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PREFACE

Microprocessors play an important role in the design of digital systems. They are found in
a wide range of applications, such as process control and communication systems.

This book is written to present the fundamental concepts of assembly language
programming and system design concepts associated with typical microprocessors, such as
the Motorola 68000/68020 and Intel Pentium. The 68000 is a 16-bit microprocessor that
continues to be popular. Since the 68000 uses linear memory and contains 32-bit general-
purpose registers, it is an excellent educational tool for acquiring an understanding of both
hardware and software aspects of typical microprocessors.

Conventional microprocessors such as the 68000 complete fetch, decode and
execute cycles of an instruction in sequence. Typical 32-bit microprocessors such as
the 68020 and Pentium use pipelining, in which instruction fetch and execute cycles are
overlapped. This speeds up the instruction execution time of 32-bit microprocessors.
Pipelining was used for many years in mainframe and minicomputer CPUs. In addition,
other mainframe features, such as memory management and floating-point and cache
memory, are implemented in 32-bit microprocessors. Hence, brief coverage of these topics
is provided in the first part of the book.

The book is self-contained and includes a number of basic topics. A basic
digital logic background is assumed. Characteristics and principles common to typical
microprocessors are emphasized and basic microcomputer interfacing techniques are
demonstrated via examples using the simplest possible devices, such as switches, LEDs,
A/D converters, the hexadecimal keyboard, and seven-segment displays.

The book has evolved from classroom notes developed for three microprocessor
courses taught at the Electrical and Computer Engineering Department, California State
Poly University, Pomona for the last several years: ECE 343 (Microprocessor 1), ECE 432
(Microprocessor II), and ECE 561 (Advanced Microprocessors).

The text is divided into 12 chapters. In Chapter 1, we provide a review of
terminology, number systems, evolution of microprocessors, system design concepts and
typical microprocessor applications.

Chapters 2 through 12 form the nucleus of the book. Chapter 2 covers typical
microcomputer architectures for both 16-bit (conventional) and 32-bit microprocessors.
The concepts of pipelining, superscalar processors and RISC vs. CISC are included.

xiii



Xiv Preface

Chapter 3 is focused on the memory organization of typical microprocessors. The
basic concepts associated with main memory array design, including memory maps are
also covered, as are memory management concepts and cache memory organization.

In Chapter 4, we describe microprocessor input/output techniques including
programmed I/O, interrupt I/O, and direct memory access (DMA).

Chapter 5 contains programming concepts associated with a typical microprocessor.
Topics include assembly language programming, typical addressing modes, and instruction
sets.

The theory of assembly language programming and system design concepts
covered in the early chapters is illustrated in Chapters 6 through 12 by means of a typical
conventional 16-bit microprocessor such as the Motorola 68000 and typical 32-bit
microprocessors such as the Motorola 68020 and Intel Pentium. Several examples of
assembly language programming and I/O techniques associated with these microprocessors
are included. These chapters also demonstrate how the software and hardware work
together by interfacing simple I/O devices such as LEDs, a hexadecimal keyboard, and
A/D converters. The concepts are described in a very simplified manner.

A CD containing a step-by-step procedure for installing and using a typical
68000/68020 assembler/debugger such as the ide68k21 and a Pentium assembler/
debugger such as the MASM32 / OllyDebugger is provided. Note that these assemblers
and debuggers are Windows-based and are very user friendly. Screen shots provided on
the CD verify the correct operation of several assembly language programs for the 68000,
68020, and Pentium via simulations using test data.

The book can be used in a number of ways. Since the materials presented here
are basic and do not require an advanced mathematical background, the book can easily be
adopted as a text for two- semester courses in microprocessors taught at the undergraduate
level in electrical/computer engineering and computer science departments.

The book will also be useful for graduate students and for practicing microprocessor
system designers. Practitioners of microprocessor system design will find more simplified
explanations, together with examples and comparison considerations, than are found in
manufacturers’ manuals.

I wish to extend my sincere appreciation to my students, Joseph Lee, Raffi
Karkourian, Tony Lopez, Julius Ramos, David Ambasing, Kevin Asprer, William Cambell,
Devine Jeyarajah, Huy Nguyen, Thuan Ho, Kenneth Kha, Darren Ly, Dat Nguy, and Sevada
Isayan for reviewing the manuscript and making valuable comments, and to CJ Media of
California for preparing the final version of the manuscript. I am indebted especially to my
deceased parents, who were primarily responsible for my accomplishments.

Pomona, California M. RAFIQUZZAMAN
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INTRODUCTION TO
MICROPROCESSORS

Digital systems are designed to store, process, and communicate information in digital form.
They are found in a wide range of applications, including process control, communication
systems, digital instruments, and consumer products. A digital computer, more commonly
called simply a computer, is an example of a typical digital system.

A computer manipulates information in digital or more precisely, binary form. A
binary number has only two discrete values: zero or one. Each discrete value is represented
by the OFF and ON status of an electronic switch called a fransistor. All computers
understand only binary numbers. Any decimal number (base 10, with ten digits from 0 to
9) can be represented by a binary number (base 2, with digits O and 1).

The basic blocks of a computer are the central processing unit (CPU), the
memory, and the input/output (I/O). The CPU of a computer is basically the same as the
brain of a human being; so computer memory is conceptually similar to human memory.
A question asked of a human being is analogous to entering a program into a computer
using an input device such as a keyboard, and a person answering a question is similar
in concept to outputting the program result to a computer output device such as a printer.
The main difference is that human beings can think independently, whereas computers can
only answer questions for which they are programmed. Computer hardware includes such
components as memory, CPU, transistors, nuts, bolts, and so on. Programs can perform a
specific task, such as addition, if the computer has an electronic circuit capable of adding
two numbers. Programmers cannot change these electronic circuits but can perform tasks
on them using instructions.

Computer software consists of a collection of programs that contain instructions
and data for performing a specific task. All programs, written using any programming
language (e.g., C++), must be translated into binary prior to execution by a computer
because the computer understands only binary numbers. Therefore, a translator is
necessary to convert such a program into binary and this is achieved using a translator
program called a compiler. Programs in the binary form of 1’s and 0’s are then stored
in the computer memory for execution. Also, as computers can only add, all operations,
including subtraction, multiplication, and division, are performed by addition.

Due to advances in semiconductor technology, it is possible to fabricate a CPU
on a single chip. The result is a microprocessor. Both metal-oxide semiconductor (MOS)
and bipolar technologies are used in the fabrication process. The CPU can be placed on
a single chip when MOS technology is used. However, several chips are required with
bipolar technology. At present, HCMOS (high-speed complementary MOS) or BICMOS

I



2 Microprocessor Theory and Applications with 68000/68020 and Pentium

(combination of bipolar and HCMOS) technology is normally used to fabricate a
microprocessor on a single chip. Along with the microprocessor chip, appropriate memory
and I/O chips can be used to design a microcomputer. The pins on each one of these chips
can be connected to the proper lines on a system bus, which consists of address, data, and
control lines. In the past, some manufacturers designed a complete microcomputer on a
single chip with limited capabilities. Single-chip microcomputers were used in a wide
range of industrial and home applications.

Microcontrollers evolved from single-chip microcomputers. Microcontrollers are
typically used for dedicated applications such as automotive systems, home appliances, and
home entertainment systems. Typical microcontrollers include a microcomputer, timers,
and A/D (analog-to- digital) and D/A (digital to analog) converters, all on a single chip.
Examples of typical microcontrollers are the Intel 8751 (8-bit)/8096 (16-bit), Motorola
HCI11 (8-bit)yHC16 (16-bit), and Microchip Technology’s PIC (peripheral interface
controller).

In this chapter we first define some basic terms associated with microprocessors.
We then describe briefly the evolution of microprocessors and typical features of 32- and
64-bit microprocessors. Finally, microprocessor-based system design concepts and typical
microprocessor applications are included.

1.1 Explanation of Terms

Before we go on, it is necessary to understand some basic terms.

*  An Address is a pattern of 0’s and 1’s that represents a specific location in memory
or a particular 1/0 device. Typical 8-bit microprocessors have 16 address lines, and,
these 16 lines can produce 2'¢ unique 16-bit patterns from 0000000000000000 to
1111111111111111, representing 65,536 different address combinations.

*  Addressing mode is the manner in which the microprocessor determines the operand
(data) and destination addresses during execution of an instruction.

*  An Arithmetic-logic unit (ALU) is a digital circuit that performs arithmetic and logic
operations on two n-bit digital words. The value of » can be 4, 8, 16, 32, or 64.
Typical operations performed by an ALU are addition, subtraction, ANDing, ORing,
and comparison of two n-bit digital words. The size of the ALU defines the size of the
microprocessor. For example, a 32-bit microprocessor contains a 32-bit ALU.

*  Bitis an abbreviation for the term binary digit. Abinary digit can have only two values,
which are represented by the symbols 0 and 1, whereas a decimal digit can have 10
values, represented by the symbols 0 through 9. The bit values are easily implemented
in electronic and magnetic media by two-state devices whose states portray either of
the binary digits 0 and 1. Examples of such two-state devices are a transistor that is
conducting or not conducting, a capacitor that is charged or discharged, and a magnetic
material that is magnetized north to south or south to north.

*  Bitsize refers to the number of bits that can be processed simultaneously by the basic
arithmetic circuits of a microprocessor. A number of bits taken as a group in this
manner is called a word. For example, a 32-bit microprocessor can process a 32-bit
word. An 8-bit word is referred to as a byte , and a 4-bit word is known as a nibble.

* A bus consists of a number of conductors (wires) organized to provide a means of
communication among different elements in a microprocessor system. The conductors
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in a bus can be grouped in terms of their functions. A microprocessor normally has
an address bus, a data bus, and a control bus. Address bits are sent to memory or to
an external device on the address bus. Instructions from memory, and data to/from
memory or external devices, normally travel on the data bus. Control signals for the
other buses and among system elements are transmitted on the control bus. Buses are
sometimes bidirectional; that is, information can be transmitted in either direction on
the bus, but normally in only one direction at a time.

*  Cache Memory is a high-speed, directly accessible, relatively small, semiconductor
read/write memory block used to store data/instructions that the microprocessor may
need in the immediate future. It increases speed by reducing the number of external
memory reads required by the microprocessor. Typical 32-bit microprocessors such as
the Intel Pentium are provided with on-chip cache memory. Pentium II supports two
levels of cache. These are L1 (Level 1 cache) and L2 (Level 2 cache) cache memories.
The L1 cache (smaller in size) is contained inside the microprocessor while L2 cache
(larger in size) is interfaced to the microprocessor. This two level cache enhances the
performance of the microprocessor.

* A Complex Instruction Set Computer (CISC) contains a large instruction set. It is
difficult to pipeline compared to RISC. Motorola 68020 is a CISC microprocessor.

*  Clock is analogous to human heart beats. The microprocessor requires synchronization
among its components, and this is provided by a clock or timing circuits.

*  The instruction set of a microprocessor is a list of commands that the microprocessor
is designed to execute. Typical instructions are ADD, SUBTRACT, and STORE.
Individual instructions are coded as unique bit patterns which are recognized and
executed by the microprocessor. If a microprocessor has 3 bits allocated to the
representation of instructions, the microprocessor will recognize a maximum of 23, or
eight, different instructions. The microprocessor will then have a maximum of eight
instructions in its instruction set. It is obvious that some instructions will be more
suitable than others to a particular application. For example, if a microprocessor is to be
used in a calculating mode, instructions such as ADD, SUBTRACT, MULTIPLY, and
DIVIDE would be desirable. In a control application, instructions inputting digitized
signals to the processor and outputting digital control variables to external circuits
are essential. The number of instructions necessary in an application will directly
influence the amount of hardware in the chip set and the number and organization of
the interconnecting bus lines.

*  Memory Management Unit (MMU) allows programmers to write programs much
larger than could fit in the main memory space available to the microprocessor. The
programs are simply stored in a secondary device such as a hard disk and portions
of the programs are swapped into the main memory as needed for execution by
the microprocessor. The MMU is impiemented as on-chip hardware in typical
microprocessors such as the Pentium,

* A microprocessor is the CPU of a microcomputer contained on a single chip, and
must be intefaced with peripheral support chips in order to function. In general, a CPU
contains several registers (memory elements), an ALU, and a control unit. Note that
the control unit translates instructions and performs the desired task. The number of
peripheral devices depends on the particular application involved and may even vary
within an application. As the microprocessor industry matures, more of these functions
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are being integrated onto chips, to reduce the system package count. In general, a
microcomputer typically consists of a microprocessor (CPU) chip, input and output
chips, and memory chips in which programs (instructions and data) are stored. Note
that a microcontroller, on the other hand, is implemented on a single chip containing
typically a CPU, memory, 1/O, a timer, and A/D and D/A converter circuits.

*  Pipelining is a technique that overlaps instruction fetch (instruction read) with
execution. This allows a microprocessor’s processing operation to be broken down into
several steps (dictated by the number of pipeline levels or stages) so that the individual
step outputs can be handled by the microprocessor in parallel. Pipelining is often used
to fetch the microprocessor’s next instruction while executing the current instruction,
which speeds up the overall operation of the microprocessor considerably.

*  Random-access memory (RAM) is a storage medium for groups of bits or words
whose contents cannot only be read but can also be altered at specific addresses. A
RAM normally provides volatile storage, which means that its contents are lost in case
power is turned off. RAMs are fabricated on chips and have typical densities of 4096
bits to 1 megabit per chip. These bits can be organized in many ways: for example,
as 4096-by-1-bit words or as 2048-by-8-bit words. RAMs are normally used for the
storage of temporary data and intermediate results as well as programs that can be
reloaded from a backup nonvolatile source. RAMs are capable of providing large
storage capacity, in the megabit range.

*  Read-only memory (ROM) is a storage medium for the groups of bits called words,
and its contents cannot normally be altered once programmed. A typical ROM is
fabricated on a chip and can store, for example, 2048 eight-bit words, which can be
accessed individually by presenting to it one of 2048 addresses. This ROM is referred
to as a 2K by 8-bit ROM. 10110111 is an example of an 8-bit word that might be stored
in one location in this memory. A ROM is a nonvolatile storage device, which means
that its contents are retained in case power is turned off. Because of this characteristic,
ROMs are used to store programs (instructions and data) that must always be available
to the microprocessor.

*  Aregister can be considered as volatile storage for a number of bits. These bits may
be entered into the register simultaneously (in parallel) or sequentially (serially) from
right to left or from left to right, 1 bit at a time. An 8-bit register storing the bits
11110000 is represented as follows:

[1lt]1]t]ofofo]o]

* A reduced instruction set computer (RISC) contains a simple instruction set. The
RISC architecture maximizes speed by reducing clock cycles per instruction and
makes it easier to implement pipelining. A Power PC is a RISC microprocessor.

* A Superscalar microprocessor is provided with more than one pipeline and can
execute more than one instruction per clock cycle. The Pentium is a superscalar
MiCroprocessor.

1.2 Microprocessor Data Types

In this section we discuss data types used by typical microprocessors: unsigned and



Introduction to Microprocessors 5

signed binary numbers, binary-coded decimal (BCD), ASCII (American Standard Code
for Information Interchange), EBCDIC (extended binary coded decimal interchange code),
and floating-point numbers.

1.2.1 Unsigned and Signed Binary Numbers

An Unsigned binary number has no arithmetic sign, therefore, are always positive. Typical
examples are your age or a memory address, which are always positive numbers. An 8-bit
unsigned binary integer represents all numbers from 00,4 through FF ((0,, through 255,,).

A signed binary number, on the other hand, includes both positive and negative
numbers. It is represented in the microprocessor in two’s-complement form. For example,
the decimal number +15 is represented in 8-bit two’s-complement form as 0000 1111
(binary) or OF (hexadecimal). The decimal number -15 can be represented in 8-bit two’s-
complement form as 11110001 (binary) or F1 (hexadecimal). Also, the most significant bit
(MSB) of a signed number represents the sign of the number. For example, bit 7 of an 8-bit
number, bit 15 of a 16-bit number, and bit 31 of a 32-bit number represent the signs of the
respective numbers. A “0” at the MSB represents a positive number; a “1” at the MSB
represents a negative number. Note that the 8-bit binary number 11111111 is 255,,when
represented as an unsigned number. On the other hand, 11111111, is -1,, when represented
as a signed number.

An error (indicated by overflow in a microprocessor) may occur while performing
twos complement arithmetic. The microprocessor automatically sets an overflow bit to
1 if the result of an arithmetic operation is too big for the microprocessor’s maximum
word size; otherwise it is reset to 0. For signed arithmetic operations such as addition, the
overflow, V = C;® C, where C; is the final carry and C, is the previous carry. This can be
illustrated by the following examples.

Consider the following examples for 8-bit numbers. Let C; be the final carry (carry
out of the most significant bit or sign bit) and C, be the previous carry (carry out of bit 6
or seventh bit). We will show by means of numerical examples that as long as C; and C,
are the same, the result is always correct. If, however, C; and C, are different, the result is
incorrect and sets the overflow bit to 1. Now, consider the following cases.

Case 1: C;and C, are the same.

00000110 0616

00010100 +1416
_»000011010 1A16
Ci=0 N

,T\

Cp=0

01101000 68 16

11111010 0616
_»1 01100010 62 16
Ci=1 N
,1«
Co=1

Therefore when C,and C, are either both 0 or both 1, a correct answer is obtained.
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Case 2: C;and C, are different.

01011001 59,6
01000101 4456
0 10011110 =62, ?
ST
Cp=1

C;=0and C, = 1 give an incorrect answer because the result shows that the
addition of two positive numbers is negative.

10110110 ~4A 6

10000001 =TF 16
/’1 00110111 +37 ?
Cf=1 &*

C,=0

C;=1and C, = 0 provide an incorrect answer because the result indicates that the
addition of two negative numbers is positive. Hence, the overflow bit will be set to zero if
the carries C;and C, are the same, that is, if both C; and C, are either 0 or 1. On the other
hand, the overflow flag will be set to 1 if carries C;and C, are different. The relationship
among C;,C,,and V can be summerized in a truth table as follows:

Inputs Output
C G, \Y%

0 0 0

0 1 1

1 0 1

1 1 0

From the truth table, overflow, V= Ef C,+C Ep =C®C,

Note that the symbol @ represents exclusive-OR logic operation. Exclusive-OR
means that when two inputs are the same (both one or both zero), the output is zero. On the
other hand, if two inputs are different, the output is one. The overflow can be considered as
an output while C;and C, are the two inputs. The answer is incorrect when the overflow
bit is set to 1; the answer is correct if the overflow bit is 0.

Typical microprocessors have separate unsigned and signed multiplication
and division instructions as follows: MULU (multiply two unsigned numbers), MULS
(multiply two signed numbers), DIVU (divide two unsigned numbers), and DIVS (divide

two signed numbers). It is important for the programmer to understand clearly how to use
these instructions.
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For example, suppose that it is desired to compute X 2/255. If X'is a signed 8-bit
number, the programmer should use the MULS instruction to compute X * X which is
always unsigned (the square of a number is always positive), and then use DIVU to compute
X? /255 (16-bit by 8-bit unsigned divide) since 255, is positive. But if the programmer
uses DIVS, both X *X and 255,, (FF,;) will be interpreted as signed numbers. FF,, will
be interpreted as -1'°, and the result will be wrong. On the other hand, if X is an unsigned
number , the programmer needs to use MULU and DIVU to compute X? /255.

1.2.2 ASCII and EBCDIC Codes

If it is to be very useful, a microprocessor must be capable of handling nonnumeric
information. In other words, a microprocessor must be able to recognize codes that represent
numbers, letters, and special characters. These codes are classified as alphanumeric
or character codes. A complete and adequate set of necessary characters includes the
following:

* 26 lowercase letters

® 26 uppercase letters
* 10 numerical digits (0-9)
*  Approximately 25 special characters, which include +, /, #, %, and others.

This totals 87 characters. To represent 87 characters with some type of binary
code would require at least 7 bits. With 7 bits there are 27 = 128 possible binary numbers;
87 of these combinations of 0 and 1 bits serve as the code groups representing the 87
different characters.

The two most common alphanumerical codes are the American Standard Code
for Information Interchange (ASCII) and the extended binary-coded-decimal interchange
code (EBCDIC). ASCII is typically used with microprocessors; IBM uses EBCDIC code.
Eight bits are used to represent characters, although 7 bits suffice, because the eighth bit is
frequently used to test for errors and is referred to as a parity bit. It can be set to 1 or 0 so
that the number of 1 bits in the byte is always odd or even.

Note that decimal digits 0 through 9 are represented by 30, through 39, in ASCII.
On the other hand, these decimal digits are represented by F0,, though F9,, in EBCDIC.

A microcomputer program is usually written for code conversion when input/
output devices of different codes are connected to the microcomputer. For example,
suppose that it is desired to enter the number 5 into a computer via an ASCII keyboard and
to print this data on an EBCDIC printer. The ASCII keyboard will generate 35,; when the
number 5 is pushed. The ASCII code 35,4 for the decimal digit 5 enters the microcomputer
and resides in the memory. To print the digit 5 on the EBCDIC printer, a program must be
written that will convert the ASCII code 35, for 5 to its EBCDIC code, F5,,. The output
of this program is F5,,. This will be input to the EBCDIC printer. Because the printer
understands only EBCDIC codes, it inputs the EBCDIC code F5,4 and prints the digit 5.
Typical microprocessors such as the Intel Pentium include instructions to provide correct
unpacked BCD after performing arithmetic operations in ASCII. The Pentium instruction,
AAA (ASCII adjust for addition) is such an instruction.

1.2.3 Unpacked and Packed Binary-Coded-Decimal Numbers

The 10 decimal digits 0 through 9 can be represented by their corresponding 4-bit binary
numbers. The digits coded in this fashion are called binary-coded-decimal digits in 8421
code, or BCD digits. Two unpacked BCD bytes are usually packed into a byte to form
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packed BCD. For example, two unpacked BCD bytes 02, and 05,; can be combined as a
packed BCD byte 25,,.

Let us consider entering data decimal 24 via an ASCII keyboard into a
microcomputer. Two keys ( 2 and 4) will be pushed on the ASCII keyboard. This will
generate 32 and 34 (32 and 34 are ASCII codes in hexadecimal for 2 and 4, respectively)
inside the microcomputer. A program can be written to convert these ASCII codes into
unpacked BCD 02, and 04, and then to convert to packed BCD 24 or to binary inside
the microcomputer to perform the desired operation. Unpacked BCD 02, and 04, can be
converted into packed BCD 24 (00100100,) by logically shifting 02, four times to the
left to obtain 20, then logically ORing with 04,. On the other hand, to convert unpacked
BCD 02,, and 04, into binary, one needs to multiply 02, by 10 and then add 04, to
obtain 00011000, (the binary equivalent of 24).

Typical 32-bit microprocessors such as the Motorola 68020 include PACK and
UNPK instructions for converting an unpacked BCD number to its packed equivalent, and
vice versa.

1.24 Floating-point Numbers
A number representation assuming a fixed location of the radix point is called fixed-point
representation. The range of numbers that can be represented in fixed-point notation is
severely limited. The following numbers are examples of fixed-point numbers:
0110.1100,, 51.12,,, DE.2A ¢

In typical scientific computations, the range of numbers is very large. Floating-
point representation is used to handle such ranges. A floating-point number is represented
as N x r?, where N is the mantissa or significand, r the base or radix of the number system,
and p the exponent or power to which r is raised. Some examples of numbers in floating-
point notation and their fixed-point decimal equivalents are:

Fixed-Point Number Floating-Point Representation
0.0167,, 0.167 x 10!
1101.101, 0.1101101 x 2¢
BE.2A9,, 0.BE2A9 x 162

In converting from fixed-point to floating-point number representation, the
resulting mantissas are normalized, that is, the digits of the fixed-point numbers are shifted
so that the highest-order nonzero digit appears to the right of the decimal point and a
0 always appears to the left of the decimal point. This convention is normally adopted
in floating-point number representation. Because all numbers will be assumed to be in
normalized form, the binary point is not required to be represented in microprocessors.

Typical 32-bit microprocessors such as the Intel Pentium and the Motorola
68040 contain on-chip floating-point hardware. This means that these microprocessors
can be programmed using instructions to perform operations such as addition, subtraction,
multiplication, and division using floating-point numbers. The Motorola 68020 does not
contain on-chip floating-point hardware but 68020 can be interfaced to a floating-point
coprocessor chip to provide floating-point functions.
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1.3 Evolution of the Microprocessor

The Intel Corporation is generally acknowledged as the company that introduced the
first microprocessor successfully into the marketplace. Its first processor, the 4004, was
introduced in 1971 and evolved from a development effort while making a calculator chip
set. The 4004 microprocessor was the central component in the chip set, which was called
the MCS-4. The other components in the set were a 4001 ROM, a 4002 RAM, and a 4003
shift register.

Shortly after the 4004 appeared in the commercial marketplace, three other
general-purpose microprocessors were introduced: the Rockwell International 4-bit PPS-4,
the Intel 8-bit 8008, and the National Semiconductor 16-bit IMP-16. Other companies,
such as General Electric, RCA, and Viatron, also made contributions to the development of
the microprocessor prior to 1971.

The microprocessors introduced between 1971 and 1972 were the first-generation
systems designed using PMOS technology. In 1973, second-generation microprocessors
such as the Motorola 6800 and the Intel 8080 (8-bit microprocessors) were introduced.
The second-generation microprocessors were designed using NMOS technology. This
technology resulted in a significant increase in instruction execution speed over PMOS and
higher chip densities. Since then, microprocessors have been fabricated using a variety of
technologies and designs. NMOS microprocessors such as the Intel 8085, the Zilog Z80,
and the Motorola 6800/6809 were introduced based on second-generation microprocessors.
A third generation HMOS microprocessor, introduced in 1978 is typically represented by
the Intel 8086 and the Motorola 68000, which are 16-bit microprocessors.

During the 1980’s, fourth-generation HCMOS and BICMOS (a combination of
bipolar and HCMOS) 32-bit microprocessors evolved. Intel introduced the first commercial
32-bit microprocessor, the problematic Intel 432, which was eventually discontinued.
Since 1985, more 32-bit microprocessors have been introduced. These include Motorola’s
68020, 68030, 68040, 68060, PowerPC, Intel’s 80386, 80486, the Intel Pentium family,
Core Duo, and Core2 Duo microprocessors..

The performance offered by the 32-bit microprocessor is more comparable to
that of superminicomputers such as Digital Equipment Corporation’s VAX11/750 and
VAX11/780. Intel and Motorola also introduced RISC microprocessors: the Intel 80960
and Motorola 88100/PowerPC, which had simplified instruction sets. Note that the purpose
of RISC microprocessors is to maximize speed by reducing clock cycles per instruction.
Almost all computations can be obtained from a simple instruction set. Note that, in order
to enhance performance significantly, Intel Pentium Pro and other succeeding members of
the Pentium family and Motorola 68060 are designed using a combination of RISC and
CISC.

An overview of the Motorola 68XXX and PowerPC microprocessors will
be provided next. Motorola’s 32-bit microprocessors based on the 68000 (16-bit
microprocessor) architecture include the MC68020, MC68030, MC68040, and MC68060.
Table 1.1 compares the basic features of some of these microprocessors with the 68000.

MC68020 1s Motorola’s first 32-bit microprocessor. The design of the 68020 is
based on the 68000. The 68020 can perform a normal read or write cycle in 3 clock cycles
without wait states as compared to the 68000, which completes a read or write operation in
4 clock cycles without wait states. As far as the addressing modes are concerned, the 68020
includes new modes beyond those of the 68000. Some of these modes are scaled indexing,
larger displacements, and memory indirection.
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TABLE 1.1 Motorola 68000 vs. 68020/68030/68040
68000 68020 68030 68040
Comparable Clock Speed 33MHz 33 MHz 33 MHz 33 MHz
(4MHz min)* (8 MHz (8 MHz min.)* (8 MHz min.)*
min.)*
Pins 64, 68 114 118 118
Address Bus 24-bit 32-bit 32-bit 32-bit
Addressing Modes 14 18 18 18
Maximum Memory 16 Megabytes 4 Gigabytes 4 Gigabytes 4 Gigabytes
Memory Management NO By interfacing  On-chip MMU  On-chip MMU
the 68851
MMU chip
Cache (on chip) NO Instruction Instruction and  Instruction and
cache data cache data cache
Floating Point NO By interfacing By interfacing On-chip
68881/68882 68881/68882 floating point
floating-point  floating-point hardware
coprocessor coprocessor
chip chip
Total Instructions 56 101 103 103 plus
floating- point
instructions
ALU size One 16-bit Three 32-bit Three 32-bit Three 32-bit
ALU ALU’s ALU’s ALU’s

*Higher clock speeds available

Furthermore, several new instructions are added to the 68020 instruction set,
including the two new instructions are used to perform conversions between packed BCD
and ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits.

68030 and 68040 are two enhanced versions of the 68020. The 68030 retains most
of the 68020 features. It is a virtual memory microprocessor containing an on-chip MMU
(memory management unit). The 68040 expands the 68030 on-chip memory management
logic to two units: one for instruction fetch and one for data access. This speeds up the
68040’s execution time by performing logical-to-physical-address translation in parallel.
The on-chip floating-point capability of the 68040 provides it with both integer and floating-
point arithmetic operations at a high speed. All 68000 programs written in assembly
language in user mode will run on the 68020/68030 or 68040.

MC68060 is a superscalar (two instructions per cycle) 32-bit microprocessor.
The 68060, like the Pentium Pro and the succeeding members of the Pentium family, is
designed using a combination of RISC and CISC architectures to obtain high performance.
For some reason, Motorola does not offer MC68050 microprocessor. The 68060 is fully
compatible with the 68040 in the user mode. The 68060 can operate at 50- and 66-MHz
clocks with performance much faster than the 68040. An striking feature of the 68060 is the
power consumption control. The 68060 is designed using static HCMOS to reduce power
during normal operation.

PowerPC family of microprocessors were jointly developed by Motorola, IBM,
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and Apple. The PowerPC family contains both 32- and 64-bit microprocessors. One of
the noteworthy feature of the PowerPC is that it is the first top-of-the-line microprocessor
to include an on-chip real-time clock (RTC). The RTC is common in single-chip
microcomputers rather than microprocessors. The PowerPC is the first microprocessor to
implement this on-chip feature, which makes it easier to satisfy the requirements of time-
keeping for task switching and calendar date of modern multitasking operating systems. The
PowerPC microprocessor supports both the Power Mac and standard PCs. The PowerPC
family is designed using RISC architecture.

An overview of Intel’s 80X XX, Pentium, and contemporary microprocessors will
be provided in the following.

The original Pentium processor was introduced by Intel in 1993, and the name
was changed from 80586 to Pentium because of copyright laws. The processor uses more
than 3 million transistors and had an initial speed of 60 MHz. The speed has increased
over the years to the latest speed of 233 MHz. Table 1.2 compares the basic features of
the Intel 80386DX, 80386SX, 80486DX, 80486SX, 80486DX2, and Pentium. These are
all 32-bit microprocessors. Note that the 80386SL (not listed in the table) is also a 32-bit
microprocessor with a 16-but data bus like the 80386SX. The 80386SL can run at a speed
of up to 25 MHz and has a direct addressing capability of 32 MB. The 80386SL provides
virtual memory support along with on-chip memory management and protection. It can
be interfaced to the 80387SX to provide floating-point support. The 80386SL includes an
on-chip disk controller hardware.

The Pentium Pro was introduced in November 1995. The Pentium processor
provides pipelined superscalar architecture.  The Pentium processor’s pipelined
implementation uses five stages to extract high throughput and the Pentium Pro utilizes
12-stage, superpipelined implementation, trading less work per pipestage for more stages.
The Pentium Pro processor reduced its pipe stage time by 33% compared with a Pentium
processor, which means the Pentium Pro processor can have a 33% higher clock speed
than a Pentium processor and still be equally easy to produce from a semiconductor
manufacturing process. A200-MHz Pentium Pro is always faster than a 200-MHz Pentium
for 32-bit applications such as computer-aided design (CAD), 3-D graphics, and multimedia
applications.

The Pentium processor’s superscalar architecture, with its ability to execute two
instructions per clock, was difficult to exceed without a new approach. The new approach
used by the Pentium Pro processor removes the constraint of linear instruction sequencing
between the traditional ferch and execute phases, and opens up a wide instruction pool.
This approach allows the execute phase of the Pentium Pro processor to have much more
visibility into the program’s instruction stream so that better scheduling may take place.
This allows instructions to be started in any order but always be completed in the original
program order.

Microprocessor speeds have increased tremendously over the past several
years, but the speed of the main memory devices has only increased by 60 percent. This
increasing memory latency, relative to the microprocessor speed, is a fundamental problem
that the Pentium Pro is designed to solve. The Pentium Pro processor looks ahead into its
instruction pool at subsequent instructions and will do useful work rather than be stalled.
The Pentium Pro executes instructions depending on their readiness to execute and not on
their original program order. In summary, it is the unique combination of improved branch
prediction, choosing the best order, and executing the instructions in the preferred order
that enables the Pentium Pro processor to improve program execution over the Pentium
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TABLE 1.2 Intel 80386/80486/Pentium Microprocessors.
Features 80386DX | 80386SX | 80486DX | 80486SX | 80486DX2 | Pentium
(original)
o Introduced October June 1988 | April April 1991 | March March
1985 1989 1992 1993
e Maximum Clock [ 40 33 50 25 100 233
Speed (MHz)
o MIPS* 6 25 20 16.5 54 112
o Transistors 275,000 275,000 1.2 1.185 1.2 million | 3.1
million million million
¢ On-chip cache Support Support Yes Yes Yes Yes
memory chips chips
available | available
e Data bus 32-bit 16-bit 32-bit 32-bit 32-bit 64-bit
o Address bus 32-bit 24-bit 32-bit 32-bit 32-bit 32-bit
e Directly 4GB 16MB 4GB 4GB 4GB 4GB
addressable
memory
e Pins 132 100 168 168 168 273
e Virtual memory | Yes Yes Yes Yes Yes Yes
e On-chip memory | Yes Yes Yes Yes Yes Yes
management and
protection
o Floating point 387DX 3878X on chip 487SX on chip on chip
unit

* MIPS means million of instructions per second that the microprocessor can execute. MIPS is
typically used as a measure of performance of a microprocessor. Faster microprocessors have a
higher MIPS value.

TABLE 1.3 Pentium vs. Pentium Pro.
Pentium Pentium Pro
¢  First introduced March 1993 ¢ Introduced November 1995
® 2 instructions per clock cycle ® 3instructions per clock cycle
®  Primary cache of 16K ®  Primary cache of 16K

®  Original clock speeds of 100, 120, 133, *  Original clock speeds 166, 180, 200 MHz
150, 166, 200, and 233 MHz

®*  More silicon is needed to produce the ®  Tighter design reduces silicon needed and
chip makes chip faster (shorter distances between
transistors)

*  Designed for operating systems written ®  Designed for operating systems written in
in 16-bit code 32-bit code.
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processor. This unique combination is called dynamic execution.

The Pentium Pro does a great job running some operating systems such as
Windows NT or Unix. The first release of Windows 95 contains a significant amount of
16-bit code in the graphics subsystem. This causes operations on the Pentium Pro to be
serialized instead of taking advantage of the dynamic execution architecture. Nevertheless,
the Pentium Pro is up to 30% faster than the fastest Pentium in 32-bit applications. Table
1.3 compares the basic features of the Pentium with the Pentium Pro.

The 32-bit Pentium II processor is Intel’s next addition to the Pentium line of
microprocessors, which originated form the widely cloned 80x86 line. It basically takes
attributes of the Pentium Pro processor plus the capabilities of MMX technology to yield
processor speeds of 333, 300, 266, and 233 MHz. The Pentium II processor uses 0.25
micron technology (this refers to the width of the circuit lines on the silicon) to allow
increased core frequencies and reduce power consumption. The Pentium II processor took
advantage of four technologies to achieve its performance ratings:

*  Dual Independent Bus Architecture (DIB)

*  Dynamic Execution
* Intel MMX Technology
* Single-Edge-Contact Cartridge

DIB was first implemented in the Pentium Pro processor to address bandwidth
limitations. The DIB architecture consists of two independent buses, an L2 cache bus and
a system bus, to offer three times the bandwidth performance of single bus architecture
processors. The Pentium II processor can access data from both buses simultaneously to
accelerate the flow of information within the system.

Dynamic execution was also first implemented in the Pentium Pro processor. It
consists of three processing techniques to improve the efficiency of executing instructions.
These techniques include multiple branch prediction, data flow analysis, and speculative
execution. Multiple branch prediction uses an algorithm to determine the next instruction
to be executed following a jump in the instruction flow. With data flow analysis, the
processor determines the optimum sequence for processing a program after looking at
software instructions to see if they are dependent on other instructions. Speculative
execution increases the rate of execution by executing instructions ahead of the program
counter that are likely to be needed.

MMX (matrix math extensions) technology is Intel’s greatest enhancement to
its microprocessor architecture. MMX technology is intended for efficient multimedia
and communications operations. To achieve this, 57 new instructions have been added to
manipulate and process video, audio, and graphical data more efficiently. These instructions
support single-instruction multiple-data (SIMD) techniques, which enable one instruction
to perform the same function on multiple pieces of data. Programs written using the new
instructions significantly enhance the capabilities of Pentium II.

The final feature in Intel’s Pentium II processor is single-edge-contact (SEC)
packaging. In this packaging arrangement, the core and L2 cache are fully enclosed in a
plastic and metal cartridge. The components are surface mounted directly to a substrate
inside the cartridge to enable high-frequency operation.

Intel Celeron processor utilizes Pentium II as core .The Celeron processor family
includes: 333 MHz, 300A MHz, 300 MHz, and 266 MHz processors. The Celeron 266
MHz and 300 MHz processors do not contain any level 2 cache. But the Celeron 300A
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MHz and 333 MHz processors incorporate an integrated L2 cache. All Celeron processors
are based on Intel’s 0.25 micron CMOS technology. The Celeron processor is designed
for inexpensive or “Basic PC” desktop systems and can run Windows 98. The Celeron
processor offers good floating-point (3D geometry calculations) and multimedia (both
video and audio) performance.

The Pentium II Xeon processor contains large, fast caches to transfer data at super
high speed through the processor core. The processor can run at either 400 MHz or 450
MHz. The Pentium II Xeon is designed for any mid-range or higher Intel-based server or
workstation. The 450 MHz Pentium II Xeon can be used in workstations and servers.

The Pentium III operates at 450 MHz and 500 MHz. It is designed for desktop
PCs. The Pentium III enhances the multimedia capabilities of the PC, including full screen
video and graphics. Pentium III Xeon processors run at 500 MHz and 550 MHz. They are
designed for mid-range and higher Internet-based servers and workstations. It is compatible
with Pentium II Xeon processor-based platforms. Pentium III Xeon is also designed for
demanding workstation applications such as 3-D visualization, digital content creation, and
dynamic Internet content development. Pentium III-based systems can run applications on
Microsoft Windows NT or UNIX-based environments. The Pentium III Xeon is available
in a number of L2 cache versions such as 512-Kbytes, 1-Mbyte, or 2-Mbytes (500 MHz);
512 Kbytes (550 MHz) to satisfy a variety of Internet application requirements.

The Intel Pentium 4 is an enhanced Pentium III processor. It is currently
available at 1.30, 1.40, 1.50, and 1.70 GHz. The chip’s all-new internal design contains
Intel NetBurstTM micro-architecture. This provides the Pentium 4 with hyper pipelined
technology ( which doubles the pipeline depth to 20 stages), a rapid execution engine (
which pushes the processor’s ALUs to twice the core frequency), and 400 MHz system
bus. The Pentium 4 contains 144 new instructions. Furthermore, inclusion of an improved
Advanced Dynamic Execution and an improved floating point pushes data efficiently
through the pipeline. This enhances digital audio, digital video and 3D graphics. Along
with other features such as streaming SIMD Extensions 2 (SSE2) that extends MMXTM
technology, the Pentium 4 gives the advanced technology to get the most out of the Internet.
Finally, the Pentium 4 offers high performance when networking multiple PCs, or when
attaching Pentium 4 based PC to home consumer electronic systems and new peripherals.

Intel introduced the 32-bit Pentium M microprocessor in 2003. It was designed
specifically for the mobile computing market. The Pentium M contains approximately 77
million transistors and originally ran ata speed of 1.3 to 1.6 GHz. In 2006, Intel introduced the
64-bit Core Duo microprocessor. The Core Duo is based on the Pentium M microarchitecture.
The Core Duo contains approximately 151 million transistors. The original Core Duo ran at
a speed of 1.66 to 2.33 GHz. The Core Duo is used primarily in servers.

Intel introduced the Core 2 Duo microprocessor in 2006, based on Core Duo
microarchitecture. The Core 2 Duo contains approximately 291 million transistors and is
used in desktop computers. The original Core 2 Duo ran at a speed of 1.86 to 2.93 GHz.

Note that Inte! 4004 contained approximately 2300 transistors with a clock
frequency of about 100 kHz. In contrast, contemporary microprocessors such as Intel Core
Duo contain over 100 million transistors with a frequency of more than 2 GHz. These
microprocessors are typically used in designing client and server systems for the Internet.

An overview of the latest microprocessors is provided in this section.
Unfortunately, this may be old news within a few years. One can see, however, that both
Intel and Motorola offer (and will continue to offer) high-quality microprocessors to satisfy
demanding applications.
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14 Typical Features of 32-bit and 64-bit Microprocessors

In this section we describe the basic aspects of typical 32- and 64-bit microprocessors.
Topics include on-chip features such as pipelining, memory management, floating-
point, and cache memory implemented in typical 32- and 64-bit microprocessors. The
first 32-bit microprocessor, Intel’s problematic iAPX432, was introduced in 1980. Soon
afterward, the concept of mainframe on a chip or micromainframe was used to indicate the
capabilities of these microprocessors and to distinguish them from previous 8- and 16-bit
MiCroprocessors.

The introduction of several 32-bit microprocessors revolutionized the
microprocessor world. The performance of these 32-bit microprocessors is actually more
comparable to that of superminicomputers such as Digital Equipment Corporation’s
VAX11/750 and VAX11/780. Designers of 32-bit microprocessors have implemented
many powerful features of these mainframe computers to increase the capabilities of
microprocessor chip sets: pipelining, on-chip cache memory, memory management, and
floating-point arithmetic.

In pipelining, instruction fetch and execute cycles overlap. This method allows
simultaneous preparation for execution of one or more instructions while another instruction
is being executed. Pipelining was used for many years in mainframe and minicomputer CPUs
to speed up the instruction execution time of these machines. The 32-bit microprocessors
implement the pipelining concept and operate simultaneously on several 32-bit words,
which may represent different instructions or part of a single instruction.

Although pipelining greatly increases the rate of execution of nonbranching code,
pipelines must be emptied and refilled each time a branch or jump instruction appears in
the code. This may slow down the processing rate for code with many branches or jumps.
Thus, there is an optimum pipeline depth, which is strongly related to the instruction set,
architecture, and gate density attainable on the processor chip.

With memory management, virtual memory techniques, traditionally a feature of
mainframes, are also implemented as on-chip hardware on typical 32-bit microprocessors.
This allows programmers to write programs much larger than those that could fit in the
main memory space available to microprocessors; the programs are simply stored on a
secondary device such as a hard disk, and portions of the program are swapped into main
memory as needed.

Segmentation circuitry has been included in many 32-bit microprocessor chips.
With this technique, blocks of code called segments, which correspond to modules of the
program and have varying sizes set by the programmer or compiler, are swapped. For many
applications, however, an alternative method borrowed from mainframes and superminis
called paging is used. Basically, paging differs from segmentation in that pages are of equal
size. Demand paging, in which the operating system swaps pages automatically as needed,
can be used with all 32-bit microprocessors.

Floating-point arithmetic is yet another area in which the new chips mimick
mainframes. With early microprocessors, floating-point arithmetic was implemented in
software largely as a subroutine. When required, execution would jump to a piece of code
that would handle the tasks. This method slows the execution rate considerably, however,
so floating-point hardware such as fast bit-slice (registers and ALU on a chip) processors
and, in some cases, special-purpose chips was developed. Other than the Intel 8087, these
chips behaved more or less like peripherals. When floating-point arithmetic was required,
the problems were sent to the floating-point processor and the CPU was freed to move
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on to other instructions while it waited for the results. The floating-point processor is
implemented as on-chip hardware in typical 32-bit microprocessors, as in mainframe and
minicomputer CPUs. Caching or memory-management schemes are utilized with all 32-bit
microprocessors to minimize access time for most instructions.

A cache, used for years in minis and mainframes, is a relatively small, high-speed
memory installed between a processor and its main memory. The theory behind a cache
is that a significant portion of the CPU time spent running typical programs is tied up in
executing loops; thus, chances are good that if an instruction to be executed is not the
next sequential instruction, it will be one of some relatively small number of instructions
clustering around a small region in the main memory, a concept known as locality of
reference. Therefore, a high-speed memory large enough to contain most loops should
greatly increase processing rates. Cache memory is included as on-chip hardware in typical
32-bit microprocessors such as the Pentium.

Typical 32-bit microprocessors such as Pentium and PowerPC chips are
superscalar processors. This means that they can execute more than one instruction in one
clock cycle. Also, some 32-bit microprocessors such as the PowerPC contain an on-chip
real-time clock. This allows these processors to use modern multitasking operating systems
that require timekeeping for task switching and for keeping the calendar date.

Typical 32-bit microprocessors implement a multiple-branch prediction feature.
This allows these microprocessors to anticipate jumps of the instruction flow. Also, some
32-bit microprocessors determine an optimal sequence of instruction execution by looking
at decoded instructions and determining whether to execute or hold them. Typical 32-
bit microprocessors use a “look-ahead” approach to execute instructions. These 32-bit
microprocessors maintain an instruction pool for a sequence of instructions and perform a
useful task rather than executing the present instruction and going on to the next.

The 64-bit microprocessors such as Power PC 750 include all the features of 32-bit
microprocessors. In addition, they contain multiple on-chip integer and floating-point units
and a larger address and data buses. The 64-bit microprocessors can typically execute four
instructions per clock cycle and can run at a clock speed of over 2 GHz. The original Pentium
microprocessor is a CISC microprocessor. Pentium Pro and other succeeding members of
the Pentium family are designed using a combination of mostly microprogramming (CISC)
and some hardwired control (RISC) whereas the PowerPC is designed using hardwired
control with almost no microcode. The PowerPC is a RISC microprocessorand therefore
includes a simple instruction set. This instruction set includes register-to-register, load, and
store instructions. All instructions involving arithmetic operations use registers; load and
store instructions are utilized to access memory. Almost all computations can be obtained
from these simple instructions. Finally, 64-bit microprocessors are ideal candidates for
data-crunching machines and high-performance desktop systems and workstations.

1.5 Microprocessor-based System Design Concepts

A microprocessor-based system is typically designed using a microcomputer development
system a tool that allows the designer to develop, debug, and integrate error-free application
software in microprocessor systems. Development systems fall into one of two categories:
systems supplied by the device manufacturer (nonuniversal systems) and systems built
by after-market manufacturers (universal systems). The main difference between the two
categories is in the range of microprocessors that a system will accommodate. Nonuniversal
systems are supplied by the microprocessor manufacturer (e.g., Intel, Motorola) and are
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limited to use for the particular microprocessor manufactured by the supplier. In this
manner, an Intel development system may not be used to develop a Motorola-based
system. Universal development systems (e.g., Hewlett-Packard) can develop hardware and
software for several microprocessors.

Within both categories of development systems, basically two types are available:
single-user and networked systems. A single-user system consists of one development
station that can be used by one user at a time. Single-user systems are low in cost and
may be sufficient for small systems development. A networked system usually consists
of a number of smart terminals capable of performing most development work and can
be connected over data lines to a central microcomputer. The central microcomputer in a
networked system usually is in charge of allocating disk storage space and will download
some programs into the user’s workstation microcomputer. A microcomputer development
system is a combination of the hardware necessary for microprocessor design and software
to control the hardware. The basic components of the hardware are a central processor, a
terminal, a mass storage device (e.g., hard disk), and usually an in-circuit emulator (ICE).

In a single-user system, the central processor executes the operating system
software, handles the input/output (I/O) facilities, executes the development programs (e.g.,
editor, assembler, linker), and allocates storage space for the programs being executed. In
a large multiuser networked system the central processor may be responsible for the 1/0
facilities and execution of development programs. The terminal provides the interface
between the user and the operating system or program under execution. The user enters
commands or data via the keyboard, and the program under execution displays data to the
user on the screen. Each program (whether system software or user program) is stored in
an ordered format on disk. Each separate entry on the disk is called a file. The operating
system software contains the routines necessary to interface between the user and the mass
storage unit. When the user requests a file by a specific file name, the operating system
finds the program stored on disk by the file name and loads it into main memory. Typical
development systems contain memory management software that protects a user’s files from
unauthorized modification by another user. This is accomplished by means of a unique user
identification code called userid. A user can only access files that have the user’s unique
code. The equipment listed here makes up a basic development system, but most systems
have other devices, such as printers and EPROM programmers, attached. A printer is
needed to provide the user with a hard copy record of the program under development.

After the application software has been developed and debugged completely, it
needs to be stored permanently in the target hardware. The EPROM (erasable/programmable
read-only memory) programmer takes the machine code and programs it into an EPROM.
EPROMs are still widely used in typical system development..

Most development systems support one or more in-circuit emulators (ICEs). An
ICE is a very useful tool for microprocessor hardware development. To use an ICE, the
microprocessor chip is removed from the system under development (called the rarget
processor) and the emulator is plugged into the microprocessor socket. Functionally and
electrically, the ICE will act identically to the target processor with the exception that the
ICE is under the control of development system software. In this manner the development
system may exercise the hardware that is being designed and monitor all status information
available about the operation of the target processor. Using an ICE, the processor register
contents may be displayed on the screen and operation of the hardware observed in a
single-stepping mode. In-circuit emulators can find hardware and software bugs quickly
that might take many hours to locate using conventional hardware testing methods.
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Typical programs provided for microprocessor development are the operating
system, editor, assembler, linker, compiler, and debugger. The operating system is responsible
for executing the user’s commands. The operating system handles I/0O functions, memory
management, and loading of programs from mass storage into RAM for execution. The
editor allows the user to enter the source code (either assembly language or some high-
level language) into the development system.

Typical microprocessor development systems use a character-oriented editor,
more commonly referred to as a screen editor, so called because the text is dynamically
displayed on the screen and the display updates automatically any edits made by the user.
The screen editor uses the pointer concept to point to characters that need editing. The pointer
in a screen editor is called the cursor, and special commands allow the user to position the
cursor at any location displayed on the screen. When the cursor is positioned, the user may
insert characters, delete characters, or simply type over the existing characters.

Complete lines may be added or deleted using special editor commands. By
placing the editor in the insert mode, any text typed will be inserted at the cursor position
when the cursor is positioned between two existing lines. If the cursor is positioned on a
line to be deleted, a single command will remove the entire line from the file. Screen editors
implement the editor commands in different fashions. Some editors use dedicated keys to
provide some cursor movements. The cursor keys are usually marked with arrows to show
the direction of cursor movement. Some popular editors (such as the Hewlett-Packard HP
64XXX) use soft keys which are unmarked keys located on the keyboard directly below the
bottom of the CRT screen. The mode of the editor decides what functions the keys are to
perform. The function of each key is displayed on the screen directly above the appropriate
key. The soft key approach is valuable because it allows the editor to reassign a key to a
new function when necessary.

The source code generated on the editor is stored as ASCII or text characters
and cannot be executed by a microprocessor. Before the code can be executed, it must be
converted to a form accessible by the microprocessor. An assembler is the program used
to translate the assembly language source code generated with an editor into object code
(machine code), that can be executed by a microprocessor.

The output file from most development system assemblers is an object file usually
a relocatable code that may be configured to execute at any address. The function of the
linker is to convert the object file to an absolute file, which consists of the actual machine
code at the correct address for execution. Absolute files thus created are used for debugging
and for programming EPROMs.

Debugging a microprocessor-based system may be divided into two categories:
software debugging and hardware debugging. Each debugging process is usually carried
out separately because software debugging can be carried out on an out-of-circuit emulator
without having the final system hardware. The usual software development tools provided
with the development system are a single stepper and a breakpoint.

A single stepper simply allows the user to execute the program being debugged
one instruction at a time. By examining the register and memory contents during each
step, the debugger can detect such program faults as incorrect jumps, incorrect addressing,
erroneous op-codes, and so on. A breakpoint allows the user to execute an entire section of
a program being debugged. There are two types of breakpoints: hardware and software. A
hardware breakpoint uses the hardware to monitor the system address bus and detect when
the program is executing the desired breakpoint location. When the breakpoint is detected,
the hardware uses the processor control lines to halt the processor for inspection or cause
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the processor to execute an interrupt to a breakpoint routine. Hardware breakpoints can be
used to debug both ROM- and RAM-based programs. Software breakpoint routines may
only operate on a system with the program in RAM because the breakpoint instruction
must be inserted into the program that is to be executed.

Single-stepper and breakpoint methods complement each other. The user may
insert a breakoint at the desired point and let the program execute up to that point. When
the program stops at the breakpoint, the user may use a single-stepper to examine the
program one instruction at a time. Thus, the user can pinpoint the error in a program.

There are two main hardware-debugging tools: the logic analyzer and the
in-circuit emulator. Logic analyzers are commonly used to debug hardware faults in a
system. The logic analyzer is the digital version of an oscilloscope because it allows the
user to view logic levels in the hardware. In-circuit emulators can be used to debug and
integrate software and hardware. Inexpensive PC-based workstations are used extensively
as development systems.

The total development of a microprocessor-based system typically involves three
phases: software design, hardware design, and program diagnostic design. A systems
programmer will be assigned the task of writing the application software, a logic designer
will be assigned the task of designing the hardware, and typically, both designers will be
assigned the task of developing diagnostics to test the system. For small systems, one
engineer may do all three phases, and on large systems several engineers may be assigned
to each phase. Figure 1.1 shows a flowchart for the total development of a system. Notice

that software and hardware development may occur in parallel to save time.

The first step in developing the software is to take the system specifications

and write a flowchart to accomplish the tasks that will implement the specifications.
The assembly language or high-level source code may now be written from the system
flowchart. The complete source code is then assembled. The assembler is the object code
and a program listing. The object code will be used later by the linker. The program listing
may be sent to a disk file for use in debugging, or it may be directed to the printer.
The linker can now take the object code generated by the assembler and create the final
absolute code that will be executed on the target system. The emulation phase will take the
absolute code and load it into the development system RAM. From here, the program may
be debugged using breakpoints or single stepping.

Working from the system specifications, a block diagram of the hardware must
be developed. The logic diagram and schematics may now be drawn using the block
diagram as a guide, and a prototype may now be constructed and tested for wiring errors.
When the prototype has been constructed, it may be debugged for correct operation using
standard electronic testing equipment such as oscilloscopes, meters, logic probes, and logic
analyzers, all with test programs created for this purpose. After the prototype has been
debugged electrically, the development system in-circuit emulator may be used to check it
functionally. The ICE will verify the memory map, correct I/O operation, and so on. The
next step in system development is to validate the complete system by running operational
checks on the prototype with the finalized application software installed. The EPROMs are
then programmed with the error-free programs.

1.6 Typical Microprocessor Applications

Microprocessors are extensively used in a wide variety of applications. A simple
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microprocessor application along with some typical applications are briefly described in
the following.

1.6.1 A Simple Microprocessor Application

To put microprocessors into perspective, it is important to explore a simple application.
For example, consider the microprocessor-based dedicated controller shown in Figure 1.2.
Suppose that it is necessary to maintain the temperature of a furnace to a desired level to
maintain the quality of a product. Assume that the designer has decided to control this
temperature by adjusting the fuel. This can be accomplished using a microcomputer along
with the interfacing components as follows. Temperature is an analog (continuous) signal.
It can be measured by a temperature-sensing (measuring) device such as a thermocouple.

| Start software design (flowchart) ] Start hardrware design
Write programs with editor Create system
block diagram

Assembler program and Create logic and
correct any errors schematic diagram

Link program to obtain
absolute code Construct prototype

Debug program and correct Test hardware
all logic errors with test programs
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Correct any emors
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emulate diagnostic program

!

Correct any errors

I

Validate hardware operation
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| Validate software operation |

[ Validate total system operation |

:

Program EPROM

FIGURE 1.1 Microprocessor system development flowchart
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The thermocouple provides the measurement in millivolts (mV) equivalent to the
temperature. Since microcomputers only understand binary numbers (0’s and 1°s), each
analog mV signal must be converted to a binary number using an analog-to-digital (A/D)
converter chip.

First, the millivolt signal is amplified by a mV/V amplifier to make the signal
compatible for A/D conversion. A microcomputer can be programmed to solve an
equation with the furnace temperature as an input. This equation compares the temperature
measured with the temperature desired which can be entered into the microcomputer using
the keyboard. The output of this equation will provide the appropriate opening and closing
of the fuel valve to maintain the appropriate temperature. Since this output is computed
by the microcomputer, it is a binary number. This binary output must be converted into an
analog current or voltage signal.

The D/A (digital-to-analog) converter chip inputs this binary number and converts
it into an analog current (/). This signal is then input into the current/pneumatic (I/P)
transducer for opening or closing the fuel input valve by air pressure to adjust the fuel to
the furnace. The furnace temperature desired can thus be achieved. Note that a transducer
converts one form of energy (analog electrical current in this case) to another form (air
pressure in this example).

1.6.2 Examples of Typical Microprocessor Applications

Microprocessors are used in designing personal workstations. These workstations
can provide certain sophisticated functions such as IC layout, 3D graphics, and stress
analysis.

In many applications such as control of life-critical systems, control of nuclear
waste, and unattended remote system operation, the reliability of the hardware is of utmost
importance. The need for such reliable systems resulted in fault-tolerant systems. These
systems use redundant microprocessors to provide reliable operation.

Real-time controllers such as flight-control systems for aircraft, flight simulators,
and automobile engine control require high-performance microprocessors. For example,
the flight simulators use multiple microprocessors to perform graphic manipulation, data
gathering, and high-speed communications.

Microprocessors are widely used in robot control systems. In many cases, the
microprocessor is used as the brain of the robot. In a typical application, the microprocessor
will input the actual arm angle measurement from a sensor, compare it with the desired arm
angle, and will then send outputs to a motor to position the arm. Mitsubishi manufactured
the first 68020-based robot control system.

Thermocouple
,/ I—

1
mv/yv AD

Furnace
Microcomputer

FIGURE 1.2 Furnace Temperature Control
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Implementation of the on-chip floating-point unit (FPU) in 32-bit microprocessors
such as the Pentium and 68040 makes it appropriate for wide areas of numeric applications:
* Typical FPU’s can accept decimal operands and produce extra decimal results of

up to several digits. This greatly simplifies accounting programming. Financial
calculations that use power functions can take advantage of exponential and logarithmic
functions.

*  Many minicomputer and mainframe large simulation problems can be executed by
the 32-bit microprocessors. These applications include complex electronic circuit
simulations using SPICE and simulation of mechanical systems using finite element
analysis.

¢ The FPU’s implemented in typical 32-bit microprocessors can move and position
machine control heads with accuracy in real time. Axis positioning can efficiently
be performed by the hardware trigonometric support provided by the FPU. The 32-
bit microprocessors can, therefore, be used for computer numerical control (CNC)
machines. CNC machines are extensively used in manufacturing intraocular (cataract
implant) lenses.

¢ The pipelined instruction feature of the 32-bit microprocessor makes it an ideal
candidate for DSP (digital signal processing) and related applications for computing
matrix multiplications and convolutions.

Embedded Control microprocessors, also called embedded controllers, are
designed to manage specific tasks. Once programmed, the embedded controllers can
manage the functions of a wide variety of electronic products. Since the microprocessors
are embedded in the host system, their presence and operation are basically hidden
from the host system. Typical embedded control applications include office automation
products such as copiers, laser products, fax machines, and consumer electronics such as
VCRs, microwave ovens. Applications such as laser printers require a high performance
microprocessor with on-chip floating-point hardware. The RISC microprocessors are ideal
for these types of applications. Note that the PC interfaced to the laser printer is the host.

RISC microprocessors such as the PowerPC are well suited for applications such
as image processing, robotics, graphics, and instrumentation. The key features of the RISC
microprocessors that make them ideal for these applications are their relatively low level
of integration in the chip, and instruction pipeline architecture. These characteristics result
in low power consumption, fast instruction execution, and fast recognition of interrupts.

Also, note that the Power PC contains an on-chip Real Time Clock (RTC). In the
past, the on-chip RTC was common to single chip microcomputers, Power PC is the first top
of the line microprocessor to implement the on-chip RTC. This facilitates implementation
of multitasking operating systems which require time keeping for task switching as well as
keeping the calendar date.
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In this chapter we describe the fundamental material needed to understand the basic
characteristics of microprocessors. It includes topics such as typical microcomputer
architecture, timing signals and internal microprocessor organization. and status flags. The
architectural features are then compared to the Intel Pentium. Finally, an overview of
pipelining, superscalar microprocessors, RISC vs. CISC, and the branch prediction feature
is included.

2.1 Basic Blocks of a Microcomputer

A microcomputer has three basic blocks: a central processing unit (CPU), a memory unit,
and an input/output (I/O) unit. The CPU executes all the instructions and performs arithmetic
and logic operations on data. The CPU of the microcomputer is called the microprocessor
typically a single VLSI (very large scale integration) chip that contains all the registers and
control unit, and arithmetic-logic circuits of the microcomputer.

A memory unit stores both data and instructions. The memory section typically
contains ROM and RAM chips. The ROM can only be read and is nonvolatile; that is,
it retains its contents when the power is turned off. A ROM is typically used to store
instructions and data that do not change. For example, it might store a table of seven-
segment codes for outputting data to a display external to the microcomputer for turning
on a digit from 0 through 9.

One can read from and write into a RAM. The RAM is volatile; that is, it does not
retain its contents when the power is turned off. A RAM is used to store programs and data
that are temporary and might change during the course of executing a program. An I/O unit
transfers data between the microcomputer and the external devices via /O ports (registers).
The transfer involves data, status, and control signals.

In a single-chip microcomputer, these three elements are on one chip, whereas
in a single-chip microprocessor, separate chips are required for memory and V/O.
Microcontrollers, which evolved from single-chip microcomputers, are typically used

System Bus
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ROM RAM Input Output
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FIGURE 2.1 Basic blocks of a microcomputer.
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for dedicated applications such as automotive systems, home appliances, and home
entertainment systems. Typical microcontrollers therefore include on-chip timers and A/D
(analog-to-digital) and D/A (digital-to-analog) converters. Two popular microcontrollers
are Microchip Technology’s 8-bit PIC (peripheral interface controller) microcontroller
and Motorola’s HC11 (8-bit). Figure 2.1 shows the basic blocks of a microcomputer. A
system bus (comprised of several wires) connects these blocks.

2.2 Typical Microcomputer Architecture

In this section we describe the microcomputer architecture in more detail. The various
microcomputers available today are basically the same in principle. The main variations
are in the number of data and address bits and in the types of control signals they use.

To understand the basic principles of microcomputer architecture, it is necessary to
investigate a typical microcomputer in detail. Once such a clear understanding is obtained,
it will be easier to work with any specific microcomputer. Figure 2.2 illustrates a very
simplified version of a typical microcomputer and shows the basic blocks of amicrocomputer
system. The various buses that connect these blocks are also shown. Although this figure
looks very simple, it includes all the main elements of a typical microcomputer system.

2.2.1 System Bus

The microcomputer’s system bus contains three buses, which carry all the address, data, and
control information involved in program execution. These buses connect the microprocessor
(CPU) to each of the ROM, RAM, and I/O chips so that information transfer between the
microprocessor and any of the other elements can take place. In a microcomputer, typical
information transfers are carried out with respect to the memory or I/O. When a memory
or an I/O chip receives data from the microprocessor, it is called a WRITE operation, and
data is written into a selected memory location or an /O port (register). When a memory
or an I/O chip sends data to the microprocessor, it is called a READ operation, and data is
read from a selected memory location or an 1/O port.

In the address bus, information transfer takes place in only one direction, from
the microprocessor to the memory or I/O elements. This is therefore called a unidirectional
bus. This bus is typically 20 to 32 bits long. The size of the address bus determines the
total number of memory addresses available in which programs can be executed by the
microprocessor. The address bus is specified by the total number of address pins on the
microprocessor chip. This also determines the direct addressing capability or the size of
the main memory of the microprocessor. The microprocessor can only execute programs
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FIGURE 2.2 Simplified version of a typical microcomputer.
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located in the main memory. For example, a microprocessor with 32 address pins can
generate 232 = 4.294.964,296 bytes [4 gigabytes(GB)] of different possible addresses
(combinations of 1’s and 0’s) on the address bus. The microprocessor includes addresses
from 0 to 4,294,964,295 (00000000, through FFFFFFFF ;). A memory location can be
represented by each of these addresses. For example, an 8-bit data item can be stored at
address 00000200,,.

When a microprocessor such as the Pentium wants to transfer information between
itself and a certain memory location, it generates the 32-bit address from an internal register
on its 32 address pins, A;—A;,, which then appears on the address bus. These 32 address
bits are decoded to determine the desired memory location. The decoding process normally
requires hardware (decoders) not shown in Figure 2.2.

In the data bus, data can flow in both directions, that is, to or from the
microprocessor. This is therefore a bidirectional bus. The size of the data bus varies from
one microprocessor to another. The Pentium contains a 64-bit data bus whereas the 68020
provides a 32-bit data bus.

The control bus consists of a number of signals that are used to synchronize
operation of the individual microcomputer elements. The microprocessor sends some of
these control signals to the other elements to indicate the type of operation being performed.
Each microprocessor has a unique set of control signals. However, some control signals are
common to most microprocessors. We describe some of these control signals later in this
section.

2.2.2 Clock Signals

The system clock signals are contained in the control bus. These signals generate the
appropriate clock periods during which instruction executions are carried out by the
microprocessor. The clock signals vary from one microprocessor to another. Some
microprocessors have an internal clock generator circuit to generate a clock signal. These
microprocessors require an external crystal or an RC network to be connected at the
appropriate microprocessor pins for setting the operating frequency. For example, the
Intel 80186 (16-bit microprocessor) does not require an external clock generator
circuit. However, most microprocessors do not have the internal clock generator circuit and
require an external chip or circuit to generate the clock signal. Figure 2.3 shows a typical
clock signal.

The number of cycles per second (hertz, abbreviated Hz) is referred to as the clock
frequency. This number is defined as “Hertz” (abbreviated as Hz). The clock frequency
of contemporary microprocessors is more than 2 GHz (2 X 10°Hz). The clock defines the
speed of the microprocessor. Note that, a clock cycle = 1/f, where f is the clock frequency.
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FIGURE 2.3 Typical clock signal.
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FIGURE 2.4 Microprocessor chip with the main functional elements.
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The execution times of microprocessor instructions are provided in terms of the number
of clock cycles. For example, the instruction for adding data in two registers inside the
Pentium takes three clock cycles. This means that for a Pentium with a 100-MHz clock, the
instruction ADD reg,reg will be executed in 30 ns [clock cycle = 1/(100 X 10%) = 10 ns].
On the other hand, for a 200-MHz Pentium, the instruction ADD reg,reg will be executed
in 15 ns. This implies that the higher the clock frequency, the faster the microprocessor can
execute the instructions.

23 Single-Chip Microprocessor

As mentioned earlier, the microprocessor is the CPU of the microcomputer. Therefore, the
power of the microcomputer is determined by the capabilities of the microprocessor. Its
clock frequency determines the speed of the microcomputer. The number of data and address
pins on the microprocessor chip make up the microcomputer’s word size and maximum
memory size. The microcomputer’s I/O and interfacing capabilities are determined by the
control pins on the microprocessor chip.

The logic inside the microprocessor chip can be divided into three main areas: the
register section, the control unit, and the arithmetic-logic unit (ALU). A microprocessor
chip with these three sections is shown in Figure 2.4.

231 Register Section

The number, size, and types of registers vary from one microprocessor to another. However,
the various registers in all microprocessors carry out similar operations. The register
structures of microprocessors play a major role in designing microprocessor architectures.
Also, the register structures for a specific microprocessor determine how convenient
and easy it is to program the microprocessor. We first describe the most basic types of
microprocessor registers, their functions, and how they are used. We then consider other
common types of registers.

Basic Microprocessor Registers There are four basic microprocessor registers:
instruction register, program counter, memory address register, and accumulator.

*  Instruction register (IR). The instruction register stores instructions. The contents of
an instruction register are always decoded by the microprocessor as an instruction.
After fetching an instruction code from memory, the microprocessor stores it in the
instruction register. The instruction is decoded internally by the microprocessor, which
then performs the operation required. The word size of the microprocessor determines
the size of the instruction register. For example, a 32-bit microprocessor has a 32-bit
instruction register.

®  Program Counter (PC). The program counter contains the address of the instruction or
operation code (op-code). The program counter normally contains the address of the
next instruction to be executed. Note the following features of the program counter:

1. Upon activating the microprocessor’s RESET input, the address of the first
instruction to be executed is loaded into the program counter.

2. To execute an instruction, the microprocessor typically places the contents of the
program counter on the address bus and reads (“fetches”) the contents of this address
(i.e., instruction) from memory. The program counter contents are incremented
automatically by the microprocessor’s internal ltogic. The microprocessor thus
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executes a program sequentially, unless the program contains an instruction such
as a JUMP instruction, which changes the sequence.

3. The size of the program counter is determined by the size of the address bus.

4. Many instructions, such as JUMP and conditional JUMP, change the contents
of the program counter from its normal sequential address value. The program
counter is loaded with the address specified in these instructions.

*  Memory Address Register (MAR). The memory address register contains the address
of data. The microprocessor uses the address, which is stored in the memory address
register, as a direct pointer to memory. The contents of the address is the actual data
that is being transferred.

*  General Purpose Register (GPR). For an 8-bit microprocessor, the general-purpose
register is called the accumulator. This is typically an 8-bit register. It stores the
result after most ALU operations. These 8-bit microprocessors have instructions
to shift or rotate the accumulator one bit to the right or left through the carry flag.
The accumulator is typically used for inputting a byte into the accumulator from an
external device or for outputting a byte to an external device from the accumulator. In
16- and 32-bit microprocessors the accumulator is replaced by a GPR. Typical 32-bit
microprocessors such as the Pentium contain several GPRs. In these microprocessors,
any GPR can be used as an accumulator.

Depending on the register section, the microprocessor can be classified either
as an accumulator- or general-purpose register-based machine. In an accumulator-based
microprocessor such as the Intel 8085 and Motorola 6809, the data is assumed to be held
in a register called the accumulator. All arithmetic and logic operations are performed
using this register as one of the data sources. The result of the operation is stored in the
accumulator. Eight-bit microprocessors are usually accumulator based.

The general-purpose register-based microprocessor is usually popular with 16-
and 32-bit microprocessors such as the Intel Pentium and the Motorola 68000/68020.
The term general-purpose comes from the fact that these registers can hold data, memory
addresses, or the results of arithmetic or logic operations. The number, size, and types of
registers vary from one microprocessor to another.

Most registers are general-purpose, but some, such as the program counter (PC),
are provided for dedicated functions. The PC normally contains the address of the next
instruction to be executed. As mentioned before, upon activating the microprocessor chip’s
RESET input pin, the PC is normally initialized with the address of the first instruction.
For example, the Pentium, upon hardware reset, reads the first instruction from the 32-bit

. hex address FFFFFFFO0. To execute the instruction, the microprocessor normally places
the PC contents on the address bus and reads (fetches) the first instruction from external
memory. The program counter contents are then incremented automatically by the ALU. As
mentioned earlier, the size of the PC varies from one microprocessor to another depending
on the address size. For example, the 68000 has a 24-bit PC, whereas both the 68020 and
the Pentium contain a 32-bit PC.

Other Microprocessor Registers In the following we describe other microprocessor
registers such as general-purpose registers, index register, status register and stack pointer

register.

General-Purpose Register Both 16-, and 32-bit microprocessors are register-
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oriented. They have a number of general-purpose registers for storing temporary data or for
carrying out data transfers between various registers. The use of general-purpose registers
speeds up the execution of a program because the microprocessor does not have to read
data from external memory via the data bus if data is stored in one of its general-purpose
registers. These registers are typically 16 to 32 bits. The number of general-purpose
registers will vary from one microprocessor to another. Some of the typical functions
performed by instructions associated with the general-purpose registers are given here. We
will use [REG] to indicate the contents of the general-purpose register and [M] to indicate
the contents of a memory location.

1. Move [REG] to or from memory: [M] « [REG] or [REG] « [M].

2. Move the contents of one register to another: [REG1] < [REG2].

3. Increment or decrement [REG] by 1: [REG] « [REG] + 1 or [REG] « [REG]

-1
4. Load 16-bit data into a register [REG] : [REG] « 16-bit data.

