD is asserted or until the earlier 
of the clock after NA# or the last BRDY#. The remaining pins are guaranteed to remain 
valid until the earlier of the clock after NA# or the last BRDY#: 
A31-A3, AP, BE7#-0#, CACHE#, M/IO#, W/R#, D/C#, SCYC, PWT, PCD. 

Group 2 

As outputs, the following pins are driven in T2, T12, and T2P. As inputs, these pins are 
sampled with BRDY#: 



562 Microprocessor Theory and Applications with 68000/68020 and Pentium 

D63-0, DP7-0. 

Group 3 

These are the status output pins. They are always driven: 

SMIACT#. 
BREQ, HIT#, HITM#, IU, IV, IBT, BT3-BT0, PMO/BPO, PMl/BPl, BP3, BP2, PRDY, 

Group 4 

These are the glitch free status output pins. 
APCHK#, F E U # ,  HLDA, IERR#, LOCK#, PCHK#. 



BIBLIOGRAPHY 
Antonakos, James, The Pentium Microprocessor, Prentice-Hall, 1997. 
Brey, Barry, The Intel Microprocessors , Prentice-Hall, 2006. 
Burns, J., “Within the 68020,” Electronics and Wireless World, pp 209-212, February 1985; pp 

Dandamudi, Sivarama, Introduction to Assembly Language Programming, Springer; Second 

Feibus, M. and Slater, M., “Pentium Power,” PC Magazine, April 27, 1993. 
Hall, Douglas, Microprocessors and Interfacing, McGraw-Hill, 1986. 
Intel, Microprocessors and Peripheral Handbook, Vol. 1, Microprocessors, Intel Corporation, 1988. 
Intel, Microprocessors and Peripheral Handbook, V01.2, Peripheral, Intel Corporation, 1988. 

103-106, March 1985. 

Edition, 2005. 

Intel, 80386 Programmer ‘s Reference Manual, Intel Corporation, 1986. 
Intel, 80386 Hardware Reference Manual, Intel Corporation, 1986. 
Intel, 80386 Advance Information, Intel Corporation, 1985. 
Intel, Intel 486 Microprocessor Family Programmer k Reference Manual, Intel Corporation, 
Intel, Intel 486 Microprocessor Hardware Reference Manual, Intel Corporation, 1992. 
Intel, Pentium Processor User’s Manual, Volume I: Pentium Processor Data Book, 1993. 
Intel, Pentium Processor User ’s Manual, Volume 3: Architecture and Programming Manual, 
Intel, The 8086 Family User’s Family, Intel Corporation, 1979. 
Intel, Intel Component Data Catalog, Intel Corporation, 1979. 
Intel, MCS-86 User 5 Manual, Intel Corporation, 1982. 
Intel, Memory Components Handbook, Intel Corporation, 1982. 
Intel, “Marketing Communications,” The Semiconductor Memory Book, John Wiley & 

1978. 

992. 

993. 

Sons, 

Miller, M., Raskin, R., and Rupley, S., “The Pentium That Stole Christmas,” PC Magazine, 

Motorola, MC68000 User ’s Manual, Motorola Corporation, 1979. 
Motorola, 16-Bit Microprocessor - MC68000 User k Manual, 4th ed., Prentice-Hall, 1984. 
Motorola, MC68000 16-Bit Microprocessor User ’s Manual, Motorola Corporation, 1982. 
Motorola, MC68000 Supplement Material (Technical Training), Motorola Corporation, 1982. 
Motorola, Microprocessor Data Material, Motorola Corporation, 198 1. 
Motorola, MC68020 User’s Manual, Motorola Corporation, 1985. 
Motorola, “MC68020 Course Notes,”MTTA20 REV 2, July 1987. 
Motorola, “MC68020/68030 Audio Course Notes,” 1988. 
Motorola, 68020 User ’s Manual, 2nd ed., MC68020 UM/AD Rev. 1, Prentice-Hall, 1984. 
Motorola, Me68040 User ’s Manual, 1989. 
Motorola, Power PC 601, RISC Microprocessor User’s Manual, 1993. 
Motorola, Technical Summary, 32-bit Krtual Memory Microprocessor, MC68020 BR243/D. Rev. 2, 

563 

February 27, 1995. 

Motorola Corporation, 1987. 



564 Microprocessor Theory and Applications with 68000/68020 and Pentium 

Rafiquzzaman, M., Fundamentals of Digital Logic and Microcomputer Design, Wiley, 5th Edition, 

Rafiquzzaman, M., Microprocessors and Microcomputer Development Systems - Designing 
2005. 

Microprocessor-Based 
Systems, Harper and Row, 1984. 

