
Pocket Guide

I) 1 I I) I 1) I*]

1 I LI [I I I I I I I I 1

Pitman Pocket Guides

The complete list of titles in this series is printed on the stiff board
at the back of this Guide.

This series of pocket size reference guides provides you with
reliable descriptions of the salient features of all the important
languages, micros, operating systems and word processors. You
can use them as memory-joggers or reference tools.

There is an introductory Guide to each category for those who
have no experience of the subject. This provides you with the
lead-in to other related titles.

The Publishers would welcome suggestions for further
improvements to this series. Please write to Alfred Waller at the
address below.

PITMAN PUBLISHING LTD
128 Long Acre, London WC2E 9AN

Associated companies
Pitman Publishing Pty Ltd, Melbourne
Pitman Publishing New Zealand Ltd, Wellington
Copp Clark Pitman, Toronto

Consultant Editor: David Hatter

First edition 1984

© Robert Erskine 1984

All rights reserved

Printed in Great Britain at The Pitman Press, Bath

ISBN 0 273 02152 4

i :1 i i i i u i I i i i
Index

How to use this Pocket Guide
1

Address errors 34
Address registers 4 ,5 ,6
Addressing 1 2 ,1 4 ,1 8
Addressing modes 1 4 ,1 8 ,2 7
Addressing range 6
Appendix 62
Assembler syntax 13,27
Bus errors 34
Carry flag 9
Condition codes register 9
Data lengths 3
Data registers 4, 5
Effective addressing 14, 35
Exception processing 30, 34
Extend flag 10
Function code registers 5 ,1 0
Illegal instructions 33
Index registers 5
Instruction formatting 14
Instruction set 35, 38
Instructions 13
Interrupt mask 10,31
Interrupts 31
MC68000 2
MC68000 series 1

MC68008 2
M C68010 2
Memory addressing 15 ,19
Memory organization 12
Multiple exceptions 34
Overflow flag 9
Privilege violations 34
Privileged instructions 11
Program counter 5 ,8
Programming model 4
Queues 29
Register direct addressing 15,

18
Reset 31
Sign extension 6, 7, 21
Sources & destinations 4
Special addressing 15 ,2 4
Stack handling 27 ,47
Stack pointer 5 ,8 ,1 1 ,2 7 ,2 8 ,

48
Status register 5 ,9
Supervisor bit 10 ,11
Supervisor state 11
Trace bit 10 ,33
Trace mode 32
Traps 33
User state 11
Vector base register 5 ,1 0 , 31
Zero flag 9

ii

I I I (I I I [I I I

How to use this Pocket Guide

This Guide is intended for the general programmer rather than for
the specialist or systems design programmer and is centred on the
MC68000 series programming instruction set, data organization
and addressing capabilities rather than on technical aspects of
operating functions or on circuit design.

Although readers need not have prior knowledge of the
MC68000 series or of other 16-bit microprocessors, it would be
helpful to have some understanding of the principles of assembly
language programming. Special terms and concepts relating
specifically to the 68000 series are explained in the text, but terms
which are common in assembly language programming, such as
interrupts and stacks, are assumed to be reasonably familiar to the
reader.

The Guide covers the system architecture of the 68000 series
and explains addressing modes in some detail. Important features
such as exception processing and stack handling are also
included, while the main part of the Guide consists of a complete
glossary of programming instructions, with descriptions of the
operational functions of all types of commands and their variants.

The MC68000 series microprocessors

The MC68000 series 16-bit microprocessors have been developed
from the M6800 series processors and are designed to be
compatible with the M6800 peripherals. The three current
processors in the MC68000 range are the MC68000, the MC68008
and the MC68010.

For programming purposes, the three processors are very
similar and, with one or two minor exceptions, share the same
instruction set. The following paragraphs summarize the main
features of these three processors, outlining their main
differences. Individual differences in circuit design and function
have not been included, except where they relate specifically to
topics which are covered in this Guide. These variations are also
covered in the main body of the text under the appropriate topic
headings.

l

I I I I I I I I I [I

The MC68000

The MC68000 is a 16-bit microprocessor with eight 32-bit data
registers, eight 32-bit address registers and an addressing range of
16 Mbytes. It has memory-mapped I/O, fifty-six instruction types
and fourteen addressing modes. Programming operations may be
performed on bit, BCD (4-bit), 8-bit, 16-bit and 32-bit data types.

The MC68008

The MC68008 is similar to the MC68000, with the following main
exceptions:

• The data bus is of 8 bits rather than 16, with the result that most
operations take twice as long to execute than they would on the
MC68000.

• The addressing range is limited to 1 Mbyte compared with the
16 Mbytes of the 68000. This is due to the fact that the 68008
uses 20 bits to form an address rather than the 24 bits used by
the 68000. Addresses outside the 20-bit range are automatically
truncated.

• There are two interrupt control pins rather than three, with the
IPL0/IPL2 pin being connected internally to the IPL0/IPL2
inputs. The result is that the 68008 only recognizes four
interrupt priority codes (0 ,2 ,5 and 7) in comparison to the eight
(0 to 7) which are recognized by the 68000.

The instruction set is identical to that of the 68000.

The MC68010

The MC68010 is again similar to the 68000, but with the following
main exceptions:

• The 68010 is capable of supporting a virtual memory system —
that is, it is able to access data which is not resident in physical
memory. This is achieved by suspending data access while the
necessary data is fetched from another source and placed in
physical memory.

2

I I I I I I I I I I I

• Certain additional instructions are provided which relate to the
special facilities of the 68010. These are MOVEC, MOVES and
MOVE from CCR, the functions of which are described in the
instruction glossary. In addition, the MOVE from SR instruction
is privileged. In other respects the instruction set is identical to
that of the 68000.

• The exception vector table may be moved to another location in
memory, and additional vector tables may be created. An
additional register, the vector base register, is provided for
locating the required vector address.

• Some instructions, such as multiplication and division, are
executed much faster than those on the other two processors.

Data lengths

The five main data types supported by the M C68000 processors
are of 1, 4, 8, 16 and 32 bit lengths, designated as bit, nibble (4-bit
binary-coded decimal), byte, word and long word lengths
respectively:

Byte

Word

Long word

Except in cases where no operands are specified, all
instructions incorporate an indication of the size of the operation.
For example, MOVE operations may be of byte, word or long word
size and the instruction mnemonics are expressed as MOVE.B,
MOVE.W or MOVE.L as required. Where no length specification
is given, the default length is W. Bit and binary-coded decimal
operations are performed on data sections addressed as byte
operands.

3

Sources and destinations

The terms source and destination are used throughout this guide
to distinguish the operands specified by instructions. In the
programming instruction MOVE.L D1,D2, for example, D1 is
designated the source operand and D2 the destination operand.
Effectively the instruction means that data contained in the source
operand, to the left of the comma, is to be moved into the
destination operand to the right of the comma. This is the
opposite of the format used with some other processors such as
the Z80, where the source and destination operands are expressed
in reverse order.

Programming model

The 68000 series processors have two categories of user registers;
the data and address registers, plus a stack pointer, a program
counter and a status register, as follows:

_____________________________ DO
Dl

_____________________________ D2
_____________________________ D3 Data registers
_____________________________ D4
_____________________________ D5
_____________________________ D6

D7

AO
A1
A2
A3 Address registers
A4
A5
A6

4

[I I I I I I I [I I

A7 User stack pointer (USP)
A7 Supervisor pointer (SSP)

PC (Program counter)

SR (Status register)

The following additional registers are provided on the MC68010:

VSR (Vector base register)

Source function code register (SFC)
Destination function code register (DFC)

Data registers

The eight data registers are labelled DO to D7 and are each 32 bits
in length. Data contained in the registers may be of byte, word or
long word length, with byte values occupying bits 0 to 7, word
values occupying bits 0 to 15 and long word values occupying bits
0 to 31. Note that operations specifically involving the lower-
order bits in a data register will leave the higher-order bits
unchanged. Thus a word value, for example, placed in a data
register, will occupy bits 0 to 15 and leave bits 16 to 31 unaffected,
while byte length values will occupy bits 0 to 7 leaving bits 8 to 31
unaffected.

Long word

Word(Unaffected)

(Unaffected) Byte

Data registers may be used either as sources or destinations in
program instructions and may also be used as data counters and
index registers. (Note that the 68000 processors do not incorporate
a dedicated set of index registers.)

5

I I I I I I (I I [{

Address registers

The seven address registers, labelled AO to A7, are also 32 bits in
length and can accommodate word or long word but not byte
values. Although the address registers are basically similar to the
data registers, there is an important difference. If an address
register is being used as a source operand, then, as with the data
registers, any bits not involved in the operation w ill not be
affected. However, if an address register is being used as a
destination, the entire 32 bits of the register are affected,
irrespective of the size of the value transferred. If the value is of
word length, it is first sign extended to a full 32 bits; that is to say,
its most significant bit (bit 15) is copied into bits 16 to 31 of the
register.

Long word

Sign extension Word

Although an address register contains 32-bit values, only the
lower 24 bits are used to specify an actual memory location. The
MC68000 and the MC68010 can therefore address up to 16 Mbytes
of memory, which in hexadecimal numbering is in the range
$000000 to $FFFFFF.

The MC68008 uses only the lower 20 bits of an address register
to specify a memory location, giving an addressing range of 1
Mbyte ($00000 to $FFFFF).

Memory is addressed as a single byte location, a word location
or a long word location. A byte length operation accesses an
operand in address n, a word operation accesses an operand
located in addresses n and n + 1 and a long word operation
accesses an operand located in addresses n, n + 1 , n + 2 and n +3 .

6

[i I I I I 1 I I I (

In the case of word and long word operations, the start address
of the operand must always be an even number, so that on the
68000 and 68010 the highest memory location for a word operand
is $FFFFFE and for a long word operand, FFFFFC. For a byte
length operand, the highest addressable memory location is
$FFFFFF.

If a 32-bit operand has been loaded into an address register,
then the range of memory locations which can be addressed by the
register w ill be 16 Mbytes (or 1 Mbyte in the case of the 68008), as
described above. This would be the case with an instruction such
as MOVEA.L D4,A1 which moves the entire 32-bit contents of
data register D4 into address register A l, which may then be used
to point to a corresponding address.

