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Preface

We have organised this book so that it can be read from beginning to end; read in this 
way it presents a complete introduction to assembly language programming for the 
68000. For the more experienced reader, a summary of the instruction set is provided 
as an appendix. This gives brief details of each instruction and a page reference to  a  
more  complete  description   in  the  main  text.

The information about the successors to the 68000. the 68010 and the 68020. 
has been obtained from advance publicity from Motorola. We would like to thank 
Motorola for this information, and also for permission to include material from their 
documentation on the 68000 itself.   Motorola wish   us to  include the  following  
disclaimer.

Motorola assumes no responsibility for any inaccuracies in this text. and reserves 
the right to make changes to any of the products described to improve reliability, 
function or design. Motorola does not assume any liability arising out of the 
application or use of any product described herein. No licence is conveyed under 
patent rights in any form. Specifications of new products are subject to change 
without  notice.

We would like to thank various colleagues at the Universities of Cambridge and 
Bath for their help with this book, and particularly Dr. Arthur Norman for permission to 
include his long division routine. We would also like to thank Agi Lehar-Graham for 
drawing the diagrams  and Jessica  King  for  her  help with  the   index.

March   1983 Tim   King
Brian   Knight



Chapter 1

Introduction

As Its title implies, this book concentrates on the 68000 microprocessor as seen by 
the programmer, and almost completely avoids discussion of hardware issues. It is 
aimed at the reader who has access to a built 68000 system, and is concerned with 
how to program  it effectively.

The book is self-contained, introducing the architecture of the machine and its 
instruction set in a logical order. It can be read without any need to refer to Motorola 
documentation for the 68000, although the latter should be consulted for details such 
as the bit pattern  of each   instruction.

The discussion of each instruction points out any unusual features of Its 
operation, both pitfalls to avoid and particular uses. Many of these features are of the 
kind which are easily overlooked when reading the formal definition, and which will 
waste time and cause confusion when they are tripped over in practice. As each 
instruction is introduced, one or more worked* examples are given to illustrate its use. 
These examples are intended to be useful code fragments which can be employed in 
larger programs. They are used here to build up a small monitor program which 
provides simple input/output and debugging  facilities.

The remainder of this chapter gives a brief history of the evolution of 
microprocessors, and compares the 68000 with others in current use. It then gives a 
general description of the features of the 68000 and some typical applications. The 
second chapter introduces the assembler syntax employed in later chapters, and 
explains the operand addressing  modes of the  instructions.

The following chapters present the instructions in related groups. Chapter three 
describes the various ways in which data items can be moved about and compared 
with one another. The concepts of stacks and subroutines are introduced in chapter 
four. Chapter five covers the instructions provided for doing arithmetic and includes 
routines for multiplication and division of larger numbers than can be handled directly. 
The logical operations for working on individual bits are described in chapter six, and 
they are used In the code of a store allocation package. Chapter seven deals with 
interrupts and traps, Illustrating   the   writing   of   interrupt   routines,   and   the   use   
of   traps   as

1



system   calls,   for   error   detection,   and   for   debugging programs.   The
final    chapter   gives   a   complete   example   of   a    small monitor,   which
handles terminal input and output and provides a convenient
environment for  debugging  other programs.

Evolution  of microprocessors

A constant trend throughout the 40-odd year history of electronic computers is that as 
time goes on it becomes possible to make them smaller and smaller. The earliest 
machines used thermionic valves, required a large room to house them, and 
consumed huge amounts of power. The invention of transistors enabled the size and 
power consumption to be reduced by several times. In the 1960s, it became possible 
to produce Integrated circuits consisting of a few transistors and associated 
components fabricated in one small chip of silicon, making it possible to build a 
computer in one cabinet of reasonable size. In the early 1970s the technology of 
Integrated circuits had advanced to the point where it was possible to put all of the 
central processor of a simple computer onto one chip - the first microprocessors. 
Since then we have seen a decade of rapid progress, and there are now available 
microprocessors which have not compromised in power in order to fit on one chip, 
and which compete  directly with  computers  produced  from discrete components.

The earliest microprocessors which found appreciable use were those which 
could operate on only 4 bits of data at a time, such as the Intel 4040. These were 
suitable for simple control applications (e.g. vending machines, alarm systems) and 
unsophisticated arcade games but little more, as they were slow, cumbersome for 
data In useful units,  and  could  address only a very limited  amount of memory.

It was after the introduction of 8-bit machines that microprocessors became 
widespread. The most popular of these include the Intel 8080 and 8085, the Zilog 280 
(which has the 8080 instructions as a subset of its instruction set), the MOS 
Technology 6502, and the Motorola 6800 and 6809. It is usual for machines 
described as 'N-bit processors' to have some capability for handling Items 2N bits in 
size. Most of the above can perform arithmetical and logical operations on 16-bit 
quantities,  though  the  6502  has  no   16-bit internal  registers.

Some of these 8-bit chips became very cheap, so were viable for building into 
other equipment, and could also be used for moderately powerful and inexpensive 
home computers. At the time of writing, almost all personal computers intended for 
domestic or small business use  are  based  on  either the Z80  or the  6502.

As 8-bit micros evolved, there was a tendency towards removing 'untidy' features 
of their implementation, such as requiring several power supply voltages, multi-phase 
clock inputs, or multiplexed address/data lines. It is now normal for new designs to 
need a single 5 volt supply, a single phase clock input (or just a crystal to control an 
internal clock), and to have each connecting pin performing just one function. Some 
(such as the Z80) provide assistance with refreshing  dynamic  semiconductor  
memory.

Another development has been the introduction of limited single-chip computers, 
such as the TMS9940. These have some memory   holding   a   fixed   program   
(ROM)   and   some   alterable   memory

(RAM) as well as the processor, enabling special purpose computers to be produced 
in a single package, improving the ease with which they can be wired up to other 
circuitry. Such devices are most suited to being  designed  for.  and  built into,  a  
particular  piece of equipment.

From the software point of view, the next important development was the 
introduction of 16-bit and 32-bit microprocessors at the end of the 1970s. These 
blurred the distinction between mini-computers and micro-computers, as most of the 
common minis were 16-bit machines. Among the first such chips were the Texas 
TMS9900 series, Intel 8086, TMS99000. Zilog Z8000, and the subject of this book, 
the Motorola 68000. Newcomers which are not widely available at the time of writing 
include the National Semiconductor NS16032 and Intel's 80286   and   iAPX  432.

The 68000 stands out from its predecessors as being perhaps the first 
microprocessor with an architecture and instruction set resembling that of a large 
mainframe. It has a very large directly accessible address space, the ability to 
manipulate items 8, 16, and 32 bits in size. 16 registers each 32 bits long, some 
instructions intended to ease the compilation of high-level languages, a supervisor 
mode which can be used to prevent unprivileged programs accessing certain regions 
of memory or directly initiating I/O operations, and provision for  multi-processor  
interlocks.

The following tables present a brief specification of each of the above processors 
for comparison. Note that some care should be exercised when comparing the 
speeds of different processors, as later models of a particular machine are usually 
capable of running at greater clock rates than earlier ones. Thus speed can reflect 
how long a machine has been on the market, rather than indicating the potential of 
the design.
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ZHog Z80

Direct Address  Range: 
Quickest  Instruction: 
General  Registers: Other  
Registers: Interrupt  
levels:

64  Kbytes
1 microsecond   (4MHz clock) 7   
(8-bit)  +  duplicate  set
2 16-bit index registers.   16-bit stack pointer 2

TMS9900  series

Direct Address  Range: 
Quickest Instruction: 
General  Registers: Other  
Registers: Interrupt 
Levels:

64   Kbytes   (TMS9900)
2  microseconds  (4MHz clock)
16   (but  held  In   RAM.  not  internally)
Workspace  pointer  (i.e.   registers)
16   (TMS990C.9995).   4   (others)

The 8-bit registers can be paired and used as 3 16-bit registers. The instruction set 
supports 16-bit arithmetic and block moves and searches in memory. The instructions 
of the Intel 8080/8085 are. a subset of the Z80  instructions.

64  Kbytes
2   microseconds   C2MHz  clock)
2   (8 bit)
2  index registers.  2  stack pointers  (16-bit)
3

The two 8-bit accumulators can be combined as a 16-bit 
register. The instruction set allows limited 16-bit arithmetic and 8 * 8 bit multiplication.

Intel  8086

The registers are held in an area of RAM pointed to by the workspace pointer 
register. In the TMS9995 they are cached internally. There  are  instructions for  16-
bit  multiply  and  divide.

This  is  a  family of  processors  with  a common  instruction   set:

9900 basic  model
9940 single  chip  computer with  built-in  RAM  and   ROM
9980/81 8-bit  bus  only,  can  address  only  16  Kbytes
9985 single  chip  computer with  built-in  RAM   (but  no  ROM)
9995 registers cached  internally

TMS99000

64  Kbytes
0.5- microseconds  (6  MHz clock)
16   (held   in   RAM)
workspace  pointer  (pointer to  registers)
16

Direct Address  Range: 1   Mbyte
Quickest  Instruction: 0.4  microseconds  (5MHz clock)
General  Registers: 4  (16  bit)
Other Registers: base registers,  stack/index
Interrupt levels: 2

The address space is divided into 4 segments (code. data, stack, and extra) which 
may overlap. All addressing Is relative to segment base registers; a segment base 
address is a multiple of 16. The 8086 has 24 operand addressing modes, can do 
signed and unsigned 16-bit multiplication and division, has loop instructions, and can 
do an Indivisible read-modlfy-write memory access. The Intel 8088 processor can run 
all the same software as the 8086. but has an 8-oit (rather than 16-bit) external bus. 
and so can be used with 8-bit support chips.

The 99000 can address up to 16M bytes of segmented memory using a support chip. 
It can add. subtract, and shift 32-bit quantities. It has a supervisor mode, and test-
ai%d-set instruction for synchronizing multiple processors. Instruction decoding is 
such that instruction codes which are not built-in can be handled by user microcode 
(held on chip),  user code in  external  RAM,  or  by an  attached  processor.

8  Mbytes
0.75  microseconds  (8MHz clock)
16   (16   bits)
memory  refresh  counter,   status area  pointer
2

There are six address spaces, each of which can be 8 
Mbytes in size. There are two versions of the chip: a 'segmented' one with 8 Mbytes 
address range, and an 'unsegmented' one with 64 Kbytes address range. The first 8 
registers can be used as 16 8-bit registers. The registers can be used as 16 * 16 bits. 
8 * 32 bits, or 4 * 64 bits. Multiply is available for 16-bit or 32-bit operands, divide for 
32-bit or 64-bit dividends. Shifting can be performed on 8. 16, or 32-bit registers. 
There is a supervisor mode, test-and-set instruction, and   other   instructions   for   
interfacing   multiple   processors.   The   Z8000

Direct Address  Range: 
Quickest  Instruction: 
General  Registers: Other  
Registers: interrupt Levels:

Motorola 6809

Direct Address  Range: 
Quickest  Instruction: 
General  Registers: Other  
Registers: Interrupt 
levels:

Zilog Z8000

Direct Address  Range: 
Quickest  Instruction: 
General  Registers: Other  
Registers: Interrupt  Levels:
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has   instructions   for   block   copy,   and   character   translation.   It   has   8 
address  modes,   but only 4 types of  processor trap.

it possible to provide virtual memory of up to 1 gigabyte (1000 megabytes). There is
hardware support for rapidly performing a task switch  after an  interrupt,  without  
intervention  by  the  operating  system.

Motorola   68000

Direct Address  Range: 16  Mbytes
Quickest  Instruction: 0.5  microseconds  (8  MHz clock)
General  Registers: 16  (32  bits)
Other Registers: user stack register
Interrupt  Levels: 7

The internal architecture is 32 bits wide, and most operations can be performed on 8, 
16. or 32-bit values. The only important omission from a full 32-bit capability is the 
lack of 32-bit multiply and divide. The address space is linear. The registers are 
divided into 8 data registers and 8 address registers; some operations can use only 
one type. One of the address registers is duplicated; which one is available depends 
on whether the processor is in supervisor or user state. There are 14 operand 
addressing modes, many types of processor trap, and instructions available only in 
supervisor state. A 'Test and Set' instruction is provided for read-modify'-write 
memory access.

Intel  iAPX 432  system  (from  preliminary  information)

The processor of the iAPX 432 system consists of two chips: the 43201 instruction 
decoder, and the 43202 execution unit. I/O is handled by 43203 interface processors. 
Data can be handled in units of up to 32 bits, and floating point numbers up to 80 bits 
long are supported. Addressing is capability-based, allowing protection to be applied 
to individual data structures. Up to 16 megabytes of real memory can be addressed, 
while software can use up to a terabyte (1000 gigabytes) of virtual address space. 
There is built-in support tor multiple processors, multitasking, and dynamic storage 
allocation. The instructions vary in length from a few bits to several hundred bits, and 
have the unusual property that the start of an instruction does not need to be aligned 
to any particular memory boundary. Two processors may be coupled pin-to-pin such 
that one checks the operation  of the other, to give  high  system  reliability.