Rafiquzzaman, M., Microcomputer Theoiy and Applications with the INTEL SDK-85,2nd ed., John 

Rafiquzzaman, M., Microprocessors - Theory and Applications - Intel and Motorola, Prentice-Hall, 

Rafiquzzaman, M., and Chandra, R., Modern Computer Architecture, West / PWS, 1988. 
Rafiquzzaman, M., Microprocessors and Microcomputer-Based System Design, 1 st ed., CRC Press, 

Rafiquzzaman, M., Microprocessors and Microcomputer-Based System Design, 2nd ed. CRC Press, 

Shen, John and Lipasti, Mikko, Modern Processor Design, McGraw-Hill, 2005. 
Stokes, Jon, Inside the Machine, Jon Stokes, 2007. 
Zorpette, G., “Microprocessors - The Beauty of 32-Bits,” IEEE Spectrum, Vol. 22, No.9, pp 65-71, 

Wiley & Sons, 1987. 

1992. 

1990. 

1995. 

September 1994. 



INDEX 
2 
2732, 188-191 

6 
6116, 188-191,476-478 
68000, See Motorola 68000 
68008, 109 
68010, 109 
68012, 109 
68020, See Motorola 68020 
68030 / 68040 / 68060, 10 
6821, 192-195,470-475 
68230, 195, 196-198,279,281,469 

7 
7447/7448,74 
74HCT244 I 74HCT245,55 

8 
80386, 11-12,306,307 
80486, 1 1 - 12,306,307 
82C55,4 16-4 18 

A 
AID converter, 21,77,78,451 
Accumulator, 27,45 1 
Addition of signed and unsigned binary numbers, 
98,99 
Address, 2,25,45 1 
Address bus, 3,24-25 
Addressing modes, 2, 102,451 
Alphanumeric Codes, 7 
ALU, 2,26,32,45 1 
Analog to Digital converter, See AID Converter 
Arithmetic and logic unit, See ALU 
ASCII, 7, 8,451 
Assemblers, 89,91-95, 113-117,317-321,451 

Delimiters, 92-93, 114, 31 7 
Directives, 93-95, 114-115,318-320 
Fields, 90,91, 114, 317 
Pseudoinstructions, 93-95, 114, 3 17-3 19 
Specifyingnumbers, 93, 114,317-318 
Types, 9 1-92 

Assembler Directives, 93-95, 114,317-319 
Assembly Language, 89,90, 113-117,317-321,452 
Assembly Language Instruction Formats, 95-97 
Assembly Language vs. C/C++ Language, 105 
Associative cache, 65 

B 
Barrel shifter, 223,452 
Basic Microprocessor Registers, 26-27 

BCD to binary conversion, 8 
BCD to seven-segment decoder, 74 

Big-endian, 1 13 
Binary, 1 
Binav-coded-decimal, See BCD 
Bit, 2, 452 
Block transfer DMA, 84 
Branch prediction feature, 16,44,45 
Breakpoint, 18- 19,452 
Buffer, 73,453 

Byte, 2, 50 

BCD, 74,452 

BICMOS, 1-2,9 

BUS, 2, 3,24-25,453 

C 
c++, 1 
Cache, 3, 16,453 
Cache Memory, 3, 16,63-67,453 

Associative, 65 
Direct Mapping, 63 
Hit, 63,64 
LI  cache, 3,67 
L2 cache, 3,67 
Miss. 63-64 

565 



566 Microprocessor Theory and Applications with 68000/68020 and Pentiurn 

Motorola 68020 cache, 67 
Organization, 67 
Set Associative, 65, 66 
Valid bit, 67 
Write-back, 67 
Write-through, 67 
Cany flag, 5,223 

CD-memories, 50,455 
Celeron, 13, 14 
Central processing unit, See CPU 
CISC, 3, 16,45,46,453 

CMOS, 455 
Codes, 7 

Clock, 25-26, 181-182,263,401,453 

Alphanumeric, 7 
ASCII, 7,45 1 
BCD, 7,452 
EBCDIC, 7,455 

Compiler, 1 ,453 
Complement, 5 
Complementary MOS, See CMOS 
Computer, 1 
Computer Instructions, 1 
Condition Code Register, 28,453 
Control bus, 3 
Control Unit, 30,454 
Control Unit Design, 34-38 

Hardwired Control, 34 
Microprogrammed Control, 34-38 

Core Duo, 14 
Core2 Duo, 14 
CPU 1,23,453 

ALU, 2,25 
Control Unit, 32,454 
Register, 4, 26-30,462 

Cross Assembler, 92 
Cycle stealing DMA, 84,454 

D 
D/A, 21,454 
Daisy Chain Interrupt, 82-83 
Data, 1,454 
Data bus, 24,25 
Data-direction register, 74, 193 