Reg D4

Reg A l

The instruction MOVEA.W D4,A1, however, moves only the
lower order 16 bits of D4 into the lower half of A l ; and the
memory location, which may then be accessed by A l, will depend
upon the word value moved.

(Unused) Word

1
Sign extension Word

>D4

’ Al

Because this is a word length operation, the most significant bit of
the low-order word in A l (bit 15) w ill be sign extended (that is,
copied) into the high-order half of A l . Thus, if the value is
between $0000 and $7FFF (decimal 0 to 32767) it will be extended
to a value between $00000000 and $00007FFF, because bit 15 will
be a zero. Since only the first 24 bits are actually used to form an
address, then in fact the addressing range of the resulting value
will be $000000 to $007FFF ($00000 to $07FFF on the MC68008)
— the bottom 32K of memory.

7

I i 1 I I (I 1 (I I

If the word value is between $8000 and $FFFF (decimal 32768
to 65535), then the 15th bit will be 1. After sign extension,
therefore, the resulting values will be in the range $FFFF8000 to
$FFFFFFFF which is truncated to $FF8000 to $FFFFFF (decimal
16,744,448 to 16,777,215), or, in the MC68008, to $F8000 to
$FFFFF (decimal 1,015,808 to 1,048,575). In these cases,
therefore, only the top 32K of memory is addressable.

It should be clear, therefore, that to address the entire range of
memory locations it is necessary to load the addressing register
with a long word rather than with a word operand.

Stack pointer (SP, or USP and SSP)

The stack pointer (SP) is address register A7 and is used to point
to either of the two stacks used in the system.

The supervisor stack is normally used by the operating system
while the user stack is the one normally used by a user program.
In supervisor state the stack pointer is termed the SSP, while in
user state it is termed the USP. Only one of these stacks may be
used at any one time, and bit 13 of the status register indicates
which stack is currently in use. Data stored on a stack should be of
word or long word length. Where bytes are to be stacked, they
should be incorporated as the high-order half of a word length
value to avoid misalignment. See also ‘User and supervisor states’.

Program counter (PC)

The program counter holds the address of the next program
instruction to be executed.

8

I I I I [1 I I (I

Status register (SR)

The status register is a two-byte register containing sixteen ‘bit’
flags which are used to indicate various conditions during the
running of a program. Bits 0 to 7 constitute the condition codes
register (CCR) and contain flags denoting the results of program
operations. Bits 8 to 15 constitute the system byte and contain
flags indicating the current status of the system. Bits 5 to 7 and
bits 11 ,12 and 14 are not used.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 C
T S I I I X N Z V c

N--------------- --------' "--------,--------'
System byte Condition codes register (CCR)

The bit flags may be tested after certain operations have been
performed and the results used for conditional call and branch
decisions. Their operation is as follows:

C an y flag (C): bit 0 of the status register
The carry flag is ‘set’ to 1 if an addition operation results in a
‘carry’ or if a subtraction operation results in a ‘borrow’. If no carry
is caused by an operation, then the carry flag is ‘reset’ to zero.

O verflow fla g (Vj: bit 1 of the status register
Any result exceeding an operand’s size limits will result in an
‘overflow’ and will cause the overflow flag to be set.

Zero flag (Z): bit 2 of the status register
The zero flag is set when the result of an operation is zero. This
may happen, for example, after a subtraction or decrementation
instruction has been used or when a comparison has been made
between two numbers of equal value. For results which are other
than zero, the zero flag will be reset.

N egative flag (N): bit 3 of the status register
The negative flag is used to indicate whether a number is positive
or negative in terms of two’s complement arithmetic. The most
significant bit of any value in two’s complement is used to
indicate a positive (reset) or negative (set) value and it is this bit
which is copied into bit 3 of the status register.

9

I [[(([. ([[I (
Extend flag (X):bit 4 of the status register
This operates in a similar way to the carry flag but is used in
operations involving larger numbers (for example, in
multiprecision arithmetic) or in BCD operations.

Interrupt mask: bits 8 to 10 of the status register
The interrupt mask consists of three bits which indicate which of
the seven interrupt levels is currently enabled. Note that the three
mask bits are the least significant bits of the ‘system’ byte of the
status register.

Supervisor bit (S): bit 13 of the status register
The supervisor bit is set to indicate supervisor state or reset to
indicate user state. For a full explanation of the two states, please
refer to ‘User and supervisor states’.

Trace bit (T): bit 15 of the status register
This bit is set to indicate that trace mode is in operation,
otherwise it is reset. For a full explanation of the trace function,
please refer to ‘Exception processing’.

Vector base register (VSR)

The vector base register is provided only on the MC68010 and is
used in conjunction with an offset value to generate an exception
vector address. See ‘Exception processing' for a more detailed
explanation.

Function code registers (SFC and DFC)

These are 3-bit registers, the source function code register and the
destination function code register, which are used with the
MOVEC and MOVES instructions on the MC68010. MOVEC sets
the registers to permit MOVES to read or write to locations in the
supervisor program, user program or user data areas.

10

[I I [I I I I I I I

User and supervisor states

The 68000 operates in either a ‘user’ or ‘supervisor’ state,
depending on the types of operations which are currently being
executed. In supervisor state, bit 13 of the status register is set.
The supervisor state is normally set for operations involving an
operating system, including exception processing, and is
distinguished from the user state in that certain instructions are
‘privileged’ and may only be executed when the supervisor state
is in force. This system affords the operating system full
protection from its user programs and if necessary allows the
operating system to obtain exclusive access to certain memory
resources and peripherals.

The privileged instructions are ANDI to SR, EORI to SR, MOVE
to SR, MOVE USP, ORI to SR, RESET, RTE and STOP. Privileged
instructions are illegal in the user state because their use can
affect flags and pointers, thus interfering seriously with the
execution of a user program. Any attempt to use a privileged
instruction from within a user program will result in a TRAP
exception. All non-privileged instructions are executable from
within both user and supervisor states.

Both states use different stack pointers: the user stack pointer
(USP) for the user state and the supervisor stack pointer (SSP) for
the supervisor state. Both pointers can only be referenced from
their own state although both are addressed as address register A7
(an exception to this rule is the instruction MOVE USP, which
permits an operating system functioning in the supervisor state to
set the stack pointer for a user program).

11

I I I I I I I I I I I
Memory organization

Address organization in memory

Memory locations may be accessed in byte, word or long word
lengths as specified by the particular instructions used. All word
and long word length references must address even numbered
memory locations whereas byte references may address both odd
and even locations.

Addr. Bytes Words Long words

0

For long word operations, the first two bytes of the address
constitute the high-order word and the second two bytes the low-
order word.

Where data is loaded into memory, for example from a data
register, the data bytes are transferred as follows:

32-bit transfer

Reg. Dn

Memory

Byte 3 Byte 2 Byte 1 Byte 0

1 1 4 4
Addr. n Addr. n + 1 Addr. n + 2 Addr. n + 3

12

I I I I 1 I I I I [I

16-bit transfer
Reg. Dn Byte 3 Byte 2 Byte 1 Byte 0

4 4
Memory Addr. n Addr. n + 1

8-bit transfer
Reg. Dn Byte 3 Byte 2 Byte 1 Byte 0

4
Memory Addr. n

Data transferred from memory to a register is moved in the reverse
order. For example, the first word value at a particular address
will be transferred in two bytes to the low-order half of a register.

MC68000 instructions

Assembler syntax

Newcomers to assembly language programming should note that
it is usual to use an assembler program for constructing programs,
rather than calculating the machine code for each instruction
individually.

An assembler accepts assembly language mnemonics and
compiles them into machine code automatically. For example, the
instruction mnemonic ADD D4,D6 means ‘add the contents of
data register D4 to data register D6 and let D6 hold the result’. If
this instruction were to be entered into an assembler program, it
would be converted into its numeric form automatically, ready for
execution.

13

1 I I I I I 1 1 I I I

The exact form of each mnemonic may vary among assemblers
but will always follow a similar type of format, which is referred
to as the assembler syntax, In this Guide, all instructions are
expressed in this type of format although in many cases a generic
version of the syntax is used. For example, the above instruction
was derived from the general syntactic form: ADD < e a > ,D n which
means add a source operand of a type permitted by the definition
< e a > (meaning ‘effective address’); in this case, the contents of
register D4, to a destination operand specified by Dn (meaning
any of the eight data registers); in this case, D6.

Before going on to look at the ways in which these mnemonic
instructions are used it is worth looking in some detail at how
instructions are assembled and how the assembler mnemonics
relate to them.

Instruction formatting

MC68000 instructions are between one and five words in length,
the first word always specifying the length of the instruction and
the operation which is to be performed. The remaining words, if
any, consist of immediate operands or of ‘extension words’, which
further qualify the addressing mode used by the instruction.

Types of addressing modes

There are three distinct forms in which operands are specified by
an instruction:

Register specification — in which a specific register is referred to
and identified by a unique 3-bit code within the instruction word.
Im plicit reference — in which the instruction implicitly refers to
specific registers such as the stack pointer (SP) or the status
register (SR).
E ffective addressing— in which the operand is specified by the
contents of an ‘effective address field’ within the instruction.

14

I I I I I I I I I I I

The effective address field occupies the 6 low-order bits of an
operation word and consists of 3 ‘mode’ bits (3 to 5), which
specify the type of addressing mode to be used, and 3 ‘register’
bits (0 to 2), which specify the identity of the register to be used.

Mode Reg
/

k
/

1

X X X X X X X X X X m m m r r r

Effective addr. field

In fact, most instructions specify operands by means of an
effective address code, and these can be divided into three
categories as follows:

Register direct — in which one of the data or address registers is
specified in the register section of the effective address field.

Memory addressing — in which the mode section of the effective
address field indicates that the operand is to be found in memory.
The instruction also incorporates an indication of the operand’s
actual location.
Special addressing— in which a code indicating the special
mode required is used in place of a register specification in the
effective address field.

The following are examples of the constitution of a selection of
instruction formats, showing how the fields within the instruction
word are used to specify the required operands.