National  Semiconductor NS16032  (from  preliminary specification)

Direct Address  Range:      16  Mbytes
General  registers: 8   (32  bits)
Other  Registers: stack frame  pointer,  static variables  pointer.

user/interrupt stack  pointers,   interrupt  base

The 16032 has 32-bit architecture, and has several features intended to support high 
level languages. There are registers for addressing stack frames and static variables 
of , high level languages, and addressing modes to support communication between 
software modules with different data spaces, and to handle arrays of 1, 2, 4, or 8-byte 
objects. There is also support for bit fields and floating point number operations.

Intel   80286

Direct Address  Range: 16  Mbytes
Quickest  Instruction: 0.2  microseconds   (10  MHz clock)
General  Registers: 8   (16  bits)
Interrupt  Levels: 2

The 80286 is upwards compatible from the 8086/8088 and can run programs written 
for those machines with little or no change. The differences are in speed, and in the 
support provided for protected multi-user systems. Memory management and 
protection facilities are included in the processor chip, making external memory 
management unnecessary.   All   instructions   are   restartable  after  an  exception,   
making

Introduction  to the  68000

The rest of this chapter gives an overview of the 68000 as a background to the 
detailed information in later chapters. Some specific instructions . are mentioned with 
only a brief description; this is intended more for the reader who has already met 
assembly language on another computer. Don't worry if these appear mystifying: they 
are explained fully later.

The memory available to the 68000 is of two different kinds: the internal registers 
(i.e. on the chip), and the external main memory. There are 17 registers, of which 
only 16 are available at any given moment. Eight of them are data registers named 
DO to D7, and tne others are address registers called A0 to A7. Each register 
contains 32 bits. In many contexts either kind of register may be used, but others 
demand a specific kind. Any register may be used for operations on word (16-bit) and 
long word (32-bit) quantities or for indexed addressing of main memory (see chapter 
2). Only data registers may be used for operations on byte (8-bit) operands. Only 
address registers may be used as stack pointers or base registers for addressing 
main memory. The register A7 is duplicated; which physical register is actually used 
depends on whether the processor is in supervisor state  (see  below).

The main memory consists of a number of bytes of storage - how many there are 
depends on the particular computer system. Each byte has  an   identifying   number,   
called   its  address.  Memory  is   usually   (but
not   always)   arranged   so   that   its   bytes   have   addresses   0,   1,   2 ................
N-2, N-1 where there are N bytes of memory in total. The size of memory which can 
be directly accessed is very large -.up to 16 million bytes. The 68000 can perform 
operations on bytes, words, or long words of memory. A word is two consecutive 
bytes of which the first  has  an  even  address.  A long  word   is  four  consecutive  
bytes  also
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starting   at   an   even   address.   The   address   of  a   word   or   long   word   is 
the  (even)  address of its  (lowest numbered)  first Dyte.

It is worth noting that a 68000 address can always be represented in 24 bits, so 
there are 8 spare bits when an address is held in a long word or in a register. This 
means that addresses are always positive numbers, so there are no catches when 
two addresses are compared to see which is higher. The fact that addresses can be 
negative on some other computers which have 16-bit words and 16-bit addresses can 
be a cause of very obscure errors. In some situations it is very convenient to make 
use of the eight spare bits, allowing some extra information to be held with a pointer in 
a long word. This might be an indication of what sort of object the pointer refers to, or 
simply a flag to say that this is a pointer to a value rather than the value itself. A 
warning should be issued here: preliminary information from Motorola indicates that 
they intend to use full 32-bit addresses in future models of the 68000 series, so 
exploitation of the spare 8 bits may result in programs which are difficult to move to 
these future models,

As well as holding items of data being manipulated by the computer, the main 
memory also holds the instructions which tell tne computer what to do. Each 
instruction occupies from one to 5 words, consisting of an operation word and 
between zero and four operand words. The operation word specifies what action is to 
be performed (and implicitly how many words there are in the whole instruction). The 
operand words indicate where in the registers or mam memory are the items to be 
manipulated, and where the result should be placed.

Instructions are normally executed one at a time in the order that they occur in 
memory, rather like performing the steps in a recipe or playing the notes in a piece of 
written music. There is a special register called the program counter which is used to 
hold the address of the Instruction to be obeyed next. Some instructions, called 
jumps or branches, upset the normal order, and force execution to continue with the 
instruction at a specific address. This enables the computer to perform an action 
repeatedly, or to do different things depending on  the values  of data  items.

There is one other special register, called the status register whicn is used to 
remember particular things about the state of the computer. The  status  register  has
the following   layout

The significance of the bits in the system byte will be explained more  fully  in  
chapter  7.

Trace  bit This   is   set   to   1   if   the   processor   is   in   trace   mode,
and  to 0 otherwise.

Supervisor  bit      This   is   set   to    1    if   the   processor    is    in   supervisor state,  
and  to 0  if the  processor  is  in   user state.

Interrupt mask     Indicates which  of  7   interrupt  levels  are  enabled.

The   user   byte   contains   the   five   condition code  flags. These   flags
are    set    by    certain    instructions    such    as    arithmetic    or comparison
operations   to   convey   information   about   the   result  to   later instructions.
The condition  codes  have  the  following  meanings

Z      The  result was  zero

N     The  result was  negative

V Overflow occurred during 2s complement arithmetic (i.e. the result is too  big  to fit 
In the destination)

C      Carry  (or  borrow,  in  subtraction)  occurred

X Extend flag. This is used in multi-length operations (e.g. adding two 64-bit 
numbers). When it is affected, it will be set the same as the  carry flag,  but X is  
altered  by fewer  instructions  than  C.

The  settings  of  the  condition  codes  can   be  tested   by  the  families  of 
instructions  Bcc,  DBcc,  and  Sec,  which  are  introduced  in  chapter  3.

The instructions of the 68000 fail naturally into a small number of groups, and the 
following chapters each deal with one group. Many instructions are concerned with 
moving data about - between memory locations, between registers, or between 
registers and memory. Others perform arithmetic or logical operations, such as 
adding, or compare data  items.  The  branches  and  jumps  are  used  to control  the  
order  in
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which program steps are obeyed. A few other instructions do various things, such as 
stopping the processor obeying Instructions, or handling  external  devices connected 
to the computer.

Position  independent code

Computer programs are often written in such a way that they contain fixed memory 
addresses specifying the whereabouts of data items or the destinations of jumps. 
Such a program has to be loaded into a particular place in memory, otherwise it will 
not work. This may be acceptable on a simple computer system which has only one 
program in store at once, but it is often much more convenient if a program can be 
placed anywhere in memory. Such a program is said to be written  in  position  
independent code.

The Instruction set of the 68000 makes It easy to write programs in such a way 
that they can be loaded anywhere in store. This is because the instructions which 
cause program jumps specify the destination of the jump in a relative rather than an 
absolute way. For example, a branch does not have to be of the form 'go to the 
instruction at address 5000', but can be specified as 'go to the instruction 192 bytes 
before this one'. The latter form will work wherever the program is situated in memory. 
Most computers have branch instructions like this, but usually they only allow a jump 
up to 128 bytes away from the current instruction, and this is often too little. The 
68000 allows jumps up to 32768 bytes away, which will be adequate for virtually any  
program.,

The other aspect of position Independence relates to the addressing of data. The 
rich set of addressing modes of the 68000 (see chapter 2) means that data items can 
be accessed relative to an address held in a register, so that a program can easily set 
up its data  areas  anywhere  in  memory.

A truly position independent program would be one which could be placed initially 
anywhere in memory and then moved elsewhere during its execution. Such a 
program would have to address data relative to the program counter. The 68000 
allows one to read data from locations relative to the program counter, but does not 
allow locations addressed in this way to be altered. This is deliberate, and intended to 
encourage the clear separation of the areas of memory devoted to program  and data,  
which  is good  programming  practice.

Thus the 68000 makes it straightforward to write programs which can be loaded 
anywhere in memory, can set up their data areas anywhere, and which can be moved 
during execution if the data areas stay in  the  same  place.

Debugging  aids provided  by the chip

The 68000 processor has a number of features to make detection and location of 
programming errors easier. Some of these are built-in checks for illegal actions, while 
others are things which the programmer can  use to  help  him  debug  a  program.

The processor has the ability to force a hardware trap when certain things 
happen. This means that the normal flow of Instruction execution is interrupted, the 
place where It stopped is recorded, and a jump made to a fixed place in memory. This 
place should contain a piece of program which can take suitable action, for instance 
printing out an error message telling the user what happened, and asking him 
whether or not he wants to allow his program to continue. If he does, then  a jump can  
be made  back to the  place where  execution  stopped.

The following events cause a trap to occur:

- Access to  a word  or  long  word with  an  odd  address
- Encountering  an  unimplemented  or  illegal  instruction
- Attempt to access memory which does  not exist
- Dividing  a  number  by zero
- Spurious  interrupt from  a  peripheral  device

Certain instructions can cause traps. The TRAPV instruction causes a trap if the 
last arithmetic operation overflowed. It can thus be included after each arithmetic 
operation in the program if this check is desired. Similarly, the CHK instruction will 
trap if the value in a register is greater than a specified number. This can be included 
to check that  a  memory access  is within  a  particular region  of data.

The Instruction TRAP always causes a trap. It can be inserted at strategic points 
in a program to cause it to stop so that the contents of registers and memory can be 
inspected, allowing the operation of the  program to  be  checked  in  stages.

A final debugging aid is a tneans whereby a program can be executed one 
instruction at a time, providing a very powerful way of detecting exactly where a fault 
occurs. This is achieved by setting one of the bits in the status register, putting the 
machine into trace mode. In this mode, a trap is taken after each instruction is 
obeyed. With the help of a suitable debugging program to intercept this trap, the user 
can step through critical regions of his program to check Its operation in detail. This is 
a facility which it can be very difficult to provide on  a computer without a trace mode.

The  use of traps  in  debugging  is  Illustrated  in chapter 7.

Support for high  level languages

The 68000 has been designed in the knowledge that many of its users will not want to 
program it in assembly code, but will instead wish to use one of the many high level 
computer languages, such as FORTRAN, Pascal, or Algol68. A high level language 
program is written in a form which is much closer to ordinary English than assembly 
language. This means that programs can be written much more quickly and easily 
than in assembly code, and mistakes in them are usually easier  to   find.   Such   
programs  can   also   have  the  advantage  of   being
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portable. That is, they will work on any machine on which the language is available; 
assembly language programs can run only on the  type  of computer for which  they 
were written.

A program called a compiler is used to translate commands written in a high level 
language into machine code, the instructions which the computer understands. The 
machine code produced by a compiler is usually of rather poor quality compared to 
that which a human could write, it tends to do things in ways which take more 
Instructions than actually necessary, meaning that code from a compiler occupies 
more memory and runs more slowly than that written by a human. However, now that 
computing power and memory are comparatively cheap. It is quite acceptable to 
waste them  in order to save human  effort.

The 68000 has features Intended to simplify the writing of compilers for high level 
languages, and to enable them to produce reasonably efficient code. The fact that the 
machine has 16 all purpose registers is helpful, as it means that frequently used 
pointers and values can be kept in registers all the time, so that there will not be so 
much code generated just to shuffle things around between memory and registers. 
The regular and consistent structure of the instructions and address modes simplifies 
the part of the compiler concerned with actually generating the machine code. Most 
instructions can operate on objects of three different sizes and employ any of the 
address modes. The ability to address directly a large amount of memory  simplifies  
the organisation  of storage for a  language.

Several instructions are included specifically for high level languages. Programs in 
such languages are usually written as separate modules or routines which are 
combined to form the complete program. When compiling one module, the compiler 
does not know from where in the program it will be used, and hence does not know 
which machine registers and which areas of memory can safely be used within the 
module. The problem of deciding which registers are available is most easily solved 
by saving the contents of some registers when the module is entered, and restoring 
them all again when it is left. The instruction MOVEM does just this, copying from a 
specified set of registers to memory or back again. It is very flexible, being  able  to  
save  or  restore  any arbitrary group  of  registers.

The instructions LINK and UNLK allow each program module called to allocate 
itself a private area of storage from a stack (see chapter 4). The effect of LINK is to 
save a pointer to the current workspace, and to reserve a new one of specified size. 
UNLK inverts the operation, releasing the space allocated and restoring the pointer to 
the  old  one.

The instructions mentioned in the section on debugging aids, such as CHK and 
TRAPV, can also be employed to good effect in compiled code so that errors such as 
arithmetic overflow, or an attempt to use memory outside a particular data structure, 
can be detected immediately. Being single instructions, the inclusion of such checks 
does not greatly slow down execution of the program. A compiler can reliably include 
such instructions at every appropriate place something   it would   be  difficult for a  
human  to  do.

Operating  system  support

A bare computer is an object which is rather difficult to use. The only thing it can do is 
to execute instructions coded in its own machine language. For this reason, it is 
normal always to run a program to make the machine easier to use. Such a program 
is called an operating system; a very simple operating system is sometimes  called  a  
monitor.