DC.B, 115 
DC.L, 115 
DC.W, 115 
DD, 319 
Delay routine, 168-169, 395-396 
Delimiters, 92, 93,114, 3 17 
Digital to Analog converter, See D/A 
Direct cache mapping, 63 
Direct Memory Access, See DMA 
Division of unsigned and signed numbers, 99, 100 
DMA, 72,84-86,206,207,402,454 

DB, 94-95,3 18 

Block Transfer, 84,85 
Cycle Stealing, 84 
Interleaved, 84 

DRAM, 51,52, 54,55,454 

Dynamic RAM, See DRAM 
DW, 95,318-319 

E 
ED0 DRAM, 52 
E*PROM, 5 1,455 
EAROM,S 1,454 
EBCDIC, 7,455 
EEPROM, 5 1,454 
Embedded Controller, 22 
EPROM, 5 1,455 

Execute cycle, 11,38 
Extend Flag, 1 1 1 - 1 12 
External Interrupts, 78-84, 86, 201-203,283,421, 

422 

EQU, 94, 114-1 15,318 

F 
Fetch cycle, 11, 38 
Fetch timing diagram, 52, 53 
Firmware, 35,455 
Flags, 28,29, 111, 112, 125, 126,255-256,310,455 
Flash memory, 51,455 
Floating-Point Numbers, 8 
Flowcharts, 106 
Foldback, 57 
FPGA, 58,455 
Fragmentation, 61,62 
Fully associative cache mapping, 65 

G 
General-purpose Register-based Microprocessor, 27 
General-purpose Registers, 27 

H 
Hard disk, 49 
Hardware, 1,456 
Hardware breakpoint, 18 
Hardwired control, 34,456 
HCMOS, 1,456 
High-level language, 104-105,456 
High-speed CMOS, See HCMOS 
HMOS, 1,9,456 

I 
I/O, 1,2,3,71-86, 192-212,279,280,281-285, 

415-436 
DMA, 72,84-86,206,207,402,454 
Interrupt I/O, 72,201-208,282,283-285,419-422, 

Programmed I/O, 71,72, 192-201,279,281-282, 
457 

417-420,463 
I/O summary, 86 
In-circuit Emulator, 17,456 



Index 567 

Index Register, 28,456 
InpuUOutput, See I/O 
Instruction, 3,456 
Instruction Fetch Timing Diagram, 52,53 
Instruction formats, 95-97 
Instruction Register, 26,456 
Instruction Set, 98-102, 125-141,237-255, 331-338, 

340-35 1,367-375,377-383,382-387, 
389-395,487-495, 525-546 

Instruction Set Architecture, 97-98 
Intel 80386,9, 11, 12 
Intel 80386 vs. 80486, 11, 12 
Intel 80486, 11, 12 
Intel 82'255, See 82C55 
Intel Pentium, 11-14, 305-441 

Addressing modes, 321-330 
Arithmetic instructions, 340-35 1 
Arrays, 351-353,360-361 
Assembler, 3 19 
Assembler directives, 3 17-3 19 
Assembly language programming, 3 19-320 
Based mode, 325-327 
Based indexed mode, 328 
Bit manipulation instructions, 367,370-372 
Block diagam, 33 
Breakpoint, 421 
Clock, 401 
Comparison with 80486,306 
Conditional branch instructions, 389-393 
Data transfer instructions, 33 1-338 
Delay routine, 395-396 
Direct mode, 324-325 
DMA, 402 
EPROM interface, 411-412,413 
Flags, 309,3 10 

Immediate mode, 324 
Implied addressing mode, 330 
Indexed mode, 327,328 
Indirect mode, 324, 325 
Instruction set, 331-338,340-351, 367-375, 

Instruction timing, 497-524 
Interfacing with memories, 405-415 
Internal interrupts, 421 
Interrupts, 420-423 
Interrupt pointer table, 422,423 
Interrupt instructions, 393,394 
Iteration control instructions, 392, 393 
Keyboard /display Interface, 430-436 
Logic instructions, 367, 368-370 
Maskable interrupts, 421-423,427-429 
MASM32,3 I8,3 19,320 
Memory addressing modes, 323,324-330 
Memory interface, 405-41 5 
Memory & 110 interface, 405-436 
Modes of operation, 305,3 1 1-3 16 
Nonmaskable interrupt, 420,422,426-427 
OllyDebugger, 3 19 
Pins and Signals, 401-403 

110,415-436 

377-382,382-387,389-395,525-546 

Port addressing modes, 330 
Predefined interrupts, 420,421 
Processor control instructions, 394-395 
Programming examples, 338-340,353-361, 