15

I [[I I I I I I I I
E xam ple 1:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1

\ ✓s / \ / \ _' \ / \ /

Data reg.
number

L- Indicates source
is a data register

L- Indicates that destination
is an address register

— Address register number

—• Indicates long word operation

Part of op. code

This corresponds to the instruction MOVEA.L D1,A2 which
moves the entire contents of data register D1 into address register
A2. Bits 3 to 5 of the instruction word contain the binary code 000
which specifies that the source operand is a data register. This
addressing mode is of the register direct type. Bits 0 to 2 indicate
the actual number of the data register, which is 1. Bits 6 to 8
contain the binary code 001 which specifies that the destination
operand is an address register and bits 9 to 11 give the actual
number of the register, which is 2. Bits 12 and 13 contain the
binary operation code 10, indicating that the instruction is of long
word length. Bits 14 and 15 contain zeros and these also form part
of the operation code.

The above instruction may be described in terms of the generic
assembler syntax as MOVEA < e a > ,A n (move data from a source
operand specified by an effective address to a destination operand
specified as an address register).

16

Example 2:

I I I I I I I I I I I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0s __/x /

Address
reg. no.

Indicates that
destination is

in memory

— Indicates a byte-sized
operation

*— The op. code for the CLR instruction

This corresponds to the instruction CLR.B (A4) which clears (sets
to zero) the memory byte whose address is specified by address
register A4. The code contained in bits 3 to 5 of the instruction
word indicates that the destination operand is in a memory
address pointed to by one of the address registers and bits 0 to 2
contain the actual number of the register, 4. This effective address
is therefore of the memory addressing type and the instruction
belongs to an addressing mode referred to as Address Register
Indirect because the operand is indirectly referred to via the
register containing its address.

Bits 6 and 7 contain the binary code 00, indicating that this
instruction references a byte length operand. Bits 8 to 15 specify
that this is a CLR instruction.

= operation word
= 1st ext. word
= 2nd ext. word

15 14 13 12 n 10 9 8 7 6 5 4 3 2 i 0

0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 1

a a a a a a a a b b b b b b b b

X X X X X X X X y y y y y y y y

17

1 ([I I [I I (I (

This corresponds to the instruction CLR.B $nnnn, a special
addressing instruction in which the content of a memory address
specified by the absolute numeric value nnnn is cleared. This
instruction is three words long, with the first word being similar
to the instruction in Example 2. Bits 8 to 15 are identical to those
in Example 2 and bits 6 to 7 contain zeros, indicating that this is a
byte length operation. Bits 0 to 5, however, which form the
effective address, contain the binary code 111001 which indicates
that this is an Absolute Long addressing mode instruction,
meaning that the entire 32 bits of the absolute value nnnn are to be
used to address the required location. The first extension word
forms the high part of the address and the second extension word
forms the low part of the address.

Addressing modes

Note that all examples given are based on the 68000 and therefore
addresses are derived from the first 24 bits of an address value. On
the 68008, only the first 20 bits would be taken into account.
There are otherwise no differences between the processors with
respect to the following addressing modes.

Register direct modes

Data register direct
The operand is located in the data register specified in the
effective address register field.

For example, the instruction MOVE.L D5,D4 moves the 32-bit
value stored in data register D5 to data register D4:

Reg. D5

Reg. D4

18

I 1 1 1 1 1 I I I I I

Address register direct
The operand is located in the address register specified in the
effective address register field.

For example, the instruction MOVE.L A4,D5 moves the 32-bit
value stored in data register A4 to address register D5:

Reg. A4

Reg. D5

Memory addressing modes

Address register indirect
The operand is located in a memory address specified by an
address register.

For example, MOVE.B (A0),D4 moves the byte length value
located in the memory address pointed to by AO to the least
significant byte of data register D4:

Contents of AO: 10101010101010101010101010101010

11184810

I

Register D4

Form an address:

The contents of which
are moved into D4:

MOVE.B D1,(A2) moves the value contained in the least
significant byte of data register D1 to the memory address pointed
to by address register A2.

19

(1 I I I [1 (1 I (

Address register indirect with postincrement
The operand is located in a memory address specified by an
address register. The register is afterwards incremented by 1
following operations on byte-sized operands, by 2 after operations
on word-sized operands and by 4 after operations on long word-
sized operands. If the stack pointer is being used to hold the
address of the operand, the register is incremented by 2 after
operations on byte-sized operands.

Address register contents

I
Op. Addr.

Then increment address register by 1, 2 or 4.

For example, MOVE.L (A1)+,D2 moves the contents of the
memory address pointed to by A l, together with the contents of
the three following memory addresses, to data register D2. It then
increments the value of address register A l by four (because this
is a long word length operation):

Contents of A l : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0

Specify an address:

Whose contents plus
those of the three
following addresses:

Are moved into D2:

Then A l is incremented
by four:

103994

103994 103995 103996 103997

1 1 4 1
Byte 3 Byte 2 Byte 1 Byte 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0

20

I I I I I I I I I I I

Address register indirect with predecrement
The operand is located in a memory address specified by a
register. Before execution, however, the register is decremented
by 1 prior to operations on byte-sized operands, by 2 prior to
operations on word-sized operands and by 4 prior to operations
on long word-sized operands. If the stack pointer is being used to
hold the address of the operand, the register is decremented by 2
before operations on byte-sized operands.

Address register contents Decrement by 1, 2 or 4

1

matically decrements
mgth operation) and then
nt byte of data register Dl
id dress register A l.

nent
ress specified as the sum
a sign extended 16-bit

Op. Addr.

For example, MOVE.B D l,—(A l) auto
register A l by one (since this is a byte-le
moves the contents of the least significa
into the memory address pointed to by

Address register indirect with dispiacei
The operand is located in a memory adc
of an address in an address register plus
displacement integer.

Address register contents +
xxxxxxxxxxxxxxxx Displacement

I
Op. Addr.

21

i I 1 I I I I I I I (

For example, MOVE.B Dl,— 1(A1) moves the contents of the
least significant byte of data register D l into the memory address
pointed to by address register A1 plus the sign extended
displacement value, which in this case is — 1. The original value
of A1 is not altered by the operation:

Register A l: |l0101010101010101010101010101010

And a two’s complement
displacement: 1111111111111111

(which is sign extended) 11111111111111111111111111111111

Are added together
giving: 10101010101010101010101010101001

Specifying an address:
Whose contents are
passed to register D2:

Address register indirect with displacement and index
The operand is located in a memory address specified as the sum
of an address in an address register plus the least significant byte
of an extension word (sign extended to 16 bits) plus the contents
of an index register.

+
+

Address register contents
Index register contents

xxxxxxxxxxxxxxxxxxxxxxxx Disp

I
Op. Addr.

22

I I I I I I I I I I I

For example, MOVE.B $18(A2,D3.L),D2 takes the contents of
address register A2, the contents of address register D3 (the index
register) and the absolute value $18 (the displacement) and adds
them together. The contents of the address represented by their
sum are then copied into data register D2. Note that the
displacement is first sign extended to 32 bits. The ‘L’ after D3
indicates that the index register is of long word size:

Address register A2: 10101010101010101010101010101010

And the index
register (D3): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 1 0

And an 8-bit signed
displacement value: 00011000

(which is sign extended) 00000000000000000000000000011000

Are added together
giving: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0

Which is address:
Whose contents
are moved to D2:

11240876
1

Register D2

Address register contents
xxxxxxxxxxxxxxxx Index reg. cont.
xxxxxxxxxxxxxxxxxxxxxxxx Disp.

I
| Op. Addr.

MOVE.B $18(A2,D3),D2 operates in the same way as the
previous example except that the index register D3 is of size ‘W ’
by default and is therefore sign extended to 32 bits.

23

I I I (I I I ((1 I

Special address modes

A bsolu te short address
The operand is located in a memory address specified by a 16-bit
extension word, sign extended to 32 bits.

For example, ADDA.W $0700,A4 adds the values stored at
memory address $0700 and $0701 to the current value of address
register A4.

A bsolu te long address
The operand is located in a memory address specified by two
extension words. The first word represents the high-order part of
the address and the second represents the low-order part.

1st extension word
2nd extension word

For example, ADDA.L $FF2A56,A4 adds the long word value
starting at memory address 16,722,518 to the current value of
address register A4.

The difference between the short and long absolute forms is that
the long form is used to address the entire memory range while
the short form addresses only the top 32K and bottom 32K of
memory. (If the reason for this is not clear, please refer back to the
‘Address registers’ section.)

High word
Low word

I
Op. Addr.

24

1 1 I I (I I ((I I

Program counter relative with displacement
The address is specified as the sum of the address in the program
counter register and a sign extended 16-bit displacement integer.
The address of the displacement extension word is the value
contained in the program counter.

Program counter
xxxxxxxxxxxxxxxx Displacement

I
Op. Addr.

For example, JMP * + 1 8 adds the hex value 18 to the current
value of the program counter and causes program execution to
‘jump’ to the corresponding address.

Program counter relative with displacement and index
The address of the operand is specified as the sum of the address
contained in the program counter plus a sign extended 8-bit
displacement integer plus the contents of the index register. The
displacement integer is located in the address contained in the
program counter.

Program counter +
Index register contents +

xxxxxxxxxxxxxxxxxxxxxxxx Disp.

I
Op. Addr.

25

([[(((((([(

For example, MOVE.B $18(PC,A2.L),D4 adds together the
program counter, an index register (A2) and a displacement value
($18) and moves the contents of the resulting address into D4. The
‘L’ after the index register indicates that its long word value is to
be used; or:

+
+

Program counter
xxxxxxxxxxxxxxxx Index reg. cont.
xxxxxxxxxxxxxxxxxxxxxxxx Disp.

I
Op, Addr,

MOVE.B $18(PC,A2),D4 is the same as the previous example
except that by default the index register value is of word length
and is therefore sign extended before addition.

Im m ed iate data
The operand is specified as the low-order byte of an extension
word in the case of byte operations, a complete extension word in
the case of word operations and two extension words in the case
of long word operations. In the latter case, the first extension word
represents the high-order part and the second the low-order part.

For example, MOVE.B #$ 2 4 ,D4 moves the hex value 24 into the
low-order byte of register D4. MOVE.L #$F23A 820B,D 4 moves
the specified value into the entire 32 bits of D4.