A typical operating system will handle all the peripheral devices attached to the 
computer, interpret commands typed by the user at the terminal, and manage the disc 
storage to provide files with names convenient for humans. It may allow several 
programs to be run apparently at the same time, in fact by switching between them at 
a rapid rate. It will also handle certain errors in a running program, print an 
informatory message for the user, and provide him with commands for inspecting his 
program in store and the contents of the registers.

The 68000 has many features which are necessary or helpful in supporting an 
operating system. It gives the operating system the means to protect itself from 
damage caused by the programs it runs, and to maintain control over those programs. 
This is achieved by using the two processor modes: supervisor mode and user mode. 
The operating system runs in supervisor mode, and switches the processor to user 
mode before allowing any other program to run. Several critical instructions are 
privileged and may not be executed in user mode. The processor chip has an output 
line which indicates the mode during each access to memory or peripherals, making it 
possible to attach hardware so that the peripherals and certain areas of memory are 
available only in supervisor mode. Thus the operating system can protect the store 
holding Its code and private workspace, and be sure that it is the only program with 
access to the peripherals. It must be possible to ensure that no user program can set
supervisor mode, but that it can call operating system routines and have them run In 
that mode. The first is achieved because the instructions which can change mode are 
privileged. The second is achieved through the TRAP instruction (see chapter 7). 
which can simultaneously cause a jump  and  alter the  mode.

The 68000 has vectored Interrupts and traps (see chapter 7): this allows each 
peripheral device to signal to the processor, causing a direct jump to an appropriate 
piece of code to deal with that device, thus simplifying the operating system. The 
provision of several levels of interrupt makes it possible to organise the processing of 
interrupt signals from different devices such that the most urgent ones get dealt with  
first.

The MOVEM instruction is useful again in operating systems. When an interrupt 
or trap occurs, there is an immediate jump to some point in the operating system; the 
code there must save the contents of any registers which it wishes to use Itself. 
Another special instruction is MOVEP, provided specifically to simplify the transfer of 
data to peripheral  devices.

When two programs are being run in parallel, it will sometimes be necessary to 
allow one of them to claim exclusive access to some resource (e.g. a device or area 
of store). This is most simply done by  having   a  flag   byte  in   memory which   
indicates  whether  the  resource
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is free. The resource is claimed by waiting until trie flag is free and then setting it. 
However, the actions of inspecting and setting the flag must be performed as an 
indivisible operation, otherwise two programs could both find the flag free, and both 
claim the resource. The test and set (TAS) instruction is provided for just this 
purpose. It can also be used for interlocks between programs running In several 
processors sharing the same memory, because the processor retains control of the 
memory for the whole TAS instruction. This is sometimes called a read-modify-write 
cycle.

The 68000 processor includes bus arbitration logic, to allow its bus (main 
communication cable) to be shared between all the devices connected to it. This 
includes the memory, terminal, discs, and other processors. Intelligent devices can 
get at the memory directly, without having to interrupt the processor. Such an 
arrangement is called direct memory access (DMA). For instance, the processor 
could asK a disc device to transfer some data from the disc to memory. The device 
could do the transfer using DMA, interrupting only when it had finished, and leaving 
the processor free to execute some more program  in  the  meantime.

Some typical applications

The 68000 is as yet still too expensive to be used in equipment which does not 
actually need its speed or large memory capacity; such applications are likely to 
remain the domain of the inexpensive 8-bit microprocessors. Its use lies in more 
demanding situations, such as computer terminals, graphics workstations, word 
processors and medical equipment. As a general purpose computer, it is a serious 
rival to minicomputers of all sizes. The large address space means that it can make a 
powerful personal computer which can run programs which previously could only run 
on a mainframe machine. It can also be used to support several users at once, 
although in this case some memory mapping hardware is required to isolate one user 
from  another.

Other processors in the 68000 series

The 68000 is just the first model in a range of similar processors. This section briefly 
describes the three other models which had been announced  at the time  of writing:  
the 68008.  68010,  and  68020.

The 68008 is simply the 68000 with an 8-bit (rather than 16-bit) external data bus. 
It enables the processor to be used with 8-bit support chips, giving some reduction in 
circuit complexity and cost, at the  expense of reduced  execution  speed.

The 68010 is very similar to the 68000, but with some modifications to improve 
operating system support and to make it faster. There is a new internal register, 
called the Vector Base Register, which holds the address of the base of the interrupt 
vectors (see chapter 7). It is set to zero by default (for compatability with the 68000), 
but can be altered, allowing different operating system processes to  handle  their 
own traps  in  a  straightforward  way.

A number of changes have been made to the information stored on the stack after 
an exception. In particular this will enable an instruction which caused a bus error to 
be restarted. This allows the implementation of a system with virtual memory in which 
programs appear to have access to more memory than is physically available. The 
operating system ensures that those sections of virtual memory actually in use at any 
moment are copied Into real memory, while the rest is held on backing store such as 
a disc. The translation of virtual addresses into real addresses is arranged in such a 
way that an attempt to use a location which has not been copied into real memory will 
cause a bus error. The operating system responds to the bus error by fetching the 
relevant part of the virtual address space into real store, and then resuming execution 
with the instruction that caused  the  bus  error.

The 68010 has two new instructions: MOVEC and MOVES. MOVEC is used for 
access to various control registers, including the Vector Base Pointer. MOVES allows 
reading and writing of the address spaces which would normally be inaccessible. Data 
accesses are normally made to the User Data or Supervisor Data address spaces, 
according to the current privilege level. However, there are two 3-bit function code 
registers (one for source and one for destination) which can be set by MOVEC, so 
that a program running in supervisor state can then use MOVES to read or write 
locations in the Supervisor Program, User Program,  or User  Data  address  spaces.

Various instructions execute more quickly in the 68010 than in the 68000, 
including the 32-bit arithmetic and logical operations, CLR, Sec, and MOVE SR. Also, 
the bus error timings have been relaxed, so there is no execution speed penalty for 
having error detection on memory.

The 68020 processor contains all the new features of the 68010, plus others to 
increase support for 32-bit operations. It has a full 32-bit external data bus, 32-bit 
offsets in branch instructions, and 32-bit displacements in indexed "addressing 
modes. The instructions CHK, LINK, UNLK. MUL. and DIV can take 32-bit operands. 
An extra addressing mode is available, allowing indexed addressing with two levels  
of Indirection.

The 68020 has an instruction cache, enabling small loops to run very fast as the 
instructions do not have to be repeatedly fetched from memory. It also has a 
complete coprocessor interface, allowing the instruction set to be extended by the 
addition of other chips (e.g. to  provide  floating  point arithmetic).

There are several new instructions available on the 68020. These include an 
instruction for moving blocks of data between address spaces, more sophisticated 
entry and exit operations for procedure calls in high level languages, and MOVEF for 
moving various sized bit fields. The range of instructions for packed decimal data is 
extended by PACK and UNPK, which convert between characters and decimal 
numbers.
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Chapter 2

addressing modes

This chapter provides the necessary background for the introduction of the various 
machine instructions in later chapters. It explains the assembler syntax - that is, the 
way a program is written down - and the addressing modes, which are the different 
ways In which instructions  locate the data on  which they are to  act.

Assembler  syntax

The only language which the computer itself understands is machine code, which can 
be considered as just a pattern of bits, or as a list of numbers, in its memory. A 
program in this form is rather hard for a human either to understand or to write. 
Consequently, programs are more usually written in assembly language, which 
directly corresponds to the machine code, but makes use of mnemonic names for 
Instructions and registers. It also allows the programmer to use symbolic names for 
addresses within the program, and for other values. A program called an assembler is 
used to translate from the assembly language into machine language. The form of the 
assembly language presented below is the same as that used by Motorola and 
accepted by their assemblers. If you are using an assembler from another source, 
you may have to use a variant of the language: consult your  manual  to  find  out  if 
there  are  any differences.

A program is composed of a series of steps called instructions. Each instruction is 
written as one line of assembly language. The instruction itself has a mnemonic name 
of 3, 4. or 5 letters, and for some instructions the name is all that need be written on 
the line. An example  is

NOP

which is an instruction that does nothing at all! (Such an instruction is not completely 
pointless: It can be useful when debugging as a replacement for some unwanted 
instruction, and can also be used when  a  very  short delay  is  required.)

Note that the name has been written indented from the left hand margin;  the  
reason  for this will  be  made  clear  below.

However, for most Instructions, the name alone is not sufficient, as we must also 
specify where in the registers or memory are the data on which they are to operate. 
This Is done by putting the operand after the  name  (with  one or more  spaces  in  
between),  as  in

CLR D3

which clears to zero the least significant 16 bits of data register 3. If there are two 
operands, then they are separated by a comma (but no spaces). The left hand 
operand is usually the source from which a value is read, while the right hand one is 
the destination, in which the result is placed. It is Important to note that the operands 
are written in this order, particularly if you are used to an assembly language for 
another computer which works the other way round. A simple example  is

MOVE D1,D4

which just copies the least significant 16 bits from data register 1 to register 4   
(without affecting  the  rest of either).

The 68000 has the useful feature that many of its instructions can work on data of 
three different sizes: byte (8 bits), word (16 bits), or long word (32 bits). To indicate 
which length is required, the suffix '.B'. '.W, or '.L' is added to the name; '.W is 
assumed if no suffix is added. Thus,  the above  instruction  is the  same as

MOVE.W     D1,D4

and  to  copy all  32  bits  of the  register,  we would  write

MOVE.L     D1,D4 *

Similarly, to clear just the least significant 8 bits of a register, we would  say

CLR.B        D3

It is a good idea to get into the habit of always using the length suffix (i.e. not missing 
off the optional '.W'), as a common programming error on the 68000 is using the word 
form of an instruction by mistake. This can cause obscure faults in a program, which 
can be difficult to track down. You are much less likely to make this  mistake  If you  
always  put in the qualifier.

Anything else on the line after the instruction and its operands (if any) is ignored 
by the assembler. This allows the insertion of comments in the program in order to 
make it more easily understood by a human reader. If a line starts with a star, then 
the whole line is treated  as  a  comment.

* This whole line is a comment
CLR.L      D3 A comment after an instruction

16
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The extensive use of comments in programs is strongly recommended. Although 
it may seem tedious to include them when the program is being written, they make It 
very much easier for someone other than the author to understand it, or for the author 
himself to modify  it some time  after  he originally wrote  It.

In the examples above. Instruction names have been written indented from the left 
hand margin. If a line does not start with a space, then the first item Is taken to be a 
label, which is a symbolic name for the memory address of the instruction on that line. 
The name of a label may be any word which starts with a letter and contains just 
letters and digits. (In practice, most assemblers allow some other characters to be 
used in names. In the examples in this book, we have used the underline character '_' 
to improve the readability of names.) The assembler remembers the label and the 
address which it refers to, and the label may be used elsewhere in the program to 
refer to that address. This is particularly useful with jump instructions, which cause 
execution to continue at a specified address.

CLRD3      CLR.L      D3 Labelled instruction

JMP CLRD3 Jump to instruction  labelled CLRD3

A   label   may   also   be   written   Indented   from   the   margin,   by   putting   a 
colon  after its  name

CLR03:   CLR.L       D3

Making use of labels in this way relieves us of having to know the actual address 
of the CLR instruction, and means that we do not have to alter the JMP instruction 
every time modifications to the rest of the program  cause this address to change.

Assembler directives

As well as instructions and comments, the assembler also accepts directives, which 
are commands to the assembler itself. Tney are written in the same way as 
Instructions, but (with the exception of DC and DS) do not cause any code to be 
generated. The only directives described here are a few basic ones which are likely to 
be available in the same form in most 68000 assemblers. Most assemblers will have 
other directives as well, to control things such as layout of the assembly listing, format 
of object module produced, and to provide facilities for conditional  assembly and  
macros.

An example of a directive is EQU. which equates a symbolic name to a value 
(rather like the way a label is a name for an address). For  example

SIZE EQU 100

sets up SIZE as a name for the value 100. Wherever 'SIZE' is used in   the   program,   
the   assembler  will   act   as   if   '100'   had   been   written

instead. This can be useful in several ways. If several parts of the program depend on 
this value, it is much easier to alter if SIZE is defined once at the beginning and used 
throughout, rather than if '100' is written explicitly in several places. It can also make a 
program more comprehensible to human readers if mnemonic names are  used  for 
numbers.