Programmed 1/0,415-419 
Protected mode, 305,311,315-316 
Read timing diagram, 403,404 
Real mode, 305,311,312-315, 
Registers, 308-3 11 
Register indirect mode, 324-325 
Register mode, 323-324 
Relative addressing mode, 330 
Reset, 402-403 
Set on condition instructions, 368, 372 
Shift and rotate instructions, 368, 372-375 
Single step, 310,420,421 
SRAM interface, 413,414-415 
Stack, 327, 334-336 
String instructions, 377-382 
String mode, 328-330 
Subroutines, 385-389 
System Design, 405-419 
Timing Diagrams, 403-404 
Unconditional transfer instructions, 382-387 
Voltmeter design, 423-429 
Write timing diagram, 403,404 

Intel Pentium I1 / Celeron I Xeon, 14 
Intel Pentium 111 / Pentium4, 14 
Intel Pentium Pro, 12 
Interleaved DMA, 84 
Internal interrupts, 80, 112, 165,421 
Interrupt Address Vector, 80 
Interrupt I/O, 72, 78-84,201-208,282,283-285, 

419-422 
Interrupt Priorities, 8 1-84 
Interrupt Types, 80 
Interrupt-service routine, 78 

375-377,382,387-389, 418-419 

ISA. 97-98 

L 
L1 Cache, 67 
L2 Cache, 67 
LED, 73,457 
Light Emitting Diodes, See LED 
Little-endian, 3 16 
Locality of reference, 63 

M 
Machine language, 90,458 
Macroassembler, 92 
Macroprogram, 38,458 
Main memory, 49,50 
Main Memory Array Design, 55-58 
Maskable interrupts, 80, 86,201,202,203,204, 

Masking operation, 100, 15 1,369, 458 
MASM32,3 18,3 19,320 

205,421,422,427-429,458 



568 Microprocessor Theoly and Applications with 68000/68020 and Pentium 

Memory, 23,49-67 
Memory Address Register, 27 
Memory fragmentation, 6 1,62 
Memory management, 58-63 
Memory Management Unit, 3, 17,60,458 
Memory Organization, 54, 55 
Memory-mapped I/O, 75,86 
Memory Types, 49-67 

Cache, 3,63-67,453 
DRAM, 52,54,55,454 
E2PROM, 5 1,455 
EAROM, 5 1,454 
ED0 DRAM, 52 
EPROM, 5 1,455 
Flash, 51,455 
Nonvolatile, 4 
RAM, 4 
ROM, 4 
SDRAM, 52 
SRAM, 51,52 
Volatile, 4 

Meta-assembler, 92 
Microcomputer, 2,23-25,458 
Microcomputer Bus, 24 
Microcomputer Development Systems, 16- 19,459 
Microcomputer interface to A/D, 77, 78 
Microcomputer-LED interface, 73 
Microcomputer programming languages, 89- 105 
Microcontrollers, 2 ,4 ,459 
Microprocessor, I ,  3,4,9-16,23,24,26,459 
Microprocessor registers, 26-30 
Microprocessor system development flowchart, 20 
Microprogram, 38 
Microprogrammed Control Unit, 35-38 
Microprogramming, 34,38 
MIPS, 12 
MMU, See Memory Management Unit 
MMX, 13 
MOS, 1 
MOS outputs, 73 
MOS switch input, 72 
Motorola 32- and 64-bit microprocessors, 15-16 
Motorola 68000-based microcomputer schematic, 209 
Motorola 6 1 16, 188- 19 1,476-478 
Motorola 68000-based Microcomputer, 208-2 12 
Motorola 68000, 10, 109-220,467-468,487-495 

Absolute addressing mode, 122 
Addressing Modes, 11 7-125 
Address register indirect mode, 11 8-122 
Arithmetic instructions, 134-141 
Arrays, 141-144 
Assembleddebugger ide68k21, 113, 114 
Assembly language programming, 1 13- 11 7 
Autovector interrupts, 202,204-206 
Binary-coded decimal instructions, 157- 160 
Bit manipulation instructions, 156, 157 
Clock Generation, 181-182 
Condition codes, 111-112, 125-126 
Data movement instructions, 126, 127, 128-132 
Delay routine, 168-169 

DMA, 181,206-207 
DTACK delay circuit, 187-188, 210 
DTACK timing diagram, 186-188,211 
Exceptions, 207-208 
Function code pins, 179, 180, 18 1 
I/O, 192-212 
Immediate mode, 124, 125 
Implied mode, 125 
Instruction Execution Times, 479-485 
Instruction Set, 125-141,487-495 
Interfacing with Memories, 188-191 
Interrupt I/O, 201-206 
Interrupts, 201-206 
Logic instructions, 150-1 52 
Maskable interrupts, 201,202,203,204,205,206 
Memory Addressing, 112, 113 
Memory interface, 188- 191 
Memory map, 19 1 
Microcomputer, 208-21 2 
Microcomputer schematic, 209 
Multiprocessing, 2 12-2 14 
Nonautovector interrupts, 202,203, 204-206 
Nonmaskable interrupts, 201 
Pin diagram, 176,467-468 
Pins and Signals, 175- 18 1 
Postincrement mode, 11 8, 119, 120 
Predecrement mode, 120, 121 
Privileged instructions, 110 
Program control instructions, 160-1 63 
Program counter relative mode, 123, 124 
Programming examples, 132-134, 144-149, 155, 