Implicit referen ce
An implicit instruction is one in which the instruction itself
implicitly points to the operand. For example, RTS meaning
return from subroutine. In this case, no operand needs to be given.

Note that the instructions which incorporate the letter Q (for
‘quick’) may be used for transferring signed 8-bit values. For
example, MOVEQ # —5,D4. This is a long word operation and sets
the whole of D4 to the value indicated. ADDQ and SUBQ can be
used in a similar fashion for adding or subtracting values to or
from a register. In these cases, the value is confined to a range of 1
to 8. For example, ADDQ.W #7,D4.

26

I I I I I I I I I I I

Summary

The following table lists the addressing modes, together with the
assembler syntax and the contents of the effective address field for
instructions in each mode:

Addressing Assembler Mode Register
mode syntax field field

Data register direct Dn 000 Reg. no.
Addr. reg. direct An 001 Reg. no.
Addr. reg. indirect (An) 010 Reg. no.
Addr. reg. ind. with postincrement (An) + 011 Reg. no.
Addr. reg. ind. with predecrement "(A n) 100 Reg. no.
Addr. reg. ind. with disp. d(An) 101 Reg. no.
Addr. reg. ind. with disp. + index d(An,Ri) 110 Reg. no.
Absolute short $xxxx 111 000
Absolute long $xxxxxx 111 001
PC relative with displacement d(PC) 111 010
PC relative with index d(PC,Ri) 111 011
Immediate #$xxx 111 100

Stack handling

All eight address registers may be used as stack pointers in the
MC68000, although register A7, commonly distinguished as the
SP, is the one most regularly used for stack operations.

Registers AO to A7 may each be used to form stack pointers by
selecting an appropriate area of memory to hold the stack and
loading its base address into one of the registers. It is possible by
this means to reference eight separate stacks, although it is
advisable for practical reasons to leave at least one address
register free for normal programming purposes.

If address number $8000 is selected as the base address of a user
stack, then register AO can be used as its stack pointer by loading
it directly with the base value:

MOVEA.L #$ 8 0 0 0 ,AO

27

I I I I I I I I I I I

Stacks normally grow downwards in memory, therefore it is
necessary when placing an item of data on a stack to decrement its
stack pointer by 2 or 4 bytes, depending on whether a word or
long word value is being placed on it. This is most easily achieved
using the address register indirect with predecrement mode
(reverse stacks use postincrement mode). For example:

MOVE.L D 4,-(A 0)

which decrements stack pointer AO by 4 bytes to point to address
$7FFC ($8000 minus 4) and then moves the 32 bits contained in
data register D4 into memory addresses 7FFC, 7FFD, 7FFE and
7FFF.

The instruction MOVE.L D5,—(AO) would then add a second
32-bit yalue to the stack, at addresses 7FF8, 7FF9, 7FFA and
7FFB, with the stack pointer now pointing to address 7FF8.

To remove values from the stack, the address register indirect
with postincrement mode is used:

MOVE.L (A0)+,D5 (transfer the top of stack value into D5 and
increment AO by 4)
MOVE.L (A0)+,D4 (transfer the top of stack value into D4 and
increment AO by 4)

Note that because the original value of D5 was the last to be
placed on the stack, it is the first one to be removed.

Register A7 differs from the other address registers with respect
to stack operations in that because of its special status as a dual
stack pointer (the USP in the user state and the SSP in the
supervisor state) it is implicitly assumed by some of the MC68000
instructions to be the one and only stack pointer. For this reason it
is advisable to regard the stack pointed to by A7 as the primary
general-purpose stack and to use other stacks as data stores for
specific user applications.

It is often useful to be able to store the values of several registers
on the stack for later retrieval, for example where a call is made to
a subroutine and the current register values need to be preserved
for use after the subroutine has been completed.

To this end, the MOVEM command is provided, which
specifies a list of registers and a pointer to the stack area in which
they are to be stored. (MOVEM may also be used to transfer data to
nominated memory addresses.)

28

I [I I I I I [[I i

For example, MOVEM.L DO—D3/D5/A0—A 6,—(A4) stores the
specified data and address register values in stack addresses
pointed to by address register A4, which is predecremented by 4
bytes before each transfer of data. This instruction may also be
implemented as a word (but not a byte) sized operation, although
data integrity can only be guaranteed upon retrieval if the
operation is of long word size.

The above values may be retrieved by the instruction MOVEM.L
(A 4)+,D 0—D3/D5/A0—A6.

Queues

A queue is similar in operation to a stack, except that values are
removed from a queue in the same order as that in which they
were originally stored. A queue may run from high to low
memory or vice versa.

Two address register pointers are necessary for each queue: one
to point to the address at which the next value can be stored and
one to point to the current head of the queue.

If the queue runs from low to high memory, then data is stored
by means of the ‘address register indirect with postincrement’
addressing mode, using a data ‘put’ pointer. Data is removed by
means of the same addressing mode, using a data ‘get’ pointer.

AO used as ‘get’ pointer

A1 used as ‘put’ pointer

In the above example, if the byte value is placed in address x + 3 ,
register A1 is then autoincremented by 1 to point to address x + 4 .
Likewise, if a byte value is removed from address x, register AO is
then autoincremented to point to address x + 1.

In the case of queues running from high to low memory, the
‘address register indirect with predecrement’ mode is used for
both ‘put’ and ‘get’ operations. Note that although byte values are
stacked in the above example, it is advisable to stack data in word
or long word lengths to avoid address misalignment.

Addr. X

Addr. x+1
Addr. x + 2

Addr. x + 3
Addr. x + 4

29

I I I [I I I I I [(

A problem that is likely to arise with a queue is that as data is
added and removed, the section of memory occupied by the queue
will gradually creep through the memory space, thus overwriting
other stored data. To overcome this problem, it is advisable to
create a ‘circular’ queue, which is essentially a reserved buffer
space beyond which the queue data is not permitted to move. The
reference register is tested to establish whether it points to an
address beyond the permitted boundary and, if it does, it can be
adjusted by subtracting the length of the buffer.

Exception processing

An exception is an occurrence in which program execution is
automatically diverted, or ‘vectored’, to an address outside the
programmed execution sequence. This situation may arise when
an error has occurred or when an external event such as a
keyboard entry or an input from some other device has signalled
an interruption requiring an immediate response.

When an exception occurs, it is necessary for the processor to
store the current environment (that is, the parameters of its
current status) so that execution can be resumed after the
exception has been dealt with.

An exception process involves four distinct phases:

(1) A copy is taken of the current state of the status register.
(2) The status register is altered in readiness for exception

processing.
(3) The current processor environment is saved (the program

counter and status register are pushed on to the supervisor
stack).

(4) A jump is made to the appropriate exception vector address.

30

I [I I (I I C f (1
The address to which execution is diverted depends on the

origin of the exception and is obtained from an internally
generated 'vector number' or from one supplied by an external
device. The vector number is multiplied by four, giving the
address of an exception vector which is stored in a table in the
supervisor data space. The vector table supplies the address of a
routine which is designed to handle the particular cause of the
exception. The new execution address is then stored in the
program counter register and the processor commences execution
from that point.

The address to which program execution is vectored during an
exception depends upon the origin of the exception and in each
case it is one of a number of routines designed to handle the
specified type of interruption. If the processor is in Trace mode,
for example, an exception takes place after the execution of every
single instruction and execution is temporarily diverted to a
monitoring routine.

External exceptions may be caused by interrupts from external
devices, bus errors or external resets, and internal exceptions may
be caused by illegal instructions, address errors, privilege
violations and TRAP, TRAPV, CHK and DIV instructions.

The M C68010 uses a movable vector base register (VSR] and the
vector number is used as an offset to reference items in the vector
table. The operating system may move the vector table elsewhere
in memory, even to RAM, where it may be used to call exception
handling routines incorporated in applications software. Multiple
vector tables may also be created for multitasking purposes and
referenced via the VSR.

Reset

A reset is a process in which the entire system is re-initialized and
normally takes place either when the system is first powered up or
when a complete system failure has taken place from which
recovery is impossible.

Interrupts

An interrupt is a signal from an external device which causes an
exception, the exception vector address being calculated from the
value input from the interrupting device.

31

([I [I I I I I I (

Since an interrupt may be competing with a process which is
currently taking place, an interrupt priority system is used in
which each interrupt is given a priority code between 0 and 7:
level 7 representing the highest level of priority. Priority code 0
signifies no interrupt. On the MC68008, only priority levels 0, 2, 5
and 7 are used. When an interrupt takes place, the following
sequence of events is initialized:

(1) The priority level of the interrupt is placed on the interrupt
request lines.

(2) The interrupt is placed in a pending state while the current
instruction is processed.

(3) The interrupt priority code is compared with the current
processor priority code (indicated by bits 8 to 10 of the status
register).

(4) If the current priority code is higher than or equal to the
interrupt priority code, the pending state continues while
the next instruction is processed.

(5) If the interrupt priority code is higher than the current
priority code, an exception is forced.

(6) The interrupt priority code is placed in bits 8 to 10 of the
status register.

(7) The interrupt is acknowledged and an exception vector byte
is obtained from the interrupting device.

(8) The program counter and status register are pushed on to the
supervisor stack.

(9) The exception vector address is calculated.
(10) Execution then continues from the address pointed to by the

program counter.

Trace mode

The purpose of the trace mode is to allow a program to be
executed one instruction at a time, each individual instruction
execution being followed by an exception process in which a
debugging monitor routine is called.

32

i r r r i i c r r r i

Trace mode is selected by setting bit 15 (the T bit) of the status
register and is terminated by resetting it. During a trace exception,
the processor initializes the following set of events:

(1) The current values of the status register are copied.
(2) The system is set to supervisor privilege status (the S bit of the

status register is set).
(3) The T bit is reset, to prohibit further trace exceptions.
(4) The trace exception vector address is obtained.
(5) The program counter and status register are pushed on to the

stack.
(6) Execution commences from the address of the trace routine.

After a trace exception has been completed, the former
conditions are reinstated and execution re-commences with the
next instruction in the user program.

Traps

A trap is a type of exception caused by the use of the TRAP
instruction, by unusual conditions encountered during execution
or by instructions which incorporate a trap mechanism, such as
TRAPV.