Index Register An index register is typically used as a counter in address modification
for an instruction or for general storage functions. The index register is particularly useful
with instructions that access tables or arrays of data. In this operation the index register is
used to modify the address portion of the instruction. Thus, the appropriate data in a table
can be accessed. This is called indexed addressing. This addressing mode is normally
available to the programmers of microprocessors. The effective address for an instruction
using the indexed addressing mode is determined by adding the address portion of the
instruction to the contents of the index register. Index registers are typically 16 or 32 bits
long. In a typical 16- or 32-bit microprocessor, general-purpose registers can be used as
index registers.

Status Register A status register, also known as a processor status word register or
condition code register, contains individual bits, with each bit having special significance.
The bits in the status register are called flags. The status of a specific microprocessor
operation is indicated by each flag, which is set or reset by the microprocessor’s internal
logic to indicate the status of certain microprocessor operations such as arithmetic and
logic operations. The status flags are also used in conditional JUMP instructions. We
describe some of the common flags in the following.

A carry flag is used to reflect whether or not the result generated by an arithmetic
operation is greater than the microprocessor’s word size. As an example, the addition of
two 32-bit numbers might produce a carry. The carry is generated out of the 32nd bit
position, which results in setting the carry flag. However, the carry flag will be zero if no
carry is generated from the addition. As mentioned before, in multibyte arithmetic, any
carry out of the low-byte addition must be added to the high-byte addition to obtain the
correct result. This can illustrated by the following 16-bit addition example:
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high byte low byte
00110101 11010001
00011000 10101001
—1 _—
01001110 01111010
high-order bit carry is reflected

position into the high-byte

addition

While performing BCD arithmetic with microprocessors, the carry out of the low
nibble (4 bits) has a special significance. Because a BCD digit is represented by 4 bits, any
carry out of the low 4 bits must be propagated into the high 4 bits for BCD arithmetic. This
carry flag is known as an auxiliary carry flag and is set to | if the carry out of the low 4
bits is 1; otherwise, it is 0.

A zero flag is used to show whether the result of an operation is zero. It is set to
1 if the result is zero, and it is reset to O if the result is nonzero. A parity flag is set to 1 to
indicate whether the result of the last operation contains either an even number of 1’s (even
parity) or an odd number of 1’s (odd parity), depending on the microprocessor. The type of
parity flag used (even or odd) is determined by the microprocessor’s internal structure and
is not selectable. A sign flag (sometimes called a negative flag) is used to indicate whether
the result of the last operation is positive or negative. If the most significant bit of the last
operation is 1, this flag is set to 1 to indicate that the result is negative. This flag is reset to
0 if the most significant bit of the result is zero: that is, if the result is positive.

As mentioned earlier, an overflow flag arises from representation of the sign flag
by the most significant bit of a word in signed binary operation. The overflow flag is set to
1 if the result of an arithmetic operation 1s too big for the microprocessor’s maximum word
size, otherwise it is reset to 0. Let C, be the final carry out of the most significant bit (sign
bit) and C, be the previous carry. It was shown in section 1.2.1 that the overflow flag is the
exclusive- OR of the carries C, and C;,

overflow = C, ® C,

Stack Pointer Register A stack consists of a number of RAM locations set aside for
reading data from or writing data into these locations and is typically used by subroutines
(a subroutine is a program that performs operations frequently needed by the main or
calling program). The address of the stack is contained in a register called a stack pointer.
Two instructions, PUSH and POP, are usually available with a stack. The PUSH operation
is defined as writing to the top or bottom of the stack, whereas the POP operation means
reading from the top or bottom of the stack. Some microprocessors access the stack from
the top; others access via the bottom. When the stack is accessed from the bottom, the stack
pointer is incremented after a PUSH and decremented after a POP operation. On the other
hand, when the stack is accessed from the top, the stack pointer is decremented after a
PUSH and incremented after a POP. Microprocessors typically use 16- or 32-bit registers
for performing PUSH or POP operations. The incrementing or decrementing of a stack
pointer depends on whether the operation is PUSH or POP and on whether the stack is
accessed from the top or the bottom.

We now illustrate stack operations in more detail. We use 16-bit registers and 16-
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bit addresses in Figures 2.5 through 2.8. All data (hex) are chosen arbitrarily. In Figure 2.5,
the stack pointer is incremented by 2 (16-bit register) after the PUSH to contain the value
20CA. Now, consider the POP operation of Figure 2.6. The stack pointer is decremented by
2 after the POP. The contents of address 20CA are assumed to be empty conceptually after
the POP operation. Next, consider the PUSH operation of Figure 2.7. The stack is accessed
from the top. The stack pointer is decremented by 2 after a PUSH. Finally, consider the
POP operation of Figure 2.8. The Stack pointer is incremented by 2 after the POP. The
contents of address 20C6 are assumed to be empty conceptually after a POP operation.

Note that the stack is a LIFO (last in first out) memory. As mentioned earlier,
a stack is  typically used during subroutine CALLs. The microprocessor automatically
PUSHes the return address onto a stack after executing a subroutine CALL instruction in
the main program. After executing a RETURN from a subroutine instruction (placed by
the programmer as the last instruction of the subroutine), the microprocessor automatically
POPs the return address from the stack (previously PUSHed) and then returns to the main
program.

2.3.2 Control Unit

The main purpose of the control unit is to read and decode instructions from the program
memory. To execute an instruction, the control unit steps through the appropriate blocks of
the ALU based on the op-codes contained in the instruction register. The op-codes define
the operations to be performed by the control unit to execute an instruction. The control
unit interprets the contents of the instruction register and then responds to the instruction
by generating a sequence of enable signals. These signals activate the appropriate ALU
logic blocks to perform the required operation.

The control unit generates the control signals, which are output to the other
microcomputer elements via the control bus. The control unit also takes appropriate actions
in response to the control signals on the control bus provided by the other microcomputer
elements. The control signals vary from one microprocessor to another. For each specific
microprocessor, these signals are described in detail in the manufacturer’s manual. It is
impossible to describe all the control signals for various manufacturers. However, we
cover some of the common ones in the following discussion.

Before Push After Push
Stack
16-bit Register Stack 16-oit Reg's‘; TasE | 20c2
SP 143E 20C2 070: 20C4
070 20C4 F60 20C6
F60 20Ce6 070 20C8
0706 20C8 0120 20CA
20CA 20CC
20CC 20CE
20CE

Bottom of
Stack

FIGURE 2.5 PUSH operation when accessing a stack from the bottom.



Microcomputer Architecture 31
Before POP After POP
Stack
16-bit Register Stack 16-bit Register | A286 | Ta3E | 20C2
sp 143E 20C2 sP 0705 20C4
070 2004 F208_| 20C6
F20 20C6 0107 | 20C8
010 20C8 A286_| 20CA
A286 20CA 20CC
20¢cC
Bottom of
Stack
FIGURE 2.6 POP operation when accessing a stack from the bottom.
Before PUSH After PUSH
16-bit Register Stack
16-bit Register Stack sp [ 2006 | 20C2
SP 20C4
20C2 0567 20C6
20C4 AC09 20C8
20C6 0501 20CA
A0S 20C8 T53E 260C
0501 20CA 57051 200E
153E 20cC
0705 20CE
Top of
Stack
FIGURE 2.7 PUSH operation when accessing a stack from the top.
Before POP After POP
16-bit Register Stack
SP
16-bit Register Stack soca gggi
sP 20C4 0700 20C6
P 2008 1A52 20C8
1A52 20C8 052C 20CA
052G 20CA 0190 20CC
0190 20CC
Top of
Stack

FIGURE 2.8 POP operation when accessing a stack from the top.
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RESET. This input is common to all microprocessors. When this input pin is driven
HIGH or LOW (depending on the microprocessor), the program counter is loaded with a
predefined address specified by the manufacturer. As mentioned before, in the Pentium,
upon hardware reset, the program counter is loaded with FFFFFFFO,. This means that the
instruction stored at memory location FFFFFFFO,; is executed first. In some other
microprocessors, such as the Motorola 68000, the program counter is not loaded directly
by activating the RESET input. In this case the program counter is loaded indirectly from
two locations (such as 000004 and 000006) predefined by the manufacturer. This means
that these two locations contain the address of the first instruction to be executed.

READ/WRITE (R/W). This output line is common to all microprocessors. The
status of this line tells the other microcomputer elements whether the microprocessor is
performing a READ or a WRITE operation. A HIGH signal on this line indicates a READ
operation, and a LOW indicates a WRITE operation. Some microprocessors have separate
READ and WRITE pins.

READY, This is an input to a microprocessor. Slow devices (memory and I/O) use
this signal to gain extra time to transfer data to or receive data from a microprocessor. The
READY signal is usually an active low signal; that is, LOW indicates that the microprocessor
is ready. Therefore, when the microprocessor selects a slow device, the device places a
LOW on the READY pin. The microprocessor responds by suspending all its internal
operations and enters a WAIT state. When the device is ready to send or receive data, it
removes the READY signal. The microprocessor comes out of the WAIT state and performs
the appropriate operation.

Interrupt Request (INT or IRQ). The external I/O devices can interrupt the
microprocessor via this input pin on the microprocessor chip. When this signal is activated
by the external devices, the microprocessor jumps to a special program called the interrupt
service routine. This program is normally written by the user for performing tasks that the
interrupting device wants the microprocessor to carry out. After completing this program,
the microprocessor returns to the main program it was executing when the interrupt
occurred.

233 Arithmetic-Logic Unit
The ALU performs all the data manipulations, such as arithmetic and logic operations, inside
a microprocessor. The size of the ALU conforms to the word length of the microcomputer.
This means that a 32-bit microprocessor will have a 32-bit ALU. Some of the typical
functions performed by the ALU are:

1. Binary addition and logic operations

2. Finding the one’s complement of data

3. Shifting or rotating the contents of a general-purpose register 1 bit to the left

or right through a carry

2.3.4 Functional Representations of Simple and Typical Microprocessors

Figure 2.9(a) shows the functional block diagram of a simple microprocessor. Note that
the data bus shown is internal to the microprocessor chip and should not be confused with
the system bus. The system bus is external to the microprocessor and is used to connect all
the necessary chips to form a microcomputer. The buffer register in Figure 2.9(a) stores



Microcomputer Architecture

Arithmetic and Logic unit (ALU}

Status Regi o General Purpose
- g
Memory Address
< Regi
Shifter < Prograrm Counter
. Illstrl_lction
g [ g
Compl @
- 8
-3
a
Control Unit
Boolean Logic
and Addition
Buffer Regist

(a) Simple microprocessor

33

Pentium ™ Microprocessor
I
Branch LB |
Target [Lrofetc Code Cache
Bufter [Address 8 KBytes
7y /'y
435
v
In;trrctt'lon Prefetch Butfers Control
ointer
Instruction Decode »> ROM
84-Blt Branch Verif. ) T ]
g-u': & Target Addr l v v v
Control Unit }——
A [y
A 4
Aﬁﬁo Bus |4 4> |Page Floating
>
Bus Unit <] Unit &m &drfem bl Point
»| (UPipeiine) | (VPipeline) | Unit
Control —1 Contro!
> <> Integer Register Flle nig Regster File
ALY AU
(uPipeiine) | (VPipeline) ||lg—p
41— |Barrel Shifter
b
64-Bit 32-Bit < >
Data Addr, v {
Bus Bus 32/ a
IR Data Cache 2
> 8 KBytes
S 714 [ ] " e
y
PDB24
(b) Pentium Microprocessor
FIGURE 2.9 Microprocessor block diagrams.
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any data read from memory for further processing by the ALU. All other blocks of Figure
2.9(a) have been discussed earlier. Note that the functional block diagram of a typical
commercially available microprocessor such as the Pentium (discussed later) is more
complex than the one shown in Figure 2.9(a). The simple microprocessor, although
not practical, is presented here for illustrative purposes.

Figure 2.9(b) shows the block diagram of a realistic microprocessor, the Intel
Pentium.

The figure shows that the Pentium contains two instruction pipelines: the U-pipe
and the V-pipe. The U-pipe can execute all integer and floating-point instructions. The
V-pipe can execute simple integer instructions and the FXCH floating-point instruction.

The instruction decode unit translates the prefetched instructions for the Pentium
to execute the instruction. The control ROM contains a microprogrammed ROM that
controls the sequence of operations that must be performed to implement the Pentium
microprocessor architecture. The control ROM unit has direct control over both pipelines.

The Pentium contains two separate cache memories: code cache and data cache.
The code cache, branch target buffer, and prefetch buffers are used to read instructions
into the execution units of the Pentium. Instructions are fetched from the code cache or
from the external bus. Branch addresses are stored in the branch target buffer. The integer
register file contains all the Pentium’s general-purpose registers, and the floating-point
register file contains all the floating-point registers. The Pentium contains a barrel shifter
for fast shift operation. The bus unit provides Pentium’s 64-bit data bus, 32-bit address
bus, and the control signals. This facilitates interfacing the Pentium to external memory
and /O chips.

235 Simplified Explanation of Control Unit design

The main purpose of the control unit is to translate or decode instructions and generate
appropriate enable signals to accomplish the desired operation. Based on the contents of
the instruction register, the control unit sends the data items selected to the appropriate
processing hardware at the right time. The control unit drives the associated processing
hardware by generating a set of signals that are synchronized with a master clock.

The control unit performs two basic operations: instruction interpretation
and instruction sequencing. In the interpretation phase, the control unit reads (fetches)
an instruction from the memory addressed by the contents of the program counter into
the instruction register. The control unit inputs the contents of the instruction register. It
recognizes the instruction type, obtains the necessary operands, and routes them to the
appropriate functional units of the execution unit (registers and ALU). The control unit
then issues the necessary signals to the execution unit to perform the desired operation
and routes the results to the destination specified. In the sequencing phase, the control unit
generates the address of the next instruction to be executed and loads it into the program
counter.

There are two methods for designing a control unit: hardwired contro! and
microprogrammed control. In the hardwired approach, synchronous sequential circuit
design procedures are used in designing the control unit. Note that a control unit is a
clocked sequential circuit. The name hardwired control evolved from the fact that the
final circuit is built by physically connecting components such as gates and flip-flops. In
the microprogrammed approach, on the other hand, all control functions are stored in a
ROM inside the control unit. This memory is called the control memory. The words in this
memory, called control words, specify the control functions to be performed by the control



Microcomputer Architecture 35

unit. The control words are fetched from the control memory and the bits are routed to
appropriate functional units to enable various gates. An instruction is thus executed.

Design of control units using microprogramming (sometimes called firmware to
distinguish it from hardwired control) is more expensive than using hardwired controls. To
execute an instruction, the contents of the control memory in microprogrammed control must
be read, which reduces the overall speed of the control unit. The most important advantage
of microprogramming is its flexibility; alterations can be made simply by changing the
microprogram in the control memory. A small change in the hardwired approach may lead
to redesigning the entire system.

For simplicity, we illustrate the concepts of microprogramming using Figure
2.9(a). Let us consider incrementing the contents of the register by 1. This is basically an
addition operation. The control unit will send an enable signal to execute the ALU adder
logic. Incrementing the contents of a register consists of transferring the register contents
to the ALU adder and then returning the result to the register. The complete incrementing
process is accomplished via the five steps shown in Figures 2.10 through Figure 2.14. In
all five steps, the control unit initiates execution of each microinstruction. Figure 2.10
shows the transfer of the register contents to the data bus. Figure 2.11 shows the transfer
of the contents of the data bus to the adder in the ALU in order to add 1 to it. Figure 2.12
shows the activation of the adder logic. Figure 2.13 shows the transfer of the result from
the adder to the data bus. Finally, Figure 2.14 shows the transfer of the data bus contents to
the register.
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Memory Address
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FIGURE 2.10 Transferring register contents to a data bus.
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FIGURE 2.11 Transferring data bus contents to an ALU.
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FIGURE 2.12 Activating the ALU logic.
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Microprogramming is typically used by a microprocessor designer to program the
logic performed by the control unit. On the other hand, assembly language programming
is a popular programming language used by a microprocessor user for programming a
microprocessor to perform a desired function. A microprogram is stored in the control unit.
An assembly language program is stored in the main memory. The assembly language
program is called a macroprogram. A macroinstruction (or simply, an instruction) initiates
execution of a complete microprogram.

24 Program Execution by Conventional Microprocessors

Conventional microprocessors include typical 8-bit microprocessors such as Intel 8085
and 16-bit microprocessors such as Motorola 68000. To execute a program, a conventional
microprocessor repeats the following three steps for completing each instruction.

1. Fetch. The microprocessor fetches (instruction read) the instruction from the main
memory (external to the microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the instruction using the control unit.
The control unit inputs the contents of the instruction register, and then decodes (translates)
the instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the control unit. To
accomplish the task, the control unit generates a number of enable signals required by the
instruction.

For example, suppose that it is desired to add the contents of two registers, X
and Y, and store the result in register Z. To accomplish this, a conventional microprocessor
performs the following steps:

1. The microprocessor fetches the instruction into the instruction register.
2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the register and ALU
sections to perform the following:

a. The CU transfers the contents of registers X and Y from the Register section into the
ALU.

b. The CU commands the ALU to ADD.

c. The CU transfers the result from the ALU into register Z of the register section.

2.5 Program Execution by typical 32-bit Microprocessors

As mentioned in Chapter 1, designers of 32-bit microprocessors such as the Pentium have
implemented many powerful features of the mainframe computers in the same chip as
the microprocessor. This enhances the capabilities of the 32-bit microprocessors. The on-
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chip hardware implemented in the 32-bit microprocessors include cache memory, memory
management, pipelining, floating-point arithmetic, and branch prediction.

Cache memory is a high-speed read/wrte memory implemented as on-chip
hardware in typical 32-bit microprocessors in order to increase processing rates. This topic
is covered in more detail in Chapter 3.

Memory management allows programmers to write programs much larger
than those that could fit in the main memory space available to the microprocessors; the
programs are simply stored on a secondary device, such as a hard disk, and portions of the
program are swapped into main memory as needed. This topic is covered in more detail in
Chapter 3.

Other on-chip features such as pipelining, floating-point arithmetic, and branch
prediction are discussed in the following.

2.5.1 Pipelining
As mentioned earlier, a conventional microprocessor such as the 68000 executes a program
by completing one instruction at a time and then proceeds to the next. This means that
the control unit would have to wait until the instruction is fetched from memory. Also, the
ALU would have to wait until the required data are obtained. Since the speeds of 32-bit
microprocessors are increasing at a more rapid rate than memory speeds, the control unit
and ALU will be idle while the conventional microprocessor fetches each instruction and
obtains the required data.

32-Bit microprocessors utilize the control unitand ALU efficiently by prefetching
the next instruction(s) and the required data before the control unit and ALU require them.
As mentioned earlier, conventional microprocessors such as the 68000 execute programs
in sequence; 32-bit microprocessors such as the Pentium, on the other hand, implement
the feature called pipelining to prefetch the next instruction while the control unit is busy
decoding the current instruction. Hence, 32-bit microprocessors implement pipelining
to increase system throughput. Pipelining was first implemented in Motorola’s 68020.
This was followed by Intel’s pipelined implementation of the 80486. A brief overview of
pipelining is provided in this section.

Basic Concepts Assume that a task T is carried out by performing four activities: Al, A2,
A3, and A4, in that order. Hardware Hi is designed to perform activity Ai. Hi is referred
to as a segment, and it essentially contains combinational circuit elements. Consider the
arrangement shown in Figure 2.15. In this configuration, a latch is placed between two
segments so the result computed by one segment can serve as input to the following
segment during the next clock period.

The execution of four tasks T1, T2, T3, and T4 using the hardware of Figure 2.15
is described using the space-time chart shown in Figure 2.16.
Initially, task T1 is handled by segment 1. After the first clock, segment 2 is busy with T1
while segment 1 is busy with T2. Continuing in this manner, task T1 is completed at the end

Latch
Latch

5 5
Segment 1 3 Segment 2 Segment 3 Segment 4 3

Input —»  H1t H2 H3 H4

Clock

FIGURE 2.15 Four-segment pipeline.
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FIGURE 2.16 Overlapped execution of four tasks using a pipeline.

of the fourth clock. However, following this point, one task is shipped out per clock. This
is the essence of the pipelining concept. A pipeline gains efficiency for the same reason as
an assembly line does: Several activities are performed but not on the same material.

In 32-bit microprocessors, the pipeline concept is typically used for carrying out
two tasks: arithmetic operations and instruction execution.

Arithmetic Pipelines The pipeline concept is widely used in designing floating-
point arithmetic units. Consider the process of adding two floating-point numbers x =
0.9234 * 10* and y = 0.48 * 102 First, notice that the exponents of x and y are unequal.
Therefore, the smaller number should be modified so that its exponent is equal to the
exponent of the greater number. For this example, modify y to 0.0048 * 10% This
modification step is known as exponent alignment. Here the decimal point of the significand
0.48 is shifted to the right to obtain the desired result. After exponent alignment, the
significands 0.9234 and 0.0048 are added to obtain the final solution of 0.9282 * 10*.

As a second example, consider the operation x - y, where x = 0.9234 * 10* and y
=0.9230 * 10%. In this case, no exponent alignment is necessary because the exponent of g
equals the exponent of y. Therefore, the significand of y is subtracted from the significand
of x to obtain 0.9234 - 0.9230 = 0.0004. However, 0.0004 * 10* cannot be the final answer
because the significand, 0.0004, is not normalized. A floating-point number with base b is
said to be normalized if the magnitude of its significand satisfies the following inequality:
+ <|significand| < 1.

In this example, since b = 10, a normalized floating-point number must satisfy the
condition:

0.1< |significand] < 1
(Note that normalized floating-point numbers are always considered because for each real-
world number there exists one and only one floating-point representation. This uniqueness
property allows processors to make correct decisions while performing compare
operations).

The final answer is modified to 0.4 * 10'. In this modification step known as
postnormalization, the significand is shifted to the left here to obtain the correct result.

In summary, addition or subtraction of two floating-point numbers calls for four
activities:

1. Exponent comparison

2. Exponent alignment

3. Significand addition or subtraction

4. Postnormalization
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FIGURE 2.17 Pipelined floating-point add/subtract unit.

Based on this result, a four-segment floating-point adder/subtracter pipeline can be
built, as shown in Figure 2.17. It is important to realize that each segment in this pipeline is
composed primarily of combinational components such as multiplexers. The shifter used in
this system is a barrel shifter. Note that a barrel shifter is a fast shift register that shifts data
in one direction. 32-Bit microprocessors such as the Motorola 68040 (on-chip floating-
point hardware) include a three-stage floating-point pipeline consisting of operand (data)
conversion, execute, and result normalization.

Instruction Pipelines 32-Bit microprocessors such as the Motorola 68020 contain a
three-stage instruction pipeline. Note that an instruction cycle typically involves the
following activities:

1. Instruction fetch

2. Instruction decode

3. Operand fetch (Data Read)

4. Operation execution

5. Result routing.

This process can be carried out effectively by using the pipeline shown in Figure
2.18. As mentioned earlier, in such a pipelined scheme the first instruction requires five
clocks to complete its execution. However, the remaining instructions are completed at a rate
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of one per pipeline clock. Such a situation prevails as long as all the segments are busy.

In practice, the presence of branch instructions and conflicts in memory accesses
poses a great problem to the efficient operation of an instruction pipeline. For example,
consider the execution of a stream of five instructions: 11,12, 13, 14, and I5, in which I3 is a
conditional branch instruction. This stream is processed by the instruction pipeline (Figure
2.18) as depicted in Figure 2.19. When a conditional branch instruction is fetched, the next
instruction cannot be fetched because the exact target is not known until the conditional
branch instruction has been executed. The next fetch can occur once the branch is resolved.
Four additional clocks are required, due to 13.

In 32-bit microprocessors, branch instructions are handled using a strategy
called target prefetch. When a conditional branch instruction is recognized, the immediate
successor of the branch instructions and the target of the branch are prefetched. The latter
is saved in a register called a buffer until the branch is executed. If the branch condition is
successful, one pipeline is still busy because the branch target is in the buffer.

Another approach to handling branch instructions is use of the delayed branch
concept. In this case, the branch does not take place until after the following instruction.
To illustrate this, consider the following assembly language instruction sequence (chosen
arbitrarily):

Memory
Address Instruction Comment
2000 LbA X ; Load register A with contents of memory address X
2001 INC Y ; Increment the contents of memory address Y by 1
2002 JMP 2050 ; Jump to address 2050
2003 SUB Z ; Subtract the contents of address Z from the contents
; of register A, and store the result in A
2050 STA W ; Store the contents of register A in memory address W

TABLE 2.1 Modified Sequence
Memory Address Instruction
2000 LDA X
2001 INC Y
2002 JMP 2051
2003 NOP
2004 SUB Z

2051 STA W
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TABLE 2.2 Pipelined Execution of a Hypothetical Instruction Sequence
Instruction Fetch LDAX INCY JMP 2051 NOP STA W
Instruction Execute LDA X INCY JMP 2051 NOP

TABLE 2.3 Instruction Sequence with the Branch Instruction Reversed

Memory Address Instruction

2000 LDA X

2001 JMP 2050

2002 INC Y

2003 SUB Z

2050 STA W

TABLE 2.4 Execution of a Reversed Instruction Sequence

Instruction Fetch LDAX JMP2050 INCY STA W
Instruction Execute LDA X JMP 2050 INCY

Suppose that there is a NOP (no operation) instruction and that the branch
instruction is changed to JMP 2051. The program semantics remain unchanged. This is
shown in Table 2.1. This modified sequence will be executed by a two-segment pipeline,
as shown in Table 2.2: instruction fetch and instruction execute. Because of the delayed
branch concept, the pipeline still functions correctly without damage.

The efficiency of this pipeline can be improved further if the assembler produces a
new sequence, as shown in Table 2.3. In this case, the assembler has reversed the instruction
sequence. The JMP instruction is placed in location 2001, and the INC instruction is moved
to memory location 2002. This reversed sequence is executed by the same two-segment
pipeline, as shown in Table 2.4.

It is important to understand that due to the delayed branch rule, the INC Y
instruction is fetched before execution of the JMP 2050 instruction; therefore, there is no
change in the order of instruction execution. This implies that the program will still produce
the same result. Since the NOP instruction was eliminated, the program is executed more
efficiently. The concept of delayed branch is one of the key characteristics of RISC as it
makes concurrency visible to a programmer.

2.5.2 Branch Prediction Feature

Typical 32-bit microprocessors implement a multiple-branch prediction feature. This allows
these microprocessors to anticipate jumps of the instruction flow ahead of time. Also, some
32-bit microprocessors determine an optimal sequence of instruction execution by looking
at decoded instructions and then determining whether to execute or hold the instructions.
Typical 32-bit microprocessors use a “look ahead” approach to execute instructions. These
32-bit microprocessors maintain an instruction pool for a sequence of instructions and
perform a useful task rather than executing the present instruction and then going on to
the next.

The branch prediction feature of the Pentium speeds up execution of program
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loops. To accomplish this, the Pentium includes on-chip hardware called the Branch Unit
(BU). The BU contains the branch execution unit (BEU) and the branch prediction unit
(BPU). Whenever the Pentium encounters a conditional branch instruction, it sends it to
the BU for execution. The BU evaluates the instruction’s branch condition using the BEU
and determines whether the branch should or should not be taken. Once the BU determines
the branch condition, it calculates the starting address (Branch target) of the next block of
code to be executed. The Pentium then starts fetching code at the new address.

The Pentium uses a technique called speculative execution using the BPU. Using
this feature, the Pentium makes an educated guess at the Branch target before the branch’s
condition is actually evaluated. Instructions that are executed speculatively cannot write
their results back to the registers until the branch condition is evaluated. If the BPU predicts
the branch correctly, the results from the speculative instructions can be written just like
regular instructions. If the Pentium predicts the branch target address incorrectly, it must
flush the pipeline of the erroneous speculative instructions and associated results. After
the pipeline flush, the Pentium obtains the correct Branch target address so that it can start
executing the code at the correct position in the program.

2.6 Scalar and Superscalar Microprocessors

Scalar processors such as the 80486 can execute one instruction per cycle. The 80486
contains only one pipeline. Superscalar microprocessors, on the other hand, can execute
more than one instruction per cycle. These microprocessors contain more than one pipeline.
The Pentium, a superscalar microprocessor, contains two independent pipelines. This
allows the Pentium to execute two instructions per cycle.

2.7 RISC vs. CISC

There are two types of microprocessor architectures: RISC and CISC. A RISC
microprocessor such as the PowerPC emphasizes simplicity and efficiency. RISC designs
start with a necessary and sufficient instruction set. The purpose of using RISC architecture
is to maximize speed by reducing clock cycles per instruction. Almost all computations can
be obtained from a few simple operations. The goal of RISC architecture is to maximize
the effective speed of a design by performing infrequent operations in software and
frequent functions in hardware, thus obtaining a net performance gain. The following list
summarizes the typical features of a RISC microprocessor:

1. The RISC microprocessor is designed using hardwired control with little or
no microcode. Note that variable-length instruction formats generally require
microcode design. All RISC instructions have fixed formats, so microcode
design is not necessary.

2. A RISC microprocessor executes most instructions in a single cycle.

3. The instruction set of a RISC microprocessor typically includes only register,
load, and store instructions. All instructions involving arithmetic operations
use registers, and load and store operations are utilized to access memory.

4. The instructions have a simple fixed format with few addressing modes.

A RISC microprocessor has several general-purpose registers.
6. A RISC microprocessor processes several instructions simultaneously and
thus includes pipelining.

W



46 Microprocessor Theory and Applications with 68000/68020 and Pentium

7. Software can take advantage of more concurrency. For example, jumps occur
after execution of the instruction that follows. This allows fetching of the
next instruction during execution of the current instruction.

RISC microprocessors are suitable for embedded applications. Embedded
microprocessors or controllers are embedded in the host system. This means that the
presence and operation of these controllers are basically hidden from the host system.
Typical embedded control applications include office automation systems such as laser
printers. Since a laser printer requires a high-performance microprocessor with on-chip
floating-point hardware, RISC microprocessors such as PowerPC are ideal for these types
of applications.

RISC microprocessors are well suited for applications such as image processing,
robotics, graphics, and instrumentation. The key features of the RISC microprocessors
that make them ideal for these applications are their relatively low level of integration in
the chip and instruction pipeline architecture. These characteristics result in low power
consumption, fast instruction execution, and fast recognition of interrupts. Typical 32- and
64-bit RISC microprocessors include PowerPC microprocessors.

CISC microprocessors, on the other hand, contain a large number of instructions
and many addressing modes, while RISC microprocessors include a simple instruction
set with a few addressing modes. Almost all computations can be obtained from a few
simple operations. RISC basically supports a small set of commonly used instructions that
are executed at a fast clock rate compared to CISC, which contains a large instruction set
(some of which are rarely used) executed at a slower clock rate. To implement the fetch/
execute cycle for supporting a large instruction set for CISC, the clock is typically slower.

In CISC, most instructions can access memory while RISC contains mostly load/
store instructions. The complex instruction set of CISC requires a complex control unit,
thus requiring microprogrammed implementation. RISC utilizes hardwired control which
is faster. CISC is more difficult to pipeline; RISC provides more efficient pipelining. An
advantage of CISC over RISC is that complex programs require fewer instructions in CISC
with fewer fetch cycles, while RISC requires a large number of instructions to accomplish
the same task with several fetch cycles. However, RISC can significantly improve its
performance with a faster clock, more efficient pipelining, and compiler optimization.

PowerPC and Intel 80XXX utilize RISC and CISC architectures, respectively.
Intel’s original Pentium is a CISC microprocessor. Intel Pentium Pro and other succeeding
members of the Pentium family and Motorola 68060 use a combination of RISC and
CISC architectures for providing high performance. The Pentium Pro and other succeeding
members of the Pentium family use RISC (hardwired control) to implement efficient
pipelining for simple instructions. CISC (microprogrammed control) for complex
instructions is utilized by the Pentium to provide upward compatibility with the Intel
8086/80X86 family.
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Questions and Problems

2.1

2.2

2.3

24

25

2.6

2.7

2.8

29

2.10

2.11

2.12

What is the difference between a microprocessor and a single-chip micro-
computer?

What is a microcontroller? Name one commercially available microcontroller.

What is the difference between:

(a) A program counter and the memory address register?

(b) An accumulator and an instruction register?

(c) A general-purpose register-based microprocessor and an accumulator-
based microprocessor. Name a commercially available microprocessor
of each type.

Assuming signed numbers, find the sign, carry, zero, and overflow flags of:
(a) 09+ 17,

(b) AS5,,— A5

() 716 =A%

(d 6E s +3A

(e TEis+ TE 4

What are PUSH and POP operations in the stack?

Suppose that a 16-bit microprocessor has a 16-bit stack pointer and uses a 16-bit
register to access the stack from the top. Assume that initially the stack pointer
and the 16-bit register contain 20C0,, and 0205, respectively. After the PUSH
operation;

(a) What are the contents of the stack pointer?

(b) What are the contents of memory locations 20BE,; and 20BF,?

Assuming the microprocessor architecture of Figure 2.9(a), write down a possible
sequence of microinstructions for finding the one’s complement of an 8-bit
number. Assume that the number is already in the register.

What is pipelining?

Summarize the branch prediction feature of the Pentium.

What is the basic difference between program execution by a conventional
microprocessor and a 32-bit microprocessor.

What is the difference between Scalar and Superscalar microprocessors? Name
one example of each.

Discuss the basic features of RISC and CISC in terms of the Pentium Pro.
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MICROPROCESSOR
MEMORY ORGANIZATION

In this chapter we describe concepts associated with memory organization in typical
microprocessors. Topics include main memory array design, memory management, and
cache memory concepts.

3.1 Introduction

A memory unit is an integral part of any microcomputer, and its primary purpose is to hold
instructions and data. The major design goal of a memory unit is to allow it to operate at a
speed close to that of a microprocessor. However, the cost of a memory unit is so prohibitive
that it is practically not feasible to design a large memory unit with one technology that
guarantees high speed. Therefore, to seek a trade-off between the cost and the operating
speed, a memory system is usually designed with different technologies, such as solid state,
magnetic, and optical. In a broad sense, a microcomputer memory system can be divided
into three groups:

1. Microprocessor memory

2. Primary or main memory

3. Secondary memory

Microprocessor memory comprises to a set of microprocessor registers. These
registers are used to hold temporary results when a computation is in progress. Also, there
is no speed disparity between these registers and the microprocessor because they are
fabricated using the same technology. However, the cost involved in this approach limits a
microcomputer architect to include only a few registers in the microprocessor.

Main memory is the storage area in which all programs are executed. The
microprocessor can directly access only those items that are stored in main memory.
Therefore, all programs must be within the main memory prior to execution. CMOS
technology is normally used in main memory design. The size of the main memory is
usually much larger than processor memory, and its operating speed is slower than that of
processor registers. Main memory normally includes ROMs and RAMs.

Electromechanical memory devices such as hard disks are used extensively as
microcomputer’s secondary memory and allow storage of large programs at low cost.
The storage capacity of a typical hard disk ranges from 5 MB to several gigabytes. The
rotational speed of the hard disk is typically 3600 rpm. These secondary memory devices
access stored data serially. Hence, they are significantly slower than main memory. Hard
disk is a popular secondary memory device. Programs are stored on disks in files. Secondary
memory stores programs in excess of the main memory. Secondary memory is also referred

49
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FIGURE 3.1 Main memory of the Pentium in the real mode.

to as auxiliary or virtual memory. The microcomputer cannot execute programs stored in
the secondary memory directly, so to execute these programs the microcomputer must
transfer them to its main memory by a program called the operating system.

Programs in hard disk memories are stored in tracks. A track is a concentric ring
of programs stored on the surface of a disk. Each track is further subdivided into several
sectors. Each sector typically stores 512 or 1024 bytes of information. The secondary
memory typically uses magnetic media, except for optical memory, which stores programs
on a plastic disk. CD (compact disc) memory and DVD (digital video disc) memory are
examples of popular optical memory used with microcomputer systems. CD memory uses
an infrared laser whereas DVD memory uses a red laser. Since a red laser has a shorter
wavelength than an infrared laser, DVD memory provides a larger storage capacity than
CD memory. Typical optical memories include CD-ROM, CD-RW, DVD-ROM, and DVD-
RAM.

3.2 Main memory

The main or external memory (or simply, the memory) stores both instructions and data. For
8-bit microprocessors, the memory is divided into a number of 8-bit units called memory
words. An 8-bit unit of data is termed a byte. Therefore, for an 8-bit microprocessor,
memory word and memory byte mean the same thing. For 16-bit microprocessors, a word
contains 2 bytes (16 bits). A memory word is identified in the memory by an address. For
example, the Pentium microprocessor uses 32-bit addresses for accessing memory words.
This provides a maximum of 22 = 4,294,964,296 = 4 GB of memory addresses, ranging
from 00000000,,to FFFFFFFF  in hexadecimal.

An important characteristic of a memory is whether it is volatile or nonvolatile.
The contents of a volatile memory are lost if the power is turned off. On the other
hand, a nonvolatile memory retains its contents after power is switched off. ROM is a
typical example of nonvolatile memory. RAM is a volatile memory unless backed up by
batteries.

Some microprocessors, such as the Intel Pentium, divide the memory into
segments. For example, Pentium in the real mode divides the 1-MB main memory into 16
segments (0 through 15). Each segment contains 64 kB of memory and is addressed by 16
bits. Figure 3.1 shows a typical main memory layout of the Pentium in real mode. In the
figure, the high 4 bits of an address specify the segment number. As an example, consider
address 100054 of segment 1. The high 4 bits, 0001, of this address define the location
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FIGURE 3.2 Summary of available semiconductor memories for

microprocessor systems.

as in segment 1, and the low 16 bits, 0005,,, specify the particular address in segment 1.
The 68000, on the other hand, uses linear or nonsegmented memory. For example, the
68000 uses 24 address pins to address 22¢= 16 MB of memory directly with addresses from
000000, to FFFFFF .

As mentioned before, memories can be categorized into two main types: read-
only memory (ROM) and random-access memory (RAM). As shown in Figure 3.2, ROMs
and RAMs are then divided into a number of subcategories, which are discussed next.

3.21 Read-Only Memory

ROMs can only be read, so is nonvolatile memory. CMOS technology is used to fabricate
ROMs. ROMs are divided into two common types: mask ROM and erasable PROM
(EPROM), such as 2732 and EAROM (electrically alterable ROM) [also called EEPROM
or E?’PROM (electrically erasable PROM)] such as the 2864.

Mask ROMs are programmed by a masking operation performed on a chip during
the manufacturing process. The contents of mask ROMs are permanent and cannot be
changed by the user. EPROMs can be programmed, and their contents can also be altered by
using special equipment, called an EPROM programmer. When designing a microcomputer
for a particular application, permanent programs are stored in ROMs. Control memories
used to microprogram the control unit are ROMs.

EPROMs can be reprogrammed and erased. The chip must be removed from the
microcomputer system for programming. This memory is erased by exposing the chip to
ultraviolet light via a lid or window on the chip. Typical erase times vary between 10 and
20 min. The EPROM can be programmed by inserting the chip into a socket of the EPROM
programmer and providing proper addresses and voltage pulses at the appropriate pins of
the chip.

EAROMs can be programmed without removing the memory from the ROM’s
sockets. These memories are also called read-mostly memories (RMMs), because they
have much slower write times than read times. Therefore, these memories are usually
suited for operations when mostly reading rather that writing will be performed. Another
type of memory, called Flash memory (nonvolatile), invented in the mid-1980s by Toshiba,
is designed using a combination of EPROM and E’PROM technologies. Flash memory
can be reprogrammed electrically while embedded on the board. One can change multiple
bytes at a time. An example of flash memory is the Intel 28F020 (256K x 8-bit). Flash
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memory is typically used in cellular phones and digital cameras.

3.2.2 Random-Access Memory

There are two types of RAM: static RAM (SRAM), and dynamic RAM (DRAM). Static
RAM stores data in flip-flops. Therefore, this memory does not need to be refreshed. RAMs
are volatile unless backed up by battery. Dynamic RAM stores data in capacitors. That is,
it can hold data for a few milliseconds. Hence, dynamic RAMs are refreshed typically
by using external refresh circuitry. Dynamic RAMs (DRAMs) are used in applications
requiring large memory. DRAMSs have higher densities than static RAMs (SRAMs).
Typical examples of DRAMs are the 4464 (64K x 4-bit), 44256 (256K x 4-bit), and
41000 (1M x 1-bit). DRAMs are inexpensive, occupy less space, and dissipate less power
than SRAMs. Two enhanced versions of DRAM are EDO DRAM (extended data output
DRAM) and SDRAM (synchronous DRAM).

The EDO DRAM provides fast access by allowing the DRAM controller to output
the next address at the same time the current data is being read. An SDRAM contains
multiple DRAMs (typically, four) internally. SDRAMs utilize the multiplexed addressing
of conventional DRAMs. That is, like DRAMs, SDRAMs provide row and column
addresses in two steps. However, the control signals and address inputs are sampled by the
SDRAM at the leading edge of a common clock signal (133 MHz maximum). SDRAMs
provide higher densities than conventional DRAM:s by further reducing the need for support
circuitry and faster speeds. The SDRAM has been used in PCs (personal computers).

3.23 READ and WRITE Timing Diagrams
To execute an instruction, the microprocessor reads or fetches the op-code via the data bus
from a memory location in the ROM/RAM external to the microprocessor. It then places
the op-code (instruction) in the instruction register. Finally, the microprocessor executes the
instruction. Therefore, the execution of an instruction consists of two portions, instruction
fetch and instruction execution. We consider the instruction fetch, memory READ, and
memory WRITE timing diagrams in the following using a single clock signal. Figure 3.3
shows a typical instruction fetch timing diagram.

In Figure 3.3, to fetch an instruction, when the clock signal goes to HIGH, the
microprocessor places the contents of the program counter on the address bus via address

Clock

Address
AQ-ATS ) )

Read —

5% —

Instruction
Instruction execute
fetch

i€———One Instruction Cycle———9»

FIGURE 3.3 Typical instruction fetch timing diagram for an 8-bit
microprocessor.
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pins A;—A,; on the chip. Note that since each of lines A—A,; can be either HIGH or LOW,
both transitions are shown for the address in Figure 3.3. The instruction fetch is basically
a memory READ operation. Therefore, the microprocessor raises the signal on the READ
pin to HIGH. As soon as the clock goes to LOW, the logic external to the microprocessor
gets the contents of the memory location addressed by A—A,; and places them on the data
bus D,—D;. The microprocessor then takes the data and stores it in the instruction register so
that it gets interpreted as an instruction. This is called instruction fetch. The microprocessor
performs this sequence of operations for every instruction.

We now describe the READ and WRITE timing diagrams. A typical READ
timing diagram is shown in Figure 3.4. Memory READ is basically loading the contents of
a memory location of the main ROM/RAM into an internal register of the microprocessor.
The address of the location is provided by the contents of the memory address register
(MAR). Let us now explain the READ timing diagram of Figure 3.4.

1. The microprocessor performs the instruction fetch cycle as before to READ the op-
code.

2. The microprocessor interprets the op-code as a memory READ operation.

3. When the clock pin signal goes HIGH, the microprocessor places the contents of the
memory address register on the address pins A—A ; of the chip.

4. At the same time, the microprocessor raises the READ pin signal to HIGH.

5. The logic external to the microprocessor gets the contents of the location in the main
ROM/RAM addressed by the memory address register and places it on the data bus.

6. Finally, the microprocessor gets this data from the data bus via pins D, — D, and stores
it in an internal register.

Memory WRITE is basically storing the contents of an internal register of the
microprocessor into a memory location of the main RAM. The contents of the memory
address register provide the address of the location where data is to be stored. Figure 3.5
shows a typical WRITE timing diagram.

Clock

Address
AO-A15 Pel IMAR] <

Read

Data OP Code Data

Oy~ By

Instruction
fetch Data
fetch

FIGURE 3.4 Typical memory READ timing diagram.
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FIGURE 3.5 Typical memory WRITE timing diagram.

The microprocessor fetches the instruction code as before.

The microprocessor interprets the instruction code as a memory WRITE instruction and
then proceeds to perform the DATA STORE cycle.

When the clock pin signal goes HIGH, the microprocessor places the contents of the
memory address register on the address pins A;—A s of the chip.

At the same time, the microprocessor raises the WRITE pin signal to HIGH.

The microprocessor places data to be stored from the contents of an internal register onto
data pins Dy-D,.

The logic external to the microprocessor stores the data from the register into a RAM
location addressed by the memory address register.

3.2.4 Main Memory Organization

As mentioned earlier, microcomputer main memory typically consists of ROMs/EPROMs
and RAMs. Because RAMs can be both read from and written into, the logic required
to implement RAMs is more complex than ROMSs/EPROMs. A microcomputer system
designer is normally interested in how the microcomputer memory is organized or, in other
words, how to connect the ROMS/EPROMs and RAMs and then determine the memory
map of the microcomputer. That is, the designer would be interested in finding out what
memory locations are assigned to the ROMs/ EPROMs and RAMs. The designer can then
implement the permanent programs in ROMs/ EPROMs and the temporary programs in
RAMs. Note that RAMs are needed when subroutines and interrupts requiring a stack are
desired in an application.

As mentioned before, DRAMs (dynamic RAMs) use MOS capacitors to store
information and need to be refreshed. DRAMs are less inexpensive than SRAMs, provide
larger bit densities and consume less power. DRAMs are typically used when memory
requirements are 16K words or larger. DRAM is addressed via row and column addressing.
For example, 1-Mb (one megabit) DRAM requiring 20 address bits is addressed using 10
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address lines and two control lines,RAS (row address strobe) and CAS (column address
strobe). To provide a 20-bit address into the DRAM, a LOW is applied to RAS and 10 bits
of the address are latched. The other 10 bits of the address are applied next and CAS is then
held LOW.

The addressing capability of the DRAM can be increased by a factor of 4 by adding
one more bit to the address line. This is because one additional address bit results into one
additional row bit and one additional column bit. This is why DRAMs can be expanded to
larger memory very rapidly with the inclusion of additional address bits. External logic is
required to generate the RAS and CAS signals and to output the current address bits to the
DRAM.

DRAM controller chips take care of the refreshing and timing requirements
needed by DRAMs. DRAMSs typically require a 4-ms refresh time. The DRAM controller
performs its task independent of the microprocessor. The DRAM controller chip sends a
wait signal to the microprocessor if the microprocessor tries to access memory during a
refresh cycle.

Because of the large memory, the address lines should be buffered using the
7415244 or 74HC244 (a unidirectional buffer), and data lines should be buffered using the
741.5245 or 74HC245 (a bidirectional buffer) to increase the drive capability. Also, typical
multiplexers such as 74LS157 or 74HC157 can be used to multiplex the microprocessors
address lines into separate row and column addresses.

3.25 Main Memory Array Design

We noticed earlier that the main memory of a microcomputer is fabricated using solid-
state technology. In a typical microcomputer application, a designer has to implement the
required capacity by interconnecting several memory chips. This concept is known as
memory array design. We address this topic in this section and show how to interface a
memory system with a typical microprocessor.

Now let us discuss how to design ROM/RAM arrays. In particular, our discussion
is focused on the design of memory arrays for a hypothetical microcomputer. The pertinent
signals of a typical microprocessor necessary for main memory interfacing are shown in
Figure 3.6. There are 16 address lines, A,;-A,, with A, being the least significant bit. This
means that this microprocessor can address directly a maximum of 2, = 65,536 or 64K
bytes of memory locations.

The control line M/IO goes LOW if the microprocessor executes an I/O instruction; it is held
HIGH if the microprocessor executes a memory instruction. Similarly, the microprocessor
drives control line R/W HIGH for READ operation; it is held LOW for WRITE operation.
Note that all 16 address lines and the two control lines (M/IO, R/W) described so far

A15-A0 MO RW D7-D0
Address 16 1 1
Bus 8
Data
¢ Bus
FIGURE 3.6 Pertinent signals of a typical microprocessor required for main

memory interfacing.
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FIGURE 3.7 Typical 1K x 8 SRAM chip.

are unidirectional in nature; that is, information can always travel on these lines from the
processor to external units. Eight bidirectional data lines, D,-D, (with D, being the least
significant bit) are also shown in Figure 3.6. These lines are used to allow data transfer
from the processor to external units, and vice versa.

In a typical application, the total amount of main memory connected to a
microprocessor consists of a combination of ROMs and RAMs. However, in the following
we illustrate for simplicity how to design memory array using only SRAM chips.

The pin diagram of a typical 1K x 8 RAM chip is shown in Figure 3.7. In this
chip there are 10 address lines , A,-A,, so one can read or write 1024 (2,, = 1024) different
memory words. Also, in this chip there are eight bidirectional data lines, D,-D, so that
information can travel back and forth between the microprocessor and the memory unit.
The three control lines CS1, CS2, and R/W are used to control the SRAM unit according
to the truth table shown in Table 3.1 from which it can be concluded that the RAM unit
is enabled only when CS1 = 0 and CS2 = 1. Under this condition, R/'W = 0 and R/'W =1
imply write and read operations, respectively.

To connect a microprocessor to ROM/RAM chips, two address-decoding
techniques are commonly used: linear decoding and full decoding. Let us discuss first
how to interconnect a microprocessor with a 4K SRAM chip array comprised of the four
1K SRAM chips of Figure 3.7 using the linear decoding technique. Figure 3.8 uses linear
decoding to accomplish this. In this approach, address lines Ay-A, of the microprocessor
are connected to all SRAM chips. Similarly, the control lines M/IO and R/W of the
microprocessor are connected to control lines CS2 and R/W, respectively of each SRAM

TABLE 3.1 Truth Table for Controlling SRAM.
CS1 Cs2 R/W Function
0 1 0 Write Operation
0 1 1 Read Operation
1 X X The chip is not selected
X 0 X The chip is not selected
X means Don’t Care
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FIGURE 3.8 Microprocessor connected to 4K SRAM using the linear select
decoding technique.

chip. The high-order address bits A,-A; act directly as chip selects. In particular, address
lines A, and A, select SRAM chips I and I, respectively. Similarly, the address lines A,
and A, select the SRAM chips I1I and IV, respectively. A ; and A, are don’t cares and are
assumed to be zero. Table 3.2 describes how the addresses are distributed among the four
1K SRAM chips. The primary advantage this method, known as linear select decoding,
is that it does not require decoding hardware. However, if two or more of lines A-A;
are low at the same time, more than one SRAM chip are selected, and this causes a bus
conflict.

Because of this potential problem, the software must be written such that it never
reads into or writes from any address in which more than one of bits A ;-A,, are low.
Another disadvantage of this method is that it wastes a large amount of address space. For
example, whenever the address value is B800 or 3800, SRAM chip I is selected. In other
words, address 3800 is the mirror reflection of address B800 (this situation is also called
memory foldback). This technique is therefore limited to a small system. The system of
Figure 3.8 can be expanded up to a total capacity of 6K using A,, and A, as chip selects for
two more 1K SRAM chips.
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TABLE 3.2 Address Map of the Memory Organization of Figure 3.8
Address Range SRAM Chip
(Hex) Number
3800-3BFF I
3400-37FF 11
2C00-2FFF I
1C00-1FFF v

To resolve problems with linear decoding, we use full decoded memory addressing.
In this technique we use a decoder. The 4K memory system designed using this technique
is shown in Figure 3.9. Note that the decoder in the figure is very similar to a practical
decoder such as the 74LS138 with three chip enables. In Figure 3.9 the decoder output
selects one of the four 1K SRAM chips, depending on the values of A, A,,, and A ,(Table
3.3).

Note that the decoder output will be enabled only when E3 = E2 =0 and E1 = 1.
Therefore, in the organization of Figure 3.9, when any one of the high-order bits A, A,,,
orAj; is 1, the decoder will be disabled, and thus none of the SRAM chips will be selected.
In this arrangement, the memory addresses are assigned as shown in Table 3.4.

This approach does not waste any address space since the unused decoder outputs
(don’t cares) can be used for memory expansion. For example, the 3-to-8 decoder of
Figure 3.9 can select eight IK SRAM chips. Also, this method does not generate any bus
conflict. This is because the decoder output selected ensures enabling of one memory chip
at a time.

Finally, FPGAs can now be used with 32-bit microprocessors such as the Intel
Pentium and Motorola 68020 for performing the memory decode function.

33 Microprocessor on-chip memory management unit and cache

Typical 32-bit microprocessors such as the Pentium contain on-chip memory management
unit hardware and on-chip cache memory. These topics are discussed next.

3341 Memory Management Concepts

Due to the massive amount of information that must be saved in most systems, the mass
storage device is often a disk. If each access is to a hard disk, system throughput will
be reduced to unacceptable levels. An obvious solution is to use a large and fast locally
accessed semiconductor memory. Unfortunately, the storage cost per bit for this solution
is very high. A combination of both off-board disk (secondary memory) and on-board

TABLE 3.3 Decoding Guide.

A, A, A, | SRAM Chip Number
0 0 0 I
0 0 1 11
0 1 0 1
0 1 1 v
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FIGURE 3.9 Interconnecting a microprocessor with a 4K RAM using full
decoded memory addressing.

semiconductor main memory must be designed into a system. This requires a mechanism
to manage the two-way flow of information between the primary (semiconductor) and
secondary (disk) media. This mechanism must be able to transfer blocks of data efficiently,
keep track of block usage, and replace them in a nonarbitrary way. The main memory
system must therefore be able to dynamically allocate memory space.

An operating system must have resource protection from corruption or abuse by
users. Users must be able to protect areas of code from each other while maintaining the

TABLE 3.4 Address Map of the Memory Organization of Figure 3.9.
Address Range RAM Chip
(Hex) Number
0000-03FF I
0400-07FF I
0800-0BFF I
0C00-OFFF v
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FIGURE 3.10 Address translation

ability to communicate and share other areas of code. All these requirements indicate the
need for a device, located between the microprocessor and memory, to control accesses,
perform address mappings, and act as an interface between the logical (programmer’s
memory) and physical (microprocessor’s directly addressable memory) address spaces.
Because this device must manage the memory use configuration, it is appropriately called
the memory management unit (MMU).

Typical 32-bit processors such as the Motorola 68030/68040 and the Intel Pentium
include on-chip MMUs. An MMU reduces the burden of the memory management function
of the operating system. The basic functions provided by an MMU are address translation
and protection. It translates logical program addresses to physical memory address. Note
that in assembly language programming, addresses are referred to by symbolic names.
These addresses in a program are called logical addresses because they indicate the logical
positions of instructions and data. The MMU translates these logical addresses to physical
addresses provided by the memory chips. The MMU can perform address translation in one
of two ways:

1. By using the substitution technique [Figure 3.10(a)].

2. By adding an offset to each logical address to obtain the corresponding

physical address [Figure 3.10(b)].

Address translation using the substitution technique is faster than translation using
the offset method. However, the offset method has the advantage of mapping a logical
address to any physical address as determined by the offset value.

Memory is usually divided into small manageable units. The terms page and
segment are frequently used to describe these units. Paging divides the memory into equal-
sized pages; segmentation divides the memory into variable-sized segments. It is relatively
easier to implement the address translation table if the logical and main memory spaces are
divided into pages.

There are three ways to map logical addresses to physical addresses: paging,
segmentation, and combined paging-segmentation. In a paged system, a user has accessto a
larger address space than physical memory provides. The virtual memory system is managed
by both hardware and software. The hardware included in the memory management unit
handles address translation. The memory management software in the operating system
performs all functions, including page replacement policies to provide efficient memory
utilization. The memory management software performs functions such as removal of the
desired page from main memory to accommodate a new page, transferring a new page
from secondary to main memory at the right instant in time, and placing the page at the
right location in memory.
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If the main memory is full during transfer from secondary to main memory, it
is necessary to remove a page from main memory to accommodate the new page. Two
popular page replacement policies are first in first out (FIFO) and least recently used
(LRU). The FIFO policy removes the page from main memory that has been resident in
memory longest. The FIFO replacement policy is easy to implement, but one of its main
disadvantages is that heavily used pages are likely to be replaced. Note that heavily used
pages are resident in main memory longest. This replacement policy is sometimes a poor
choice. For example, in a time-shared system, several users normally share a copy of the
text editor in order to type and correct programs. The FIFO policy on such a system might
replace a heavily used editor page to make room for a new page. This editor page might be
recalled to main memory immediately. FIFO would be a poor choice in this case. The LRU
policy, on the other hand, replaces the page that has not been used for the longest amount
of time.

In the segmentation method, an MMU utilizes the segment selector to obtain a
descriptor from a table in memory containing several descriptors. A descriptor contains the
physical base address for a segment, the segment’s privilege level, and some control bits.
When the MMU obtains alogical address from the microprocessor, it first determines whether
the segment is already in physical memory. If it is, the MMU adds an offset component
to the segment base component of the address obtained from the segment descriptor table
to provide the physical address. The MMU then generates the physical address on the
address bus for selecting the memory. On the other hand, if the MMU does not find the
logical address in physical memory, it interrupts the microprocessor. The microprocessor
executes a service routine to bring the desired program from a secondary memory such as
disk to the physical memory. The MMU determines the physical address using the segment
offset and descriptor as described earlier and then generates the physical address on the
address bus for memory. A segment will usually consist of an integral number of pages,
each, say, 256 bytes long. With different-sized segments being swapped in and out, areas
of valuable primary memory can become unusable. Memory is unusable for segmentation
when it is sandwiched between already allocated segments and if it is not large enough to
hold the latest segment that needs to be loaded. This is called external fragmentation and
is handled by MMU s using special techniques. An example of external fragmentation is
shown in Figure 3.11. The advantages of segmented memory management are that few
descriptors are required for large programs or data spaces and that internal fragmentation
(discussed later) is minimized. The disadvantages include external fragmentation, the need
for involved algorithms for placing data, possible restrictions on the starting address, and
the need for longer data swap times to support virtual memory.

Address translation using descriptor tables offers a protection feature. A segment
or a page can be protected from access by a program section of a lower privilege level. For
example, the selector component of each logical address includes 1 or 2 bits indicating the

Allocated [/ %
Free [ | %

% i Required

FIGURE 3.11 Memory fragmentation (external).
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privilege level of the program requesting access to a segment. Each segment descriptor
also includes 1 or 2 bits providing the privilege level of that segment. When an executing
program tries to access a segment, the MMU can compare the selector privilege level
with the descriptor privilege level. If the segment selector has the same or a higher
privilege level, the MMU permits access. If the privilege level of the selector is lower
than that of the descriptor, the MMU can interrupt the microprocessor, informing it of a
privilege-level violation. Therefore, the indirect technique of generating a physical address
provides a mechanism for protecting critical program sections in the operating system.
Because paging divides the memory into equal-sized pages, it avoids the major problem of
segmentation: external fragmentation. Because the pages are of the same size, when a new
page is requested and an old one swapped out, the new one will always fit into the space
vacated. However, a problem common to both techniques remains: internal fragmentation.
Internal fragmentation is a condition where memory is unused but allocated due to memory
block size implementation restrictions. This occurs when a module needs, say, 300 bytes
and the page is 1 kB, as shown in Figure 3.12.

In the paged-segmentation method, each segment contains a number of pages. The
logical address is divided into three components: segment, page, and word. The segment
component defines a segment number, the page component defines the page within the
segment, and the word component provides the particular word within the page. A page
component of » bits can provide up to 2" pages. A segment can be assigned with one or
more pages up to maximum of 2” pages; therefore, a segment size depends on the number
of pages assigned to it.

A protection mechanism can be assigned to either a physical address or a logical
address. Physical memory protection can be accomplished by using one or more protection
bits with each block to define the access type permitted on the block. This means that
each time a page is transferred from one block to another, the block protection bits must
be updated. A more efficient approach is to provide a protection feature in logical address
space by including protection bits in descriptors of the segment table in the MMU.

Virtual memory is the most fundamental concept implemented by a system that
performs memory-management functions such as space allocation, program relocation,
code sharing, and protection. The key idea behind this concept is to allow a user program
to address more locations than those available in a physical memory. An address generated
by a user program is called a virtual address. The set of virtual addresses constitutes the
virtual address space. Similarly, the main memory of a microcomputer contains a fixed
number of addressable locations, and a set of these locations forms the physical address
space. The basic hardware for virtual memory is implemented in 32-bit microprocessors as
an on-chip feature. These 32-bit processors support both cache and virtual memories. The

PAGES = 1K
{F 300 BYTES NEEDED, 1K B is ALLOCATED

T USED

MEMORY UNUSED BUT ALLOCATED BECAUSE OF 1K UNUSED
IMPLEMENTATION RESTRICTIONS ON BLOCK SIZES PAGE BUT
ALLOCATED

FIGURE 3.12 Memory fragmentation (internal).
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virtual addresses are typically converted to physical addresses and then applied to cache.

3.3.2 Cache Memory Organization

The performance of a microprocessor system can be improved significantly by introducing
a small, expensive, but fast memory between the microprocessor and main memory. The
idea for cache memory was introduced in the IBM 360/85 computer. Later, the concept was
implemented in minicomputers such as the PDP-11/70. With the advent of very large scale
integration (VLSI) technology, the cache memory technique has been gaining acceptance
in the microprocessor world. Studies have shown that typical programs spend most of their
execution time in loops. This means that the addresses generated by a microprocessor have
a tendency to cluster around a small region in the main memory, a phenomenon known
as locality of reference. Typical 32-bit microprocessors can execute the same instructions
in a loop from the on-chip cache rather than reading them repeatedly from the external
main memory. Thus, the performance is greatly improved. For example, an on-chip
cache memory is implemented in Intel’s 32-bit microprocessor, the 80486/Pentium, and
Motorola’s 32-bit microprocessor, the 68030/68040. The 80386 does not have an on-chip
cache, but external cache memory can be interfaced to it.

A block diagram representation of a microprocessor system that employs a cache
memory is shown in Figure 3.13. Usually, a cache memory is very small in size and its
access time is less than that of the main memory by a factor of 5. Typically, the access times
of the cache and main memories are 100 and 500 ns, respectively. If a reference is found
in the cache, we call it a cache hit, and the information pertaining to the microprocessor
reference is transferred to the microprocessor from the cache. However, if the reference is
not found in the cache, we call it a cache miss.

When there is a cache miss, the main memory is accessed by the microprocessor
and the instructions and/or data are transferred to the microprocessor from the main memory.
At the same time, a block containing the information needed by the microprocessor is
transferred from the main memory to cache. The block normally contains 4 to 16 words,
and this block is placed in the cache using standard replacement policies such as FIFO
or LRU. This block transfer is done with the hope that all future references made by the
microprocessor will be confined to the fast cache.

The relationship between the cache and main memory blocks is established
using mapping techniques. Three widely used mapping techniques are direct mapping,
fully associative mapping, and set-associative mapping. To explain these three mapping
techniques, the memory organization of Figure 3.14 will be used. The main memory is
capable of storing 4K words of 16 bits each. The cache memory, on the other hand, can store
256 words of 16 bits each. An identical copy of every word stored in cache exists in main
memory. The microprocessor first accesses the cache. If there is a hit, the microprocessor
accepts the 16-bit word from the cache. In case of a miss, the microprocessor reads the
desired 16-bit word from the main memory, and this 16-bit word is then written to the
cache. A cache memory may contain instructions only (Instruction cache) or data only
(data cache) or both instructions and data (unified cache).

Direct mapping uses a RAM for the cache. The microprocessor’s 12-bit address
is divided into two fields, an index field and a tag field. Because the cache address is 8 bits
wide (2% = 256), the low-order 8 bits of the microprocessor’s address form the index field,
and the remaining 4 bits constitute the tag field. This is illustrated in Figure 3.15.

In general, if the main memory address field is m bits wide and the cache memory
address is » bits wide, the index field will then require # bits and the tag field will be (m - 1)
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FIGURE 3.13 Memory organization of a microprocessor system that employs
a cache memory.

bits wide. The n-bit address will access the cache. Each word in the cache will include the
data word and its associated tag. When the microprocessor generates an address for main
memory, the index field is used as the address to access the cache. The tag field of the main
memory is compared with the tag field in the word read from cache. A hit occurs if the tags
match. This means that the data word desired is in cache. A miss occurs if there is no match,
and the required word is read from main memory. It is written in the cache along with the
tag. One of the main drawbacks of direct mapping is that numerous misses may occur if
two or more words with addresses that have the same index but different tags are accessed
several times. This situation should be avoided or can be minimized by having such words
far apart in the address lines.

Let us illustrate the concept of direct mapping for a data cache by means of the

4 bits 8 bits

Tag Index
v v
A A
0 00 00
T 4Kx 16 i 256 x 16
i i Main Memory ) Cache Memory
Hex Address = 12 bits Hex : Address = 8 bits
Address - Data = 16 bits Address - Data = 16 bits

F FF FF

FIGURE 3.14 Addresses for main and cache memory.
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Memory
Address
000 013F
001 1234
002 A370 Index Tag Data
- 00 0 013F
100 27-1 2 01 0 1234
02 0 A370
101 23B4 - -
- FF 2 1523
200 7A3F
201 2721
2FF 1523 (b) Cache Memory
(a) Main Memory
FIGURE 3.15 Direct mapping numerical example.

numerical example shown in Figure 3.15. All numbers are in hexadecimal. The content of
index address 00 of cache is tag =0 and data = 013F. Suppose that a microprocessor wants to
access the memory address 100. The index address 00 is used to access the cache. Memory
address tag 1 is compared with cache tag 0. This does not produce a match. Therefore,
the main memory is accessed and the data 2714 is transferred into the microprocessor. The
cache word at index address 00 is then replaced by a tag of 1 and data of 2714.

The fastest and most expensive cache memory known as fully associative mapping
utilizes an associative memory. Each element in associative memory contains a main
memory address and its content (data). When the microprocessor generates a main memory
address, it is compared associatively (simultaneously) with all addresses in the associative
memory. If there is a match, the corresponding data word is read from the associative cache
memory and sent to the microprocessor. If a miss occurs, the main memory is accessed
and the address and its corresponding data are written to the associative cache memory.
If the cache is full, certain policies such as FIFO, are used as replacement algorithms
for the cache. Associative cache is expensive but provides fast operation. The concept of
associative cache is illustrated by means of a numerical example in Figure 3.16. Assume
that all numbers are hexadecimal.

The associative memory stores both the memory address and its contents (data).
The figure shows four words stored in the associative cache. Each word in the cache is a
12-bit address along with its 16-bit contents (data). When the microprocessor wants to
access memory, the 12-bit address is placed in an address register and the associative cache
memory is searched for a matching address. Suppose that the content of the microprocessor
address register is 445. Because there is a match, the microprocessor reads the corresponding
data OFA1 into an internal data register.

Set-associative mapping is a combination of direct and associative mapping. Each
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FIGURE 3.16 Numerical example of associative mapping.

cache word stores two or more main memory words using the same index address. Each
main memory word consists of a tag and its data word. An index with two or more tags and
data words forms a set. :

When the microprocessor generates a memory request, the index of the main memory
address is used as the cache address. The tag field of the main memory address is then
compared associatively (simultaneously) with all tags stored under the index. If a match
occurs, the desired dataword is read. If a match does not occur, the data word, along with
its tag, is read from main memory and written into the cache. The hit ratio improves as the
set size increases because more words with the same index but different tags can be stored
in the cache.

The concept of set-associative mapping can be illustrated by the numerical
example shown in Table 3.5. Assume that all numbers are hexadecimal. Each cache word
can store two or more memory words under the same index address. Each data item is
stored with its tag. The size of a set is defined by the number of tag and data items in a
cache word. A set size of 2 is used in this example. Each index address contains two data
words and their associated tags. Each tag includes 4 bits, and each data word contains 16
bits. Therefore, the word length = 2 x (4 + 16) = 40 bits. An index address of 8 bits can
represent 256 words. Hence, the size of the cache memory is 256 x 40. It can store 512
main memory words because each cache word includes two data words.

The hex numbers shown in Table 3.5 are obtained from the main memory contents
shown in Figure 3.15. The words stored at addresses 000 and 200 of main memory in Figure
3.15 are stored in cache memory (shown in Table 3.5) at index address 00. Similarly, the
words at addresses 101 and 201 are stored at index address 01. When the microprocessor
wants to access a memory word, the index value of the address is used to access the cache.
The tag field of the microprocessor address is then compared with both tags in the cache
associatively (simultaneously) for a cache hit. If there is a match, appropriate data is read
into the microprocessor. The hit ratio will improve as the set size increases because more
words with the same index but different tags can be stored in the cache. However, this may
increase the cost of comparison logic.

TABLE 3.5 Numerical Example of Set-Associative Mapping with a Set Size of 2
Index | Tag Data Tag Data
00 0 013F 2 7A3F

01 1 23B4 2 2721
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There are two ways of writing into cache: the write-back and write-through
methods. In the write-back method, whenever the microprocessor writes something into
a cache word, a “dirty” bit is assigned to the cache word. When a dirty word is to be
replaced with a new word, the dirty word is first copied into the main memory before it
is overwritten by the incoming new word. The advantage of this method is that it avoids
unnecessary writing into main memory.

In the write-through method, whenever the microprocessor alters a cache address,
the same alteration is made in the main memory copy of the altered cache address. This
policy is easily implemented and ensures that the contents of the main memory are always
valid. This feature is desirable in a multiprocesssor system, in which the main memory
is shared by several processors. However, this approach may lead to several unnecessary
writes to main memory.

One of the important aspects of cache memory organization is to devise a method
that ensures proper utilization of the cache. Usually, the tag directory contains an extra bit
for each entry, called a valid bit. When the power is turned on, the valid bit corresponding
to each cache block entry of the tag directory is reset to zero. This is done to indicate that
the cache block holds invalid data. When a block of data is transferred from the main
memory to a cache block, the valid bit corresponding to this cache block is set to 1. In
this arrangement, whenever the valid bit is zero, it implies that a new incoming block can
overwrite the existing cache block. Thus, there is no need to copy the contents of the cache
block being replaced into the main memory.

The growth in integrated circuit (IC) technology has allowed manufacturers to
fabricate a cache on a microprocessor chip such as Motorola’s 32-bit microprocessor, the
68020. The 68020 on-chip cache is a direct-mapped instruction cache. Only instructions
are cached; data items are not.

Finally, microprocessors such as the Intel Pentium II support two levels of cache,
L1 (level 1)and L2 ( level 2) cache memories. The L1 cache (smaller in size) is contained
inside the processor chip while the L2 cache (larger in size) is interfaced external to the
microprocessor. The L1 cache normally provides separate instruction and data caches. The
processor can access the L1 cache directly and the L2 cache normally supplies instructions
and data to the L1 cache. The L2 cache is usually accessed by the microprocessor only if
L1 misses occur. This two-level cache memory enhances microprocessor performance.
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Questions and Problems

3.1

32

33

3.4

3.5

3.6

3.7

3.8

39

(Chip select 1)

(Chip select 2)

What is the basic difference between main memory and secondary memory?

A microprocessor has 24 address pins. What is the maximum size of the main
memory?

Can the microprocessor execute programs directly in hard disk? Explain your
answer.

What is the basic difference between: (a) EPROM and EEPROM? (b) SRAM
and DRAM?

Given a memory with a 14-bit address and an 8-bit word size.

(a) How many bytes can be stored in this memory?

(b) If this memory were constructed from 1K x 1 RAMs, how many
memory chips would be required?

(c) How many bits would be used for chip select?

What are the main differences between CD and DVD memories?

Draw a block diagram showing the address and data lines for the 2732, and
2764 EPROM chips.

(a) How many address and data lines are required for a 1M x 16 memory
chip? L

(b) What is the size of a decoder with one chip enable (CE) to obtain a
64K x 32 memory from 4K x 8 chips? Where are the inputs and outputs
of the decoder connected?

A microprocessor with 24 address pins and eight data pins is connected to a
1K x 8 memory chip with one chip enable. How many unused address bits of the
microprocessor are available for interfacing other 1K x 8 memory chips? What is
the maximum directly addressable memory available with this microprocessor?

Ag-A, —F— —4_»# D7-Do
9
512x 8
WE — 1 WE = Low for Write
High for Read

CSs2

FIGURE P3.11
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3.10 Name the methods used in main memory array design. What are the advantages
and disadvantages of each?

3.11 The block diagram of a 512 x 8 RAM chip is shown in Figure P3.11. In this
arrangement the memory chip is enabled only when CS1 = L and CS2 = H.
Design a 1K x 8 RAM system using this chip as the building block. Draw a
neat logic diagram of your implementation. Assume that the microprocessor can
directly address 64K with a R/W and eight data pins. Using linear decoding and
don’t-care conditions as 1’s, determine the memory map in hexadecimal.

3.12 Consider the hardware schematic shown in Figure P3.12.

(a) Determine the address map of this system. Nore: MEMR = 0 for read,
MEMR =1 for write, M/ IO= 0 for I/O and M/IO= 1 for memory.

(b) Is there any possibility of bus conflict in this organization?
Clearly justify your answer.