156, 157, 158-160, 167-168, 198-201, 
214-216 

Programmed I/O, 192-20 1 
Registers, 11 1, 112 
Register direct mode, 117, 118 
Reset, 181, 182-185 
Shift and rotate instructions, 152-155 
68000-6821 Interface, 192-195 
68000-68230 Interface, 195, 196-198 
Stack, 166-167 
Status register, 112 
Subroutines, 162, 163, 167,168 
Supervisor mode, 110 
System control instructions, 163- 165 
System Design, 188-200 
Timing Diagrams, 185-1 88 
User vs. Supervisor modes, 11 0 

Motorola 68008, 109 
Motorola 68010, 109 
Motorola 68012, 109 
Motorola 6821, 192-195,470-475 
Motorola 68020, 10,221-301 
A D  converter interface, 286,287-293 
Addressing Modes, 228-234 
Arrays, 235,236 
Autovectored interrupts, 283 
Bit field instructions, 245-247 
CHUCHK2 instruction, 239, 240, 241,243 
CMPICMP2 instruction, 239,240,241,243 



Index 569 
Comparison with 68000,222-224 
CPUspace cycle, 228 
Dynamic Bus Sizing, 261, 265-270 
Exception processing, 282,282-283 

Instruction Set, 237-255,487-495 
Interfacing with EPROM, 276,277, 278 
Interfacing with memories, 275-280 
Interfacing with SRAM, 277, 279 
Interrupts, 282,283-285 
Keyboarddisplay interface, 293-30 1 
Memory decode logic, 275,276 
Memory indirect mode, 232-234 
Multiplication and division instructions, 

Nonautovectored interrupts, 283 
PACK and UNPK instructions, 247,248 
Pins and Signals, 261-265 
Privileged MOVE instructions, 238 
Programmed I/O, 279,281-282 
Programming examples, 234-236, 240,242,243, 

I/O, 279,280,281-285 

250-252 

246,247,248-250, 252-253,254,255, 265, 
270,271 

Registers, 225-228 
Reset, 264 
RTD instruction, 238, 239 
68000 enhanced instructions, 254 
68000 vs. 68020 addressing modes, 23 1 
68020-2256C interface, 277,279,280 
68020-27C256 interface, 276,277, 278 
68020-68230 Interface, 279,281-282 
Status register, 228 
Subroutines, 254,255 
System Design, 274-282 
Timing diagrams, 27 1-274 
TRAPcc instructions, 243,244 
Voltmeter design, 285-293 

Motorola 68030, 10 
Motorola 68040 /68060, 10 
Motorola 68230, 195, 196-198,279,281-282,469 
Motorola PowerPC, See PowerPC 
Multiplication of two unsigned and signed binary 

numbers, 99, 100 

N 
Nibble, 2,459 
NMOS, 9 
Nonmaskable interrupts, 86,201,420,422,426-427, 

Nonvolatile memory, 4 
460 

0 
Object codes, 89,460 
One-Pass Assembler, 91, 92 
Op-code, 9 1,460 
Operating system, 16,50,59,72,460 
Optical memories, 50 
ORG, 93 

ORIGIN, See ORG 
Overflow, 6,29, I 12,228,3 I0 

P 
Packed BCD, 7-8 
Parity Flag, 3 10 
Pentium, See Intel Pentium 
Pentium 11, Pentium 111, Pentium 4, 14 
Pentium M, 14 
Pentium Pro, 12 
Pentium vs. Pentium Pro, 12- 13 
Pipelining, 4, 39-44 

Arithmetic pipeline, 40, 41 
Instruction pipeline, 41-44 

PIC, 2 
Polled interrupt, 8 1,46 1 
POP, 29, 30, 3 1 
Port, 74 
PowerPC, 16 
Primary memory, 49 
Program, 1 
Program Counter, 26-27,461 
Program execution by typical microprocessors, 38 
Programmed 1/0,71,72,74-78, 192-201,415-419 

Conditional, 76-78 
Unconditional, 74-76 

PUSH, 29,30-31 

R 
RAM, 4,23, 51,52,54, 55,454 
Random Access Memory, See RAM 
READ and WRITE Operations, 52 
READ Timing Diagram, 52,53 
READIWRITE, 32 
Read-only Memory, See ROM 
READY, 32 
Register, 4 
Relocatable, 103 