Memory in the 68000 is thought of as an array of 8-bit bytes. numbered 0, 1, 2. 
upwards. The number of a memory byte is called Its address. There are two 
directives for controlling the location in memory of the assembled code. One is ORG, 
which specifies a particular address for the origin   (i.e.  first instruction).  The 
sequence

ORG     1024 
START   CLR.L   D3

will cause the assembler to produce the code assuming that it will be placed at 
address 1024 onwards. Thus the label START will have value 1024. The assembled 
code will be marked with this address so that It can be loaded at the correct position. 
Code starting with ORG is called absolute code, because its address is fixed; labels 
within it are said to be absolute symbols. A program which includes an ORG is 
unlikely to be position independent, as it will contain explicit references to particular 
addresses. ORG has an alternative form. ORG.L. which affects the assembly of the 
absolute addressing mode (see  below).

it is often convenient to be able to write numbers in a program in hexadecimal 
(base 16). or 'hex', notation Instead of in decimal. The digits used are 0 to 9. and then 
A to F representing 10 to 15. The assembler accepts hexadecimal numbers starting 
with a dollar character. Thus

ORG 5400

is the same as ORG 1024 (= 4*256 + 0*16 + 0*1). Throughout this book.  '$'  is  used 
to  introduce hexadecimal  numbers.

The complementary directive to ORG is RORG. which indicates that the program 
Is relocatable, meaning that it may be placed anywhere in memory. RORG also 
takes an argument, but this should normally be zero.  If we  alter the  above  program 
fragment to

RORG 0
START       CLR.L       D3

then the value of START will not be known to the assembler. START will be given the 
value zero (because that is its offset from the beginning of the section) and the fact 
that it is relocatable will be noted. Labels such as START are examples of 
relocatable symbols -symbols whose value will not be known until the program is 
loaded into memory. Wherever a relocatable symbol is used, the assembler will try to 
produce the code  in  a  position  independent way.  Thus.  In



the JMP instruction will be coded as 'jump to the instruction X bytes before here', 
where X is calculated by the assembler. If a relocatable value is used in such a way 
that position independent code cannot be produced, then the assembler will include 
with the code a list of those words within it whose values must be filled In when the 
program is actually placed in store. It is not until then that those values  can  be  
known.  This  list  is called the  relocation  information.

Two directives are available for reserving and initialising memory locations. The 
OS (Define Storage) directive is used to reserve an area of memory. It takes a suffix 
indicating the size of the locations. and an operand which says how many such 
locations are to be reserved.   Examples  are

The memory reserved is not initialised to any particular vaiue. Unless the size
specifier is '.B'. then the space is aligned to a word boundary, so 'DS.W 0' can be 
used just to force word alignment. If the DS directive is labelled, then the label will 
refer to the address of the  first  location  reserved   (after any alignment).

The DC (Define Constant) directive is used to assemble particular values into 
memory locations. It takes the usual three size specifiers. and one or more operands 
separated by commas. If the size specifier is not '.B'. then alignment to a word 
boundary is forced as for DS. The operands may be numbers, expressions, or a string 
of characters enclosed in single quotes. A string of characters after DC is treated 
specially: it is not taken to be a character constant (see "Expressions" below), but 
instead one byte is assembled for each character. If DC.W or DC.L is used, the final 
word or long word is padded with zero bytes if necessary.

Summary of assembler syntax

There are three main types of assembler line: comment lines. instruction lines, and 
directive lines. A comment line starts with an asterisk;  any characters  may  appear  
on  the  rest  of the  line.

* This is a comment line

An  instruction  line  has the  general form

label      opcode    operand( s)      comment

Each field is separated from the next by at least one space, and the label, opcode 
and operand fields may not contain embedded spaces (except inside quoted 
character strings). The label and comment are always optional. The opcode field 
consists of an instruction name. optionally followed by a length qualifier C.B'. '.W, '.L', 
or '.S'). The number of operands is determined by the instruction opcode. If no 
operands are expected, then the assembler will treat anything after the opcode field 
as comment. If there are two operands, then they should be separated by a comma 
(but no spaces). A directive  line  has the  general form

label      directive argument(s) comment

The label field is not allowed for some directives, and is compulsory for others. If 
there are two or more arguments, they should be separated  by commas.

Expressions

As we have seen above, in most places where you might write a number, you can 
write a symbol representing that number. In fact, we can replace a number by an 
arithmetic expression containing symbols and numbers. A variety of arithmetic 
operators are available, including +,  -,   *   (multiply),  and /  (divide).  We  can  write 
things   like

20

Summary of assembler directives

The directive  END  is  used  simply to  mark the end of an  assembler program.  
The  last  line  of any  program  should  be

END
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DAYHRS    EQ0 24 Hours  in a day
DAYMINS EQU DAYHRS*60        Minutes in a day
DAYSECS EQU DAYMINS*60      Seconds in a day

The value is worked out using integer arithmetic, so all results are whole numbers. 
This matters only for division, where the result is rounded  down  so, for example,  7/3 
is 2.

Numbers may be written in decimal or hexadecimal (preceded by a '$'). Another 
way of specifying a number is as a character constant. This consists of between one 
and four characters enclosed in single quotes, and its value Is that of a long word with 
the specified characters in the rightmost (least significant) byte positions, and zeros 
on the left. Character constants are most useful for single characters, and should be 
used in preference to the numerical code for a character to  improve  readability.  For 
example

CHARZ      EQU 'Z' Code for letter Z
CASEDIFP EQU 'A'-"a" Difference between codes
* for upper and lower case
* forms of same letter

We have seen above that symbols are of two types: absolute and relocatable. 
There are no problems in arithmetic with absolute symbols, as they are just like 
numbers. However, there are restrictions on what you can do with relocatable 
symbols and still produce a meaningful result. The basic rule is that the answer must 
either be absolute, or relocatable in the same way as the original symbols. Thus 
multiplication or division involving relocatable quantities is not allowed, nor is addition 
of two relocatable values. A constant may be added to or subtracted from a 
relocatable value, giving a relocatable result (which is just the address of a different 
point in the same relocatable section).  We  could  write

RORG   o Relocatable section
START  CLR.L  D3 This instruction is two bytes long

CLR.L   D4

JMP    START+2     Jump to second CLR.L above

though   it would  be  better  practice to  put a  label  on  the  instruction  we actually 
want to jump to.

It is illegal to subtract a relocatable number from an absolute one, but perfectly all 
right to subtract one relocatable number from another. The result is an absolute 
number, as it represents the distance apart of two points in a program, which will be 
the same wherever it happens  to  be  placed  in  memory.   In  the  program

RORG   0 Relocatable section
PSTART  MOVE.L  PEND-PSTART,DO Set DO to program length

the   first   instruction   moves   the   length   (in   bytes)   of  the  whole   program into  
DO.  Note  that we  have  used  a  label  on  a  line  by  itself:  its  value is the  address 
of the byte after the  last one assembled. The  above  rules  can  be  summarised  in  
a  table:

Addressing  modes

Most of the instructions of the 68000 can accept their operands in a variety of forms. 
They can be in registers, in memory locations addressed by a variety of methods, or 
even included in the instruction itself. Because the instruction set is organised in such 
a regular way. it is possible to describe the various addressing modes independently 
of the instructions. The term used to describe an operand which can be expressed in 
any (or almost any) of the addressing modes is an effective address.

Register direct addressing

Operand data may be held in one of the data registers or one of the address 
registers. The register name is written as Dn or An, where n is a  digit from  0 to  7.  
For example

MOVE.L     A7,D5

copies all 32 bits of address register 7 into data register 5. If the length is 'word', only 
the least significant 16 bits of the register are read or altered. Length code 'byte' may 
not be used with address registers;  with data registers only the  bottom  8  bits are 
affected.

Absolute addressing

An operand in memory may be located by giving the absolute address of its first 
(most significant) byte. The operand is written simply as a number, or as a label or 
other symbol representing the number. To clear the  byte at location   1000  (hex),  
we  could write

CLR.B        51000

PEHD
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There are in fact two forms of this addressing mode, as the absolute address can 
be held as a 16-bit or a 32-bit number in the instruction. In the short form, the 16-bit 
address is sign-extended to 32 bits before it is used. This means that the most 
significant bit of the 16-bit number is copied to the most significant 16 bits of the 
address. Thus, the short form can be used to address the bottom 32K bytes of 
memory, and a region of up to 32K at the top of memory, but nowhere in between. 
For backward references, the assembler can always choose the correct length, as it 
already knows the address of the location being referred to. A length qualifier may be 
added to the ORG directive in order to control which form of this addressing mode will 
be chosen for forward references: ORG.L asks for the long mode, while ORG asks for 
the short one. What this means in practice is that, if a program in absolute code 
extends to addresses above 32K (=$8000), then ORG.L must be used in order to 
inform the assembler that forward  references  may  need  more than   16  bits.

These address calculations can be represented diagramatically (with '<«'  used to  
Indicate sign  extension).

Short absolute Mode

Relative addressing

Two modes allow memory to be addressed relative to the current value of the 
program counter (PC). This is used mainly for jumps in position independent code, 
but can also be used to read constants bulit into the program. A location addressed in 
this way may not be written to: this Is to encourage the writing of pure code. This is 
code which does not alter itself as it runs, and so can be executed again with the 
same effect, or indeed executed as part of several programs running simultaneously. 
Pure code is said to be re-entrant, meaning that it is always available to be used 
again. A lower level of 'purity' is  code  which   is  serially  reusable,   meaning  that  
it  can   be  used  again

once   it   has   finished,   but   may   not   be   in   its   proper  state  all   the   time that  
it   is   running.

In the simpler of the two relative addressing modes, the memory address is 
calculated as the sum of the current program counter and a 16-bit displacement 
value. During the execution of an instruction. the value of the program counter is two 
more than the address of the start of the instruction. The displacement is treated as a 
signed 16-bit number, so it is possible to represent addresses from instruction-32766  
to   instruction+32769   in  this  way.

operand address

This mode can be requested by writing the operand address as an offset from the 
start of the current instruction. The symbol '*' is available to  refer to the current 
location.  We can  thus write things  like

JMP *+10 Jump to the instruction 10 bytes on

but it is not advisable to do so, as firstly we must calculate the offset ourselves, and 
secondly, remember to alter It if any instructions are  inserted  in  between. It is 
easier and  safer to  use  labels.

The assembler will generate this mode automatically if a reference
is made in a relocatable section to a relocatable symbol defined in
the  same section.  If we write »

then   the   assembler   will   use   the  program   counter   with   displacement mode 
for the JMP  Instruction.

The other program counter relative mode is similar, but the contents of a register 
are also added in when calculating the address. Such a register is called an index 
register, and may be any of tne 16 registers. How much of the index register is 
significant is indicated by suffixing the register name with '.W' (the default) or '.L'. The 
displacement value in this mode is only 8 bits long, .but signed, so can  modify the 
PC value by -128 to +127.
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Take care if you choose to use A7 in either of these modes. This register is 
special in that the hardware uses it automatically In some situations (interrupts, 
exceptions, and subroutine calls), and expects it always to contain an even address. 
Because of this, these two modes will adjust the value of A7 by two. not one. in a 
byte-size instruction, to keep  its value even.

Immediate data

This addressing mode allows the operand value to be held in the instruction itself, 
and is allowed for source operands only. The data value is written #number, and the 
length to which it is stored depends on  the data size of the  instruction.  Thus

MOVE.B  #$FF,DO

inserts the  hex number FF  into the  low byte of DO,  while

MOVE.I,  #$56789ABC,D0

sets  the  whole  of  DO to  56789ABC   (hex).
A common programming mistake, and one that is not necessarily detected 

quickly, is to miss off the '#' in an immediate operand. If we  had written

MOVE.B     $FE,D0

by accident, then the result would be to load the contents of memory location  $FE,  
instead of the value  $FE,  into  DO.

Some instructions have a so-called 'quick' variant which allows a small immediate 
operand to be included in the Instruction. The syntax Is as for the normal immediate 
mode. An example is the MOVEQ instruction,  which  takes  an  8-bit signed  operand

MOVEQ  #-3,D7      Set D7 to -3 (size is Long)

There are similar instructions for adding or subtracting a number between   1   and  8.   
For example

ADDQ.Ii  #4,A2 
SUBQ.B  #1,(A1)

Summary of addressing  modes

The   table   below   provides   a   brief   summary   of   the   addressing   modes 
described  above.

Implicit addressing

This is not a general addressing mode like the ones above, but is another way of 
locating an operand. Implicit reference to operands occurs in a few instructions which 
automatically make use of particular machine registers or stack locations. Registers 
whose use can be implicit are the program counter (PC), the processor status 
register (SR). and the stack pointer registers (SP) which are the two incarnations  of 
address register  7   (USP and  SSP).

An example of implicit addressing which we have already seen is the JMP 
instruction, which modifies the program counter in order to effect the jump.
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Categories of effective address

in   many   instructions   where   an   operand   is specified   as   an   effective
address,    not   all   of   the   above   addressing modes   are   allowed.    The
forbidden   ones   may   be   nonsensical   or  just undesirable.   Consider   the
following   (illegal)   Instructions:

JMP    D6 Jump to a register
JMP    ~(&5)       Decrement A5 by 1, 2, or 4?
MOVE   D4,#77      Copy D4 into constant 77

in order that the restrictions on any operand can be expressed concisely, the 
various address modes are put into four overlapping categories: data references, 
memory references, alterable operands, and control references. Thus, we may talk 
about 'control addressing modes',  'data alterable addressing  modes',  and so on.

Data operands include everything except the contents of address registers, while 
memory operands are anything not held in either sort of register. An operand is 
alterable if it may be written to. Control operands are those which can be used to 
indicate the destination of a jump.