Trap-generated exceptions follow the standard procedure for
internally-generated exceptions and execution is vectored to an
address calculated from data contained in the exception vector
table between addresses 080 and OBF.

Illegal instructions

An illegal instruction is one in which the bit pattern of the first
word does not correspond to that of any legal instruction.

Instructions in which bit patterns 12 to 15 inclusive are equal to
the binary values 1010 or 1111 are defined as unimplemented
instructions and are used to emulate unimplemented instructions
in software. Those incorporating the value 1010 are vectored to an
address calculated from data contained in the vector table at
address 028 and those incorporating the value 1111 are vectored
to an address calculated from data contained in the vector table at
address 02C.

33

i r i r c i i i i i i
Privilege violations

Privilege violations are attempts to use one of the following
privileged supervisor instructions from within the user state:
STOP, RESET, RTE, MOVE to SR, MOVE USP, AND1 to SR, EORI
to SR, and OR1 to SR. Execution during privilege violation
exceptions is vectored to an address calculated from data
contained in the vector table at address 020.

Bus errors

Bus errors are caused by attempts to access incorrect destinations
external to the processor such as non-existent memory addresses.
A bus error exception is vectored to an address calculated from
data contained in the vector table at address 008 and the current
environment is saved on the stack in the usual manner before
exception processing begins. However, since a bus error occurs in
mid-instruction rather than between instructions, it is necessary
to save additional information concerning the details of the
instruction currently being processed.

Address errors

Address error exceptions are caused by attempts to access word or
long word operands, or instructions, at odd rather than even
addresses. The exception is vectored to an address calculated
from data contained in the vector table at address 00C and the
same data is stacked as that for a bus error.

Multiple exceptions

Where several exceptions occur at the same time there is a system
of priority grouping which determines their order of precedence.
The highest priority group is 0 which includes reset, bus error and
address error. Group 1 is next in priority order and includes trace
interrupt, illegal instruction and privilege violation. Group 2,
which has the lowest priority, includes TRAP, TRAPV, CHK and
division by zero. W ithin these groupings the exceptions are
arranged in a secondary order of priority as indicated above.

34

[{ [[[[[{ [[I

Group 0 exceptions are initiated within two clock cycles of their
occurrence. Group 1 exceptions are initiated before the next
instruction is executed while group 2 exceptions are initiated in
accordance with the operation of the instructions which cause
them.

The MC68000 instruction set

In the following section, each MC68000 instruction is listed with
details of its assembler syntax, operand lengths and a summary of
the control code flags affected by the operation. A short
description of the function of each instruction is given.

Effective addressing modes are divisible into four categories
which distinguish which types of operands may be used by a
particular instruction. These are as follows: Data operands are
those which reference data rather than the contents of address
registers. Memory operands are those which are not contained in
registers. A lterab le operands are those which can be written to
and therefore exclude, for example, immediate data operands.
Control operands are memory operands of an unspecified size.

Clearly these categories overlap and it is therefore possible to
define operands as being ‘memory alterable’ or ‘control alterable’.
The following table indicates the categories applicable to each of
the addressing modes:

Addressing mode Data Mem. Cont. Alter. Syntax

Data reg. dir.
Addr. reg. dir.

X X
X

Dn
An

Addr. reg. ind. X X X X (An)
Ad.dr. reg. ind. + postinc. X X X (An) +
Addr. reg. ind. + predec. X X X -(A n)
Addr. reg. ind. + disp. X X X X d(An)
Addr. reg. ind. + index X X X X d(An,Ri)
Absolute short X X X X X X X

Absolute long X X X X X X X X X X

PC with disp. X X X d(PC)
PC with index
Immediate

X
X

X
X

X d(PC,Ri)
X X X

35

f f r ((i ((((i
The combination of data lengths, addressing modes and
instruction types in the 68000 processors can be used to generate a
very large number of individual instructions. The addressing
modes are so consistently applied that it is possible to define the
structure of any instructions by means of the generic assembler
syntax and these mnemonics are included under each instruction
type heading.

Key to notation

(1) C ondition flags
— unaffected
0 zero (reset)
1 one (set)
a altered except when destination is an address register
A altered according to value
? may be altered according to value
X not defined

(2) Addressing syntax
An, Ax and Ay any address registers
Dn, Dx and Dy any data registers
Rn, Rx and Ry any registers
(An) address register indirect
d(An) address register indirect with displacement
— (An) address register indirect with predecrement
(A n)+ address register indirect with postincrement
< d a ta > immediate data

(3) Addressing mode categories
< e a > any effective address mode
< a /e a > alterable mode
< c /e a > control mode
< d /e a > data mode
< c a /e a > control alterable mode
< d a /ea > data alterable mode
< m a /ea > memory alterable mode

36

1 (1 1 (1 (1 1 (1
Note that most instructions incorporate a suffix (B, W or L) to
indicate the size of the operation. Where no suffix is given, the
default size is W, except in cases where no operand is given; for
example, in RTS. Where appropriate, the legitimate operand sizes
for each instruction are given in the glossary.

Add decimal

Syntax ABCD Dy,Dx
ABCD - (A y),-(A x)

Mnemonic Operation Data size Flags: NZ VC X

ABCD Decimal addition B. X ? X A A

Description Adds two binary-coded decimal bytes together plus
the value of the extend bit of the status register. The operation
may be performed between the contents of two data registers or
between the contents of two memory addresses using
predecrement addressing mode.

Add binary

Syntax ADD < e a > ,D n ADDQ # < d a ta > ,< a /e a >
ADD D n,<m a/ea> ADDXDy.Dx
ADDA < e a > ,A n ADDX - (Ay),-(Ax)
ADDI # < d a ta > ,< d a /e a >

Mnemonic Operation Data size Flags: NZ V C X

ADD Binary addition B.W.L. AAAAA
ADDA Add address W.L.
ADDI Add immediate B.W.L. AAAAA
ADDQ Add quick B.W.L. a a a a a
ADDX Add extended B.W.L. A? AAA

37

i t I r c c i (c r i
Description The ADD instruction is used to add a source
operand to a destination operand, with either the source or
destination being one of the data registers. Where the source is an
address register, operations must be of word or long size. Where
the source is a data register, operands may be of byte, word or long
size and the destination specification is restricted to a memory
alterable address mode. Where the destination is a data register,
any of the address modes may be used.

The ADDA instruction is similar to ADD, except that the
destination must be an address register.

ADDI adds an immediate value to a destination specified by a
data alterable addressing mode.

ADDQ is similar to ADDI but adds a specified value between 1
and 8 to an alterable address. When used with address registers,
either word or long word sizes are used.

ADDX operates similarly to ADD, except that the value of the
extend flag in the SR is added to the result.

AND

Syntax A N D <d/ea>,D n ANDI #<data>,C C R
AND D n,<m a/ea> ANDI # < d a ta > ,S R
ANDI # < d a ta > ,< d a /e a >

Mnemonic Operation Data size Flags: NZ V C X

AND Logical AND B.W.L. AAO 0 -
ANDI AND immediate B.W.L. AAO 0 -
ANDI to CCR AND immediate to CCR B. ? ? ? ? ?
ANDI to SR AND immediate to SR W. ? ? ? ? ?

Description AND is a logical operation which ANDs a source
operand, specified by a data addressing mode, with a data register.
The result is stored in the destination. Note that the destination
operand may not be in an address register.

ANDI performs an AND operation between a specified
immediate data value and a destination location, with the result
being stored in the destination location.

ANDI to CCR performs an AND operation between a specified
immediate data value and the low-order byte of the status register,
with the result being stored in the low-order byte of the status
register (the CCR).

38

f c r r r r r c r r i
ANDI to SR performs an AND operation between a specified

immediate data value and the current contents of the status
register with the result being stored in the status register.

Arithmetic shift

Syntax ASd Dx,Dy
ASd # < d a ta > ,D y
ASd < m a/ea>

Mnemonic Operation Data size Flags: NZ V C X

ASL Arithmetic shift left B.W.L. AAAAA
ASR Arithmetic shift right B.W.L. AA AAA

D escription ASL shifts all the bits to the left, depositing the
value of the leftmost bit into the carry flag and the extend flag and
replacing the rightmost bit with a zero:

C Shift leftJX

ASR shifts all the bits to the right, depositing the value of the
rightmost bit into the carry flag and the extend flag and replicating
the sign bit into the high-order bit. Tw o’s complement arithmetic
is assumed, and for negative numbers Is are shifted in from the
left:

Branching instructions

Syntax Bcc < la b e l>
BRA < la b e l>
BSR < la b e l>

39

f r r r c r r c (i [

Mnemonic Operation Data size Flags: NZ VC X

BCC Branch if carry clear B.W.
BCS Branch if carry set B.W.
BEQ Branch if equal B.W.
BGE Branch if greater or equal B.W.
BGT Branch if greater B.W.
BHI Branch if high B.W.
BLE Branch if less or equal B.W.
BLS Branch if low or same B.W.
BLT Branch if less than B.W.
BM1 Branch if minus B.W.
BNE Branch if not equal B.W.
BPL Branch if plus B.W.
BVS Branch if overflow set B.W.
BVC Branch if overflow reset B.W.
BRA Branch always B.W.
BSR Branch to subroutine B.W.

Description Bcc instructions branch to execution addresses
calculated using a displacement value if specified conditions are
true. The displacement is an 8-bit two’s complement integer,
unless it is zero, in which case the displacement is the 16-bit word
immediately following the instruction.

The conditions will vary according to the Bcc variant used and
these are summarized as follows:

BCC if C = 0
BCS if C =1
BEQ i f Z = l
BGE if either (N = l and V = 0) or (N =0 and V = l)
BGT if either (N = l and V = 1 and Z = 0) or (N =0 and V

and Z =0)
BHI ifC = 0 and Z = 0
BLE if (N = l and V = 0) or if (N =0 and V = l) or if Z =1
BLS if C = 1 or Z = 1
BLT if either (N = l and V = 0) or (N =0 and V = l)
BMI if N = l
BNE if Z = 0
BPL if N =0
BVS if V = 1
BVC if V = 0

40

i r r r r r i (f i (
BRA is the unconditional branch instruction and uses a

displacement in the same way as the conditional branching
instructions.