Ring Counter, 2 10 
RISC, 4, 16,45,46,462 
ROM, 4,23,51,52 

RESET, 27,31,32, 182-185, 264,403 

S 
Scalar microprocessor, 45 
SDRAM, 52 
Secondary memory, 49 
Segmentation, 15, 50 
Segmented memory, 50 
Segments, 50, 60 
Set-associative cache mapping, 65, 66 
Seven Segment Displays, 73,74 

Common anode, 73,74 
Common cathode, 73,74 

Shift Operations, 100, 101 
Arithmetic, 10 1 
Logic, 100, 101 



570 Microprocessor The0 y and Applications with 68000/68020 and Pentiurn 

Signed addition, 98,99 
Signed binary numbers, 4 , 5  
Signed division, 100 
Sign extension, 103, 140,346,347 
Signed multiplication, 99 
Single-chip microcomputer, 2 
Single-Chip Microprocessor, 1 
Single-step, 18, 112, 312 
Sixty-Four Bit Microprocessors, 16 
Software, 1 
S o h a r e  breakpoint, 18 
S U M ,  51,52 
Stack, 29,30,31, 128-130, 166-167,326-327, 

334-336,338 
Stack Pointer, 29-30,32,463 
Standard 1/0,75,86 
Static RAM, See SRAM 
Status Register, 28, 29, 112,228, 309, 310 
String instructions, 377-382 
Subroutine, 104, 162, 163, 254, 255, 385-389,463 
Superscalar microprocessor, 4, 16,45,464 

T 
Thirty-two Bit Microprocessors, 15, 16 
Thirty-two and sixty-four bit microprocessors, 15, 16 
Two-Pass Assembler, 92 
Two’s complement, 5 

U 
Unpacked BCD, 7-8 
Unsigned binary numbers, 4 , 5  
Unsigned division, 99, 100 
Unsigned multiplication, 99 

V 
Valid bit, 67 
Virtual memory, 50 
Volatile memory, 50 

w 
WRITE Timing Diagram, 52,53,54 
Write-back and Write-through methods, 67 

Z 

Zero flag, 29, 1 12,226,228,3 10 



CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFWARE. 
PLEASE READ THE FOLLOWING BEFORE OPENING THE PACKAGE. 

This software contains files to help you utilize the models described in the 
accompanying book. By opening the package, you are agreeing to be 
bound by the following agreement: 

This software product is protected by copyright and all rights are reserved by 
the author and John Wiley & Sons, Inc. You are licensed to use this software 
on a single computer. Copying the software to another medium or format for 
use on a single computer does not violate the U.S. Copyright Law. Copying 
the software for any other purpose is a violation of the US.  Copyright Law. 

This software product is sold as is without warranty of any kind, either 
express or implied. including but not limited to the implied warran- 
ty of merchantability and fitness for a particular purpose. Neither 
Wiley nor its dealers or distributors assumes any liabilii of any 
alleged or actual damages arising from the use of or the inability 
to use this software. (Some states do not allow the exclusion of 
implied warranties, so the exclusion may not apply to you.) 

8 
WLEY 


	Microprocessor Theory and Applications with 68000/68020 and Pentium
	CONTENTS
	PREFACE
	CREDITS
	1. INTRODUCTION TO MICROPROCESSORS
	1.1 Explanation of Terms
	1.2 Microprocessor Data Types
	1.2.1 Unsigned and Signed Binary Numbers
	1.2.2 ASCII and EBCDIC Codes
	1.2.3 Unpacked and Packed Binary-Coded-Decimal Numbers
	1.2.4 Floating-point Numbers

	1.3 Evolution of the Microprocessor
	1.4 Typical Features of 32-bit and 64-bit Microprocessors
	1.5 Microprocessor-based System Design Concepts
	1.6 Typical Microprocessor Applications
	1.6.1 A Simple Microprocessor Application
	1.6.2 Examples of Typical Microprocessor Applications


	2. MICROCOMPUTER ARCHITECTURE
	2.1 Basic Blocks of a Microcomputer
	2.2 Typical Microcomputer Architecture
	2.2.1 System Bus
	2.2.2 Clock Signals

	2.3 Single-Chip Microprocessor
	2.3.1 Register Section
	2.3.2 Control Unit
	2.3.3 Arithmetic-Logic Unit
	2.3.4 Functional Representations of Simple and Typical Microprocessors
	2.3.5 Simplified Explanation of Control Unit design

	2.4 Program Execution by Conventional Microprocessors
	2.5 Program Execution by typical 32-bit Microprocessors
	2.5.1 Pipelining
	2.5.2 Branch Prediction Feature