The categories to which each mode belongs are summarised in the table  below.

Chapter 3

Moving and comparing 
data

The most elementary instruction in the 68000 instruction set is called MOVE. Its 
purpose is simply to move information from one part of the computer system to 
another. Unlike many other computers, there is no distinction within the 68000 
between moving data in to or out of registers. It is also possible to move data from 
one memory location to  another  directly without  having  to  use  an  intermediate  
register.

Simple data movement

There are a number of variants on the basic MOVE instruction which we shall come 
to later. Consider first a simple program to fill memory with data. The immediate 
address mode may be used for the source. while the absolute form can  be  used  for 
the  destination.  Thus

MOVE.B     #123,BYTELOC *

will set the single byte of memory defined by the label BYTELOC to contain  the  
decimal  number   123.

We   could   instead   use   a   register   as   the   destination,   and   use   the form

MOVE.I.     #123,Dl

which sets the data register Dl to contain the value 123. Notice that in this case we 
have used the long form of the instruction rather than the byte form. The data 
registers are 32 bits wide, and so we have set the entire register to the value 123. If 
we use any other form  of the   MOVE  instruction,  such  as

MOVE.B     #123,Dl

then  the  effect  is  simply  to   set  the  low  order  byte  to the  value   123.
The   rest   of   the   register   Dl   is   left   unchanged   in   this case.   Although
this   effect   is   often   useful,   it   Is   also   an   easy   mistake to   accidentally
move   a   byte   into   a   register   without  first   ensuring   that the   register   is
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empty. This Is particularly likely when moving a byte of data from memory  into  a  
register.  The  instruction

MOVE.B  BYTELOC,Dl

does not set register Dl to the byte value stored In location BYTELOC. Instead it slots 
the byte value of BYTELOC into the bottom 8 bits of Dl. Of course if subsequent 
instructions acting on the value stored in Dl are only byte length Instructions then 
everything will work perfectly.   But  beware  of using  the  Instruction   in  cases  such  
as

MOVE.B BYTELOC,Dl 
MOVE.L  Dl,LONGLOC

which will set the 32 bit value at LONGLOC to the top 24 bits of the previous value of 
Dl. and the byte at LONGLOC+3 to the value stored at  BYTELOC.

Another popular trap to fall into Is to forget that a byte length Instruction alters the 
bottom 8 bits of a register, but the top 8 bits of a memory location. A reference to 
store starts using it from the address specified, so that moving a byte to LONGLOC 
will alter a single  byte  at that location.

If the word form of the instruction is used then two bytes will be written, at locations 
LONGLOC and LONGLOC+1. But placing a word into a register using the word form 

of the instruction and then storing the register at LONGLOC using the long form will 
alter four bytes from LONGLOC to LONGLOC+3; the top two bytes will contain the 
previous value of the register and the bottom two bytes will be the word value moved   
into  it.

Any data alterable address mode may be used as the destination of a MOVE 
operation, and any address mode can be used as the source, with one exception. 
This is when the byte sized version of the Instruction is used, and in this case an 
address register may not be used  as the  source.

When a MOVE instruction Is used to move data into memory or into a data 
register, the condition codes in the status register are set accordingly, if the data 
value moved was zero then the Z bit in the status register is set. otherwise it is 
cleared. If the value was negative then the N bit is set. otherwise it Is cleared. The V 
bit, which is used to indicate overflow, and the C bit. normally set when a carry has 
occurred, are both cleared. The X bit is used to remember that a carry has occurred 
at the last arithmetic instruction, and so this status  bit  is  unchanged.

These changes to the status register do not take place when a value is moved 
into an address register. This is because it is useful to adjust the value of an address 
register used as an index without altering the condition codes which might be tested 
in a subsequent instruction. In order to remind you of the difference, a separate 
instruction MOVEA (for MOVE Address) is used to move data into an address 
register. In fact the instruction opcode is the same as that used for MOVE, and many 
assemblers will allow you to simply use MOVE to an address register instead of 
specifying MOVEA. It is normally a good idea to use MOVEA where required in order 
to remind  yourself that the  condition codes  are  not  set.

If we now wanted to set a number of consecutive locations to the same value we  
could write the following  small  program  to  do  it.

The first line of the program sets the assembler into absolute mode starting at location 
$1000. Line two loads address register AO with a value which will be used as a 

pointer further on. This pointer is initially $2000. Similarly line three sets all 32 bits of 
data register D2 to the value 0. Lines four to six take the value stored In register D2 
and place it into the location given by the contents of address register AO. The 
operation is of size long, so the four bytes $2000 to $2003 are set to zero. Because 
the (A0) is followed by a plus sign. we have asked for the address register to be 
incremented after the operation has been performed. The address register A0 will be 
incremented by 4 because the MOVE instruction was of size long. If we had specified 
MOVE.W then A0 would have been incremented by 2. and If we had used MOVE.B 
then it would only have been Incremented by  1.

The register A0 therefore now contains $2004, and so line five will set bytes 
$2004 to $2007 to zero, and increment A0 again to $2008. Similarly line six will set 
bytes $2008 to $200B, leaving A0 containing $200C.

Conditional  branches

We have already seen that the MOVE instruction will set the condition codes while 
moving data from one place to another. We can use this fact to write a small program 
to clear a large section of memory. Not a very exciting program perhaps, but all we 
can manage with only two instructions. The new instruction which we require is one 
found on most computers  - the  conditional  branch.

A conditional branch is an instruction which tests one or more ot the condition 
codes and jumps to another part of the program depending on whether the condition 
code is set or not. There are several   sorts  of  conditional   branch   instruction   
memonics  corresponding
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to the various condition codes. Initially we are only interested in the instructions BEQ 
and BNE. The former causes the computer to jump to the location specified if the Z 
status bit is set, otherwise the next Instruction after the BEQ is executed. It can be 
read as 'branch it equal to zero'. Similarly the latter is 'branch if not equal to zero', and  
causes  a jump  unless the Z status  bit  is  set.

With   these   limited   tools   we   can   design   a   program   which   clears 
memory from  a  given  location  to  location zero.

As in the previous example, the first line sets up our program origin, while the next 
line initialises our pointer register. Line three moves immediate data of zero into the 
location pointed at by address register AO. The MOVE instruction is of size long, and 
the address register is used in predecrement mode, so the value in AO is 
decremented by 4 before the instruction is executed. Thus the first time the instruction 
is executed AO will contain $FC, and locations $FC to $FF will be set to zero.  Note 
that the  byte at location  $100  is  not altered.

Line 4 at first seems rather strange, as we are simply moving the value of the 
pointer into the data register Dl. But remember that all MOVE instructions except 
those where the destination is an address register cause the condition codes to be 
set. Thus if AO contained zero then the Z status bit would be set after this operation. 
The first time through AO will be $FC, and so the Z bit will not be set. This means that 
line 5 will cause control to be moved back to line 3, labelled LOOP. Again, AO will be 
decremented to $F8 and locations $F8 to $FB will be set to zero. As AO is still not 
zero, line 4 will ensure that Z is not set, and we will loop round again. This will 
continue until AO is $4. This time when AO is decremented it will be zero. Locations 0 
to 3 will be cleared by line 3, but line 4 will move the value zero from AO into Dl. This 
will set the Z condition code, so that the  branch   is  not taken,  and  the  program  
terminates.

Our tiny program could be improved in a number of ways. One way  is  to  replace  
line  3  by

MOVE.B     #0,-(AO)

which would only set the single byte pointed at by AO to zero. In this case the 
instruction is of length byte, which means that AO would be decremented by one 
before the operation. The program would work in exactly the same way as before, but 
would only set a single byte each time round the loop rather than four bytes at a time. 
This will take much longer to execute, as the loop is performed four times as often. 
The extra time is partly offset by the fact that a MOVE instruction  of  length  byte 
takes  less time  than  one  of  length  long.

The real difference is that the program would be shorter, as tne immediate data 
will be held as a word rather than as two words within  the  program.   In  this  case  
the  extra  two  bytes  are  a  small   price

to pay for the increase in speed, but as in most computing problems there is always  
a choice  between  space  and  speed.

One  way   in   which  the   program   can   be   made   smaller  with   no   loss of 
speed  is to  replace the  BNE  instruction with

BNE . s     LOOP

All the conditional branch instructions have a long version and a short version, in 
either case the value stored with the branch is not the actual location to be jumped to, 
but a signed number indicating how far away the required label is from the current 
place in the program. The long version uses two bytes to store this displacement, 
while the short version only uses one byte. Placing a ,S after the memonic tells the 
assembler to use the short branch version of the instruction. It can only be used when 
the label to be branched to is less than 128 bytes before or ahead of the branch. The 
version without a qualifying letter allows branches up to 32767 bytes before or ahead. 
Some assemblers will use the short form automatically for backwards branches, but if 
the branch is to a label which has not yet been declared the assembler will always 
use the long form unless told to do otherwise by specifying  the short form.

Comparing  data

In the previous section we used the fact that the condition codes are set by the 
MOVE instruction. This is normally only useful if we want to move a value 
somewhere, but also check if the value is zero or negative. In many cases we want to 
compare two values, and this is exactly what the  CMP  instruction  does.

A common use of CMP is to see if two values are the same. If the two operands 
used in the CMP_ instruction are identical, then the Z condition  code will  be  set.  
Thus the section  of  program

CMP.L   D0,D1 
BEQ    EQUAL

will cause a jump to the label EQUAL if DO and Dl contain the same value.
The actual operation of CMP is to subtract the first operand from the second and 

to set the condition codes appropriately. The actual result of the subtraction is thrown 
away, and the original value of the second operand is unchanged. The condition 
codes are all either set or cleared  except for the X code which  is  unchanged.

There are four versions of the CMP instruction, and many assemblers will choose 
the correct version automatically. The CMP form may only be used with a data 
register as the destination operand. The vaiue compared may be specified as byte, 
word or long. Any address mode may be used as the source, with one exception. 
This is when the size is specified as a byte, and in this case the source cannot be 
held in an address register, although it can be pointed  to  by one. Thus a valid 
example would  be



CMP.B        12(a3),D0

which would compare the byte held at offset 12 from the location pointed  at  by A3  
with  the  low order  8  bits  of  DO.

The CMPA version of the instruction may only be used with an address register 
as the destination operand. In this case the value may only be specified as word or 
long, and any address mode may be used as the source. If the word form of the 
instruction is used. the value given is sign extended to 32 bits and the resulting long 
value  is  used   in  the  comparison.  Thus

CMPA.W     #$FFFF,A2

would set the Z condition code if A2 was equal to -1 ($FFFFFFFF). and  would   not 
set Z  if A2  contained   $FFFF.

The CMPi version may only be used with a data alterable destination, so that the 
contents of an address register or a program counter relative value may not be used. 
The source must always be immediate data, and the Instruction can be any of the 
three lengths. Thus

CMPI.B     #$OA,-(AO)

will decrement the value stored in AO by 1. and then compare the value $0A with the 
byte pointed at by the new value of AO. CMPI can be used with a data register as the 
destination operand, and in this case the operation is the same as if CMP had been 
used with immediate  data  as the  source operand.

The final version of CMP is used to compare memory locations, and Is specified 
by CMPM. In this case the source and destination operands can only be specified 
using postincrement address mode. The comparison can take place on a byte, word 
or long word. This is useful in comparing large sections of memory. Consider the 
following fragment of program, which will compare TOO bytes of memory starting at  
location  $1000 with   100  bytes  starting  at  $2000.

Here we load up two address registers with pointers to the area of memory which we 
wish to compare. Line three compares the two bytes pointed at by the address 
registers, and increments the pointers. If the two values are not equal then line four 
jumps out of the loop. If they were equal, we must carry on and check the next two. 

The address registers have already been incremented ready for the next comparison, 
but first we must check to see if all the bytes have been examined. Line five 
compares the first pointer with the base address plus 100. If A0 does not yet equal 
this value, line six jumps back to label LOOP to look at the next pair of bytes. 
Otherwise we drop through  and  we  know that the  two   100  byte  areas are the  
same.

More conditional  branches

So far we have only learnt about conditional branches which test for two types of 
condition. These are BEQ which branches if the Z bit is set, and BNE which branches 
if the Z bit is not set. As you would probably suspect, there are are a number of other 
versions of the Bcc  instruction  which test other conditions.

The first group of these are governed only by a single bit in the status register. 
Just as BEQ and BNE cause a branch to be taken depending on the value of the Z 
bit, BCS and BCC can be used to test the state of the carry bit. The former reads as 
'branch if carry set', and branches If the C bit is currently set; the latter is 'branch if  
carry  clear'   and  jumps   If  the  carry  is   unset.

BMI and BPL can be used in exactly the same way to test the N bit; 'branch if 
minus' means that the branch is to be taken if the N bit is set while 'branch if plus' 
only jumps if the N bit is unset. Note that the N bit is cleared if the value is zero, so 
that BPL will jump in this  case as well.