TABLE P3.13
Device Size Address Assignment (Hex)
EPROM chip 1K x 8 8000-83FF
RAM chip 0 IK x 8 9000-93FF

RAM chip | 1K x 8 C000-C3FF
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P3.14
Device Size Address Assignment in hex
EPROM chip 1K x 8 7000-73FF
RAM chip 0 IKx8 D000-D3FF
RAM chip 1 1K x 8 FO000-F3FF

Interface a microprocessor with 16-bit address pins and 8-bit data pins and a R/'W
pin to a 1K x 8§ EPROM chip and two 1K x 8 RAM chips such that the memory
map shown in Table P3.13 is obtained: o o
Assume that both EPROM and RAM chips contain two enable pins: CE and OE
for the EPROM and CE and WE for each RAM. Note that WE = 1 and WE =0
indicate read and write operations for the RAM chip. Use a 74138 decoder.

Repeat Problem 3.13 to obtain the memory map shown in Table P3.14 using a
74138 decoder.

What is meant by foldback in linear decoding?

Comment on the importance of the following features in an operating
system implementation:

(a) Address translation

(b) Protection

Explain briefly the differences between segmentation and paging.

What is the advantage of having a cache memory? Name a 32-bit microprocessor
that does not contain an on-chip cache.

What basic functions are performed by a microprocessor’s on-chip MMU?
Discuss briefly the various cache-mapping techniques.

A microprocessor has a main memory of 8K x 32 and a cache memory of 4K
x 32. Using direct mapping, determine the sizes of the tag field, index field, and
each word of the cache.

A microprocessor has a main memory of 4K x 32. Using a cache memory address
of 8 bits and set-associative mapping with a set size of 2, determine the size of
the cache memory.

A microprocessor can address directlyl MB of memory with a 16-bit word size.
Determine the size of each cache memory word for associative mapping.

Under what conditions does the set-associative mapping method become one of
the following?

(a) Direct mapping

(b) Fully associative mapping



MICROPROCESSOR INPUT/
OUTPUT

In this chapter we describe the basics of input/output (I/O) techniques utilized by typical
microprocessors. Topics include programmed I/0, interrupt I/O, and DMA (direct memory
access).

4.1 Introduction

The technique of data transfer between a microcomputer and an external device is called
input/ output (1/0). One communicates with a microcomputer via the I/O devices interfaced
to it. The user can enter programs and data using the keyboard on a terminal and execute
the programs to obtain results. Therefore, the 1/O devices connected to a microcomputer
provide an efficient means of communication between the microcomputer and the outside
world. These I/0 devices, commonly called peripherals and include keyboards, monitors
(screens), printers, and hard disks.

The characteristics of 1/0 devices are normally different from those of a
microcomputer. For example, the speed of operation of peripherals is usually slower than
that of the microcomputer, and the word length of the microcomputer may be different
from the data format of the peripheral devices. To make the characteristics of the I/O
devices compatible with those of a microcomputer, interface hardware circuitry between
the microcomputer and I/O devices is necessary. Interfaces provide all input and output
transfers between the microcomputer and peripherals by using an 1/O bus. An /O bus
carries three types of signals: device address, data, and command.

A microprocessor uses an /O bus when it executes an 1/O instruction. A typical
I/O instruction has three fields. When the microprocessor executes an I/O instruction,
the control unit decodes the op-code field and identifies it as an 1/O instruction. The
microprocessor then places the device address and command from respective fields of the
I/O instruction on the I/0O bus. The interfaces for various devices connected to the 1/0
bus decode this address, and an appropriate interface is selected. The identified interface
decodes the command lines and determines the function to be performed. Typical functions
include receiving data from an input device into the microprocessor or sending data to an
output device from the microprocessor. In a typical microcomputer system, the user gets
involved with two types of I/O devices: physical [/O and virtual I/O. When a microcomputer
has no operating system, the user must work directly with physical I/O devices and perform
detailed I/0 design.

There are three ways of transferring data between a microcomputer and physical
I/0O devices: programmed /O, interrupt I/O and direct memory access. Using programmed
1/0, the microprocessor executes a program to perform all data transfers between
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the microcomputer and the external device. The main characteristic of this type of I/O
technique is that the external device carries out the functions dictated by the program
inside the microcomputer memory. In other words, the microprocessor controls all transfers
completely.

In interrupt I/O, an external device can force the microprocessor to stop executing
the current program temporarily so that it can execute another program known as an
interrupt service routine. This routine satisfies the needs of the external device. After
completing this program, a return from interrupt instruction can be executed at the end of
the service routine to return control at the right place in the main program.

Direct memory access (DMA) is a type of I/O technique in which data can be
transferred between microcomputer memory and an external device such as the hard disk,
without microprocessor involvement. A special chip called the DMA controller chip is
typically used with the microprocessor for transferring data using DMA.

In a microcomputer with an operating system, the user works with virtual I/O
devices. The user does not have to be familiar with the characteristics of the physical
I/O devices. Instead, the user performs data transfers between the microcomputer and the
physical I/O devices indirectly by calling the I/O routines provided by the operating system
using virtual I/O instructions.

Basically, an operating system serves as an interface between the user programs
and actual hardware. The operating system facilitates the creation of many logical or
virtual I/O devices and allows a user program to communicate directly with these logical
devices. For example, a user program may write its output to a virtual printer. In reality, a
virtual printer may refer to a block of disk space. When the user program terminates, the
operating system may assign one of the available physical printers to this virtual printer and
monitor the entire printing operation. This concept, known as spooling improves system
throughput by isolating the fast processor from direct contact with a slow printing device. A
user program is totally unaware of the logical-to-physical device-mapping process. There
is no need to modify a user program if a logical device is assigned to some other available
physical device. This approach offers greater flexibility over the conventional hardware-
oriented techniques associated with physical 1/O.

4.2 Simple I/0 Devices

A simple input device such as a DIP switch can be connected to a microcomputer’s I/O
port as shown in Figure 4.1. The figure shows a switch circuit that can be used as a single
bit input into an I/O port. When the DIP switch is open, ¥y, is HIGH. When the switch is
closed, Vy is LOW. ¥ can be used as an input bit for performing laboratory experiments.

+5V

14
N To Microcomputer I/O port

DiP
Switch

FIGURE 4.1 Typical switch for a microcomputer’s input.
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TABLE 4.1 Current and Voltage Requirements of LEDs
LEDs Red Yellow Green
Current 10 mA 10 mA 20 mA
Voltage 1.7V 2.2V 24V

Note that unlike TTL, a 1Kohm resistor is connected between the switch and the input of
the MOS gate (port input). This provides protection against static discharge.

For performing simple I/O experiments using programmed I/O, light-emitting
diodes (LEDs) and seven-segment displays can be used as output devices. An LED is
typically driven by low voltage and low current, which makes it a very attractive device for
use with microprocessors. Table 4.1 provides the current and voltage requirements for red,
yellow, and green LEDs. Basically, an LED will be ON, generating light, when its cathode
is sufficiently negative with respect to its anode. A microcomputer can therefore light an
LED either by grounding the cathode (if the anode is tied to +5 V) or by applying +5 V
to the anode (if the cathode is grounded) through an appropriate resistor value. A typical
hardware interface between a microcomputer and an LED is depicted in Figure 4.2.

A microcomputer normally outputs 400 pA at a minimum voltage V,; = 2.4 volts
for a HIGH. The red LED requires 10 mA at 1.7 volts. A buffer such as an inverter is
required to turn the LED ON.

A HIGH at the microcomputer output will turn the LED ON. This will allow a
path of current to flow from the +5 V source through R and the LED to the ground. The
appropriate value of R needs to be calculated to satisfy the voltage and current requirements
of the LED. The value of R can be calculated as follows:

=4 = S =330Q

Therefore, the interface design is complete, and a value of R =330 Q is required.
A seven-segment display can be used with programmed [/O to display, for example,
decimal numbers from 0 to 9. The name seven segment is based on the fact that there are
seven LEDs, one in each segment of the display. Figure 4.3 shows a typical seven-segment
display. In the figure, each segment contains an LED. All decimal numbers from O through
9 can be displayed by turning the appropriate segment ON or OFF. For example, a zero
can be displayed by turning the LED in segment g OFF and turning the other six LEDs
in segments a through f ON. There are two types of seven-segment displays: common-
cathode and common-anode. In a common- cathode arrangement, the microcomputer can
send a HIGH to light a segment and a LOW to turn it off. In a common-anode configuration,
on the other hand, the microcomputer sends a LOW to light a segment and a HIGH to turn
it off.

+5V

BITOF AN |V
/O POR {>°
Inverter

Microcomputer

FIGURE 4.2 Microcomputer - LED interface via an inverter
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FIGURE 4.3 Seven-segment display.

Seven-segment displays can be interfaced to typical microprocessors using
programmed I/O. BCD to seven-segment code converter chips such as 7447 or 7448 can be
replaced by a look-up table. This table can be stored in a microcomputer’s main memory.
An assembly language program can be written to read the appropriate code for a BCD digit
stored in this table. This data can be output to display the BCD digit on a seven-segment
display connected to an I/O port of the microcomputer. Programs to accomplish this are
written in 68000/68020 and Pentium assembly language later in the book.

4.3 Programmed /O

A microcomputer communicates with an external device via one or more registers called
1/0 ports using programmed I/O. I/O ports are usually of two types. For one type, each
bit in the port can be configured individually as either input or output. For the other type,
all bits in the port can be set up as all parallel input or parallel output bits. Each port can
be configured as an input or output port by another register called the command or
data-direction register. The port contains the actual input or output data. The data-
direction register is an output register and can be used to configure the bits in the
port as inputs or outputs.

Each bit in the port can be set up as an input or output, normally by writing a 0
or a 1 in the corresponding bit of the data-direction register. As an example, if an 8-bit
data-direction register contains 34H (34 Hex), the corresponding port is defined as shown
in Figure 4.4. In this example, because 34H (0011 0100) is sent as an output into the data-
direction register, bits 0, 1, 3, 6, and 7 of the port are set up as inputs, and bits 2, 4, and
5 of the port are defined as outputs. The microcomputer can then send output to external
devices, such as LEDs, connected to bits 2, 4, and 5 through a proper interface. Similarly,
the microcomputer can input the status of external devices, such as switches, through bits
0, 1, 3, 6, and 7. To input data from the input switches, the microcomputer inputs the
complete byte, including the bits to which LEDs are connected. While receiving input
data from an I/O port, however, the microcomputer places a value, probably 0, at the bits
configured as outputs and the program must interpret them as “don’t cares.” At the same
time, the microcomputer’s outputs to bits configured as inputs are disabled.

7 6 5 4 3 2 10 Bit position
[ofo]1]1]o]1]o]o] Datadiecton
register

LITTTITTT] vover
AAV VAV AR

FIGURE 4.4 Bit configurable I/O port along with a data-direction register.
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Other control information
such as timer control signals
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FIGURE 4.5 Parallel I/O ports.

For parallel I/O, there is only one data direction register for all ports. A particular
bit in the data direction register configures all bits in the port as either inputs or outputs.
Consider two I/O ports in an I/O chip along with one data direction register. Assume that
a0oral in a particular bit position defines all bits of port A or B as inputs or outputs
respectively. An example is depicted in Figure 4.5. Some /O ports are called handshake
ports. Data transfer occurs via these ports through exchanging of control signals between
the microcomputer and an external device.

I/O ports are addressed using either standard I/O or memory-mapped /O
techniques. Standard I/0 or port I/0 (called isolated I/0 by Intel) uses an output pin such
as the M/IO pin on the Intel Pentium microprocessor chip. The microprocessor outputs
a HIGH on this pin to indicate to memory and the I/O chips that a memory operation is
taking place. ALOW output from the microprocessor to this pin indicates an I/O operation.
Execution of an IN or OUT instruction makes the M/IO LOW, whereas memory-oriented
instructions, such as MOVE, drive the M/IO to HIGH.

In standard 1/O, the microprocessor uses the M/IO pin to distinguish between I/O
and memory. For typical microprocessors, an 8-bit address can be used for each I/0 port.
With an 8-bit I/O port address, these processors are capable of addressing 256 ports. In
addition, 32-bit microprocessors can also use 16- or 32-bit I/O ports. .

In memory-mapped I/O, the microprocessor does not use the M/IO control pin.
Instead, the microprocessor uses an unused address pin to distinguish between memory
and 1/O. The microprocessor uses a portion of the memory addresses to represent I/0
ports. The 1/O ports are mapped as part of the microprocessor’s main memory addresses
which may not exist physically, but are used by the microprocessor’s memory-oriented
instructions, such as MOVE, to generate the necessary control signals to perform 1/O.
Motorola microprocessors such as the 68000 or 68020 do not have a control pin such as
M/IO and use only memory-mapped I/O. Intel microprocessors can use both types.

When standard I/O is used, typical microprocessors such as the Pentium normally
use an IN or OUT instruction with 8-bit ports as follows:
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IN AL, PORTA ; Inputs 8-bit data from PORTA into the 8-bit register AL
OUT  PORTA,AL ; Outputs the contents of the 8-bit register AL into PORTA

With memory-mapped I/O, the microprocessor normally uses an instruction(i.e.,
MOV as follows:

MOV  mem, reg ; Inputs the contents of a register into a port called “mem”
; mapped as a memory location
MOV  reg,mem ; outputs the contents of a port called “mem” mapped as a

; memory location into a register

4.4 Unconditional and Conditional Programmed I/O

There are typically two ways in which programmed 1/O can be utilized: unconditional I/O
and conditional 1/0. The microprocessor can send data to an external device at any time
using unconditional 1/0. The external device must always be ready for data transfer. A
typical example is that of a microprocessor outputting a 7-bit code through an 1/0 port to
drive a seven-segment display connected to this port. In conditional I/0, the microprocessor
outputs data to an external device via handshaking. This means that data transfer occurs via
the exchange of control signals between the microprocessor and an external device. The

The processor
inputs the
status of the
external device

Is
the device
ready for data

transfer
?

No

The processor
outputs or inputs
data to or from
external device

l

FIGURE 4.6 Flowchart for conditional programmed 1/O.
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FIGURE 4.7 A/D converter.

microprocessor inputs the status of the external device to determine whether the device
is ready for data transfer. Data transfer takes place when the device is ready. Figure 4.6
illustrates the concept of conditional programmed 1/0.

The concept of conditional I/0O will now be demonstrated by means of data transfer
between a microprocessor and an analog-to-digital (A/D) converter. Consider, for example,
the A/D converter shown in Figure 4.7, which transforms an analog voltage Vx into an
8-bit binary output at pins D,-D,. A pulse at the “start ” pin initiates the conversion. This
drives the “conversion complete” signal LOW. The signal stays LOW during the conversion
process. The “conversion complete” signal goes HIGH as soon as the conversion ends.
Because the A/D converter’s output is tristated, a LOW on the Output enable transfers the
converter’s outputs. A HIGH on the Output enable drives the converter’s outputs to a high-
impedance state. ’

b
Port A Bit0 »| Output enable
0 .
. Conversion
Bit 1 ¢ complete
Bit 2 P Start
Bit 7 D,
B Digital
Port B i output
Bit 01 D,
Microcomputer A/D Converter

FIGURE 4.8 Interfacing an A/D converter to a microcomputer
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The concept of conditional I/O can be demonstrated by interfacing an A/D
converter to a typical microcomputer. Figure 4.8 shows such an interfacing example. The
user writes a program to carry out the conversion process. When this program is executed,
the microcomputer sends a pulse to the “start” pin of the converter via bit 2 of port A. The
microcomputer then checks the “conversion complete” signal by inputting bit 1 of port A
to determine if the conversion is completed.

If the “conversion complete” signal is HIGH (indicating the end of conversion),
the microcomputer sends a LOW to the output enable pin of the A/D converter. The
microcomputer then inputs the converter’s Dy-D, outputs via port B. If the conversion is
not completed, the microcomputer waits in a loop checking for the “conversion complete”
signal to go HIGH.

4.5 Interrupt 1/0

A disadvantage of conditional programmed I/O is that the microcomputer needs to check
the status bit (a conversion complete signal of the A/D converter) by waiting in a loop. This
type of I/0 transfer is dependent on the speed of the external device. For a slow device, this
waiting may slow down the microcomputer’s ability to process other data. The interrupt
I/0 technique is efficient in this type of situation.

Interrupt I/0 is a device-initiated I/O transfer. The external device is connected
to a pin called the interrupt (INT) pin on the microprocessor chip. When the device needs
an I/O transfer with the microcomputer, it activates the interrupt pin of the processor chip.
The microcomputer usually completes the current instruction and saves the contents of the
current program counter and the status register in the stack.

The microcomputer then loads an address automatically into the program counter
to branch to a subroutine-like program called the interrupt service routine. This program
is written by the user. The external device wants the microcomputer to execute this
program to transfer data. The last instruction of the service routine is a RETURN, which is
typically similar in concept to the RETURN instruction used at the end of a subroutine. The
RETURN from interrupt instruction normally restores the program counter and the status
register with the information saved in the stack before going to the service routine. Then
the microcomputer continues executing the main program. An example of interrupt /O is
shown in Figure 4.9.

Assume that the microcomputer is 68000 based and is executing the following
instruction sequence:

ORG $2000
MOVE.B #$81, DDRA ;Configure bits 0 and 7
;of port A as outputs
MOVE.B #$00, DDRB ;Configure port B as input
MOVE.B #3$81, PORTA ;Send a HIGH start pulse to A/D
;and a HIGH to output enable
MOVE.B #3501, PORTA ;Send a LOW to start and
; a HIGH to output enable
CLR.W DO ;Clear 16-bit register DO to 0

BEGIN MOVE.W D1, D2
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FIGURE 4.9 Microcomputer A/D converter interface via interrupt I/0.

The extensions .B and .W represent byte and word operations. Note that $ and #
indicate hexadecimal number and immediate mode respectively. The preceding program is
written arbitrarily.

The program logic can be explained using the 68000 instruction set. Ports DDRA
and DDRB are assumed to be the data-direction registers for ports A and B, respectively.
The first four MOVE instructions configure bits 0 and 7 of port A as outputs and port B
as the input port, and then send a trailing “start” pulse (HIGH and then LOW) to the A/D
converter along with a HIGH to the output enable. This HIGH output enable is required to
disable the A/D’s output.

The microcomputer continues with execution of the CLR.W DO instruction.
Suppose that the “conversion complete” signal becomes HIGH, indicating the end of
conversion during execution of the CLR.W D0 instruction. This drives the INT signal to
HIGH, interrupting the microcomputer. The microcomputer completes execution of the
current instruction, CLR.W DO. It then saves the current contents of the program counter
(address BEGIN) and status register automatically and executes a subroutine-like program
called the service routine. This program is usually written by the user. The microprocessor
manufacturer normally specifies the starting address of the service routine, or it may be
provided by the user via external hardware. Assume that this address is $4000 and that the
user writes a service routine to input the A/D converter’s output as follows:

ORG $4000

MOVE.B #$00, PORTA Activate output enable
MOVE.B PORTB, D1 ; Input A/D

RTE ; Return and restore PC and SR

In this service routine, the microcomputer inputs the A/D converter’s output. The
return instruction RTE, at the end of the service routine, pops the address BEGIN and
the previous status register contents from the stack and loads the program counter and
status register with them. The microcomputer executes the MOVE.W D1,D2 instruction
at the address BEGIN and continues with the main program. The basic characteristics of
interrupt I/0 have been discussed so far. The main features of interrupt I/O provided with
a typical microcomputer are discussed next.
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4.5.1 Interrupt Types

There are typically three types of interrupts: external interrupts, traps or internal interrupts,
and software interrupts. External interrupts are initiated through a microprocessor’s
interrupt pins by external devices such as A/D converters. External interrupts can be
divided further into two types: maskable and nonmaskable. Nonmaskable interrupt cannot
be enabled or disabled by instructions, whereas a microprocessor’s instruction set contains
instructions to enable or disable maskable interrupt. For example, the Intel Pentium can
disable or enable  maskable interrupt by executing instructions such as CLI (clear the
interrupt flag in the status register to 0) or STI (set interrupt flag in the status register to
1) . The Pentium recognizes maskable interrupt after execution of the STI while ignoring
it upon execution of the CLI. Note that the Pentium has an interrupt flag bit in the status
register. A nonmaskable interrupt has a higher priority than a maskable interrupt. If
maskable and nonmaskable interrupts are activated at the same time, the processor will
service the nonmaskable interrupt first.

A nonmaskable interrupt is typically used as a power failure interrupt.
Microprocessors normally use +5 V dc, which is transformed from 110 V ac. If the power
falls below 90 V ac, the DC voltage of +5 V cannot be maintained. However, it will take a
few milliseconds before the ac power drops below 90 V ac. In these few milliseconds, the
power-failure-sensing circuitry can interrupt the processor. The interrupt service routine
can be written to store critical data in nonvolatile memory such as battery-backed CMOS
RAM, and the interrupted program can continue without any loss of data when the power
returns.

Some microprocessors, such as the Pentium, are provided with a maskable
handshake interrupt. This interrupt is usually implemented by using two pins: INTR and
INTA. When the INTR pin is activated by an external device, the processor completes the
current instruction, saves at least the current program counter onto the stack, and generates
an interrupt acknowledge (INTA). In response to the INTA, the external device provides an
8-bit number using external hardware on the data bus of the microcomputer. This number
is then read and used by the microcomputer to branch to the service routine desired.

Internal interrupts, or traps, are activated internally by exceptional conditions
such as overflow, division by zero, or execution of an illegal op-code. Traps are handled
in the same way as external interrupts. The user writes a service routine to take corrective
measures and provide an indication to inform the user that an exceptional condition has
occurred. Many microprocessors include software interrupts, or system calls. When one of
these instructions is executed, the microprocessor is interrupted and serviced similarly to
external or internal interrupts.

Software interrupt instructions are normally used to call the operating system.
These instructions are shorter than subroutine calls, and no calling program is needed to
know the operating system’s address in memory. Software interrupt instructions allow the
user to switch from user to supervisor mode. For some processors, a software interrupt is
the only way to call the operating system, because a subroutine call to an address in the
operating system is not allowed.

4.5.2 Interrupt Address Vector

The technique used to find the starting address of the service routine (commonly known as the
interrupt address vector) varies from one processor to another. With some microprocessors,
the manufacturers define the fixed starting address for each interrupt. Other manufacturers use
an indirect approach by defining fixed locations where the interrupt address vector is stored.
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453 Saving the Microprocessor Registers

When a microprocessor is interrupted, it normally saves the program counter (PC) and
the status register (SR) onto the stack so that the microprocessor can return to the main
program with the original values of PC and SR after executing the service routine. The user
should know the specific registers the microprocessor saves prior to executing the service
routine. This will allow the user to use the appropriate return instruction at the end of the
service routine to restore the original conditions upon return to the main program.

454 Interrupt Priorities

A microprocessor is typically provided with one or more interrupt pins on the chip.
Therefore, a special mechanism is necessary to handle interrupts from several devices that
share one of these interrupt lines. There are two ways of servicing multiple interrupts:
polled and daisy chain techniques.

Polled Interrupts Polled interrupts are handled by software and therefore are slow
in servicing the interrupts. The microprocessor responds to an interrupt by executing one
general service routine for all devices. The priorities of devices are determined by the order
in which the routine polls each device. The microprocessor checks the status of each device
in the general service routine, starting with the highest-priority device, to service an
interrupt. Once the microprocessor determines the source of the interrupt, it branches to the
service routine for the device. Figure 4.10 shows a typical configuration of the polled-
interrupt system.

In Figure 4.10, several external devices (device 1, device 2,..., device N) are
connected to a single interrupt line of a microprocessor via an OR gate (not shown in the
figure). When one or more devices activate the INT line HIGH, the microprocessor pushes
the PC and SR onto the stack. It then branches to an address defined by the manufacturer
of the microprocessor. The user can write a program at this address to poll each device,
starting with the highest-priority device, to find the source of the interrupt. Suppose that the
devices in Figure 4.10 are A/D converters. Each converter, along with the associated logic
for polling, is shown in Figure 4.11.

Assume that in Figure 4.10 two A/D converters (devices 1 and 2) are provided
with the “start” pulse by the microprocessor at nearly the same time. Suppose that the user
assigns device 2 the higher priority. The user then sets up this priority mechanism in the
general service routine. For example, when the “Conversion complete” signals from device
1 and/or 2 become HIGH, indicating the end of conversion, the processor is interrupted. In
response, the microprocessor pushes the PC and SR onto the stack and loads the PC with
the interrupt address vector defined by the manufacturer.

The general interrupt service routine written at this address determines the source
of the interrupt as follows: A 1 is sent to PA1 for device 2 because this device has higher
priority. If this device has generated an interrupt, the output (PB1) of the AND gate in Figure
4.11 becomes HIGH, indicating to the microprocessor that device 2 generated the interrupt.
If the output of the AND gate is 0, the processor sends a HIGH to PAQ and checks the
output (PB0) for HIGH. Once the source of the interrupt is determined, the microprocessor
can be programmed to jump to the service routine for that device. The service routine
enables the A/D converter and inputs the converter’s outputs to the microprocessor.

Polled interrupts are slow, and for a large number of devices the time required
to poll each device may exceed the time to service the device. In such a case, a faster
mechanism, such as the daisy chain approach, can be used.
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FIGURE 4.10 Polled interrupt.
Daisy Chain Interrupts Devices are connected in daisy chain fashion, as shown in

Figure 4.12, to set up priority systems. Suppose that one or more devices interrupt the
processor. In response, the microprocessor pushes the PC and SR onto the stack and,
generates an interrupt acknowledge (INTA) signal to the highest-priority device (device 1
in this case). If this device has generated the interrupt, it will accept the INTA; otherwise,
it will pass the INTA onto the next device until the INTA is accepted.

Once accepted, the device provides a means for the processor to find the interrupt-
address vector by using external hardware. Assume that the devices in Figure 4.12 are A/D
converters. Figure 4.13 provides a schematic for each device and the associated logic.

-

Start
(from processor)
A/D converter
Conversion
complete

QOutput enable

INT Do D7y

From bit N \ » To bit N
of port A S of
of the processor port B

FIGURE 4.11 Device N and associated logic for polled interrupt.
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FIGURE 4.12 Daisy chain interrupt.

Suppose that the microprocessor in Figure 4.12 sends a pulse to start the conversions of
the A/D converters of devices 1 and 2 at nearly the same time. When the “conversion
complete” signal goes HIGH, the microprocessor is interrupted through the INT line.
The microprocessor pushes the PC and SR. It then generates a LOW at the interrupt
acknowledge (INTA) for the highest-priority device. Device 1 has the highest priority; it
is the first device in the daisy chain configuration to receive INTA . If A/D converter 1 has
generated the “conversion complete” HIGH, the output of the AND gate in Figure 4.13
becomes HIGH.

This signal can be used to enable external hardware to provide the interrupt
address vector on the microprocessor’s data lines. The microprocessor then branches to

VX

Analog signal

Start
Dy- D
A/D converter L/ »
Conversion
— complete
Output enable P

When LOW, provides INTA

for the next device
INTA from ————

processor

5 To INT line of the microprocessor

When high, initiates external
hardware for providing the
interrupt address vector for
this device to the microprocessor

FIGURE 4.13 Each device and the associated logic in a daisy chain.
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the service routine. This program enables the converter and inputs the A/D output to the
microprocessor via port B. If A/D converter 1 does not generate the “conversion complete”
HIGH, however, the output of the AND gate in Figure 4.13 becomes LOW (an input to
device 2’s logic) and the same sequence of operations takes place. In the daisy chain, each
device has the same logic, with the exception of the last device, which must accept the
INTA . Note that the outputs of all the devices are connected to the INT line via an OR gate
(not shown in Figure 4.12).

4.6 Direct Memory Access (DMA)

Direct memory access (DMA) is a technique that transfers data between a microcomputer’s
memory and an I/O device without involving the microprocessor. DMA is widely used in
transferring large blocks of data between a peripheral device such as a hard disk and the
microcomputer’s memory. The DMA technique uses a DMA controller chip for the data
transfer operations. The DMA controller chip implements various components, such as a
counter containing the length of data to be transferred in hardware in order to speed up data
transfer. The main functions of a typical DMA controller are summarized as follows:

¢ The /O devices request DMA operation via the DMA request line of the controller

chip.

* The controller chip activates the microprocessor HOLD pin, requesting the
microprocessor to release the bus.

*  The microprocessor sends HLDA (hold acknowledge) back to the DMA controller,
indicating that the bus is disabled. The DMA controller places the current value of
its internal registers, such as the address register and counter, on the system bus and
sends a DMA acknowledge to the peripheral device. The DMA controller completes
the DMA transfer.

There are three basic types of DMA: block transfer, cycle stealing, and interleaved
DMA. For block transfer DMA, the DMA controller chip takes over the bus from the
microcomputer to transfer data between the microcomputer memory and the 1/O device.
The microprocessor has no access to the bus until the transfer is completed. During this
time, the microprocessor can perform internal operations that do not need the bus. This
method is popular with microprocessors. Using this technique, blocks of data can be
transferred.

Data transfer between the microcomputer memory and an I/O device occurs
on a word-by-word basis with cycle stealing. Typically, the microprocessor is generated
by ANDing an INHIBIT signal with the system clock. The system clock has the same
frequency as the microprocessor clock. The DMA controller controls the INHIBIT line.
During normal operation, the INHIBIT line is HIGH, providing the microprocessor clock.
When DMA operation is desired, the controller makes the INHIBIT line LOW for one
clock cycle. The microprocessor is then stopped completely for one cycle. Data transfer
between the memory and I/O takes place during this cycle. This method is called cycle
stealing because the DMA controller takes away or steals a cycle without microprocessor
recognition. Data transfer takes place over a period of time.

With interleaved DMA, the DMA controller chip takes over the system bus when
the microprocessor is not using it. For example, the microprocessor does not use the bus
while incrementing the program counter or performing an ALU operation. The DMA
controller chip identifies these cycles and allows transfer of data between memory and the
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I/0 device. Data transfer for this method takes place over a period of time.

Because block transfer DM A is common with microprocessors, a brief description
is provided. Figure 4.14 shows a typical diagram of block transfer DMA. In the figure, the
I/0 device requests DMA transfer via the DMA request line connected to the controller
chip. The DMA controller chip then sends a HOLD signal to the microprocessor and waits
for the HOLD acknowledge (HLDA) signal from the microprocessor. On receipt of the
HLDA, the controller chip sends a DMA ACK signal to the I/O device. The controller
takes over the bus and controls data transfer between RAM and the 1/O device. On the
completion of data transfer, the controller interrupts the microprocessor by the INT line
and returns the bus to the microprocessor by disabling the HOLD and DMA ACK signals.

The DMA controller chip usually has at least three registers normally selected
by the controller’s register select (RS) line: an address register, a terminal count register,
and a status register. Both the address and terminal counter registers are initialized by
the microprocessor. The address register contains the starting address of the data to be
transferred, and the terminal counter register contains the block to be transferred. The
status register contains information such as completion of DMA transfer. Note that the
DMA controller implements logic associated with data transfer in hardware to speed up the
DMA operation.

Address
A \d * Bus
Data
‘} Bus
R 4 HOLD
L 4 HLDA
® RW
* INT
Decoding
logic
DMA
Controller |/Q
uP RAM Chip device
— Address w '— Address — Address Data |¢
lines RIW lines cs lines HOLD — lines
Ly pata NV [ |pats | piData  HLDA [4—
lines lines lines —
RW
HOLD RIW & cs INT
DMA
HLDA RS Request
DMA
ACK

FIGURE 4.14 Typical block transfer.
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4.7 Summary of I/0

Figure 4.15 summarizes various I/O techniques used with a typical microprocessor.
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FIGURE 4.15
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I/O structure of a typical microcomputer.
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Questions and Problems

4.1  Define the three types of I/O. Identify each as either microprocessor-initiated or
device-initiated.

4.2 Whatisthe basic difference between standard I/O and memory-mapped [/O? Identify
the programmed /O technique (s) used by Intel and Motorola microprocessors.

4.3  What are programmed I/O and virtual [/O?

4.4 What is the difference between memory mapping in a microprocessor and memory-
mapped [/O?

4.5  Discuss the basic difference between polled 1/O and interrupt 1/0.
4.6  What is the difference between subroutine and interrupt I/0?
4.7  What is an interrupt address vector?

4.8  Summarize the basic difference between maskable and nonmaskable interrupts.
Describe how power failure interrupt is normally handled.

4.9  Why are polled interrupt and daisy chain interrupt used?
4.10 Discuss the basic difference between internal and external interrupts.
4.11 What are cycle stealing, block transfer, and interleaved DMA?

4.12 Summarize the typical functions performed by a DMA controller chip.



This Page Intentionally Left Blank



MICROPROCESSOR
PROGRAMMING CONCEPTS

In this chapter we provide the fundamental concepts of microprocessor programming.
Typical programming characteristics such as programming languages, basics of
assembly language programming, instruction formats, instruction set architecture (ISA),
microprocessor instruction sets, and addressing modes are discussed.

5.1 Microcomputer Programming Languages

Microprocessors are typically programmed using semi-English-language statements
(assembly language). In addition to assembly languages, microcomputers use a more
understandable human-oriented language called high-level language. No matter what type
of language is used to write programs, microcomputers understand only binary numbers.
Therefore, all programs must eventually be translated into their appropriate binary forms.
The principal ways to accomplish this are discussed later.

Microprocessor programming languages can typically be divided into three
main types: machine language, assembly language, and high-level language. A machine
language program consists of either binary or hexadecimal op-codes. Programming a
microcomputer with either one is relatively difficult, because one must deal only with
numbers. The architecture and microprograms of a microprocessor determine all its
instructions. These instructions are called the microprocessor’s instruction set. Programs
in assembly and high-level languages are represented by instructions that use English-
language-type statements. The programmer finds it relatively more convenient to write
programs in assembly or high-level language than in machine language. However, a
translator must be used to convert such programs into binary machine language so that the
microprocessor can execute the programs. This is shown in Figure 5.1.

An assembler translates a program written in assembly language into a machine
language program. A compiler or interpreter, on the other hand, converts a high-level
language program such as C or C++ into a machine language program. Assembly or high-
level language programs are called source codes. Machine language programs are known
as object codes. A translator converts source codes to object codes. Next, we discuss the
three main types of programming language in more detail.

Assembly or high- Translator Binary
level language (assembler or machine language
(source code) compiler/interpreter) (object code)
FIGURE 5.1 Translating assembly or high-level language into binary machine
language.
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5.2 Machine Language

A microprocessor has a unique set of machine language instructions defined by its
manufacturer. No two microprocessors by two different manufacturers have the same
machine language instruction set. For example, the Intel Pentium microprocessor uses
the code 03C3,, for its addition instruction, whereas the Motorola 68020 uses the code
0640,,. Therefore, a machine language program for one microprocessor will not run on the
microprocessor of a different manufacturer.

At the most elementary level, a microprocessor program can be written using its
instruction set in binary machine language. As an example, the following program adds
two numbers using the Intel Pentium machine language:

01100110 1011 1000 0000 0001 0000 0000
01100110 1011 1011 0000 0010 0000 0000
01100110 0000 0011 1100 0011

1111 0100

Obviously, the program is very difficult to understand unless the programmer
remembers all the Pentium codes, which is impractical. Because one finds it very
inconvenient to work with 1’s and 0’s, it is almost impossible to write an error-free program
on the first try. Also, it is very tiring for a programmer to enter a machine language program
written in binary into the microcomputer’s RAM. For example, the programmer needs a
number of binary switches to enter the binary program. This is definitely subject to error.

To increase the programmer’s efficiency in writing a machine language program,
hexadecimal numbers rather than binary numbers are used. The following is the same
addition program in hexadecimal using the Intel Pentium instruction set:

66B80100
66BB0200
6603C3

F4
It is easier to detect an error in a hexadecimal program, because each byte contains only
two hexadecimal digits. One would enter a hexadecimal program using a hexadecimal
keyboard. A keyboard monitor program in ROM, usually offered by the manufacturer,
provides interfacing of the hexadecimal keyboard with the microcomputer. This program
converts each key actuation into binary machine language in order for the microprocessor
to understand the program. However, programming in hexadecimal is not normally used.

53 Assembly Language

The next programming level is to use assembly language. Each line in an assembly language
program includes four fields:
* Label field

¢ Instruction, mnemonic, or op-code field
*  QOperand field

¢  Comment field
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As an example, a typical program for adding two 16-bit numbers written in Pentium
assembly language is as follows:

Label = Mnemonic Operand Comment
START: MOV AX,1 Move 1 into AX
MOV BX,2 Move 2 into BX
ADD AX,BX Add the contents of AX with BX
JMP START Jump to the beginning of the program

Obviously, programming in assembly language is more convenient than
programming in machine language, because each mnemonic gives an idea of the type of
operation it is supposed to perform. Therefore, with assembly language, the programmer
does not have to find the numerical op-codes from a table of the instruction set, and
programming efficiency is improved significantly.

An assembly language program is translated into binary via a program called an
assembler. The assembler program reads each assembly instruction of a program as ASCII
characters and translates them into the respective binary op-codes. As an exampie, consider
the HLT instruction for the Pentium. Its binary op-code is 11110100. An assembler would
convert HLT into 11110100 as shown in Table 5.1.

Anadvantage ofthe assembler is address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically. One can obtain hands-
on experience with a typical assembler for a microprocessor by downloading it from the

Internet.

5.3.1 Types of Assemblers

Most assemblers use two passes to assemble a program. This means that they read the
input program text twice. The first pass is used to compute the addresses of all labels in the
program. To find the address of a label, it is necessary to know the total length of all the
binary code preceding that label. Unfortunately, however, that address may be needed in
that preceding code. Therefore, the first pass computes the addresses of all labels and stores
them for the next pass, which generates the actual binary code. Various types of assemblers
are available today:

®  One-Pass Assembler. This assembler goes through an assembly language program once
and translates it into a machine language program. This assembler has the problem of

TABLE 5.1 Conversion of HLT into Its Binary Op-Code
Binary form of ASCII Binary OP Code
Codes as Seen by Created by
Assembly Code Assembler Assembler
H 0100 1000
L 0100 1100 1111 0100
T 0101 0100
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defining forward references. This means that a JUMP instruction using an address that
appears later in the program must be defined by the programmer after the program is
assembled.

Two-Pass Assembler. This assembler scans an assembly language program twice. In
the first pass, this assembler creates a symbol table. A symbol table consists of labels
with addresses assigned to them. This way, labels can be used for JUMP statements and
no address calculation has to be done by the user. On the second pass, the assembler
translates the assembly language program into machine code. The two-pass assembler
is more desirable and much easier to use.

Macroassembler. This type of assembler translates a program written in macrolanguage
into machine language. This assembler lets the programmer define all instruction
sequences using macros. Note that by using macros, the programmer can assign a name
to an instruction sequence that appears repeatedly in a program. The programmer can
thus avoid writing an instruction sequence that is required many times in a program
by using macros. The macroassembler replaces a macroname with the appropriate
instruction sequence each time it encounters a macroname.

It is interesting to see the difference between a subroutine and a macroprogram.
A specific subroutine occurs once in a program. A subroutine is executed by CALLing
it from a main program. The program execution jumps out of the main program and
executes the subroutine. At the end of the subroutine, a RET instruction is used to
resume program execution following the CALL SUBROUTINE instruction in the main
program. A macro, on the other hand, does not cause the program execution to branch
out of the main program. Each time a macro occurs, it is replaced by the appropriate
instruction sequence in the main program. Typical advantages of using macros are
shorter source programs and better program documentation. A typical disadvantage is
that effects on registers and flags may not be obvious.

Conditional macroassembly is very useful in determining whether or not an
instruction sequence is to be included in the assembly, depending on a condition that
is true or false. If two different programs are to be executed repeatedly based on a
condition that can be either true or false, it is convenient to use conditional macros.
Based on each condition, a particular program is assembled. Each condition and the
appropriate program are typically included within IF and ENDIF pseudoinstructions.

Cross assembler. This type of assembler is typically resident in a processor and
assembles programs for another for which it is written. The cross assembler program
is written in a high-level language so that it can run on different types of processors
that understand the same high-level language.

Resident assembler. This type of assembler assembles programs for a processor in
which it is resident. The resident assembler may slow down operation of the processor
on which it runs.

Meta-assembler. This type of assembler can assemble programs for many different
types of processors. The programmer usually defines the particular processor being
used.

5.3.2 Assembler Delimiters
As mentioned before, each line of an assembly language program consists of four
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fields: label, mnemonic or op-code, operand, and comment. The assembler ignores the
comment field but translates the other fields. The label field must start with an uppercase
alphabetic character. The assembler must know where one field starts and another ends.
Most assemblers allow the programmer to use a special symbol or delimiter to indicate the
beginning or end of each field. Typical delimiters used are spaces, commas, semicolons,
and colons:

®  Spaces are used between fields.

¢ Commas (,) are used between addresses in an operand field.
* A semicolon (;) is used before a comment.

* Acolon () or no delimiter is used after a label.

53.3 Specifying Numbers by Typical Assemblers
To handle numbers, most assemblers consider all numbers as decimal numbers unless
specified otherwise. All assemblers will also specify other number systems, including
hexadecimal numbers. The user must define the type of number system used in some way.
This is generally done by using a letter before or after the number. For example, Intel uses
the letter H after a number to represent it as a hex number, whereas Motorola uses a $ sign
before the number to represent it as a hex number. As an example, 60 in hexadecimal is
represented by an Intel assembler as 60H and by a Motorola assembler as $60.

Typical assemblers such as MASM32 require hexadecimal numbers to start with
a digit (0 through 9). A 0 is typically used if the first digit of the hexadecimal number
is a letter. This is done to distinguish between numbers and labels. For example, typical
assemblers such as MASM32 will normally require the number F3H to be represented as
OF3H; otherwise, the assembler will generate an error. However, ide 68k assembler used
in this book for assembling 68000 and 68020 assembly language programs does not require
‘0’ to be used if the first digit of a hexadecimal number is a letter.

534 Assembler Directives or Pseudoinstructions

Assemblers use pseudoinstructions or directives to make the formatting of the edited text
easier. Pseudoinstructions are not translated directly into machine language instructions.
They equate labels to addresses, assign the program to certain areas of memory, or insert
titles, page numbers, and so on. To use the assembler directives or pseudoinstructions, the
programmer puts them in the op-code field, and if the pseudoinstructions require an address
or data, the programmer places them in the label or data field. Typical pseudoinstructions are
ORIGIN (ORG), EQUATE (EQU), DEFINE BYTE (DB}, and DEFINE WORD (DW).

ORIGIN (ORG) The directive ORG lets a programmer place programs anywhere in
memory. Internally, the assembler maintains a program counter type of register called an
address counter. This counter maintains the address of the next instruction or data to be
processed.

An ORG directive is similar in concept to a JUMP instruction. Note that the JUMP
instruction causes a processor to place a new address in the program counter. Similarly, the
ORG pseudoinstruction causes the assembler to place a new value in the address counter.

Typical ORG statements are

ORG 7000H
HLT
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The Pentium assembler will generate the following code for these statements:

7000 F4
Most assemblers assign a value of zero to the starting address of a program if the programmer
does not define this by means of an ORG.

Equate (EQU) The directive EQU assigns a value in its operand field to an address
in its label field. This allows the user to assign a numerical value to a symbolic name. The
user can then use the symbolic name in the program instead of its numeric value. This
reduces errors.

A typical example of EQU is START EQU 0200H, which assigns the value 0200
in hexadecimal to the label START. Typical assemblers such as the MASM32 require the
EQU directive to use hexadecimal numbers to start with a digit. A 0 is typically used if
the first digit of the hexadecimal number is a letter. This is done to distinguish between
numbers and labels. For example, most assemblers will require the number ASH to be
represented as 0ASH, as follows:

BEGIN EQU 0AS5H
Another example is

PORTA EQU  40H
MOV  AL,0FFH
OUT  PORTA,AL

In this example, the EQU gives PORTA the value 40 hex, and FF hex is the data
to be written into register AL by MOV AL,FFH. OUT PORTA,AL then outputs this data
FF hex to port 40, which has already been equated to PORTA.

Note that if a label in the operand field is equated to another label in the label field,
the label in the operand field must have been defined previously. For example, the EQU
statement

BEGIN EQU START
will generate an error unless START is defined previously with a numeric value.

Define Byte (DB) The directive DB is generally used to set a memory location to a
certain byte value. For example,

START DB 45H

will store the data value 45 hex to the address START. With some assemblers, the DB
pseudoinstruction can be used to generate a table of data as follows:

ORG  7000H
TABLE DB 20H,30H,40H,50H

In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex, and 50 hex
occupy the next three memory locations. Therefore, the data in memory will look like this:
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7000 20
7001 30
7002 40
7003 50
Define Word (DW) The directive DW is typically used to assign a 16-bit value to

two memory locations. For example,

ORG 7000H
START DW 4AC2H

will assign C2 to location 7000 and 4A to location 7001. It is assumed that the assembler
will assign the low byte first (C2) and then the high byte (4A). With some assemblers, the
DW directive can be used to generate a table of 16-bit data as follows:

ORG  8000H
POINTER Dw 5000H,6000H,7000H

In this case, the three 16-bit values S000H, 6000H, and 7000H are assigned to memory
locations starting at the address 8000H. That is, the array would look like this:

8000 00

8001 50

8002 00

8003 60

8004 00

8005 70
END This directive indicates the end of the assembly language source program.
5.3.5 Assembly Language Instruction Formats

In this section, assembly language instruction formats available with typical microprocessors
are discussed. Depending on the number of addresses specified, the following instruction
formats can be used: three-address, two-address, one-address, zero-address. Because all
instructions are stored in the main memory, instruction formats are designed in such a
way that instructions take less space and have more processing capabilities. It should be
emphasized that the microprocessor architecture has considerable influence on a specific
instruction format. The following are some important technical points that have to be
considered while designing an instruction format:
¢  The size of an instruction word is chosen such that it facilitates the specification of
more operations by a designer. For example, with 4- and 8-bit op-code fields, we can
specify 16 and 256 distinct operations, respectively.

* Instructions are used to manipulate various data elements, such as integers, floating-
point numbers, and character strings. In particular, all programs written in a symbolic
language such as C are stored internally as characters. Therefore, memory space will
not be wasted if the word length of the machine is some integral multiple of the number
of bits needed to represent a character. Because all characters are represented using
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typical 8-bit character codes such as ASCII or EBCDIC, it is desirable to have 8-, 16-,
32-, or 64-bit words for the word length.

®  The size of the address field is chosen such that high resolution is guaranteed. Note that
in any microprocessor, the ultimate resolution is a bit. Memory resolution is a function
of the instruction length, and in particular, short instructions provide less resolution.
For example, in a microcomputer with 32K 16-bit memory words, at least 19 bits are
required to access each bit of the word. (This is because 2'* = 32K and 2 = 16.)
The general form of a three-address instruction is

<op-code> Addri,Addr2,Addr3

Some typical three-address instructions are

MUL AB,C ; C <-A*B
ADD ABC ; C <A+B
SUB  RI1,R2,R3 ; R3 <-R1-R2

In this specification, all alphabetic characters are assumed to represent memory addresses,
and the string that begins with the letter R indicates a register. The third address of this type
of instruction is usually referred to as the destination address. The result of an operation is
always assumed to be saved in the destination address.

Typical programs can be written using three-address instructions. For example,
consider the following sequence of three-address instructions:

MUL A,B,RI : RI<-A*B
MUL C,D,R2 : R2<-C*D
MUL E,F,R3 : R3<-E*F
ADD RIL,R2,RI : RI <-R1+R2
SUB RIR3.Z : Z <-R1-R3

This sequence implements the statement Z =A * B+ C * D - E * F. The three-address
format, in addition to the other formats is normally used by typical 32-bit microprocessors
such as the Intel Pentium and the Motorola 68000.

If we drop the third address from the three-address format, we obtain the two-
address format, whose general form is

<op-code> Addri,Addr2

Some typical two-address instructions are

MOV ARI1 ; R1<-A
ADD CR2 ; R2<-R2+C
SUB RIL,R2 ; R2 <-R2-RI

In this format, the addresses Addrl and Addr2 represent source and destination addresses,
respectively. The following sequence of two-address instructions is equivalent to the
program using three-address format presented earlier:
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MOV ARl ; R1<-A

MUL B,Rl 5 R1<-R1*B
MOV C,R2 ; R2<-C

MUL D,R2 ; R2<-R2*D
MOV  E,R3 ; R3<-E

MUL FR3 ; R3<-R3*F
ADD R2,RI1 ; Rl <-Rl1+R2
SUB R3,R1 5 Rl <-R1-R3
MOV Rl,Z ; Z <-R1

This format is predominant in typical general-purpose microprocessors such as the
Pentium and 68000/68020. Typical 8-bit microprocessors such as the Intel 8085 and the
Motorola 6809 are accumulator based. In these microprocessors, the accumulator register
is assumed to be the destination for all arithmetic and logic operations. Also, this register
always holds one of the source operands. Thus, we only need to specify one address in the
instruction, and therefore, this idea reduces the instruction length. The one-address format
is predominant in 8-bit microprocessors. Some typical one-address instructions are

LDA B ; Acc<-B
ADD C ; Acc<-Acc+C
MUL D ; Acc<-Acc*D
STA E ; E <-Acc

The following program illustrates how we can translate the C language statement,
z=(a*b)+(c*d)-(e*f); intoa sequence of one-address instructions:

lda e ; Acc<-e¢

mul f ; Acc<-e*f
sta tl ; tl <-Acc

1da C ; Acc<-¢

mul d ; Acc<-c*d
sta 2 ; 12 <- Acc

lda a ; Acc<-a

mul b ; Acc<-a*b
add t2 ; Acc <-Acc +12
sub tl ; Acc <-Acc - tl
sta z ; Z <-Acc

In this program, t1 and t2 represent the addresses of memory locations used to
store temporary results. Instructions that do not require any addresses are called zero-
address instructions. All microprocessors include some zero-address instructions in the
instruction set. Typical examples of zero-address instructions are CLC (clear carry) and
NOP.

5.3.6 Instruction Set Architecture (ISA)

An instruction set architecture (ISA) defines the assembly instructions (instruction set) of
a microprocessor. Each instruction specifies the operation to be performed and includes
one or more operands. An assembly language program typically contains a number of
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assembly instructions. ISAs have been distinguished based on the number of operands that
can be specified in each instruction. Typical examples include two- and three-operand
instructions.

Earlier 8-bit microprocessors such as the Intel 8085 are accumulator-based
machines. To add two numbers, these microprocessors used a dedicated register called the
accumulator to hold one of the data to be added. A single-operand ADD instruction such
as ADD B specifies the add operation to be performed between the contents of an 8-bit
register B and the contents of the 8-bit accumulator. The 8-bit result is stored back in the
accumulator. In these microprocessors, single-operand instructions are predominant.

Typical 32-bit microprocessors such as the Pentium assume that both operands
to be added are stored in registers. For example, the Pentium instruction ADD BX,CX
will add the 16-bit contents of register BX with the 16-bit contents of register CX.
The 16-bit result will be stored in BX. Two-operand instructions are predominant in these
MICroprocessors.

A particular microprocessor’s hardware implementation of an ISA is normally
called that microprocessor’s microarchitecture. Since the 1990s, new microarchitectures
have been implemented with existing ISAs. This is because the time and cost of
developing assemblers/compilers and operating systems for a new ISA can be enormous.
Microprocessors such as the Pentium have been designed basically with an existing ISA.
Note that Intel’s x86 hardware became more complex with each successive generation,
whereas the ISA was mostly unchanged. Intel extended the original x86 ISA to include the
floating-point instructions in the Pentium.

5.3.7 Typical Instruction Set
An instruction set of a specific microprocessor consists of all the instructions that it can
execute. The capabilities of a microprocessor are determined to some extent by the types
of instructions it is able to perform. Each microprocessor has a unique instruction set
designed by its manufacturer to do a specific task. We discuss some of the instructions that
are common to all microprocessors. We group together chunks of these instructions which
have similar functions. These instructions typically include:

8 Arithmetic and Logic Instructions. These operations perform actual data manipulations.
The instructions typically include arithmetic/logic, increment/decrement, and
rotate/shift operations. Typical arithmetic instructions include ADD, SUBTRACT,
COMPARE, MULTIPLY, and DIVIDE. Note that the SUBTRACT instruction
provides the result and also affects the status flags, whereas the COMPARE instruction
performs subtraction without any result and affects the flags based on the result.

Typical microprocessors utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set for
a microprocessor typically includes the same ADD and SUBTRACT instructions for
both unsigned and signed numbers. The interpretations of unsigned and signed ADD and
SUBTRACT operations are performed by the programmer. For example, consider adding
two 8-bit numbers, A and B (A = FF,, and B = FF,) using the ADD instruction by a
microprocessor as follows:
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1111111 « Intermediate carries
FF = 11111111
+ FF,=11111111

final carry — 111111110 =FE,

When the addition above is interpreted by the programmer as an unsigned operation, the
result will be A + B = FF,, + FF,, = 255,,+ 255,,= 510,, which is FE,,with a carry, as
shown above. However, if the addition is interpreted as a signed operation, then A+ B =
FF + FF s = (-1,p) + (-1,¢) = -2,, which is FE as shown above, and the final carry must
be discarded by the programmer. Similarly, the unsigned and signed subtraction can be
interpreted by the programmer. ‘

Typical 16- and 32-bit microprocessors include both unsigned and signed
multiplication and division instructions. Several unsigned multiplication algorithms are
available. Multiplication of two unsigned numbers can be accomplished via repeated
addition. For example, to multiply 4,, by 3,,, the number 4,, can be added twice to itself to
obtain the result, 12,,.

Division between unsigned numbers can be accomplished via repeated subtraction.
For example, consider dividing 7, by 3, as follows:

Dividend Divisor Subtraction Counter
Result
710 30 7-3=4 1
4-3=1 1+1=2

Quotient = counter value =2

Remainder = subtraction result = 1
Here, 1 is added to a counter whenever the subtraction result is greater than the divisor. The
result is obtained as soon as the subtraction result is smaller than the divisor.

Signed multiplication can be performed using various algorithms. A simple
algorithm follows. Assume that M (multiplicand) and @ (multiplier) are in two’s-
complement form. For the first case, perform unsigned multiplication of the magnitudes
without the sign bits. The sign bit of the product is determined as M, @ Q,, where M, and
@, are the most significant bits (sign bits) of the multiplicand (M) and the multiplier (Q),
respectively. To perform signed multiplication, proceed as follows:

1.If M, =1, compute the twos complement of M.

2.If @,= 1, compute the twos complement of Q.

3. Multiply the »n — 1 bits of the multiplier and the multiplicand using unsigned

multiplication.

4. Thesign of the result, S,= M, @ Q,.

5.1If S, = 1, compute the two’s-complement of the result obtained in step 3.

Next, consider a numerical example. Assume that M and Q are two’s-complement
numbers. Suppose that M= 1100, and Q=0111,. Because M, = 1, take the two’s-complement
of M = 0100,; because @, = 0, do not change (. Multiply 0111, and 0100, using the
unsigned multiplication method discussed before. The product is 00011100,. The sign of
the product S, = M, ® @, =1 @ 0 = 1. Hence, take the two’s-complement of the product
00011100, to obtain 11100100, which is the final answer: -28,,.
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Unsigned division can be performed using repeated subtraction. However, the
general equation for division can be used for signed division. Note that the general equation
for division is dividend = quotient * divisor + remainder. For example, consider dividend
= -9, divisor = 2. Three possible solutions are shown below:

(a) —-9=-4%*2-1, Quotient = — 4, Remainder = — 1.
(b) —9=-5%*2+1, Quotient = — 5, Remainder = +1.
(©) ~9=—-6*2+3, Quotient = — 6, Remainder = +3.

However, the correct answer is shown in (a), in which, the Quotient = — 4 and the remainder
= — 1. Hence, for signed division, the sign of the remainder is the same as the sign of
the dividend, unless the remainder is zero. Typical microprocessors such as the Pentium
follow this convention.
Typical logic instructions perform traditional Boolean operations such as AND,
OR, and EXclusive-OR. The AND instruction can be used to perform a masking operation.
if the bit value in a particular bit position is desired in a word, the word can be logically
ANDed with appropriate data to accomplish this. For example, the bit value at bit 2 of an
8-bit number 0100 1Y10 (where an unknown bit value of Y is to be determined) can be
obtained as follows:
0100 1Y10 --8-bit number
AND 000 0 010 O0--masking data

000 0 0YO0O--result

If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the
result is zero (Flag Z = 1) . The Z flag can be tested using typical conditional JUMP
instructions such as JZ (Jump if Z=1) or JNZ (Jump if Z = 0) to determine whether Y
is 0 or 1. This is called a masking operation. The AND instruction can also be used to
determine whether a binary number is ODD or EVEN by checking the least significant
bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd). The OR instruction can
typically be used to insert a 1 in a particular bit position of a binary number without
changing the values of the other bits. For example, a 1 can be inserted using the OR
instruction at bit 3 of the 8-bit binary number 01 1 100 1 1 without changing the values
of the other bits:

01110011 --8-bit number
OR 00001000 --data for inserting a 1 at bit 3

01111011 --result

The Exclusive-OR instruction can be used to find the one’s-complement of a
binary number by XORing the number with all 1’s as follows:

0

1 00 - - 8-bit number
XOR 11

0111
111111-- data

1
1

10100011 -- Result ( Ones Complement of the 8-bit number 0101 1100)

Next, the concept of logic and arithmetic shift and rotate operations is reviewed.
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8-bit word
Before: Shift right. After:
lolololiloli[] BT --o- b lolololofo[1]o]1]
11, 1 is lost 51
FIGURE 5.2 Logical right shift operation.
TABLE 5.2 Typical Logic/Arithmetic and Shift/ Rotate Operations
Shift Logic Arithmetic Rotate
type
Right 0
N — ——
L7 ]
|, | f——5%
Los{ < MSB Lost
Left 0 0
I—__—I,/ l——l,/ <]
v/ - T v/ I + > +
Lost Lost

In a logical shift operation, a bit that is shifted out will be lost, and the vacant position
will be filled with a 0. For example, if we have the number (11),,, after a logical right shift
operation, the register contents shown in Figure 5.2 will occur. Typical examples of logic/
arithmetic and shift/rotate operations are given in Table 5.2.
It must be emphasized that a logical left or right shift of an unsigned number by n positions
implies multiplication or division of the number by 2", respectively, provided that a 1 is not
shifted out during the operation.

In the case of true arithmetic left or right shift operations, the sign bit of the
number to be shifted must be retained. However, in computers, this is true for right shift
and not for left shift operation. For example, if a register is shifted right arithmetically, the

Original After first shift After second shift
00112=(3)10 01102 = (6)10 11009 = (-4)
3 x 2 = 6;correct 6 x2=12not —4; incorrect

most significant bit (MSB) of the register is preserved, thus ensuring that the sign of the
number will remain unchanged. This is illustrated in Figure 5.3.
There is no difference between arithmetic and logical left shift operations. If the

Before During After

ooiod ([l b Gbrenis
1 Lost

‘1‘1100101‘ @l )i1|1110010|
1 Lost

FIGURE 5.3 True arithmetic right shift operation.




102 Microprocessor Theory and Applications with 68000/68020 and Pentium

most significant bit changes from 0 to 1, or vice versa, in an arithmetic left shift, the result

is incorrect and the microprocessor sets the overflow flag to 1. For example, if the original

value of the register is (3),,, the results of two successive arithmetic left shift operations are

interpreted as follows:

s Instructions for controlling microprocessor operations. These instructions typically
include those that set the reset specific flags and halt or stop the microprocessor.

*  Data movement instructions. These instructions move data from a register to memory,
and vice versa, between registers, and between a register and an 1/O device.

¢ Instructions using memory addresses. An instruction in this category typically
contains a memory address, which is used to read a data word from memory into a
microprocessor register or for writing data from a register into a memory location.
Many instructions under data processing and movement fall in this category.

*  Conditional and unconditional JUMP. These instructions typically include one of the
following:

1. An unconditional JUMP, which always transfers the memory address specified in
the instruction into the program counter.

2. A conditional JUMP, which transfers the address portion of the instruction into
the program counter based on the conditions set by one of the status flags in the flag
register.

53.8 Typical Addressing Modes

One of the tasks performed by a microprocessor during execution of an instruction
is the determination of the operand and destination addresses. The manner in which a
microprocessor accomplishes this task is called the “addressing mode.” Now, let us present
the typical microprocessor addressing modes, relating them to the instruction sets of
Motorola 68000.

An instruction is said to have “implied or inherent addressing mode” if it does
not have any operand. For example, consider the following instruction: RTS, which means
“return from a subroutine to the main program.” The RTS instruction is a no-operand
instruction. The program counter is implied in the instruction because although the program
counter is not included in the RTS instruction, the return address is loaded in the program
counter after its execution.

Whenever an instruction/operand contains data, it is called an “immediate mode”
instruction. For example, consider the following 68000 instruction:

ADD  #15D0 ; DO <-DO + 15
In this instruction the # indicates to the assembler that it is an immediate mode instruction.
This instruction adds 15 to the contents of register DO and then stores the result in DO. An
instruction is said to have a register mode if it contains a register as opposed to a memory
address. This means that the operand values are held in the microprocessor registers. For
example, consider the following 68000 instruction:

ADD DI1,D0 ;D0<-DI1+D0
This ADD instruction is a two-operand instruction. Both operands (source and destination)
have a register mode. The instruction adds the 16-bit contents of DO to the 16-bit contents
of D1 and stores the 16-bit result in DO.

An instruction is said to have an absolute or direct addressing mode if it contains
a memory address in the operand field. For example, consider the 68000 instruction

ADD 3000, D2
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This instruction adds the 16-bit contents of memory address 3000 to the 16-bit contents of
D2 and stores the 16-bit result in D2. The source operand to this ADD instruction contains
3000 and is in the absolute or direct addressing mode.

When an instruction specifies a microprocessor register to hold the address, the
resulting addressing mode is known as the register indirect mode. For example, consider
the 68000 instruction

CLR (A0Q)
This instruction clears the 16-bit contents of a memory location whose address is in register
AQ to zero. The instruction is in register indirect mode.

Conditional branch instructions are used to change the order of execution of
a program based on the conditions set by the status flags. Some microprocessors use
conditional branching using the absolute mode. The op-code verifies a condition set by
a particular status flag. If the condition is satisfied, the program counter is changed to the
value of the operand address (defined in the instruction). If the condition is not satisfied,
the program counter is incremented, and the program is executed in its normal order.

Typical 16-bit microprocessors use conditional branch instructions. Some
conditional branch instructions are 16 bits wide. The first byte is the op-code for checking
a particular flag. The second byte is an 8-bit offset, which is added to the contents of the
program counter if the condition is satisfied to determine the effective address. This offset
is considered as a signed binary number with the most significant bit as the sign bit. It
means that the offset can vary from —128,, to +127,, (0 being positive). This is called the
relative mode.

Consider the following 68000 example, which uses the branch not equal (BNE)
instruction:

BNE 8
Suppose that the program counter contains 2000 (address of the next instruction to be
executed) while executing this BNE instruction. Now, if Z = 0, the microprocessor will
load 2000 + 8 = 2008 into the program counter and program execution resumes at address
2008. On the other hand, if Z = 1, the microprocessor continues with the next instruction.

In the last example the program jumped forward, requiring a positive offset. An
example for branching with negative offset is BNE -14

Suppose that the current program counter value = 2004,
=0010 0000 0000 0100

offset = two's complement of1410= FFF2 = 1111 1111} 1111 0010
71080 0y Uy )
1

ignore F F 6,0
reflect this( 1 to the high byte

sign extension)

Therefore, to branch backward to 1FF6,, the assembler uses an offset of F2
following the op-code for BNE.

An advantage of the relative mode is that the destination address is specified
relative to the address of the instruction after the instruction. Since these conditional Jump
instructions do not contain an absolute address, the program can be placed anywhere in
memory, which can still be executed properly by the microprocessor. A program that can
be placed anywhere in memory and can still run correctly is called a relocatable program.
It is a good practice to write relocatable programs.
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5.3.9 Subroutine Calls in Assembly Language

It is sometimes desirable to execute a common task many times in a program. Consider the
case when the sum of squares of numbers is required several times in a program. One could
write a sequence of instructions in the main program for carrying out the sum of squares
every time it is required. This is all right for short programs. For long programs, however,
it is convenient for the programmer to write a small program known as a subroutine for
performing the sum of squares, and call this program each time it is needed in the main
program. Therefore, a subroutine can be defined as a program carrying out a particular
function that can be called by another program, known as the main program. The subroutine
only needs to be placed once in memory starting at a particular memory location. Each
time the main program requires this subroutine, it can branch to it, typically by using a
jump to subroutine (JSR) instruction along with its starting address. The subroutine is then
executed. At the end of the subroutine, a RETURN instruction takes control back to the
main program.

The 68000 includes two subroutine call instructions. Typical examples include
JSR 4000 and BSR 24. JSR 4000 is an instruction using the absolute mode. In response
to the execution of JSR, the 68000 saves (pushes) the current program counter contents
(address of the next instruction to be executed) onto the stack. The program counter is then
loaded, with 4000 included in the JSR instruction. The starting address of the subroutine is
4000. The RTS (return from subroutine) at the end of the subroutine reads (pops) the return
address saved into the stack before jumping to the subroutine into the program counter. The
program execution thus resumes in the main program. BSR 24 is an instruction using relative
mode. This instruction works in the same way as the JSR 4000 except that displacement 24
is added to the current program counter contents to jump to the subroutine.

The stack must always be balanced. This means that a PUSH instruction in a
subroutine must be followed by a POP instruction before the RETURN from subroutine
instruction so that the stack pointer points to the right return address saved onto the stack.
This will ensure returning to the desired location in the main program after execution of
the subroutine. If multiple registers are PUSHed in a subroutine, one must POP them in the
reverse order before the subroutine RETURN instruction.

5.4 High-Level Language

As mentioned earlier, a programmer’s efficiency increases significantly with assembly
language compared to machine language. However, the programmer needs to be well
acquainted with the microprocessor’s architecture and its instruction set. Further, the
programmer has to provide an op-code for each operation that the microprocessor has
to carry out in order to execute a program. As an example, for adding two numbers, the
programmer would instruct the microprocessor to load the first number into a register,
add the second number to the register, and then store the result in memory. However, the
programmer might find it tedious to write all the steps required for a large program. Also,
to become a reasonably good assembly language programmer, one needs to have a lot of
experience.

High-level language programs composed of English-language-type statements
rectify all these deficiencies of machine and assembly language programming. The
programmer does not need to be familiar with the internal microprocessor structure or its
instruction set. Also, each statement in a high-level language corresponds to a number of
assembly or machine language instructions. For example, consider the statement f=a + b;
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written in a high-level language called C. This single statement adds the contents of a with
b and stores the result in f. This is equivalent to a number of steps in machine or assembly
language, as mentioned before. It should be pointed out that the letters a, b, and f do not
refer to particular registers within the microprocessor. Rather, they are memory locations.

A number of high-level languages such as C and C++ are widely used at present.
Typical microprocessors such as the Intel Pentium and the Motorola 68000/68020 can be
programmed using these high-level languages. A high-level language is a problem-oriented
language. The programmer does not have to know the details of the architecture of the
microprocessor and its instruction set. Basically, the programmer follows the rules of the
particular language being used to solve the problem at hand. A second advantage is that
a program written in a particular high-level language can be executed by two different
microcomputers, provided that they both understand that language. For example, a program
written in C for a Pentium—based microcomputer will run on a 68020-based microcomputer
because both microprocessors have a compiler to translate the C language into their
particular machine language; minor modifications are required for I/O programs.

As mentioned before, like the assembly language program, a high-level language
program requires a special program for converting the high-level statements into object
codes. This program can be either an interpreter or a compiler. They are usually very large
programs compared to assemblers. An interpreter reads each high-level statement such as
F = A+ B, and directs the microprocessor to perform the operations required to execute the
statement. The interpreter converts each statement into machine language codes but does
not convert the entire program into machine language codes prior to execution. Hence, it
does not generate an object program. Therefore, an interpreter is a program that executes
a set of machine language instructions in response to each high-level statement in order to
carry out the function. A compiler converts each statement into a set of machine language
instructions and also produces an object program that is stored in memory. This program
must then be executed by the microprocessor to perform the required task in the high-level
program.

In summary, an interpreter executes each statement as it proceeds, without
generating an object code, whereas a compiler converts a high-level program into an object
program that is stored in memory. This program is then executed.

5.5 Choosing a programming language

Compilers normally provide inefficient machine codes because of the general guidelines
that must be followed for designing them. C/C++ is a high-level language that includes
I/O instructions. However, the compiled codes generate many more lines of machine code
than does an equivalent assembly language program. Therefore, the assembled program
will take up less memory space and will execute much faster than the compiled C/C++.
Although C/C++ language includes 1/O instructions, applications involving [/O are
normally written in assembly language. One of the main uses of assembly language is in
writing programs for real-time applications. Real time indicates that the task required by
the application must be completed before any other input to the program can occur that
would change its operation. Typical programs involving non-real-time applications and
extensive mathematical computations may be written in C/C++,
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TABLE 5.3 Flowchart symbols
Symbol Eunction Example

Operation to be
carried out

Arrow indicates direction
Rectangle of program flow

No
Logical decision
Diamond Yes

Exit diamond from right if
A = Band from bottom if

Terminal point
(typically start and
end of program)

Oval
Connection from one e
point in a flowchart
to another
Circle

Parallelogram

5.6 Flowcharts

Before writing an assembly language program for a specific operation, it is convenient to
represent the program in a schematic form called a flowchart. A brief listing of the basic
shapes used in a flowchart and their functions is given in Table 5.3.
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Questions and Problems

5.1

5.2

53

54

55

5.6

5.7

5.8

59

5.10

5.11

5.12

What is the basic difference between assembly and high-level languages? Why
would you choose one over the other?

Assume that two microprocessors, the Pentium and the 68020, have C compilers.
Will a program written in C language run on both microprocessors?

Will a program written in Pentium assembly language run on a 68020?

Determine the contents of address 5004, after assembling the following:
(a) ORG  5002H

DB 00H, 05H, 07H, 00H, 03H
(b) ORG 5000H

DW 0702H, 123FH, 7020H, 0000H

What is the difference between:
(a) A cross assembler and a resident assembler?
(b) A two-pass assembler and a meta-assembler?

Write a program equivalent to the C language assignment statement
z=a+(b*c)+(d*e)-(f/g)-(h*i)

Use only:
(a) Three-address instructions
(b) Two-address instructions

Assume that a microprocessor has only two registers, R1 and R2, and that only the
following instruction is available:
XOR Ri,Rj ;Rj<-Ri®Rj
;i)=1,2
Using this XOR instruction, find an instruction sequence to exchange the contents
of registers R1 and R2.

Assume 2 two’s-complement signed numbers, M= 111111112 and 0 = 11111100,.
Perform signed multiplication using the algorithm described in Section 5.3.7.

Using the convention described in section 5.3.7, find the quotient and remainder
of (-25)/3.

Find the logic operation and 8-bit data for clearing bits 2 and 4 of an 8-bit number,
7E s to 0’s without changing the other bits.

Find the logic operation and 8-bit data for setting bits 0 and 7 of an 8-bit
number, 3A,4 to 1’s without changing the other bits.

Find the overflow bit after performing an arithmetic shift on B6,, three times to
the left.
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5.13

5.14

5.15
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Describe the meaning of each of the following addressing modes.

(a) Immediate (b) Absolute
(c) Register (d) Register indirect
(e) Relative ® Implied

What are the advantages of subroutines?

Explain the use of a stack in implementing subroutine calls.



ASSEMBLY LANGUAGE
PROGRAMMING WITH THE
68000

In this chapter we describe the fundamental concepts associated with assembly language
programming using the Motorola 68000 microprocessor. Topics include 68000 registers,
addressing modes, instruction sets, and assembly language programming.

6.1 Introduction

The 68000 is Motorola’s first 16-bit microprocessor. Its address and data registers are all
32 bits wide, and its ALU is 16 bits wide. The 68000 requires a single 5-V supply. The
processor can be operated from a maximum internal clock frequency of 25 MHz. The
68000 is available in several frequencies, including 4, 6, 8, 10, 12.5, 16.67, and 25 MHz.
The 68000 does not have on-chip clock circuitry and therefore, requires an external crystal
oscillator or clock generator/driver circuit.