	2.6 Scalar and Superscalar Microprocessors
	2.7 RISC vs. CISC

	Questions and Problems
	3. MICROPROCESSOR MEMORY ORGANIZATION
	3.1 Introduction
	3.2 Main memory
	3.2.1 Read-Only Memory
	3.2.2 Random-Access Memory
	3.2.3 READ and WRITE Timing Diagrams
	3.2.4 Main Memory Organization
	3.2.5 Main Memory Array Design

	3.3 Microprocessor on-chip memory management unit and cache
	3.3.1 Memory Management Concepts
	3.3.2 Cache Memory Organization


	Questions and Problems
	4. MICROPROCESSOR INPUT/OUTPUT
	4.1 Introduction
	4.2 Simple I/O Devices
	4.3 Programmed I/O
	4.4 Unconditional and Conditional Programmed I/O
	4.5 Interrupt I/O
	4.5.1 Interrupt Types
	4.5.2 Interrupt Address Vector
	4.5.3 Saving the Microprocessor Registers
	4.5.4 Interrupt Priorities

	4.6 Direct Memory Access (DMA)
	4.7 Summary of I/O

	Questions and Problems
	5. MICROPROCESSOR PROGRAMMING CONCEPTS
	5.1 Microcomputer Programming Languages
	5.2 Machine Language
	5.3 Assembly Language
	5.3.1 Types of Assemblers
	5.3.2 Assembler Delimiters
	5.3.3 Specifying Numbers by Typical Assemblers
	5.3.4 Assembler Directives or Pseudoinstructions
	5.3.5 Assembly Language Instruction Formats
	5.3.6 Instruction Set Architecture (ISA)
	5.3.7 Typical Instruction Set
	5.3.8 Typical Addressing Modes
	5.3.9 Subroutine Calls in Assembly Language

	5.4 High-Level Language
	5.5 Choosing a programming language
	5.6 Flowcharts 

	Questions and Problems
	6. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68000
	6.1 Introduction
	6.2 68000 Registers
	6.3 68000 Memory Addressing
	6.4 Assembly Language Programming with the 68000
	6.5 68000 Addressing Modes
	6.5.1 Register Direct Addressing
	6.5.2 Address Register Indirect Addressing
	6.5.3 Absolute Addressing
	6.5.4 Program Counter Relative Addressing
	6.5.5 Immediate Data Addressing
	6.5.6 Implied Addressing

	6.6 68000 Instruction Set
	6.6.1 Data Movement Instructions
	6.6.2 Arithmetic Instructions
	6.6.3 Logic Instructions
	6.6.4 Shift and Rotate Instructions
	6.6.5 Bit Manipulation Instructions
	6.6.6 Binary-Coded-Decimal Instructions
	6.6.7 Program Control Instructions
	6.6.8 System Control Instructions
	6.6.9 68000 Stack

	6.7 68000 Delay Routine 

	Questions and Problems
	7. 68000 HARDWARE AND INTERFACING
	7.1 68000 Pins And Signals
	7.1.1 Synchronous and Asynchronous Control Lines
	7.1.2 System Control Lines
	7.1.3 Interrupt Control Lines
	7.1.4 DMA Control Lines
	7.1.5 Status Lines

	7.2 68000 Clock and Reset Signals
	7.2.1 68000 Clock Signals
	7.2.2 68000 Reset Circuit

	7.3 68000 Read and Write Cycle Timing Diagrams
	7.4 68000 Memory Interface
	7.5 68000 I/O
	7.5.1 68000 Programmed I/O
	7.5.2 68000 Interrupt System
	7.5.3 68000 DMA

	7.6 68000 Exception Handling
	7.7 68000/2732/6116/6821-Based Microcomputer
	7.8 Multiprocessing with the 68000 Using the TAS Instruction and the AS Signal

	Questions and Problems
	8. ASSEMBLY LANGUAGE PROGRAMMING WITH THE 68020
	8.1 Introduction
	8.2 68020 Functional Characteristics
	8.3 68020 Registers
	8.4 68020 Data Types, Organization, and CPU Space Cycle
	8.5 68020 Addressing Modes
	8.5.1 Address Register Indirect (ARI) with Index and 8-Bit Displacement
	8.5.2 ARI with Index (Base Displacement, bd: Value 0 or 16 Bits or 32 Bits)
	8.5.3 Memory Indirect
	8.5.4 Memory Indirect with PC

	8.6 68020 Instructions
	8.6.1 68020 New Privileged Move Instructions
	8.6.2 Return and Delocate Instruction
	8.6.3 CHK/CHK2 and CMP/CMP2 Instructions
	8.6.4 Trap-on-Condition Instructions
	8.6.5 Bit Field Instructions
	8.6.6 PACK and UNPK Instructions
	8.6.7 Multiplication and Division Instructions
	8.6.8 68000 Enhanced Instructions
	8.6.9 68020 Subroutines