The final pair in this first group are BVS and BVC which branch if the  overflow bit  
is  set or clear.

The second group of conditional branches test a number of conditions before 
deciding whether to jump. Some of these appear very similar to the simpler tests 
mentioned earlier, and the only difference is in the treatment of the overflow and carry 
bits. A number of instructions, such as MOVE, always clear C and V and so in this 
case the two forms are identical. The difference is only important when  handling  
signed  numbers.

BLT and BQE are used when comparing signed numbers, and can be read as 
'branch if less than' and 'branch if greater than or equal'. BLT tests the N bit in the 
same way as BMI, but only branches If the N bit is set and the overflow bit V is unset. 
If V is set then it will branch if the N bit is also unset. This means that so long as no 
overflow occurs BLT behaves as BMI; if overflow has happened then BLT behaves 
like BPL. BQE also tests the N and V bit and jumps if they are both unset or both set. 
In this respect it behaves  like  BPL if  no overflow  has  happened  and  like  BMI   if It  
has.

BLS and BHI test the Z and C bit. The first is 'branch if low or same' and will jump 
if either the carry bit ,or the zero bit are set. The second is 'branch high' and will only 
jump if both C and Z are unset. The BCC and BCS are sometimes given the 
alternative names BHS and BLO, for 'branch if high or same' and 'branch low' 
respectively.

The most complicated conditional branches are 'branch if less than or equal' and 
'branch if greater than'. BLE will jump if the conditions tested in BLT are true but will 
also jump if the Z bit is set. BQT makes the same test as BQE, but for the branch to 
take place the Z bit must  be  unset whether overflow  has occurred  or  not.

We will see later how the same condition names are used In the DBcc and Sec 
instructions to test the same combinations of status bits. With these instructions the 
additional conditions T and F are allowed, meaning True and False. The equivalent to 
BT, or branch If true, is of course spelt BRA. There is no equivalent to BF, which 
would mean never branch, and this potential combination Is taken up by BSR.
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A simple  memory diagnostic  program

We have now learnt sufficient instructions to write a simple memory diagnostic 
program. We will take an area of memory, and place a certain bit pattern into it. We 
will then check that the memory has retained the value placed Into it. This is a useful 
check to see If all the RAM chips on a board are behaving themselves. As we have 
not yet learnt how to perform any input or output, the program will jump to a certain 
location if it finds any errors. This could be the location of a monitor routine which 
wrote a message for us - the details are not important here.

Here the first few lines set up a program origin and define some values using EQU 
directives. It is always good practice to use EQU to define a name for a particular 

value, as this makes the program much easier to change later. For example, here our 
little program tests memory from $1000 to $1FFF. These values are defined by the 
labels MEMLO and MEMHI. If anyone wanted to change the program to test another 
area of memory this could easily be done by altering the EQU statements, rather than 
searching through the program itself trying  to find  uses  of various  numbers and  
altering  those.

The program is entered at the label ENTER, where A0 is set to point to the start 
of the area of memory we wish to test. Label LPT defines the start of loop, placing the 
test pattern defined by TPAT into the byte pointed at by A0, and incrementing A0. 
The next line uses CMPA to check to see if we have filled all the memory required. If 
not we branch back to LP1, only dropping through when all the memory has  been  
filled.

Once the memory has been filled we reset our pointer A0 and loop through the 
test region again. If the value stored in memory is not what was expected then we 
take a branch to MONLOC. Register A0 will already have been incremented and so 
the actual location in error will  be one  less than  the  address  held  in  A0.

Notice the use of MOVEA.L and CMPA.L. In this particular example MOVEA.W 
and CMPA.W would have done just as well, and would also have made the program 
shorter. But this would have left a terrible trap for anyone coming along and changing 
the program later. Consider wishing to extend the upper limit of memory checked from 
$2000 to $8000. Anyone wishing to do this would look at our program. and think that 
all that was required was to change the definition of MEMHI from $2000 to $8000. If 
we had used the word length versions of MOVEA and CMPA then when the test for 
the end of the loop was made, the processor would take the Immediate value defined 
by MEMHI. sign extend it to 32 bits and then make the comparison with A0. This 
would cause the loop to terminate only when the value of A0 was $FFFF8000, which 
is not a valid address. In fact the program would terminate due to a bus error as soon 
as all the valid memory had been filled. The moral of this example is that it is always 
sensible to use long versions of Instructions when placing addresses into address 
registers. The other versions should normally only be used  when   holding  data 
values  in  address  registers.

Comparing  and  moving zero

There are two special instructions in the repertoire of the 68000 which are used when 
dealing with the value zero. We have already seen that MOVE can be used with 
immediate source data to move any value into memory or into a register, and this 
value could be zero. Similarly the CMP family can be used with immediate data which 
could also be zero. However an immediate value is represented as one or two 
extension 16 bit words following the 16 bits of the instruction word. and  so the  
operation

MOVE.I.     #0,D0

will take up 16 bits for the instruction, and 32 bits for the representation of the long 
value zero. As it is very common to set values to zero, there are two special 
instructions provided which are only  16  bits  long.

The first of these is CLR, which will clear the specified destination to zero. This 
destination must be data alterable, so that it cannot be used to clear an address 
register to zero. However a byte, word or long word in memory referenced directly or 
by an address register may be set to zero. Similarly the low order 8, 16 or 32 bits of a 
data  register may be  set to zero.

The condition codes are set as if MOVE had been used to place zero into the 
destination, so that X is unaffected, Z is set and the others are cleared.

The instruction should be used with care If the memory location is actually part of 
the I/O page, where memory mapped devices appear as  if they are  memory 
locations.  The  instruction  actually reads  memory
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before writing zero Into It. which might give strange effects If the action  of reading  an  
I/O  port affects the associated  peripheral.

Similarly, the TST instruction may be used to test whether a value is equal to 
zero. Again the destination may be specified as any data alterable location, and the 
size may be byte, word or long. If the value specified is equal to zero then the Z bit 
will be set. otherwise it will be cleared. Suitable BEQ, BNE or BLE instructions would 
normally follow.

TST can also be used to see if a value is negative. If it is then the N bit will be set, 
otherwise it will be cleared. The X bit Is not affected and the V and C bits are always 
cleared. Thus BMI and BPL can be used to test the condition of the N bit. Note that 
after this Instruction BLT will have the same effect as BMI as the carry bit is always 
clear. Similarly BQT and BPL are also interchangable in this case.

Moving small  numbers

Many programmers will wish to use the long form of instructions as much as possible, 
as the ability to handle 32 bit values is one,of the features which makes the 68000 so 
different from its rivals. However it Is a common requirement to initialise registers to 
zero or a small integer. We have already seen how the CLR instruction may be used 
to clear a register or memory location to zero, and that this may be used  in  any  of 
the  three  sizes.

Initialising a register to a small integer can be done by moving immediate data 
into the register using the long form of the MOVE instruction. The onty problem is that 
this instruction takes up six bytes; two for the MOVE instruction and four for the 
immediate data. Obviously all four bytes are required to hold the immediate value if 
that value is indeed of size long, but it seems rather a pity to waste so much space 
simply holding bytes which are zero when the immediate value could  fit into a  byte.

In order to cater for this situation, a special form of the MOVE instruction is 
provided. The MOVEQ (for Move Quick) instruction is only of size long, and can only 
be used to move a number which will fit into a byte into a data register. The effect is 
exactly the same as would be obtained if MOVE was used to move an immediate 
value in the range -128 to +127 into a data register, except that the MOVEQ 
instruction only takes up two bytes, with the immediate value packed into the bottom 
byte of the instruction. The entire data register is altered, with the data sign extended 
if required. The N or Z status bits are set if the value so moved is negative or zero, 
while the V and  C   bits  are  always cleared  and  X  is  unchanged.

The MOVEQ instruction takes less time to execute than the long form of the CLR 
instruction acting on a data register, and so is a better way of clearing an entire data 
register to zero. Remember that MOVEQ is always of size long, and can only be used 
on data registers.

Testing  bits

There are a number of instructions which can be used on a single bit. These will be 
described in detail in chapter 6, but one of them is of interest here. This is the BTST 
instruction, which is used to test a particular bit in the destination. If the bit Is equal to 
zero, then the Z bit is set. If it is one, then the Z bit is unset; all other condition codes  
are  unchanged.

The destination location is not affected, and may be specified using any data 
addressing mode. The action of the instruction varies depending on whether the 
destination is a memory location or a data register. In the former case, a byte is read 
from memory and a bit in that byte is tested. The low order bit is specified as bit 0. 
and the high order bit as 7. Numbers larger than 7 are regarded as modulo 8.

If a data register is used as the destination, then bit numbers range from 0 to 31, 
hence allowing all the bits in the register to be tested. Again, if the number is larger 
than 31 it is regarded as modulo 32. The size of the BTST instruction therefore varies 
between byte and long depending on the destination operand, and is not specified  by 
the  programmer,

The bit number is given as the source operand, and may be specified in two 
ways. The first is to use an immediate form; in this case the value given is used as 
the bit number. The alternative is to give a data register, which will cause the 
processor to use the number held in the data register as the bit number. In either 
case the bit number is used modulo 8 or 32 depending on whether the destination  is 
memory or a  data  register.

It is important to remember that the bit number itself is used, not the  bit pattern  
representing  the  particular bit to be tested.

Testing conditions

We have already seen how the Bcc family of instructions can be used to branch 
depending on the state of various combinations of the condition codes. This is the 
most common use of the condition codes, but there are two other instructions which 
inspect the condition code value. The first of these is Sec, or Set according to 
condition code. This tests the value of one or more of the condition codes, using the 
same set of conditions as the Bcc family, if the condition is satisfied, then the byte 
defined as the destination is set to $PF. If the condition is not satisfied, then the 
destination byte is set to zero. Thus, for example,
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Notice that Sec can only be used to set single bytes, which must be specified using 
data alterable addressing modes. It is also a useful way of always setting a byte to 
$FF, because using the condition test TRUE

ST BYTELOC

will unconditionally set all the bits in BYTELOC. The equivalent test using FALSE 
(SF) is identical to using the byte form of the CLR instruction.

The  Sec  instruction   is  normally  useful  for  remembering  the  state  of a  
particular condition  code  for testing  at a  later date.

Loop control

One of the most common operations performed in a computer is that of performing a 
set of instructions over and over again. This loop is normally controlled by an iteration 
variable, which Is incremented until it reaches a certain value.

The 68000 provides an instruction to help with controlling loops. but it works in 
the opposite direction to that which is usually required. That is. it decrements an 
iteration variable. It is also slightly confusing because the iteration stops when the 
variable has become negative. not when  It becomes zero.

The family of instructions are known as DBcc. read as 'Decrement and Branch'. In 
fact the full operation of the Instruction is to first test a condition code, and to move 
onto the decrement and branch part only if the condition is not satisfied. We will first 
look at the use of the instruction when the condition is never satisfied, i.e. DBF or 
decrement and branch with condition false. This is the most common version  used,  
and  most assemblers  allow the  alternative  syntax  DBRA.

DBRA takes a data register as the source operand, and a label as the destination 
operand. The instruction is always of size word. If the value of the register is zero, 
then the next instruction is executed. Otherwise the value in the register is 
decremented by one and a jump is  made to the  label  given  as the destination.

The previous description is not quite correct, as in fact the decrement always 
takes place on the register, and so the register used will not be zero when the loop 
has completed. Also only the low order 16 bits of the register are used as the counter. 
The label may be before or after the DBRA instruction, although it is usually before it. 
Consider the  following  program  fragment.

MOVE.L #$2000,Al Set up pointer
MOVE.W #19,DO Set up counter

LOOP CLR.B (Al)-f Clear byte and increment pointer
DBRA DO,LOOP Loop while DO   >» 0

Here the low order 16 bits of DO are used as a counter, initially these are set to 19. 
while an address register Al is set up to point to a memory location. At the label 
LOOP the byte referenced by Al is cleared to zero and Al is incremented by 1. as the 
CLR was of size byte.  The   DBRA  instruction   decrements   DO,   and   checks  to  
see   if  the

result is negative. If not, control is passed back to LOOP. This happens until DO is 
zero, when the decrement performed as part of DBRA gives a negative value. In this 
case the jump to LOOP is not made, and we exit the program with the low order 16 
bits of DO set to  $FFFF  and  Al   set to  $2014.

In many cases a loop is to be executed a variable number of times, and if the 
iteration count is initially zero then the loop is not to be executed at all. In this case the 
DBRA instruction should be placed at the end of the loop, and the instructions just 
before the start of the loop should set up the iteration count into a suitable register, 
and make an unconditional branch to the DBRA instruction at the end of the loop. 
Note that the iteration count, and not one less than the count, should be placed in the 
register. If the iteration count was zero to start with no branch will occur at the DBRA 
and so the loop will  be  entirely bypassed.

The DBRA version of the DBcc instruction is normally the most useful, but the full 
form is extremely powerful. Here a condition is specified, and if , the condition is true 
then the DBcc instruction has no effect. Normal execution continues with the 
instruction immediately following. If the condition is not met, then the data register is 
decremented and the branch specified is taken only if the result is not equal to -1.