The 68000 has several different versions, which include the 68008, 68010, and
68012. The 68000 and 68010 are packaged either in a 64-pin DIP (dual in-line package)
with all pins assigned or in a 68-pin quad pack or PGA (pin grid array) with some unused
pins. The 68000 is also packaged in 68-terminal chip carrier. The 68008 is packed in a
48-pin dual in-line package, whereas the 68012 is packed in an 84-pin grid array. The 68008
provides the basic 68000 capabilities with inexpensive packaging. It has an 8-bit data bus,
which facilitates the interfacing of this chip to inexpensive 8-bit peripheral chips. The
68010 provides hardware-based virtual memory support and efficient looping instructions.
Like the 68000, it has a 16-bit data bus and a 24-bit address bus. The 68012 includes all the
68010 features with a 31-bit address bus. The clock frequencies of the 68008, 68010, and
68012 are the same as those of the 68000. Table 6.1 summarizes basic differences among
the 68000 family members:

TABLE 6.1 Basic Differences Among 68000 Family Members
68000 68008 68010 68012

Data size (bits) 16 8 16 16
Address bus size (bits) 24 20 24 31
Virtual memory No No Yes Yes
Control registers None None 3 3
Directly addressable 16 MB 1 MB 16 MB 2GB
memory (bytes)

109
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TABLE 6.2 68000 User and Supervisor Modes
Supervisor Mode User Mode

Enter mode by: Recognition of a trap, Clearing status bit S
reset, or  interrupt

System stack pointer Supervisor stack pointer ~ User stack pointer

Other stack pointers User stack pointer Registers, AO-A6
and registers AO-A6

Instructions available All including: All except those listed
STOP under supervisor mode
RESET
MOVE to/from SR
ANDI to/from SR
ORI to/from SR
EORI to/from SR
MOVE USP to (An)
MOVE to USP
RTE

Function code pin FC2 1 0

To implement operating systems and protection features, the 68000 can be operated

in two modes: supervisor and user. The supervisor mode is also called the operating system
mode. In this mode, the 68000 can execute all instructions. The 68000 operates in one of
these modes based on the S bit of the status register. When the S bit is 1, the 68000 operates
in the supervisor mode; when the S bit is 0, the 68000 operates in the user mode.
Table 6.2 lists the basic differences between the 68000 user and supervisor modes. From
the table, it can be seen that the 68000 executing a program in the supervisor mode can
enter the user mode by modifying the S bit of the status register to O via an instruction.
Instructions such as MOVE to SR, ANDI to SR, and EORI to SR can be used to accomplish
this. On the other hand, the 68000 executing a program in the user mode can enter the
supervisor mode only via recognition of a trap, reset, or interrupt. Note that upon hardware
reset, the 68000 operates in the supervisor mode and can execute all instructions. An
attempt to execute privileged instructions (instructions that can be executed only in the
supervisor mode) in the user mode will automatically generate an internal interrupt (trap)
by the 68000.

The logical level in the 68000 function code pin (FC2) indicates to the external
devices whether the 68000 is currently operating in the user or the supervisor mode. The
68000 has three function code pins (FC2, FC1, and FC0), which indicate to the external
devices whether the 68000 is accessing supervisor program/data or user program/data or
performing an interrupt acknowledge cycle.

The 68000 can operate on five different data types: bits, 4-bit binary-coded-
decimal (BCD) digits, bytes, 16-bit words, and 32-bit long words. The 68000 instruction
set includes 56 basic instruction types. With 14 addressing modes, 56 instructions, and five
data types, the 68000 contains over 1000 op-codes. The fastest instruction is one that copies
the contents of one register into another register. It is executed in 500 ns at an 8-MHz clock
rate. The slowest instruction is a 32-bit by 16-bit divide, which in executed in 21.25 ps at 8
MHz. The 68000 has no I/O instructions. Thus, the 1/O is memory mapped. Hence, MOVE
instructions between a register and a memory address are also used as I/O instructions. The
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31 16,15 8,7 0
- Do
= —D1 Eight
- D2 data
| _p3 registers
- — D4
- — D5
- — D6
- —~ D7
31 16,15 0
- —_]AQ
B i Nine
- — A2 address/stack
| da3 registers
- A4
- —~ A5
- — A6
User Stack pointer AT uspP
Supervisor Stack pointer AT' ssp
31 [1]
I Program counter
15 87 0
3( .
S{JS 2’" gs‘z Status register
FIGURE 6.1 68000 programming model.

68000 is a general-purpose register-based microprocessor. Although the 68000 PC is 32
bits wide, only the low-order 24 bits are used. Because this is a byte-addressable machine,
it follows that the 68000 microprocessor can directly address 16 MB of memory. Note that
brackets [ ], are used in the examples throughout this chapter to indicate the contents of a
68000 register or a memory location.

6.2 68000 Registers

Figure 6.1 shows the 68000 registers. This microprocessor includes eight 32-bit data
registers (D0-D7) and seven 32-bit address registers (AO—A6). Data registers normally
hold data items such as 8-bit bytes, 16-bit words, and 32-bit long words. An address
register usually holds the memory address of an operand; A0-A6 can be used as 16- or
32-bit. Because the 68000 uses 24-bit addresses, it discards the uppermost 8 bits (bits
24-31) while using the address registers to hold memory addresses. The 68000 uses A7 or
A7’ as the user or supervisor stack pointer (USP or SSP), respectively, depending on the
mode of operation.

Note that the stack is basically read/write memory (RAM) addresses by the stack
pointer. The stack is typically used during subroutine calls. For example, when the main
program calls a subroutine using a 68000 instruction such as JSR (jump to subroutine).
The 68000 automatically pushes the contents of the program counter (return address) onto
the user or supervisor stack, depending on the S-bit. The RTS (return from subroutine)
instruction, typically used at the end of the subroutine, pops the return address from the
stack and transfers control to the proper place in the main program.

The 68000 status register consists of two bytes: a user byte and a system byte
(Figure 6.2). The user byte includes typical condition codes such as C, V, N, Z, and X. The
meaning of the C, V, N, and Z flags is obvious. Let us explain the meaning of the X bit.
Note that the 68000 does not have any ADDC or SUBC instructions; rather, it has ADDX
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System Byte User Byte

T T el o] Tx[n[z[v]s]

? ~— ? Zero ?
Supervisor state T Extend Overflow

) Negative
Trace bit Interrupt mask Carry

FIGURE 6.2 68000 status register.

and SUBX instructions. Because the flags C and X are usually affected in an identical
manner, one can use ADDX or SUBX to reflect the carries or borrows in multiprecision
arithmetic. The contents of the system byte include a 3-bit interrupt mask (I2, 11, 10), a
supervisor flag (S), and a trace flag (T). When the supervisor flag is 1, then the system
operates in the supervisor mode; otherwise, the user mode of operation is assumed. When
the trace flag is set to 1, the processor generates a trap (internal interrupt) after executing
each instruction. A debugging routine can be written at the interrupt address vector to
display registers and/or memory after execution of each instruction, as this will provide a
single-stepping facility. Note that the trace flag can be set to 1 in the supervisor mode by
executing the instruction ORI# $8000, SR.

The interrupt mask bits (12, I1, 10) provide the status of the 68000 interrupt pins
IPL2,IPL1, and IPLO. 12 I1 I0 = 000 indicates that all interrupts are enabled. 12 I1 10 =
111 indicates that all maskable interrupts except the nonmaskable interrupt (Level 7) are
disabled. The other combinations of 12, I1, and 10 provide the maskable interrupt levels.
The signals on the IPL2,IPL1, and IPLO pins are inverted internally and then compared
with 12, 11, and 10, respectively. The 68000 interrupts are covered in detail later in the
chapter.

6.3 68000 Memory Addressing

The 68000 supports bytes (8 bits), words (16 bits), and long words (32 bits) as shown in
Figure 6.3 . Byte addressing includes both odd and even addresses (0, 1, 2, 3, ...), word
addressing includes only even addresses in increments of 2 (0, 2, 4, ...), and long word
addressing contains even addresses in increments of 4 (0, 4, 8, ...). As an example of the

15 7 0
Address = N Byte 0 Byte 1 N+1
N+2 Byte 2 Byte 3 N+3
(a) 68000 words stored in bytes (4 bytes)
15 0
Address= N Word 0 N +1
N+2 Word 1 N+3
N +4 Word 2 N+5
(b) 68000 word structure (3 words)
15 0
Address = N Long word 0 (H) N +1
N +2 Long word 0 (L) N+3
N+4 Long word 1 (H) N+5
N+6 Long word 1 (L) N+7

(c) 68000 long word structure (2 long words)
FIGURE 6.3 68000 addressing structure (/V is an even number).
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TABLE 6.3 Conversion of RTS into Its Binary Op-Code

Binary Form of ASCII Binary Op-Code
Codes as Seen by Created by the 68000
Assembly Code the Assembler Assembler
R 0101 0010
T 0101 0100 0100 11100111 0101
S 0101 0011

68000 addressing structure, consider MOVE.L D0,$506080. If prior to execution of the
MOVE.L instruction, [DO]=$07F 12481, then after thisMOVE, [$506080]=$07,[$506081]
=$F1, [$506082] = $24, [$506083] = $81, and [DO] = $07F12481 (unchanged).

Next, consider MOVE.W D0,$506080 with [DO] = $07F 12481 prior to execution
of the MOVE.L instruction. After execution of the instruction, [$506080] = $24, [$506081]
= $81, and [D0] = $07F 12481 (unchanged). Finally, consider MOVE.B D0,$506080 with
[DO] = $07F 12481 prior to execution of the MOVE.B instruction. After execution of the
instruction, [$506080] = $81 and [D0] = $07F12481 (unchanged).

In the 68000, all instructions must be located at even addresses for byte, word,
and long word instructions; otherwise, the 68000 generates an internal interrupt. The size
of each 68000 instruction is even multiples of a byte. This means that once a programmer
writes a program starting at an even address, all instructions are located at even addresses
after assembling the program. For byte instructions, data can be located at even or odd
addresses. On the other hand, data for a word and long word instruction must be located at
even addresses; otherwise, the 68000 generates an internal interrupt.

Note that in 68000 for word and long word data, the low-order address stores
the high-order byte of a number. This is called big-endian byte ordering. In contrast, the
Pentium uses /ittle-endian byte ordering, in which the Pentium assigns the low address to
the low byte of a 16-bit register and the high address to the high byte of the 16-bit register
for 16-bit transfers between the Pentium and main memory.

6.4 Assembly Language Programming with the 68000

The assembly language program is translated into binary via a program called an assembler.
The assembler program reads each assembly instruction of a program as ASCII characters
and translates them into the respective binary op-codes. For example, the 68000 assembler
translates the RTS (Return from subroutine) instruction into its 16-bit binary op-code is
0100111001110101 (4E75 in hex), as depicted in Table 6.3.

Anadvantage ofthe assembleris address computation. Most programs use addresses
within the program as data storage or as targets for jumps or calls. When programming in
machine language, these addresses must be calculated by hand. The assembler solves this
problem by allowing the programmer to assign a symbol to an address. The programmer
may then reference that address elsewhere by using the symbol. The assembler computes
the actual address for the programmer and fills it in automatically.

One can obtain hands-on experience with a typical assembler for a microprocessor
by downloading it from the Internet. The ide68k21 assembler/debugger is used to
assemble and debug all 68000 and 68020 assembly language programs in this book. It can
be downloaded free of charge from the web site: http://home.hetnet.nl/~pj.fondse/ide68k/.
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As mentioned in Chapter 5, each line in an assembly language program includes

four fields:

1. Label field

2. Mnemonic or op-code field

3. Operand field

4. Comment field
The assembler ignores the comment field but translates the other fields. The label field must
start with an uppercase alphabetic character.

The assembler must know where one field starts and another ends. Most assemblers
allow the programmer to use a special symbol or delimiter to indicate the beginning or end
of each field. Typical delimiters used are spaces, commas, semicolons, and colons:

*  Spaces are used between fields.

*  Commas (,) are used between addresses in an operand field.
¢ A semicolon () is used before a comment.

*  Acolon (%) or none is used after a label.
Note that the ide68k21 (68000/68020 assembler/debugger) used for developing programs
in this book does not use a colon after a label.

To handle numbers, most assemblers, including the 68000, consider all numbers
as decimal numbers unless specified otherwise. Most assemblers, including the 68000
assembler, will also allow other number systems, including hexadecimal. For example,
with the 68000 assembler, the user can define a hexadecimal number by using a $ sign
before the number. This means that $60 will imply that the number 60 is in hexadecimal.
Typical assemblers such as the MASM32 require hexadecimal numbers to start with a digit
(0 through 9). A 0 is typically used if the first digit of the hexadecimal number is a letter.
This is done to distinguish between numbers and labels. For example, typical assemblers,
such as the MASM32, will require the number F3H to be represented as OF3H; otherwise,
the assembler will generate an error. Note that the ide68k used in this book for assembling
68000 and 68020 assembly language programs does not require 0 to be used if the first digit
of a hexadecimal number is a letter.

Assemblers use pseudoinstructions or directives to make the formatting of the
edited text easier. These directives are not translated directly into machine language
instructions. Typical assembler directives are discussed in the following.

ORIGIN (ORG) The directive ORG lets the programmer place programs anywhere
in memory. Typical ORG statements are

ORG $7000

MOVE.W DO0,D1

Most assemblers assign a value of zero to the starting address of a program if the programmer
does not define this by means of an ORG.

Equate (EQU) The EQU assigns a value in its operand field to an address in its label
field. This allows the user to assign a numerical value to a symbolic name. The user can
then use the symbolic name in the program instead of its numerical value. A typical example
of EQU is START EQU $0200, which assigns the value 0200 in hexadecimal to the label
START. Typical assemblers, such as the ide68k21, require hexadecimal numbers to start
with a digit when the EQU directive is used. A 0 is used if the first digit of the hexadecimal
number is a letter; otherwise, an error will be generated by the assembler. This is done to
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distinguish between numbers and labels. For example, TEST EQU $0AS5 will assign A5
in hex to the label TEST.

Define Byte Constant (DC.B) The directive DC.B is generally used to set a memory
location to a certain byte value. For example,
START DC.B $45

will store the data value 45 hex to the address START. The DC.B directive can be used to
generate a table of data as follows:
ORG  $7000
TABLE DCB $20,$30,$40,$50
In this case, 20 hex is the first data of the memory location 7000; 30 hex, 40 hex, and 50
hex occupy the next three memory locations. Therefore, the data in memory will look like
this:

7000 20

7001 30

7002 40

7003 50
Define Word Constant (DC.W) The directive DC.W is typically used to assign a
16-bit value to two memory locations. For example,

ORG  $7000
START DC.W $4AC2

will assign C2 to location 7001 and 4A to location 7000. It is assumed that the assembler
will assign the high byte first (4A) and then the low byte (C2). The DC.W directive can be
used to generate a table of 16-bit data as follows:
ORG  $8000
POINTER DW $5000,$6000, $7000
In this case, the three 16-bit values $5000, $6000, and $7000 are assigned to memory
locations starting at the address $8000. That is, the array would look like this:

8000 50
8001 00
8002 60
8003 00
8004 70
8005 00
Define Long Word Constant (DC.L) Similar to DC.B and DC.W, the directive

DC.L is typically used to assign a 32-bit value to four memory locations. The directive
DC.W can be used to create a table in memory containing 32-bit data. As mentioned
earlier, in order to develop 68000 assembly language programs in this book, ide68k21,
containing the 68000/68020 assembler and simulator (debugger), is used. The ide68k21
software is window-based and is very userfriendly. These programs can be downloaded
from the Internet free of charge. The zip files are provided in a CD. The CD also contains
a tutorial showing step-by-step procedure for installing, assembling, and debugging a
typical 68000 assembly language program using the ide68k21. Screen shots are provided
on CD, verifying correct operation of all assembly language programs via simulations
using test data.

A typical program for adding two 16-bit numbers written in 68000 assembly
language is as follows:
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Label Mnemonic Operand Comment Field
Field Field Field
ORG $2000
MOVE #2,D0 ; Move 2 into the low 16 bits of DO
MOVE #3,D1 ; Move 3 into the low 16 bits of D1
ADD DO0,DI ; Add DO with D1,store result in D1
FINISH IMP FINISH ; Stop

Note that for a two-operand instruction such as ADD DO0,D1, Motorola uses the
first operand, DO, as the source operand and D1 as the destination operand. In contrast,
for Pentium’s MOV AX,BX instruction, Intel uses AX as the destination operand and BX
as the source operand. Also, unlike Pentium Motorola, does not have a HALT instruction.
Hence, an unconditional jump to the same address, such as FINISH JMP FINISH, is
used to halt the program.

The assembly language program described above called a source file, contains all
the instructions required to execute a program. The assembler converts the source file into
an object file containing the binary codes or machine codes that the 68000 will understand.
In typical assemblers, including the ide68k21, the source file must be stored with a file
extension called .ASM. Suppose that the programmer stores the source file as SUM.ASM.
To assemble the program, the source file SUM.ASM is presented as input to the assembler.
The assembler typically generates two files: SUM.OBJ (object file) and SUM.LST (list
file).

SUM.OBI is an object file, a binary file containing the machine code and data that
correspond to the assembly language program in the source file (SUM.ASM). The object
file, which includes additional information about relocation and external references, is not
normally ready for execution.

SUM.LST is a /ist file which shows how the assembler interprets the source file
SUM.ASM. The list file may be displayed on the screen. The source file SUM.ASM is
assembled using the ide68k21. The SUM.LST file is as follows:

2000 1 ORG $2000
2000 303C0002 2 MOVE #2,D0
2004  323C0003 3 MOVE #3,D1
2008 D240 4 ADD DO,D1
200A 4EF8200A 5 FINISH IMP FINISH

Note that the assembled code shown on the left above is in hex. The first column gives the
address values where the codes are stored. ORG $2000 generates the starting address,
002000 in hex. The machine code ($303C0002) for the first instruction, MOVE #2,D0,
is stored at the address $2000. Since this instruction takes 4 bytes, the machine code for
the next instruction, MOVE #3,D1, starts at address $2004. Note that the comment fields
in the SUM.ASM file are not translated by 68asmsim.

When a large program is being developed by a group of programmers, each
programmer may write only a portion of the whole program. The individual program
parts must be tested and assembled to ensure their proper operation. When all portions
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of the program are verified for correct operation, their object files must be combined into
a single object program using a Linker, a program that checks each object file and finds
certain characteristics, such as the size in bytes and its proper location in the single object
program. The linker also resolves any problems with regard to cross-references to labels.
A library of object files is typically used to reduce the size of the source file. The library
files may contain frequently used subroutines and/or sections of codes. Rather than writing
these codes repeatedly in the source file, a special pseudoinstruction is used to tell the
assembler that the code must be inserted by the linker at linking time. When linking is
completed, the final object file is called an executable ((EXE) file.

Finally, a program called a Loader can be used to load the .EXE file in memory for
execution.

6.5 68000 Addressing Modes

The 14 addressing modes of the 68000 shown in Table 6.4 can be divided into six basic
groups: register direct, address register indirect, absolute, program counter relative,
immediate, and implied. As noted earlier, the 68000 has three types of instructions: no
operand, single operand, and double operand. Single-operand instructions contain the
effective address (EA) in the operand field. The EA for these instructions is calculated by
the 68000 using the addressing mode used for this operand. In two-operand instructions,
one of the operands usually contains the EA and the other operand is usually a register or
memory location. The EA in these instructions is calculated by the 68000 based on the
addressing mode used for the EA.

Some two-operand instructions have the EA in both operands. This means that
the operands in these instructions use two addressing modes. Note that the 68000 address
registers do not support byte-sized operands. Therefore, when an address register is used
as a source operand, either the low-order word or the entire long word operand is used,
depending on the operation size. When an address register is used as the destination
operand, the entire register is affected, regardless of operation size. If the operation size is
a word, an address register in the destination operand is sign-extended to 32 bits after the
operation is performed. Data registers, on the other hand, support data operands of byte,
word, or long word size.

To identify the operand size of an instruction, the following notation is placed
after a 68000 mnemonic: .B for byte, .W or none (default) for word, and .L for long word:
for example,

ADDB DO,DI N [Dl]low byte <« [DO]low byte + [D 1 ]low byte

ADDW DO,DI 5 [Dl]low 16 bit <« [Do]low 16 bit + [Dl]low 16 bit

ADD.L D0,D1 5 [D1)5 00 <= [D1 5210 + [DO0;; biss
6.5.1 Register Direct Addressing

In the register direct mode, the eight data registers (D0-D7) or seven address registers
(A0-A6) contain the data operand. For example, consider MOVE.W A0, D1. The source
operand of this instruction is in addres register direct mode while the destination operand is
in data register direct mode. Note that instructions with two operands have two addressing
modes.
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TABLE 6.4 68000 Addressing Modes.
Addressing Mode Generation Assembler Syntax
®  Register direct addressing
Data register direct EA=Dn Dn
Address register direct EA=An An
®  Address register indirect addressing
Register indirect EA = (An) (An)
Postincrement register indirect EA=(An),An~An+N  (An)+
Predecrement register indirect An—An-N, EA=(An) -(An)
Register indirect with offset EA=(An) +d d(An)
Indexed register indirect with offset EA = (An) + (Ri) + d, d(An, Ri)
®  Absolute data addressing
Absolute short EA = (Next word) XXXX
Absolute long EA = (Next two words) XXXXXXXX
®  Program counter relative addressing
Relative with offset EA=(PC)+d d
Relative with index and offset EA = (PC) + (Ri) + dq d(Ri)
®  Immediate data addressing
Immediate DATA = Next word(s) #XXXX
Quick immediate Inherent data #xx

*  Implied addressing

Implied register

EA = SR, USP, SP, PC

Notes:
EA = effective address

USP = user stack pointer

An = address register dg = 8-bit signed offset (displacement)

Dn = data register d,, = 16-bit signed offset (displacement)

Ri = address or data register used as index register N = | for byte, 2 for words, and 4 for long
words

SR = status register ) = contents of

PC = program counter — = replaces

SP = active system stack pointer

6.5.2 Address Register Indirect Addressing

There are five different types of address register indirect mode. In this mode, an address
register contains the effective address. The address must be even for word and long word
operands; odd addresses are not allowed for .W and .L operands. However, for byte-
sized operands, both even and odd addresses can be used. Next, consider CLR.W(A1).
If [A1.L] = $00003000; then after execution of CLR.W(A1), the 16-bit contents of the
memory location addressed by $003000 (the low 24 bits of A0O) is cleared to zero. This is
depicted in Figure 6.4.

The postincrement address register indirect mode increments an address register
by 1 for byte, 2 for word, and 4 for long word after it is used. For example, consider
CLR.L (AQ)+. If [AO] = $00005000, after execution of CLR.L (A0)+, the 32-bit contents
of memory location addressed by $005000 (the low 24 bits of A0) is cleared to zero. This
means that the 16-bit contents of each of the memory locations $005000 and $005002 is
cleared to zero and [AO] = $00005000 + 4 = $00005004. This is shown in Figure 6.5.
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23 0

A1 $003000 15 Low address
> 003000{ 1234

003002 A098
003004) 7698
003006 34C1
003008 8769

o

High address

(a) Memory contents prior to execution of CLR.W (A1). All numbers in hex.

23 0

A1 $003000 15 Low address
> 003000 0000

003002 A098
003004{ 7698
003006} __34C1
003008 8769

o

High address

(b} Memory contents after execution of CLR.W (A1). All numbers in hex.

FIGURE 6.4 Illustration of the address register indirect mode

The postincrement mode is typically used with memory arrays stored from LOW
to HIGH memory locations. For example, to clear 100 words starting at memory location
$003000 and above, the following instruction sequence can be used:

23 0

AQ $005000 15 0| Low address
> 005000 | 1234

005002 [ _A098
005004 | 7698
005006 | 34C1
005008 | 8769

High address

(a) Memory contents prior to execution of CLR.L (A0)+. All numbers in hex.
[AO] = $00005000.

23 0
AQ$005004 15 0] Low address
005000 | 0000

005002 | 0000
——> 005004 | 7698
005006 | 34CI

005008 | 8769

High address

(b) Memory contents after execution of CLR.L (AO)+. All numbers in hex.
[AO] = $00005004.

FIGURE 6.5 Ilustration of the postincrement address register indirect mode.
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MOVE.W #100,D0 ; Load the length of data into DO
MOVEA.L  #$00003000,A0 ; Load the starting address into A0
REPEAT CLR.W (A0)+ ; Clear a location pointed to
;by A0 and increment AQ by 2
SUBQ.W #1,D0 ;Decrement DO by 1
BNE REPEAT ;Branch to REPEAT if Z =0

;otherwise, go to next instruction

Although the instructions and addressing modes used in the program above are
described in detail later, let us explain them briefly here. Note that # is used by Motorola
to indicate the immediate mode. Hence, the first instruction, MOVE.W # 100, DO loads 100
(the length of data to be cleared) into DO. MOVEA.L #$00003000,A0 loads $00003000
(initial pointer value) into A0.

CLR.W (A0)+ clears the 16-bit content of memory whose address is in the
low 24 bits of AQ. Note that CLR.W (A0)+ points automatically to the next location by
incrementing A0 by 2 (for word) after clearing a 16-bit memory location to 0. Hence, AQ
will contain $00003002 after clearing the first word. SUBQ.B #1,D0 decrements D0 by 1
and affects the zero flag. When DO is decremented to 0, the ZF will be 1. BNE REPEAT
will branch to label REPEAT if DO is not zero (ZF = 0). When 100 words are cleared to 0,
DO will be 0 (ZF = 1), and the program will stop.

The predecrement address register indirect mode, on the other hand, decrements
an address register by 1 for a byte, 2 for a word, and 4 for a long word before using a
register. For example, consider CLR.W -(A0). If [A0] = $00005004, the content of A0
is first decremented by 2: that is, [A0] = $00005002. The content of memory location
$005002 is then cleared to zero. This is depicted in Figure 6.6.

The predecrement mode is used with arrays stored from HIGH to LOW memory
locations. For example, to clear 100 words starting at memory location 004000, and below,
the following instruction sequence can be used:

MOVE.W #100,D0 ;Load length of data into D0
MOVEA.L  #3$00004002,A0 ;Load starting address plus 2 into AO
REPEAT CLR.W -(A0) ;Decrement A0 by 2 and clear memory
;location addressed by A0
SUBQ.W #1,D0 ;Decrement DO by 1
BNE REPEAT ;If Z =0, branch to REPEAT

;otherwise, go to next instruction

In this instruction sequence, CLR.W -(AQ) first decrements AQ by 2 and then
clears the location. Because the starting address is $004000, A0 must initially be loaded
with $00004002. It should be pointed out that the predecrement and postincrement modes
can be combined in a single instruction. A typical example is MOVE.W (A5)+,-(A3).

In two other address register indirect modes, offsets and indexes are included to
an indirect address pointer. The address register indirect with offset mode determines the
effective address by adding a 16-bit signed integer to the contents of an address register.
For example, consider MOVE.W 4(A5),D3, in which the source operand is in the address
register indirect with offset mode. If [AS] = $00002000 and [$002004] = $0014, then after
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23 0
Ad_$005004 15

005000 1234
005002 A098
005004 7698
005006 34C1
005008 8769

o

Low address

High address

(a) Memory contents prior to execution of CLR.W -(A0). All numbers in hex.
[AQ] = $00005004.

23 0

AQ $005002 15 Low address
005000 1234
> 005002]__ 0000

005004] 7698
005006 _34C1
005008 8769

o

High address

(b) Memory contents after execution of CLR.W-(A0). All numbers in hex.
[AO] = $00005002.

FIGURE 6.6 Hlustration of the predecrement address register indirect mode
Offset, ALPHA EA
$ 0002
NAME 0 $002000
RECORD
0 DATE OF BIRTH | $002001
>
™) > SALARY $002002
$002000
Base RegisteA0
NAMEN $003000
RECORD DATE OF BIRTH | $003001
N
SALARY $003002
FIGURE 6.7 Accessing a fixed record stored in different places in memory

using the address register indirect with offset mode.
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execution of MOVE. W 4(A5),D3, register D3.W will contain $0014.

The address register indirect with offset mode can be used to access the elements
in atable or a one-dimensional array when the size of each element is a byte. For example,
consider an array of 50 bytes stored in memory starting at an address $3400. Note that the
first element in the array is element 0 and the last element is element 49. Now, to access
an element, say element 5 in the array, address register A5 can be initialized with address
$3400, and the instruction MOVE.W 5(A5),D1 can be used to read element 5 into D1.B
from the array.

The address register indirect with offset mode is useful when one wants to access
the same record type among several occurrences in a data structure which may be stored
at different places in memory. For example, consider Figure 6.7. In the figure, personal
records of N employees are stored starting at an address $002000. Assume that each record
type is 8 bits wide. For example, the element “salary” of the employee with NAME 0 can
be loaded into an 8-bit register such as D0.B of the 68000 using the instruction MOVE.B
ALPHA(AO0),D0, where ALPHA is the 16-bit signed displacement $0002 and A0 contains
the 24-bit starting address of RECORD 0. Now, to access the salary of RECORD N , the
programmer simply changes the contents of A0 to $003000.

The indexed register indirect with offset mode determines the effective address by
adding an 8-bit signed integer and the contents of a register (data or address register) to the
contents of an address (base) register. The size of the index register can be a signed 16-bit
integer or an unsigned 32-bit value. As an example, consider MOVE. W 6(A4,D3.W),D4
in which the source is in the indexed register indirect with offset mode. Note that in this
instruction A4 is the base register and D3.W is the 16-bit index register (sign-extended to
32 bits). This register can be specified as 32 bits by using D3.L in the instruction, and 6
is the 8-bit offset that is sign-extended to 32 bits. If [A4] = $00003000, [D3.W] = $0200,
and [$003206] = $0024, this MOVE instruction will load $0024 into the low 16 bits of
register D4. The indexed register indirect with offset mode can also be used to access two-
dimensional arrays such as matrices.

6.5.3 Absolute Addressing
In the absolute addressing mode, the effective address is part of the instruction. The 68000
has two modes: absolute short addressing, in which a 16-bit address is used (the address
is sign-extended to 24 bits before use), and absolute long addressing, in which a 24-bit
address is used. For example, consider an example of the absolute short mode such as
MOVE. W $2000,D2. If prior to execution of this instruction, [$002000] = $0012 and
[D2.W] = $0010, after execution of MOVE.W $2000,D2 , register D2.W will contain
$0012, and [$002000] = $0012 (unchanged]. The absolute short mode includes an address
ADDR in the range 0<ADDR < $7FFF or $FF8000 < ADDR < $FFFFFF.

The absolute long addressing mode is used when the address size is more than
16 bits. For example, MOVE.W $240000,D5 loads the 16-bit contents of memory location
$240000 into the low 16 bits of D5. Note that a single instruction may use both short and
long absolute modes, depending on whether the source or destination address is less than,
equal to, or greater than the 16-bit address. A typical example is MOVE.W $500002,$1000.
Also, note that the absolute long mode must be used for a MOVE to or from address
$008000. For example, MOVE.W $8000,D1 will move the 16-bit contents of location
$FF8000 to the low 16 bits of D1, and MOVE.W $008000,D1 will transfer the 16-bit
contents of address $008000 to D1.
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6.5.4 Program Counter Relative Addressing

The 68000 has two program counter relative addressing modes: relative with offset and
relative with index and offset. In the relative with offset mode, the effective address is
obtained by adding the contents of the current PC with a signed 16-bit displacement
providing the range -32768 to +32767 (0 being positive). Typical branch instructions
such as BCC, BEQ, BRA, and BLE use the relative with offset mode.

Instructions using the relative with offset mode specify the operand as a signed
16-bit displacement relative to PC. An example is BCC START. This instruction means
that if carry = 0, the PC is loaded with the current program counter contents plus the 16-bit
signed value of START; otherwise, the next instruction is executed. This mode can also
be used by some other instructions. For example, consider ADD $30(PC),D5, in which
the source operand is in the relative with offset mode. Now suppose that the current PC
contents is $002000, the content of $002030 is 0005, and the low 16 bits of D5 contain
$0010. Then, after execution of this ADD instruction, D5 will contain $0015.

To illustrate the concept of relative branching, consider the following instruction
sequence along with the machine code (all numbers in hex):

001000 1 ORG $1000
001000 303C 0002 2 BACK MOVE #2,D0
001004 4EF8 1004 3 FINISH IMP FINISH
002000 4 ORG $2000
002000 3401 5 MOVE D1,D2
002002 6000 000A 6 BRA DOWN
002006 3C3C 0005 7 MOVE #5,D6
00200A 6000 EFF4 8 BRA BACK
00200E 3206 9 DOWN MOVE D6,D1
002010 4EF8 2010 10 END JMP END

Note that all instructions, addresses, and data are chosen arbitrarily. The first branch
instruction, BRA DOWN (line 6) at address $002002, has a machine code $6000000A.
The instruction BRA ( branch always) unconditionally branches to address DOWN,
which has the relative addressing with offset mode. This means that DOWN is a positive
number ( the number of steps forward relative to the current program counter) indicating
a forward branch. The machine code $6000000A means that the op-code for BRA is $60
and the relative displacement value is $000A (+10). This is a positive value indicating
a forward branch. An additional $00 is included in the machine code to make it even
multiples of a byte since all 68000 instructions must be at even addresses. Note that while
executing BRA DOWN at address $002002, the 68000 points to address $002004 since
the program counter is incremented by 2. This means that the program counter contains
$002004. The offset $000A is added to address $002004 to find the target branch address
where the program will jump unconditionally. The branch address can be calculated as
follows:

$002004 = 0000 0000 0010 0000 0000 0100
+ $000A = 0000 0000 0000 0000 0000 1010 (sign-extendedd to 24 bits)

0000 0000 0010 0000 0000 1110 = $002000E
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Hence, the instruction branches unconditionally to address $002000E. This can be
verified in the instruction sequence above.

Next, consider the second branch instruction, BRA BACK (line 8). The machine
code for this instruction at address $00200A is $6000 EFF4, where $60 is the op-code
and SEFF4 is the signed 16-bit offset value. This offset is represented as a 16-bit two’s-
complement number. An additional $00 is included in the machine code to make it even
multiples of a byte since all 68000 instructions must be at even addresses. Since $EFF4
is a negative number (-4108!%), this is a backward jump. Note that while executing BRA
BACK at address $00200A, the 68000 points to address $00200C since the program
counter is incremented by 2. This means that the program counter contains $00200C. The
offset 4108 is subtracted from $00200A to find the address value where the program will
Jjump unconditionally. The branch address is calculated as follows:

$00200C = 0000 0000 0010 0000 0000 1100
+ $EFF4 = 1111 1111 1110 1111 1111 0100 (sign-extended to 24 bits)
~1 0000 0000 0001 0000 0000 0000 = $001000
Ignore final carry

The branch address is $001000, which can be verified in the instruction sequence
above. Also, in the instruction sequence, the JMP (unconditional jump) with absolute
mode is used at lines 3 and 10. These two JMP instructions are used as halt since the 68000
does not have a HALT instruction in the user mode. Note that unconditionally jumping to
the the same address is equivalent to HALT. The machine code for FINISH JMP FINISH
(line 3) address $001004 is $4EF8 1004, where $4EF8 is the op-code, and $1004 is the
jump address. Note that jump address $1004 is included with the instruction since JMP
uses the absolute addressing mode. In contrast, BRA uses the relative with offset mode, so
the machine code contains a signed offset relative to the program counter rather than an
absolute address.

In the relative with index and offset mode, the effective address is obtained by
adding the contents of the current PC, a signed 8-bit displacement (sign-extended to 32 bits),
and the contents of an index register (address or data register). The index register can be
16 or 32 bits wide. For example, consider ADD.W 4(PC,D0.W),D2. If [D2] = $00000012,
[PC] = $002000, [DO]low 16 bits = $0010, and [$002014] = $0002, then, after this ADD,
[D2]low 16 bits = $0014. An advantage of the relative mode is that the destination
address is specified relative to the address of the instruction after the instruction. Since
68000 instructions in the relative mode do not contain an absolute address, the program
can be placed anywhere in memory and still be executed properly by the 68000. A program
that can be placed anywhere in memory and can still run correctly is called a relocatable
program. It is a good practice to write relocatable programs.

6.5.5 Immediate Data Addressing

Two immediate modes are available with the 68000: the immediate and quick immediate
modes. In the immediate mode, the operand data is constant data, which is part of the
instruction. For example, consider ADDL W #$0005,D0. If [D0.W] = $0002, then after this
ADDI instruction, [D0.W] = $0002 + $0005 = $0007. Note a # is used by Motorola to
indicate the immediate mode. The quick immediate mode (ADD or SUBTRACT) allows
one to increment or decrement a register or a memory location (.B, .W, L) by a number
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from 0 to 7. For example, ADDQ.B #1,D0 increments the low 8-bit contents of DO by
1. Note that the immediate data, 1, is inherent in the instruction. That is, data 0 to 7 is
contained in the 3 bits of the instruction. Also, note that ADDQ.B #0,Dn is the same as the
NOP instruction.

6.5.6 Implied Addressing

The instructions using the implied addressing mode do not require an operand, and registers
such as PC, SP, or SR are referenced in these instructions. For example, RTS returns to the
main program from a subroutine by placing the return address into a PC using the PC
implicitly. It should be pointed out that in the 68000 the first operand of a two-operand
instruction is the source and the second operand is the destination. Recall that in the case of
the Pentium, the first operand is the destination and the second operand is the source.

6.6 68000 Instruction Set

The 68000 instruction set contains 56 basic instructions. Table 6.5 lists some of the
instructions affecting the condition codes. Appendixes D and E provide the 68000
instruction execution times and the instruction set (alphabetical order), respectively.

TABLE 6.5 Some 68000 Instructions Affecting Conditional Codes
Instruction X N Z v C
ABCD v U v U -
ADD, ADDI, ADDQ, ADDX v v v v v
AND, ANDI - v v 0 0
ASL, ASR v v v v v
BCHG, BCLR, BSET, BTST - - v - -
CHK - v 8] U 8]
CLR - 0 1 0 0
CMP, CMPA, CMPI, CMPM - v v v v
DIVS, DIVU - v v v 0
EOR, EORI - v v 0 0
EXT - v v 0 0
LSL, LSR v v v 0 v
MOVE (ea),(ea) -- v v 0 0
MOVE TO CCR v v v v v
MOVE TO SR v v v v v
MOVEQ v v 0 0
MULS, MULU - v v 0 0
NBCD v U v U v
NEG, NEGX v v v v v
NOT - v v 0 0
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TABLE 6.5 Cont.
OR,ORI - v v 0 0
ROL, ROR - v 4 0 v
ROXL, ROXR v v v 0 v
RTE, RTR v v v v v
SBCD v U v U v
STOP v v v v v
SUB, SUBI, SUBQ, SUBX v v v v v
SWAP - v v 0 0
TAS - v v 0 0
TST - v v 0 0
v Affected, — Not Affected, U Undefined

Note: ADDA, B,,, and RTS do not affect flags.

TABLE 6.6 68000 Data Movement Instructions
Instruction Size Comment
MOVE (EA), (EA) B,W,L (EA)s are calculated by the 68000 using the

specific addressing mode used. (EA)s can be
register or memory location. Therefore, data
transfer can take place between registers, between
a register and a memory location, and between
different memory locations. Flags are affected.
For byte-size operation, address register direct is
not allowed. An is not allowed in the destination
(EA). The source (EA) can be An for word or
long word transfers.

MOVEA (EA), An W, L Content of the source is moved to the destination
address register, An. Word size source operands
are sign extended to 32 bits before the operation
is done.

MOVEQ # data, Dn L This instruction moves the 8-bit data into the
specified data register. The data is then sign-
extended to 32 bits.

MOVEM reg list, (EA)or W,L Specified registers are transferred to or from

(EA), reg list consecutive memory locations starting at the
location specified by the effective address.
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TABLE 6.6 Cont.

Instruction Size

Comment

MOVEP Dn, d (Ay) or W, L
d (Ay), Dn

Two (W) or four (L) bytes of data are transferred
between a data register and alternate bytes of
memory, starting at the location specified and
incrementing by 2. The high-order byte of data
is transferred first, and the low-order byte is
transferred last.This instruction has the address
register indirect with displacement only mode.

Exchange the contents of two registers. Rx or Ry
can be any address or data register. No flags are
affected.

Exchanges 16-bit halves of a data register.

The effective address (EA) is calculated using the
particular addressing mode used and then loaded
into the address register. (EA) specifies the actual
data to be loaded into An.

EXG Rx,Ry L
SWAP Dn W
LEA (EA), An L
PEA (EA) L

Computes an effective address and then pushes
the 32-bit address onto the stack.

LINK An, #-displacement Unsized

The current contents of the specified address
register are pushed onto the stack. After the push,
the address register is loaded from the updated
SP. Finally, the 16-bit sign-extended displacement
is added to the SP. A negative displacement is
specified to allocate stack.

UNLK An Unsized

An — SP; (SP) + — An

(EA) in LEA (EA), An can use all addressing modes except Dn, An, (An) +, — (An),

and immediate.

Destination (EA) in MOVE (EA), (EA) can use all modes except An, relative, and

immediate.

Source (EA) in MOVE (EA), (EA) can use all modes.
(EA) in MOVEA can use all modes.
Destination (EA) in MOVEM reg list, (EA) can use all modes except An, (An)+,

relative, and immediate.

Source (EA) in MOVEM (EA), reg list can use all modes except Dn, An,— (An), and

immediate.

(EA) in PEA (EA) can use all modes except, An, (An)+, — (An), and immediate.
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The 68000 instructions can be classified into eight groups as follows:
Data movement instructions

Arithmetic instructions

Logic instructions

Shift and rotate instructions

Bit manipulation instructions

Binary-coded decimal instructions

Program control instructions

System control instructions

PN B LD =

6.6.1 Data Movement Instructions

These instructions allow data transfers from register to register, register to memory,
memory to register, and memory to memory. In addition, there are special data movement
instructions such as MOVEM (move multiple registers). Typically, byte, word, or long
word data can be transferred. The 68000 data movement instructions are given in Table 6.6.
Next, we explain the data movement instructions.

MOVE Instructions The format for the basic MOVE instruction is MOVE.S
(EA),(EA), where S = B, W, or L. (EA) can be a register or memory location, depending on
the addressing mode used. Consider MOVE.B D3,D1, which uses the data register direct
mode for both the source and the destination. If [D3.B] = $05 and [D1.B] = $01, then after
execution of this MOVE instruction, [D1.B] = $05 and [D3.B] = $05 (unchanged).

There are several variations of the MOVE instruction. For example, MOVE.W
CCR,(EA) moves the contents of the low-order byte of SR (16-bit status register) to the
low-order byte of the destination operand; the upper byte of SR is considered to be zero.
Note that CCR (condition code register) is the low byte of SR, containing the flags X,
N, Z, V, and C. The source operand is a word. Similarly, MOVE.W (EA),CCR moves an
8-bit immediate number, or low-order 8-bit data, from a memory location or register into
the condition code register; the upper byte is ignored. The source operand is a word. Data
can also be transferred between (EA) and SR or USP (A7) using the following privileged
instructions:

MOVE.W (EA),SR
MOVE.W SR,(EA)
MOVEA.L A7,An
MOVEA.L An,A7

MOVEA.W or.L (EA),An can be used to load an address into an address register.
Word-size source operands are sign-extended to 32 bits. Note that (EA) is obtained by using
an addressing mode. As an example, MOVEA.W #$2000,A5 moves the 16-bit word $2000
into the low 16 bits of A5 and then sign-extends $2000 to the 32-bit number $00002000.
Note that sign extension means extending bit 15 of 2000, from bit 16 through bit 31. As
mentioned before, sign extension is required when an arithmetic operation between two
signed binary numbers of different sizes is performed. The (EA) in MOVEA can use all
addressing modes.

The MOVEQ.L #8d8, Dn instruction moves the immediate 8-bit data into the low
byte of Dn. The 8-bit data is then sign-extended to 32 bits. This is a one-word instruction.
For example, MOVEQ.L #$8F,D5 moves $SFFFFFF8F into D5.

The MOVEM instruction can be used to push or pop multiple registers to or from
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A7

STACK
Do Low Address

D1

D2
D3
D4
D5
D6
D7
AO
Al

A2
A3

A4
A5 High Address

A6

FIGURE 6.8 Stack contents after execution of MOVEM.L D0-D7/A0-A6,-
(A7)

the user or supervisor stack. For example, MOVEM.L D0-D7/A0-A6,-(A7) saves the
contents of all eight data registers and seven address registers in the user stack. Typical
68000 assemblers use the symbol ‘-’ in D0-D7 and A0-A6 to indicate that registers DO
through D7 and registers AO through A6 are included in the operation. Also, the MOVEM.L
D0-D7/A0-A6,-(A7) instruction stores address registers in the order A6-AO0 first, followed
by data registers in the order D7-D0, regardless of the order in the register list. This is
depicted in Figure 6.8.

MOVEM.L(A7)+,D0-D7/A0-A6 restores the contents of the registers in the order
D0-D7, A0—A6, regardless of the order in the register list. Note that MOVEM.L(A7)+,D0-
D7/A0-A6 will pop the register contents from the stack of Figure 6.8 in the correct order.

Next, consider the instruction MOVEM.L D5/D0/AG/A2/D7,-(A7). Note that the
order is chosen arbitrarily. Typical 68000 assemblers use the symbol / to separate individual
registers in the MOVEM.L D5/D0/A0/A2/D7,-(A7) instruction. The stack contents after
execution of MOVEM.L D5/D0/A0/A2/D7,-(A7) are shown in Figure 6.9. Since A2 is
the address register with the highest number in the list, A2 will be pushed first, then A0,
followed by D7, D5, and D0. Note that no matter how the registers are ordered in the
instruction, the order of pushing onto the stack is fixed (A6-A0 followed by D7-D0). The

A7 STACK | Low Address

L > DO
D5
D7
A0
A2

High Address

FIGURE 6.9 Stack contents after execution of MOVEM.L D5/D0/A0/A2/D7,-(A7)
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order is also fixed for popping (D0-D7 followed by A0-A6). For example, MOVEM.L
(A7)+,D5/D0/A0/A2/D7 will pop the register contents of the stack of Figure 6.9 in the
correct order.

The MOVEM instruction can also be used to save a set of registers in memory. In
addition to the preceding predecrement and postincrement modes for the effective address,
the MOVEM instruction allows all the control modes. If the effective address is in one
of the control modes, such as absolute short, the registers are transferred starting at the
specified address and up through higher addresses. The order of transfer is from DO to
D7 and then from A0 to A6. For example, MOVEM.W A5/D1/D3/A1-A3,$2000 transfers
the low 16-bit contents of D1, D3, A1, A2, A3, and A5 to locations $2000, $2002, $2004,
$2006, $2008, and $200A, respectively.

To transfer data between the 68000 data registers and 6800 (8-bit) peripherals, the
MOVERP instruction can be used. This instruction transfers 2 or 4 bytes of data between
a data register and alternate byte locations in memory, starting at the location specified
and incrementing by 2. Register indirect with displacement is the only addressing mode
used with this instruction. If the address is even, all transfers are made on the high-order
half of the data bus; if the address is odd, all transfers are made on the low-order half of
the data bus. The high-order byte to/from the register is transferred first, and the low-
order byte is transferred last. For example, consider MOVEP.L $0020(A2),D1. If [A2] =
$00002000, [002020,,] = 02, [002022,,] = 05, [002024,,] = 01, and [002026,,] = 04, then
after execution of this MOVEP instruction, D1 will contain 02050104,.

EXG and SWAP Instructions The EXG.L Rx, Ry instruction exchanges the 32-bit
contents of Rx with that of Ry. The exchange is between two data registers, two address
registers, or an address register and a data register. The EXG instruction exchanges only
32-bit long words. The data size (L) does not have to be specified after the EXG instruction
because this instruction has only one data size (L) and it is assumed that the default is this
single data size. No flags are affected. The SWAP.W D instruction, on the other hand,
exchanges the low 16 bits of Dn with the high 16 bits of Dn. All condition codes are
affected.

LEA and PEA Instructions The LEA.L (EA),An instruction moves an effective
address (EA) into the address register specified. The (EA) can be calculated based on the
addressing mode of the source. For example, LEA $00256022,A5 moves $00256022 into
AS5. This instruction is equivalent to MOVEA.L #$00256022,A5. Note that $00256022 is
contained in PC. It should be pointed out that the LEA instruction is very useful when
address calculation is desired during program execution. The (EA) in LEA specifies the
actual data to be loaded into An, whereas the (EA) in MOVEA specifies the address of
actual data. For example, consider LEA $04(AS5, D2.W),A3. If [A5] = 00002000, and
[D2] = 0028, then the LEA instruction moves 0000202C16 into A3. On the other hand,
MOVEA $04(AS5, D2.W), A3 moves the contents of 00202C,, into A3. Therefore, it is
obvious that if address calculation is required, the instruction LEA is very useful.

The instruction PEA.L (EA) computes an effective address and then pushes it
onto the supervisor stack (S = 1) or User stack (S = 0). This instruction can be used when
the 16-bit address in absolute short mode is required to be pushed onto the stack. For
example, consider PEA.L $9000 in the user mode. If [A7] = $00003006, then $9000
is sign-extended to 32 bits ($FFFF9000). The low-order 16 bits ($9000) are pushed at
$003004, and the high-order 16 bits ($FFFF) are pushed at $003002.
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LINK and UNLK Instructions Before calling a subroutine, the main program quite
often transfers the values of certain parameters to the subroutine. It is convenient to save
these variables onto the stack before calling the subroutine. These variables can then be
read from the stack and used by the subroutine for computations. The 68000 LINK and
UNLK instructions are used for this purpose. In addition, the 68000 LINK instruction
allows one to reserve temporary storage for the local variables of a subroutine. This storage
can be accessed as needed by the subroutine and can be released using UNLK before
returning to the main program. The LINK instruction is generally used at the beginning of
a subroutine to allocate stack space for storing local variables and parameters for nested
subroutine calls. The UNLK instruction is commonly used at the end of a subroutine before
the RETURN instruction to release the local area and restore the stack pointer contents so
that it points to the return address. The LINK An,# -displacement instruction causes the
current contents of the specified An to be pushed onto the system stack (A7 or A7’,
depending on whether user or supervisor mode). The updated SP contents are then loaded
into An. Finally, a sign-extended two’s- complement displacement value is added to the SP.
No flags are affected. For example, consider LINK A5.#-$100.

If [A5] = $00002100 and [A7] = $00004104, then after execution of the LINK
instruction, the situation shown in Figure 6.10 occurs. This means that after the LINK
instruction, [A5] = $00002100 is pushed onto the stack and the [updated A7] = $004100 is
loaded into AS5. A7 is then loaded with $004000, and therefore $100 locations are allocated
to the subroutine at the beginning of which this particular LINK instruction can be used.
Note that A5 cannot be used in the subroutine.

The UNLK instruction at the end of this subroutine before the RETURN
instruction releases the 100,, locations and restores the contents of A5 and USP to those
prior to using the LINK instruction. For example, UNLK A5 will load [A5] = $00004100
into USP and the two stack words $00002100 into A5. USP is then incremented by 4 to
contain $00004104. This restores the contents of A5 and USP as they were prior to using
the LINK instruction.

In this example, after execution of the LINK, addresses $0003FF and below can
be used as the system stack. One hundred (hex) locations starting at $004000 and above
can be reserved for storing the local variables of the subroutine. These variables can then
be accessed with an address register such as AS as a base pointer using the address register
indirect with displacement mode. MOVE.W d(A5),D1 for read and MOVE.W D1,d(AS)
for write are typical examples.

The use of LINK and UNLK can be illustrated by the following subroutine
structure:

Stack

0000 004100

{ 2100 004102
00002100
A5 00002100 004104
000041044
USP 00004104
00 004100-100

FIGURE 6.10 Execution of the LINK instruction.
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SUBR LINK A2, #-50 ; Allocate 50 bytes
UNLK A2 ; Restore the original values
RTS ; Return to the subroutine

The LINK instruction is used in this case to allocate 50 bytes for local variables. At the
end of the subroutine, UNLK A2 is used before RTS to restore the original values of the
registers and the stack. RTS returns program execution in the main program.

EXAMPLE 6.1 Determine the effect of each of the following 68000 instructions:
e CLRDO

+ MOVE.LD1,D0

e CLR.L(AO)+

*  MOVE —(A0),D0

*  MOVE 20(A0),D0

*  MOVEQ.L #$D7,D0

*  MOVE 21(A0, A1.L),DO

Assume the following initial configuration before each instruction is executed; also assume
that all numbers are in hex:

[DO] = 22224444, [D1]= 155556666

[AO] = 00002224, [A1]=00003333

[002220] = 8888, [002222]=7777

[002224] = 6666, [002226]= 5555

[002238] = AAAA, [00556C] = FFFF

TABLE 6.7 Results for Example 6.1
Instruction Effective Address Net Effect (Hex)
CLR DO Destination EA = D0 D0 = 22220000
MOVE.L D1,D0 Destination EA = D0 D0 = 55556666
CLR.L (A0)+ Destination EA = [A0] [002224] = 0000
{002226] = 0000
A0 =00002228
MOVE —(A0),D0 Source EA =[A0] -2 A0 =00002222
Destination EA = D0 D0 =22227777
MOVE 20(A0),D0 Source EA = [A0] + 20,, D0 =2222AAAA

(or 14,5) = 002238
Destination EA =D0
MOVEQ.L #$D7,D0 Source data = D7, DO = FFFFFFD7
Destination EA = D0
MOVE 21(A0,A1.L),DO Source EA=[A0] + [Al] +21,, DO = 2222FFFF
=00556C
Destination EA =D0
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Solution See Table 6.7
EXAMPLE 6.2 Find the affected register(s) and/or memory locations for the
following 68000 instruction sequence:
LEAL $00001000,A0
MOVEA .W #$7002,A1
MOVE.L #$12345678,D5
MOVE D5,(A0)
SWAP.W D5
MOVE D5,-(AD)
MOVE (A0)+,2(A1)
Solution

After execution of the instruction sequence above, (A0) = $00001002, (Al) =
$00007002, (D5) = $56781234, ($007002) = $5678, and ($001000) = $5678.

Note that, LEA .. $00001000,A0 moves $00001000 directly into AO. MOVEA
W #3$7002,A1 moves immediate 16-bit data into the low 16 bits of D5 and sign-extends
to $00007002 in Al.

MOVE.L #8$12345678,D5 moves $12345678 into D5. MOVE D5,(A0) moves
$5678 into 16-bit memory location $001000. SWAP.W D5 exchanges the low 16-bit
($5678) of D5 with the high 16-bit of D5 ($1234) so that (D5) = $56781234.

MOVE DS5,-(Al) decrements Al by 2 so that Al contains $007000, and then
moves low 16 bit contents ($1234) into memory location $007000. MOVE (A0)+,2(A1)
moves the 16-bit contents of memory addressed by A0 into the memory addressed by
Al+2. Hence, $5678 is moved into memory location $007002; A0 is incremented by 2 to
contain $00001002.

EXAMPLE 6.3 Write a 68000 assembly program at address $002000 to clear 100
consecutive bytes to zero from LOW to HIGH addresses starting at location $003000.

Solution
ORG $2000 ; #1 STARTING ADDRESS
MOVEA .L #$3000,A0 ; #2 LOAD A0 WITH $3000
MOVE.W #99,D0 ; #3 MOVE 99 INTO DO
LOOP CLR.B (A0)+ ; #4 CLEAR[$3000]+
DBF.W DO,LOOP ; #5 DECREMENT AND
; BRANCH
FINISH IMP FINISH ; #6 HALT

In order to explain the above program , line numbers are included with
the comments. The instruction, DBF (Decrement and branch if false) is covered later in
this chapter. Note that DBE.W Dn,LOOP decrements low 16 bits of the data register
Dn by 1, and checks for Dn = -1. If Dn # -1, then it branches to LOOP. If Dn = -1, then
the next instruction is executed. That is, the loop is executed [Dn-1] times where Dn.W
contains the loop count. Also, because DBF is a word instruction and considers D0’s low
16-bit word as the loop count, one should be careful about initializing DO using MOVEQ.L
#d8,Dn since this instruction sign extends low byte of Dn to 32 bits.
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In the above program, ORG $2000 at line #1 provides the starting address of the
program. MOVEA.L #$3000,A0 instruction at line #2 loads A0 with $0000 3000 so that
low 24 bits will be used as the starting address of the first byte in memory to be cleared to 0.
MOVE.W #99,D0 at line #3 loads the loop count 99 into low 16 bits of DO. CLR.B (A0)+
at line #4 clears the byte pointed to by AO (that is contents of $003000) to 0, and then
increments A0 by 1 to point to $003001 (next location to be cleared). DBE.W D0,LOOP
at line #5 decrements DO by 1, checks if DO = -1. Since DO = -1, branches to label LOOP.
The LOOP is performed 100 times until DO = -1,

Note that the 68000 has no HALT instruction.. Therefore, the unconditional jump to the
same location such as FINISH JMP FINISH at line #6 is normally used at the end of the
program to accomplish HALT.

EXAMPLE 6.4 Write a 68000 assembly language program at address $4000 to
move a block of 16-bit data of length 100,, from the source block starting at location
002000, to the destination block starting at location 003000, from low to high addresses.

Solution
ORG $4000

MOVEA.W #$2000,A4 ;LOAD A4 WITH SOURCE ADDR
MOVEA.W #$3000,A5 ;LOAD AS WITH DEST ADDR

MOVE.W #99.D0 ;LOAD DO WITH COUNT -1=99
START MOVE.W (A4)+,(AS5y+ ;MOVE SOURCE DATA TO DEST
DBF.W DO,START ;BRANCH IF DO IS NOT EQUAL TO -1
STAY JMP STAY ;HALT
6.6.2 Arithmetic Instructions

Arithmetic instructions allow:
* 8-, 16-, or 32-bit additions and subtractions

e  16-bit by 16-bit multiplication (both signed and unsigned) and 32-bit by 16-bit division
(both signed and unsigned)

*  Compare, clear, and negate instructions
* Extended arithmetic instruction for performing multiprecision arithmetic
* A Test (TST) instruction for comparing the operand with zero

¢ A Test and set (TAS) instruction, which can be used for synchronization in a
multiprocessor system

Typical microprocessors utilize common hardware to perform addition and
subtraction operations for both unsigned and signed numbers. The instruction set of
microprocessors typically include the same ADD and SUBTRACT instructions for both
unsigned and signed numbers. The interpretations of unsigned and signed ADD and
SUBTRACT operations are performed by the programmer. More detailed coverage is
provided in Chapter 5.

Unsigned and signed multiplication and division operations can be
performed using various algorithms. Typical 32-bit microprocessors such as the Pentium
contain separate instructions for performing these multiplication and division operations.
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These topics, along with some multiplication and division algorithms, are covered in

chapter 5.

The 68000 arithmetic instructions are summarized in Table 6.8. Let us now explain

the arithmetic instructions.

TABLE 6.8

68000 Arithmetic Instructions

Instruction

Size

Operation

Addition and Subtraction Instructions

ADD (EA), (EA)
ADDI #Data, (EA)
ADDQ #d,, (EA)

ADDA (EA), An
SUB (EA), (EA)
SUBI # data, (EA)
SUBQ #d,, (EA)

SUBA (EA), An

B,W,L
B,W,L
B,W,L

W, L

B,W,L
B,W,L
B,W,L

W, L

[EA] + [EA] — [EA]
[EA] + data — [EA]

[EA] +d; — [EA]
dg can be an integer from 0 to 7

An + [EA] — An
[EA] - [EA] — [EA]
[EA] — data — [EA]

[EA]-d; — [EA]
d; can be an integer from 0 to 7

An - [EA] — [An]

Multiplication and Division Instructions

MULS (EA), Dn

MULU (EA), Dn

DIVS (EA), Dn

DIVU (EA), Dn

W

w

[Dn]; * [EA];s — [Dn];,

(signed multiplication)

[Dn,e I* [EA]is — [Dn]s,

(unsigned multiplication)

[Dn}y, / [EA], — [Dn]y,

(signed division, high word of Dn contains remainder
and low word of Dn contains the quotient)

(Dn]y, / [EA]is — [Dn];,

(unsigned division, remainder is in high word of Dn
and quotient is in low word of Dn)

Compare, Clear, and Negate Instructions

CMP (EA), Dn B,W,L Dn-[EA]— No result. Affects flags.
CMPA (EA), An W, L An - [EA] — No result. Affects flags.
CMPI # data, (EA) B,W,L [EA]-data — No result. Affects flags.
CMPM (Ay) +, (Ax)+ B,W,L (Ax)*+ - (Ay)t — Noresult. Affects flags.
CLR (EA) BWL 0— [EA]
NEG (EA) B,W,L  0- [EA] —[EA]

Extended Arithmetic Instructions
ADDX Dy,Dx B,W,L Dx+Dy+X—Dx
ADDX - (Ay), - (Ax) B,W,L -(AX)+-(Ay)+X — (Ax)



136 Microprocessor Theory and Applications with 68000/68020 and Pentium
TABLE 6.8 Cont.

EXT Dn W, L If size is W, then sign extend low byte of Dn to 16
bits. If size is L, then sign extend low 16 bits of Dn
to 32 bits.

NEGX (EA) B,W,L 0-[EA]-X — [EA]

SUBX Dy,Dx B,W,L Dx-Dy-X—Dx

SUBX — (Ay), — (AX) B,W,L —(Ax)--(Ay)-X — (Ax)

Test Instruction
TST (EA) B,W,L [EA]-0 O Flags are affected.
Test and Set Instruction
TAS (EA) B If[EA]=0,thensetZ=1;else Z=0,N=1

and then always set bit 7 of [EA] to 1.

NOTE: If source (EA) in the ADDA or SUBA instruction is an address register, the

operand length is WORD or LONG WORD.

(EA) in any instruction is calculated using the addressing mode used.

All instructions except ADDA and SUBA affect condition codes.
Source (EA) inthe above ADD,ADDA, SUB, and SUBA can use all modes. Destination
(EA) in the above ADD and SUB instructions can use all modes except An. relative,
and immediate.

Destination (EA) in ADDI and SUBI can use all modes except An. relative, and
immediate.

Destination (EA) in ADDQ and SUBQ can use all modes except relative and
immediate.

(EA) in all multiplication and division instructions can use all modes except An.
Source (EA) in CMP and CMPA instructions can use all modes.

Destination (EA) in CMPI can use all modes except An, relative, and immediate.
(EA) in CLR and NEG can use all modes except An, relative, and immediate.
(EA) in NEGX can use all modes except An, relative and immediate.

(EA) in TST can use all modes except An, relative, and immediate.

(EA) in TAS can use all modes except An, relative, and immediate.

Addition and Subtraction Instructions The 68000 addition and subtraction
instructions are illustrated by means of numerical examples in the following.

Consider ADD.W $122000,D0. If [$122000] = $0012 and [DO0] = $0002, then after
execution of this ADD, the low 16 bits of DO.W will contain $0014. C = 0 (no Carry),
X =0 (same as C), V=0 (no overflow since the previous carry and the final carry are
the same), N = 0 (most significant bit of the result is 0), Z = 0 (nonzero result).

The ADDI instruction can be used to add immediate data to a register or memory
location. The immediate data follows the instruction word. For example, consider
ADDILW #8,$100200. If [$100200] = $0002, then after execution of this ADDI,
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memory location $100200 will contain $000A. All condition codes are affected.

ADDQ adds a number from 0 to 7 to a register or a memory location in the destination
operand. This instruction occupies 16 bits, and the immediate data 0 to 7 is specified
by 3 bits in the instruction word. For example, consider ADDQ.B #2, D1. If [D1],,y
= $20, then after execution of this ADDQ, the low byte of register D1 will contain
$22.

ADDA.L #4,A2 adds 4 to 32 bits of A2. For example, if prior to execution of this
instruction, [A2] = $0A20 4000, then after execution of ADDA.L #4,A2, register
A2.L will contain $0A20 4004. No condition codes are affected.

All subtraction instructions subtract the source from the destination. For example,
consider SUB.B $122200,D2. If [D2.L]= $23A50707 and [$122200] = $03, then, after
execution of this SUB.B $122200,D2, register D2.L will contain $23A50704. The
condition codes are affected as follows:
Using two’s-complement subtraction, 1111 111 < Intermediate Carries
[D2.B] = 0000 0111
Add twos complement of $03 = 1111 1101
final carry —1 0000 0100
The final carry is one’s-complemented after subtraction to reflect the correct borrow.
Hence, C = 0.
Also, X = 0 (same as C), Z = 0 (nonzero Result), N = 0 (most significant bit of the
result is zero), and V=Cf o Cp=1 1 =0.
The SUBI instruction can be used to subtract immediate data from a register or
memory location. For example, consider SUBIL.B #9,D1. If prior to execution of this
instruction, [D1.B] = $08, then after execution of SUBLB #9,D1, the register will
contain $FF or -1,

SUBQ subtracts a number from 0 to 7 from register or a memory location in the
destination operand. This instruction occupies 16 bits, and the immediate data 0 to 7
is specified by 3 bits in the instruction word. For example, consider SUBQ.B #2,D1.
If [D1],4 byee = $05, then after execution of this SUBQ, the low byte of register D1 will
contain $03.

SUBA.L #4,A2 subtracts 4 to 32 bits of A2. No condition codes are affected. For
example, if prior to execution of this instruction, [A2] = $0A204008, then after
execution of SUBA.L #4,A2, register A2.L will contain $0A204004. No condition
codes are affected.

Multiplication and Division Instructions The 68000 instruction set includes both
signed and unsigned multiplication of integer numbers. These instructions are explained
using numerical examples in the following.

MULS (EA),Dn multiplies two 16-bit signed numbers and provides a 32-bit result. For
example, consider MULS #-2,D5. If [D5.W] = $0003, then after this MULS, D5 will
contain the 32-bit result SFFFFFFFA, which is -6 in decimal.

MULU (EA),Dn performs unsigned multiplication. Consider MULU (A0),D1. If [A0]
= $00102000, {$102000] = $0300, and [D1.W] = $0200, then, after this MULU, D1
will contain the 32-bit result $00060000.
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Consider DIVS #2, D1. If [D1] = -5,, = SFFFFFFFB, then, after this DIVS, register
D1 will contain

Dl |  FFFF FFFE
16-bit 16-bit
remainder =  quotient =
-1 10 _210

Note that in the 68000, after DIVS, the sign of the remainder is always the same as
the dividend unless the remainder is equal to zero. Therefore, in this example, because
the dividend is negative (-5,y), the remainder is negative (-1,,). Also, division by zero
causes an internal interrupt automatically. A service routine can be written by the
user to indicate an error. N = 1 if the quotient is negative, and V = 1 if there is an
overflow.

DIVU is the same as the DIVS instruction except that the division is unsigned. For
example, consider DIVU #4,D5. If [D5] = 14,, = $0000000E, then after this DIVU,
register D5 will contain

D5 | 0002 | 0003
16-bit 16-bit
remainder quotient

As with the DIVS instruction, division by zero using DIVU causes a trap (internal
interrupt).

Compare, Clear, and Negate Instructions The 68000 compare, clear, and negate
instructions are illustrated by means of numerical examples in the following.

The compare (CMP) instruction subtracts the source from the destination, providing
no result of subtraction; all condition codes are affected based on the result. Note
that the SUBTRACT instruction provides the result and also affects the condition
codes. Consider CMP.B D3,D0. If prior to execution of the instruction, [D0.B] =
$40 and [D3.B] = $30, then after execution of CMP.B D3,D0, the condition codes
are as follows: C=0,X=0,Z=0,N =0, and V = 0. Suppose that it is desired to find
the number of matches for an 8-bit number in a 68000 register such as D5.B in a data
array (stored from low to high memory) of 50 bytes in memory pointed to by A0Q. The
following instruction sequence with CMP.B (A0)+,D5 rather than SUB.B (A0)+,DS
can be used :

CLR.B DO ; Clear D0.B to 0, D0.B to hold the number of
; matches

MOVE.B #50,D1 ; Initialize the array count

START CMPB (A0)+,D5 ; Compare the number to be matched in D5
BNE.B DECR ; with a data byte in the array. If there is
ADDQ.B #1,D0 ; a match, Z=1 and increment DO.

DECR SUBQ.B #1,D1 ; Decrement D1 by 1 and go back to START if
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BNE.B START ; Z=0.IfZ =1, go to the next instruction
; D0.B contains the number of matches

In the above, if SUB.B (A0)+,D5 were used instead of CMP.B (A0)+,D5, the number
to be matched needed to be loaded after each subtraction because the contents of
DS5.B would have been lost after each SUB. Since we are only interested in the
match rather than the result, CMP.B (A0)+,D5 instead of SUB.B (A0)+,D5 should
be used in the above.

* The 68000 instruction set includes a memory-to-memory COMPARE instruction.
For example, CMPM.W (AQ)+,(Al)+. If [A0] = $00100000, [A1] = $00200000,
[$100000] = $0005, and [$200000] = $0006, then after this CMPM instruction, N =0,
C=0,X=0,V=0,Z=0,[A0] =$00100002, and [A1] = $00200002.

* CLR.L D5 clears all 32 bits of D5 to zero.

*  Consider NEG.W (A0). If [A0] = $00200000 and [$200000] = 5,, then after this NEG
instruction, the low 16 bits of location $200000 will contain $FFFB.

Extended Arithmetic Instructions The 68000 extended arithmetic instructions are
illustrated by means of numerical examples in the following.

* ADDX and SUBX instructions can be used in performing multiprecision arithmetic
because there are no ADDC (add with carry) or SUBC (subtract with borrow)
instructions. For example, to perform a 64-bit addition, the following two instructions
can be used:

ADD.L D0,D5 Add the low 32 bits of data and store in D5

ADDX.LD1,D6  Add the high 32 bits of data along with any carry from
the low 32-bit addition and store the result in D6

In the example above, D1DO0 contains one 64-bit number and D6D5 contains the
other 64-bit number. The 64-bit result is stored in D6D5. Note that the ADDX and
SUBX instructions contain two operands. The addressing modes of these operands
can be either both data register direct mode or both address register indirect with
predecrement mode.

* SUBX.B D1,D2 subtracts the source byte (D1.B) plus the X-bit (the same as the carry
flag) from the destination byte (D2.B); the result is stored in the destination byte, and
no other bytes of the destination register are affected. All condition codes are affected.
For example, if [D2.L] = $2AB10003, [D1.L] = $A2345602, and X = C = 1, then after
SUBX.B D1,D2, the contents of D2.B =03 - 02 - 1 = $00. [D2.L] = $2AB10000.

1111 111 « intermediate carries
using two’s-complement subtraction, [D2.B] = 0000 0011 (+3)
Add twos complement of 3 (D1.B plus Carry) =+ 1111 1101 (-3)

final carry — 1 0000 0000
The final carry is one’s-complemented after subtraction to reflect the correct borrow.
Hence, C= 0.
Also, X =0 (same as C), Z = 1 (zero result), N = 0 (most significant bit of the result is

zero),and V=C; @ C,=1®@ 1=0.
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* EXTW Dn copies bit 7 of Dn to bits 8 through 15 of Dn. The upper 16 bits of
Dn are not affected. Consider EXT.W D2. If [D2.L] = $421700F3, then after the
EXT.W, [D2.L] = $4217FFF3. Note that sign extension is very useful when one wants
to perform an arithmetic operation on two signed numbers of different lengths. For
example. the 16-bit signed number $0020 can be added with the 8-bit signed number
$E1 by sign-extending $E1 as follows:

0020,,=0000000000100000(32,,)

Sign  El, 311111111 11100001(-3110)

extension 19900 0000 0000 0001 (+1,,)
Ignore 0 0 0 1

carry

Another example of sign extension is that to multiply a signed 8-bit number by
a signed 16-bit number, one must first sign-extend the signed 8-bit into a signed 16-bit
number, and then the instruction MULS.W can be used for 16 x 16 signed multiplication.
For unsigned multiplication of a 16-bit number by an 8-bit number, the 8-bit number must
be zero-extended to 16 bits using a logical instruction such as AND before using the MUL
instruction. For example, suppose that MULS.W DO0,D1 will be used to multiply the
low 8-bit contents of DO by the low 16-bit contents of D1 and that prior to execution of
this instruction, [D0.B} = $FF= -1 and [D1.W] = $0002 = +2. To perform this signed
multiplication, the 8-bit contents of D0.B must be sign-extended to 16 bits using the EXT.W
DO instruction so that [DO.W] = $FFFF = -1. The multiplication instruction MULS.W
DO0,DI1 can then be executed so that the 32-bit contents of D1 will contain the correct
result, FFFFFFFEH (-2). Now, to perform unsigned multiplication, MUL.W D0,D1, with
the same data, the low 8-bit contents of DO must be zero-extended so that [DO.W] =
$00FF (+255). This can be accomplished by using the logic AND instruction, which will
be covered in the next section. Note that after execution of AND.W #$00FF,D0, the low 16
bits of register DO will contain $00FF. The instruction MUL DO0,D1 can then be executed
so that 32 bits of D1 will contain the correct 32-bit product, 000001FEH (+510), since
(D1.W) = 0002H.
¢ EXT.L Dn copies bit 15 of Dn to bits 16 through 31 of Dn. For example, if [D0.L] =
$08A0A205, then after execution of EXT.L DO, the 32-bit contents of register D0 =
$FFFF A205 since bit 15 (sign bit) of DO is 1.