BSR branches execution to a subroutine located at an address
expressed as a two’s complement offset from the program counter,
measured in bytes. If it is zero, then the 16-bit number following
the instruction is used. The return address is pushed on to the
stack.

Bit testing

Syntax BCHG D n,<da/ea> BSET D n,<ea>
BCHG # < d a ta > ,< d a /e a > BSET # < d a ta > ,< e a >
BCLR D n ,< e a > BTST D n,<d/ea>
BCLR # < d a ta > ,< e a > BTST # < d a ta > ,< d /e a >

Mnemonic Operation Data size Flags: NZ V C X

BCHG Bit test and change B.L. - A -----
BCLR Bit test and clear B.L. - A -----
BSET Bit test and set B.L. - A -----
BTST Bit test B.L. - A -------

Description BCHG is used to test the value of a bit which is
specified either by an immediate data value or by a data register.
The destination operand is addressed by a data alterable address
mode and the bit tested is copied to the Z flag of the status register
following w hich the original bit is complemented (changed to its
opposite value). Where the destination operand is a data register,
then the bit numbering is modulo 32 while in the case of memory
address destinations, the bit numbering is modulo 8.

BCLR is the same as BCHG, except that after the bit is copied to
the Z flag it is reset to zero in the destination.

BSET is the same as BCHG except that after the bit is copied to
the Z flag it is set to 1 in the destination.

BTST is the same as BCHG except that the destination operand
is addressed by any data addressing mode, and after the bit is
copied into the Z flag it is left unaltered in the destination.

41

Check

Syntax CHK <d /ea>,D n

Mnemonic Operation Data size Flags: NZ V C X

CHK Check and trap W. X X X X -

Description CHK is used to compare the two’s complement
integer which forms the source operand with the low-order byte of
a data register destination. An exception is initiated if the
destination is either less than zero or greater than the source
operand.

Clear

Syntax CLR <d a /ea >

M nemonic Operation Data size Flags: NZ V C X

CLR Reset destination byte(s) B.W.L. 0 1 0 0 -

Description CLR resets the bits in the destination location to
zero.

Comparison

Syntax CMP < e a > ,D n CMPI # < d a ta > ,< d a /e a >
CMPA < e a > ,A n CMPM (Ay) + ,(Ax) +

M nemonic Operation Data size Flags: NZ V C X

CMP Compare source and
destination B.W.L. AAA A -

CMPA Compare address W.L. A A A A -
CMPI Compare immediate B.W.L. A A A A -
CMPM Compare memory B.W.L. A A A A -

Description CMP compares two values by subtracting the first
from the second without altering the value of the second. The
source operand may be anything except an address register with a
byte value and the destination may only be a data register. The
instruction affects all the condition codes except X.

42

(f ! f (f I (I ((

CMPA is the same as CMP but may only be used with an
address register as the destination. Any address mode may be
used and word length operations are sign extended to 32 bits prior
to comparison.

CMPI is the same as CMP but the source operand is always an
immediate data value and the destination may be any data
alterable mode.

CMPM is used to compare memory locations and both the
source and destination operands may only be addressed in
postincrement modes.

Decrement and branch

Syntax DBcc D n ,< lab el>
DBRA

Mnemonic Operation Data size Flags: NZ VC X

DBCC Dec. & branch if carry
clear W.

DBCS Dec. & branch if carry set W.
DBEQ Dec. & branch if = W.
DBF Dec. & branch if false W. -------------
DBGE Dec. & branch if > or = W.
DBGT Dec. & branch if > W.
DBHI Dec. & branch if high W.
DBLE Dec. & branch if < or = W.
DBLS Dec. & branch if low

or same W.
DBLT Dec. & branch if < W.
DBMI Dec. & branch if minus W.
DBNE Dec. & branch if < > W.
DBPL Dec. & branch if plus W.
DBVS Dec. & branch if

overflow set W.
DBVC Dec. & branch if

overflow reset W.
DBT Dec. & branch if true W.
DBRA Unconditional branch W.

43

((f (((I f c I (
Description DBcc instructions check the contents of a data
register against specified termination conditions. If the conditions
are not met, the register’s low order word is decremented and if
the result is not — 1, execution branches to a location calculated as
the PC plus a 16 bit sign extended displacement word.

The termination conditions will vary according to the DBcc
variant used and these are summarized as follows:

DBCC if C = 0
DBCS if C =1
DBEQ if Z = 1
DBF if false
DBGE if either (N = 1 and V = 0) or (N =0 and V = 1)
DBGT if either (N = l and V = 1 and Z =0) or (N =0 and V = 0 and

Z = 0)
DBHI ifC = 0 a n d Z = 0
DBLE if (N = l and V =0) or if (N =0 and V = l) or i f Z = l
DBLS if C = 1 o r Z = l
DBLT if either (N = l and V = 0) or (N =0 and V = l)
DBMI if N =1
DBNE ifZ = 0
DBPL if N =0
DBVS if V =1
DBVC if V = 0
DBT if true

DBRA operates in the same way as DBcc but without a
conditional termination.

Division

Syntax DIVS <d/ea>,D n
DIVU <d /ea>,D n

Mnemonic Operation Data size Flags: NZ V C X

DIVS Signed division W. AAAO -
DIVU Unsigned division W. AAAO -

44

Description DIVS divides a 32-bit destination operand in a data
register by a 16-bit source operand, with the result being stored in
the destination. Unless the remainder is equal to zero, its sign will
be the same as that of the dividend. Note that any overflow will be
flagged during computation without the operands being affected.
A trap exception will be initiated by attempts to divide by zero (an
illegal instruction).

| Data register Dn 1 / | Source opTl
= | Remainder | Quotient] = Dn

DIVU is similar to DIVS except that it is performed using
unsigned arithmetic.

Exclusive OR

Syntax EOR D n,<d a/ea> EORI #<data>,C C R
EORI # < d a ta > ,< d a /e a > EORI # < d a ta > ,S R

Mnemonic Operation Data size Flags: NZ V C X

EOR Logical exclusive OR B.W.L. AAO 0 -
EORI EOR immediate B.W.L. AAO 0 -
EORI to CCR EOR immediate to CR B. ? ? ? ? ?
EORI to SR EOR immediate to SR W. ? ? ? ? ?

D escription EOR performs an exclusive OR operation between a
data register source operand and a destination operand, with the
result being stored in the destination.

EORI performs an exclusive OR operation between a specified
immediate data operand and a destination location, with the
result being stored in the destination.

EORI to CCR performs an exclusive OR operation between a
specified immediate data byte and the low-order byte of the status
register, with the result being stored in the low-order byte of the
status register.

EORI to SR is a privileged instruction which performs an
exclusive OR operation between a specified immediate data word
and the status register with the result being stored in the status
register.

45

[(c c (r r c c ((
Exchange registers

Syntax EXG Rx,Ry

Mnemonic Operation Data size Flags: NZ VC X

EXG Exchange registers L.

Description EXG exchanges the 32-bit contents of two specified
registers, which may be two data registers, two address registers,
or one of each type.

Sign extension

Syntax EXT Dn

Mnemonic Operation Datasize Flags:N Z V C X

EXT Sign extend W.L. AAO 0 —

Description The sign bit of a data register is copied in order to
extend the length of the operand. To extend a byte to word length,
bit 7 is copied to bits 8 to 15. To extend a word to long word
length, bit 15 is copied to bits 16 to 31.

Jump operations

Syntax JMP < c /e a >
JSR < c /e a >

Mnemonic Operation Datasize Flags: NZ VC X

JMP Jump
JSR Jump to subroutine

Description The JMP instruction directs execution to an address
specified by a control addressing mode.

The JSR instruction redirects execution to a subroutine at a
specified address, after first pushing the return address on. to the
system stack.

46

f f ((I I (f. (! (

Load effective address

Syntax LEA < c/ea> ,A n

Mnemonic Operation Data size Flags: NZ VC X

LEA Load effective address L. -------------

Description Loads an effective address into a specified address
register.

Link operations

Syntax LINK A n ,#<d isp lacem en t>

Mnemonic Operation Data size Flags: NZ VC X

LINK Link to subroutine

Description The LINK operation initiates the following
sequence of actions:

(1) The contents of the address register specified in the
instruction are pushed on to the stack.

(2) The stack pointer (A7) is loaded into the specified address
register.

(3) The stack pointer is decremented by an amount specified by a
sign extended 16-bit tw o’s complement displacement integer.

The effect of these actions is to create an area within the stack
which may be used for the storage of data. For example, in the
instruction LINK A 4 ,# —4 the contents of address register A4 are
first saved on the stack. The stack pointer (A7) is then loaded into
A4 so that A4 becomes the base index register for the reserved
data area which is about to be created. A7 is then decremented by
4 bytes, thus moving the top of the stack by a long word length.

47

I f [[(I I I I [I

The stack area between the addresses contained in A4 and A7 is
thus reserved for the storage of data:

Address Stack Stack pointer Base index Comment
contents contents (A7) (A4) contents

n #xxxx Store A4
on stack

n—1 X

n—2 X

n —3 X

n - 4 X n - 4 n - 4 Load A7
into A4

n —5
n —6
n—7
n—8 n - 8 Decrement

A7 by 4
n - 9
n —10
n —11

There are now effectively two stack pointers. The normal stack
pointer, A7, points to the new top of the ordinary user stack while
the additional stack pointer, A4, points to the data area within the
ordinary stack. Register A4 retains its contents and acts as a base
index pointer. Thus data is entered in the data area to an address
relative to A4, defined by a negative displacement value (since the
stack extends downwards in memory). For example, MOVE.L
D2,—4(A4) which means move the contents of D2 into a memory
area starting at an address which is four less than the address
contained in A4 (in this case addresses n —8 to n—5).

Data is stored at the top of the stack in the normal way. For
example, MOVE.L D2,—(A7) which means decrement the stack
pointer by 4 (since this is a long word operation) and move the
contents of D2 into the stack area starting from the address
pointed to by A7.

The data area may be de-allocated by means of the UNLK
instruction which reverses the actions of the LINK instruction (see
UNLK).