This allows for a number of extremely powerful looping constructs.
For example, a program may be required to copy data from one
place to another until a byte equal to some value is found. The
destination area may only be of a limited length, and so the copy
operation is also to stop if the destination has been filled. Such
situations may occur when reading a line of Information from the
terminal into an internal buffer. The copy is to terminate if the
character 'return' is found, but is also to stop if a line longer than
that allowed for is entered. We might use the following program
segment. »

CR EQU $0D ASCII  carriage return
MOVEA.L #$2000,A3 Set up pointer to buffer
MOVE.W #79,DO - Allow for 80 characters

RCH ... read character into Dl
MOVE.B D1,(A3)+ Save character
CMP.B #CR,D1 Check to see if end of line
DBEQ DO,RCH Loop unless return or buffer  full

The first two lines initialise A3 as a pointer into the buffer and DO as the size of that 
buffer in bytes. In each iteration of the loop we read a character from the console in 
some way, and save It in the buffer using postincrement addressing mode. Finally we 
compare the character read in with the ASCII code for carriage return. If the character 
read in was indeed a return, the DBEQ instruction has no effect and the loop has 
terminated. If the end of the Input line has not been reached we branch back and read 
another character only if there will  be  room  in  the  buffer.
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Simple Input and output

All the previous examples have assumed that the test programs were running under 
a monitor, which would allow you to enter your program and to start it running. 
Normally such monitors also provide a mechanism for writing information to a 
terminal connected to the computer,  and  also to  accept information  from  the 
terminal.

Alternatively you may be running your programs under an operating system, in 
which case this will provide some mechanism to input and output information. In 
either case it is likely that the method used to communicate with the outside world' 
will be a connection to a serial line, onto which a terminal of some sort can be 
connected. The most common way for this serial line connection to be provided is by 
the use of a special chip, known as an ACIA or Asynchronous Communication 
interface Adapter. This description applies to the 6850 ACIA, but most input and 
output chips work in a similar fashion. We will not go into too much detail about this 
device; it simply handles all the work required to send and receive a byte of 
information down a  serial  line.

An ACIA appears in part of the memory space of a 68000. Each ACIA has two 
ports, a control port and a data port. In an 8 bit computer, these ports are in adjacent 
memory locations. On the 68000,   they   appear   as   the   low   order   bytes   of   
two   adjacent   16   bit
words.

Initially the ACIA must be reset - this is done by writing the value 3 to the control 
port. The instruction manual for the ACIA tells us that we should wait a little while 
after resetting it to give it time to settle down.

We must next select the characteristics of the serial line, such as the parity, 
whether interrupts are to be enabled and so on. Initially we will use the ACIA in polled 
mode - this means that unless the 68000 is checking the port for characters arriving it 
is possible that characters may be missed. The ACIA is clever enough to tell us that 
we have missed a character, but there is nothing we can do to find out what it was we 
missed. Later on we will see how to run an ACIA in interrupt mode, but for now polled 
mode will do. We will use the value $15 as the setup mode for the ACIA. which 
should just be regarded as a magic value. If you actually need to set up an ACIA you 
should read the standard documentation about it to find out what the values  mean.  
This  magic value  is written  into the control  port.

Once an ACIA is set up. the low order two bits of the control port are used to tell 
us about the state of the data port. Bit number 0 goes to a one if a character has 
arrived down the serial line. We can then read the character from the data port, which 
turns bit 0 off until the next character arrives. Bit number 1 is used to tell us if the 
ACIA is happy to send a character down the line. If it is one. then we can write a byte 
into the data port and this will be sent down the line. This takes a little time, and while 
the ACIA is busy doing this bit 1 Is set to a zero. Once the byte has been transmitted 
bit 1 is set to one again, and we can send another character. The sending and 
receiving of characters is entirely separate - hence the Asynchronous part of the title.

The first few lines define some useful names for us, including the reset and 
intialisation codes for the ACIA, and the location of the control and data ports in the 
memory map. We start the program at the label ENTER, which places the reset value 
into the control port. We must now waste some time, so we initialise DO as a counter 
and immediately decrement it using the DBRA instruction. The processor will jump 
back to the start of the same instruction until DO becomes negative, or until we have 
executed the DBRA 1001 times. Finally we write the magic value associated with 
Initialisation into the control port,  and  we are  ready to write  out the  string.

The instruction immediately before the label NXT moves the immediate value of 
the label STRING into register A0. If we look at the end of the program, we can see 
the label is defined as referring to some memory which we have initialised to the 
characters In our string. Thus A0 now points to the very first character of the string. It 
is also worth noticing here that there is a byte containing zero immediately after the 
string, which we shall use to indicate the end of the  message.

The label NXT refers to a BTST instruction. If bit 1 of the control port is zero then 
the ACIA is not yet ready for another character. In this case the 2 bit is set in the 
condition code, and the conditional branch on the next line will cause us to go back 
and check the bit again. We will sit in this loop until bit 1 of the ACIA control port 
becomes set, when it is possible for us to send a character. This is done   by  using   
A0   in   postincrement  mode,   thus   moving  the   character
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from the string into the output port and incrementing the pointer ail in  one go.
Finally we have to see if we have finished yet. The TST instruction uses address 

register AO again, but does not alter its value. If AO now points to a byte which is 
zero, then we have finished writing out string. The Z condition code will be set. and 
we drop through the BNE instruction following the TST. If not we loop back to NXT 
and write out the next character, waiting for the ACIA to become ready first  of  all.

Notice that is normally better to test that the ACIA is ready before we intend to 
use it, and not to wait after we have used it until it is ready again. The internal logic of 
the ACIA works independently of the 68000 processor, so we might as well get on 
with some useful work while the output is taking  place.

Note that once the string has been written out the processor will attempt to 
execute the instruction following the BNE. As we have written it, this is whatever 
instruction is specified by the string "Hello!", which is probably garbage. Normally an 
instruction to return to the monitor would be placed at the end - the actual details are 
unimportant.

the register, which is $02 in our example, and places it into the next memory location 
pfus one, or $000003. The next byte goes to the next odd location, while the least 
significant byte is placed in location $C00007.

If the data register is the destination then the operation is reversed, and alternate 
bytes from memory are placed into the register. MOVEP should be used with care, as 
it is very different from MOVE in some respects. Firstly the condition codes are not 
affected, while if MOVE to a data register is used they are altered. Secondly only 
alternate bytes of memory take part in the transfer, and these may be odd or even 
bytes depending on whether the start address is odd or even. There is nothing special 
about the way in which the bytes are accessed, and In many cases a byte sized 
MOVE is simpler. However in those cases where a large amount of information is to 
be transferred the instruction is useful. One circumstance might be when a floating 
point processor intended for 8 bit machines is attached to a 68000. A full 32 bit value 
could be transferred to the other processor in one simple MOVEP operation, while the 
alternative would be four byte sized  MOVEs and  three  shift instructions.

Moving data to peripherals

You have seen in the previous section how the ACIA had two ports, and how they 
appeared as the low order bytes of two adjacent memory words. The specification of 
an ACIA will normally show the ports as appearing in consecutive bytes of memory, 
but the ACIA was originally designed for 8 bit microprocessors. If an ACIA is 
connected in an 8 bit machine then the two ports are next door to each other in the 
memory map, but in the 68000 they appear in alternate bytes. This Is true of any 
peripheral device connected to a 68000 when it was originally intended for an 8 bit 
machine, and is due to the 16 bit data  lines  generated  by the  68000.

In many cases it is perfectly simple to allow for this, and to read or write from the 
required bytes in memory. However in some circumstances this can be inconvenient 
or slow, and so a special version of MOVE is provided which attempts to deal with the 
problem. MOVEP (for Move Peripheral) takes a data register and a location specified 
by an address register and displacement. When the data register is the source, the 
contents held in it is placed a byte at a time into alternate memory locations, starting 
at the one specified by the address register and displacement. MOVEP is only 
available in word  or  long  forms.  Consider the following  example.

MOVE.L    #501020304,01 Load data
MOVES..L #$C00000,A1    Load address register
MOVEP.L Dl,l(Al) Move data

Here we load 01 with the value $01020304, and set Al to the address $000000. It is 
asssumed that four peripheral control ports are mapped to locations $000001, 
$C00003, $000005 and $000007. The MOVEP instruction takes the high order byte 
and places this in the location   specified,   which   is  $000001.   It  then  takes  the  
next  byte  from
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Stacks and subroutines

one 01 me most common ways ot organising tne data used in a program inside any 
computer is by the use of stacks. This technique places each new data Item which we 
want to remember 'on top of the last one. much like placing one piece of paper on top 
of another. When we wish to remove a data Item, we must extract the one which we 
placed most recently on the stack. We can then remove the previous  item  or add  a  
new one.

The stack is represented in the computer by an area of memory which we use 
from high locations to low locations. Because of this 'upside down' nature of the 
representation, we often talk about the, 'top  of stack'  -  meaning  the  lowest memory 
location  currently  in  use.

Initially a register is set up to point to the highest location in the stack area. When 
we need to remember a value, we decrement the pointer by the size of the object we 
wish to store, and place the object at the memory pointed at by the updated register. 
If we need to remember another value, we do the same operation, updating the 
pointer (the stack pointer) and placing the object adjacent to the first one we  stored.

The only problem with a stack is that we can only take objects off the stack In the 
opposite order in which they were stored. So we can remove the second object on the 
stack by reversing the process. reading the information out of the location pointed at 
by the stack pointer and adding the size of the object to the pointer. We can now 
place a new object on the stack or remove the first one we placed there.

The 68000 provides us with eight address registers, all of which can be used as 
stack pointers. The predecrement and postincrement modes can be used, so that all 
that is needed is to set up a register with a suitable initial 'top of stack' pointer. We 
can then use this area of memory to save results in, and this is particularly useful if 
we need to use some registers In a calculation, but do not want to destroy the original  
contents of the  registers.  For example.

In this example we set up A3 as a stack pointer, and then go on to load some useful 
values in all the data registers. In a later section of the program we still need all the 
values in the data registers, but we have  run  out of  registers  needed  in  another  
calculation.

One possible solution would be to store the previous values of DO and Dl in some 
named memory location, and to retrieve them once we have finished. But there might 
be several places where we need to do this. Using a stack is easier in this case. More 
importantly, by using a stack we can ensure that we write both pure code and position 
Independent code. The advantages of this were described in earlier chapters.

We therefore save the current values of the data registers on the stack. Initially 
A3 contains $2000. As we are using a long MOVE operation, the predecrement 
addressing mode means that 4 is subtracted from A3. The contents of DO Is then 
saved In the location pointed to by the new value of A3 - in other words it is stored in 
bytes $1FFC to $1FFF. The next instruction saves the contents of Dl in  bytes  $1FF8 
to $1FFB,  and A3 ends up containing  $1FF8.

We are now free to use Dl and D2 in some calculation. When we have finished we 
restore the old values by loading from the location pointed at by A3 using the 
postincrement addressing mode. Thus the previous value of Dl is loaded from location 
$1FF8, and DO is loaded from $1FFC. It Is important to remember to load the values 
back off the stack in  the  opposite order to that in  which  they were  stored.

There is a special form of the MOVE instruction which is especially useful when 
dealing with stacks. The example above saved the value of two of the registers on the 
stack, and used two instructions to do so. if we had wanted to save the values of all 
sixteen registers we would have had to use sixteen Instructions, which would have 
used up 32  bytes of code and  taken  a considerable time to execute.

The MOVEM instruction is designed to help with saving values on a stack. It 
specifies that between one and sixteen of the registers are to be saved on a stack or 
loaded from one. The instruction takes a list of registers as one argument and an 
effective address as the other. The list of registers is converted Into a word value, 
where a bit set to one indicates that the respective register is to take part in the move 
operation. This form means that the entire sixteen registers can be moved to or from 
a stack using an Instruction only four bytes long, and in a much shorter time than 
using sixteen separate instructions.

Our example could  be  modified  so that it read  as follows.
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MOVEA.L #$2000,A3   Set up A3 to stack top * 
Set up data registers to important values

MOVEM.L D0-D1,-<A3) Save registers DO and Dl on stack 
MOVE.I. #$123,DO    Use DO and Dl in some way

MOVEM.L (A3)+,D0-D1 Restore registers DO and Dl
Use old values of DO and Dl

The MOVEM instruction takes a list of registers in the form of the first register, a 
hyphen and the last register. All registers between the first and last Inclusive are 
transferred to or from the stack. Another form for the register list is a register name, a 
slash and another register name.  The two possibilities can  be mixed, so for example

MOVEM.L D1~D4/D7/&0-A2/A6,-( A3)

will save registers Dl to 04 inclusive, D7, AO to A2 and A6. Some assemblers will not 
accept a mixture of data registers and address registers  in  a  range,  so that the 
form

MOVEM.L D0-D7/A0-A6,-(A7)

would be required to save all the registers except A7 onto the stack pointed  at by A7.
The order in which the registers are saved on the stack is independent of the 

order in which the list is specified to the assembler, as the assembler simply sets the 
relevant bits in the instruction to indicate that the named registers are to take part in 
the transfer. The order in which registers are saved is from A7 to AO and then D7 to 
DO; they are restored in the opposite order so that DO is loaded first if it is specified 
in the register list, then Dl and so on up to AO  and  finally A7.