* The NEGX (EA) instruction subtracts destination operand (EA) and the X-bit from
(0. The result is stored in the destination operand. All condition codes are affected. For
example, consider NEG .L D2. If, prior to execution of this instruction, [D2.L] =2,
X = 0, then after execution of NEGX.L DI, the contents of the destination operand,
D2=0-2-0=-2=3% FFFF FFFE.

Test Instruction The 68000 test instruction is illustrated by means of numerical

examples in the following.

*  Consider TST.W (A0). If [A0] = 00300000, and [300000,,] = FFFF,,, then after
TST.W (AO0), the operation FFFF,, — 0000, is performed internally by the 68000, Z is
cleared to 0, and N is set to 1. The V and C flags are always cleared to 0.

Test and Set Instruction The 68000 test and set instruction is illustrated by means
of numerical examples in the following.
* TAS.B (EA) is generally used to synchronize two processors in multiprocessor data
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Processor L » RAM Processor
1 2

FIGURE 6.11 Two 68000s interfaced via shared RAM using the TAS instruction.

transfers. For example, consider two 68000-based microcomputers with shared RAM
as shown in Figure 6.11.

Suppose that it is desired to transfer the low byte of DO from processor 1 to the low
byte of D2 in processor 2. A memory location, TRDATA, can be used to accomplish this.
First, processor | can execute the TAS instruction to test the byte in the shared RAM with
the address TEST for zero value. If it is, processor 1 can be programmed to move the low
byte of DO into location TRDATA in the shared RAM. Processor 2 can then execute an
instruction sequence to move the contents of TRDATA from the shared RAM into the low
byte of D2. The following instruction sequence will accomplish this:

Processor 1 Routine Processor 2 Routine

Proc 1 TAS.B TEST Proc 2 TAS.B TEST
BNE.B Proc 1 BNE.B Proc 2
MOVE.B DO, TRDATA MOVE.B TRDATA,D2
CLR.B TEST CLR.B TEST

Note that in these instruction sequences, TAS.B TEST checks the byte addressed
by TEST for zero. If [TEST] = 0, then Z is set to 1; otherwise, Z = 0 and N = 1. After
this, bit 7 of [TEST] is set to 1. Note that a zero value of [TEST] indicates that the shared
RAM is free for use, and the Z bit indicates this after TAS is executed. In each instruction
sequence, after a data transfer using the MOVE instruction, [TEST] is cleared to zero so
that the shared RAM is free for use by the other processor. To avoid testing the TEST byte
simultaneously by two processors, TAS is executed in a read-modify-write cycle. This
means that once the operand is addressed by the 68000 executing TAS, the system bus is
not available to the other 68000 until TAS is completed.

Arrays The 68000 instructions and appropriate addressing modes to access one-

and two-dimensional arrays are provided in the following.

*  One-dimensional arrays (tables) can be accessed using the 68000 MOVE instruction
with an appropriate addressing mode. For example, consider a table of five elements
containing 5 bytes stored starting at the address $2000. The table is stored in memory
such that $2000 points to element 0, $2001 points to element 1, and $2004 points
to element 4. This is depicted in Figure 6.12(a).

An address register such as A0.L can be initialized with an element number to
read the element from the table into an 8-bit data register such as D1.B. For example,
if [AO.L] = 2, MOVE.B $2000(A0),D1 will load element 2 from address $2002 into
D1.B. Note that if [AQ.L] = 4, then MOVE.B $2000 (A0),D1 will transfer element 4 into
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7 Memory O Low Address
$2000[ element 0
$2001| element1
$2002| element 2

(a) 8-bit elements stored in memory $2003 element 3
$2004| element 4

High Address

31 Memory 0| Low Address
$4000 element 0
(b) 32-bit elements stored in memory $4004 | element 1
$4008 element 2
$400C | element 3
$4010 element 4

High Address

FIGURE 6.12 One-dimensional array stored in memory.

D1.B.

Suppose that an array of five elements containing 32-bit data words is stored
starting at address $4000. This means that 4 bytes are needed to store each element.
That is, $4000 through $4003 will contain element 0, while address $4010 through address
4013 will store element 4. Hence, address $4000 will contain element 0, address 4004 will
contain element 1, address 4008 will contain element 2, and so on. This is shown in Figure
6.12 (b). Now, to move element 2 into D0.L, the following instruction sequence can be
used:

LEA.L $00004000,A0 ; Load the starting offset of the array into AO.L
MOVE.L #2, D1 ; Move element 2 into D1.L
LSL.L #2,D1 ;Unsigned-multiply by 4 since a long word

MOVE.L  (A0,D1.L),DO ; Load 32-bit value of element 2 into DO.L

The instruction, LSL.W #2,D1 in the above is covered in Section 6.6.3. LSL.W
#2,D1 logically shifts the 32-bit contents of DI twice to the left. This is the same as
unsigned multiplication of a 32-bit number in D1 by 22 (or 4). This could have been
accomplished using the MUL (unsigned multiplication) instruction. Since the execution
time for MUL is much longer than for LSL, the instruction LSL is used for unsigned
multiplication. In the instruction sequence above, the starting address ($4000) of the table
1s first loaded into a 32-bit address register such as AO. Element 2 is then transferred to an
index register such as D1.L.. Note that data register D1.L is used as an index register in the
MOVE.L (A0,D1.L),D0 instruction. Register D1 is multiplied (unsigned multiplication
since addresses are always positive) by 4 using the LSL.L instruction since each element
is 4 bytes (32 bits). The value of element 2 is then loaded into a 32-bit register such as
DO.L using MOVE (A0,D1.L),DO.
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*  Next, consider two-dimensional arrays or matrices. For example, assume a 2x3 matrix
(two rows and three columns) as follows:

column 0 column 1 column 2

a[0,0] a[0,1] a[0,2]

a[1,0] a1,1] a[1,2]
Since memory is one-dimensional, this matrix is stored in memory using column-
major ordering.or row-major ordering .In column-major ordering, the elements are
stored column by column, starting with the first column:

a[0,0]
a[1,0]
af0,1]
a[l1,1]
a[0,2]
a[1,2}

In row-major ordering, the elements are stored in memory row by row, starting with
the first row:

a[0,0] --column 0 (start of array)
a[0,1]-- column 1
a[0,2]-- column 2
a[1,0]-- column 0
a[1,1]-- column 1
a[1,2}-- column 2

Since row-major ordering and subscripts start with 0 in the C language, the same
convention will be used here. Assume that each element in the matrix is 16-bit wide. Hence,
if the matrix is stored starting at address $2000, the matrix can be stored as row-major
ordering:

$2000 a[0,0]
$2002 a[0,1]
$2004 a[0,2]
$2006 a[1,0]
$2008 a[1,1]
$200A a[1,2]

In the C language, which uses row-major ordering and subscripts starting with zero, one
can express displacement d of an element at row i and column j as d = (i* ¢ +j) *s,
where ¢ is the total number of columns and s is the element size (1 for a byte, 2 for 16 bits,
and 4 for 32 bits). Now, to find the displacement of an element such as a[1,2] with each
element as 16 bits, the address can be determined as follows: Note that i=1,7=2, t=3
(since this is a 2x3 matrix), and s = 2 (16-bit element). Hence, d = (1*3 + 2)*2 = 10 = $A.
Therefore, the address where element a[1,2] is stored = $2000 + $A = $200A. This verifies
the stored data. Now, to load element, a[1,2] into DO.W from the array, the following
68000 instruction sequence can be used:
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LEAL $00002000,A0 ; Low 16 bits of A0 to hold 16-bit address $2000
;with upper 16 bits as zero

MOVEW #1,D2 :Load =1, row number into D2

MUL.W  #3,D2 ; perform i*¢, £ = total columns =3

ADDQ.L #2,D2 ; compute i *f +j with j =2, store resultin D2.L

LSL.L #2,D2 ; unsigned multiply (i*+))*s by 4, and store in D2.L

MOVE.W (A0, D2.L),D0 ; Move 16-bit a[1,2] from address $200A into DO.W
EXAMPLE 6.5 Write a 68000 assembly language program that implements each of
the following C language program segments:
@  if(x>=y)

x=x+10;
elsey=y—12;

where x is the address of a 16-bit signed integer and y is the address of a 16-bit signed
integer.

(b) sum = 0;
for(i=0;i<=9;I=i+1)
sum = sum + a[i];
where sum is the address of the 16-bit result of addition.

Solution
(a) X EQU 100
y EQU 200
LEAL x,A0Q ; Initialize AO
LEA.L y,Al ; Initialize A1
MOVE.W (A0),DO ; Move [x] into DO
CMP.W (A1,DO ; Compare [x] with [y]
BGE.B THPRT
SUBLW #12,(A1) ; Execute else part
BRAB STAY
THPRT ADDI.W #10,(A0) ; Execute then part
STAY IMP STAY Halt
(b) Assume that register A0 holds the address of the first element of the array.
SUM EQU 300 ; Initialize SUM to 300 for result
LEAL 200,A0 ; Point A0 to a[0]
CLR.W DO ; Clear the sum to zero
MOVE.W #9,DI1 R Initialize D1 with loop limit
LOOP ADD.W (A0)+,DO ;  Perform the iterative summation
DBF.W D1,LOOP
MOVEW DOSUM Store 16-bit result in address SUM
FINISH IMP FINISH ;  Halt

Note that in the above, condition F in DBF is always false. Hence, the program exits from
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the LOOP when D1 = -1. Therefore, the addition process is performed 10 times.

EXAMPLE 6.6 Write a 68000 assembly language program to find X*/65535,, where
Xis a 16-bit signed number stored in DO.W. Store the 32-bit result (quotient and remainder)
onto the user stack..

Solution
MULS.W DO0,D0O ;  Compute X? and store in DO.L
DIVU.W #65535,D0 ; Since X? and 655355 are both positive, use
MOVE.L DO0,-(A7) ; unsigned division. Remainder in high word
FINISH JMP FINISH ; of DO and quotient in low word of D0. Push
;  DO.L to stack
EXAMPLE 6.7 What are the remainder, quotient, and register containing them after

execution of the following 68000 instruction sequence?
MOVE.W #0FFFFH,D1
DIVS.W  #2,DI

Solution
MOVE.W #0FFFFH,DI ; D1 =FFFFH=-1
DIVS.W #2D1 ; D12=-1/2
High DI.W Low D1.W
FFFFH 0000H
16-bit 16-bit
remainder =  quotient =0
—Ly
EXAMPLE 6.8 Write a 68000 assembly language program at address $3000 to add
two 64-bit numbers as follows:
[DO.L] [D1.L]
+ [D2.L] [D3.L]
[D2.L] [D3.L]
Solution
ORG $3000
ADD.L D1,D3 ;. Add low 32 bits, store result in D3.L
ADDX.L DO0,D2 ; Add with carry high 32 bits, store result

END IMP END ; Halt
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EXAMPLE 6.9 Write a 68000 assembly language program at address $2000 to add
four 32-bit numbers stored in consecutive locations from low to high addresses starting at
address $3000. Store the 32-bit result onto the user stack. Assume that no carry is generated,
due to the addition of two consecutive 32-bit numbers and A7 is already initialized.

Solution
ORG $3000
DC.L 1,2,34
ORG $2000
MOVEQ.L #3,D0 ; Move 3 into DO
MOVEA.L #3$3000,A0 ; Initialize AQ
CLR.L Dl ; Clear sumto 0

START  ADD.L (A0O)+,D1  ; Add
DBF.W DO0,START ; perform loop
MOVE.L DI1,-(A7) ; pushresult
FINISH IMP FINISH

EXAMPLE 6.10 Write a 68000 assembly language program at address $2000 to
add ten 32-bit numbers stored in consecutive locations starting at address $3000. Initialize
A6 to $00200504 and use the low 24 bits of A6 as the stack pointer to push the 32-bit result.
Use only the ADDX instruction for adding two 32-bit numbers each time through the loop.
Assume that no carry is generated, due to the addition of two consecutive 32-bit numbers;
this will provide the 32-bit result. This example illustrates use of the 68000 ADDX
instruction.

Solution
ORG $3000
DC.L 2,3,7,5,1,9,6,4,6,1
START _ADR EQU $3000
ORG $2000
COUNT EQU 9
MOVEA.L #START ADR,A0 ;LOAD STARTING ADDRESS IN A0
MOVE.B #COUNT,DO ;USE DO AS A COUNTER
MOVEA.L #$00200504,A6 ; USE A6 AS THE SP
CLR.L D1 ;:CLEAR D1
ADDIB  #0,D6 ; CLEAR X BIT
AGAIN MOVELL (A0)+,D3 ; MOVE A 32 BIT NUMBER IN D3
ADDX.L D3,Dl1 ;ADD NUMBERS USING ADDX
DBF.W DO0,AGAIN ;REPEAT UNTIL DO =-1
MOVE.L D1,-(A6) ;PUSH 32-BIT RESULT ONTO STACK
FINISH IMP FINISH

Note that ADDX adds the contents of two data registers or the contents of two memory
locations using predecrement modes.
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EXAMPLE 6.11 Write a 68000 assembly program at address $2000 to multiply an
8-bit signed number in the low byte of D1 by a 16-bit signed number in the high word of
D5. Store the result in D3. Assume that the number is already stored in D1.B.

Solution
ORG $2000
EXT.W D1 ; SIGN EXTENDS LOW BYTE OF D1
SWAPW D5 ; SWAP LOW WORD WITH HIGH WORD OF D5
MULS.W DI,D5 ; MULTIPLY D1 WITH D5, STORE RESULT
MOVE.L DS5,D3 ; COPY RESULT IN D3

FINISH IMP FINISH

EXAMPLE 6.12 Write a 68000 assembly language program at address $2000 to

compute gX,Y,, where the X;’s and ¥;’s are signed 16-bit numbers and N = 100. Store the
32-bit result in D1. Assume that the starting addresses of the X;’s and };’s are 3000,, and
4000, respectively.

Solution
P EQU $3000
Q EQU $4000
ORG $2000
MOVE.W #99,D0 ; MOVE 99 INTO DO
LEA.L PAO ; LOAD ADDRESS P INTO A0
LEA.L Q,Al ; LOAD ADDRESS Q INTO A1l
CLR.L D1 ; INITIALIZE D1 TO ZERO
LOOP MOVE.W (A0)+,D2 ; MOVE [X] TO D2
MULS.W (A1)y+,D2 ; D2 <--[X]*[Y]
ADD.L D2,D1 ; D1 <-- SUM XiYi
DBF.W D0,LOOP ; DECREMENT AND BRANCH
FINISH IMP FINISH ; HALT

Note: To execute the program above, values for the Xi’s and ¥i’s must be stored in memory
using assembler directive DC.W.

EXAMPLE 6.13 Write a 68000 assembly language program to convert temperature
from Fahrenheit to Celsius using the equation: C = [(F - 32)/9] x 5 ; assume that the low
byte of DO contains the temperature in Fahrenheit. The temperature can be positive or
negative. Store the result in DO.

Solution
EXT.W DO ; SIGN EXTEND (F) LOW BYTE OF D0
SUBILW #32,D0 ; PERFORM F-32
MULS. W #5,D0 ; PERFORM 5* (F-32)/9 AND STORE
DIVS.W #9,D0 ; REMAINDER IN HIGH WORD OF DO

FINISH JMP FINISH ; AND QUOTIENT IN LOW WORD OF DO
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EXAMPLE 6.14 Write a 68000 assembly program at address $1000 which is
equivalent to the following C language segment:
sum = 0;

for i=0;1<=9; i=i+1)
sum = sum + x[i] * y[i};
Assume that the arrays, x[i] and y[i] contain unsigned 16-bit numbers already stored in

memory starting at addresses $3000 and $4000 respectively. Store the 32-bit result at
address $5000.

Solution
ORG $1000
X EQU $3000
y EQU $4000
sum EQU $5000
MOVE.W  #9,D0 ;USE DO AS A LOOP COUNTER
LEA.L x,A0 JINITIALIZE A0 WITH x
LEA.L v,Al ;INITIALIZE A1 WITH y
LEA.L sum,A2 ;INITIALIZE A2 WITH SUM
CLR.L D5 ;CLEAR SUM TO 0
LOOP MOVE.W  (A0)+,D2 ;MOVE X[i] INTO D2
MULU.W  (A1)+,D2 ;COMPUTE X[i] *y[i]
ADD.L D2,D5 ;UPDATE SUM
DBF.W DO0,LOOP ;REPEAT UNTIL DO=-1
MOVE.L D5,(A2) ;STORE SUM IN MEMORY
FINISH JMP FINISH
EXAMPLE 6.15 Write a 68000 assembly language program at address $002000 to

add all the elements in a table containing eight 16-bit numbers stored in memory in
consecutive memory locations starting at the address $005000. Store the 16-bit result in
D1.W.

Solution
ORG $005000
DC.W 1,2,3,4
DC.W 5,6,7.8
ORG $002000
LEA.L $00005000 ,A0; A0 = Starting address of the table
MOVE.L #0,D0 ; Move element number 0 into DO.L
MOVE.L DO0,D3 ; Copy element number 0 into D3.L
CLR.W D1 ; Clear 16-bit sum in D1 to 0
MOVE.W #7,D2 ; Initialize D2.W with loop count
BACK ADD (A0,D0O.L),D1 ; Add elements with sum in D1.W
LSL.L #1,D0 ; unsigned multiplication of element# by 2 forW
ADDQ.L #1,D3 ; Increment element number in D3.L by 1
MOVE.L D3,D0 ; Copy element number in DO.L
DBEW D2,BACK ; Decrement D2 and branch to BACK if D2 # -1

END JIMP END ; Halt
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EXAMPLE 6.16 Write a 68000 assembly language program at $1000 to find the
trace (sum of the elements in the diagonal) of a 3x3 matrix containing 16-bit words. Store
the 16-bit result in DO. Assume that the matrix is stored in row-major ordering starting at
an offset $4000 as follows:

$4000  a[0,0]
$4002  a[0,1]
$4004  a[0,2]
$4006 a[1,0]
$4008 a[l,1]
S400A a[1,2]
$400C  a[2,0]
$400E  a[2,1]
$4010 a[2,2]

Note that trace = a[0,0] + a[1,1] + a [2,2] and displacement, d = (i *t +j ) *s = i**s +
J*s where i = row number, j = column number, 7 = total number of columns in the matrix,
s = element size. In this example, ¢ = 3 for 3x3 matrix, s=2 since each element is 16-bit.
Hence, d=3*(2*i) + 2%/ =6 * i + 2 *j. Hence, effective address where an element, aij will
be stored = AO + 6% + 2%/ where AO = starting address of the array, i = row number, j =
column number.

Solution
ORG $1000
DC.W $12, $56, 809  ;Data arbitrarily chosen
DC.W $78, $21,$89
DC.W $14, $21,%45
ORG $1000
MOVE.L #0,D1 ; Load column number O into D1
MOVE.L D1,D4 ; Copy DI into D4
MOVE.L #0,D2 ; Load row number 0 into D2
MOVE.L D2,D6 ;Copy D2 into D6
MOVE.W #2,D7 ; initialize loop count
CLR.W DO ;sum =0
LEA.L $4000,A0 ; load starting address into AQ
BACK MULU.W #6,D6 ; perform 6*i, result in D6.L
ADDAL D6,A0 ; add A0 with 6*i
ADD.W (A0,D1.1),DO ; sum diagonal elements in DO.W
ADDQ.L #1,D4 ; Increment column number by 1
MOVE.L D4,D1 ; save updated column# in D1.L
LSL.L #1,D1 ; Perform 2*j and save in D1.L
ADDQ.L #1,D2 ; Increment row number by 1
MOVE.L D2,D6 ; Copy updated row number into D6
LEA.L $4000,A0 ; re-initialize A0 to $4000 since [AO]was altered
DBE.W D7,BACK ; Decrement D7.W by 1, branch if [D7. W] # -1

FINISH JMP FINISH ; Halt
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TABLE 6.9 68000 Logic Instructions
Instruction Size Operation

AND (EA), (EA) B,W,L [EA]AND [EA] — [EA];
[EA] cannot be address register

ANDI # data, (EA) B, W,L [EA]AND # data — [EA];
([A] cannot be address register

ANDI # datag, CCR B [CCR] AND # data — [CCR]
ANDI # data,,, SR w [SR] AND# data — [SR]. Privileged Instruction.
EOR Dn, (EA) B,W,L [Dn] @ [EA]— [EA];

[EA] cannot be address register

EORI # data, (EA)  B,W,L  [EA] @ # data — [EA];
[EA] cannot be address register

NOT (EA) B,W,L One’s complement of [EA] — [EA];

OR (EA), (EA) B,W,L [EA]OR [EA] — [EA];
[EA] cannot be address register

ORI # data, (EA) B,W,L [EA]OR # data — [EA];
(EA) cannot be address register

ORI # datag, CCR B [CCR] OR # data; — [CCR]
ORI # data,;, SR w [SR] OR # data — [SR], Privileged Instruction.

Source (EA) in AND and OR can use all modes except An.

* Destination (EA) in AND or OR or EOR can use all modes except An, relative, and
immediate.

*  Destination (EA) in ANDI, ORI, and EORI can use all modes except An, relative, and
immediate.

* (EA)in NOT can use all modes except An, relative, and immediate.

6.6.3 Logic Instructions

The 68000 logic instructions include logic OR, EOR, AND, and NOT, as shown in Table

6.9. We now explain the logic instructions.

8 Consider ANDI.B #$8F,D0. If prior to execution of this instruction, [D0.B] = $72,
then after execution of AND.B #$8F,D0, the following result is obtained:

[D0.B]=872= 0111 0010
AND $8F= 1000 1111

[D0.B] = 0000 0010
Z = 0 (Result is nonzero) and N = 0 (most significant bit of the result is 0). C and V
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are always cleared to 0, and X is not affected after logic operation. The condition codes
are similarly affected after execution of other logical instructions, such as OR, EOR, and
NOT.

The AND instruction can be used to perform a masking operation. If the bit value in a
particular bit position is desired in data (byte, word, or longword), the data can be
logically ANDed with appropriate data to accomplish this. For example, the bit value
at bit 2 of an 8-bit number 0100 1Y 10 (where an unknown bit value of Y is to be
determined) can be obtained as follows:

0100 1Y10 --8-bit number
AND 000 0 010 0--Masking data

000 0 0Y OO --Result
If the bit value Y at bit 2 is 1, the result is nonzero (flag Z = 0); otherwise, the result
is zero (Z=1) . The Z flag can be tested using typical conditional JUMP instructions
such as BEQ (Branch if Z =1) or BNE (Branch if Z = 0) to determine whether Y
is 0 or 1. This is called a masking operation. The AND instruction can also be used
to determine whether a binary number is ODD or EVEN by checking the least
significant bit (LSB) of the number (LSB = 0 for even and LSB = 1 for odd).
Consider AND.W D1,D5.If[D1.W] =$0001 and [D5.W] = $FFFF, then after execution
of this AND, the low 16 bits of both D1 and D5 will contain $0001.

Consider ANDI.B #$00,CCR. If [CCR] = $01, then after this ANDI, register CCR will
contain $00.

Consider EORLW #2,D5. If prior to execution of this instruction,[D5.W] = $2342,
then after execution of EORI.W #2,D5, the low 16-bit contents of DS will be 2340H.
All condition codes are affected in the same manner as the AND instruction. The
Exclusive-OR instruction can be used to find the one’s-complement of a binary
number by XORing the number with all 1’s as follows:

01011100-- 8-bit number
XOR 11111111-- data

1010001 1 --result (one’s-Complement of the 8-bitnumber 01011100)

Consider EOR.W D1,D2. If[D1.W]=FFFF ;and [D2.W] = $FFFF, then after execution
of this EOR, register D2.W will contain $0000, and D1 will remain unchanged at
$FFFF.

Consider NOT.B D5. If [D5.B] = $02, then after execution of this NOT, the low byte
of D5 will contain $FD.

Consider OR.B D2,D3. If prior to execution of this instruction, [D2.B] = $A2 and
[D3.B] = $5D, then after exection of OR.B D2,D3, the content of D3.B is $FF. All
flags are affected, similar to the case with the AND instruction. The OR instruction
can typically be used to insert a 1 in a particular bit position of a binary number
without changing the values of the other bits. For example, a 1 can be inserted using
the OR instruction at bit 3 of the 8-bit binary number 011100 1 1 without changing
the values of the other bits as follows:
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01110011 --8-bit number
OR 00001000 -- data for inserting a | at bit 3
01111011 --result
e  Consider ORI #$1002,SR. If [SR] = $111D, then after execution of this ORI, register
SR will contain $111F. Note that this is a privileged instruction because the high byte
of SR containing the control bits is changed and therefore can be executed only in the
supervisor mode.

6.6.4 Shift and Rotate Instructions

The 68000 shift and rotate instructions are listed in Table 6.10. Let’s look at them in

detail.

e All the instructions in Table 6.10 affect N, Z, C, and X flags according to the result; V
is cleared to zero for all shift and rotate instructions except for ASL.

e Note that in the 68000 there is no true arithmetic shift left instruction. In true arithmetic
shifts, the sign bit of the number being shifted is retained. In the 68000, the instruction
ASL does not retain the sign bit, whereas the instruction ASR retains the sign bit after
performing the arithmetic shift operation.

e The basic concepts associated with shift and rotate instructions are covered in Chapter

5.
TABLE 6.10 68000 Shift and Rotate Instructions
Instruction Size Operation

ASL Dx,Dy B,W,L
¢ é D < ()
x < —
Shift [Dy] by the number of times to
left specified in Dx; the low 6 bits of
Dx specify the number of shifts from
0 to 63.

ASL # data,Dn B, W, L Same as ASL Dx, Dy, except that

the number of shifts is specified by
immediate data from 0 to 7.

ASL (EA) B,W,L (EA) is shifted 1 bit to left; the most
significant bit of (EA) goes to x
and c, and zero moves into the least
significant bit.

Cc

D

ASR Dx,Dy B,W,L
NI

X
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TABLE 6.10

ASR # data,Dn
ASR (EA)

LSL Dx,Dy

LSL # data,Dn

LSL (EA)
LSR Dx,Dy

LSR # data,Dn

LSR (EA)

ROL Dx Dy

ROL # data,Dn

ROL (EA)

Cont.

B,W,L

B,W,L

B,W,L

B,W,L

B,W,L
B,W,L

B,W,L

B,W,L

B,W,L

B,W,L

B,W,L

Arithmetically shift [Dy] to the right
by retaining the sign bit; the low 6 bits
of Dx specify the number of shifts
from 0 to 63.

Same as above except the number of
shifts is from O to 7.

Same as above except (EA) is shifted
once to the right.

JT1D_ [0

Low 6 bits of Dx specify the number
of shifts from 0 to 63.

Same as above except that the number
of shifts is specified by immediate
data from 0 to 7.

(EA) is shifted 1 bit to the left.

0— | D t
Y) X

Same as LSL Dx, Dy, except that the
shift is to the right.

Same as above except that the shift is
to the right by immediate data from
0to7.

Same as LSL (EA) except that the
shift is once to the right.

¢ D
< y
Low 6 bits of Dx specify the number
of times [Dy] to be rotated.

Same as above except that the
immediate data specifies that [Dn] to
be rotated from 0 to 7.

(EA) is rotated 1 bit to the left.

153
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TABLE 6.10 Cont.
ROR Dx,Dy B,W,L
Ny,
D, o e
—

ROR # data,Dn B,W,L Same as above except that the rotate
is to the right by immediate data from
0to7.

ROR (EA) B,W, L (EA) is rotated 1 bit to the right.

ROXL Dx,Dy B,W,L

<€ <
Dy X

Low 6 bits of Dx contain the number
of rotates from 0 to 63.

ROXL # data,Dn B,W,L Same as above except that the
immediate data specifies the number
of rotates from 0 to 7.

ROXL (EA) B,W,L (EA) is rotated one bit to left.

ROXR Dx,Dy B,W,L
I &
IX D
y

Low 6 bits of Dx contain the number
of rotates from 0 to 63.

ROXR # data,Dn B, W, L Same as above except rotate is to the
right by immediate data from 0 to 7.

ROXR (EA) B,W,L Same as above except rotate is once
to the right.

Note: (EA) in ASL, ASR, LSL, LSR, ROL, ROR, ROXL, and ROXR can use all
modes except Dn, An, relative, and immediate.

*  Consider ASL.W D1,D5. If [D1],ow 16 bie = $0002 and [D5],ow 16 bis = $9FFO, then after
this ASL instruction, [D5],.,, 1 bis = $7FCO, C = 0, and X = 0. Note that the sign of the
contents of D5 is changed from 1 to 0, and therefore, the overflow is set. The sign bit
of D5 is changed after shifting [D5] twice. For ASL, the overflow flag is set to 1 if the
sign bit changes during or after shifting. The contents of D5 are not updated after each
shift. The ASL instruction can be used to multiply a signed number by 2" by shifting
the number n times to the left; the result is correct if V = 0 whereas the result is
incorrect if V = 1. Since the execution time of the multiplication instruction is longer,
multiplication by shifting may be more efficient when multiplication of a signed number
by 2" is desired. In communication systems, the number of samples is normally chosen
by the designer as powers of 2. Hence, to multiply other parameters by the number of
samples, multiplication using a shift instruction rather than a multiplication instruction
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can be used.This may be very useful in real-time systems.

*  ASR retains the sign bit. For example, consider ASR.W #2, D1. If [D1.W] = $FFE2,
then after this ASR, the low 16 bits of [D1] = $FFF8, C =1, and X = 1. Note that the
sign bit is retained. ASR can be used to divide a signed number by 2" by shifting the
number n times to the right as long as a 1 is not shifted out of the least significant
bit.

* ASL (EA) or ASR (EA) shifts (EA) 1 bit left or right, respectively. For example,
consider ASL.W (A0). If [A0] = $00002000 and [$002000] = $9001, then after
execution of this ASL, [$002000] = $2002, X = 1, and C = 1. On the other hand, after
ASR.W (A0), memory location $002000 will contain $C800, C=1, and X = 1.

* The LSL and ASL instructions operate in the same way in the 68000 except that with
the LSL, V is always cleared to 0. As mentioned earlier, V is set to 1 for ASL if the
sign of the result is changed from the sign of the original value during or after shifting;
otherwise, V is cleared to 0.

* LSL makes it possible to multiply an unsigned number by 2° by shifting the number
n times to the left; as long as a 1 is not shifted out of the most significant bit. Since
the execution time of the multiplication instruction is longer, unsigned multiplication
by LSL may be more efficient when multiplication of an unsigned number by 2" is
desired in applications such as communication systems.

*  Consider LSR.W #3.D1. If [D1.W] = 8000,,, then after this LSR, [D1.W] = 1000,,,
X =0, and C = 0. LSR can be used to divide an unsigned number by 2" by shifting
the number n times to the right as long as a 1 is not shifted out of the least significant
bit.

* ASR or LSR allows us to divide a signed or an unsigned number by 2" by shifting
the number n times to the left as long as a 1 is not shifted out of the most significant
bit. Since the execution time of the division instruction is longer, signed division by
ASR or unsigned division by LSR may be more efficient when multiplication of an
unsigned number by 2" is desired in applications such as communication systems.

*  Consider ROL.B #2,D2. If [D2.B] = $B1 and C = 1, then, after this ROL, the low byte
of [D2] = $C6 and C = 0. On the other hand, with [D2.B] = $B1 and C = 1, consider
ROR.B #2,D2. After this ROR, low byte of register D2 will contain $6C and C = 0.

¢  Consider ROXL.W D2,DI. If [D2.W] = $0003, [D1.W] = $F201,C =0, and X = 1
then after execution of this ROXL, [D1.W]=$900F,C=1,and X =1.

EXAMPLE 6.17 Write a 68000 assembly language program at address $3000 that
will multiply a 32-bit unsigned number in DO.L by 4 to provide a 32-bit product , and
then, perform the following operations on the contents of DO.L:

* SetbitsOand3 to1 without changing other bits in DO.L.

® Clearbit 5 to zero without changing other bits in DO.L.
®  One’s-complement bit 7 without changing other bits in DO.L.

Use only logic and shift instructions. Do not use multiplication or any other instructions.
Assume that the data is already in DO.L.
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TABLE 6.11 Bit Manipulation Instructions
Instruction Size Operation

BCHG Dn, (EA) } BL A bit in (EA) specified by Dn or immediate data

BCHG#data, (EA) is tested: the 1’s complement of the bit is reflected
in both the Z flag and the specified bit position.

BCLR Dn, (EA) B,L A bit in (EA) specified by Dn or immediate data

BCLR# data, (EA) } is tested and the 1’s complement of the bit is
reflected in the Z flag: the specified bit is cleared
to zero.

BSET Dn, (EA) B,L A bit in (EA) specified by Dn or immediate data

BSET# data, (EA) } is tested and the 1’s complement of the bit is
reflected in the Z flag: the specified bit is then
set to one.

BTST Dn, (EA) B.L A bit in (EA) specified by Dn or immediate data

BTST# data, (EA) } 1s tested. The 1’s complement of the specified bit
is reflected in the Z flag.

(EA) in the above instructions can use all modes except An, PC relative,and
immediate.

If (EA) is memory location then data size is byte; if (EA) is Dn then data size is long
word.

If Dn is the destination, then the bit numbering is modulo 32 allowing bit manipulation
on all bits in Dn. If a memory location is the destination, a byte is read from that
location, the bit operation is performed using the bit number, modulo 8, and the byte
is written back to the location.

Only Z-flag is affected; N, V, C, and X are not affected.

Solution
ORG $3000
LSL.L #2.D0 ; Unsigned multiply DO by 4
ORI.L #$00000009,D0 ; set bits 0 and 3 in DO.L to one
ANDILL #$SFFFFFFDEDO  ;clear bit 5 in DO.L to zero
EORI.L #%$00000080,D0 ; ones complement bit 7 in DO
FINISH IMP FINISH ; Stop
6.6.5 Bit Manipulation Instructions
The 68000 has four bit manipulation instructions, and these are listed in Table 6.11. Let’s

look at them in detail.

In all of the instructions in Table 6.11, the one’s-complement of the specified bit is
reflected in the Z flag. The specified bit is ones complemented, cleared to 0, setto 1,
or unchanged by BCHG, BCLR, BSET, or BTST, respectively. In all the instructions
in Table 6.11, if (EA) is Dn, the length of Dn is 32 bits; otherwise, the length of the
destination is one byte memory.

Consider BCHG.B #2,$003000. If [$003000] = $05, then, after execution of this
BCHG, Z = 0 and [$003000] = $01.
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*  Consider BCLR.L #3,D1. If [D1] = $F210E128, then after execution of this BCLR,
register D1 will contain $F210E120 and Z = 0.

*  Consider BSET.B #0,(A1). If [A1] = $00003000 and [$003000] = $00, then after
execution of this BSET, memory location $003000 will contain $01 and Z = 1.

¢ Consider BTST.B #2,$002000. If [$002000] = $02, then after execution of this BTST,
Z =1, and [$002000] = $02; no other flags are affected.

EXAMPLE 6.18 Write a 68000 assembly language program that will multiply a
16-bit unsigned number in DO by 4 to provide a 32-bit product , and then perform the
following operations on the contents of DO:

* SetbitsQand 3 to 1 without changing other bits in DO.

* Clearbit 5to zero without changing other bits in DO.

*  Ones-complement bit 7 without changing other bits in DO.
Use only shift and bit manipulation instructions. Do not use any multiplication or any
other instructions. Assume that data is already stored in DO.

Solution
LSL.L #2,D0 ; Unsigned multiply DO by 4
BSET.L #0,D0 ; set bit 0 in DO.L to one
BSET.L #3,D0 ; set bit 3 in DO.L to one
BCLR.L #5,D0 ;clear bit 5 in DO.L to zero
BCHG.L #7,D0 ; ones complement bit 7 in DO
FINISH JMP FINISH ; Halt
EXAMPLE 6.19 Write a 68000 assembly language program that will perform 5 x X

+6 x Y+ [¥/8] - [ D1.L], where X is an unsigned 8-bit number stored in the lowest byte of
D0 and Y is a 16-bit signed number stored in the upper 16 bits of D1. Neglect the remainder
of Y/8.

Solution
ANDLW #$00FF,DO ;CONVERT X TO UNSIGNED 16-BIT
MULU.W #5,D0 ;COMPUTE UNSIGNED 5*X IN DO.L
SWAP.W Dl ;MOVE Y TO LOW 16 BITS IN D1
MOVE.W D1,D2 ;SAVE'Y TO LOW 16 BITS OF D2
MULS.W #6,D1 ;COMPUTE SIGNED 6*Y IN D1.L
ADD.L D0,D1 ;ADD 5*X WITH 6*Y
EXT.L D2 ;SIGN EXTEND
ASR.L #3,D2 ;PERFORM Y/8;DISCARD REMAINDER
ADD.L D2,D1 ;PERFORM 5*X+6*Y +Y/8

FINISH JMP FINISH

6.6.6 Binary-Coded-Decimal Instructions

The 68000 instruction set contains three BCD instructions: ABCD for adding, SBCD for
subtracting, and NBCD for negating. They operate on packed BCD byte(s) and provide a
result containing one packed BCD byte. Note that packed BCD numbers are discussed in
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TABLE 6.12 68000 Binary Coded Decimal Instructions
Instruction Operand Size Operation
ABCD Dy, Dx B [Dx]10 + [Dy]10 + X — [Dx]
ABCD - (Ay), -(Ax) B ~(AX)10+ — (Ay)10 + X — (AX)
SBCD Dy, Dx B [Dx]10 - [Dy]10 - X — [Dx]
SBCD - (Ay), - (Ax) B —(Ax)10 - — (Ay)10 - X — (Ax)
NBCD (EA) B 0-(EA)10-X — (EA)10

* (EA) in NBCD can use all modes except An, relative, and immediate.

Chapter 1 (Section 1.2.3).

These instructions always include the extend (X) bit in the operation. They affect the

condition codes as follows: Z = 0 if result is nonzero; Z = 1 otherwise, C = 1 if a carry

(decimal) is generated; C = 0 otherwise; X is the same as C, N and V are undefined. The

BCD instructions are listed in Table 6.12.

* Consider ABCD.B D1,D2. If [D1.B] = $25, [D2.B] = $15, and X = 0, then after
execution of this ABCD instruction, [D2.B] = $40, C = X =0, and Z = 0 as follows:

[D1.B] = $25 = 00100101
[D2.B] = $15=00010101

00111010
0110 Add 6 for correction since invalid BCD

[D2.B] = 01000000 = $40, C = X = 0 since no carry, Z = () since result is nonzero

¢ Consider SBCD.B -(A2),-(A3). If [A2] = $00002004, [A3] = $00003003, [$002003]
= $05, [$003002] = $06, and X = 1, then after execution of this SBCD instruction,
[$003002] =%$00,C=X=0,and Z=1.

*  Consider NBCD.B (Al). If [A1] = [$00003000], [$003000] =$05,and C=X =1, Z

= 1, then after execution of this NBCD instruction, [$003000] = $FB=-6,,, C=X =
1 (borrow), Z = 0 (nonzero result).

EXAMPLE 6.20 Write a 68000 assembly language program at address $2000 to
add two words, each containing two ASCII digits. The first word is stored in two consecutive
locations (from LOW to HIGH), with the low byte pointed to by A0 at address 30004, and
the second word is stored in two consecutive locations (from LOW to HIGH), with the low
byte pointed to by A1 at 7000,,. Store the packed BCD result in D5.

Solution
ORG $2000
MOVEQ.L #1,D2 ;#1 INITIALIZE D2
MOVEA.W  #%$3000,A0 ;#2 INITIALIZE AO
MOVEA.W  #$7000,A1 ;#3 INITIALIZE Al
START ANDIB #$0F,(A0)Y+ ;#4 CONVERT IST # TO UNPAC.BCD

ANDIB #$0F,(Al)+ ;#5 CONVERT 2ND # TO UNPAC.BCD
DBF.W D2,START ;#6 DECREMENT AND BRANCH IF D2 # -1
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MOVE.B -(A0),D6 ;#7 GET HIGH UNPAC.BYTE OF IST#
MOVE.B -(A0),D7 ;#8 GET LOW UNPAC. BYTE OF IST#
LSL.B #4,D6 ;#9 SHIFT IST# HIGH BYTE 4 TIMES
OR.B D7,D6 ;#10 D6=PACKED BCD BYTE OF IST#
MOVE.B -(Al1),D5 ;#11 GET HIGH UNPAC. BYTE OF 2ND#
MOVE.B -(A1),D4 #12 GET LOW UNPAC. BYTE OF 2ND#
LSL.B #4,D5 ;#13 SHIFT 2ND # HIGH BYTE 4 TIMES
OR.B D4,D5 ;#14 D5 HAS PACKED BCD BYTE OF 2ND#
ADDILB #0,D0 ;#15 CLEAR X-BIT
ABCD.B D6,D5 ;#16 D5.B =PACKED BCD RESULT
FINISH JMP FINISH

Note: The above program will be explained in the following. Note that the # sign along
with the line number is placed before each comment in order to explain the program.
Assume that the ASCII data to be added are $3432 and $3231. The purpose of the program
is to convert the first number, ASCII $3432 to unpacked BCD $0402 and then to packed
BCD $42. Similarly, the second number, ASCIT $3231 to unpacked BCD $0201, and
then to packed BCD $21. Finally, the two packed BCD numbers are added using 68000’s
ABCD.B instruction.

Assume that [$3000] = $32, [$3001] = $34, [$7000] = $31, and [$7001] = $32.
Line #1 initializes D2 with a loop count for converting the numbers from ASCII to unpacked
BCD. Line #’s 2 and 3 initialize A0 and A1 with $00003000 and $00007000 respectively.
Line #’s 4 through 6 convert the 4 bytes of ASCII codes into unpacked BCD. Line#’s 7
through 14 convert the unpacked BCD numbers into packed BCD bytes. This is done by
logically shifting each high unpacked byte four times to the left, and then ORing with the
low unpacked byte. For example, consider unpacked BCD $0402 for the ASCII $3432.

The instruction LSL.B #4,D6 at Line #9 will convert unpacked byte $04 to $40,
and then OR.B D7,D6 at line #10 will provide packed $42, and store the result in D6.B.
Similarly, line #’s 11 through 14 will convert the second unpacked BCD $0201 into packed
BCD $21, and store it in D5.B. The instruction ADDI.B #0,D0 at Line# 15 clears the X-bit
to 0. This is necessary since ABCD.B adds the packed BCD bytes along with the X-bit.
ABCD.B D6, D5 at line # 16 will add the two packed BCD bytes, and store the result $63
(packed) in DS.B.

EXAMPLE 6.21 Write a 68000 assembly language program at address $2000 to
subtract two 32-bit packed BCD numbers. BCD number 1 is stored at locations from
$003000 through $003003, with the least significant byte at $003003 and the most
significant byte at $003000. Similarly, BCD number 2 is stored at locations $004000
through $004003, with the least significant byte at $004003 and the most significant byte
at $004000. BCD number 2 is to be subtracted from BCD number 1. Store the packed BCD
result at addresses $005000 (the lowest byte of the result) through $005003 (the highest
byte of the result). In the program, first initialize loop counter D7 to 4, source pointer AQ to
$003000, source pointer Al to $004000, and destination pointer A3 to $005000, and then
write a program to accomplish the above using these initialized values.
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Solution
ORG $003000
DC.L £99221133
ORG $004000
DC.L $33552211
ORG $2000
MOVE.W #4,D7 :NUMBER OF BYTES TO BE SUBTRACTED

MOVEA.W  #$3000,A0 ;STARTING ADDRESS FOR FIRST NUMBER
MOVEA.W  #$4000,A1 ;STARTING ADDRESS FOR SECOND NUMBER

ADDA.W D7,A0 ;MOVE ADDRESS POINTERS TO THE END
ADDA.W D7,A1 ;OF EACH 32 BIT PACKED BCD NUMBER
MOVEA.W  #$5000,A3 ;LOAD POINTER FOR DESTINATION ADDR
SUBQ.W #1,D7 ;SUBTRACT D7 by 1 for DBF

ADDIB #0,D7 ;CLEAR X-BIT

LOOP MOVEB -(A0),D0  ;GET ABYTE FROM FIRST NUMBER
MOVE.B -(Al),D1 ;GET ABYTE FROM SECOND NUMBER

SBCD.B D1,D0 ;BCD SUBTRACTION, RESULT IN DO

MOVE.B DO0,(A3)+ ;STORE RESULT IN DESTINATION ADDR

DBF D7,LOOP ;CONTINUE UNTIL COUNTER HAS EXPIRED
FINISH JMP FINISH

Note that SBCD subtracts the contents of two data registers or the contents of two memory
locations using predecrement modes.

6.6.7 Program Control Instructions
Program control instructions include branches, jumps, and subroutine calls as listed in
Table 6.13.

Consider Bec d. There are 14 branch conditions. This means that the cc in Bee
can be replaced by 14 conditions providing 14 instructions: BCC, BCS, BEQ, BGE, BGT,
BHI, BLE, BLS, BLT, BMI, BNE, BPL, BVC, and BVS. It should be mentioned that some
of these instructions are applicable to both signed and unsigned numbers, some can only be
used with signed numbers, and some are applicable to only unsigned numbers.

After signed arithmetic operations, instructions such as BEQ, BNE, BVS, BVC,
BMI, and BPL can be used. On the other hand, after unsigned arithmetic operations,
instructions such as BCC, BCS, BEQ, and BNE can be used. It should be pointed out that
if V=0, BPL and BGE have the same meaning. Similarly, if V =0, BMI and BLT perform
the same function.
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TABLE 6.13 68000 Program Control Instructions
Instruction Size Operation
Beed B,W If condition code cc is true, then PC + d — PC. The

PC value is current instruction location plus 2. d can be
8- or 16-bit signed displacement. If 8-bit displacement
is used, then the instruction size is 16 bits with the 8-bit
displacement as the low byte of the instruction word. If
16-bit displacement is used, then the instruction size is
two words with 8-bit displacement field (low byte) in the
instruction word as zero and the second word following
the instruction word as the 16-bit displacement.

There are 14 conditions such as BCC (Branch if Carry
Clear), BEQ (Branch if result equal to zero, i.e., Z = 1),
and BNE (Branch if not equal, i.e., Z = 0). Note that the
PC contents will always be even since the instruction
length is either one word or two words depending on
the displacement widths.

BRAd B,W Branch always to PC + d where PC value is current
instruction location plus 2. As with Bcce, d can be
signed 8 or 16 bits. This is an unconditional branching
instruction with relative mode. Note that the PC contents
are even since the instruction is either one word or two

words.
BSR d B,W PC — - [SP]
PC+d— PC

The address of the next instruction following PC is
pushed onto the stack. PC is then loaded with PC +
d. As before, d can be signed 8 or 16 bits. This is a
subroutine call instruction using relative mode.

DBcc Dn, d w If cc is false, then Dn — 1 — Dn, and if Dn = — 1, then
PC+2—PC
IfDn#—-1,thenPC+d — PC;else PC +2 — PC.
JMP (EA) unsized [EA] — PC

This is an unconditional jump instruction which uses
control addressing mode.

JSR (EA) unsized PC — —[SP]
[EA] — PC

This is a subroutine call instruction which uses control
addressing mode

RTR unsized [SP] + — CCR

[SP]+— PC

Return and restore condition codes
RTS unsized Return from subroutine

[SP]+— PC
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TABLE 6.13 Cont.

Scc (EA) B If cc is true, then the byte specified by [EA] is set to all
ones; otherwise the byte is cleared to zero.
¢ (EA) in JMP and JSR can use all modes except Dn, An, (An) +, — (An), and
immediate.

* (EA)in Scc can use all modes except An, relative, and immediate.

The conditional branch instruction can be used after typical arithmetic instructions
such as subtraction to branch to a location if cc is true. For example, consider SUB.W
D1,D2. Now if [D1] and [D2] are unsigned numbers, then

BCC d can be used if [D2] > [D1]
BCS d can be used if [D2] < [D1}
BEQ d can be used if [D2] = [D1]
BNE d can be used if [D2] # [D1]
BHI d can be used if [D2] < [D1]
BLS d can be used if [D2] <[D1]

On the other hand, if [D1] and [D2] are signed numbers, then after SUB.W D1,D2,

the following branch instruction can be used:
BEQ d can be used if [D2] = [D1]
BNE d can be used if [D2] # [D1]
BLT d can be used if [D2] < [D1]
BLE d can be used if [D2] < [D1]
BGT d can be used if [D2] > [D1]
BGE d can be used if [D2] > [D1]

Now as a specific example, consider BEQ BEGIN. If current [PC] = $000200 and
BEGIN = $20, then after execution of this BEQ, program execution starts at $000220 if
Z = 1; if Z = 0, program execution continues at $000200. The instructions BRA and JMP
are unconditional jump instructions. BRA uses the relative addressing mode, whereas JMP
uses only the control addressing mode. For example, consider BRA.B START. If [PC] =
$000200 and START = $40, then after execution of this BRA, program execution starts at
$000240. Now consider JMP (A1) . If [A1] = $00000220, then after execution of this JMP,
program execution starts at $000220.
¢  The instructions BSR and JSR are subroutine call instructions. BSR uses the relative

mode, whereas JSR uses the control addressing mode. Consider the following program
segment, assuming that the main program uses all registers and the subroutine stores
the result in memory.
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Main Program Subroutine
— SUB MOVEM.L D0-D7/A0-A6, — (SP)

JSR SUB —
START — —

Main body of
subroutine

— MOVEM.L (SP)+, DO-D7/A0-A6
RTS

Here the JSR SUB instruction calls the subroutine SUB. In response to JSR, the 68000
pushes the current PC contents called START onto the stack and loads the starting
address SUB of the subroutine into PC. The first MOVEM in the SUB pushes all
registers onto the stack, and after the subroutine is executed, the second MOVEM
instruction pops all the registers back. Finally, RTS pops the address START from the
stack into PC, and program control is returned to the main program. Note that BSR
SUB could have been used instead of JSR SUB in the main program. In that case, the
68000 assembler would have considered the SUB with BSR as a displacement rather
than as an address with the JSR instruction. '

*  DBcc Dn,d tests the condition codes and the value in a data register. DBcc first checks
if cc (NE, EQ, GT, etc.) is satisfied. If cc is satisfied, the next instruction is executed.
If cc is not satisfied, the specified data register is decremented by 1; if [Dn] = -1, then
the next instruction is executed; on the other hand, if Dn # -1, then branch to PC +d
is performed. For example, consider DBNE.W D5,BACK with [D5] = 00003002,
BACK = -4, and [PC] = 002006,,. If Z = 1, then [D5] = 00003001,,. Because [D5]
# -1, program execution starts at 002002 . It should be pointed out that there is a
false condition in the DBcc instruction and that this instruction is the DBF (some
assemblers use DBRA for this). In this case, the condition is always false. This means
that after execution of this instruction, Dz is decremented by 1 and if [Dn] = —1, the
next instruction is executed. If [Dn] # —1, branch to PC + d.

* Consider SPL.B(A5). If [A5] = 00200020, and N = 0, then after execution of this
SPL, memory location 200020, will contain 11111111,

6.6.8 System Control Instructions
The 68000 system control instructions contain certain privileged instructions including
RESET, RTE, STOP and instructions that use or modify SR. Note that the privileged
instructions can be executed only in the supervisor mode. The system control instructions
are listed in Table 6.14.

* (EA) in CHK can use all modes except An.

We now explain these instructions.
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TABLE 6.14 68000 System Control Instructions
Instruction Size Operation

RESET Unsized If supervisor state, then
assert reset line; else TRAP

RTE Unsized If supervisor state, then
restore SR and PC; else
TRAP

STOP # data Unsized If supervisor state, then
load immediate data to SR
and then
STOP; else TRAP

ORI to SR These instructions

MOVE USP were discussed earlier

ANDI to SR

EORI to SR

MOVE (EA) to SR

Trap and Check Instructions

TRAP # vector Unsized PC — - (SP)
SR — - (SP)
Vector address — PC

TRAPV Unsized TRAPifV=1,
if Dn < 0 or Dn > (EA),
then TRAP;

CHK (EA), Dn w else, go to the next
instruction.

Status Register

ANDI to CCR

EORI to CCR

MOVE (EA) to/from CCR ( Explained

ORI to CCR earlier)

MOVE SR to (EA)

*  When executed in the supervisor mode,the RESET instruction outputs a low signal on
the reset pin of the 68000 to initialize the external peripheral chips. The 68000 reset
pin is bidirectional. The 68000 can be reset by asserting the reset pin using hardware,
whereas the peripheral chips can be reset using the software RESET instruction.

* MOVEA.L A7,An or MOVEA L An,A7 can be used to save, restore, or change the
contents of the A7 in the supervisor mode. A7 must be loaded in the supervisor mode
because MOVE A7 is a privileged instruction. As an example, A7 can be initialized to

$00005000 in the supervisor mode using

MOVEA.L #$00005000,A 1

MOVE.L AlA7
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Consider TRAP #n. There are 16 TRAP instructions, with » ranging from 0 to 15.
The hexadecimal vector address is calculated using the equation: hexadecimal vector
address = 80 + 4 x n. The TRAP instruction first pushes the contents of the PC and then
the SR onto the stack. The hexadecimal vector address is then loaded into PC. TRAP is
basically a software interrupt. The TRAP instruction can be executed in the user mode
to return control to the supervisor mode. This is useful in calling operating system
routines from a user program. Thus, the TRAP instruction can be used for service calls
to the operating system. For application programs running in the user mode, TRAP can
be used to transfer control to a supervisor utility program. RTE at the end of the TRAP
routine can be used to return to the application program by placing the saved SR from
the stack, thus causing the 68000 to return to the user mode.

There are other traps that occur due to certain arithmetic errors. For example,

division by zero automatically traps to location 14, On the other hand, an overflow
condition (i.e., if V = 1) will trap to address $00001C if the instruction TRAPV is
executed.
The CHK.W (EA),Dn instruction compares [Dn] with (EA). If [Dn],,, ;5 uis< 0 or if
[Dn]iow 16 s > (EA), a trap to location $000018 is generated. Also, N is set to 1 if
[Dn],ow 16 5is < 0, and N is reset to 0 if [Dn],,. 16 vis = (EA). (EA) is treated as a 16-bit
two’s-complement integer. Note that program execution continues if [Dn],,, 14 uis 1€
between 0 and (EA).

Consider CHK.W (A5),D2. If [D2],, 16 s = 30200, [AS] = $00003000, and
[$003000} = $0100, then after execution of this CHK, the 68000 will trap because
[D2.W] = $0200 is greater than [$003000] = $0100. The purpose of the CHK
instruction is to provide boundary checking by testing if the content of a data register
is in the range from zero to an upper limit. The upper limit used in the instruction
can be set equal to the length of the array. Then every time the array is accessed, the
CHK instruction can be executed to make sure that the array bounds have not been
violated.

The CHK instruction is usually placed after computation of an index value to
ensure that the index value is not violated. This permits a check of whether or not
the address of an array being accessed is within array boundaries when the address
register indirect with index mode is used to access an array element. For example, the
following instruction sequence permits accessing of an array with base address in A2
and array length of 50,, bytes:

CHK.W #49,D2
MOVE.B 0(A2,D2.W),D3

Here, if the low 16 bits of D2 are less than 0 or greater than 49, the 68000 will trap to location
$0018. It is assumed that D2 is computed prior to execution of the CHK instruction.



166 Microprocessor Theory and Applications with 68000/68020 and Pentium

Stack LOW Address
USP -4 A
or
SSP - 4 0031 (H)
USP -2
or F200 (L)
SSP -2
USP
or Valid data
SSP v
HIGH Address
FIGURE 6.13 68000 system stack.

6.6.9 68000 Stack

The 68000 supports stacks with the address register indirect postincrement and predecrement
addressing modes. In addition to two system stack pointers (A7 and A7’), all seven address
registers (AO—A6) can be used as user stack pointers by using appropriate addressing
modes. Subroutine calls, traps, and interrupts automatically use the system stack pointers:
USP (A7) when S = 0 and SSP (A7’ ) when S = 1. Subroutine calls push the PC onto the
system stack; RTS pops the PC from the stack. Traps and interrupts push both PC and SR
onto the system stack; RTE pops PC and SR from the stack.

The 68000 accesses the system stack from the top for operations such as subroutine
calls or interrupts. This means that stack operations such as subroutine calls or interrupts
access the system stack automatically from HIGH to LOW memory. Therefore, the system
SP is decremented by 2 for a word or 4 for a long word after a push and incremented by 2
for a word or 4 for a long word after a pop. As an example, suppose that a 68000 CALL
instruction (JSR or BSR) is executed when PC = $0031F200; then after execution of the
subroutine call, the stack will push the PC as shown in Figure 6.13. Note that the 68000 SP
always points to valid data.

In 68000, stacks can be created by usingaddress register indirect with postincrement
or predecrement modes. Typical 68000 memory instructions such as MOVE to/from can
be used to access the stack. Also, by using one of the seven address registers (AO—A6) and
system stack pointers (A7, A7’), stacks can be filled from either HIGH to LOW memory,
or vice versa:

1. Filling a stack from HIGH to LOW memory (the top of the stack) is implemented
with predecrement mode for push and postincrement mode for pop.
2. Filling a stack from LOW to HIGH (the bottom of the stack) memory is

implemented with postincrement for push and predecrement for pop.

For example, the stack growing from HIGH to LOW memory addresses in which
A7 is used as the stack pointer is shown in Figure 6.14.

To push the 16-bit contents 0504, of memory location 305016,,, the instruction
MOVE.W $3050,,,-(A7) can be used as shown in Figure 6.15. The 16-bit data item 0504,
can be popped from the stack into the low 16 bits of DO by using MOVE.W (A7)+,D0.
Register A7 will contain 200504, after the pop. Note that, in this case, the stack pointer
A7 points to valid data. Next, consider the stack growing from LOW to HIGH memory
addresses in which the user utilizes A6 as the stack pointer. This is depicted in Figure 6.16.
To push the 16-bit contents 2070, of the low 16 bits of DS, the instruction MOVE.W D5,
(A6)+ can be used as shown in Figure 6.17. The 16-bit data item 2070,, can be popped
from the stack into the 16-bit contents of memory location 417024, by using MOVE.W



Assembly Language Programing with the 68000

23 0

A7[200504,4 Stack
20050416 Top

20050616| Data 2

20050816f Data 1

20050A16| Data 0

20050Ci6| Bottom

FIGURE 6.14 68000 stack growing from HIGH to LOW memory.

23 0

A7[200502,, Stack
20050216 | 0504

20050416 Top

20050616| Data 2

20050816 Data 1

20050A16] Data 0

20050Ci¢| Bottom

FIGURE 6.15 PUSH operation for the 68000 stack growing from HIGH to
LOW memory.
Stack
30500415| Bottom
30500616 Data 0
305008t6| Data 1
30500A16] Top
30500Ci6| Free
23 0
A6|30500G,
FIGURE 6.16 68000 stack growing from LOW to HIGH memory.
Stack
30500416 Bottom
30500616 Data 0
30500816 Data 1
30500A16] Top
- 0 30500Cis| 2070
30500Eis| Free
A6]30500E
FIGURE 6.17 PUSH operation for the 68000 stack growing from HIGH to

LOW memory.
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—(A6), $417024. Note that, in this case, the stack pointer A6 points to the free location

above the valid data.

EXAMPLE 6.22 Write a 68000 subroutine to compute ¥ = f} X?/N. Assume the X’s
are 16-bit signed integers and N = 100. The numbers are stored in consecutive locations.
Assume A0 points to the X;’s and A7 is already initialized. Store 32-bit result in D1 (16-bit
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remainder in high word of D1 and 16-bit quotient in the low word of D1). Assume user
mode. Also, write the main program at address $2000 that will initialize A0 to $005000,
call the subroutine, and then stop.

Solution

Main Program

ORG $2000
MOVEA.W #$5000,A0 ;Initialize A0 to $005000
JSR SQR ;Call the subroutine
FINISH JMP FINISH
Subroutine
SQR MOVEM.L D2/D3/A0,-(A7) ;SAVE REGISTERS
CLR.L D1 ;CLEAR SUM
MOVE.W #99,D2 ;INITIALIZE LOOP COUNT
BACK MOVE.W (A0)+,D3 ;MOVE Xi’s INTO D3
MULS.W D3,D3 ;:COMPUTE Xi**2 USING MULS
ADD.L D3,D1 ;SINCE Xi**2 IS ALWAYS +VE
DBFE.W D2,BACK ;COMPUTE
DIVU.W #100,D1 ;SUM OF Xi**2/N USING DIVU
MOVEM.L (A7)+,D2/D3/A0 ;RESTORE REGISTERS
RTS

Note: In this program, either DIVU or DIVS can be used for computing Xi**2/N if the
most significant bits of both N and total sum are 0; however, DIVU must be used if the
most significant bits of either or both are 1. Also, to execute the program above, values for
Xi must be stored in memory using the assembler directive, DC.W.

6.7 68000 Delay Routine

Typical 68000 software delay loops can be written using MOVE and DBF instructions.
For example, the following instruction sequence can be used for a delay loop of 2 ms:

MOVE. W #count,DO
DELAY DBF.W DO0,DELAY

Note that DBF.W decrements D0.W by 1, and if DO.W = -1, branches to DELAY;
if DO.W = -1, the 68000 executes the next instruction. Since DBF.W checks for DO.W for
-1, the value of “count” must be one less than the required loop count. The initial loop
counter value of “count” can be calculated using the cycles (Appendix D) required to
execute the following 68000 instructions:

MOVE.W #n,D0 (8 cycles)
DBF.W DO,DELAY (10/14 cycles)

Note that the 68000 DBF.W instruction requires two different execution times.
DBF.W requires 10 cycles when the 68000 branches if the content of DO.W is not equal to
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-1 after autodecrementing DO.W by 1. However, the 68000 goes to the next instruction and
does not branch when [D0.W] = -1 after autodecrementing DO.W by 1, and this requires 14
cycles. This means that the DELAY loop will require 10 cycles for “count” times, and the
last iteration will take 14 cycles.

Assuming a 4-MHz 68000 clock, each cycle is 250 ns. For a 2 millisecond delay,
total cycles =%= 8000. The loop will require 10 cycles for “count” times when DO.W
+ -1 and the last iteration will take 14 cycles when no branch is taken (DO.W = -1). Thus,
total cycles including the MOVE.W = 8 + 10 x (count ) + 14 = 8000. Hence, count =798,
=031E16. Therefore, DO.W must be loaded with 798, or 031E,.

Now, to obtain delay of two seconds, the above DELAY loop of 2 millisecond can
be used with an external counter. Counter value =-25%¢-= 1000. The following instruction

2 msec
sequence will provide an approximate delay of two seconds:

MOVE.W #1000,D1  ;Initialize counter for 2 second delay
BACK MOVE.W #798,D0
DELAY DBE.W DO,DELAY ;20msec delay

SUBQ.W #1,D1

BNE.B BACK

Next, the delay time provided by the in
struction sequence above can be calculated. From Appendix D, the cycles required to
execute the following 68000 instructions:
MOVE.W #n,DI1(8 cycles)

SUBQ.W #n, D1 (4 cycles)
BNE.B (10/8 cycles)

As before, assuming a 4-MHz 68000 clock, each cycle is 250 ns. The total time
from the instruction sequence for a two-second delay = execution time for MOVE.W +
1000 * (2 msec delay) + 1000 * (execution time for SUBQ.W ) + 999* (execution time for
BNE.B for Z =0 when D1 ! 0)+ (execution time for BNE.B for Z = 1 when D1 =0 for
the last iteration) = 8 * 250ns + 1000 * 2msec + 1000 * 4 * 250ns + 999 * 10 * 250ns + 8
*250ns = 2.0035 seconds which is approximately 2 seconds discarding the execution times
of MOVE.W, SUBQ.W, and BNE.B.
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Questions and Problems

6.1
6.2

6.3

(b)

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

What are the basic differences between the 68000, 68008, 68010, and 680127
What does a HIGH on the 68000 FC2 pin indicate?

(a) If a 68000-based system operates in the user mode and an interrupt
occurs, what will the 68000 mode be?

1f a 68000-based system operates in the supervisor mode, how can the mode be
changed to the user mode?

(a) What is the purpose of 68000 trace and X flags?
(b) How can you set or reset these flags?

Indicate whether the following 68000 instructions are valid or not. Justify your
answers.

(a) MOVE.B D0,(A1)

(b) MOVE.B D0,A1

How many addressing modes and instructions does the 68000 have?

What happens after execution of the following 68000 instruction?
MOVE.L D0,$000013

What are 68000 privileged instructions?

Identify the following 68000 instructions as privileged or nonprivileged:
(a) MOVE (A2),SR

(b) MOVE CCR,(A5)

(©) MOVE.L A7,A2

(a) Find the contents of locations $305020 and $305021 after execution of
MOVE D5,$305020. Assume that [D5] = $6A2FA150 prior to execution of this
68000 MOVE instruction.

(b) If [AO] = $203040FF, [D0] = $40F 12560, and [$3040FF] = $2070, what
happens after execution of the 68000 instruction: MOVE (A0),D0?

Identify the addressing modes for each of the following 68000 instructions:
(a) CLR DO

(b) MOVE.L (Al)+,~(A5)

(©) MOVE $2000(A2),D1

Determine the contents of registers and memory locations affected by each of the
following 68000 instructions:

(a) MOVE (A0)+,D1

Assume the following data prior to execution of this MOVE:

[A0] = $50105020 [$105021] = $51
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6.13

6.14

6.15

6.16

6.17

6.18

[D1] = $70801F25 [$105022] = $52
[$105020] = $50 [$105023] = $7F
(b) MOVEA D5,A2
Assume the following data prior to execution of this MOVEA:
[D5] = $A725B600
[A2] = $5030801F

Find the contents of register DO after execution of the following 68000 instruction
sequence:

EXT.W DO

EXT.L DO
Assume that [D0] = $F215A700 prior to execution of the instruction sequence.

Write a 68000 assembly program to add a 16-bit number in the low word (bits
0-15) of D1 with another 16-bit number in the high word (bits 16-31) of D1. Store
the result in the high word of D1.

Write a 68000 assembly program to add the top two 16 bits of the stack. Store the
16-bit result onto the stack. Assume the supervisor mode.

Write a 68000 assembly program to add two 48-bit data items in memory as shown
in Figure P6.16. Store the result pointed to by A1l. The operation is given by

$00 02 03 A107 20
$07 03 02 02 03 1A
$07 05 05 A3 0A 3A

Assume that the data pointers and the data are already initialized.

Write a 68000 assembly language program to subtract two 64-bit numbers as
follows:
[D7.L][D6.L] - [DO.L][D1.L] — [D7.L][D1.L]

Write a 68000 assembly language program to subtract a 24-bit number (x) stored
in low 24 bits of DO from another 24-bit number (y) stored in consecutive memory

15 8,7 0 Increasing
A0—>{$00[$02 ggﬁf;gy

$031SA1
$07/$20

$07,%03
$02]802
A1—>{$303]| $1A

FIGURE P6.16
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6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28
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locations starting at $506080 (the highest byte at $506080 and the lowest byte at
$506082). Store the result in low 24 bits of D7.

Write a 68000 assembly language program to perform (X2 + Y?) where X is a
signed 8-bit number stored in low 8 bits of DO and Y is an unsigned 16-bit
number stored in low 16 bits of D1. Save the 32-bit result onto the supervisor
stack. Assume that the supervisor stack pointer is already initialized.

Write a 68000 assembly language program to multiply a 16-bit signed number
stored in the high word of D1 by an 8-bit signed number stored in the lowest byte
of DI. Store the result in D1.L.

Write a 68000 assembly program to multiply a 16-bit signed number in the low
word of DO by an 8-bit unsigned number in the highest byte (bits 31-24) of DO.

Find the contents of D1 after execution of DIVS.W #6,D1. Assume that [D1] =
$FFFFFFF7 prior to execution of the 68000 instruction. Identify the quotient and
remainder. Comment on the sign of the remainder. '

Write a 68000 assembly program to divide a 16-bit signed number in the high
word of D1 by an 8-bit signed number in the lowest byte of D1.

Write a 68000 assembly program to compute the following:
I=6xJ+K/M

where the locations $6000, $6002, and $6004 contain the 16-bit signed integers J,

K, and M. Store the result into a long word starting at $6006. Discard the remainder
of K/M.

Write a 68000 assembly program to compare two strings of 15 ASCII characters.
The first string is stored starting at $502030. The second string is stored at location
$302510. The ASCII character in location $502030 of string 1 will be compared
with the ASCII character in location $302510 of string 2, [$502031] will be
compared with [$302511], and so on. Each time there is a match, store $SEEEE
onto the stack; otherwise, store $0000 onto the stack. Assume the user mode.

Write a 68000 assembly language program to insert a ‘1’ at bit 2 of DO.W without
changing the other bits if DO.W contains a negative number. On the other hand,
insert a ‘0’ at bit 2 of DO.W without changing the other bits if DO.W contains a
positive number.

Write a 68000 assembly program to divide a 9-bit unsigned number in the high 9
bits (bits 31-23) of DO by 8,,. Do not use any division instruction. Store the resuit
in DO. Neglect the remainder.

Write a 68000 assembly language program that will check whether the 16-bit
signed number in DO.W is positive or negative. If the number is positive, the
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6.29

6.30

6.31

6.32

6.33

program will multiply the 16-bit unsigned number in D1.W by 16, and provide a
32-bit result; otherwise, the program will set the lowest byte D1.B to all 1’s. Use
only data movement, shift, bit manipulation, and program control instructions.
Assume that the 16-bit numbers are already loaded intoD0.W and D1.W.

Write a subroutine in 68000 assembly language to compute

Z=X X
=
Assume that the X’s are signed 8-bit and stored in consecutive locations starting at
$504020. Assume that A0 points to the X;’s. Also, write the main program in 68000
assembly language to perform all initializations (A0 to $504020, A7 to $406020),
call the subroutine, and then compute Z/100. Assume supervisor mode.

Write a subroutine in 68000 assembly language program to compute the trace of
a 4 x 4 matrix containing 8-bit unsigned integers. Assume that each element is
stored in memory as a 16-bit number with upper byte as zero in the row-major
order form; that is, elements are stored in memory as row by row, and within a
row, elements are stored as column by column. Note that the trace of a matrix is
the sum of the elements of the leading diagonal.

Write a subroutine in 68000 assembly language to subtract two 32-bit packed BCD
numbers. BCD number 1 is stored at a location from $500000 through $500003,
with the least significant digit at $500003 and the most significant digit at $500000.
BCD number 2 is stored at a location from $700000 through $700003, with the
least significant digit at $700003 and the most significant digit at $700000. BCD
number 2 is to be subtracted from BCD number I. Store the result as packed BCD
digits in DS.

Write a subroutine in 68000 assembly language to convert a three-digit unpacked
BCD number to binary using unsigned multiplication by 10, and additions. The
most significant digit is stored in a memory location starting at $3000, the next
digit is stored at $3001, and so on. Store the binary result (N) in D3. Note that
arithmetic operations for obtaining N will provide a binary result. Use the value
of the three-digit BCD number,

N=N2x102+N1x10'+NO
= ((10xN2)+ N1)x10+ NO
Assume a 10-MHz 68000. Write a 68000 assembly language program to obtain

a delay routine for one millisecond. Using this one-millisecond routine, write a
68000 assembly language program to provide a delay for 10 seconds.
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68000
HARDWARE AND
INTERFACING

In this chapter we describe hardware aspects of the Motorola 68000. Topics include 68000
pins and signals, clock and reset circuits, timing diagrams, and memory and I/O interfacing
techniques. Finally, the design of a 68000-based microcomputer is described along with
memory and I/O maps.

7.1 68000 Pins And Signals

The 68000 is usually packaged in one of the following:
*  64-pin dual in-line package (DIP)

*  68-terminal chip carrier
*  68-pin quad pack
*  68-pin grid array (PGA)

Figure 7.1 shows the 68000 pin diagram for a DIP. For reliable operation, unused
inputs should be connected to an appropriate signal level. Unused active LOW inputs should
be connected to the Vec. Unused active HIGH inputs should be connected to GROUND.
Appendix C provides data sheets for the 68000 and support chips.

The 68000 is provided with two Vce (+5 V) and two ground pins. Power is thus
distributed to reduce noise problems at high frequencies. Also, to build a prototype to
demonstrate that the paper design for the 68000-based microcomputer is correct, one must
use either wire-wrap or solder for the actual construction. A breadboard should not be
used, because at high frequencies (above 4 MHz), there will be noise problems due to stray
capacitances. The 68000 consumes about 1.5 W of power.

Dy—D,; are the 16 data bus pins. All transfers to and from memory and I/O devices
are conducted over the 8-bit (LOW or HIGH) or 16-bit data bus depending on the size of
the device. A,—A; are the 23 address lines. A, is obtained by encoding the UDS (upper data
strobe) and LDS (lower data strobe) lines.