48

i i i i r i i i t f i

Logical shifts

Syntax LSd Dx,Dy
LSd # < d a ta > ,D n
LSd < m a/ea>

Mnemonic Operation Data size Flags: NZ V C X

LSL Logical shift left B.W.L. AAO AA
LSR Logical shift right B.W.L. AAO AA

Description LSL shifts all the bits to the left, depositing the
value of the leftmost bit in the carry flag and the extend flag and
replacing the rightmost bit with a zero:

Shift operations in memory are always of word size and the bits
are shifted by 1. Where the operands are in data registers they may
be of byte, word or long word size and the bits are shifted by
between 1 and 8 places as specified by a constant in the
instruction (for example, LSL.W #2,Dn) or by the value indicated
in another data register, modulo 64 (for example, LSL.W D0,D1).

LSR shifts all the bits to the right, depositing the value of the
rightmost bit in the carry and extend flags and replacing the
leftmost bit with a zero:

LSR operations on data register operands are subject to the same
length specifications as those of LSL.

49

I f I i I I I I [[I

Move operations

Syntax MOVE < e a > ,< d a /e a >
MOVEA < e a > ,A n
MOVEM Cregister l is t> ,< c a /e a >
MOVEM <c/ea>,C reg ister l is t>
MOVEM (An) + ,<reg. lis t>
MOVEM Creg. l is t> ,—(An)
MOVEP Dx,d(Ay)
MOVEP d(Ay),Dx
MOVEC (Cr),Rn
MOVES D N ,<ea>

MOVEQ #<d ata> ,D n
MOVE <d/ea>,CCR
MOVE <d /ea> ,SR
MOVE SR ,<da/ea>
MOVE USP A n
MOVE An,USP
MOVEC Rn.(Cr)
MOVES <ea> ,D n
MOVE C C R,<ea>

Mnemonic Operation Data size Flags: NZ V C X

MOVE Move data B.W.L. AAO 0 -
MOVEA Move address W.L.
MOVEM Move multiple W.L.
MOVEP Move to peripheral W.L.
MOVEQ Move quick L. AAO 0 -
MOVE to CCR W. ? ? ? ? ?
MOVE from CCR W.
MOVE to SR w. ? ? 7 ? ?
MOVE from SR w.
MOVE USP Move user stack pointer L.
MOVEC Move control register
MOVES Move alternate

L.

addr. space B.W.L.

Description MOVE is used to move data between two effective
addresses, and operations may be of byte, word or long word
length.

MOVEA is the same as MOVE except that it is used to move data
from an effective address to an address register. Operations may
only be of word or long word length and word length source
operands are sign extended to 32 bits before the move takes place.

MOVEM is used to stack or unstack the contents of multiple
registers. See example under ‘Stack handling’.

50

r [f r r [t i (((
MOVEP is used for moving data between a data register and a

location pointed to by an address register with displacement. For
example, MOVEP L. Dn,d(An) or MOVEP W. d(An),Dn. Data is
transferred one byte at a time, to or from alternate locations. For
example, in a long word length MOVEP operation, MOVEP L.
Dn,d(An), if d(An) points to address n (which may be an odd or
even address), data is transferred to addresses n, n + 2 , n + 4 and
n + 6 , starting with the high-order byte of data held in the source
register. This instruction may be used for transferring data to or
from peripheral control ports.

MOVEQ is used for the quick transfer of data into data registers
and can only be used as a long word operation. It moves a
specified signed byte value into the least significant byte of the
data register, which is then sign extended to a full 32 bits.

MOVE to CCR takes a word length value and moves it into the
condition codes register (CCR), which is the low-order word of the
status register. Thus bits 0 to 7 of the status register may be set to
specific values.

MOVE from CCR is used on the MC68010 to move data from the
condition codes register.

MOVE to SR is a privileged instruction which moves a long
word length value into the whole of the status register.

MOVE from SR moves the contents of the status register to a
data register or to a data alterable address. On the MC68010, this is
classified as a privileged instruction.

MOVE USP is a privileged instruction which allows data to be
moved into or out of the user stack pointer while the processor is
in supervisor state. This is used, for example, by the operating
system to set the initial value of the USP.

MOVEC is a privileged instruction used on the MC68010 to
move data to or from a control register such as the VSR or the
function code registers.

MOVES is a privileged instruction used with the MC68010 to
allow a program in supervisor state to access areas which are
normally inaccessible to the system such as the supervisor
program area, the user program area and the user data area. The
area accessed by a MOVES instruction is specified by codes
placed in the function code registers by means of a MOVEC
instruction.

51

c f f r r i r r (r (
Multiply

Syntax MULS <d /ea>,D n
MULU <d /ea>,D n

Mnemonic Operation_______________ Data size Flags: NZ V C X

MULS Signed multiplication W. AAOO —
MULU Unsigned multiplication W. -------------

Description MULS multiplies a signed 16-bit operand and the
low-order word of a data register, the 32-bit result being stored in
the destination register.

MULU operates in the same way as MULS but uses unsigned
operands.

Negate decimal

Syntax NBCD <d a/ea>

M nemonic Operation Data size Flags: NZ V C X

NBCD Decimal negation B. X? XA A

Description NBCD is a decimal arithmetic operation which
subtracts both the destination operand and the extend bit from
zero, with the result being placed in the destination. The result
w ill either be the ten’s complement of the destination or the n ine’s
complement, depending on whether the extend flag is reset or set.
The Z flag should be set beforehand if required subsequently.

Negate binary

Syntax NEG < d a/ea>
NEGX <d a/ea>

Mnemonic Operation Data size Flags: NZ V C X

NEG Binary negation B.W.L. AAAAA
NEGX Binary negation with

extend B.W.L. A? AAA

52

t [[r i r r c r [(
Description The NEG instruction subtracts the destination
operand from zero and stores the result in the destination.

NEGX operates similarly except that both the destination
operand and the extend bit are subtracted from zero.

No operation

Syntax NOP

Mnemonic Operation_______________ Data size Flags: NZ VC X

NOP________ No operation-- -------------

Description The NOP instruction has no effect and execution
continues with the following instruction.

NOT operations

Syntax NOT < d a/ea>

Mnemonic Operation_______________ Data size Flags: NZ VC X

NOT Logical complement B.W.L. AAO 0 -

Description NOT is used to invert all the bits in an operand from
ones to zeros and vice versa.

OR operations

Syntax O R <d /ea> ,D n ORI #<data>,C C R
O R D n ,<m a/ea> ORI # < d a ta > ,S R
ORI # < d a ta > ,< d a /e a >

Mnemonic Operation Data size Flags: NZ V C X

OR Logical OR B.W.L. AAO 0 -
ORI OR immediate B.W.L. AAO 0 -
ORI to CCR OR immediate to CCR B. 7 ? 7 7 7
ORI to SR OR immediate to SR W. 7 7 7 7 7

53

i [t [r (i f ([[
Description OR performs a logical OR operation between the
source and destination operand, with the result being stored in
the destination. The source may not be an address register.

OR1 performs a logical OR operation between an immediate
data value and the destination operand, with the result being
stored in the destination.

ORI to CCR performs a logical OR operation between an
immediate data value and the lower half of the status register,
with the result being stored in the destination.

ORI to SR performs a logical OR operation between an
immediate data value and the entire status register, with the result
being stored in the destination. This is a privileged instruction.

Push effective address

Syntax PEA < c /e a >

Mnemonic Operation Data size Flags: NZ V C X

PEA Push effective address L.

Description
the stack.

Computes the effective address and pushes it on to

Reset

Syntax RESET

Mnemonic Operation Data size Flags: NZ V C X

RESET Reset

Description RESET is a privileged instruction which resets all
external devices. If the processor is not in the supervisor mode
when RESET occurs, a trap exception takes place.

54

[c (r (f r f f f i

Rotation

Syntax ROd Dx,Dy ROXd Dx,Dy
ROd # < d a ta > ,D y ROXd # < d ata> ,D y
ROd < m a/ea> ROXd <m a/ea>

Mnemonic Operation Data size Flags: NZ V C X

ROL Rotate left B.W.L. AAO A -
ROXL Rotate left with extend B.W.L. AAO AA
ROR Rotate right B.W.L. AAO A -
ROXR Rotate right with extend B.W.L. AAO AA

Description ROL rotates the bits of an operand to .the left by a
specified amount, depositing a copy of the leftmost bit in the carry
flag and also transferring it to the rightmost bit position:

ROR rotates the bits of an operand to the right by a specified
amount, depositing a copy of the rightmost bit in the carry flag
and also transferring it to the leftmost bit position:

ROXL operates in a similar manner to ROL, except that the
leftmost bit is copied into the extend flag and the previous value
of the extend flag is transferred to the rightmost bit position:

X Rotate left

55

{ [(((([[(((

ROXR is similar to ROXL but shifts the bits to the right, copying
the rightmost bit into the extend flag and transferring the previous
value of the extend flag into the leftmost bit position:

Rotate right

Return operations

Syntax RTE
RTR
RTS

Mnemonic Operation Datasize Flags: NZ V C X

RTE Return from exception AAAAA
RTR Return and restore CCR AAAAA
RTS Return from subroutine

Description RTE is a privileged instruction which pulls the
status register and program counter from the supervisor stack
following an exception process, thus restoring the previous
execution sequence and conditions.

RTR is sim ilar to RTE except that instead of retrieving the whole
of the status register it retrieves only the user section (CCR)
containing the condition flag codes. This is an unprivileged
instruction.

RTS is used to return from a subroutine. The old program
counter and status register values are returned from either the user
or supervisor stack and execution continues from the address in
the restored program counter.

56

t r r (f c c c c r i
Subtract decimal

Syntax SBCD Dy,Dx
SBCD — (Ay),—(Ax)

Mnemonic Operation Data size Flags: NZ VC X

SBCD Decimal subtraction B. X? XA A

Description SBCD is a decimal arithmetic operation in which
the source operand and the extend bit are subtracted from the
destination operand. The zero flag should be set beforehand if
required subsequently.