	Questions and Problems

	9. 68020 HARDWARE AND INTERFACING
	9.1 Introduction
	9.1.1 68020 Pins and Signals
	9.1.2 68020 Dynamic Bus Sizing
	9.1.3 68020 Timing Diagrams

	9.2 68020 System Design
	9.2.1 Memory Decode Logic for Memory and I/O
	9.2.2 68020-27C256 Interface
	9.2.3 68020-2256C/CH (SRAM) Interface
	9.2.4 68020 Programmed I/O

	9.3 68020 Exception processing
	9.4 68020-based Voltmeter
	9.4.1 Voltmeter Design Using Programmed I/O
	9.4.2 Voltmeter Design Using Interrupt I/O

	9.5 Interfacing a 68020-Based Microcomputer to a Hexadecimal Keyboard and a Seven-Segment Display
	9.5.1 Basics of Keyboard and Display Interface to a Microcomputer
	9.5.2 68020 Interface to a Hexadecimal Keyboard and a Seven-Segment Display

	Questions and Problems

	10. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PENTIUM: PART 1
	10.1 Introduction
	10.2 Pentium Registers
	10.2.1 General-Purpose Registers
	10.2.2 Stack Pointers and Index Registers
	10.2.3 Extended Instruction Pointer and Flag Register
	10.2.4 Segment Registers

	10.3 Modes of Operation
	10.3.1 Real Mode
	10.3.2 Protected Mode

	10.4 Pentium data Organization
	10.5 Assembly Language Programming with the Pentium
	10.6 Pentium Addressing Modes
	10.6.1 Pentium's 32-Bit Addressing in Real Mode
	10.6.2 Register and Immediate Modes
	10.6.3 Memory Addressing Mode
	10.6.4 Port Addressing Mode
	10.6.5 Relative Addressing Mode
	10.6.6 Implied Addressing Mode

	10.7 Pentium Instructions
	10.7.1 Data Transfer Instructions
	10.7.2 Arithmetic Instructions

	Questions and Problems

	11. ASSEMBLY LANGUAGE PROGRAMMING WITH THE PENTIUM: PART 2
	11.1 Logic, Bit Manipulation, Set on condition, Shift, and Rotate Instructions
	11.2 String Instructions
	11.3 Unconditional Transfer Instructions
	11.4 Conditional Branch Instructions
	11.5 Iteration Control Instructions
	11.6 Interrupt Instructions
	11.7 Processor Control Instructions
	11.8 Pentium Delay routine
	Questions and Problems

	12. PENTIUM HARDWARE AND INTERFACING
	12.1 Pentium Pins and Signals
	12.2 Pentium READ and WRITE Timing Diagrams
	12.3 Pentium's interface to memory and I/O
	12.3.1 Memory Interface
	12.3.2 Pentium-EPROM Interface
	12.3.3 Pentium-SRAM interface
	12.3.4 Pentium Programmed I/O
	12.3.5 Pentium Interrupts and Exceptions in Real Mode

	12.4 Pentium-based voltmeter
	12.4.1 Pentium-based voltmeter using programmed I/O
	12.4.2 Pentium-based voltmeter using NMI
	12.4.3 Pentium-based voltmeter using INTR

	12.5 Interfacing a Pentium-based Microcomputer to a Hexadecimal Keyboard and a Seven Segment Display
	12.5.1 Basics of Keyboard and Display Interface to a Microcomputer
	12.5.2 Hexadecimal Keyboard and Seven-Segment Display Interface to a Pentium-Based Microcomputer

	Questions and Problems

	APPENDIX A: ANSWERS TO SELECTED PROBLEMS
	APPENDIX B: GLOSSARY
	APPENDIX C: MOTOROLA 68000 AND SUPPORT CHIPS
	APPENDIX D: 68000 EXECUTION TIMES
	APPENDIX E: 68000 / SELECTED 68020 INSTRUCTION SET
	APPENDIX F: PENTIUM INSTRUCTION FORMAT AND TIMING
	F.1. INTEGER INSTRUCTION FORMAT AND TIMING

	APPENDIX G: PENTIUM INSTRUCTION SET IN REAL MODE (SELECTED)
	APPENDIX H: PENTIUM PINOUT AND PIN DESCRIPTIONS
	H.1. Pentium™ Processor Pinout
	H.2. Design Notes
	H.3. Quick Pin Reference
	H.4. PIN REFERENCE TABLES
	H.5. Pin Grouping According To Function
	H.6. Output Pin Grouping According To When Driven

	BIBLIOGRAPHY
	INDEX