The 68000 operates on a single-phase TTL-level clock at 4, 6, 8, 10, 12.5, 16.67,
or 25 MHz. The clock signal must be generated externally and applied to the 68000 clock
input line. An external crystal oscillator chip is required to generate the clock. Table 7.1
gives the clock timing specifications and Figure 7.2 shows the 68000 CLK wavform. The
clock is at a TTL-compatible voltage. The clock timing specifications provide data for three
different clock frequencies: 8, 10, and 12.5 MHz. The 68000 CLK input can be provided by
an external crystal oscillator or by designing an external circuit.

175
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o, g1 8400,
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D, 3 62 ) Dy
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ABOs 590 o,
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s ] e 57 1 by,
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A, O 20 36 [ A,
A, [ 30 B0 A,
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FIGURE 7.1 68000 pins and signals.
TABLE 7.1 68000 Clock Timing Specifications
Characteristic Symbol 8 MHz 10 MHz 12.5 MHz Unit
Min | Max | Min Max Min Max
Frequency of operation f 4.0 8.0 4.0 10.0 4.0 12.5 MHz
Cycle time teve 125 250 100 250 80 250 ns
Clock pulse width teL 55 125 45 125 35 125 ns
ey 55 125 45 125 35 125
Rise and fall times te, — 10 — 10 — 5 ns
I — 10 — 10 — 5

* The 68000 signals can be divided into five functional categories:
*  Synchronous and asynchronous control lines
¢ System control lines

¢ Interrupt control lines
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teye

20V \
08V \

tee € ter

FIGURE 7.2 68000 clock input timing diagram and AC electrical
specifications.

e  DMA control lines

e  Status lines

7.1.1 Synchronous and Asynchronous Control Lines

The 68000 bus control is asynchronous; that is, once a bus cycle is initiated, the external
device must send a signal back to complete it. The 68000 also contains three synchronous
control lines that facilitate interfacing to synchronous peripheral devices such as Motorola’s
inexpensive 6800 family.

In synchronous operation bus control is synchronized or clocked using a common
system clock signal. In 6800 family peripherals, this common clock is the E clock signal,
depending on the particular chip used. With synchronous control, all READ and WRITE
operations must be synchronized with the common clock. However, this may create
problems when interfacing with slow peripheral devices. This problem does not arise with
asynchronous bus control.

Asynchronous operation is not dependent on a common clock signal. The 68000
utilizes the asynchronous control lines to transfer data between the 68000 and peripheral
devices via handshaking. Using asynchronous operation, the 68000 can be interfaced to
any peripheral chip regardless of the speed.

The 68000 has three control lines to transfer data over its bus in a synchronous
manner: E (enable), VPA (valid peripheral address), and VMA (valid memory address).
The E clock corresponds to the clock of the 6800. The E clock is output at a frequency
that is one-tenth of the 68000 input clock. VPA is an input and tells the 68000 that a 6800
device is being addressed and therefore that data transfer must be synchronized with the
E clock. VMA is the processor’s response to VPA VMA. is asserted when the memory
address is valid. This also tells the external device that the next data transfer over the data
bus will be synchronized with the E clock.

VPA can be generated by decoding the address pins and address strobe (AS)
Note that the 68000 asserts AS LOW when the address on the address bus is valid. VMA
is typically used as the chip select of the 6800 peripheral. This ensures that the 6800
peripherals are selected and deselected at the correct time. The 6800 peripheral interfacing
sequence is as follows:

1. The 68000 initiates a cycle by starting a normal read or write cycle.
2. The 6800 peripheral defines the 68000 cycle by asserting the 68000 VP/ VPA input.

If VPA is asserted as soon as possible after assertion of / AS, then VPA will be

recognized as being asserted after three cycles. If VPA is not asserted after
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FIGURE 7.3 Interfacing of the 68000 to even and odd addresses.

three cycles, the 68000 inserts wait states until VPA is recognized by the 68000
as asserted. DTACK should not be asserted while VPA is asserted. The 6800
peripheral must remove VPA within one clock period after AS is negated.

3. The 68000 monitors enable (E) until it is LOW. The 68000 then synchronizes all
READ and WRITE operations with the E clock. The VMA output pin is asserted
LOW by the 68000.

4. The 6800 peripheral waits until E is active (HIGH) and then transfers the data.

5. The 68000 waits until E goes to LOW (on a read cycle, the data is latched
as E goes to LOW internally). The 68000 then negates VMA ,AS , UDS,
and LDS. The 68000 thus terminates the cycle and starts the next cycle.

___ The 68000 utilizes five lines to control address and data transfers asynchronous-
ly: AS (address strobe), R‘'W (read/write), DTACK (data acknowledge), UDS (upper data
strobe), and LDS (lower data strobe).

The 68000 outputs AS to notify the peripheral device when data is to be
transferred. AS is active LOW when the 68000 provides a valid address on the address
bus. The R/W output line indicates whether the 68000 is reading data from or writing
data into a peripheral device. R/W is HIGH for read and LOW for write. DTACK is used
to tell the 68000 that a transfer is to be performed. When the 68000 wants to transfer data
asynchronously, it first activates the AS line and at the same time generates the required
address on the address lines to select the peripheral device.

Because the AS line tells the peripheral chip when to transfer data, the AS line
should be part of the address decoding scheme. After enabling AS , the 68000 enters the
wait state until it receives DTACK from the peripheral device selected. On receipt of
DTACK , the 68000 knows that the peripheral device is ready for data transfer. The 68000

TABLE 7.2 Definitions of UDS and LDS
UDS UDS Data Transfer Occurs Via: Address
1 0 DD, pins for byte Odd
0 1 D¢—D,; pins for byte Even

0 0 Dy—D,; pins for word or long word Even




68000 Hardware and Interfacing 179

then utilizes the R’W and data lines to transfer data. UDS and LDS are defined in Table
7.2.

A, is encoded from UDS and LDS . When UDS is asserted, the contents of
even addresses are transferred on the high-order eight lines of the data bus, Dg—D,.. The
68000 internally shifts this data to the low byte of the register specified. When LDS is
asserted, the contents of odd addresses are transferred on the low-order eight lines of the
data bus, D—D;. During word and long word transfers, both UDS and LDS are asserted and
information is transferred on all 16 data lines, D,—D,; pins. Note that during byte memory
transfers, A, corresponds to UDS for even addresses (A, = 0) and to LDS for odd addresses
(A, = 1). The circuit in Figure 7.3 shows how even and odd addresses are interfaced to the
68000.

7.1.2 System Control Lines

The 68000 has three control lines, BERR (bus error), HALT, and RESET , which are used
to control system-related functions. BERR is an input to the 68000 and is used to inform the
processor that there is a problem with the instruction cycle currently being executed. With
asynchronous operation, this problem may arise if the 68000 does not receive DTACK
from a peripheral device. An external timer can be used to activate the BERR pin if the
external device does not send DTACK within a certain period of time. On receipt of BERR,
the 68000 does one of the following:

*  Reruns the instruction cycle that caused the error
* Executes an error service routine

The troubled instruction cycle is rerun by the 68000 if it receives a HALT signal
along with the BERR signal. On receipt of LOW on both the HALT and BERR pins, the
68000 completes the current instruction cycle and then goes into the high-impedance state.
On removal of both HALT and BERR (i.e., when both HALT and BERR are HIGH), the
68000 reruns the troubled instruction cycle. The cycle can be rerun repeatedly if both
BERR and HALT are enabled/disabled continually.

On the other hand, an error service routine is executed only if the BERR signal is
received without HALT. In this case, the 68000 will branch to a bus error vector address
where the user can write a service routine. If two simultaneous bus errors are received via
the BERR pin without HALT, the 68000 goes into the halt state automatically until it is
reset.

TABLE 7.3 Function Code Lines

FC2 FC1 FCO Operation
0 0 0 Unassigned
0 0 i User data
0 1 0 User program
0 1 1 Unassigned
1 0 0 Unassigned
1 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 Interrupt acknowledge
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The HALT line can also be used by itself to perform single stepping or to provide
DMA. When the HALT input is activated, the 68000 completes the current instruction and
goes into a high-impedance state until HALT is returned to HIGH. By enabling/disabling
the HALT line continually, single-stepping debugging can be accomplished. However,
because most 68000 instructions consist of more than one clock cycle, single stepping
using HALT is not normally used. Rather, the trace bit in the status register is used to
single-step the complete instruction.

One can also use HALT to perform microprocessor-halt DMA. Because the 68000
has separate DMA control lines, DMA using the HALT line will not normally be used. The
HALT pin can also be used as an output signal. The 68000 will assert the HALT pin LOW
when it goes into a halt state as a result of a catastrophic failure. The double bus error
(activation of BERR twice) is an example of this type of error. When this occurs, the 63000
goes into a high-impedance state until it is reset. The HALT line informs the peripheral
devices of the catastrophic failure.

The RESET line of the 68000 is also bidirectional. To reset the 68000, the RESET
and HALT pins must both be LOW for 10 clock cycles at the same time except initially
when Vcc is applied to the 68000. In this case, an external reset must be applied for at least
100 ms. The 68000 executes a reset service routine automatically for loading the PC with
the starting address of the program.

The 68000 RESET pin can also be used as an output line. A LOW can be sent
to this output line by executing the RESET instruction in the supervisor mode in order to
reset external devices connected to the 68000 RESET pin. Upon execution of the RESET
instruction, the 68000 drives the RESET pin LOW for 124 clock periods and does not
affect any data, address, or status registers. Therefore, the RESET instruction can be placed
anywhere in the program whenever the external devices need to be reset.

Upon hardware reset, the 68000 sets S-bit in SR to 1 and then loads the supervisor
stack pointer (A7’) and the program counter (PC) from location $000000. In addition, the
68000 clears the trace bit in SR to 0 and sets bits 12 I1 10 in SR to 111. No other registers
are affected.

To each 16M user data

partition

DD, &—>
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cs
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program
68000 cs
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16M supervisor
data
cs

FC2
FC1
FCo
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program
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N o o R W®N 2O
PN S R

FIGURE 7.4 Partitioning 68000 address space using the FC2, FC1, and FC0 pins
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7.1.3 Interrupt Control Lines

IPLO, IPL1, and IPL2 are the three interrupt control lines. These lines provide for seven
interrupt priority levels (IPL2, IPL1, IPLO = 111 means no interrupt, and IPL2, IPL1, IPL0
= 000 means nonmaskable interrupt with the highest priority). If there are no interrupts in
the system, these three pins must be connected HIGH to disable the 68000’s interrupts. The
68000 interrupts are discussed later in the chapter.

7.1.4  DMA Control Lines

The BR (bus request), BG (bus grant), and BGACK (bus grant acknowledge) lines are used
for DMA purposes. If the system does not use DMA, the BR and BGACK pins must be
connected HIGH to disable the DMA function. The 68000 DMA is discussed later in the
chapter.

7.1.5 Status Lines

The 68000 has three output lines FC2, FC1, and FCO, called function code pins. These
lines tell external devices whether user data/program or supervisor data/program is being
addressed. These lines can be decoded to provide user or supervisor programs/data and
interrupt acknowledge as shown in Table 7.3. The FC2, FC1, and FCO pins can be used
to partition memory into four functional areas: user data memory, user program memory,
supervisor data memory, and supervisor program memory. Each memory partition can
directly access up to 16 MB, and thus the 68000 can be made to directly address up to 64
MB of memory. This is shown in Figure 7.4.

Note that both supervisor and user memory are needed for multitasking or
multiuser systems. However, one can design memory without using the FC2, FC1,
FCO pins in memory decoding logic for a single application or for systems requiring no
operating systems. In that case, the 68000 will always operate in the supervisor mode.
Upon hardware reset, the 68000 will operate in supervisor mode, and will continue to
operate in that mode.

7.2 68000 Clock and Reset Signals

In this section we cover generation of the 68000 clock and reset signals in detail because
the clock signal and the reset pins are two important signals of any microprocessor.

7.2.1 68000 Clock Signals

As mentioned earlier, the 68000 does not include an on-chip clock generation circuitry.
This means that an external crystal oscillator chip is required to generate the clock. The
68000 CLK input can be provided by a crystal oscillator or by designing an external circuit.
Figure 7.5 shows a simple oscillator to generate the 68000 CLK input.

Crystal
{3 m
R=1K D a
74HC74
To 68000
Clock Q> cLK input
74HC04 74HC04

FIGURE 7.5 External clock circuitry.
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This circuit uses two inverters connected in series. Inverter 1 is biased in its
transition region by the resistor R. Inverter 1 inputs the crystal output (sinusoidal) to provide
a logic pulse train at the output of inverter 1. Inverter 2 sharpens the wave and drives the
crystal. For this circuit to work, HCMOS logic must be used for the inverters. Therefore,
the 74HCO04 inverter chip is used. The 74HCO04 has high noise immunity and the ability
to drive 10 LS-TTL loads. A coupling capacitor should be connected across the supply
terminals to reduce the ringing effect during high-frequency switching of the HCMOS
devices. Note that the ringing occurs when a circuit oscillates for a short time due to the
presence of stray inductance and capacitance. In addition, the output of this oscillator is fed
to the CLK input of a D flip-flop (74HC74) to reduce the ringing further. A clock signal of
50% duty cycle at a frequency of one-half the crystal frequency is generated. This means
that this circuit with a 16-MHz crystal will generate an 8-MHz clock for the 68000.

7.2.2 68000 Reset Circuit

When designing a microprocessor’s reset circuit, two types of reset must be considered:

power-up and manual. These reset circuits must be designed using the parameters specified

by the manufacturer. Therefore, a microprocessor must be reset when its Vcc pin is
connected to power, called power-up reset. After some time during normal operation, the

microprocessor can be reset by the designer upon activation of a manual switch such as a

pushbutton. A reset circuit therefore needs to be designed following the timing parameters

associated typically with the microprocessor’s reset input pin specified by the manufacturer.

The reset circuit, once designed, is typically connected to the microprocessor’s reset pin.

Upon hardware reset, the 68000 sets the S-bit in SR to 1 and performs the
following:

1. The 68000 loads the 24-bit supervisor stack pointer (A7’) from addresses $000000
through $000003 with the highest byte from address $000001 and the lowest byte
from address $000003. Note that the contents of address $000000 are don’t cares. The
68000 loads the 24-bit PC from addresses $000004 through $000007 with the highest
byte from address $000005 and the lowest byte from address $000007. Note that the
contents of address $000004 are don’t cares. Typical 68000 assembler directives such
as DC.L can be used for this purpose. For example, to load $200128 into supervisor SP
and $3F1420 into PC, the following instruction sequence can be used:

ORG  $00000000
DCL $00200128

DC.L  $003F1420
2. The 68000 clears the trace bit in SR to 0 and sets the interrupt mask bits I2 I1 I0 in SR
to 111. No other registers are affected.

To cause a power-up reset, Motorola specifies that both the RESET and HALT
pins of the 68000 must be held LOW for at least 100 ms. This means that an external circuit
needs to be designed that will generate a negative pulse with a width of at least 100 ms
for both RESET and HALT. The manual RESET requires that the RESET and HALT pins
both be LOW for at least 10 cycles (1.25 microseconds for 8 MHz). In general, it is safer
to assert RESET and HALT for much longer than the minimum requirements. Figure 7.6
shows a typical 68000 reset circuit that asserts RESET and HALT LOW for approximately
200 ms. The 555 timer is used in the circuit.

The reset circuit in the figure utilizes the 555 timer chip and provides for both
power-up and manual resets by asserting the 68000 RESET and HALT pins for at least
200 ms. The computer designer does not have to know about the details of the 555 chip.
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+5 V- RESET CONTROL (——L
555 Timer

T 0.01,F

+5v -

7407 % 1
> To 68000 RESET pin
+5V
I 4
> > To 68000 HALT pin
7404 7407
FIGURE 7.6 68000 RESET circuit,

Instead, the designer should know how to use the 555 chip to generate the 68000 RESET
signal.

The 555 is a linear eight-pin chip. The TRIGGER pin is the input signal. When
the voltage at the TRIGGER input pin is less than or equal to 1/3 V_, the OUTPUT pin is
HIGH. The DISCHARGE and THRESHOLD pins are tied together to R, and C. Note that
the values of R, and C determine the output pulse width. The CONTROL input pin controls
the THRESHOLD input voltage. According to the manufacturer’s data sheets, the control
input should be connected to a 0.01-uF capacitor whose other lead should be grounded.
Also, from the manufacturer’s data sheets, the output pulse width ¢,,= 1.1 R,C seconds.
The values of R, and C can be chosen for stretching out the pulse width.

An RC circuit is connected at the 555 TRIGGER pin. A slow pulse obtained by
charging and discharging the capacitor C, is applied at the 555 TRIGGER input pin. The
555 will generate a clean and fast pulse at the output. Capacitor C, is at zero voltage upon
power-up. This is obviously lower than 1/3 ¥, with V.= 5 V. Thus, the 555 will generate
a HIGH at the OUTPUT pin. The OUTPUT pin is connected through a 7404 inverter to
provide a LOW at the 68000 RESET and HALT pins.

The 7404 output is buffered via two 7407s (noninverting buffers) to ensure adequate
currents for the 68000 RESET and HALT pins. Note that the 7407 provides an open
collector output. Therefore, a 1-Kohm pull-up is used for each 7407. Now, let us explain
how the timing requirements for the 68000 RESET are satisfied.

As mentioned before, capacitor C, is initially at zero voltage upon power-up. C,
then charges to V., after a definite time determined by the time constant, RC,. The charging
voltage across the capacitor is

Ve(t) = Vecll - e‘ﬁ]
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V.(£) must be less than or equal to ¥_/3 volts (1.7 V). To be on the safe side, let us assume
that V.=V, /4=5/4=125V.

Hence, % =1-e R
e T =0.75
~RCr C = In(0.75)
- R =029
Therefore, RCy = 029 29

As mentioned earlier, it is desired to provide 200 ms ( chosen arbitrarily; satisfying the
minimum requirements specified by Motorola) reset time for both power-up and manual
reset.

200 ms
0.29

Hence, RC1 =0.69 s

If R is arbitrarily chosen as 100 KQ, then C,=6.9 uF.

The 555 output pulse width can be determined using the equation ¢,, = 1.1 R, C.
Since #,, = 200 msec, hence R, C=0.18 seconds. If R, = 1 MQ (arbitrarily chosen) then C
=0.18/10° = 0.18 uF.

The reverse-biased diode (1N904) connected at the 555 TRIGGER input circuit
is used to hold the capacitor (C, charged to 1.25 V) voltage at 1.25 V in case ¥V, (obtained
using a power supply from AC voltage) drops below 5 V to a level such that the capacitor C,
may discharge through the 100-KQ resistor. In such a situation, the diode will be forward
biased, essentially shorting out the 100-Kohm resistor, thus maintaining the capacitor
voltage at 1.25 V. In Figure 7.6, upon power-up, the capacitor C, charges to approximately
1.25 V. After some time, if the reset switch is depressed, the capacitor is short-circuited to
ground. The capacitor therefore discharges to zero.

This logic 0 at the 555 TRIGGER input pin will provide 200 ms LOW at the
68000 RESET and HALT input pins. This will satisfy the minimum requirement of 10
clock cycles (1.25 microseconds for a 8-MHz clock) at the 68000 RESET and HALT pins
for manual reset. The values of R and C, at the 555 TRIGGER input should be recalculated
for other 68000 clock frequencies for manual reset. Note that the 68000 power-up reset
time is fixed with a timing requirement of at least 100 ms, whereas the manual reset time
depends on the 68000 clock frequency and must be at least 10 clock cycles.

Another way of generating the power-up and manual resets is by using a Schmitt
trigger inverter such as the 7414 chip. Figure 7.7 shows a typical circuit.

Operation of the 68000 power-up and manual resets using the RC circuit in Figure
7.7 was described earlier. The purpose of the two 7414 Schmitt trigger inverters is primarily
to shape up a slow pulse generated by the RC circuit to obtain a fast and clean negative

RC, = = 689.65 ms
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+5V
+5V
o0k To 68000
NG04 RESETpin
1 % To 68000
L4 e
Reset 7414 7414 HALT pin
L 55F
= switch e " (Schmit-  (Schmitt- 407
T = trigger trigger
inverter) inverter)
FIGURE 7.7 68000 reset circuit using a Schmitt trigger.

pulse. Two 7407 open-collector noninverting buffers are used to amplify currents for the
68000 RESET and HALT pins. Let us now determine the values of R and C.

When the input of the 7414 Schmitt trigger inverter is low (e.g., 0 V), the output
will be HIGH, typically at about 3.7 V. For input voltage from 0 to about 1.7 V, the output
of the 7414 will be HIGH. Let us arbitrarily choose V,=1.5V to provide a low at the input
of the first 7414 in the figure. As before,

Ve =Vee[l —e 7]

Hence, 1 - e~xC = %

e"7c =0.7
Let us design the reset circuit to provide 200 ms reset time. Therefore, £ = 200 ms.
0.2 _
22 = 1n(0.7)
0.2 _
RC = 0.36

Therefore, RC = 0.55 seconds
If R is chosen arbitrarily as 100 KQ, then C= 5.5 pF.

73 68000 Read and Write Cycle Timing Diagrams

The 68000 uses a handshaking mechanism to transfer data between the processors and
peripheral devices. This means that all these processors can transfer data asynchronously to
and from peripherals of varying speeds. During the read cycle, the 68000 obtains data from
a memory location or an I/O port. If the instruction specifies a word (such as MOVE.W
$020504,D1) or a long word (such as MOVE.L $030808,D0), the 68000 reads both upper
and lower bytes at the same time by asserting the UDS and LDS pins. When the instruction
is for a byte operation, the 68000 utilizes an internal bit to find which byte to read and then
outputs the data strobe required for that byte.

For byte operations, when the address is even (A, = 0), the 68000 asserts UDS
and reads data via the DD, pins into the low byte of the data register specified. On the
other hand, when the address is odd (A, = 1), the 68000 outputs a LOW on LDS and reads
data via the D,~D, pins to the low byte of the data register specified. For example, consider
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MOVE.B $507144, DS. The 68000 outputs a LOW on UDS (because A, = 0) and a HIGH
on LDS. The memory chip’s eight data lines must be connected to the 68000 Dg—D; pins.
The 68000 reads the data byte via the Dy—D,5 pins into the low byte of D5. Note that for
reading a byte from an odd address, the data lines of the memory chip must be connected
to the 68000 D,-D, pins. In this case, the 68000 outputs a LOW on LDS (because A, = 1)
and a HIGH on UDS, and then reads the data byte into the low byte of the data register.
Figure 7.8 shows the read/write timing diagrams. During S0, address and data
signals are in the high-impedance state. At the start of S1, the 68000 outputs the address on

& &

AN L A AT

is

asserted and latches data at the end of the next cycle.

<
<
Al

Slow read
asserted, it latches data at the end of S6; otherwise,

The 68000 asserts DTACK at the end of S4, and, if

the 68000 inserts a wait state(s) until

.

\
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X

Data latched
r~ ™~

Write

!
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I Yy

CLK
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UDS
LDS

< B 4 4
< a°

FCO-FC2
DTACK

FIGURE 7.8 68000 read and write cycle timing diagrams
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its address pins (A;—A,;). During SO, the 68000 outputs FC2-FCO signals. AS is asserted
at the start of S2 to indicate a valid address on the bus. AS  can be used at this point to latch
the signals on the address pins. The 68000 asserts UDS, LDS , and R/W = 1 to indicate a
READ operation. The 68000 now waits for the peripheral device to assert DTACK. Upon
placing data on the data bus, the peripheral device asserts DTACK. The 68000 samples the
DTACK signal at the end of S4. If DTACK is not asserted by the peripheral device, the
processor automatically inserts a wait state(s) (W).

However, upon assertion of DTACK, the 68000 negates the AS, m, and LDS
signals and latches the data from the data bus into an internal register at the end of the
next cycle. Once the peripheral device that has been selected senses that the 68000 has
obtained data from the data bus (by recognizing the negation of AS, UDS, or LDS), the
peripheral device must negate DTACK immediately so that it does not interfere with the
start of the next cycle. If DTACK is not asserted by the peripheral at the end of S4 (Figure
7.8, SLOW READ), the 68000 inserts wait states. The 68000 outputs valid addresses on the
address pins and keeps asserting AS, UDS, and LDS until the peripheral asserts DTACK.
The 68000 always inserts an even number of wait states if DTACK is not asserted by the
peripheral because all 68000 operations are performed using the clock with two states per
clock cycle. Note in Figure 7.8 that the 68000 inserts four wait states or two cycles.

As an example of word read, consider that the 68000 is ready to execute the
MOVE.W $602122,D0 instruction. The 68000 performs as follows:

1. At the end of SO the 68000 places the upper 23 bits of the address 602122,
on A,—A,;. o .

2. Atthe end of S1, the 68000 asserts AS , UDS, and LDS.

3. The 68000 continues to output a HIGH on the R/W pin from the beginning
of the read cycle to indicate a READ operation.

4. Atthe end of S0, the 68000 places appropriate outputs on the FC2—FCO0 pins
to indicate either supervisor or user read.

5. Ifthe peripheral asserts DTACK at the end of S4, the 68000 reads the contents
of 602122, and 602123, via the D;—D,; and D,—D, pins, respectively, into
the high and low bytes of DO.W at the end of S6. If the peripheral does not
assert DTACK at the end of S4, the 68000 continues to insert wait states.

Figure 7.9 shows a simplified timing diagram illustrating the use of DTACK for
interfacing external memory and I/O chips to the 68000. As mentioned before, the 68000
checks the DTACK input pin at the falling edge of S4 (three cycles), the external memory,
or I/O in this case, drives the 68000 DTACK input LOW, and the 68000 waits for one cycle
and latches data at the end of S6. However, if the 68000 does not find DTACK LOW at the
falling edge of S4, it waits for one clock cycle and then again checks DTACK for LOW.
If DTACK is LOW, the 68000 latches data after one cycle (the falling edge of S8). If the

68000 Clock S0 S1| 82| S3 S4—, !SS 86; [S7 S8| S9 S1qS11
¢ The 6

J— I teh 80301 t the falli

atches data at the falling

_680(:(3j DTACK —\—/— edge of S6 since DTACK

g\;gxt el:::? isf Igy at the falling edge
of S4.

memory and I/O

chips

(Arbitarily chosen)

FIGURE 7.9 68000 CLK and DTACK signals.
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68000 does not find DTACK LOW at the falling edge of S6, it checks for DTACK LOW at
the falling edge of S8 and the process continues. Note that the minimum time to latch data
is four cycles. This means that in the preceding example, if the 68000 clock frequency is 8
MHz, data will be latched after 500 ns because DTACK is asserted LOW at the end of S4
(375 ns). Note that DTACK can be asserted by AS if no wait states are required. This is
because AS goes LOW after approximately two clock cycles.

7.4 68000 Memory Interface

One of the advantages of the 68000 is that it can easily be interfaced to memory chips with
various speeds because it goes into a wait state if DTACK is not asserted (LOW) by the
memory devices at the falling edge of S4. A simplified schematic showing an interface of
a 68000 to two 2732s and two 6116s is given in Figure 7.10.

The 2732 is a 4K x 8 EPROM and the 6116 is a 2K x 8 static RAM. For a 4-MHz
clock, each cycle is 250 ns. Because the 68000 samples data at the falling edge of S4 (750
ns) and latches data at the falling edge of S6 (1000 ns), AS can be used to assert DTACK

From the 68000 timing diagram of Figure 7.8, AS goes LOW after approximately
two cycles (500 ns). The time delay between AS going LOW and the falling edge of S6
is 500 ns. Note that LDS and UDS must be used as chip selects as in Figure 7.10. They
must not be connected to A, of the memory chips because in that case, half of the memory
in each memory chip would be wasted. Note that LDS and UDS also go LOW after about
two cycles (500 ns).

In Figure 7.10, a delay circuit for DTACK is not required because both 2732 and
6116 place data on the bus lines before the 68000 latches data. This is because the 68000
clock frequency is 4 MHz in this case. Thus, each clock cycle is 250 ns. The access times
ofthe 2732 and 6116 are 200 ns and 120 ns, respectively. Because DTACK is sampled after
three clock cycles (3 x 250 ns = 750 ns), both the 2732 and 6116 will have adequate time
to place data on the bus for the 68000 to read. _ L

For example, consider the even 2732 EPROM. UDS and AS are NORed and then
NANDed with inverted A ,; to select this chip. With the 200-ns access time of the 2732,
data will be placed on the 68000 Dy-D 5 pins after approximately 720 nanoseconds (500 ns
for AS or UDS + 10 ns for the NOR gate + 10 ns for the NAND gate + 200 ns for the 2732).
Therefore, no delay circuit for the 68000 DTACK is required because the 68000 latches
data from the D,—D; pins after four cycles (1000 ns in this case). The timing parameters of
the 68000-2732 with various 68000 frequencies are shown in Table 7.4.

Next, consider the odd 6116 static RAM (SRAM) with the 4-MHz 68000. Note
that the 6116 signals W (write enable), G (output enable), and E 1 E (chip enable) are decoded

as follows: When G = 0 and E=0=0, then W = 1 for read and W = 0 for write. In this case,

LDS and AS are NORed and NANDed with A, to select this chip. With the 120-ns access
time of the 6116 RAM, data will be placed on the 68000 DO-D7 pins after approximately
640 ns (500 ns for AS or LDS + 10 ns for the NOR gate + 10 ns for the NAND gate + 120
ns for the 6116). Because the 68000 latches data after four cycles (1000 ns in this case), no
delay circuit for DTACK is required. The requirements for DTACK for the 68000/6116
for various 68000 clock frequencies can be determined similarly. In case a delay circuit for
DTACK is required, a ring counter with D flip-flops can be used.

Let us now determine the memory maps. Figures 7.11(a) and 7.11 (b) show the
68000 interface to even 2732 and odd 6116 respectively. These figures are obtained from
Figure 7.10. When A,; =0, UDS = 0, AS = 0, and R/W = 1, the even 2732 of Figure 7.11(a)
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68000 interface to the 2732 / 6116.
will be selected by the 68000 to read data from the 68000’s DD, pins.

When A; = 1, LDS = 0, AS = 0, the odd 6116 of Figure 7.11(b) will be selected
by the 68000 to read (R/W =1) data from or write (R/W =0) data to 68000 DD, pins. For
2732, the 68000 address pins A,;—A,, are don’t cares (assume 0’s). For 6116, the 68000

The memory map for the even 2732 can be determined as follows:
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TABLE 7.4 68000-2732 Timing Example
Time before
68000 Clock first DTACK
Case Frequency Cycle is sampled Comment
1 12.5 MHz 80 ns 3(80) Not enough time
=240 ns for 2732 to place
data on bus; needs
delay circuit for
DTACK
2 16.67 MHz 60 ns 3(60) Same as case 1
=180 ns
3 25 MHz 40 ns 3(40) Same as case 1
=120 ns

68000 AS
68000 0DS | —_
CE
68000 A |, 2732

T [: o (Even) .

Bo-D5 7 >

Dg-D 5
(68000)
68000
AAg AoA
FIGURE 7.11(a) 68000 interface to an even 2732.
68000 AS
68000 A |, L& 6116
_ _ (Odd)
RW w 8
DO -D 7 K—F——>»
DD
(68000)
68000 1
Ap-Aq AoA 1o

FIGURE 7.11(b) 68000 interface to an odd 6116.
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e 2732 even
A023 Aozz"'AOM A(1)3 A12A11"‘ Al Ao
e o o \ j 0
.
\'/ -~ ¢ w teven
Don't cares; Toselect CanbeOsto s 2732

assume 0s 2732

Address range: $000000, $000002, ... , $O01FFE

Similarly, the memory for the odd 2732, even 6116, and odd 6116 can be
determined as follows:

e 2732 0dd
A23 Azz"’A14 A13 A12A11"'A1 Ao
\0 0 =+ 0/ 0 Y, 1
~— A Y A
Don't cares; Toselect Can be 0Osto 1s 2732
assume Os 2732
Address range: $000001, $000003, ... , $001FFF
* 6116 even
Ay Ay Ay Ag A12\A11"' A, A,
\0 s 0/ 1 0
v '? L—[ Can be Os to 1s L even
Don't cares; To select  pon't care: 6116
assume Os 6116 assume 0
Address range: $002000, $002002, ... , $002FFE
e 61160dd
Ay Ay Ay Ag A12\A11"' A, A
0 0 ¢+« 0 1 |
v A T——[ Canbe Osto 1s t—odd
Don't cares; To select  port care: 6116
assume Os 6116 assume 0

Address range: $002001, $002003, ... , $002FFF

Static RAMs such as the 6116 are used for small memory system. Also, note
that RAMs are needed when subroutines and interrupts requiring stack are desired in an
application. Note that linear decoding is used in Figure 7.10. Since the 68000 uses memory-
mapped /O, an unused address pin must be used to distinguish between memory and I/O.
If there is an 1/O chip in Figure 7.10, an unused address pin such as A, (arbitrarily chosen)
must be used to distinguish between memory and I/0. A,,= 0 and A,,=1 can respectively
be used to select memory (2732 and 6116) and the 1/O chip.
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7.5 68000 I/0
In this section we cover I/O techniques associated with the Motorola 68000.

7.5.1 68000 Programmed I/O

As mentioned earlier, the 68000 uses memory-mapped 1/O. Data transfer using I/O ports
(programmed I/O) can be achieved in the 68000 in one of the following ways:

* By interfacing the 68000 with an inexpensive slow 6800 1/0O chip, such as the 6821

* By interfacing the 68000 with its own family of I/O chips, such as the 68230

68000/6821 Interface The Motorola 6821 is a 40-pin peripheral interface adapter
(PIA) chip. It is provided with an 8-bit bidirectional data bus (Dy—D,), two register select
lines (RSO, RS1), read/write (R/W) and reset (RESET) lines, an enable line (E), two 8-bit
/0 ports (PAO-PA7 and PBO-PB?7), and other pins. Figure 7.12 shows the pin diagram of
the 6821. There are six 6821 registers. These include two 8-bit ports (ports A and B), two
data direction registers, and two control registers. Selection of these registers is controlled
by the RS0 and RS1 inputs together with bit 2 of the control register. Table 7.5 shows how
the registers are selected. In the table, bit 2 in each control register (CRA-2 and CRB-2)
determines the selection of either an 1/0 port or the corresponding data direction register
when the proper register select signals are applied to RSO and RS1. A 1 in bit 2 in CRA or

Vss [ 1 40 1 cA1
PAO[] 2 39 1 cA2
PA1C] 3 38 7 IRQA
PA2] 4 37 0 RQB
PA3(] 5 36 1 RSO
PA4[] 6 35 1 RS1
PASLC] 7 34 1 RESET
PA6] 8 330 D,
pA7] 9 321 p,
peoC] 10 3111 D»
p1] 11 30 O b,
pB2[] 12 291 p,
pB3[] 13 28 [ D
PB4[] 14 271 b,
pBs] 15 26 p,
pPBe] 16 250 E
p7 17 24 O CS1
cs1d 18 23] cs2
cB20] 19 (o, 221 CSO
vee O 20 21 rRW

FIGURE 7.12 6821 pin diagram
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TABLE 7.5 6821 Register Definition
Control Register Bits 2

RS1 RS0 CRA-2 CRB-2 Register Selected
0 0 1 X I/O port A
0 0 0 X Data direction register A
0 1 X X Control register A
1 0 X 1 I/O port B
1 0 X 0 Data direction register B
1 1 X X Control register B

X =don’t care.

CRB allows access of I/0 ports; a 0 in bit 2 of CRA or CRB selects the data direction
registers.

Each I/0O port bit can be configured to act as an input or output. This is accomplished
by sending a 1 in the corresponding data direction register bit for those bits that are to be
output and a 0 for those bits that are to be inputs. A LOW on the RESET pin clears all
registers to 0. This has the effect of configuring PAO-PA7 and PB0-PB?7 as inputs.

Three built-in signals in the 68000 provide an interface with the 6821: enable (E),
valid memory address (VMA), and valid peripheral address (VPA). The enable signal (E) is
an output from the 68000. It corresponds to the E signal of the 6821. This signal is the clock
used by the 6821 to synchronize data transfer. The frequency of the E signal is one-tenth of
the 68000 clock frequency. This allows one to interface the 68000 (which operates much
faster than the 6821) with the 6821. The valid memory address (VMA) signal is output by
the 68000 to indicate to the 6800 peripherals that there is a valid address on the address
bus. The valid peripheral address (VPA) is an input to the 68000. This signal is used to
indicate that the device addressed by the 68000 is a 6800 peripheral. This tells the 68000 to
synchronize data transfer with the enable signal (E).

To configure and address a port, the following steps should be followed (seeTable

7.5):
1. Clear bit 2 of the control register of the port.
2. Move data to the data direction register of the port to configure the port as input(s)
and/or output(s).

3. Setbit 2 of the control register of the port.

Let us now discuss how the 68000 instructions can be used to configure the 6821
ports. As an example, bit 7 of port A can be configured as an input, and bits 0—6 of port A
can be configured as outputs using the following instruction sequence:

BCLR.B #2,CRA ; Address DDRA
MOVEB #$7F,DDRA ; Configure port A
BSET.B #2,CRA ; Address port A

Once the ports are configured to the designer’s specification, the 6821 can be used
to transfer data from an input device to the 68000 or from the 68000 to an output device by
using the MOVE.B instruction as follows:

MOVE.B (EA), Dn ; Transfer 8-bit data from an input port
; to the specified data register Dn
MOVE.B Dn, (EA) ; Transfer 8-bit data from the specified

; data register Dn to an output port
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Figure 7.13(a) shows a block diagram of how two 6821s are interfaced to the
68000 to obtain four 8-bit I/O ports. Note that the least significant bit, A,, of the 68000
address pin is internally encoded to generate two signals, the upper data strobe (UDS) and
lower data strobe (LDS). For byte transfers, UDS is asserted if an even-numbered byte is
being transferred, and LDS is asserted for an odd-numbered byte. In Figure 7.13(a), when
A, =1and AS =0, the OR gate output will be LOW. This OR gate output is used to assert
VPA . The inverted OR gate output, in turn, makes CS1 HIGH on both 6821s.

A LOW on VPA will tell the 68000 that the I/O device is 6800-type (6821 in
this case) so that the 68000 can use the E clock. In response, the 68000 generates a LOW
on VMA. Inverted VMA will make CSO on both 6821s HIGH. Execution of an input or
output instruction with an even or odd port address will make UDS or LDS LOW. The
68000 will select the even or odd 6821 accordingly.

AS F——
VPA

A,
A,
D,-D,
D15_ Do {} Dys -Dy d ’
cs1 RS1 RSO D,»D cs1 RS1 RSO B,-D o
Mcoszr T [D T ] =
(Even address) pg7.ppo (Odd address) pg7.pgo
E ©cso Res RNVC§:> E CSO RES rw'vc§:>
"——- mT
E
WA >
RESET
Reset R
Circuit [~ ® LDS
UDsS
68000
FIGURE 7.13(a) 68000/6821 Interface.
68000 Agy
= 8
68000 AS ~| jp S— Ccs1 T—HB Port A
68000 E E k. 7 s PortB
( E6821)
— ven
68000 VMA [ CS0 .
68000 UDS > CS2 Dy-D, &=+
— R Dg-Dys
68000 R/W (68000}
68000 A2 > RS1
68000 A , RSO

FIGURE 7.13(b) 68000 interface to even 6821,
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TABLE 7.6 I/O map

Port A CRA Port B CRB

or or

DDRA DDRB
6821(even) $400000 $400002 $400004 $400006
6821(odd) $400001 $400003 $400005 $400007

Figure 7.13(b) is obtained from Figure 7.13(a). Figure 7.13(b) shows 68000-even
6821 interface along with pertinent connections. The addresses for Port A or DDRA for the
even 6821 can be obtained as follows:

Ay Ay Ay Ay " Ag As Ay A3 Ay, AL A

X 1 X X «+« X X X X 0 0 0 =$400000
PoorrtA
DDRA  UDS

Note that X’s are don’t cares, and are assumed 0’s.

Since the 68000 uses memory-mapped 1/0, an unused address pin such as A,,
must be used to distinguish between memory and I/0. Note that A,, is chosen arbitrarily.
Pin A,, = 1 is chosen to select I/O while Pin A,, = 0 will seiect memory. This will also
ensure that the addresses for the ports and the reset vector are not the same.

Assuming that the don’t care address lines A,; and A,—A; are Os, the addresses
for port B or DDRB, and control registers (CRA and CRB) for the even 6821 (A, = 0) can

D, O 1 48 D,
Ds O 2 47 11D,
D, O 3 46 1D,
Pa0 O 4 45 0D,
PA1O S 44 1D,
pa2 ] 6 43ORW
Pa3l 7 42 [ DTACK
PA4 E‘ 8 413¢Cs
PAs O ¢ 40 1 cLK
PA6 ] 10 39 I RESET
pa7 ] 1 387 vss
vee [ 12 37 [ PC7/TIACK
H1 O 13 36 [J PCB/PIACK
Hz O 14 35 [JPCS/PIRQ
H3 O 15 34 [J PC4/DMAREQ
Ha O 16 33 3 Pc3TouT
PO O 17 32 O pPC2TIN
pB1 [ 18 31 pct
pB2 O 19 30 O Pco
PB3 O 20 29 [1RS1
a4 ] 21 28 [1RS2
pes [ 22 27 [1RsS3
pB6 ] 23 26 [ Rs4
pe7 O 24 25 [IRs5

FIGURE 7.14 68230 pin diagram
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be obtained ; similarly, the addresses for the ports or data direction registers, and control
registers for the odd 6821 (A, = 1) can be determined. Table 7.6 shows the 1/O map.

68000/68230 Interface The 68230 is a 48-pin /O chip designed for the 68000
family of microprocessors. The 68230 offers various functions such as, programmed I/O,
an on-chip timer, and a DMA request pin for connection to a DMA controller. Figure 7.14
shows the 68230 pin diagram. The 68230 can be configured in two modes of operation:
unidirectional and bidirectional. In the unidirectional mode, data direction registers
configure the corresponding ports as inputs or outputs. This is the programmed 1/O mode
of operation.

Both 8- and 16-bit ports can be used. In the bidirectional mode, the 68230
provides data transfer between the 68000 and external devices via exchange of control
signals (known as handshaking). In this section we cover only the programmed 1/O feature
of the 68230.

This 68230 ports can be configured in either unidirectional or bidirectional mode
by using bits 7 and 6 of the port general control register, PGCR (R0), as shown in Table
7.7. The other bits of the PGCR are defined for handshaking.

Modes 0 and 2 configure ports A and B as unidirectional or bidirectional 8-bit ports.
Modes 1 and 3, on the other hand, combine ports A and B to form a 16-bit unidirectional or
bidirectional port. Ports configured as unidirectional 8-bit must be programmed further as
submodes of operation using bits 7 and 6 of PACR (R6) and PBCR (R7) (see Table 7.8).
Note that X means don’t care. Nonlatched inputs are latched internally, but the values are
not latched externally by the 68230 at the port. Bit I/O is used for programmed 1/0.

The submodes define the ports as parallel input ports, parallel output ports, or
bit-configurable /O ports. In addition to these, the submodes further define the ports

TABLE 7.7 Port Configuration
PGCR Bits
7 6 Mode
0 0 0 (unidirectional 8-bit)
0 1 1 (unidirectional 16-bit)
1 0 2 (bidirectional 8-bit)
1 1 3 (bidirectional 16-bit)
TABLE 7.8 Submodes of Operation
Submode Bit 7 of Bit 6 of Comment
PACR or PACR or
PBCR PBCR
00 0 0 Pin-definable double-buffered input or
single-buffered output
01 0 1 Pin-definable double-buffered output
or nonlatched input
1X 1 X Bit I/O (pin-definable single-buftered
output or nonlatched input)
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TABLE 7.9 Some 68230 Registers
Register Select Bits
RSS5 | RS4 | RS3 | RS2 | RS1I Register Selected
0 0 0 0 0  PGCR, Port General Control Register (R0)
0 0 0 1 0  PADDR, Port A Data Direrction Register (R2)
0 0 0 1 1 PBDDR, Port B Data Direction Register (R3)
0 0 1 1 0  PACR, Port A Control Register (R6)
0 0 1 1 1 PBCR, Port B Control Register (R7)
0 1 0 0 0  PADR, Port A Data Register (R8)
0 1 0 0 1 PBDR, Port B Data Register (R9)

as latched input ports, interrupt-driven ports, DMA ports, and ports with various I/O
handshake operations. Table 7.9 lists some of the 68230 registers. The registers required
for programmed 1/O are considered in the following discussion. Note that 68230 register
select pins (RS5-RS1) are used to select the 68230 registers. Figure 7.15 illustrates how to
obtain specific addresses for some of the 68230 I/O ports. For simplicity, port A and port
B of the 68230 will be considered to illustrate the concept of 68000 programmed 1/0 with
a typical 16-bit I/O chip.

The hardware schematic for the 68000/68230 interface is shown in Figure 7.15.
Note that since the 68000 uses memory-mapped I/O, an unused address pin such as A,;
must be used to distinguish between I/O and memory. In this case, A,; =1 is used to select
I/O while A,; = 0 will select memory. Also, this will ensure that the port addresses are
different from the 68000 reset vector addresses 000000,,~000007 5. The configuration in
the figure will provide even port addresses because UDS is used to enable the 68230 CS.
The 68230 DTACK is an open-drain output. Hence, a pull-up resistor is required.

Note that A,; through A are don’t cares and are assumed to be (s in the following.
Hence, from the figure, addresses for registers PGCR (R0), PADDR (R2), PBDDR (R3),
PACR (R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained as shown below.
For example, consider PGCR as follows:
Therefore, the address for PGCR is $800000. Similarly, the addresses for PADDR =
$800004, for PBDDR = $800006, for PACR = $80000C, for PBCR = $80000E , for
PADR =3$800010, and for PBDR = $800012.

To configure a 68230 /O port such as PADR or PBDR, the following steps should
be followed:

®* (Clear bits 6 and 7 to 0 in PGCR.
* Setbit7to 1 in PACR (for PADR) or in PBCR (for PBDR)

* Move data to the data direction register of the port to configure the port as input(s)
and/or output(s).
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Oscillator
Crystal

FIGURE 7.15
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Oscillator
Crystal
|-—>cu<
23 {>0 Cs
AS
uDs
A i RS5
A ) RS4
A RS3
A, RS2
A1 RS1
+5YV EVEN
68230
(Unidirectional 8-bit mode)
DTACK DTACK
Ds i D15 < DO- D7
R/W] R/IW
HALT] 1
RESET * | RESET

68000/68230 interface.

Reset
Circuit

As an example, the following instruction sequence will select mode 0 and
submode 1X and configure bits 0—5 of port A as outputs, bits 6 and 7 of port A as inputs,
and port B as an input port:

PGCR
PADDR
PBDDR
PACR
PBCR

EXAMPLE 7.1

EQU
EQU
EQU
EQU
EQU
ANDLB
BSET.B
BSET.B
MOVE.B

MOVE.B

$800000
$800004
$800006
$80000C
$80000E
#$3F,PGCR
#7,PACR
#1,PBCR
#$3F,PADDR

#$00,PBDDR

)
s
>
)
?

)

Select mode 0

Port A bit I/O submode

Port B bit I/O sub

mode

Configure port A bits 0-5 as

outputs and bits 6

and 7 as inputs

Configure port B as an input port

Draw a schematic showing connections between two 2732’s (even
and odd) and one 6821 (Odd) to a 4-MHz 68000 using relevant pins and signals. Determine
memory and I[/O maps. Use linear decoding. Assume no interrupts and no DMA. Comment
on the unused input pins.
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The schematic is shown in Figure 7.16. Since no interrupts and no DMA are used, connect
IPL2 through IPLO pins to HIGH, BR to HIGH and BGACK to HIGH. Also with a 4-MHz
68000, the 2732’s, no delay circuit is needed for DTACK . Hence, pin AS is used to assert

DTACK .

The memory map for the even 2732 can be determined as follows:
e 2732even

A23 Azz"'A014 A(1)3 A12A11"' A1 AOO
0 0 « o . \ j
~ g ~ ¢ Y L even
Don't cares Toselect CanbeO'stol's 2732

assume Q's 2732
Address range: $000000, $000002, ..., SOO1FFE

- S CE
68000 AS j_‘ UDS ﬂ\_/
B ® OE - -
68000 A = 0 %97 B Pis
< 273
Ai-Arp VA5 A1 even
68000
S AR R
DTACK LDS —
<— LDS Ai-Ap, * OF Oo- o7 DBy
, _ } 73
Dg- D15> A1 A2 2|Ag Aty “odd
C(J:;zﬁ:;tor BBy > 68000 E ot >
—E PAO - PA7
—>ICLK Y
R/W DO CSso0 Port B
RESET VPA -PBO -PB7 >
W VMA Data Bus >
E
-D
GSOQ‘O DO !
- 68000
Reset Circuit g ( )
68000
AS

FIGURE 7.16 Figure for Example 7.1
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Similarly, the memory for the odd 2732 can be determined as follows:
e 2732 0dd

Aozs Aozz"'AM A13 A12A11"'A1 Ao

< 0 0 Y. 1
N /
N A \/' ' A odd
Don't cares Toselect CanbeQ'stol's 2732
assume 0's 2732

Address range: $000001, $000003, ... , $001FFF
* 6821 odd

The addresses for Port A or DDRA for the even 6821 can be obtained as follows:
Ay Ay Ay Aggen A As Ay Ay Ay A A
X X X X T X X X 0 0 1 =$002001
Port A
DDRA 0dd 6821

Note that X’s are don’t cares, and are assumed (’s.

Since the 68000 uses memory-mapped I/O, an unused address pin such as A,
must be used to distinguish between memory and I/0. Note that A,; is arbitrarily chosen.
Pin A;; =1 is chosen to select I/O while Pin A,; = 0 will select memory.

Assuming that the don’t care address lines A,; through A, are 0’s, the addresses
for the other I/O ports, control registers, and data direction registers for the odd 6821 (A, =
1) can be obtained. The I/O map is provided below:

Port A CRA Port B CRB

or or

DDRA DDRB
6821(odd) $002001 $002003 $002005 $002007
EXAMPLE 7.2 Write a 68000 assembly language program to drive an LED

connected to bit 7 of Port A based on a switch input at bit 0 of Port A. If the switch is HIGH,
turn the LED ON; otherwise turn the LED OFF. Assume a 68000/6821 microcomputer.
Use port addresses of your choice.

Solution

PORTA EQU $001001

DDRA EQU $001001

CRA EQU $001003
BCLR.B #2.CRA ; address DDRA
MOVE.B #$80,DDRA ; Configure PORT A
BSET.B #2,CRA ; Address PORT A

START MOVE.B PORTA,DO ; Read switch
ROR.B #1,D0 ; Rotate switch status
MOVE.B DO0,PORTA ; Output to LED

JMP START ; Repeat
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EXAMPLE 7.3 A 68000/68230-based microcomputer is required to drive an LED
connected at bit 7 of port A based on two switch inputs connected at bits 6 and 7 of port B.
If both switches are equal (either HIGH or LOW), turn the LED ON; otherwise turn it OFF.
Assume that a HIGH will turn the LED ON and a LOW will turn it OFF. Write a 68000
assembly program to accomplish this.

Solution

PGCR EQU  $800000
PACR EQU  $80000C
PBCR EQU  $80000E
PADDR EQU  $800004
PBDDR EQU  $800006
PADR EQU  $800010
PBDR EQU  $800012

ANDIB #$3F,PGCR ; Select mode 0
BSET.B #7,PACR ; Port A bit I/O submode
BSET.B #7,PBCR ; Port B bit I/O submode
MOVE.B  #$80,PADDR ; Configure port A bit 7 as output
MOVE.B #0,PBDDR ;  Configure port B bits 6 and 7 as inputs
MOVE.B PBDR,DO ;  Inputport B
ANDIB #$C0,D0 ;  Retain bits 6 and 7
BEQ.B LEDON ;. If both switches LOW, turn LED ON
CMPIB #$C0,DO ;  If both switches HIGH, turn LED ON
BEQ.B LEDON
MOVE.B #$00,PADR ; Turn LED OFF
JMP FINISH

LEDON MOVE.B #$80,PADR ; Turn LED ON

FINISH JMP FINISH

7.5.2 68000 Interrupt System

The 68000 interrupt I/O can be divided into two types: external and internal interrupts.

External Interrupts The 68000 provides seven levels of external interrupts, 1
through 7. The external hardware provides an interrupt level using the pins IPLO, IPL1, and
IPL2. Like other microprocessors, the 68000 checks for and accepts interrupts only between
instructions. It compares the value of inverted IPLO- IPL2 with the current interrupt mask
contained in bits 10, 9, and 8 of the status register.

If the value of the inverted IPLO~ IPL2 is greater than the value of the current
interrupt mask, the 68000 acknowledges the interrupt and initiates interrupt processing.
Otherwise, the 68000 continues with the current interrupt. Interrupt request level 0 (IPLO-
E_L_2 all HIGH) indicates that no interrupt service is requested. An inverted IPL2, IPL1,
IPLO of 7 is always acknowledged. Therefore, interrupt level 7 is nonmaskable. Note that
the interrupt level is indicated by the interrupt mask bits (inverted IPL2, I[PL1, IPLO).

To ensure that an interrupt will be recognized, the following interrupting rules
should be considered:

1. The incoming interrupt request level must have a higher priority level than the mask
level set in the interrupt mask bits (except for level 7, which is always recognized).
2. The IPL2-IPLO pins must be held at the interrupt request level until the 68000
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acknowledges the interrupt by initiating an interrupt acknowledge (IACK) bus cycle.

Interrupt level 7 is edge-triggered. On the other hand, interrupt levels 1-6
(maskable interrupts) are level sensitive. However, as soon as one of them is acknowledged,
the processor updates its interrupt mask at the same level.

The 68000 does not have any EI (enable interrupt) or DI (disable interrupt)
instructions. Instead, the level indicated by 12 I1 10 in the SR disables all interrupts below
or equal to this value and enables all interrupts above. For example, if 12 11 10 = 100, then
interrupt levels 1—4 are disabled and 5—7 are enabled. Note that 12, I1, 10 = 000 enables all
interrupts and 12, 11, 10 = 111 disables all interrupts except level 7 (nonmaskable).

Once the 68000 has decided to acknowledge an interrupt, it performs several
steps:

1. Makes an internal copy of the current status register.

2. Updates the priority mask and address lines A;—A; with the level of the interrupt
recognized (inverted IPL pins) and then asserts AS to inform the external devices that
A|—A, has the interrupt level.

3. Enters the supervisor state by setting the S bit in SR to 1.

4. Clears the T bit in SR to inhibit tracing.

5. Pushes the program counter (PC) onto the supervisor stack.

6. Pushes the internal copy of the old SR onto the supervisor stack.

7. Runs an IACK bus cycle for vector number acquisition (to provide the address of the
service routine).

8. Multiplies the 8-bit interrupt vector by 4. This points to the location that contains the
starting address of the interrupt service routine.

9. Jumps to the interrupt service routine.

10. The last instruction of the service routine should be RTE, which restores the original
status word and program counter by popping them from the supervisor stack.

External logic can respond to the interrupt acknowledge in one of three ways: by
requesting automatic vectoring (autovector), by placing a vector number on the data bus
(nonautovector), or by indicating that no device is responding (spurious interrupt).
Autovector (address vectors predefined by Motorola) If the hardware asserts VPA to
terminate the IACK bus cycle, the 68000 directs itself automatically to the proper interrupt
vector corresponding to the current interrupt level. No external hardware is inquired for
providing the interrupt address vector. Table 7.10 shows the various interrupt vectors for
autovector interrupts.

Nonautovector (user-definable address vectors via external hardware) The interrupting
device uses external hardware to place a vector number on data lines D,-D, and then

TABLE 7.10 Interrupt Vectors for Autovector Interrupts

2 I1 10
Level 1 « Interrupt vector $19 for 0 0 1
Level 2 «— Interrupt vector $1A for 0 1 0
Level 3 « Interrupt vector $1B for 0 1 1
Level 4 « Interrupt vector $1C for 1 0 0
Level 5 « Interrupt vector $1D for 1 0 1
Level 6 « Interrupt vector $1E for 1 1 0
Level 7 «— Interrupt vector $1F for 1 1 1
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TABLE 7.11 68000 Interrupt Map
Vector Address Vector Number

$60, $62 Spurious interrupt $18
$64, $66 Autovector 1 $19
$68, $6A Autovector 2 $1A
$6C, $6E Autovector 3 $iB
$70, $72 Autovector 4 $1C
$74, $76 Autovector 5 $1D
$78, $7A Autovector 6 $1E
$7C, $7E Autovector 7 $1F

$80 to $BC TRAP instructions $20 to $2F

$CO to $FC Unassigned $30 to $3F

$100 to $3FC User interrupts $40 to SFF

(nonautovector)

performs a DTACK handshake to terminate the IACK bus cycle. The vector numbers
allowed are $40 to $FF, but Motorola has not implemented protection on the first 64
entries, so that user interrupt may overlap at the discretion of the system designer.
Spurious Interrupt  Another way to terminate an interrupt acknowledge bus cycle is with
the BERR (bus error) signal. Even though the interrupt control pins are synchronized to
enhance noise immunity, it is possible that external system interrupt circuitry may initiate
an IACK bus cycle as a result of noise. Because no device is requesting interrupt service,
neither DTACK nor VPA will be asserted to signal the end of the nonexisting IACK bus
cycle. When there is no response to an IACK bus cycle after a specified period of time
(monitored by the user using an external timer), BERR can be asserted by an external
timer. This indicates to the processor that it has recognized a spurious interrupt. The
68000 provides 18H as the vector to fetch the starting address of this exception-handling
routine.

It should be pointed out that the spurious interrupt and bus error interrupt due to a
troubled instruction cycle (when no DTACK is received by the 68000) have two different
interrupt vectors. Spurious interrupt occurs when the BERR pin is asserted during interrupt
processing.

Internal Interrupts The internal interrupt is a software interrupt. This interrupt is
generated when the 68000 executes a software interrupt instruction (TRAP) or by some
undesirable events such as division by zero or execution of an illegal instruction.

68000 Interrupt Map The 68000 uses an 8-bit vector » to obtain the interrupt
address vector. The 68000 reads the long word located at memory 4*n. This long word is
the starting address of the service routine. Table 7.11 shows the interrupt map of the 68000.
Vector addresses $00 through $2E (not shown in the figure) include vector addresses for
reset, bus error, trace, divide by 0, and so on, and addresses $30 through $5C are unassigned.
The RESET vector requires four words (addresses 0, 2, 4, and 6); the other vectors require
only two words. After hardware reset, the 68000 loads the supervisor SP high and low
words, respectively, from addresses 000000,, and 000002, and the PC high and low
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1ACK3
—q
7415138 Do-D7 T
Decoder A1-A3
IACK3 3/ DTACK] 7415244
OCTAL BUFFER|
IACK5 »
% 8
7418148 — Vector number
Encoder * -
FCO-FC2 | a—L o1
AS IPL2-IPLD [¢— INT3
1ACK5 5 NTE
— o
68000
©—«4—— /02 (Autovector)
FIGURE 7.17 Autovector and nonautovector interrupts.

words, respectively, from 000004,, and 000006,,. The assembler directive DC (define
constant) can be used to load the PC and supervisor SP. For example, the following will
load A7" with $16F128 and PC with $781624:

ORG  $000000
DC.L  $0016F128
DC.L  $00781624

68000 Interrupt Address Vector Suppose that the user decides to write a service
routine starting at location $123456 using autovector 1. Because the autovector 1 address
is $000064 and $000066, the numbers $0012 and $3456 must be stored in locations
$000064 and $000066, respectively. This can be accomplished by using the assembler
directive DC.L as follows:

ORG  $000064

DC.L  $00123456

Note that from Table 7.11, n=$19 for autovector 1. Hence, the starting address of

the service routine is obtained from the contents of the address 4 x $19 = $000064.

Example of Autovector and Nonautovector Interrupts As an example to illustrate
the concept of autovector and nonautovector interrupts, consider Figure 7.17. In this figure,
I/0 device 1 uses nonautovector and I/0 device 2 uses autovector interrupts. The system is
capable of handling interrupts from seven devices (IPL2, IPL1, IPLO = 111 means no
interrupt) because an 8-to-3 priority encoder such as the 74L8148 is used.

The 74LS148 provides an inverted 3-bit output with input 7 as the highest
priority and input O as the lowest priority. Hence, if all eight inputs of the 74LS148 are low
simultaneously, the three-bit output will be 000 (inverted 111), indicating a LOW on input
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Vx
l(analog

signal)

8 ’
Port B L # Do-D7
Bit 0 of 1
port A # START
VPA
68000 based AD
Microcomputer Converter
IP_E Encoder 7
1PL1 4 ® Conversion Complete
IPLO 0
FIGURE 7.18 Interfacing a typical 8-bit A/D converter to a a 68000-based

__microcomputer using autovector interrupt.
7. In Figure 7.17, [/O1 and I/O2 from the interrupting devices are connected to inputs 3
and 5 of the 74L.S148 encoder, respectively. This means that the device with I/O2 as the
interrupting signal will generate level 5 autovectored interrupt, while the device with [/O1
as the interrupting signal will generate a nonautovectored interrupt.

Suppose that I/O device 2 drives /02 LOW to activate line 5 of the 74LS148.
This, in turn, will generate a LOW on input 5 of the 74L.S148. This will provide 010 (inverted
101) on the IPL2, IPL1, and IPLO pins of the 68000, generating a level 5 autovectored
interrupt. When the 68000 decides to acknowledge the interrupt, it drives FCO-FC2 HIGH.
The interrupt level is reflected on A —A; when AS is activated by the 68000. The IACKS
and I/O2 signals are used to generate VPA . Once VPA is asserted, the 68000 obtains the
interrupt vector address using autovectoring.

In the case of I/O1, line 3 of the priority encoder is activated to initiate a
nonautovectored interrupt. By using appropriate logic, DTACK is asserted using IACK3
and I/O1. The vector number is placed on DD, by enabling an octal buffer such as the
74L.S244 using IACK3. The 68000 inputs this vector number and multiplies it by 4 to
obtain the interrupt address vector.

Interfacing a Typical A/D Converter to a 68000 Using Autovector and Nonautovector
Interrupts Figure 7.18 shows the interfacing of a typical A/D converter to the
68000-based microcomputer using the autovector interrupt. In the figure, the A/D converter
can be started by sending a START pulse. The signal can be connected to line 4 (for
example) of the encoder.

Note that line 4 is 100, for IPL2, IPL1, IPL02, which is a level 3 (inverted 100,)
interrupt. Conversion Complete can be used to assert VPA, so that after acknowledgment
of the interrupt, the 68000 will service the interrupt as a level 3 autovector interrupt. Note
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Vx
(analog
signal)
8
Port B + Dy,-D;
Bit 0 of ! START
port A 7
DTACK
68000 based AD
Microcomputer Converter
IPL2 Encoder 7
Fc2 E 5 Conversion Complete
FC1 iPLO 0
FCo
Do-D7
7418244
L octal a
buffer 8
8-bit I 8
vector
FIGURE 7.19 Interfacing of a typical 8-bit A/D converter to 68000-based

microcomputer using nonautovector interrupt

that the encoder in Figure 7.18 is used for illustrative purposes. This encoder is not required
for a single device such as the A/D converter in the example.

Figure 7.19 shows the interfacing of a typical A/D converter to the 68000-based
microcomputer using the nonautovector interrupt. In the figure, the 68000 starts the
A/D converter as before. Also, the Conversion Complete signal is used to interrupt the
microcomputer using line 5 (IPL2, IPL1, TPL02= 101, which is a level 2 interrupt) of the
encoder. Conversion Complete can be used to assert DTACK so that, after acknowledgment
of the interrupt, FC2, FC1, FCO will become 111,, which can be NANDed to enable an
octal buffer such as the 74L.S244 in order to transfer an 8-bit vector from the input of the
buffer to the DD, lines of the 68000. The 68000 can then multiply this vector by 4 to
determine the interrupt address vector. As before, the encoder in Figure 7.19 is not required
for the single A/D converter.

7.5.3 68000 DMA . o

Three DMA control lines are provided with the 68000: BR (bus request), BG (bus grant),
and BGACK (bus grant acknowledge). The BR line is an input to the 68000. The external
device activates this line to tell the 68000 to release the system bus. At least one clock
period after receiving BR, the 68000 will enable its BG output line to acknowledge the
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DMA request. However, the 68000 will not relinquish the bus until it has completed the
current instruction cycle. The external device must check the AS (address strobe) line to
determine completion of the cycle by the 68000. When AS becomes HIGH, the 68000 will
tristate its address and instruction data lines and will give up the bus to the external device.
After taking over the bus, the external device must enable the BGACK line, which tells the
68000 and other devices connected to the bus that the bus is being used. The 68000 stays
in a tristate condition until BGACK becomes HIGH.

7.6 68000 Exception Handling

A 16-bit microcomputer is usually capable of handling unusual or exceptional conditions.
These conditions include situations such as execution of an illegal instruction or division
by zero. In this section, the exception-handling capabilities of the 68000 are described.

The 68000 exceptions can be divided into three groups: 0, 1, and 2. Group 0
has the highest priority, and group 2 has the lowest priority. Within each group, there are
additional priority levels. A list of 68000 exceptions together with individual priorities is
as follows:

Group 0 Reset (the highest level in this group), address error (the next
level), and bus error (the lowest level)
Group 1  Trace (the highest level), interrupt (the next level), illegal op-code
(next level), and privilege violation (the lowest level)
Group2 TRAP, TRAPV, CHK, and ZERO DIVIDE (no individual
priorities assigned in group 2)
Exceptions from group 0 always override an active exception from group 1 or group 2.

Group 0 exception processing begins at the completion of the current bus cycle
(two clock cycles). Note that the number of cycles required for a READ or WRITE
operation is called a bus cycle. This means that if there is a group O interrupt during
an instruction fetch, the 68000 will complete the instruction fetch and then service the
interrupt. Group 1 exception processing begins at the completion of the current instruction.
Group 2 exceptions are initiated through execution of an instruction. Therefore, there are
no individual priority levels within group 2. Exception processing occurs when a group 2
interrupt is encountered, provided that there are no group 0 or group 1 interrupts.

When an exception occurs, the 68000 saves the contents of the program counter
and status register onto the stack and then executes a new program whose address is
provided by the exception vectors. Once this program is executed, the 68000 returns to the
main program using the stored values of program counter and status register.

Exceptions can be of two types: internal or external. The internal exceptions are
generated by situations such as division by zero, execution of illegal or unimplemented
instructions, and address error. As mentioned before, internal interrupts are called traps.
The external exceptions are generated by bus error, reset, or interrupt instructions. The
basic concepts associated with interrupts, relating them to the 68000, have already been
described. In this section we discuss the other exceptions.

In response to an exceptional condition, the processor executes a user-written
program. In some microcomputers, one common program is provided for all exceptions.
The beginning section of the program determines the cause of the exception and then
branches to the appropriate routine. The 68000 utilizes a more general approach. Each
exception can be handled by a separate program.

As mentioned earlier, the 68000 has two modes of operation: user state and
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supervisor state. The operating system runs in supervisor mode, and all other programs are
executed in user mode. The supervisor state is therefore more privileged. Several privileged
instructions, such as MOVE to SR can be executed only in supervisor mode. Any attempt
to execute them in user mode causes a trap.

Next, we discuss how the 68000 handles exceptions caused by external resets,
trap instructions, bus and address errors, tracing , execution of privileged instructions in
user mode, and execution of illegal/unimplemented instructions:

*  The reset exception is generated externally. In response to this exception, the 68000
automatically loads the initial starting address into the processor.

*  The 68000 has a TRAP instruction, which aiways causes an exception. The operand
for this instruction varies from 0 to 15. This means that there are 16 TRAP instructions.
Each TRAP instruction has an exception vector. TRAP instructions are normally
used to call subroutines in an operating system. Note that this automatically places
the 68000 in supervisor state. TRAPs can also be used for inserting breakpoints in a
program. Two other 68000 instructions cause traps if a particular condition is true:
TRAPV and CHK. TRAPV generates an exception if the overflow flag is set. The
TRAPV instruction can be inserted after every arithmetic operation in a program in
order to cause a trap whenever there is the possibility of an overflow. A routine can be
written at the vector address for the TRAPYV to indicate to the user that an overflow has
occurred. The CHK instruction is designed to ensure that access to an array in memory
is within the range specified by the user. If there is a violation of this range, the 68000
generates an exception.

* A bus error occurs when the 68000 tries to access an address that does not belong to
the devices connected to the bus. This error can be detected by asserting the BERR pin
on the 68000 chip by an external timer when no DTACK is received from the device
after a certain period of time. In response to this, the 68000 executes a user-written
routine located at an address obtained from the exception vectors. An address error, on
the other hand, occurs when the 68000 tries to read or write a word (16 bits) or long
word (32 bits) in an odd address. This address error has a different exception vector
from the bus error.

*  The trace exception in the 68000 can be generated by setting the trace bit in the status
register. In response to the trace exception, the 68000 causes an internal exception
after execution of every instruction. The user can write a routine at the exception
vectors for the trace instruction to display register and memory contents. The trace
exception provides the 68000 with the single-stepping debugging feature.

* As mentioned earlier, the 68000 has privileged instructions, which must be executed
in supervisor mode. An attempt to execute these instructions causes a privilege
violation.

* Finally, the 68000 causes an exception when it tries to execute an illegal or
unimplemented instruction.

7.7 68000/2732/6116/6821-Based Microcomputer

Figure 7.20 is a schematic of a 68000-based microcomputer with a 4K EPROM, a 4K
static RAM, and four 8-bit I/O ports. Let us explain the various sections of the hardware
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schematic. Two 2732 and two 6116 chips are required to obtain the 4K EPROM and 4K
RAM. The LDS and UDS pins are ORed with the memory select signal to enable the chip
selects for the EPROMSs and the RAMs. Address decoding is accomplished by using a 3 x
8 decoder (Full decoding). The decoder enables the memory or the 1/0 chips, depending
on the status of address lines A,,~A,, and the AS line of the 68000. AS is used to enable the
decoder. I, selects the EPROMEs, I, selects the RAMs, and I, selects the I/O ports.

— 2732 even
DTACK ——) > —
‘C Delay Ckt. UDS — CE
OE
3x8 Decoder 0p-0; | Dg-Dys )
T+5V To | EPROM
Gl T, [RaM
G2A — | p14
e HM D Ardn | Ac-A
¢ | 2732 odd
68000 uP A I L.DS _D_1 CE
—_ 74138 ———|OF
AS Ais 0¢-0O7 | D¢-D,
DTACK A

Dg-Dis > 6116 even_
RW ® {>0——0 ] 0,0, KDgD,s )
07 8 15
CIkat.;
— VMA H
lE S ArA Ag-Ao

6116 odd
& =
—0—|

1

7
glom

0,0, {Dy-D; )
6821 Even S ArA g Ag-Agp

Y
@
Reset Circuit Y
-
®

CSo PAO-PA7) Port A
—— Cs1
UDSs] cso

R/W PBO-PB7 ) Port B
A— RSO
A,—{ RS1

Data Bus
Do-D> Dg-Dys

!

6821 Odd PIA
o

CS0 @ Port A
—— CSI
LDS| Cs?
R/W PBO-PB7 )PortB
A1— RSO
Az__| Rrs1
Data Bus

FIGURE 7.20 68000-based microcomputer.
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When addressing memory chips, the DTACK input of the 68000 must be asserted
for data acknowledge. The 68000 clock in the hardware schematic is 10 MHz. Therefore,
each clock cycle is 100 ns. In Figure 7.20, AS is used to enable the 3 x 8 decoder. The outputs
of the decoder are gated to assert 68000 DTACK. This means that AS is used indirectly to
assert DTACK. From the 68000 read timing diagram, AS goes LOW after approximately
two cycles (200 ns for the 10-MHz clock) from the beginning of the bus cycle. With no
wait states, the 68000 samples DTACK at the falling edge of S4 (300 ns), and if DTACK
is recognized, the 68000 latches data at the falling edge of S6 (400 ns). If DTACK is not
recognized at the falling edge of S4, the 68000 inserts a one-cycle (100 ns in this case) wait
state, samples DTACK at the end of S6, and, if DTACK is recognized, latches data at the
end of S8 (500 ns), and the process continues. Because the access time of the 2732 is 200
ns, data will not be available at the output pins of the 2732s until after approximately 400
ns. To be on the safe side, DTACK recognition by the 68000 at the falling edge of S6 (400
ns) and latching of data at the falling edge of S8 (500 ns) will definitely satisfy the timing
requirement. This means that the decoder output I; for EPROM select should go to LOW
at the end of S6. Therefore, a 200-ns delay (two cycles) for DTACK is assumed.

A delay circuit, as shown in Figure 7.21, is designed using two D flip-flops.
EPPOM select activates the delay circuit. The input is then shifted right 2 bits to obtain
a two-cycle wait state to allow sufficient time for data transfer. DTACK assertion and
recognition are delayed by 2 cycles during data transfer with EPROM:s. Figure 7.22 shows
the timing diagram for the DTACK delay circuit. Note that DTACK goes LOW after about
two cycles if asserted by AS providing an erronous result. Therefore, DTACK must be
delayed.