Set from condition

Syntax See < d a/ea>

M nemonic Operation Data size Flags: NZ VC X

s e e Set if carry clear B.
SCS Set if carry set B.
SEQ Set if equal B.
SF Set if false B.
SGE Set if greater or equal B.
SGT Set if greater B.
SHI Set if high B.
SLE Set if less or equal B.
SLS Set if low or same B.
SLT Set if less than B.
SMI Set if minus B.
SNE Set if not equal B.
SPL Set if plus B.
ST Set if true B.
SVS Set if overflow set B.
SVC Set if overflow reset B.

57

[[[(I f I [[(I

Description See tests a specified condition code. The byte
defined as the destination is set to FF if the condition is satisfied,
else it is zeroed. See can only be used to set single bytes specified
by data alterable addressing modes.

The conditions under which the destination byte is set will vary
according to the See variant used and these are summarized as
follows:

SCC if C = 0
SCS i f C = l
SEQ if Z = 1
SF if false
SGE if either (N = l and V = 0) or (N =0 and V = l)
SGT if either (N = l and V = 1 and Z = 0) or (N =0 and V = 0 and

Z = 0)
SHI i fC = 0 a n d Z = 0
SLE if (N = l and V = 0) or if (N =0 and V = l) or if Z = 1
SLS i f C = l o r Z = l
SLT if either (N = l and V = 0) or (N =0 and V = l)
SMI if N =1
SNE i fZ = 0
SPL ifN = 0
ST if true
SVS if V = 1
SVC if V = 0

Stop

Syntax STOP # < d a ta >

M nemonic Operation Data size Flags: NZ V C X

STOP Stop execution AAAAA

Description STOP is a privileged instruction which causes a
program to stop until a trace, a high-priority interrupt or reset
exception is initiated. Upon commencement of the STOP
operation, the immediate data operand following the stop
instruction is loaded into the status register and the program
counter is incremented to point to the following execution
address.

58

i (((! ([[r i i
Subtract binary

Syntax SUB < e a > ,D n S U B Q # < d a ta > ,< a /e a >
SUB D n,<m a/ea> SUBX Dy,Dx
SUBA < e a > ,A n S U B X -(A y),-(A x)
SUBI # < d a ta > ,< d a /e a >

Mnemonic Operation Data size Flags: NZ V C X

SUB Binary subtraction B.W.L. AAAAA
SUBA Subtract address W.L.
SUBI Subtract immediate B.W.L. AAAAA
SUBQ Subtract quick B.W.L. AAAAA
SUBX Subtract with extend B.W.L. A? AAA

Description SUB the source operand is subtracted from the
destination operand, with the result being stored in the
destination.

SUBA is similar to SUB, except that the destination must be an
address register. Byte operations are therefore disallowed.

SUBI subtracts immediate data from a destination operand,
with the result being stored in the destination.

SUBQ subtracts immediate data between 1 and 8 from a
destination operand, with the result being stored in the
destination.

SUBX subtracts both the source operand and the extend bit
from the destination operand, with the result being stored in the
destination. The Z flag should be set beforehand if required
subsequently.

Swap

Syntax SWAP Dn

Mnemonic Operation_______________ Datasize Flags: NZ V C X

SWAP Exchange register words W. AAO 0 -

Description SWAP exchanges the upper and lower halves of a
data register.

59

i r i [i c i i i (i
Test bit

Syntax TAS <d a/ea>

Mnemonic Operation Data size Flags: N Z V C X

TAS Test bit and set B. AAO 0 -

Description TAS is used to test and set the most significant bit of
a byte operand. If the most significant bit of the operand is set,
then the N flag is set, and if the operand is zero, the Z flag is set.
The most significant bit is then set, irrespective of its previous
value.

In systems where several computers share the same memory
resources, TAS may be used to test a flag in a particular byte to
establish whether certain resources are accessible and to set the
flag to exclude access by other systems. Thus, if a TAS instruction
encounters a set flag, the N flag w ill be set, which may itself be
tested and used to trigger off an alternative course of action. If a
TAS instruction encounters a reset flag, it will claim access to the
resource by setting the flag and thus excluding access by other
systems. No other system is able to access the operand containing
the flag bit while a TAS operation is being executed.

Trap

Syntax TRAP # < v e c to r>
TRAPV

M nemonic Operation Data size Flags: N Z V C X

TRAP Initiate trap exception -------------
TRAPV Initiate trap exception

if overflow -------------

Description TRAP forces a TRAP exception which is vectored to
an address calculated from bits 0 to 3 of the instruction word.

TRAPV causes a TRAP exception vectored to the TRAPV
exception vector address if the overflow flag is set, otherwise it
has no effect.

60

i f i [r [r [[i i

Test against zero

Syntax TST <d a /ea >

Mnemonic Operation Data size Flags: NZ V C X

TST Compare with zero B.W.L. AAO 0 -

Description T ST compares the operand with zero and sets the
condition flags according to the result.

Unlink

Syntax UNLK An

Mnemonic Operation Data size Flags: NZ V C X

UNLK Unlink subroutine

Description UNLK is used to de-allocate data space which has
been reserved within the stack (see LINK). The series of actions
initiated by an UNLK instruction is as follows:

(1) The contents of a specified address register (An) are moved
into the stack pointer (A7).

(2) The long word at the base of the stack is loaded into An.

If we take the example shown under ‘LINK’, where A4 has been
used as the base index register for the data area, the UNLK
operation w ill restore the address originally held in the stack
pointer (A4 is moved into A7) and the original value of A4
(#xxxx) is retrieved and replaced in A4.

61

c i i i (r i i r ((
Appendix

Pin assignments
MC68000 and MC68010
64-Pin Dual-in-Line Package

0 4 C 1 64 □ 05
0 3 C 2 63 □ D6
0 2 C 3 62 □ D7

01 C 4 61 H 08
0 0 C 5 60 □ 09
AS C 6 59 □ DIO

D o s e 7 58 □ 011
LOS C 8 57 □ D12
R /W C 9 56 D 0 1 3

OTACK C 10 5 5 □ 0 1 4
SG c 11 54 □ 0 1 5

BGACK C 12 53 □ GND
BR C 13 52 □ A 2 3

v c c c 14 51 □ A 2 2

CLK C 15 50 H A 2 1

GND C 16 4 9 =1 Vcc
H ALT C 17 48 □ A 2 0

B E S E T C 18 4 7 □ A 1 9
V M A C 19 4 6 □ A 1 8

E C 2 0 45 n A 1 7
VPA C 21 44 J A 1 6

BERR C 2 2 43 □ A 1 5
l P L 2 C 2 3 42 □ A 1 4

IP L T I I 2 4 41 □ A 1 3

IPLO C. 2 5 40 □ A 1 2
FC2 C 2 6 39 □ A l l
FC1 C 2 7 38 □ A 1 0
FCO C 2 8 37 3 A 9

A l C 2 9 36 b A 8
A2 C 3 0 35 3 A 7
A 3 C 31 34 □ A6

A 4 C 3 2 33 3 A 5

MC68008
48-Pin Dual-in-Line Package

A 3 [1 48] A2

A 4 [2 4 7] A l

A5 C 3 46] AO

A 6 [4 4 5] FCO

A 7 [5 44] FC1

A 8 [6 4 3] FC2

A 9 [7 4 2] J P [2 / 0

A 1 0 [8 41 i i p l T

A l l [9 4 0] BERR

A 1 2 [10 39] VPA

A 1 3 C 11 38] E

A 1 4 [12 37] RESET

V c c C 13 36] HALT

A I 5 [14 35] GND

GND [15 34] CLK

A 1 6 [16 33 □ BR

A l 7 C 17 32] BG

A l 8 C 18 31] OTACK

A l 9 C 19 30] R / W

D 7 [2 0 29] OS

0 6 [21 28] AS

D 5 [2 2 27] DO

04 [2 3 26] Dl

03 [2 4 2 5] D2

62

3 I I I I I I I I I

Pitman Pocket Guide Series

Programming
Program m ing
BASIC
C O BO L
FORTRAN
Pascal
FO RTRAN 77
LOGO
FORTH

Assembly Languages
Assembly Language for the 6502
Assembly Language for the Z80
Assembly Language for the 8085
Assembly Language for M C 68000 Series

M icrocomputers
Program m ing for the BBC M icro
Program m ing for the Apple
Sinclair Spectrum
Com m odore 64
A corn Electron
The IBM PC

Operating Systems
Introduction to Operating Systems

UNIX

CP/M

M S-D O S
PC-DO S

Word Processors
Introduction to W ord Processing
W ordStar
W ang System 5
IBM D isplaywriter
Philips P5020

John Shelley
R oger Hunt
R ay W elland
Ph ilip R id ler
D avid Watt
C live Page
B o ris A llan
Steven V ick ers

Bob Bright
Julian Ullmann
Noel M orris
Robert Erskine

Neil Cryer and Pat Cryer
John Gray
Steven Vickers
Boris Allan
Neil Cryer and Pat Cryer
Peter Gosling

Law rence Blackburn and
M arcus Taylor
Law rence Blackburn and
M arcus Taylor
Law rence Blackburn and
M arcus Taylor
Val King and Dick W aller
Val King and Dick W aller

M addie Labinger
M addie Labinger
M addie Labinger
Jacquelyne A M orison
Peter Flewitt

V \ \ } I 1 I \ 1 \

The diagram shows,
how to arrange the
Pocket Guide in an
upright position.

Bend at score mark
indicated by arrow.

SO

	Front Cover
	Index
	How to use this Pocket Guide
	The MC68000 series microprocessors
	The MC68000
	The MC68008
	The MC68010
	Data Lengths
	Sources and destinations
	Programming Model
	Data registers
	Address registers
	Stack pointer (SP, or USP and SSP)
	Program Counter (PC)
	Status register (SR)
	Vector base register (VSR)
	Function code registers (SFC and DFC)
	User and supervisor states

	Memory organization
	Address organization in memory

	The MC68000 instructions
	Assembler syntax
	Instruction formatting
	Types of addressing modes

	Addressing modes
	Register direct modes
	Memory addressing modes
	Special address modes
	Summary

	Stack handling
	Queues

	Exception processing
	Reset
	Interrupts
	Trace mode
	Traps
	Illegal instructions
	Privilege violations
	Bus errors
	Address errors
	Multiple exceptions

	The MC68000 instruction set
	Key to notation

	Pin Assignments
	Adverts
	Back Cover