When the EPROM is not selected by the decoder, the clear pin is asserted (the
output of the inverter), so Q is forced LOW and Q is HIGH. Therefore, DTACK is not
asserted. When the processor selects the EPROMs, the output of the inverter is HIGH,
so the clear pin is not asserted. The D flip-flop will accept a high at the input, Q2 will be
HIGH, and Q2 will be LOW. Now that Q2 is LOW, it can assert DTACK. Q1 will provide
one wait cycle, and Q2 will provide two wait cycles. Because the 2732 EPROM has a
200-ns access time and the microprocessor is operating at 10 MHz (100-ns clock cycle),
two wait cycles are inserted before asserting DTACK (2 x 100 =200 ns). Therefore, Q2 can
be connected to the DTACK pin through an AND gate. No wait state is required for RAMs
because the access time for the RAMs is only 120 nanoseconds.

Four 8-bit I/O ports are obtained by using two 6821 chips. When the I/O ports are

DTACK
+HV , VS.g%E A SfATES
L
D Q D Q
> 6 > 6
10MHz CLR CLR

EPROM
SELECT
Io {>°

FIGURE 7.21 Delay circuit for DTACK



68000 Hardware and Interfacing 211

I—l 00 ns =

CLK s0[31| 52/53| 54| 5%| 56 3|58 | 3%s1¢5 Is1
10 MHz
EPROM Sel.

Io
CLR
Ql
= DTACK
Q2or_ —delayed by—
DTACK two cycles

FIGURE 7.22 Timing diagram for the DTACK delay circuit.

selected, the VPA pin is asserted instead of DTACK. This will acknowledge to the 68000
that it is addressing a 6800-type peripheral. In response, the 68000 will synchronize all data
transfer with the E clock.

The memory and I/O maps for the schematic are as follows:
®*  Memory maps (all numbers in hex). A,; - A, are don’t cares and assumed to be 0Os.

LDS or UDS
\'_V—J
A23_A16 AIS AM Al3 AlZ_AI AO
0-0 0o 0 O 0-0 0 EPROM(even) = 4K
0-0 0 0 0 1-1 0 $000000, $000002, $000004, ...,
$001FFE
0-0 0o 0 0 0-0 I EPROM(odd) = 4K
0-0 0o o0 o0 1-1 1 $000001, $000003, $000005, ...,
$001FFF
Ayn-Ay As Ay Ay Ap-A, A, Ay, is don’t care for RAM (assume 0)
00 0 0 1 00 0 RAM(even) = 2K
0-0 0 o0 1 1-1 0 $002000, $002002, ..., SO02FFE
0-0 0 0 1 0-0 1 RAM(odd) = 2K

0-0 0 0 1 1-1 1 $002001, $002003, ..., $002FFF
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Note that upon hardware reset, the 68000 loads the supervisor SP high and low
words, respectively, from addresses $000000 and $000002 and the PC high and low words,
respectively, from locations $000004 and $000006. The memory map contains these reset
vector addresses in the even and odd 2732 chips.

*  Memory-mapped I/0 (all numbers in hex). A,;-A ¢ and A, ,-A; are don’t cares and
assumed to be Os.

RS1 RSO UDS or LDS
W—-J

Ay-A, As Ay Ay Ap-A; A, A A, Register Selected (Address) — Even
0-0 0 1 0 0-0 0 0 0 Port A or DDRA = $004000
00 0 1 0 0-0 0 1 0 CRA = $004002
0-0 0 1 0 0-0 1 0 0 Port B or DDRB = $004004
0-0 0 1 0 00 1 1 0 CRB = $004006

Register Selected (Address) — Odd

0-0 0 1 0 00 0 0 1 Port A or DDRA = $004001
00 0 1 0 00 0 1 1 CRA = $004003

0 1 0 0-0 1 0 1 Port B or DDRB = $004005
0-0 0 1 0 0-0 1 1 1 CRB = $004007

For both memory and I/O chips, AS, UDS, and LDS must be used in chip select logic.
Note that:

1. For memory, both even and odd chips are required. However, for I/O
chips, an odd-addressed 1/O chip, an even-addressed 1/O chip, or both
can be used, depending on the number of ports required in an application.
UDS and/or LDS must be used in I/O chip select logic, depending on the
number of I/O chips used. The same chip select logic must be used for
both the even and its corresponding odd memory chip.

2. DTACK must be connected to an external input (typically, a signal from
the address decoding logic) to satisfy the timing requirements. In many
instances, AS is connected directly to DTACK.

3. The 68000 must be connected to ROMs, EPROMs, and E2PROMs such
that the 68000 RESET vector address is included as part of the memory

map.

7.8 Multiprocessing with the 68000 Using the TAS Instruction and the AS
Signal

Earlier, the 68000 TAS instruction was discussed. The TAS instruction supports the software
aspects of interfacing two or more 68000s via a shared RAM. When TAS is executed, the
68000 AS pin stays LOW. During both the read and write portions of the cycle, AS remains
LOW and the cycle starts as the normal read cycle. However, in the normal read, AS going
inactive indicates the end of the read. During execution of TAS, AS stays LOW throughout
the cycle, so AS can be used in the design as a bus-locking circuit. Due to the bus locking,
only one processor at a time can perform a TAS operation in a multiprocessor system. The
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Use this section|
of memory
as desired

High address
Set pointer
Pointer TASLOC1 to top addres
(EA) Section 1
TASLOC2 Execute Yes
Section 2 TAS
No
Subtract one
section length
from pointer
L TASLOCM
oW .
Address Section M

(a) Shared RAM allocation

FIGURE 7.23

No space
available

(b) Flowchart forTAS

Memory allocation using TAS.

TAS instruction supports multiprocessor operations (globally shared resources) by checking
a resource for availability and reserving or locking it for use by a single processor.

The TAS instruction can therefore be used to allocate free memory spaces. The
shared RAM of the Figure 7.23(a) is divided into M sections. The first byte of each sec-
tion will be pointed to by (EA) of the TAS (EA) instruction. The TAS instruction execu-
tion flowchart for allocating memory is shown in Figure 7.23(b). In Figure 7.23(a), (EA)
first points to the first byte of section 1. The instruction TAS (EA) is then executed. The
TAS instruction checks the most significant bit (N bit) in (EA). N = 0 indicates that sec-
tion 1 is free; N = 1 indicates that section 1 is busy. If N = 0, section 1 will be allocated
for use. If N = 1 (section 1 is busy), a program will be written to subtract one section

Vx

+ =
Vy - if€X>Vy

Comparator

FIGURE 7.24

0
ort
pA 1

Bit 0 of port B

68000/2732/
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Figure for Example 7.4
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length from (EA) to check the next section for availability. Also, (EA) must be checked
with the value TASLOCM. If (EA) < TASLOCM, no space is available for allocation.
However, if (EA) > TASLOCM, TAS is executed and the availability of that section is
determined. In a multiprocessor environment, the TAS instruction provides software sup-
port for interfacing two or more 68000s via shared RAM. The AS signal can be used to
provide the bus-locking mechanism.

EXAMPLE 74 Assume that the 68000/2732/6116/6821 microcomputer shown in

Figure 7.24 is required to perform the following:

(a) If Vx > Vy , turn the LED ON if the switch is open; otherwise, turn the LED
OFF. Write a 68000 assembly language program starting at address $000300 to
accomplish the above by inputting the comparator output via bit 0 of port B. Use
port A address = $002000, port B address = $002004, CRA = $002002, and CRB
= $002006. Assume that the LED is OFF initially.

(b) Repeat part (a) using autovector level 7 and nonautovector (vector $40). Use port
A (address $002000) for the LED and switch as above with CRA = $002002.
Assume the supervisor mode. Write the main program and service routine in 68000
assembly language starting at addresses $000300 and $000A 00, respectively. Also,
initialize the supervisor stack pointer at $001200.

Solution
(a) Using Programmed I/0. From Figure 7.24, the following 68000 assembly
language program can be written:
CRA EQU $002002
CRB EQU $002006
PORTA EQU $002000
DDR EQU PORTA
PORTB EQU $002004
DDRB EQU PORTB
ORG $000300
BCLR.B #2,CRA ;  Address DDRA
MOVE.B #2,DDRA ; Configure PORTA
BSET.B #2,CRA ; Address PORTA
BCLR.B #2,CRB ; Address DDRB
MOVE.B #0,DDRB ; Configure PORTB
BSET.B #2,CRB ; Address PORTB
COMP MOVEB PORTB,D0 ; Input PORTB
LSR.B #1,D0 ; Check
BCC.B COMP ;  Comparator
MOVE.B PORTA,D1 ; Inputswitch
LSL.B #1,D1 ;  Align LED data
MOVE.B D1,PORTA ; Outputto LED
LED JMP LED
b) Using Autovector Level 7 (nonmaskable interrupt). Figure 7.25 shows the

pertinent connections for autovector level 7 interrupt.
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Main program:

CRA
PORTA
DDRA

WAIT

EQU
EQU
EQU
ORG
BCLR.B
MOVE.B
BSET.B
IMP

Service routine:

FINISH

Reset vector:

ORG
MOVE.B
LSL.B
MOVE.B
JMP

ORG
DC.L
DC.L

Service routine vector:

ORG
DC.L

$002002
$£002000
PORTA
$000300
#2,CRA
#2,DDRA
#2,CRA
WAIT

$000A00
PORTA, D1
#1, D1

D1, PORTA
FINISH

0
$00001200
$00000300

$00007C
$00000A00

;. Address DDRA

;  Configure PORTA
; Address PORTA
3 Wait for interrupt

;  Input switch

;  Align LED data
; Outputto LED
Halt

215

Using nonautovectoring (vector 840). Figure 7.26 shows the pertinent connections for

nonautovectoring interrupt.

Vx
+
Vy -
Comparator
FIGURE 7.25

T A 0
IPL2 port 1
IPL1 A .
IPLO 7
VPA
68000/2732/
6116/6821
Microcomputer

Example 7.4 using autovectoring
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+5V
1K
+5V ) < +5V
1K 330 O
oA 0
IPL2 Port 11 LED
Vx IPL1 ' +5V
+ —_—
IPLO 7 K
" >{>e
Comparator DTACK gg% %‘)’T e L
FCO G Ig
Is
DD
8 .o
68000/2732/ Outputs
6116/6821 b
Microcomputer 7418244
FIGURE 7.26 Example 7.4 using nonautovectoring
Main program:
CRA EQU $002002
PORTA EQU $002000
DDRA EQU PORTA
ORG $000300
BCLR.B #2,CRA ;  Address DDRA
MOVE.B #2,DDRA ;  Configure PORTA
BSET.B #2,CRA ; Address PORTA
ANDLW  #$OF8FF,SR ; Enable interrupts
WAIT JMP WAIT ; Wait for interrupt
Service routine:
ORG $000A00
MOVE.B PORTA,DI ; Input switch
LSL.B #%01,D1 ;  Align LED data
MOVE.B DI,PORTA ;  Output to LED
FINISH JMP FINISH ;  Halt
Reset vector:
OR 0
DC.L $00001200
DC.L $00000300

Service routine vector:
ORG $000100

DCL $00000A00
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Questions and Problems

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Find LDS and UDS after execution of the following 68000 instruction sequence:
MOVEA.L #$0005A123,A2
MOVE.B (A2),D0

Determine the status of AS, FC2-FCO0, LDS, UDS , and address lines immediately
after execution of the following instruction sequence (before the 68000 tristates

these lines to fetch the next instruction):
MOVE #$2050,SR

MOVE.B D0,$405060
Assume that the 68000 is in the supervisor mode prior to execution of the
instructions.

Assume a 16.67-MHz 68000 in Figure P7.3. Also, assume that data is ready at the
output pins of the memory chip at 300 ns. For the timing diagram of Figure P7.3,
determine the time at which data will be read by the 68000.

Write 68000 instruction sequence so that upon hardware reset, the 68000 will
initialize the supervisor stack pointer to 1000,, and the program counter to
2000,,.

Write a 68000 service routine at address $1000 for a hardware reset that will
initialize all data registers to zero, address registers to SFFFFFFFF, supervisor
SP to $502078, and user SP to $1F0524, and then jump to $7020F0.

Consider the following data prior to a 68000 hardware reset:
[DO] = $7F2A1620
[Al] = $6AB11057
[SR] = $001F

What are the contents of DO, A1, and SR after hardware reset?

Suppose that three switches are connected to bits 0-2 of port A and an LED to bit
6 of port B. If the number of HIGH switches is even, turn the LED ON; otherwise,
turn the LED OFF. Write a 68000 assembly language program to accomplish
this.

(a) Assume a 68000-6821 system.

(b) Assume a 68000-68230 system.

A 68000-68230 microcomputer-based microcomputer is required to drive the
LEDs connected to bit O of ports A and B based on the input conditions set by

68000 Clock S0| S1| 82| S3|S4 | S5 56,87 S8( s9 S1qS11

68000 DTACK \_‘I—/‘

FIGURE P7. 3
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switches connected to bit 1 of ports A and B. The I/O conditions are as follows:

. If the input at bit 1 of port A is HIGH and the input at bit 1 of port B
is LOW, the LED at port A will be ON and the LED at port B will be
OFF.

° If the input at bit 1 of port A is LOW and the input at bit 1 of port B is
HIGH, the LED at port A will be OFF and the LED at port B will be
ON.

. If the inputs of both ports A and B are the same (either both HIGH or both
LOW), both LEDs of ports A and B will be ON.

Write a 68000 assembly language program to accomplish this.

7.9 A 68000-6821-based microcomputer is required to test a NAND gate. Figure P7.9
shows the /O hardware needed to test the NAND gate. The microcomputer is
to be programmed to generate the various logic conditions for the NAND inputs,
input the NAND output, and tum the LED ON connected at bit 3 of port A if the
NAND gate chip is found to be faulty. Otherwise, turn the LED ON connected at
bit 4 of port A. Write 68000 assembly language program to accomplish this.

7.10 A 68000-68230-based microcomputer is required to add two 3-bit numbers stored
in the lowest 3 bits of D0 and D1 and output the sum (not to exceed 9) to a
common-cathode seven-segment display connected at port A as shown in Figure
P7.10. Write 68000 assembly language program to accomplish this by using a
look-up table.

7.11 A 68000-68230-based microcomputer is required to input a number from 0 to

+5V +5V

Bit O of portA 330 Q 330Q
Bit 1 of portA LED LED
Bit 2 of portA |

Bit 3 of portA
Bit 4 of portA

68000/6821

nC
FIGURE P 7.9 (Assume that both LEDs are OFF initially.)
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Bit s — >0 ——

Bit 6

f‘ lb GND
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€

c

@ = 0 o 6 o

R=330Q

FIGURE P7.10
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9 from an ASCIl  keyboard interfaced to it and output to an EBCDIC printer.
Assume that the keyboard is connected to port A and the printer is connected to
port B. Store the EBCDIC codes for 0 to 9 starting at an address $003030, and use
this look-up table to write a 68000 assembly language program to accomplish the
above.

7.12  Assume the pins and signal shown in Figure P7.12 for the 68000, 68230(odd),
2764(odd and even). Connect the chips and draw a neat schematic. Determine
the memory map and I/O map (addresses for PGCR, PADDR, PBDDR, PACR,
PBCR, PADR, PBDR). Assume a 16.67-MHz internal clock on the 68000.

7.13  Assume the 68000 stack and register values shown in Figure P7.13 before the
occurrence of an interrupt. If an external device requests an interrupt by asserting
the IPL2, IPL1, and IPLO pins with the value 000,, determine the contents of A7’
and SR during interrupt and after execution of RTE at the end of the service
routine of the interrupt. Draw the memory layouts and show where A7’ points to
and the stack contents during and after interrupt. Assume that the stack is not used
by the service routine.

ASL _ =
ArAg - —CE CS
UDS = —{ RS1-RSS
LDST —
| — DTACK
DTACK 00-07
VPA +— —|Do-Dy
Do-Dis [~ —RW
HALT —1A¢-AL — RESET
RESET |
68000 2764 68230 (Odd)
FIGURE P 7.12
Stack
$FF45C
SER(SE (PC$507050
SFF462 [SR]=52004
As =$FF464 ———> VALID
FIGURE P7.13
X

12V }
Voltage Vm 1
measurement To
68000/6821
system
11V } Y

FIGURE P7.14
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SV 68000 68230
PL2 _AS——— —
LI UDS—— CS
; [PLO A
-Di
0D A -As ATAS RSI-RSS
— HALT Do -D, <7 D057 > Do-Dr
Ag-Axn ‘> Not C
DTACK DTACK
— R/W R/W
t|BR RESET * RESET
1

FIGURE P7.15

7.14  InFigure P7.14,if V,> 12V, turn an LED ON connected at bit 3 of port A. If V,, <
11V, turnthe LED OFF. Using ports, registers, and memory locations as needed
and level 1 autovectored interrupt:

(a) Draw a neat block diagram showing the 68000/6821 microcomputer and
the connections to ports in the diagram in Figure P7.14.

(b) Write the main program and the service routine in 68000 assembly
language. The main program will initialize the ports and wait for an
interrupt. The service routine will accomplish the task and stop.

7.15  Will the circuit in Figure P7.15 work? If so, determine the 1/O port addresses for
PGCR, PADR, PADDR, PBDR, PBDDR, PACR, and PBCR. If not, comment
briefly, modify the circuit, and determine the port addresses. Use only the pins and
the signals shown. Assume all don’t cares to be 0’s.

7.16  Write a subroutine in 68000 assembly language using the TAS instruction to

find, reserve, and lock a memory segment for the main program. The memory
is divided into three segments (0, 1, 2) of 16 bytes each. The first byte of each
segment includes a flag byte to be used by the TAS instruction. In the subroutine, a
maximum of three 16-byte memory segments must be checked for a free segment
(flag byte = 0). The TAS instruction should be used to find a free segment. The
starting address of the free segment (once found) must be stored in A0 and the
low byte DO must be cleared to zero to indicate a free segment, and the program
control should return to the main program. If no free block is found, $FF must be
stored in the low byte of DO and the control should return to the main program.



ASSEMBLY LANGUAGE
PROGRAMMING WITH THE
68020

In this chapter we describe the fundamental concepts associated with assembly language
programming of the Motorola 68020 microprocessor. The 68020 contains new addressing
modes and several new instructions beyond those of the 68000. To present the 68020
instruction set in a simplified manner, some of the 68020 advanced instructions are not
covered. All 68000 assembly language programs can be executed by the 68020 without

modifications. Note that a background in the 68000 software described in Chapter 6 is
required before understanding the topics contained in this chapter.

8.1 Introduction

The 68020 was Motorola’s first 32-bit microprocessor. The design of the 68020 is based on
the 68000. The 68020 can perform a normal read or write cycle in three clock cycles without
wait states as compared to the 68000, which completes a read or write operation in four
clock cycles without wait states. As far as the addressing modes are concerned, the 68020
includes new modes beyond those of the 68000. Some of these modes are scaled indexing,
larger displacements, and memory indirection. Furthermore, several new instructions are
added to the 68020 instruction set, including the following:

* Bitfield instructions are provided for manipulating a string of consecutive bits with a

variable length from 1 to 32 bits.

* Two new instructions are used to perform conversions between packed BCD and
ASCII or EBCDIC digits. Note that a packed BCD is a byte containing two BCD
digits. This is covered in section 1.2 of Chapter 1.

*  Enhanced 68000 array-range checking (CHK2) and compare (CMP2) instructions are
included. CHK?2 includes lower and upper bound checking; CMP2 compares a number
with lower and upper values and affects flags accordingly.

*  Four advanced instructions are included: CALLM, RTM, CAS, and CAS2. CALLM
(CALL module) and RTM (return from module) support modular programming, and
the two compare and swap instructions, CAS and CAS2, are provided to support
multiprocessor systems. These instructions are not covered in this chapter.

The 68030 and 68040 are two enhanced versions of the 68020. The 68030 retains
most of the 68020 features. It is a virtual memory microprocessor containing an on-
chip memory management unit (MMU). The 68040 expands the 68030 on-chip memory
management logic to two units: one for instruction fetch and one for data access. This
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speeds up the 68040’s execution time by performing logical-to-physical-address translation
in parallel. The on-chip floating-point capability of the 68040 provides it with both integer
and floating-point arithmetic operations at high speed. All 68000 programs written in
assembly language in user mode will run on the 68020, 68030 or 68040. The 68030 and
68040 support all 68020 instructions except CALLM and RTM. Let us now focus on the
68020 microprocessor in more detail.

8.2 68020 Functional Characteristics

The MC68020 is designed to execute all user object code written for the 68000. Like the
68000, it is manufactured using HCMOS technology. The 68020 consumes a maximum of
1.75 W. It contains 200,000 transistors on a 3/8-inch piece of silicon. The chip is packaged
in a square (1.345-inch x 1,345-inch) pin grid array (PGA) and other packages. It contains
169 pins (114 pins used) arranged in a 13 x 13 matrix.

The 68020 must be operated at a minimum frequency of 8 MHz. Like the 680000,
it does not have any on-chip clock generation circuitry. The 68020 contains 18 addressing
modes and 101 instructions. All addressing modes and instructions of the 68000 are
included in the 68020. The 68020 supports coprocessors such as the 68881/68882 floating-
point and 68851 MMU coprocessors. These and other functional characteristics of the
68020 are compared with the 68000 in Table 8.1.

TABLE 8.1 Functional Characteristics of 68000 vs. 68020
Characteristic 68000 68020
¢ Technology HCMOS HCMOS
*  Number of 64, 68 169 (13 x 13 matrix; pins come
pins out at bottom of chip; 114 pins
currently used.)
*  Control unit Nanomemory (two-level Nanomemory (two-level memory)
memory)
* Clock 8 MHz, 10 MHz, 12.5 MHz, 12.5 MHz, 16.67 MHz, 20 MHz,
frequency 16.67 MHz, 20 MHz, 25 25 MHz, 33 MHz
MHz, 33 MHz (8 MHz minimum requirement)
(4 MHz minimum
requirement)
e ALU One 16-bit ALU Three 32-bit ALUs

* Address bus 24 bits with A; encoded from 32 bits with no encoding of A, is
size UDS and LDS. required.
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TABLE 8.1

Data bus size

Instructions
and data
access

Instruction
cache

Directly
addressable
memory

Registers

Barrel shifter

Stack pointers

Cont.

The 68000 can only be
configured as 16-bit memory
(two 8-bit chips) via Dy-D,
for odd addresses and Dy-D5
for even addresses during
byte transfers; for word and
long word, uses Dy-D;. The
I/O can be configured as byte
(one 8-bit 1/0 chip) or 16-bit
(two 8-bit I/O chips).
Instructions must be at even
addresses. Byte data can be
accessed at either even or
odd addresses while word
and long word data must be
at even addresses.

None

16 Megabytes

8 32-bit data registers

7 32-bit address registers
2 32-bit SPs

1 32-bit PC (24 bits used)
1 16-bit SR

No

A7 (User SP), A7’ (Supervisor
SP)
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The 68020 can be configured as
8-bit memory (a single 8-bit chip)
via D;,-D,, pins or 16-bit memory
(two 8-bit chips) via Dy, - Dy,
pins or 32-bit memory (four 8-bit
chips) via D;;-D, pins. /O can be
configured as 8-bit or 16-bit or
32-bit.

Instructions must be accessed at
even addresses; data accesses can
be at either even or odd addresses
for .B, . W, L.

128K 16-bit word cache. At start
of an instruction fetch, the 68020
always outputs LOW on ECS
(early cycle start) pin and accesses
the cache. If instruction is found
in the cache, the 68020 inhibits
outputting LOW on AS pin;
otherwise, the 68020 sends LOW
on AS pin and reads instruction
from main memory.

4 Gigabytes (4,294,964,296 bytes)

8 32-bit data registers

7 32-bit address registers

3 32-bit SPs

1 32-bit PC (all bits used)

1 16-bit SR

1 32-bit VBR (vector base register)
2 3-bit function code registers
(SFC and DFC)

1 32-bit CAAR (cache address
register)

1 CACR (cache control register)
Yes. For fast-shift operations.

A7 (User SP), A7’(interrupt SP),
A7’ (Master SP)
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TABLE 8.1 Cont.
* Statusregister T,S,12,11,10,X,N,Z,V,C TO0,T1,S,M,12,I1,10,X,N, Z,
V,C
* Coprocessor Emulated in software; that Can be directly interfaced to
interface is, by writing subroutines, coprocessor chips, and coprocessor

coprocessor functions such as functions such as floating-point
floating-point arithmetic can arithmetic can be obtained via

be obtained. 68020 instructions.
* FC2,FCl, FC2,FC1,FC0 =111 means FC2, FC1, FCO =111 means
FCO0 pins interrupt acknowledge. CPU space cycle; then by

decoding A16-A19, one can
obtain breakpoints, coprocessor
functions, and interrupt

acknowledge.
Some of the 68020 characteristics mentioned in Table 8.1 are deserving of further
explanation.
* Three independent ALU’s are provided for data manipulation and address
calculations

¢ A 32-bit barrel shift register (occupies 7% of silicon) is included in the 68020 for very
fast shift operations regardless of the shift count.

* The 68020 has three SP’s. In the supervisor mode (when S = 1), two SP’s can be
accessed. These are A7°(when M =0) and A7” (when M = 1). A7’ (Interrupt SP) can
be used to simplify and speed up task switching for operating systems.

*  The vector base register (VBR) is used in interrupt vector computation. For example, in
the 68000, the interrupt vector address is obtained by using VBR + 4 x 8-bit vector.

* The SFC (source function code) and DFC (destination function code) registers are 3
bits wide. These registers allow the supervisor to move data between address spaces.
In supervisor mode, 3-bit addresses can be written into SFC or DFC using instructions
such as MOVEC A2,SFC. The upper 29 bits of SFC are assumed to be zero. The
MOVES.W (EA),Dn instruction, such as MOVES.W(A0),DO can then be used to
move a word to DO from a location within the address space specified by SFC and
[AO]. The 68020 outputs [SFC] to the FC2, FC1, and FCO pins. By decoding these
pins via an external decoder, the desired source memory location addressed by [A0]
can be accessed.

*  The new addressing modes in the 68020 include scaled indexing, 32-bit displacements,
and memory indirection. The scaled index mode is an efficient way to index into an
array when the element size is 2,4, or 8 bytes. Ifthe displacement contains the starting
address of an array and the index register contains the subscript of the desired array
element, the 68020 will automatically convert the subscript into an index by applying
the scaling factor. To iilustrate the concept of scaling, consider moving element 5 of
an array containing 16-bit elements starting at an address $5000 into D1.W. Note that
element O is the first element of the array stored at address $5000. Using the 68000,
the following instruction sequence will accomplish this:

MOVEA.W #$5000,A0 ; Move starting address into AQ
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MOVE.W #5, DO ; Move element number into DO.W
LSL.W #1, D0 ; Multiply DO.W by 2 for Word
MOVEA. W (A0, D0.W),D1;Move element 5 into D1.W
The scaled indexing mode can be used with the 68020 to perform the same as
follows:
MOVEA.W #$5000,A0 ; Move starting address into AQ
MOVE.W #5, D0 ; Move element number into DO.W
MOVEA.W (A0, DO.W * 2),D1 ;Move element 5 into D1. W
Note that [DO0] is scaled by 2. Scaling by 1, 2, 4, or § can be obtained.

¢ The new 68020 instructions include bit field instructions to better support compilers
and certain hardware applications, such as graphics, 32-bit multiply and divide
instructions, pack and unpack instructions for BCD, and coprocessor instructions. Bit
field instructions can be used to input A/D converters and eliminate wasting main
memory space when the A/D converter is not 32 bits wide. For example, if the A/D
is 12 bits wide, the instruction BFEEXTU $22320000 {2:13},D0 will input bits 2-13
of memory location $22320000 into DO. Note that $22320000 is the memory-mapped
port, where the 12-bit A/D is connected at bits 2—13. The next A/D can be connected
at bits 14-25, and so on.

* FC2, FCI1, FCO = 111 indicates the CPU space cycle. The 68020 makes CPU space
access for breakpoints, coprocessor operations, or interrupt acknowledge cycles. The
CPU space classification is generated by the 68020 based on execution of breakpoint
instructions or coprocessor instructions, or during an interrupt acknowledge cycle. The
68020 then decodes A —A, to determine the type of CPU space. For example, FC2,
FC1,FCO=111and Ay, A5, Aj7, Ajs = 0010 indicate coprocessor instructions.

¢  For performing floating-point operation, the 68000 user must write subroutines using
the 68000 instruction set. The floating-point capability in the 68020 can be obtained
by connecting a floating-point coprocessor chip such as the Motorola 68881. The
68020 has two coprocessor chips: the 68881 (floating point) and the 68851 (memory
management). The 68020 can have up to eight coprocessor chips. When a coprocessor
is connected to the 68020, the coprocessor instructions are added to the 68020
instruction set automatically, and this is transparent to the user. For example, when the
68881 floating-point coprocessor is added to the 68020, instructions such as FADD
(floating-point add) are available to the user. The programmer can then execute the
instruction FADD FDO,FD1. Note that registers FDO0 and FD1 are in the 68881. When
the 68020 encounters the FADD instruction, it writes a command in the command
register in the 68881, indicating that the 68881 has to perform this operation. The
68881 then responds to this by writing in the 68881 response register. Note that all
coprocessor registers are memory mapped. Hence, the 68020 can read the response
register and obtain the result of the floating-point add from the appropriate locations .

8.3 68020 Registers

Figure 8.1 shows the 68020 user and supervisor programming models.

The user model has fifteen 32-bit general-purpose registers (D0-D7 and A0-A6),
a 32-bit program counter (PC), and a condition code register (CCR) contained within the
supervisor status register (SR). The supervisor model has two 32-bit supervisor stack
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pointers (ISP and MSP), a 16-bit status register (SR), a 32-bit vector base register (VBR),
two 3-bit alternate function code registers (SFC and DFC), and two 32-bit cache-handling
(address and control) registers (CAAR and CACR). The user stack pointer (USP) A7,
interrupt stack pointer (ISP) A7°, and master stack pointer (MSP) A7” are system stack
pointers.

The status register, shown in Figure 8.2, consists of a user byte [condition code
register (CCR)] and a system byte. The system byte contains control bits to indicate that
the processor is in the trace mode (T1, TO), supervisor/user state (S), and master/interrupt
state (M). The user byte consists of the following condition codes: carry (C), overflow (V),
zero (Z), negative (N), and extend (X).

The bits in the 68020 user byte are set or reset in the same way as those of the
68000 user byte. Bits 12, 11, 10, and S have the same meaning as those of the 68000. In the
68020, two trace bits (T1, TO) are included, as opposed to one trace bit (T) in the 68000.
These two bits allow the 68020 to trace on both normal instruction execution and jumps.
The 68020 M-bit is not included in the 68000 status register.

The vector base register (VBR) is used to place the exception-processing vector
table basically anywhere in memory. VBR supports multiple vector tables so that each
process can manage independent exceptions properly. The 68020 distinguishes address
spaces as supervisor/user and program/data. To support full access privileges in the
supervisor mode, the alternate function code registers (SFC and DFC) allow the supervisor
to access any address space by preloading the SFC/DFC registers appropriately. The cache
registers (CACR and CAAR) allow software manipulation of the instruction code. The
CACR provides control and status accesses to the instruction cache; the CAAR holds the
address for those cache control functions that require an address.
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FIGURE 8.1 68020 programming models.
8.4 68020 Data Types, Organization, and CPU Space Cycle

As mentioned in Chapter 6, the 68000 supports data types of bits, BCD, bytes,
16-bit words, and 32-bit long words. In addition to these, four new data types are supported
by the MC68020. These are variable-width bit field, packed BCD digits, 64-bit quad words,
and variable-length operands. Data stored in memory is organized on a byte-addressable
basis, where the lower addresses correspond to higher-order bytes. The 68020 does not
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ser byte
System byte (condition co)(,ite register)

1514131211 109 8 7 6 5 4 3 2 1 0
[titd sIm[o[1211[id o] o] o[xn]zv] ]
Sz

Carry

Overflow

Zero

Negative

Extend

Interrupt priority mask
Master/interrupt state
Supervisor/user state

Trace enable

TO - Trace on change of flow (BRA, JUMP etc.)
T1 - Trace all instructions

T1 TO )

0 0 Notracing S M

0 1 Trace on change of flow . 0 X USsP
1 0 Trace on any instuction executionl O ISP
1 1 Undefined; reserve 1 MSP

FIGURE 8.2 68020 status register.

require data to be aligned on even boundaries, but data that is not aligned is transferred less
efficiently. Instruction words must be aligned on even byte boundaries. Figure 8.3 shows
how data is organized in memory.

The function code pins FC2, FC1, and FCO define the user/supervisor program
and data in the same way as the 68000, except that FC2, FC1, FCO = 111 for the 68020
defines a new cycle, the CPU space cycle. Note that for the 68000, FC2, FCI1, FCO
= 111 indicates the interrupt acknowledge cycle. The CPU space cycle is not intended
for general instruction execution, but is reserved for processor functions. Some of the
processor functions are breakpoint acknowledge, interrupt acknowledge, and coprocessor
communication. For example, the 68020 automatically sets FC2, FC1, FCO to 111 during
interrupt, and A,5,A5,A,.,A; = 1111 during this CPU space cycle would indicate an
interrupt acknowledge cycle.

8.5 68020 Addressing Modes

Table 8.2 lists the 68020’s 18 addressing modes. Table 8.3 compares the addressing
modes of the 68000 with those of the 68020. Because 68000 addressing modes were
covered in detail in Chapter 6, the 68020 modes not available in the 68000 are provided in
the following discussion.
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Bit Data
7 0|7 07 07 0
| Byten - 1 7 654]3]/210 Byten + 1 | Byten+2 ]
~ r
Base Bit
Address Number
Bit
Bit Field Data Number
7 0|7 0|7 ol7 0
[ Byten -1 Byte n 01 2 3 w-1
le - - -Offset— - - 4= - = == - - Offset — - = = = »€ - — -Width- — - »
3 -2 1|0 1 2
Base
Address
Byte Integer Data
7 0|7 0|7 0|7 0
[ Byten-1 MSB  Byten LSB Byte n + 1 Byten+2 ]
A
Address
Word Integer Data
7 0|7 0|7 ol7 07 0
[ Byten- 1 Word Integer Byte n + 2 Byten+3 ]
A
Address
Long Word Integer Data
7 017 0|7 ol7 0|7 ol7 0
[ Byten-1 Long Word Integer Byten+4 |
A
Address
Packed Binary-Coded Data
7 0l7 4)3 017 017 0
[ Byten - 1 MSD LSD Byten + 1 Byte n +2 ]
A
Address
Unpacked Binary-Coded Data
7 0f7 413 017 43 0)7 0
| Byten-1 XX MSD XX LSD Byten+2 |
A
Address
FIGURE 8.3 68020 memory data organization.
TABLE 8.2 68020 Addressing Modes
Mode Syntax
* Register direct
Data register direct Dn
Address register direct An

*  Register indirect

229
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TABLE 8.2 Cont.

Mode Syntax
Address register indirect (ARI) (An)
Address register indirect with postincrement (An)+
Address register indirect with predecrement —(An)
Address register indirect with displacement (dl6, An)

* Register indirect with index

Address register indirect with index (8-bit (d8, An, Xn)
displacement)

Address register indirect with index (base
displacement) (bd, An, Xn)
*  Memory indirect

Memory indirect, postindexed ([bd, An], Xn, od)
Memory indirect, preindexed ([bd, An, Xn], od)
*  Program counter indirect with displacement (d16,PC)

*  Program counter indirect with index

PC indirect with index (8-bit displacement) (d8, PC, Xn)
PC indirect with index (base displacement) (bd, PC, Xn)
*  Program counter memory indirect
PC memory indirect, postindexed ([bd, PC], Xn, od)
PC memory indirect, preindexed ([bd, PC, Xn], od)
*  Absolute
Absolute short (xxx).W
Absolute long (xxx).L
*  Immediate #data
Notes:

Dn = data register, DO -D7

An = address register, AO-A6

d8, = 2’scomplement or sign-extended displacement; added as part

dle of effective address calculation; size is 8 (d8) or 16 (d16) bits;
when omitted, assemblers use a value of 0

Xn = address or data register used as an index register; form is
Xn.size * scale, where size is .W or .L (indicates index register
size) and scale is 1, 2, 4, or 8 (index register is multiplied by
scale); use of size and/or scale is optional

bd = 2’scomplement base displacement; when present, size can be
16 or 32 bits
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TABLE 8.2 Cont.
Mode Syntax
od = outer displacement, added as part of effective address
calculation after any memory indirection; use is optional with a
size of 16 or 32 bits
PC = program counter
<data> = immediate value of 8, 16, or 32 bits
() = effective address
[1 = use asindirect address to long word address
ARI = Address Register Indirect
TABLE 8.3 Addressing Modes for, 68000 vs. 68020
Addressing Modes Available Syntax 68,000 68020
Data register direct Dn Yes Yes
Address register direct An Yes Yes
Address register indirect (ARI) (An) Yes Yes
ARI with postincrement (An)+ Yes Yes
ARI with predecrement —(An) Yes Yes
ARI with displacement (16-bit disp) (d, An) Yes Yes
ARI with index (8-bit disp) (d, An, Xn) Yes* Yes*
ARI with index (base disp; 0, 16, 32) (bd, An, Xn) No Yes
Memory indirect (postindexed) ([bd, An], Xn, od) No Yes
Memory indirect (preindexed) ([bd, An, Xn], od) No Yes
PC indirect with disp. (16-bit) (d, PC) Yes Yes
PC indirect with index (8-bit disp) (d, PC, Xn) Yes* Yes*
PC indirect with index (base disp) (bd, PC, Xn) No Yes
PC memory indirect (postindexed) ([bd, PC], Xn, od) No Yes
PC memory indirect (preindexed) ([bd, PC, Xn], od) No Yes
Absolute short (xxxx).W Yes Yes
Absolute long (xxxxxxxx).L Yes Yes
Immediate #<data> Yes Yes
*68000 has no scaling capability; 68020 can scale Xn by 1,2,4,0r 8.

8.5.1

Assembler syntax: (d8, An, Xn.size * scale)

EA = (An) + (Xn.size * scale) + d8
Xn can be Wor L.

Address Register Indirect (ARI) with Index and 8-Bit Displacement
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If the index register (An or Dn) is 16 bits, it is sign-extended to 32 bits and multiplied by
1,2, 4, or 8 to be used in EA calculations. An example is MOVE.W (0, A2, D2.W *2),D1.
Suppose that [A2] = $50000000, [D2.W] = $1000, and [$50002000] = $1571; then after
the execution of this MOVE, [D1],... 16 s = $1571 because EA = $5000000 + $1000 * 2 +
0 = $50002000.

8.5.2 ARI with Index (Base Displacement, bd: Value 0 or 16 Bits or 32 Bits)
®  Assembler syntax: (bd, An, Xn.size * scale).

* EA=(An)+ (Xn.size * scale) + bd.
* Base displacement, bd, has a value 0 when present or can be 16 or 32 bits.

Figure 8.4 shows the use of ARI with the index X#, and base displacement bd,
for accessing tables or arrays. An example is MOVE.W ($5000, A2, D1.W * 4), D5.
If [A2] = $30000000, [D1.W] = $0200, and [$30005800] = $0174, then after execution
of this MOVE, [D5] 0w 16 sis = 50174 because EA = $5000 + $30000000 + $0200 * 4 =
$30005800.

8.5.3 Memory Indirect
The memory indirect mode is distinguished from the address register indirect mode by the
use of square brackets in the assembler notation. The concept of memory indirect mode
is depicted in Figure 8.5. Here, register A5 points to the effective address $20000501.
Because CLR ([A5]) is a 16-bit clear instruction, 2 bytes in locations $20000501 and
$20000502 are cleared to 0.

The memory indirect mode can be indexed with scaling and displacements.
There are two types of memory indirect mode with scaled indexing and displacements:
postindexed memory indirect mode and preindexed memory indirect mode.

An—r>

bd

Xn * Scale

FIGURE 8.4 ARI with index and base displacement.

A5 —>{ 2000
0501

CLR([AS])

$20000500 | XX00

FIGURE 8.5 Memory indirect.
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For postindexed memory indirect mode, an indirect memory address is first
calculated using the base register (An) and base displacement (bd). This address is used for
an indirect memory access of a long word followed by adding a scaled indexed operand
and an optional outer displacement (od) to generate the effective address. Note that bd and
od can be zero, 16 bits, or 32 bits. In postindexed memory indirect mode, indexing occurs
after memory indirection.

* Assembler syntax: ([bd, An], Xn.size * scale, od)

* EA=([bd + An]) + (Xn.size * scale + od)

An example is MOVE.W ([$0004,A1],D1.W *2,2) D2.If [A1] = $20000000, [ $2000004]
= $00003000, [D1.W] = $0002, and [$00003006] = $1A40, then after execution of this
MOVE, intermediate pointer = (4 + $20000000) = $20000004, [$2000004], which is
$00003000 used as a pointer. Therefore, EA = $00003000 + $00000004 + 2 = $00003006.
Hence, [D2],... 101 = $1A40.

For the memory indirect preindexed mode, the scaled index operand is added to
the base register (An) and base displacement (bd). This result is then used as an indirect
address into the data space. The 32-bit value at this address is read and an optional outer
displacement (od) is added to generate the effective address. The indexing therefore occurs
before indirection.

* Assembler syntax: ([bd, An, Xn.size * scale], od)

e EA=(bd, An+ Xn.size * scale) + od

As an example of the preindexed mode, consider several 1/0 devices in a system. The
addresses of these devices can be held in a table pointed to by An, bd, and Xn. The actual
programs for these devices can be stored in memory pointed to by the respective device
addresses plus od.

The memory indirect preindexed mode will now be illustrated by a numerical
example. Consider

MOVE.W ([$0002, A1,D0.W*2], 2), D1

If [A1] = $20000000, [D0.W] = $0004, [$2000000A] = $00121502, and [$00121504] =
$F124, then after execution of this MOVE, intermediate pointer = $20000000 + $0002
+ $0004*2 = $2000000A. Therefore, [$2000000A], which is $00121502, is used as a
memory pointer. Hence, [D1].,, 16vis = $F124.

854 Memory Indirect with PC

In this mode, PC (the program counter), rather than an address register, is used to form
the address. The effective address calculation is similar to memory indirect using address
register. The various types of memory index with mode are described below.

PC Indirect with Index (8-Bit Displacement) The effective address is obtained by
adding PC contents, the sign-extended displacement, and the scaled indexed (sign-extended
to 32 bits if it is 16 bits before calculation) register.

*  Assembler syntax: (d8,PC,Xn.size *scale), EA = [PC] + [Xn.size * scale] + d8

For example, consider MOVE.W D2,(2,PC,D1.W*2). If [PC] = $40000020, [D1.W] =
$0020, and [D2.W] = $20A2, then after this MOVE, EA = 2 + $40000020 + $0020 *2 =
$40000062. Hence, [$40000062] = $20A2.

PC Indirect with Index (Base Displacement, bd) The address of the operand is
obtained by adding the PC contents, the scaled index register contents, and the base
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displacement.

s Assembler syntax: (bd,PC,Xn.size*scale), EA= [PC]+ [Xn.size*scale] + bd, Xn and
bd are sign-extended to 32 bits if either or both are 16 bits.

As an example, consider MOVE.W (4,PC.D1.W*2),D2. If [PC]=$20000004, [D1.W] =

$0020, [$20000048] = $2560, then after this MOVE, [D2.W] = $2560.

PC Indirect (Postindexed) An intermediate memory pointer in program space is
calculated by adding PC ( used as a base register), and bd ( base displacement). The 32-bit
contents of this address are used in the EA calculation. EA is obtained by adding the 32-bit
contents with a scaled index register and od (outer displacement). Note that bd, od, and
index register are sign-extended to 32 bits before being used in the calculation if one (or
more) of them is 16 bits before EA calculation.

*  Assembler syntax: ([bd,PC],Xn.size*scale,od), EA = ([bd + PC] + Xn.size * scale +

od)

As an example, consider MOVE.W ([2,PC],D1.W*4,0),D1. If [PC]=$30000000, [D1.W]
= %0010, [$300 0002] = $20400050, and [$20400090] = $A240, then after this MOVE,
[D1.W] =8A240.

PC Indirect (Preindexed) The scaled index register is added to the PC and bd. The

sum is then used as an indirect address into the program space. The 32-bit value at this

address is added to od to find EA.

¢ Assembler syntax: ([bd,PC,Xn.size*scale],od), EA = (bd + PC +Xn.size * scale) + od
where od, bd, and the index register contents are sign-extended to 32 bits if one (or
more) of them is 16 bits before EA calculation.

As an example, consider MOVE.W ([4,PC,D1.W*2],4),D5. If [PC] = $50000000, [D1.W]

= $0010, [$50000024] = $20507000, and [$20507004] = $0708, then after this MOVE,

[D5.W] = $0708.

EXAMPLE 8.1 The 68000 instruction sequence:

MOVEA L 8(A7),A0
MOVE.W (A0),D3

is used by a subroutine to access a parameter whose address has been passed into A0 and
then moves the parameter to D3. Find the equivalent 68020 instruction.

Solution
MOVE.W ([8,A7]),D3

EXAMPLE 8.2 Write a 68020 assembly language program that will be used to
convert an ASCII code for a specific BCD number stored in register D0.B into its equivalent
EBCDIC code in D0.B. Assume that the ASCII codes for the 10 BCD numbers (0 through
9) are stored in a look-up table starting at an address $00002030. Also, assume that an
address  $00001000 is passed into register A0 by a subroutine, and address $00001000
contains $00002000. Using A0 as the pointer, and along with the data above to access the
table, write a 68020 assembly language program to accomplish the above.
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Solution
ORG $00002030 ;EBCDIC codes for the BCD numbers
DCB $F0,$F1,8F2,$F3,5F4,8F5
DCB $F6,9F7,$F8,3F9
ORG $00001000 ;$00002000 stored at address
;$00001000
DC.L $00002000
MOVE.W #$35,D0 ;Move ASCII $35 into DO.W
LEAL $00001000,A0 ;Load $00001000 into A0 to be used
;as pointer in memory indirect mode
MOVE.B ([A0],D0.W),D0 ; Load EBCDIC equivalent $F5 of the
;ASCII $35 into DO.B
FINISH JMP FINISH ;Halt

The 68020 program above illustrates the concept of memory indirect addressing
mode. First, the EBCDIC codes for the 10 BCD numbers (0 through 9) are stored starting
at memory location $00002030 using the assembler directive DC.B. Next, the address
$00002000 is stored in address $0000100 using the DC.L. directive. MOVE.W #$35,D0
moves $0035 (ASCII for 5) into the low 16 bits of DO. Note that BCD 5 is chosen arbitrarily.
A word instruction MOVE.W is used because the IDE assembler for the 68020 allows
word or long word for the index register. Hence, $35 is moved into DO.W using the
MOVE.W #$35,D0 instruction. The correct operation of the program above is verified
using the debugger. After single stepping through the program, DO.W contains $F3.

EXAMPLE 8.3 Write a 68020 assembly language program at address $00002000 to
add all the elements in a table containing eight 16-bit numbers stored in memory in
consecutive memory locations starting at an address $00005000. Store the 16-bit result
in DL.W.

Solution
ORG $00005000
DC.W 1,2,3,4
DC.W 5,6,7,8
ORG $00002000
LEA.L $00005000,A0  ; AO = Starting address of the table
MOVE.L #0,D0 ; Move element number 0 into DO.L
CLR.W D1 ; Clear 16-bit sum in D1 to 0
MOVE.W #7.D2 ; Initialize D2.W with loop count
BACK ADD (A0,D0.L*2),D1 ; Add elements with sum in D1.W
ADDQ.L #1,D0 ; Increment element number in DO.L by 1
DBF.W D2,BACK ; Decrement D2 and branch to BACK if D2
END JMP END ; Halt

EXAMPLE 8.4 Write a 68020 assembly language program at $00001000 to find the
trace (sum of the elements in the diagonal) of a 3x3 matrix containing 16-bit words. Store
the 16-bit result in DO. Assume that the matrix is stored in row-major ordering starting at
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an address $00002000 as follows:

$00002000 a[0,0]
$00002002 a[0,1]
$00002004 a[0,2]
$00002006 a[1,0]
$00002008 a[1,1]
$0000200A a[1,2]
$0000200C a[2,0]
$0000200E a[2,1]
$00002010 a[2,2]
Note that trace = a[0,0] + a[1,1] + a [2,2] and displacement, d = (i *r +j ) *s =i*t*s +j*s
where i = row number, j = column number, ¢ = total number of columns in the matrix, s =
element size. In this example, £ = 3 for 3x3 matrix, s=2 since each element is 16-bit. Hence,
d=3*Q2*i) + 2%/ =6 * i + 2 *j. Hence, effective address where each element a; will be
stored = AQ + 6%/ + 2%/ where AQ = starting address of the array, i = row number and j=
column number.

Solution
ORG $00002000
DC.W 1,2,3
DC.W 4,56
DC.W 7,8,9
ORG $00001000
MOVE.L #0,D1 ; Load column number 0 into D1
MOVE.L DI1,D4 ; Copy DI into D4
MOVE.L #0,D2 ; Load row number 0 into D2
MOVE.L D2,D6 ; copy D2 into D6
MOVE.W #2,D7 ; initialize loop count
CLR.W DO ;sum =0
LEA.L $00002000,A0 ; load starting address into A0
BACK MULU.W #6,D6 ; perform 6*i, result in D6.L
ADDAL D6,A0 ; add A0 with 6*;
ADD.W (A0,D1.L*2),DO ; sum diagonal elements in DO.W
ADDQ.L #1,Dl ; Increment column number by 1 in D1.L
ADDQ.L  #1,D2 ; Increment row number by 1
MOVE.L D2,D6 ; Copy updated row number into D6
LEA.L $2000,A0 ; re-initialize A0 to $2000 since [AO]was altered
DBE.W D7,BACK ; Decrement D7.W by 1, branch if [D7.W]

FINISH JMP FINISH ; Halt
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TABLE 8.4 68020 New Instructions
Instruction Description
BFCHG Bit field change
BFCLR Bit field clear
BFEXTS Bit field signed extract
BFEXTU Bit field unsigned extract
BFFFO Bit field find first one set
BFINS Bit field insert
BFSET Bit field set
BFTST Bit field test
CALLM Call module
CAS Compare and swap
CAS2 Compare and swap (two operands)
CHK2 Check register against upper and lower bounds
CMP2 Compare register against upper and lower bounds
cpBcc Coprocessor branch on coprocessor condition
cpDBcc Coprocessor test condition, decrement, and branch
cpGEN Coprocessor general function
cpRESTORE Coprocessor restore internal state
cpSAVE Coprocessor save internal state
cpSETcc Coprocessor set according to coprocessor condition
cpTRAPcc Coprocessor trap on coprocessor condition
PACK Pack BCD
RTM Return from module
UNPK Unpack BCD
8.6 68020 Instructions

The 68020 instruction set includes all 68000 instructions plus some new ones. Appendix
E lists some of the 68020 instructions that will also run on the 68000. Some of the 68020
instructions are enhanced 68000 instructions. Over 20 new instructions are added to provide
new functionality. A list of these instructions is given in Table 8.4. In succeeding sections
we discuss the 68020 instructions listed next:
® 68020 new privileged move instructions

¢ RTD instruction

e CHK/CHK2 and CMP/CMP2 instructions
*  TRAPcc instructions

* Bit field instructions

* PACK and UNPK instructions
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*  Multiplication and division instructions

e 68000 enhanced instructions

8.6.1 68020 New Privileged Move Instructions

The 68020 new privileged move instructions can be executed by the 68020 in the supervisor
mode. These instructions are listed in Table 8.5. Note that Rc includes VBR, SFC, DFC,
MSP, ISP, USP, CACR, and CAAR. Rn can be either an address or a data register. The
operand size (.L) indicates that the MOVEC operations are always long words. Notice that
only register-to-register operations are allowed. A control register (Rc) can be copied to an
address or a data register (Rn), or vice versa. When the 3-bit SFC or DFC register is copied
into Rn, all 32 bits of the register are overwritten and the upper 29 bits are “0.”

The MOVES (move to alternate space) instruction allows the operating system to
access any address space defined by the function codes. It is typically used when an operating
system running in the supervisor mode must pass a pointer or value to a previously defined
user program or data space. The operand size (.S) indicates that the MOVES instruction
can be byte (.B), word (W), or long word (.L). The MOVES instruction allows register-
to-memory or memory-to-register operations. When a memory to register move occurs,
this instruction causes the contents of the source function code register to be placed on the
external function hardware pins. For a register-to-memory move, the processor places the
destination function code register on the function code pins. The MOVES instruction can
be used to move information from one space to another.

EXAMPLE 8.5 Find the contents of address $70000023 and the function code pins
FC2, FC1, and FCO after execution of MOVES.B D5,(AS5). Assume the following data
prior to execution of this MOVES instruction: [SFC] = 001,, [DFC] = 101, , [A5] =
$£70000023, [DS] = $718F2A05, [$70000020] = $01, [$70000021] = $F1, [$70000022] =
$A2, [$70000023] = $2A

Solution

After execution of this MOVES instruction, FC2 FC1 FCO= 101, and [$70000023]
= $05.

8.6.2 Return and Delocate Instruction

The return and delocate (RTD) instruction is useful when a subroutine has the responsibility
to remove parameters off the stack that were pushed onto the stack by the calling routine.
Note that the calling routine’s JSR (jump to subroutine) or BSR (branch to subroutine)
instructions do not automatically push parameters onto the stack prior to the call as do the

TABLE 8.5 68020 New privileged MOVE instructions
Instruction Operand Size Operation Notation
MOVE t6 SR — destination MOVE SR, (EA)
MOVEC 32 Rc — Rn MOVEC.L Re, Rn
Rn— Rc MOVEC.L Rn, Re
MOVES 8, 16,32 Rn — destination using DFC ~ MOVES.S Rn, (EA)

Source using SFC — Rn MOVES.S (EA),Rn
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CALLM instructions. Rather, the pushed parameters must be placed there using the MOVE
instruction. The format of the RTD instruction is as follows:

Instruction | Operand Size Operation Notation
RTD Unsized (SP) > PC,SP+4+d— SP RTD # <disp>

As an example, consider RTD #8, which at the end of a subroutine deallocates 8
bytes of unwanted parameters off the stack, by adding 8 to the stack pointer and returns to
the main program. The size of the displacement is 16 bits.

8.6.3 CHK/CHK2 and CMP/CMP2 Instructions

The 68020 check instruction (CHK) compares a 32-bit two’s-complement integer value
residing in a data register (Dn) against a lower bound (LB) value of zero and against an
upper bound (UB) value of the programmer’s choice. The upper bound value is located at
the effective address (EA) specified in the instruction format. The CHK instruction has the
following format; CHK.S (EA),Dn where the operand size (.S) designates word (.W) or
long word (.L). If the data register value is less than zero (Dn < 0) or if the data register is
greater than the upper bound (Dn > UB), the processor traps through exception vector 6
(offset $18) in the exception vector table. Of course, the operating system or the programmer
must define a check service handler routine at this vector address. The condition codes after
execution of the CHK are affected as follows: If Dn < 0, then N = 1; if Dn > UB (upper
bound), then N = 0. If 0 < Dn < UB then N is undefined. X is unaffected and all other flags
are undefined and program execution continues with the next instruction.

The CHK instruction can be used to maintain array subscripts because all subscripts
can be checked against an upper bound (i.e., UB = array size - 1). If the subscript compared
is within the array bounds (i.e., 0 < subscript value < UB value), the subscript is valid and
the program continues normal instruction execution. If the subscript value is out of array
limits (i.e., 0 > subscript value or subscript value > UB value), the processor traps through
the CHK exception.

The purpose of the CHK instruction is to provide boundary checking by testing
if the content of a data register is in the range from zero to an upper limit. The upper limit
used in the instruction can be set equal to the length of the array. Then, every time the array
is accessed, the CHK instruction can be executed to make sure that the array bounds have
not been violated. The CHK instruction is usually placed after the computation of an index
value to ensure that the index value is not violated. This permits a check of whether or not
the address of an array being accessed is within array boundaries when address register
indirect with index mode is used to access an array element. For example, the following
instruction sequence permits accessing of an array with base address in AO and an array

Before CHK.L(AS5), D3 Operation After
Enter check

D3[ 01507126 0= D3.L > 501500000 exception

. N=0, TRAP service

Memory routine
31 0 CCR

A5=300710004 | 01500000 X NZVC
x[o [ulu]u]

FIGURE 8.6 Ilustration of the CHK.L (A5),D3 instruction using numerical data
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length of 100 bytes:

CHK.W #99,D0

MOVE.B (A0,D0.W),D1

Here, if the low 16 bits of DO are less than 0 or greater than 99, the 68020 will trap to
location $0018. It is assumed that the value of the index register D2.W is computed prior
to execution of the CHK instruction.

EXAMPLE 8.6 Determine the effects of the execution of CHK.L (A5),D3, where
A5 represents a memory pointer to the array’s upper bound value. Register D3 contains the
subscript value to be checked against the array bounds. Assume the following data prior to
execution of this CHK instruction:

[D3] =$01507126

[A5] = $00710004

[$00710004] = $01500000

Solution

The long word array subscript value $01507126 contained in data register D3 is compared
against the long word UB value $01500000 pointed to by address register AS. Because the
value $01507126 contained in D3 exceeds the UB value $01500000 pointed to by AS, the
N bit is cleared. (X is unaffected and the remaining CCR bits are undefined.) This out-of-
bounds condition causes the program to trap to a check exception service routine. This is
depicted in Figure 8.6.

The operation of the CHK instruction is as follows:

Instruction | Operand Size Operation Notation
CHK 16, 32 If Dn < 0 or Dn > source, then TRAP | CHK (EA), Dn

The 68020 CMP.S (EA), Dn instruction subtracts (EA) from Dn and affects the
condition codes without any result. The operand size designator (.S) is either byte (.B) or
word (W) or long word (.L).

Memory
EA —>{ Lower bound
EA + size —> Upper bound

FIGURE 8.7 Lower and upper bounds for CHK2/CMP2
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The CHK2 and the CMP2 instructions have similar formats:
CHK2.S (EA), Rn
and

CMP2.S (EA), Rn

They compare a value contained in a data or address register (designated by Rn ) against
two bounds chosen by the programmer. The size of the data to be compared (.S) may be
specified as byte (.B), word (.W), or long word (.L). As shown in Figure 8.7, the lower
bound (LB) value must be located in memory at the effective address (EA) specified in
the instruction, and the upper bound (UB) value must follow immediately at the next-
higher memory address. That is, UB addr = LB addr + size, where size = B (+1), W (+2),
or L (+4).

If the register compared is a data register (i.e., Rn = Dn) and the operand size
(.S) is a byte or word, only the appropriate low-order part of the data register is checked.
If the register compared is an address register (i.e., Rn = An) and the operand size (.S) is a
byte or word, the bound operands are sign-extended to 32 bits and the extended operands
are compared against the full 32 bits of the address register. After execution of CHK2 and
CMP2, the condition codes are affected as follows:

Carry = ] if the contents of Dn are out of bounds
= 0 otherwise

Z = 1 if the contents of Dn are equal to either bound
= 0 otherwise

When an upper bound equals the lower bound, the valid range for comparison
becomes a single value. The only difference between the CHK2 and CMP?2 instructions is
that for comparisons determined to be out of bounds, CHK2 causes exception processing

Before CMP2.W(A2), D1 Operation After
Signed comparison CCR

Dl X NZVC
Memory -$5000 <D1.W <+ $5000 uﬂ

L C=0
IS O | -$5000% DLWx+s5000] XMt
A2 = 300007000 B00OO L Z2=0 Nand V
A2+2 = $00007002 5000 are undefined
FIGURE 8.8 Register and memory contents for Example 8.7.
$8000 $BTOO OOi)O D1 .W $5T00 $7FFF
-32K -$5000 +$5000 +32K

Range of valid
values (signed)
FIGURE 8.9 Range of valid values for D1.W for Example 8.7.
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utilizing the same exception vector as the CHK instructions, whereas the CMP2 instruction
execution affects only the condition codes.

In both instructions, the compare is performed for either signed or unsigned
bounds. The 68020 evaluates the relationship between the two bounds automatically to
determine which type of comparison to employ. If the programmer wishes to have the
bounds evaluated as signed values, the arithmetically smaller value should be the lower
bound. If the bounds are to be evaluated as unsigned values, the programmer should make
the logically smaller value the lower bound.

The following CMP2 and CHK?2 instruction examples are identical in that they
both utilize the same registers, comparison data, and bound values. The difference lies in
how the upper and lower bounds are arranged.

EXAMPLE 8.7 Determine the effects of execution of CMP2.W (A2),D1. Assume
the following data prior to execution of this CMP2 instruction:
[D1] = $50000200, [A2] = $00007000, [$00007000] = $B000, and [$00007002] = $5000.

Solution

Figure 8.8 shows register and memory contents before and after execution of
CMP2.W(A2),DI. In this example, the word value $B000 contained in memory (as pointed
to by address register A2) is the lower bound and the word value $5000 immediately
following $B000 is the upper bound. Because the lower bound is the arithmetically smaller
value, the programmer is indicating to the 68020 to interpret the bounds as signed numbers.
The twos complement value $B000 is equivalent to an actual value of —$5000. Therefore,
the instruction evaluates the word contained in data register D1 ($0200) to determine
whether it is greater than or equal to the upper bound, +$5000, or less than or equal to
the lower bound, -$5000. Because the compared value $0200 is within bounds, the carry
bit (C) is cleared to 0. Also, because $0200 is not equal to either bound, the zero bit (Z) is
cleared. Figure 8.9 shows the range of valid values that D1 could contain.

A typical application for the CMP2 instruction would be to read in a number

Before CHK2.W(A2), D1 Operation After
Unsigned comparison CCR
D1 50000200 ' XNZVC
$5000 > DI.W <$B000 | |x 7 [0 |7 |1
Memory L C=1
15 0 $5000 » D1.W+ $B000 TI:.AP o
A2 = $00007000 5000 £ Z=0 exception vector
A2+2 = $00007002 B00OO
FIGURE 8.10 Register and memory contents for Example 8.8.
0000 p w $5000 $B000 SFFFF
0K 64K
Range of valid

values (unsigned)
FIGURE 8.11 Range of valid values for D1.W for Example 8.8.
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of user entries and verify that each entry is valid by comparing it against the valid range
bounds. In the preceding CMP2 example, the user-entered value would be in register D1,
and register A2 would point to a range for that value. The CMP2 instruction would verify

carry bit if it is out of bounds.

EXAMPLE 8.8 Determine the effects of execution of CHK2.W (A2),D1. Assume
the following data prior to execution of this CHK?2 instruction: [D1] = $50000200, [A2] =
$£00007000,

[$00007000] = $5000, and [$00007002] = $B000.

Solution

Figure 8.10 shows register and memory contents before and after execution
of CHK2.W(A2),D1. This time, the value $5000 located in memory is the lower bound
and the value $B0O0O is the upper bound. Figure 8.11 shows the range of valid values that
D1 could contain. Now, because the lower bound contains the logically smaller value,
the programmer is indicating to the 68020 to interpret the bounds as unsigned numbers,
representing only a magnitude.

Therefore, the instruction evaluates the word contained in register D1 ($0200)
to determine whether it is greater than or equal to the lower bound, $5000, or less than or
equal to the upper bound, $B000. Because the value being compared, $0200 is less than
$5000, the carry bit is set to indicate an out-of-bounds condition and the program traps
to the CHK/CHK?2 exception vector service routine. Also, because $0200 is not equal to
either bound, the zero bit (Z) is cleared. The figure above shows the range of valid values
that D1 could contain.

A typical application for the CHK2 instruction would be to cause a trap exception
to occur if a certain subscript value is not within the bounds of some defined array. Using
the CHK2 example format just given, if we define an array of 100 elements with subscripts
ranging from 0 through 99,,, and if the two words located at (A2) and (A2 + 2) contain 50
and 99, respectively, and if register D1 contains 100,,, execution of the CHK2instruction
would cause a trap through the CHK/CHK2 exception vector. The operation of the CMP2
and CHK2 instructions are summarized in Table 8.6.

8.6.4 Trap-on-Condition Instructions

The new trap condition, TRAPcc instruction shown in Table 8.7 allows a conditional
trap exception on any of the condition codes shown in Table 8.8. These are the same
conditions that are allowed for the set-on-condition (Scc) and the branch-on-condition

TABLE 8.6 CMP2 and CHK2 Instructions
Instruction Operand Size Operation Notation
CMP2 8,16, 32 Compare Rn < source — lower bound CMP2 (EA), Rn
or Rn > source — upper bound and set
CCR
CHK2 8, 16,32 If Rn < source — lower bound or Rn> CHK2 (EA), Rn

source — upper bound, then TRAP
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(Bco) instructions. The TRAPcc instruction evaluates the test condition selected based on
the state of the condition code flags, and if the test is true, the 68020 initiates exception
processing by trapping through the same exception vector as the TRAPV instruction (vector
7, offset $1C, VBR = VBR + offset). The trap-on-condition instruction format is

TRAPcc or TRAPcc.S #<data>

where the operand size (.S) designates word (W) or long word (.L).

If either a word or a long word operand is specified, a one- or two-word immediate
operand is placed following the instruction word. The immediate operand(s) consists of
argument parameters that are passed to the trap handler to further define requests or services
that it should perform. If cc is false, the 68020 does not interpret the immediate operand(s)
but instead, adjusts the program counter to the beginning of the following instruction.
The exception handler can access this immediate data as an offset to the stacked PC. The
stacked PC is the next instruction to be executed.

TABLE 8.7 TRAPcc Instruction
Instruction Operand Size Operation Notation
TRAPcc None If cc, then TRAP TRAPcc
16 Same TRAPcc. W #<data>
32 Same TRAPcc.L #<data>
TABLE 8.8 Conditions for TRAPcc
Code Description Result
CcC Carry clear C
CS Carry set C
EQ Equal Z
F Never true 0
GE Greater or equal N-V+N -V
GT Greater than N-V-Z+N -V-Z
HI High C-Z
LE Less or equal Z+N-V+N-V
LS Low or same C+Z
LT Less than NV+N-V
Mi Minus N
NE Not equal Z
PL Plus N
T Always true 1
VC Overflow clear Y
VS Overflow set \"
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8.6.5 Bit Field Instructions

The bit field instructions, which allow operations to clear, set, ones-complement, input,
insert, and test one or more bits in a string of bits (bit field), are listed in Table 8.9. Note
that the condition codes are affected according to the value in the field before execution of
the instruction. All bit field instructions affect the N and Z bits as shown for BFTST. That
is, for all instructions, Z = 1 if all bits in a field prior to execution of the instruction are
zero; Z = 0 otherwise. N = 1 if the most significant bit of the field prior to execution of the
instruction is 1; N = 0 otherwise. C and V are always cleared. X is always unaffected. Next,
consider BFFFO. The offset of the first bit set | in a bit field is placed in D#; if no set bit is
found, D» contains the offset plus the field width. Immediate offset is from 0 to 31, whereas
offset in D# can be specified from —23! to 23" — 1. All instructions are unsized.

The bit field instructions are useful for graphics or digital image processing,
and for managing disk storage. Because of the large amount of data in graphics or image
processing, data storage requirements can by reduced by packing data fields together where
the bit field instructions provide an efficient access to data. Also, the BFFFO instruction
can be used to find the first unused page in a virtual memory system. Hence, the BFFFO
instruction is useful in managing disk storage.

As an example, consider BFCLR $5002{4:12}. Assume the memory contents of
Figure 8.12 prior to execution of BFCLR $5002{4:12}. Bit 7 of the base address $5002
has the offset value 0. Therefore, bit 3 of $5002 has the offset value 4. Bit 0 of location

TABLE 8.9 68020 Bit Field Instructions
Instruction Operand Size Operation Notation
BFTST 1-32 Field MSB — N, BFTST (EA)
Z =1 if all bits in field are | {offset:width}
zero; Z = 0 otherwise
BFCLR 1-32 0’s — Field BFCLR (EA)
{offset:width}
BFSET 1-32 1’s — Field BFSET (EA)
{offset:width}
BFCHG 1-32 Field — Field BFCHG (EA)
{offset:width}
BFEXTS 1-32 Field — Dn; BFEXTS (EA)
sign-extended {offset:width}, Dn
BFEXTU 1-32 Field — Dn; BFEXTU (EA)
Zero-extended {offset:width}, Dn
BFINS 1-32 Dn — field BFINS Dn, (EA)
{offset:width}
BFFFO 1-32 Scan for first bit-set in field | BFFFO (EA)
{offset:width}, Dn
$5001 765 4 3 2 1 0< Bitnumber
$5002 110(1(0(0{0[0]1
(Base address)y—» 1]0[0f1]1{1]0(0
$5003 Of1[t|1(olojo]l
$5004 olofo[1 of0]1]o0
FIGURE 8.12 Memory contents prior to execution of BFCLR $5002{4:12}.
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6 543210
$5001{1{0|1{0[0jO|0]1
$500211 10 |0 |1 [0T0010| T width 12
$5003 |10 [0 [0 (00 l0 [0
$5004|0(0]0}1]0[0[1]0
FIGURE 8.13 Memory contents after execution of BFCLR $5002{4:12}.

$5001 has the offset value -1, bit 1 of $5001 has the offset value -2, and so on. The example
BFCLR instruction just given clears 12 bits starting with bit 3 of $5002. Therefore, bits 0-3
of location $5002 and bits 0—7 of location $5003 are cleared to 0. The memory contents
after execution of BFCLR $5002{4:12} are shown in Figure 8.13.

The use of bit field instructions may result in memory savings. For example,
assume that an input device such as a 12-bit A/D converter is interfaced via a 16-bit port

of an 68020-based microcomputer. Now, suppose that 1 million pieces of data are
to be collected from this port. Each 12 bits can be transferred to a 16-bit memory location,
or bit field instructions can be used.

* Using a 16-bit location for each 12 bits:

memory requirements = 2 x 1 million
= 2 million bytes
*  Using bit fields:

12 bits = 1.5 bytes

memory requirements = 1.5 x 1 million
= 1.5 million bytes

savings = 2 million bytes - 1.5 million bytes
= 500,000 bytes

EXAMPLE 8.9 Determine the effect of each of the following bit field instructions:
(a) BFCHG $5004 {D5:D6}
(b) BFEXIU $5004{2:4},D5

(©) BFINS D4,(A0){D5:D6}
(d) BFFFO $5004{D6:4},D5

Assume the data shown in Figure 8.14 prior to execution of each of the given

Memory

A0 {0000 5004 -16??)?)?)?)?:)?
D5 |FFFFFFFF -8l0jofojolo|tlof0
$5004—> 0 [0]0 001001

D6 |000000004 +s[ol1lol1lololo[1
+16[0[0l0]o]1]0]1]0

CCR | o100l +24[0[1 {00101 ]0
+32[0[1]o]1]o[1]1]0

D4 [7125 F214] +a0[1[olol1]ololo][1

FIGURE 8.14 Data prior to execution of each instruction in Example 8.9.
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instructions. Register contents are given in hex, CCR and memory contents in binary, and

offset to the left of memory in decimal.
Solution

(a) BFCHG $5004 {D5:D6}
Offset =- 1, width =4

XNZVC Memory

CCR [1

$so004[ 1] 1]1]

(b) BFEXTU $5004 {2:4},D5
Offset =2, width=4

XNZVC
CCR{00000

D5{00000002

(©) BFINS D4,(A0) {D5:D6}
Offset = - 1, width =4
Memory XNZVC

fo CCR

$5004 1] 0] of

(d) BFFFO $5004 {D6:4},D5
Offset = 4, width =4

XNZVC

CCR|01000
D5(00000004

(Hex)

8.6.6 PACK and UNPK Instructions

The details of the PACK and UNPK instructions are listed in Table 8.10. Both instructions
have three operands and are unsized. They do not affect the condition codes. The PACK

TABLE 8.10 68020 PACK and UNPK Instructions
Instruction Operand Size Operation Notation
PACK 16 -8 Unpacked source + #data PACK —(An), —(An),

— packed destination

UNPK 8§ — 16 Packed source —
unpacked source

unpacked source + #data
— unpacked destination

#<data>

PACK Dn,

Dn #<data>

UNPK -(An), «(An),
#<data>

UNPK Dn,
Dn #<data>
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instruction converts two unpacked BCD digits to two packed BCD digits:

15 1211 87 4 3 0
Unpacked BCD: [0 00 0[BCD0[0000[BCDI]

4 0
Packed BCD: BCD1

The UNPK instruction reverses the process and converts two packed BCD digits
to two unpacked BCD digits. Immediate data can be added to convert numbers from one
code to another. That is, these instructions can be used to translate codes such as ASCII or
EBCDIC to a BCD, and vice versa.

The PACK and UNPK instructions are useful when I/0 devices such as an ASCII
keyboard and an ASCII printer are interfaced to an MC68020-based microcomputer.
Data can be entered into the microcomputer via the keyboard in ASCII codes. The PACK
instruction can be used with appropriate adjustments to convert these ASCII codes into
packed BCD. Arithmetic operations can be performed inside the microcomputer, and the
result will be in packed BCD. The UNPK instruction can be used similarly with appropriate
adjustments to convert packed BCD to ASCII codes for outputting to the ASCII printer.

EXAMPLE 8.10 Determine the effect of execution of each of the following PACK
and UNPK instructions:

(a) PACK DO0,D5 #$0000
(b)  PACK-(A1),-(A4),#$0000
(© UNPK D4,D6,#$3030
(d  UNPK-(A3)-(A2),#$3030

Assume the data shown in Figure 8.15 prior to execution of each of the instructions
above.

0 Memory
DO|X X X X 32 37 7 0]

0
D5 X XX X X 26

0
D4 X XXX X35

,  $507124BI[ 32
D6 [X X X X X 27 $507124B2[ 37
$507124B3[_ 00
$507124B4[ 27
$507 124B5|__02
g $507124B6{ 07
A3(507124B9] $507124B7| 27
$507124B8 [ 57

il

0
A2(13 00500 A3

f

0
0712483

A3 0TS0 0AT]
FIGURE 8.15 Data prior to execution of each of the instructions of Example 8.7
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Solution

(a) PACK D0,D5 #$0000

[Doj= 32 37
low
word

+00 00

32 37

N ¥
[Ds]= 27

Note that ASCII code for 2 is $32 and for 7 is $37. Hence, this pack instruction converts
ASCII code to packed BCD.

(b)  PACK -(A1),-(A4),$0000

[$5071 24B2] =37 3237
[$5071 24B1] = 32 0000
3237

.. [3005 00A0] = 27 packed BCD

Hence, this pack instruction with the specified data converts two ASCII digits to their
equivalent packed BCD form.
(c) UNPK D4,D6,#$3030

[D4] = XXXXXX 35
03 05
+ 30 30

33 35
- [D6] = XXXX 33 35
[D4] = XXXXXX 35

Therefore, this UNPK instruction with the assumed data converts from packed BCD in D4
to ASCII code in D6; the contents of D4 are not changed.

(d)  UNPK-(A3),-(A2),#$3030

[$5071 24B8] =27

30 30
32 37

- [$300500A2] = 37
[$300500A1] =32

This UNPK instruction with the assumed data converts two packed BCD digits to their
equivalent ASCII digits.

EXAMPLE 8.11 Write a 68020 assembly language program at address $2000 to
add two words, each containing two ASCII digits. The first word is stored in DO.W and the
second word is stored in D1.W. Store the packed BCD result in D4.W.
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Solution
ORG $2000
MOVE.W #$3536,D0 ;Move two ASCII digits to low word of DO
MOVE.W #$3235,D1 ;Move two ASCII digits to low word of D1
PACK D0,D3,#30000 ;Convert DO.W into packed BCD byte in D3.B
PACK D1,D4,#%$0000 ;Convert D1.W into packed BCD byte in D4.B
ADDI.B #0,D0 ;Clear X-bit since ABCD instruction includes x-bit
ABCD.B D3,D4 ;Packed BCD addition. D4.B contains result
FINISH JMP FINISH

Comparing this problem with Example 6.20, it can be concluded that since the 68000
does not have a PACK instruction to convert from ASCII to packed BCD, many more
instructions are needed for the conversion.

In the program above, MOVE.W  #8§3536,D0 loads two ASCII digits $35
(ASCII for 5) and $36 (ASCII for 6) into the low word of DO. The instruction MOVE.W
#$3235,D1 loads two other ASCII digits, $32 (ASCII for 2) and $35 (ASCII for 5), into the
low word of D1. PACK DO0,D3,#$0000 converts ASCII $3536 in DO.W into a packed
BCD byte $56 in D3.B. Similarly, PACK D1,D4,#$0000 converts ASCII $3235 in D1.W
into a packed BCD byte $25 in D4.B. Since ABCD.B D3,D4 adds the packed BCD bytes
in D3.B and D4.B along with the X-bit, the X-bit is cleared to 0 before using the ABCD
instruction. ABCD.B D3,D4 performs the BCD addition as follows:

[D3.B]=$56=0101 0110
[D4.B] =$25=0010 0101
0111 1011
0110 --Add 6 for BCD correction
1000 0001 = $81 = [D4.B]
The result above is verified using the IDE68K debugger.

8.6.7 Multiplication and Division Instructions

Table 8.11 shows the 68020 shows the 68020 signed and unsigned multiplication
instructions. In the table, (EA) can use all modes except An. The condition codes N, Z, and
V are affected; C is always cleared to 0, and X is unaffected for both MULS and MULU.
For signed multiplication, overflow (V = 1) can occur only for 32 x 32 multiplication,
producing a 32-bit result if the high-order 32 bits of the 64-bit product are not the sign
extension of the low-order 32 bits. In the case of unsigned multiplication, overflow (V=1)
can occur for 32 x 32 multiplication, producing a 32-bit result if the high-order 32 bits of
the 64-bit product are not zero.

Both MULS and MULU have a word form and a long word form. For the word
form (16 x 16), the multiplier and multiplicand are both 16 bits and the result is 32 bits.
The result is saved in the destination data register. For the long word form (32 x 32), the
multiplier and multiplicand are both 32 bits and the result is either 32 or 64 bits. When the
result is 32 bits for a 32-bit x 32-bit operation, the low-order 32 bits of the 64-bit product
are provided.
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TABLE 8.11 68020 Signed and Unsigned Multiplication Instructions

Instruction Operand Size  Operation

MULS.W (EA), Dn 16 x 16 — 32 (EA)¢ * (Dn),s = (Dn),,

or

MULU

MULS.L (EA), Dn 32x32 32 (EA) * Dn — Dn

or Dn holds 32 bits of the result after

MULU multiplication. Upper 32 bits of the
result are discarded.

MULS.L (EA),D/#:Dn 32x32 > 64 (EA) * Dn —> Dh:Dn

or (EA) holds 32-bit multiplier before

MULU multiplication
Dh holds high 32 bits of product after
multiplication.

Dn holds 32-bit multiplicand before
multiplication and low 32 bits of
product after multiplication.

Table 8.12 shows the 68020 signed and unsigned division instructions , in which
the source is the divisor, the destination is the dividend.

In the table, (EA) can use all modes except An. The condition codes for either
signed or unsigned division are affected as follows: N = 1 if the quotient is negative; N =0
otherwise. N is undefined for overflow or divide by zero. Z = 1 if the quotient is zero; Z =
0 otherwise. Z is undefined for overflow or divide by zero. V = 1 for division overflow; V =
0 otherwise. X is unaffected. Division by zero causes a trap. If overflow is detected before
completion of the instruction, V is set to 1, but the operands are unaffected.

Both signed and unsigned division instructions have a word form and three long
word forms. For the word form, the destination operand is 32 bits and the source operand
is 16 bits. The 32-bit result in Dn contains the 16-bit quotient in the low word and the
16-bit remainder in the high word. The sign of the remainder is the same as the sign of the
dividend.

For the instruction
DIVS.L (EA), Dg
or
DIVU
both destination and source operands are 32 bits. The result in Dg contains the 32-bit
quotient and the remainder is discarded.

For the instruction
DIVS.L (EA), Dr:Dg
or
DIVU
the destination is 64 bits contained in any two data registers and the source is 32 bits.
The 32-bit register Dr (D0-D7) contains the 32-bit remainder and the 32-bit register Dq
(D0-D7) contains the 32-bit quotient.
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TABLE 8.12 68020 Signed and Unsigned Division Instructions
Instruction Operation
DIVS.W (EA), Dn 32/16 — 16r:16q
or
DIVU
DIVS.L (EA), Dg 32/32 > 32q
or No remainder is provided.
DIVU
DIVS.L (EA),Dr:Dgq 64/32 — 32r:32¢g
or
DIVU
DIVSL.L (EA),Dr:Dg Dr/(EA) — 32r:32¢q
or Dr contains 32-bit dividend
DIVUL

For the instruction
DIVSL.L (EA), Dr:Dg
or

DIVUL
the 32-bit register Dr (DO—D7) contains the 32-bit dividend and the source is also 32 bits.
After division, Dr contains the 32-bit remainder and Dg contains the 32-bit quotient.

EXAMPLE 8.12 Determine the effect of execution of each of the following
multiplication and division instructions.

(a) MULU.L #2,DS5 if [DS] = $FFFFFFFF

b) MULS.L #2,D5 if [D5] = $FFFFFFFF

(c) MULU.L #2,D5:D2 if [D5] = $2ABC1800 and [D2] = $SFFFFFFFF

(d) DIVS.L #2,D5 if [D5] = $FFFFFFFC

(e) DIVS.L #2,D2:D0 if [D2] = $FFFFFFFF and [DO] = $FFFFFFFC

® DIVSL.L #2,D6:D1 if [D1] = $00041234 and [D6] = $SFFFFFFFD

Solution

(a) MULU.L #2,D5 if [D5] = SFFFFFFFF

SFFFFFFFF
* $00000002

00000001 FFFFFFFE
S —t S —

V=1 Low 32-bit
since result in D5
this is

nonzero

Therefore, [D5] = SFFFFFFFE, N = 0 since the most significant bit of the result is 0, Z =0
because the result is nonzero, V = 1 because the high 32 bits of the 64-bit product are not
zero, C = 0 (always), and X is not affected.
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(b)  MULS.L#2,D5 if [D5] = SFFFFFFFF

$FFFFFFFF (-1)
* $00000002 (+2)

$SFFFFFFFF $FFFFFFFE (-2)
S —
Result in D5

Therefore, [D5] = $FFFFFFFE, X is unaffected, C=0,N=1,V=0,and Z=0.

)] MULU.L #2,D5:D2 if [D5] = $2ABC1800 and D2 = $FFFFFFFF

SFFFFFFFF
* $00000002

00000001  FFFFFFFE
—— S
D5 D2

Here N=0,Z=0,V=0,C =0, and X is not affected.
(d) DIVS.L #2,D5 if [D5] = $FFFFFFFC

-2

A

FFFF FFFE

00000002 | FFFE FFF
+2 4

[D5] = $SFFFFFFFE, X is unaffected, N=1, Z= 0, V =0, and C = 0 (always).
(e) DIVS.L #2,D2:D0 if [D2] = $FFFFFFFF and [D0] = $FFFFFFFC

-2 0
AN AT
q = FFFF FFFE, r= 0000 0000

Q@%(@; [ FFFF FFFF_4 FFFF FFF

[D2] = $00000000 = remainder, [DO] = $FFFFFFFE = quotient, X is unaffected, Z=0, N
=1, V=0, and C = 0 (always).

(f) DIVSL.L #2,D6:D1 if [D1] = $00041234 and [D6] = SFFFFFFFD

-1 -1

AT A
= FFFFFFFF, r = FFFFFFFF
0000 0002 FFFFFF

-3
[D6] = $SFFFFFFFF = remainder, [D1] = $FFFFFFFF = quotient, X is unaffected, N=1, Z
=0, V=0, and C = 0 (always).

EXAMPLE 8.13 Write a program in 68020 assembly language to multiply a 32-bit
signed number in D2 by a 32-bit signed number in D3 by storing the multiplication result
in the following manner:
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TABLE 8.13 68000 Enhanced instructions

Instruction Operand Size Operation
BRA label 8, 16,32 PC+d—PC
Bec label 8,16,32 If cc is true, then PC +d — PC;

else next instruction

BSR label 8,16, 32 PC - —(SP); PC+d —» PC
CMPLS #data, (EA) 8, 16,32 Destination — #data — CCR is affected
TST.S (EA) 8, 16,32 Destination — 0 — CCR is affected
LINK.S An, -d 16, 32 An — —(SP); SP —» An; SP+d — SP
EXTB.L Dn 32 Sign-extend byte to long word

(a) Store the 32-bit result in D2. Assume that the numbers are already in registers prior to
multiplication.

(b) Store the high 32 bits of the result in D3 and the low 32 bits of the result in D2. Assume
that the numbers are already in registers prior to multiplication.

Solution
(@)
MULS.L D3,D2
FINISH JMP FINISH
(b)
MULS.L D3,D3:D2
FINISH JMP FINISH
8.6.8 68000 Enhanced Instructions

Table 8.13 lists the 68000 enhanced instructions. In the table, S can be B, W, or L. In
addition to 8- and 16-bit signed displacements for BRA, Bec, and BSR like the 68000, the
68020 allows signed 32-bit displacements. LINK is unsized in the 68000. (EA) in CMPI and
TST supports all 68000 modes plus PC relative. An example is CMPL. W #$2000,(START,
PC). In addition to EXT.W Dn and EXT.L Dn, like the 68000, the 68020 provides an
EXTB.L instruction.

8.6.9 68020 Subroutines
Like the 68000, the instructions, BSR and JSR are subroutine call instructions in the 68020.
BSR uses the relative addressing mode, whereas JSR uses the absolute addressing mode. As
mentioned in Chapter 6, the 68000 uses 16- and 24-bit addresses with the JSR instruction.
In addition to these addresses, the 68020 JSR instruction can use 32-bit address. Also, as
mentioned in Chapter 6, the 68000 BSR uses 8- and 16-bit displacements. The 68020 can
use 32-bit displacement in addition to 8-, and 16-bit displacements.

In order to illustrate the concept of subroutine CALL and RETURN instructions,
consider the following program segment assuming that the main program uses all registers
and that the subroutine stores the result in memory:
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Subroutine
MOVEM.L DO-D7/A0-A6, — (SP)

Main Program
— SUB

JSR SUB —
START — —

Main body of
subroutine

— MOVEM.L (SP)+, DO-D7/A0-A6

RTS
Here, the JSR SUB instruction calls the subroutine SUB. In response to JSR, the 68020
pushes the current PC contents called START onto the stack and loads the starting address
SUB of the subroutine into PC. The first MOVEM in the SUB pushes all registers onto the
stack, and after the subroutine is executed, the second MOVEM instruction pops all the
registers back. Finally, RTS pops the address START from the stack into PC, and program
control is returned to the main program. Note that BSR SUB could have been used instead
of JSR SUB in the main program. In that case, the 68020 assembler would have considered
the SUB with BSR as a displacement rather than as an address with the JSR instruction.

EXAMPLE 8.14 Write a subroutine in 68020 assembly language to implement the C
language assignment statement: p = p + q; where the addresses p and q hold two 16-digit
(64-bit) packed BCD numbers (N1 and N2). The main program will initialize addresses p and
q to $3000 and $4000, respectively. Address $3007 will hold the lowest byte of N1 with the
highest byte at address $3000, and address $4007 will contain the lowest byte of N2 with the
highest byte at address $4000. Also, write the main program at address $2000, which will
perform all initializations including address p (pointer A0 to $3000), address q (pointer Al to
$4000), loop count (D1 to 7), and then call the subroutine at $8000 and stop. The subroutine
will accomplish the task with the initialized values of A0, Al, and D1 in the main program.
Use ABCD.B for BCD addition with the predecrement mode. Assume the supervisor mode.
Note that the 68020 supervisor stack pointer is initialized upon hardware reset.

Solution
ORG $2000
MOVEA.W  #3$3000,A0 ; LOAD AO.L WITH $00003000
MOVEA.W  #$4000,A1 ; LOAD A1.L WITH $00004000
MOVE. W #7,D1 ; INITIALIZE COUNTER WITH 7
ISR BCDADD ; CALL SUBROUTINE

STAY JMP STAY
ORG $8000

BCDADD LEA.L 1(A0,D1.W),A0 ;UPDATE A0
LEA.L 1(A1,D1.W),Al ;AND Al
ADDI.B #0,D0 ;X-BIT =0

ALOOP ABCD.B ~-(AD),-(A0) ;ADD
DBEW D1,ALOOP

RTS
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Questions and Problems

8.1 Name three new 68020 instructions that are not provided with the 68000.

8.2 Find the contents of the affected registers and memory locations after execution
of the 68020 instruction MOVE ($1000,A5,D3.W*4),D1. Assume the following
data prior to execution of this MOVE: [A5] = $0000F210, [$ 00014218] = $4567,
[D3] =3%00001002, [$ 0001421A] = $2345, and [D1] = SF125012A.

8.3 Assume the 68020 memory configuration shown in Figure P8.3.

15 §7 |0

Al =505 $00
$02 501

$05000200 —> $1F|$05
$07 | $00

FIGURE P8.3

Find the contents of the affected memory locations after execution of MOVE. W
#$1234,((A1]).

8.4 Find the 68020 compare instruction with the appropriate addressing mode to
replace the following 68000 instruction sequence:
ASL.L #1,D5
CMP.L 0 (A0,D5.L),DO

8.5 Find the contents of D1, D2, A4, and CCR and the memory locations after
execution of each of the following 68020 instructions:
(a) BFSET $5000 {D1:10}
(b) BFINS D2, (A4) {D1:D4}
Assume the data given in Figure P8.5 prior to execution of each of these

instructions.
Memory
7 0
16|01 1|01 (1)1 |1
S j1rjojr|trf1r]i
$5000 ———> |0 |0 |1]0|1[0fO]1
+8|0t1(0(1({1{1]0]|0O
+16[1 (0|1 |0|1]|0|1]1

[D1] = $00000004, [D4] = $00000004
[D2] = $12345678, [A4] = $00005000
FIGURE P8.5
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8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

Identify the following 68020 instructions as valid or invalid. Justify your
answers,

(a) DIVS A0,D1

(b) CHK.B D0,(A0)

(c) MOVE.L DO0,(A0)

Assume that [A0] = $1025671A prior to execution of the MOVE.

Determine the values of the Z and C flags after execution of each of the following
68020 instructions:

(a) CHK2.W (A5),D3

(b) CMP2.L $2001,A5

Assume the data shown in Figure P8.7 prior to execution of each of these
instructions:

Memory

15 0

$2000 ———>_3400
0701

1800
2004
1E21

[D3] = $02001740, [AS5] = $0002004
FIGURE P8.7

Write a 68020 assembly language program to move two columns of 100 32-bit
numbers from A (i) to B (i). In other words, move A(0) to B(0), A(1) to B(1), and
so on from LOW to HIGH memory addresses. Assume A0 and A1 point to A (i) to
B (i) respectively.

Write a 68020 assembly program to add two 64-bit numbers in D1DO0 with another
64-bit number in D2D3. Store the result in D1D0.

Write a 68020 assembly language program at address $5000 to convert a word
consisting of two ASCII digits stored in the upper 16 bits of DO into a packed
BCD byte. Store the packed BCD result in the lowest byte of D1.

Write a program in 68020 assembly language to convert 10 packed BCD bytes
(20 BCD digits), stored in memory starting at address $00002000 and above,
to their ASCII equivalents and store the result in memory locations starting at
$FFFF8000.

Write a 68020 assembly program to multiply a 32-bit signed number in D5 by
another 16-bit signed number in D1. Store the 64-bit result in D5D1.

Write a program in 68020 assembly language to multiply a signed byte by a 32-bit
signed number to obtain a 64-bit result. Assume that the numbers are pointed to
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8.14

8.15

8.16

8.17

8.18

8.19
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by the addresses that are passed on to the user stack by a subroutine pointed to by
(A7 + 6) and (A7 + 8). Store the 64-bit result in D2:D1.

Write a program in 68020 assembly language to find the first one in a bit field
which is greater than or equal to 16 bits and less than or equal to 512 bits. Assume
that the number of bits to be checked is divisible by 16. If no 1’s are found, store
zero in D3; otherwise, store the offset of the first set bit in D3, and then stop.
Assume that A2 contains the starting address of the array, and D2 contains the
number of bits in the array.

Write a 68020 assembly language program that will convert a BCD number in
DO0.B to a seven-segment code in D2.B using a lookup table containing the seven-
segment codes of the BCD numbers. Use common-cathode display. Assume that
the table is stored in memory starting at an address $00004000. %

. . . Xi2
Write a subroutine in 68020 assembly language to compute Y =2 <
Assume the X;’s are signed 32-bit numbers and the array starts at $500000F1.
Store 32-bit quotient in D1, and 32-bit remainder in D2. Neglect overflow.

Write a subroutine in 68020 assembly language at address $00002000 that can be
called by a main program at address $00003000. The subroutine will compute
the 16-bit sum
Zay’

where a, are diagonal elements of a 3x3 matrix, and k = 0 to 2. Assume that
each element in the matrix is signed 16-bit. Store the result in DO.W. The main
program will initialize A7 to $00000800, obtain the three diagonal elements
from memory stored starting at address $0000 1000 in row-major order, call the
subroutine, and then stop.

Write a subroutine in 68020 assembly language at address $00003000 that can be
called by a main program at address $00006000. Assume supervisor mode. The
subroutine will compute the 32-bit sum

Y=2X? where i=1 to 256.

Assume the X, ’s are signed 32-bit numbers and the array starts at $50000021. Also,
write the main program that will initialize A7 to $0030 4000, A1 to $50000021,
initialize loop count, clear SUM to 0, call the subroutine, perform other operations
as necessary, divide ¥ by 256 (discard remainder), store 32-bit result in D1, and
then stop. Do not use any divide instructions.

It is desired to convert a four-digit unpacked BCD number to binary using the
following equation: binary value, ¥ of the four-digit BCD number,
V= N; *1000 +N, *100 +N, * 10 +N,
where N; is the most significant digit and N is the least significant digit.
Write a subroutine in 68020 assembly language at address $30708000 that will
compute 10* N where N is an unsigned 8-bit number in D0.B. The most significant
digit is stored in a memory location starting at address $00004000, and the least



Assembly Language Programming & Designing with the 68020 259

significant is stored at address $00004003. Write the main program at address
$10000000 that will call the subroutine , and compute ¥ via multiplications by 10
and additions as follows:

V'=(((N; *10) * 10) * 10) +( (N, *10) * 10) +(N, * 10 ) + N,
The main program will first initialize A0 to $00004000, A7 to $00002000, SUM
in D1.W to 0,obtain each digit from memory, call the subroutine as many times as
needed, store the 16-bit result in D1.W, and then stop. Assume supervisor mode.
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68020 HARDWARE AND
INTERFACING

In this chapter we describe the fundamental concepts associated with hardware aspects
of the Motorola 68020 microprocessor. Significant modifications have been made to the
68020 bus structure beyond those of the 68000. One of these enhancements is dynamic
bus sizing. Hence, this feature along with 68020 system design concepts are included.
Topics covered in this chapter include 68020 pins and signals, dynamic bus sizing, and
system design concepts. Finally, design concepts associated with a 68020-based voltmeter
and a 68020-based microcomputer interface to a hexadecimal keyboard and a seven-
segment display are covered. These topics are described in a simplified manner. Note that a
background in the 68000 software and hardware described in Chapters 6 and 7 is required
to understand the topics contained in this chapter.

9.1 Introduction

In this section we describe hardware aspects of the 68020. Topics include 68020 pins
and signals, aligned and misaligned transfers, dynamic bus sizing, and timing diagrams.
Numerous changes have been made to the 68020 bus structure. Note that the 68020 does
not support 6800-type I/O devices. As mentioned in Chapter 7, the 68000 supports both
6800-type I/0 devices such as 6821 and 16-bit devices such as 68230. Also, the 68020 can
complete read or write bus cycles in three clock cycles without wait states. This is due to
enhancements made in the 68020 bus control logic. The 68000, on the other hand, requires
four cycles to complete read or write cycles without wait states.

9.1.1 68020 Pins and Signals

The 68020 is arranged in a 13 x 13 matrix array (114 pins defined) and fabricated in a pin
grid array (PGA) or other packages, such as an RC suffix package. Both the 32-bit address
(As-A,) and data (D,—D,)) pins of the 68020 are nonmultiplexed. The 68020 transfers data
with an 8-bit device via D,,-D,,, with a 16-bit device via D,,—-D,, , and with a 32-bit device
via D, -D,. Figure 9.1 shows the 68020 functional signal group. For reliable operation,
unused inputs should be connected to an appropriate signal level. Unused active LOW
inputs should be connected to Vcc. Unused active HIGH inputs should be connected to
GROUND.

Table 9.1 lists these signals along with a description of each. Ten Vcc (+5 V)
and 13 ground pins are used to distribute power in order to reduce noise. As stated above,
unused inputs should not be kept floating. Unused active LOW inputs should be connected
to Vce. Unused active HIGH inputs should be connected to GROUND. Like the 68000, the
three function code signals FC2, FC1, and FCO identify the processor state (supervisor or
user) and the address space of the bus cycle currently being
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{Function Codes <CLIS. Cache Control
Address Bus Interrupt Priority IPLO'IPLf
68020
3.2ma : -
{Data BusX Microprocessor _IPEND, 5 3, % Interrupt
Transfer{ —  SIZ0 AVEC Contro
Size _ __ &SI71] __
A6, Arbirai
FTal 1tration
( Z'Omai <ECS BGACK 3.:2ma Control
KRMC «RESET 10.7ma) Bus .
Asynchronous AS HALT 3 19 7ma gxception
us Control { 5 3ma DS ontro
<RW |
<« DBEN | CLK * 2 micron HCMOS process
—— 10 * 200,000 transistors
DSACKQ XC;ID 3 * 114 Pins.
DSACKL,| <——£——) *Power Dissipation = 1.75W (max)
FIGURE 9.1 68020 functional signal groups.

TABLE 9.1 Hardware Signal Index

Signal Name Mnemonic Function

Address bus AgAy 32-bit address bus used to address any of
4,294,967,296 bytes.

Data bus D,-D;, 32-bit data bus used to transfer 8, 16, 24, or 32 bits
of data per bus cycle.

Function codes FCO-FC2  3-bit function code used to identify the address
space of each bus cycle.

Size SIZ0/SIZ1 Indicates the number of bytes remaining to be
transferred for this cycle; these signals, together
with AO and A1, define the active sections of the
data bus.

Read-modify-write RMC Provides an indicator that the current bus cycle is

cycle part of an indivisible read-modify-write operation.

External cycle start ECS Provides an indication that a bus cycle is beginning.

Operand cycle start 0CS Identical operation to that of ECS except that OCS
is asserted only during the first bus cycle of an
operand transfer.

Address strobe AS Indicates that a valid address is on the bus.

Data strobe DS Indicates that valid data is to be placed on the data
bus by an external device or has been placed on the
data bus by the MC68020.

Read/write R'W Defines the bus transfer as a 68020 read or write.

Data buffer enable ~DBEN Provides an enable signal for external data buffers.

Data transfer and DSACK]1/ Bus response signals that indicate the requested

size acknowledge = DSACKI1 data. transfer operation are completed; in addition,

these two lines indicate the use of the external bus
port on a cycle-by-cycle basis.
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TABLE 9.1 Cont.

Cache disable CDIS

Interrupt priority IPLO-IPL2
level

Autovector AVEC

Interrupt pending IPEND

Dynamically disables the on-chip cache.
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Provides an encoded interrupt level to the processor.

Requests an autovector during an interrupt
acknowledge cycle.

Indicates that an interrupt is pending.

Bus request BR Indicates that an external device requires bus
mastership.
Bus grant BG Indicates that an external device may assume bus
mastership.
Bus grant BGACK Indicates that an external device has assumed bus
acknowledge control.
Reset RESET System reset.
Halt HALT Indicates that the processor should suspend bus
activity.
Bus error BERR Indicates that an illegal bus operation is being
attempted.
Clock CLK Clock input to the processor.
Power supply VCC +5 volt + 5% power supply.
Ground GND Ground connection.
TABLE 9.2 68020 Function Code Signals
FC2 FC1 FCO Cycle Type
0 0 0 Undefined, reserved
0 0 1 User data space
0 1 0 User program space
0 1 1 Undefined, reserved
| 0 0 Undefined, reserved
1 0 1 Supervisor data space
1 1 0 Supervisor program space
1 1 1 CPU space

executed except that the 68020 defines the CPU space cycle as shown in Table 9.2. Note
that in the 68000, FC2, FC1, FCO = 111 indicates the interrupt acknowledge cycle. In the
68020, it indicates the CPU space cycle. In this cycle, by decoding address lines A A,
the 68020 can perform various types of functions, such as coprocessor communication,
breakpoint acknowledge, interrupt acknowledge, and module operations, as depicted in

Table 9.3.

Note that A, A, Ajs, Ay = 0011, to 1110, is reserved by Motorola. In the
coprocessor communication CPU space cycle, the 68020 determines the coprocessor type
by decoding A s—A,; as shown in Table 9.4,
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TABLE 9.3 Decoding of A,—A,; Pins During a CPU Space Cycle
Al Ajg Ay A Function performed
0 0 0 0 Breakpoint acknowledge
1 0 0 1 Module operations
0 0 1 0 Coprocessor communication
1 1 1 1 Interrupt acknowledge
TABLE 9.4 Coprocessor Communication During a CPU Space Cycle
As Ay Ay Coprocessor Type
0 0 0 68851 paged memory management unit
0 0 1 68881 ﬂoating-point COProcessor

Let us explain some of the other 68020 pins. The ECS (external cycle start) pin is a 68020
output pin. The 68020 asserts this pin during the first one-half clock of every bus cycle to
provide the earliest indication of the start of a bus cycle. The use of ECS must be validated
later with AS, because the 68020 may start an instruction fetch cycle and then abort it if the
instruction is found in the cache. In the case of a cache hit, the 68020 does not assert AS,
but provides A;—A,, SIZ1, SIZ0, and FC2-FCO outputs.

The 68020 AVEC input is activated by an external device to service an autovector
interrupt. The AVEC on the 68020 provides the same function as the VPA on the 63000
during autovector interrupt. The functions of other signals, such as AS, R/W, IPL2 - IPLO,
BR, BG, and BGACK, are similar to those of the 68000.

The 68020 system control pins are functionally similar to those of the 68000.
However, there are some minor differences. For example, for hardware reset, the RESET
and HALT pins need not be asserted simultaneously. Therefore, unlike the 68000, the
RESET and HALT pins are not required to be tied together in the 68020 system .

The RESET and HALT pins are bidirectional and open drain (external pull-up
resistances are required), and their functions are independent. When asserted by an external
circuit for a minimum of 520 clock periods, the RESET pin resets the entire system,
including the 68020. Upon hardware reset, the 68020 completes any active bus cycle in an
orderly manner and then performs the following:

*  Reads the 32-bit content of address $00000000 and loads it into the ISP (the contents
of $00000000 are loaded to the most significant byte of the ISP, and so on).

¢ Reads the 32-bit contents of address $00000004 into the PC (contents of $00000004
to the most significant byte of the PC, and so on).

*  Sets the 12 I1 I0 bits of the SR to 1 1 1, sets the S bit in the SR to 1, and clears the T1,
TO, and M bits in the SR.

*  (lears the VBR to $00000000.
*  (Clears the cache enable bit in the CACR.

*  No other registers are affected by hardware reset.
When the RESET instruction is executed, the 68020 asserts the RESET pin LOW
for 512 clock cycles, and the processor resets all the external devices connected to the
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TABLE 9.5 Decoding of SIZ0 and SIZ1 Pins
Siz1  SIZ0 Number of Bytes Remaining to be Transferred
0 1 Byte
1 0 Word
1 1 3 bytes
0 0 Long words

TABLE 9.6 Device Size Definition by DSACK0 and DSACKI1 Pins

DSACKI1 DSACKO Device Size
0 0 32-bit device
0 1 16-bit device
1 0 8-bit device
1 1 Data not ready; insert wait states

RESET pin. Software reset does not affect any internal register.

In asynchronous operation, the 68020 typically uses bus signals such asE, DS,
DSACKT1, and DSACKO to control data transfer. Using asynchronous operation, AS starts
the bus cycle and DS is used as a condition of valid data on a write cycle. Decoding SIZ1,
SIZ0, A,, and A, provides enable signals, which indicate the portion of the data bus that is
used in data transfer. The memory or 1/O chip then responds by placing the requested data
on the correct portion of the data bus for a read cycle or latching the data on a write cycle
and asserting DSACK1 and DSACKO, corresponding to the memory or 1/O port size (8-,
16-, or 32-bit), to terminate the bus cycle.

SIZ0 and SIZ1 pins indicate the number of bytes remaining to be transferred for a
cycle; these signals, together with A, and A, define the active sections of the data bus. The
decoding of SIZ0 and SIZ1 and the DSACKO and DSACKI1 pins are shown in Tables 9.5
and 9.6, respectively.

EXAMPLE 9.1 Determine the contents of PC, SR, MSP, and ISP after a 68020
hardware reset. Assume a 32-bit memory with the following data prior to the reset:
[$00000000] = $50001234, [$00000004] = $72152614, [MSP] = 827140124, [ISP] =
$61711420, [PC] = $35261271, and [SR] = $0301.

Solution

After hardware reset, the following are the memory and register contents:
[$00000000] = $50001234, [$00000004] = $72152614, [MSP] = $27140124, [ISP]
= $50001234, [PC] = $72152614, and [SR] = $2701. Note that [SR] = $2701 =
00100111000000012. Compared with Figure 8.2, TIT0=00,S=1,M=0,and 12, 11,10 =
111; other bits are not affected.

9.1.2 68020 Dynamic Bus Sizing

The 68020 offers a feature called dynamic bus sizing, which enables designers to use 8-,
16-, and 32-bit memory and I/O devices without sacrificing system performance. The SIZ0,
S1Z1, DSACKO, and DSACKI1 pins are used to implement the 68020 dynamic bus sizing.
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During each bus cycle, the external device indicates its width via DSACKO and DSACKI.
The DSACKO and DSACKI1 pins are used to indicate completion of the cycle. At the start
of a bus cycle, the 68020 always transfers data to lines Dy—D;,, taking into consideration
that the memory or I/O device may be 8, 16, or 32 bits wide. After the first bus cycle, the
68020 knows the device size by checking the DSACKO and DSACKI1 pins and generates

additional bus cycles if needed to complete the transfer.

131

24|23 16}15

DSACK1 | DSACKO| Meaning

A

Hi Hi Insert Wait State

Hi Lo Complete Cycle, Port Size = 8 Bits

Lo Hi Complete Cycle, Port Size = 16 Bits

Lo Lo Complete Cycle, Port Size = 32 Bits
FIGURE 9.2
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68020 dynamic bus sizing block diagram.
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Next, consider an example of dynamic bus sizing. The 4 bytes of a 32-bit data can
be defined as follows:

31 23 15 7 0
| OP0 | OP1 oP2 | oP3 [

If this data is held in a data register Dz and is to be written to a memory or I/O location,
the address lines A, and A, define the byte position of data. For a 32-bit device, A;A, = 00
(addresses 0, 4, 8, ...), A|A, =01 (addresses 1, 5,9, ...), A|A, = 10 (addresses 2, 6, 10, ...),
and A A, = 11 (addresses 3, 7, 11, ...) will store OPQ, OP1, OP2, and OP3, respectively.
This data is written via the 68020 D,,—D, pins. However, if the device is 16-bit, data is
always transferred as follows:

e All even-addressed bytes via pins D;,—D,,
*  All odd-addressed bytes via pins D,;-D4

Finally, for an 8-bit device, both even- and odd-addressed bytes are transferred via pins
D,;,—D,,. The 68020 always starts transferring data with the most significant byte first.

Figure 9.2 is a functional block diagram for 68020 interfaces to 8-, 16-, and
32-bit memory and 1/0 devices. Note that 8-bit devices perform data transfer with the
68020 via D;,-D,, pins, 16-bit devices via D;~D,4, and 32-bit devices via D;—D, pins.
Aligned long word transfers to 8-, 16-, and 32-bit devices are shown in Figure 9.3. For a
32-bit device, an address starting with A|A, = 00 indicates a long word aligned transfer.
The 68020 instruction, MOVE.L D1,$50001234 is an example of an aligned long word
transfer since A;A, = 00. 68020 byte addressing is summarized in Figure 9.4. Figure 9.4
shows how four bytes of a 32-bit longword are transferred between the 68020 and a 32-bit
device, 16-bit device, or an 8-bit device.

Figure 9.5 shows misaligned long word transfers to 8-, 16-, and 32-bit devices.
The 68020 instruction MOVE.L D1,$50001235 is an example of a misaligned long word
transfer since A, A, = 01.

As an example of dynamic bus sizing, consider MOVE.L D1,$20107420. This
is a long word aligned transfer. In the first bus cycle, the 68020 does not know the size
of the device and hence outputs all combinations of data on pins D31-DO0, taking into
consideration that the device may be 8, 16, or 32 bits wide. Assume that the content of D1
is $02A10512 (OPO = $02, OP1 = $A1, OP2 = $05, and OP3 = $12). In the first bus cycle,
the 68020 sends SIZ1 SIZ0 = 00, indicating a 32-bit transfer, and then outputs data on its
D31-DO0 pins as follows:

D3):D 4 D,3:Di6 D)5:Dg D;:Dqg
so2 | sat | sos [ s |

If the device is 8-bit, it will take data $02 from pins D;;—D,, in the first cycle and will then
assert DSACK1 and DSACKO as 10, indicating an 8-bit device. The 68020 then transfers
the remaining 24 bits ($A1 first, $05 next, and $12 last) via pins D;,—D,, in three consecutive
cycles, with a total of four cycles being necessary to complete the transfer.

However, if the device is 16-bit, in the first cycle the device will take the 16-bit data $02A1
via pins D,—D,, and will then assert DSACK1 and DSACKO as 01, indicating a 16-bit
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MC88020 Alignment: LONGWORD port - A1 = 0 and
| Byteo | Bytet [ Byte2 ] Byte3 | (c'ag 0 {mod 4) or WORD poft - A = 0
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* Size pins indicates number of bytes remaining to complete the operand transfer.

FIGURE 9.3 Aligned long word transfer.
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if: SIZ1=0 then: lst bus cycle, seJtes 2,3
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Byte (8-Bit) Port
131 24
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SIZX = # of bytes [ Byte 2
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Byte 4
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Byte 6
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FIGURE 94 MC68020 byte addressing,
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MC68020 [“Byte0 | Byte 1 | Byte2 | Byte3 | Misalignment: LONGWORD port-Af = 1

Register or A0 = 1 (not mod 4) or WORD port - A0 = 1
(not mod 2)
[ Routing & Duplication MUX |
CPUData 531 p24]D23- D16] D15-D8 | D7- DO | Signal States on Every Bus Cycle
| L Y . ¥ . ¥ . |sizt|sizo] a1] Ao | DSACK: | DSACKo
32-Bit Slave * Byte0 | Byte! | Byte2 00011 Lo Lo
Byte 3 . . : Jof1j0 o) Lo | _Lo__
I l ' l ' | |
DRSO DD SR N S DU E
Byte 0 | T 1o o]0 [1] o Hi
16-Bit Slave | Byte 1 Byte 2 : : 1 1|11]0 Lo Hi
Byte 3 * ____|_____|___0___1__0__Q_‘___Lg____l-_ll__
| l | | | \
S . T [ JCJr Sy R DRt SIS PURSS
Byte 0 . T T 1o oo Hi Lo
I
8-Bit Slave Byte 1 | : : 1 1 1 0 Hi Lo
Byte 2 | , , 1 0|1 1 Hi Lo
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* These bytes must not be overwritten. Therefore, individual data strobes must be generated by external
hardware either at the phone or at the 68020.

FIGURE 9.5 Misaligned long word transfer.

device. The 68020 then transfers the remaining 16 bits ($0512) via pins D,,—D,, in the next
cycle, requiring a total of two cycles for the transfer.

Finally, if the device is 32-bit, the device receives all 32-bit data $02A10512 via pins
D,,~D, and asserts DSACK1 DSACKO = 00 to indicate completion of the transfer. Aligned
data transfers for various devices are shown in Figure 9.6.

Next, consider a misaligned transfer such as MOVE.W D1,$02010741 with [D1] =
$20F107A4. The 68020 outputs $0707A4XX on its D,,-D, pins in its first cycle, where the
XX are don’t cares. Data transfers to various devices are summarized in Figure 9.7.

8-bit device:
31....... 0 <«——Bit number

Register DI

68020 pins D3; Dys SIZ1 SIZ0 A; Ao DSACK! DSACKO
First cycle | 02 0 0 0 0 1 0
Second cycle | Al 1 1 0 1 1 0
Third cycle | 05 1 0 1 0 1 0
Fourth cycle | 12 0 1 1 1 1 0

16-bit device:
68020 pins D3, Dy; Dy; Dy SIZI SIZO0 Ay A, DSACKI DSACKO

First cycle 0 0 0 0 0 1
Second cycle [ 05| 1 0 1 0 0 1

32-bit device:

68020 pins D3 Do S1Z1 SIZ0 Ay A, DSACK1 DSACKO
First cycle 0 0 0 0 0 0

FIGURE 9.6 Aligned data transfers.
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8-bit device:
31 23 15 7 0 «<—Bit number

Register D1

68020 pins D, D, SIZI SIZO0 A1 Ao DSACKI DSACKO

First cycle | 07 1 0 0 1 1 0
Second cycle | A4 0 1 1 0 1 0
16-bit device:
68020 pins  D3;  DyyDy; Dy SIZ1 SIZ0 A, Ay DSACKlI DSACKO
First cycle 07 1 0 0 1 0 1
Secondcycle | A4 0 1 1 0 0 1

32-bit device:

68020 pins D3; Doy Dy DiDyis DD, D, SIZI SIZO A; Ay DSACKI DSACKO

First cycle | [ 07 | A4 ] ] 1 0 o0 1 0 0
FIGURE 9.7 Misaligned data transfers.
(a) 32-bit memory: Note the misaligned transfer for 32-bit memory since A A= 11

for the starting address $20002053.

68020 pins D3; Dy Dyy DDyis DD, Dy SIZ1 SIZO A; A DSACKI DSACKO
First cycle | D 0 0 1 1 0 0

Second cycle ! 12 61 24 I 1 1 0 0 0 0

(b) 16-bit memory

68020 pins D3; D, Dy; Dig SIZ1 S1Z0 A; Ayg DSACK! DSACKO
First cycle 50 0 0 11 -0 1
Second cycle | 12 61 1 1 0 0 0 1
Third cycle 24 0 ! 1 0 0 !

© 8-bit memory

68020 pins D3; Doy SIZ1 SIZ0 A; Ay DSACK! DSACKO

First cycle | 50 0 0 1 1 | 0
Second cycle | 12 1 1 0 0 1 0
Third cycle | 61 1 0 0 1 1 0
Fourth cycle | 24 0 1 1 0 1 0
FIGURE 9.8  Solution for Example 9.2.
EXAMPLE 9.2 Determine the number of bus cycles, the bytes written to memory

(in hex), and signal levels of A, A;,, DSACK1, DSACKO, SIZ1, and SIZ0 pins that would
occur when the instruction MOVE.L DI1,(A0) with [D1] = $50126124 and [AQ] =
$20002053 is executed by the MC68020. Assume:

(a) 32-bit memory

b) 16-bit memory

() 8-bit memory
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SolutionSee Figure 9.8.

9.1.3 68020 Timing Diagrams

Figure 9.9 (a) and (b) show typical 68020 read and write timing diagrams (general
form). The read and write cycle parameter specifications are provided in Table 9.7.

Note that in Figure 9.9, signals such as SIZ1, SIZ0, DSACK1, DSACKO, D,- D;,,
A,, and A, which distinguish data transfers between 8-, 16-, and 32-bit devices, are kept in
general form. A simplified explanation of the read and write timing diagrams of Figures
9.9 (a) and (b) are provided in the following.

Consider the read timing diagram of Figure 9.9(a). In response to executing a

SO S1 S2 S3 S4 S5
ax\___/ \ ] N\ /] \___/
AO-A31 X X
FCO-FC2 X X
SIZE X X
—» | 1€—(12a —> fe—
ECS ’,z
@ & @
5C3 ]
ol fe— @a @ @
AS \ ]zr —
DS ) ' | S
S 1
— ¥
RW /] N
3 ) — @)
DSACKD Y / \___
312 > <—-®
DSACKT 2 \
DO-D31 - < —
O— F®
DBEN / "\ S
@
BERR )~ \ ©
272
HALT
(>
All /
Asynchr?nou‘z \
npu -..' k_

FIGURE 9.9(a) Read cycle
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read instruction such as MOVE.L $50207080,D0 (address chosen arbitrarily), the 68020
places the 32-bit address on the Ay - A, pins during SO, outputs LOW on AS and DS
during S1, and places a HIGH on the R/W pin during SO, indicating a read operation. The
68020 then samples DSACK1 and DSACKO at the falling edge of S2 (two cycles). The
pins DSACKI1 and DSACKO are asserted as 00 (32-bit memory) by the external memory
using parameter 3la of Table 9.7. Hence, no wait state(s) are required. Assuming that
the data is placed on the 68020’s D, - D, pins, the 68020 reads data approximately at the
falling edge of S4 (three cycles). Note that all other relevant 68020 signals required during
the read operation shown in Figure 9.9(a) satisfy the timing parameters according to the
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FIGURE 9.9(b) Write cycle
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TABLE 9.7 Read and Write Cycle Specifications
Num. Characteristic 125MHz | 16.67 MHz 20 MHz 25 MHz Unit
Min [ Max | Min | Max | Min | Max | Min | Max
6 | Clock High to Address/FC/Size/AMC Valid 0 40 0 30 0 25 0 25 | ns
6A | Clock High to ECS, OCS asserted 0 30 0 20 0 15 0 15 | ns
7 | Clock High to Address/Data/FC/RMC/Size High 0 80 0 60 0 50 ] 40 ns
Impedance
8 | Clock High to Address/FC/Size/RMC invalid 0 - 0 - 0 - 0 - ns
9 | Clock Low to AS, DS Asserted 3 40 3 30 3 25 3 20 | ns
9A! | AS to DS Assertion (Read) (Skew) 20 | 20 | 15| 15| -10] 10} -10] 10 ] ns
10 | ECS Width Asserted 25 - 20 - 15 - 10 - ns
10A | OCS width Asserted 25 - 20 - 15 - 10 - ns
1087 } ECS, OCS Width Negated 20 - 15 - 10 - 5 - ns
116 | Address/FC/Size/AMC Valid to AS Asserted (and DS 20 - 15 - 10 - 5 - ns
Asserted, Read)
12 | Clock Low to AS, DS Negated 0 40 0 30 0 25 0 20 | ns
12A | Clock Low to ECS, OCS Negated 0 40 0 30 0 25 0 20 | ns
13 | AS, DS Negated to Addess/FC/Size/RMC Invalid 20 - 15 - 10 - 5 - ns
14 | AS (and DS Read) Width Asserted 120 - | 100} - 85 - 65 - ns
14A | DS Width Asserted, Write 50 - | 40 - 38 - 30 - ns
15 | AS, DS Width Negated 50 - 40 - 38 - 30 - ns
15A8 | DS Negated to AS Assertedd 45 - | 35 - | 30 - 25 - ns
16 | Clock High to AS/DS/R/W/DBEN High Impedance - 80 - 60 - 50 - 40 | ns
178 | AS, DS Negated to R/W High 20 - 15 - 10 - 5 - ns
18 | Clock High to RAW High 0 490 0 30 0 25 0 2 | ns
20 | Clock High to RW Low 0 40 0 30 0 25 0 20 | ns
216 | RAW High to AS Asserted 20 - - - - ns
226 | R'W Low to DS Asserted (Write) 90 - - - - ns
23 | Clock High to Data Out Valid - - - - ns
255 | AS, DS Negated to Data Out Invalid 20 - 15 - 10 - 5 ~ ns
25A9 | D5 Negated to DBEN Negated (Write) 20 - 15 - 10 - 5 - ns
265 | Date out Valid to DS Asserted (Write) 20 - 15 - 10 - 5 - ns
27 | Data-In Invalid to Clock Low {Data Setup) 10 - 5 - 5 - 5 - ns
27A | Late BERR/HALD Asserted to Clock Low Setup Time 25 - 20 - 15 - 10 - ns
28 |AS, DS Negated to DSACKvBERR/HALT/AVEC o (1o o 80 0 65 0 50 | ns
Negated
29 | DS Negated to Data-In invalid {Date-In Hokd Time) 0 - 0 - 0 - 0 - ns
29A | DS Negated to Data-In (High Impedance) - 80 - 60 - 50 - 40 | ns
312 | DSACKx Asserted to Data-In Invalid ~ 60 - 50 - 43 - 32 | ns
31A3 isikﬁC)Tx Asserted to DSACKx Valid (DSACK Asserted - 20 - 15 - 10 - 10 | ns
OW)

specifications of Table 9.7.

Next, consider the write timing diagram of Figure 9.9(b). In response to executing
a write instruction such as MOVE.L D0,$50708000 (address arbitrarily chosen), the 68020
outputs the 32-bit address on the A;- A, pins during SO, outputs LOW on AS during
S2, and places a LOW on the R/W pin during SO, indicating a write operation. The 68020
then samples DSACK1 and DSACKO at the falling edge of S2 (two cycles). The pins
DSACKI1 and DSACKO are asserted as 00 (32-bit memory) by the external memory using
parameter 31a of Table 9.7. The 68020 places data on its Dy, - D, pins during S2, and
then asserts DS LOW using parameter 26 of Table 9.7. The external memory then writes
the data into the addressed memory location. Note that all other relevant 68020 signals
required during the write operation shown in Figure 9.9 (b) satisfy the timing parameters
according to the specifications of Table 9.7.
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TABLE 9.7 cont.
L o 125 MHz 16.67 MHz 20 MHz 25 MHz :
Num. Characteristic Win | Max | Min [ Max | Min | Max | Min | Max | "
32 | RESET Input Transition Time - |15 - {15 - |15 ] - | 1.5 jChks
33 | Clock Low to BG Asserted 0 40 0 30 0 25 0 20 { ns
34 | Clock Low to BG Negated 0 40 0 30 0 25 0 20 | ns
35 | BR Asserted to BG Asserted (RMC Not Asserted) 16 | 35 | 15 | 35 | 1.5 | 35 | 1.5 | 3.5 [Chks
37 | BGACK Assertod to BG Negated 15 |1 35 | 15 | 35| 15 | a5 | 15 | 35 | Chks
37A | BGACK Asserted to BR Negated 0 1.5 0 1.5 0 1.5 0 1.5 | Chks
39 | BG Width Negated 120 - |0 -|75] -]6 ] -|ns
39A | BG Width Asserted 120 | - 90 - 75 - 60 - ns
40 | Clock High to DBEN Asserted (Read) 0 40 0 30 0 25 0 [ 20| ns
41 | Clock High to DBEN Negated (Read) 0 40 0 30 0 25 0 20 ns
42 | Clock Low to DBEN Asserted (Write) 0 40 0 30 0 25 0l 2 | ns
43 | Clock Low to DBEN Netgated (Write) 0 40 0 30 0 25 0 20 ns
446 | RAW Low to DBEN Asserted (Write) 20 - 15 - 10 - 5 - ns
456 | DBEN Widih Asserted Read | 80 - | 60 - | 50 - | 40 - ns
Write | 160 120 100 80
46 | R/W Width Asserted (Write and Read) - - - - ns
47A | Asynchronous Input Setup Time 180 - 150 - 125 - 100 | - ns
47B | Asynchronous Input Hold Time 10 - 5 - 5 - 5 - ns
484 | DSACKs Asserted to BERR/HALT Asserted - 35 | - | 30 - 25 - | 20 | ns
53 | Date Out Hold from Clock High 0 - 0 - 0 - 0 - ns
55 | RAW Asserted to Data Bus Inpedance Changes 40 - 30 - 25 - 20 - ns
56 | RESET Pulse Width (Reset Instruction) s12 | - [s512] - Is12] - [512] - |Chks
57 | BERR Negated to HAUT Negated (Rerun) 0 - 0 - 0 - 0 - ns
5810 | BGACK Negated to Bus Driven 1 - 1 - 1 - 1 - | Chks
5810 | B Negated to Bus Driven 1 - 1 - 1 - 1 - | Chks
Notes:

-

. This number can be reduced to § nanoseconds if strobes have equal loads.

2. |f the asynchronous setup time (#47) requirements are satisfied, the DSACKx low to data setup time (#31) and DSACKx low to
BERR low setup time (#48) can be ignored. The data must only satisfy the data-in 1o clock low setup time (#27) for the
following clock cycle. BERR must only satisfy the late BERR low to clock low setup time (#27A) for the following clock cycle.

3. This parameter specifies the maximum allowable skew between DSACKO to DSACK1 asserted or DSACK1 to DSACKO asserted,
spacification #47 must be met by DSACKO to DSACK1.

4. In absence of DSACKXx, BERR is an asynchronous input using the asynchronous input setup time (#47).

5. DBEN may stay asserted on consecutive write cycles.

6. Actual value dapends on the clock input waveform. _ o

7. This is a new sp that ind the mini high time for ECS and OCS in the event of an internal cache hit followed
immediately by a cache miss or operand cycle. _ —

8. Thisis a new spacification that guarantees operation with the MCE8881, which specifies a mi time for DS neg 10 AS
asserted (specification #13A). Without this ication, incorrect interpretation of specifications #9A and #15 wouid indicated that

the MC68020 does not meet the MC68881 requirements.

9. This Is a new specification that allows a system dasigner to guarantee data hold times on the output side of data buffers that have
output enable signals generated with DBEN.

10. These are new specifications that allow system designers to guarantee that an alternate bus master has stopped driving the bus
when the MC68020 regains controt of the bus after an arbitration sequence.

9.2 68020 System Design

This section contains 68020 interfacing to 27C256 EPROM, LH62256C/CH SRAM, and
68230 1/0 chips. Memory and I/O maps are also determined. As mentioned before, the
68020 uses only asynchronous bus cycles in which DS, DSACK 1, and DSACKO pins are
used as handshaking signals for data transfers. Also, for 16-bit or 32-bit memory or I/O

TABLE 9.8 Decoding Guide
68000 Address Pins Chip Selected
Ay A
0 0 27C256
0 1 2256C/CH
1 N.C 68230

Note: N.C. Not Connected (A, is not connected to 68230)
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chips, the correct byte enable must be produced to ensure that appropriate memory or I/O
chip(s) is enabled.

Note that both supervisor and user memory are needed for multitasking or
multiuser systems. However, one can design memory without using the FC2, FC1, and
FCO0 pins in memory decoding logic for a single application or for systems requiring no
operating systems. In that case, the 68000 will always operate in the supervisor mode.
Upon hardware reset, the 68020 will operate in the supervisor mode and will continue to
operate in that mode.

9.2.1 Memory Decode Logic for Memory and 1/0

In the following, an 8-MHz 68020 is used. The system will contain four 27C256s (32K x
8 HCMOS EPROM with 120-ns access time) and four LH2256C/CHs (32K x 8 CMOS
SRAM with 70 ns speed). Because EPROM or SRAM is 32 kB wide, the 68020 address
lines A,—A ¢ are used to address the EPROMs or SRAMs. The 68020 SIZ1, SIZ0, A,, A,,
DSACKI1, and DSACKO pins are utilized for selecting the memory chips.

Since the 68000 uses memory-mapped I/O, an unused address pin must be used
to distinguish between memory and I/0O. To keep things simple, only one 68230 is used in
this design. The 68020 A, pin will be used to select memory or I/O. A, = 0 will select
the memory chips and A,; = 1 will select the 1/O chip. The 68020 A ;, on the other hand,
will be used to select EPROM or SRAM. A ;= 0 will select 27C256, whereas A 3 = 1 will
select 2256C/CH. Pins A,; and A, are chosen arbitrarily. The memory and I/O decoding
is listed in Table 9.8.

To manipulate memory configuration, 32-bit data bus control byte enable logic
is incorporated to generate byte enable signals (DBBE1, DBBE2, DBBE3, and DBBE4).
These byte enables are generated by using 68020°s SIZ1, SIZ0, A, A, and DS pins, as shown

TABLE 9.9 Memory Enables for 32-Bit Memory
SIZ1 SIZ0 A, A, DBBE11 DBBE22 DBBE33 DBBE44
0 1 0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1
1 0 0 0 1 1 0 0
0 1 0 1 1 0
1 0 0 0 1 1
1 1 0 0 0 1
1 1 0 0 1 1 1 0
0 1 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1
0 0 0 0 1 1 1 1
0 1 0 1 1 1
1 0 0 0 1 |
1 1 0 0 0 1
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in the individual logic diagrams of the byte enable logic. An FPGA can be programmed to
implement this logic.

Table 9.9 shows the memory enables for the 32-bit memory. Figure 9.10 shows
the K-maps for the enable logic. A logic diagram can be drawn for generating the memory
byte enable signals DBBE1, DBBE2, DBBE3, and DBBE4.

9.2.2 68020-27C256 Interface

The 68020 system with 32-bit EPROM consists of four 27C256s, each connected to its
associated portion of the system data bus (D,—D,,, D,;-D,s, D;s—Ds, and D,-Dy). 68020
pins A, through A  are connected to Ay through A, of each 27C256. For example, 68020 A,
is connected to A, of 27C256s, 68020 A, to A, of the 27C256s, and so on. A schematic of
the 68020-27C256 interface is shown in Figure 9.11. Linear decoding is used for selecting
memory banks to enable the appropriate memory chips. Figure 9.12 obtained from Figure
9.11 shows the 68020 interface to EPROM #1. The 27C256 memory map can be determined
from Figure 9.12 as follows:

EPROM #1
Ay Ay e Ay A 1817 Ag Ay - A, A A
- Y ~ ¢ Yo for
Don't cares Toselect Canbe0O'sto1's EPROM
assume 0's memory #1
=0 to select 27C256

Note that the A, pin of EPROM # 1 is connected to the 68020 A, pin, Al pin of EPROM
# 1 is connected to the 68020 A, pin, and so on. Hence the address range for EPROM #1:
$00000000, $00000004, ... , $0001 FFFC and the 27C256 memory map:

EPROM #1 $00000000, $00000004, ..., $0001FFFC
EPROM #2 $00000001, $00000005, ..., $0001FFFD
EPROM #3 $00000002, $00000006, ..., $0001FFFE
EPROM #4 $00000003, $00000007, ..., $0001FFFF

DSACKT1 and DSACKO are generated by ANDing the DBBE1, DBBE2, DBBE3,
and DBBE4 outputs of the byte enable logic circuit. When one or more EPROM chips are
selected, the appropriate enables (DBBE1- DBBE4) will be low, thus asserting DSACK1
=0 and DSACKO = 0. This will tell the 68020 that the memory is 32 bits wide. Data from
the selected memory chip(s) will be placed on the appropriate data pins of the 68020.

Let us discuss the timing requirements of the 68020-27C256 system. In response
to execution of a READ instruction such as MOVE.L $00001234,D0, the 68020 checks
DSACK1 and DSACKO for LOW at the falling edge of S2 (two cycles). From the 68020
timing diagram (in the Motorola manual), AS, DS, and all other output signals used in
memory decoding go to LOW at the end of approximately one clock cycle. For an 8-MHz
68020 clock, each cycle is 125 ns. From byte enable logic diagrams, a maximum of four
gate delays (40 ns) are required. Therefore, the EPROM(s) selected will be enabled after
165 ns (125 ns + 40 ns). With a 90-ns access time for the 27C256, the EPROM(s) will place
data on the output lines after approximately 255 ns (165 ns + 90 ns). With an 8-MHz 68020
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FIGURE 9.10 K-maps for enable signals for memory.

clock, DSACKI1 and DSACKO will be checked for LOW (32-bit memory) after two
cycles (250 ns), and if LOW, the 68020 will latch data after three cycles (375 ns). Hence,
no delay circuit is required for DSACK1 and DSACKO. In case a delay circuit is required
for the 68020 with a higher clock frequency, a ring counter can be used.

9.23 68020- 2256C/CH (SRAM) Interface

The Sharp LH2256C/CH is a 32K x 8 CMOS SRAM. The 2256C/CH READ and WRITE
operations are decoded shown in Table 9.10. The 68020 system with 32-bit SRAM consists
of four 2256C/CHs, each connected to its associated portion of the system data bus (D;—D,,,
D,,-D,,, Ds—Ds, and D,~D,). 68020 pins A, through A, are connected to A, through A,
of each 2256C/CH. For example, 68020 A, is connected to A, of the 2256C/CHs , 68020
A, to A, of the 2256C/CHs, and so on. A schematic of the 68020-2256C/CH interface is
shown in Figure 9.13.
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FIGURE 9. 12 68020 interface to EPROM #1.
TABLE 9.10  Decoding Guide
Cs OE WE Operation performed
L L H READ
L X L WRITE

Note: X means don’t care.
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Linear decoding is used for selecting memory banks to enable the appropriate
memory chips. Figure 9.14 obtained from Figure 9.13 shows the 68020 interface to SRAM
#1. The SRAM #1 memory map can be determined from Figure 9.14 as follows:

SRAM #1
A31 A22 Tt Al9 A18 A17 A]s A15 tte Az A1 Ao
0 0 0 |0 J 00
- ~ 'T\ Y for
Don't cares Toselect CanbeO'stol's SRAM
assume 0's l_memory #1
=1 to select SRAM

Note that the A pin of SRAM # 1 is connected to the 68020°s A, pin, the A, pin
of SRAM # 1 is connected to the 68020’s A; pin, and so on. Hence, the address range for
SRAM #1: $00040000, $00040004, ... , SO00SFFFC.

Hence, the 62256C memory map:

SRAM #1 $00040000, $00040004, ..., $0005FFFC
SRAM #2  $00040001, $00040005, ..., S0005FFFD
SRAM#3  $00040002, $00040006, ..., SOO0SFFFE
SRAM #4 $00040003, $00040007, ..., $O0005FFFF
As with EPROMs, DSACKI1 and DSACKO are generated by ANDing the
DBBEI1, DBBE2, DBBE3, and DBBE4 outputs of the byte enable logic circuit. When one
or more SRAM chips are selected, the appropriate enables (DBBE1-DBBE4) will be low,
thus asserting DSACK1 = 0 and DSACKO = 0. This will tell the 68020 that the memory is
32 bits wide. Data from the memory chip(s) selected will be placed on the appropriate data
pins of the 68020. Also, it can be shown that no delay circuits for DSACK1 and DSACKO0
are required since the 2256C/CH has read and write times of 70 ns each.

9.2.4 68020 Programmed 1/0

The 68020 I/O-handling features are very similar to those of the 68000. This means that
the 68020 uses memory-mapped 1/O, and the 68230 I/O chip can be used for programmed
I/O. In the hardware schematic for the 68020-68230 interface shown in Figure 9.15, A,
is chosen to be HIGH to select the 68230 chip so that the port addresses are different
from the 68020 reset vector addresses 00000000,, — 00000006,,. The 68230 DTACK
is an open-drain output. Hence, a pull-up resistor is required. DTACK is used to assert
DSACKI1 DSACKO = 10 for indicating 8-bit I/O. Table 9.11 shows some of the 68230
register definitions.

Let us now determine the I/0 map. Note that A;, through A ,and A ;through A;
are don’t cares and are assumed to be 0’s in the following. Also, A;,= 1 for I/O. Hence,
from the figure, addresses for registers PGCR (R0Q), PADDR (R2), PBDDR (R3), PACR
(R6), PBCR (R7), PADR (R8), and PBDR (R9) can be obtained as shown below. For
example, consider PGCR as follows:
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FIGURE 9.15 68020/68230 interface.

Therefore, address for PGCR = $00020000. Similarly, address for PADDR = $00020002,
address for PBDDR = $00020003, address for PACR = $00020006, address for PBCR =
$00020007 address for PADR = $00020008, address for PBDR = $00020009.

As an example, the following instruction sequence will select mode 0, submode 1X, and
configure bits 0—5 of Port A as outputs, bits 6 and 7 of Port A as inputs, and port B as an

input port:

TABLE 9.11 Some 68230 Registers

Register Select Bits

RS5 RS4 RS3 RS2 RSI

Register Selected

o 0o o o o oo
—_—l O O O O
OO == o o o
I T =

0

_— 0 = O = O

PGCR, port general control register (R0)
PADDR, port A data direrction register (R2)
PBDDR, port B data direction register (R3)
PACR, port A control register (R6)

PBCR, port B control register (R7)

PADR, port A data register (R8)

PBDR, port B data register (R9)




282 Microprocessor Theory and Applications with 68000/68020 and Pentium

PGCR EQU $00020000
PADDR EQU $00020002
PBDDR EQU $00020003
PACR EQU $00020006
PBCR EQU $00020007
ANDLB  #$3F,PGCR ;  Select mode 0
BSET.B  #7,PACR ;  Port A bit [/O submode
BSET.B  #7,PBCR ;  Port B bit I/O submode
MOVE.B #$3FPADDR ; Configure port A bits 0-5 as
; outputs and bits 6 and 7 as inputs
MOVE.B #$00,PBDDR ; Configure port B as an input port
93 68020 Exception processing

The 68020 exceptions are functionally similar to those of the 68000 with some minor
variations. The 68020 exceptions can be generated by external or internal causes. Externally
generated exceptions include interrupts, bus errors, reset, and coprocessor-detected errors.
Internally generated exceptions are caused by certain instructions, address errors, tracing,
and breakpoints. Instructions that may cause internal exceptions as part of their instruction
execution are CHK, CHK2, CALLM, RTM, RTE, DIV, and all variations of the TRAP
instructions. In addition, illegal instructions, privilege violations, and coprocessor violations
cause exceptions. Table 9.12 lists the priority and characteristics of all 68020 exceptions.

The 68020 exception processing is similar to the 68000 with some minor
variations. In the 68020, exception processing occurs in four steps and varies according to
the cause of the exception. The four steps are summarized below:

1. An internal copy is made of the SR, and the S-bit set is to 1 for exception
processing. This means that the 68020 enters the supervisor state and tracing is disabled.
2. The vector number of the exception vector is determined from either the exception-

requesting peripheral (nonautovector) or internally upon assertion of the AVEC (autovector)
input. Note that in the 68000, VPA is asserted for autovectoring. The VBR register points
to the base of the 1-kB exception vector table, which contains 256 exception vectors. The
68020 uses exception vectors as memory pointers to fetch the starting address of service
routines that handle the various exceptions.

3. The processor saves PC and SR onto the supervisor stack. For coprocessor
exceptions, additional internal state information is saved on the stack as well.
4. The final step is the same for all exceptions. The exception vector is determined by

multiplying the vector number by 4, and adding it to the contents of the VBR to determine
the memory address of the exception vector. The PC (and ISP for reset exception) is loaded
with the exception vector. The instruction located at the address given in the exception
vector is fetched and the exception-handling routine is thus executed.

Exception processing saves certain information on the top of the supervisor stack.
This information is called the exception stack frame.

The 68020 provides six different stack frames. The sizes of these frames vary
from four words to 46 words depending on the exception. For example, the normal four-
word stack frame is generated by exceptions such as interrupts and privilege violations. A
six-word stack frame is generated by instruction-related exceptions such as CHK/CHK2
and zero divide.

The 68020 utilizes the concept of two supervisor stacks pointed to by MSP and
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ISP. The M-bit (when S = 1) determines the active supervisor stack pointer. The 68020
accesses MSP when S =1, M = 0. The MSP can be used for program traps and other
exceptions, while the ISP can be used for interrupts. The use of two supervisor stacks
allows isolation of user processes or tasks and asynchronous supervisor I/O tasks.

The 68020 IPL2, IPL1, IPLO, AVEC, and IPEND pins are used as the 68020
hardware interrupt control signals (Figure 9.16). Like the 68000, the 68020 supports
seven levels of prioritized interrupts encoded by using the [PL2, IPL1, and IPLO pins.

In Figure 9.16, when interrupting priority levels 1 through 6 are requested,
the 68020 compares the interrupt level (inverted interrupt pins) to the interrupt mask to
determine whether the interrupt should be processed. An interrupt recognized as valid
does not force immediate exception processing; a valid interrupt causes IPEND to be
asserted, signaling to external devices that the 68020 has an interrupt pending. The deskew
logic in Figure 9.17 continuously samples the IPL2, IPL1, and IPLO pins on every falling
edge of the clock , but deskews or latches an interrupt request when it remains at the same
level for two consecutive falling edges of the input clock. Figure 9.17 gives an example of
the 68020 interrupt deskewing logic.

Whenever the 68020 reaches an instruction execution boundary, it checks for a
pending interrupt. If it finds one, the 68020 begins an exception processing and executes
an interrupt acknowledge cycle with FC2, FC1, FCO =111, and A 4,A 5,A,,,A = 1111. The
68020 basic hardware interrupt sequence is shown in Figure 9.18.

Figure 9.19 shows the interrupt acknowledge flowchart. Before the interrupt acknowledge
cycle is completed, the 68020 must receive either AVEC, DSACKX, or BERR; otherwise,
it will execute wait states until one of these input pins is activated externally.

If AVEC is asserted, the 68020 obtains the vector address internally (autovectored)
automatically. If the 68020 DSACKX pins are asserted, the 68020 takes an 8-bit vector
from the appropriate data lines (D, —D,, pins for a 32-bit device, D,;—D,4 pins for a 16-bit
device, D;,-D,, pins for an 8-bit device). These are nonautovectored interrupts, and the
68020 obtains the interrupt vector address by adding VBR with 4 * (8-bit vector).

Figure 9.20 shows an example of autovectored and nonautovectored interrupt logic.
Finally, if BERR is asserted, the interrupt is considered spurious and the 68020 assigns the
appropriate vector number for handling this.

94 68020-based Voltmeter

A 68020-based voltmeter is designed in this section. A 68020/27C256/62256/68230-based
microcomputer is used to implement the voltmeter to measure voltage in the range 0 to 5V
and display the result in two decimal digits: one integer part and one fractional part. The
microcomputer will contain 16-bit I/O and will use two 68230 I/O chips; one containing
even port addresses and the other containing odd port addresses. Three 8-bit I/O ports are
used in the design. The two 8-bit ports (ports A and B) of the even 68230, and the 8-bit port
(port A) of the odd 68230 will be used.
The 68230 port addresses are chosen arbitrarily and are given below.

*  Ports used from the even 68230: PGCR = $00002000, PACR = $0000200C,
PBCR = $0000200E, PADDR = $00002004, PBDDR = $00002006, PADR =
$00002010 = port A, and PBDR = $00002012 = port B.
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TABLE 9.12 Exception Priorities and Recognition Times
Exception priorities Time of recognition
Group0 .0  Reset End of clock cycle
Group 1 .0 Address error
1 Bus error
Group 2 .0 BKPT #N, CALLM, CHK, CHK2, cp TRAPcc Within an instruction cycle

cp mid-instruction
cp protocol violation, divide-by-zero, RTE,
RTM, TRAP #N, TRAPV

Group3 .0  Illegal instruction, unimplemented LINE F, Before instruction cycle begins
LINE A, privilege violation, cp preinstruction
Group4 .0  cp post-instruction End of instruction cycle
B! Trace
2 Interrupt
MC68020
Status Register
frifrof s Mjofi2[niofoJo[o]x|N]Z]V]C]
YYY
Comparator —D'—b IPEND
AAA
DESKEW l«— AVEC
Logic
AAA
L0
IPLT
IPL2
FIGURE 9.16 68020 interrupt control signals.

Example: level 5 followed by level 7 request
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Level Sampled: 7

Level Deskewed: No Interrupt ——>» I(—— 5 ———»'4— ??—»I(———— 7—

FIGURE 9.17 68020 interrupt deskewing logic.
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IPLX.
Int. Levels
>Mask or
NMI?

Interrupting Devices
Set Appropriate
IPLO - IPL2 Lines

Continue In
Current Program

MC68020 Finishes
Current Instruction

Normal Processing
Exception Processing

Responds with IACK
and Interrupt Level

Auto Vector Spurious | Vector User Vector
L] y Y
. Watchdog Timer Interrupt Logic
Interrupt Logic Asserts BERR Provides
Asserts AVEC Vector Number;
Asserts DSACKx
L ]

Continuation of
Exception Processing

FIGURE 9.18 68020 basic hardware interrupt sequence.
*  Ports used from the odd 68230: PGCR1 =$00002001, PACR1 = $0000200D,
PADDRI1= $00002005, and PADR1 = $00002011 = port AA.

The 68020-based voltmeter will be designed using both programmed I/O, and
interrupt /O (nonmaskable and maskable).

9.4.1 Voltmeter Design Using Programmed I/O0
Figure 9.21 shows the schematic of the voltmeter using the 68020-based microcomputer.
The microcomputer is required to start the A/D converter at the falling edge of a pulse via bit

PROCESSOR INTERRUPTING DEVICE

Acknowledge Interrupt (————I Request Interrupt ]

1) Compare Interrupt Request Level with
Interrupt Mask
2) SetR/W to Read
3) Set Function Code to CPU Space to 111
4) Place Interrupt Level on A1, A2, and
and A3. Type Field = IACK = A19-A16 = 1111
5) Set Size to Byte —
6) Assert Address Strobe (AS) and
Data Strobe (DS) Provide Vector Information

1) Place Vector Number of Least Significant
Byte of Data Port (Depends on Por