In the examples given so far, we have always used the predecrement address 
mode for saving values and the postincrement mode for restoring them again. When 
this mode is used the registers are transferred as indicated, and the address register 
used as the stack pointer is incremented or decremented by the total size of the 
registers transferred. In this way the MOVEM instruction behaves very much like the 
equivalent number of MOVE instructions required to save or  restore the  registers.   
However there  are  a  number of differences.

Firstly, there are only Word or Long versions of MOVEM - it is not possible to 
save single byte values on a stack using this operation. If Word values are restored 
then the entire value of the register is reloaded with the 32 bit value obtained by sign 
extending the word read from the stack. This means that it is not possible to save the 
bottom sixteen bits of some registers, use the bottom half of them in a calculation and 
then restore them without losing the top sixteen bits of their value. It is therefore 
normally only sensible to use the long form of the MOVEM instruction and save the 
entire contents of all the registers.

Secondly, the MOVEM instruction uses what is technically called 'pre-fetch'. All 
this means is that the 68000 processor tries to transfer  the   registers   as   quickly  
as   possible,   and   in   order  to   do  this

it reads the memory locations it is going to need a short time before it actually requires 
them. This speeds up the multiple transfer, but when the processor gets to the end of 
the list of registers It has read one word of memory too much. Normally this is not 
Important, as the final content of the stack pointer is correct, and it does not matter If 
one word of memory is read and then forgotten. The only time it does matter Is when 
the stack starts at the highest available location in memory. In this case the registers 
will be stored in locations running down from the top of memory, but when they are 
restored the processor will attempt to read the word just beyond the top of memory. It 
Is going to forget the value obtained in this way, but the access will normally cause a 
bus error and the program will not work as expected.

Finally the MOVE instruction will alter the condition codes while MOVEM does 
not. This enables a condition code to be set in a subroutine to indicate whether it 
worked or not, and this code will remain  unchanged  as the original values of the  
registers are  restored.

Earlier we remarked that the registers are transferred in the form stated only if 
using the predecrement or postincrement address modes. The MOVEM instruction 
may be used with other address modes which are control modes. If the transfer is 
taking place to memory then the address mode must be control alterable - in other 
words the program counter relative  mode can only be  used  when  reading  from  
memory.

When used with an address mode other than predecrement or postincrement the 
order of transfer is always the same. This order is DO to D7 and then AO to A7, just 
as if the postincrement address mode was  used.  Thus

MOVEM.L D0-D7,§20O0

would  store  the  contents  of  DO  in  bytes  $2000 to  $2003,   Dl   in  $2004 to $2007 
and so on.  To  reload them  again

MOVEM.L 32000,D0-D7

would  be needed.

Subroutines

in one of the earlier MOVEM examples we used A7 as the address register holding 
the stack pointer. Although any address register can be used in the predecrement or 
postincrement mode as a stack pointer, it is normal to use A7. This is because of the 
action of a number of other instructions which assume that A7 is pointing to an area of 
memory which can be used as a stack. In fact there are two separate versions of 
register A7, called the user stack pointer or USP. and the supervisor stack pointer or 
SSP. For now we can assume that A7  always  refers  to  the supervisor stack pointer.

When writing a program for the 68000 it is normal practice to ensure that the 
stack pointer is set up to the top of a stack area before starting any real work. This 
will often be done by the operating system or monitor which is providing the facilities 
for running the program,  but  it can  always be done explicitly by,  for example.
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MOVEA.L  §2000,A7

which will set up the area below $2000 as a stack. Chaos can ensue if the stack area 
is overwritten, so it is normally wise to leave a more than generous margin for the 
stack to grow - we will see in a minute how this can happen. So we will allow our 
stack to grow from location $2000 down to $1000. and this means that we can start 
our program at location $2000 upwards. Remember from the discussion of MOVEM 
that the byte pointed at by the initial value of the stack pointer is not actually written to 
as we use the predecrement addressing   mode which  alters the  stack pointer  
before  using  it.

Once we have set up our stack pointer we can start to use instructions which 
assume that A7 is indeed set to a valid stack area. Perhaps the most obvious is the 
Branch to Subroutine instruction, or BSR. This is a very important instruction which 
allows a jump to be made to another area of program in the same way as BRA; in fact 
in many ways it is identical except that when you use BRA to jump somewhere you 
have no way of finding out how you arrived at your destinaton.

There  might be several  places where ttte instruction

BRA ERROR

occurs in a program. At the label ERROR you may wish to give some error message 
and stop. There is no way for the code at ERROR to find out the place where the 
branch was made. We could place a value in a register or a fixed location in memory 
to signify the reason we made the jump to ERROR, so that a suitable message was 
printed out. We might want to write out this message and then continue with the 
normal execution of the program. In this case we would use the BSR instruction 
instead. The action of the processor is to first of all save the address of the next 
instruction, and then make the branch to the label ERROR. The code at ERROR can 
then use this saved address to return to when it has finished, so that once it has 
written the message out execution can continue at the instruction immediately 
following the BSR. It could also inspect this saved address and use it to say exactly 
where the error occurred.

The value saved by BSR is called the return address, ana you have probably 
guessed by now that it is saved on the stack pointed at by A7. If you could get hold of 
the address of the next instruction, say in a register called PC, then the action of BSR 
would be similar to

MOVE.L PC,-(A7)    Save return address on stack 
BRA    ERROR      Branch to subroutine

In fact there is no way of explictly referencing the value of the program counter; the 
BSR instruction decrements A7, stores the return address at the four bytes 
referenced by this new value and then branches  to the  label  all  in  one  go.

We now want to be able to get hold of this value saved on the stack and jump 
back to the instruction after the BSR. The value can be read explicitly from the top of 
the stack if required, so that we could  return   by  using  code  something  like

MOVEA.L (A7)+,A6 Extract return address
JMP (A6) And jump to that  location

The normal way of returning is by using RTS or Return from Subroutine. This is 
exactly the inverse of BSR, and it reads the return address from the value saved on 
the stack, increments A7 by four so that the stack slot is now available once again, 
and then jumps to this  new address.

The advantage of using a stack is now clear, as we can use BSR as many times 
as we like, even within sections of code which have themselves been entered via 
another BSR. Each time the value of A7 is decremented by four and the new return 
address saved in the next slot on the stack. Each time an RTS is encountered the 
stack is incremented and execution continues at the instruction just after the BSR 
which  was  used  to enter the subroutine.

It is important to remember the special use of A7, and to make sure that it always 
points to a suitable stack area. Some assemblers provide the synonym of SP (for 
Stack Pointer) for register A7, and using this reminds you that it is not a normal 
address register. It can, of course, be used in many circumstances just like any other 
address register, but there is one important difference. The values stored on the stack 
must be aligned to an even address, and the hardware ensures, that this is so. This 
means that if you use a byte sized instruction specifying register A7 in predecrement 
or postincrement mode, the value of A7 will be altered by two, not one as would  
happen with  any of the other registers.

The idea of a subroutine is a very Important one, and anyone with any experience 
of programming will have met it before. The idea is that instead of writing a section of 
code many times In order to perform some operation, we write it once and use it as a 
subroutine. The most obvious example might be the code required to write out a 
character, such as described in chapter 3. It would be very wasteful of program space 
if each time we wanted to write a character we had to include the code to test to see if 
an ACIA was ready before placing the character into the output port. Instead we write 
a subroutine to do this, and then use BSR to call the subroutine to write the character. 
When the character has been written an RTS will drop us  back to whatever we were 
doing  before.

WRCB   BTST #1,A_CTRL
BEQ.S WRCH
MOVE.B D0,A_DATA
RTS

This subroutine will write a character to a device connected to a serial port, assuming 
that it has previously been correctly set up. To use it, all we need to do is to include a 
BSR to' the label WRCH, having first placed the character to be written in the bottom 
byte of register DO. The subroutine then tests to see if the ACIA is busy - if so it loops 
round again until it is ready. Then the character passed in DO is placed into the data 
register, and control is passed back to the  instruction following the  BS*R which  
brought .us  here.
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Normally a programmer will have a stock of ready to use subroutines available 'off 
the shelf. Nearly all programs have some area of similarity - for example nearly all 
programs are going to want to write out results of some sort. It Is therefore normal to 
divide a program up into subroutines as much as possible, so that the useful parts 
can be saved and included later in another program. A normal subroutine library will 
have very many different subroutines in it. There are a great number of useful 
operations which may be required when simply performing output, besides simply 
writing out a character. For example, we might want to write out a string, or a number 
in decimal or hexadecimal,  and  so on.

This subroutine library can be built up a little at a time, but there are a number of 
good programming practices which should be followed. These are good habits to get 
into no matter what language or what processor you use. but we are fortunate in that 
the 68000 instruction  set helps  us write well  structured  programs.

The first good practice is to ensure that all subroutines are usable under all 
circumstances. For example, let us consider extending our subroutine library to 
include a subroutine to write out a string. We will call it using BSR with address 
register A4 pointing to a string. We will define a string as being a sequence of 
characters terminated by a  byte containing  zero.  We  might write the following.

Here we extract a byte from the string and increment A4 ready for next time. If the 
byte is zero then we branch to the label WOVER and return to whoever called us. 
Otherwise we use another subroutine In our library to write out the character, and 
loop back to get the next byte from the string. Notice the use of the short form of the 

Branch to Subroutine instruction specified as BSR.S. This is just like BRA.S, and Is 
simply a shorter version of the instruction which can be used when  the  label  Is less 
than  128  bytes away.

Although this may serve our needs perfectly well, there are a number of problems 
with this routine. The first fault is that If we use the subroutine WRITES we must 
remember that DO is corrupted - in fact the bottom byte will always be set to zero. In 
our immediate application we may not care what happens to register DO, but if we 
want to make this a useful subroutine which can be used in all cases then  it is 
extremely bad  practice to corrupt a  register.

Looking at the code more carefully, we can also see that the address register A4 
is corrupted. This is set to point to the byte just beyond the end of the string. Although 
the user of the subroutine must know that his string is to be passed in A4, it Is not 
really fair of us to alter the value of A4 as a side effect of writing the string out for him. 
A general useful rule is that subroutines should not alter registers, except of course 
when a result from the subroutine is being passed  back in  a register.

Having decided that it is bad programming style to alter registers. we must decide 
where to save the old values of registers which we are going to use. One possibility is 
to simply allocate an area of memory and use that as storage. Although this will 
appear to work. there are a number of problems. Firstly we would have to use a 
different area of storage for each subroutine, otherwise one subroutine could not call 
another without the possibility of having the saved values overwritten by another 
subroutine attempting to save register contents. This would be wasteful of space and 
difficult to organise. Secondly we would have to make sure that we did not use the 
storage area allocated to each subroutine for some other purpose in the main 
program which we were attempting to write. Thirdly the program would not be re-
entrant, the full details of which were described  in chapter 2.

The answer is of course to save register values on the user stack, using MOVEM 
where approriate. We have already allocated a register to point to ;an area of memory 
in order for us to use BSR. As long as the area is big enough for all the saved 
registers and the return addresses in the maximum nesting of subroutines then we 
shall be fine. The advantage is that this is an efficient use of space, as we only use 
space when it is actually required. We might have several hundred subroutines all 
wanting to save registers, but the maximum stack use would only be that 
corresponding to the highest number of subroutines called from each  other.

We  can   now write  our  improved  subroutine  to  print  out  a  string

Now we can use WRITES from wherever we like, confident that none of the registers 
will be altered. In fact, no memory location will be altered except beyond the end of 
the current stack pointer, and this is an area which is known to be liable to be altered 
as a result of subroutine calls anyway.

There are two other rules which should be borne in mind when writing general 
purpose subroutines. The first is that a consistent set of registers should be used for 
arguments passed over to subroutines and results returned from them. Thus one 
might always expect arguments in registers D1, D2, etc., and a single result returned 
in DO. Clearly this is not always possible, as some routines will expect arguments in 
data registers and some in address registers, but it is useful as a general rule; the 
programmer is less likely to become confused about what value .must be placed in 
which register before a particular subroutine  is called.

Finally it is important to ensure that there is normally only one exit point from a 
subroutine. Rather than have several RTS instructions in a subroutine it is better 
practice to have one and branch to that location from other places as required. This 
means that restoring the registers,   deallocating   the   stack   and   so  on   can   be   
done   all   in   one
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place Then if the subroutine has to be altered to use. and hence save, an extra 
register, we need only change the code at the single entry and exit points. It is a very 
common programming error to save a register on the stack and then accidentally 
forget to restore it before executing the RTS. The effect is catastrophic as the 
program lumps to the location specified by the value of the register saved on the 
stack which might refer to anywhere. This is a particularly difficult error to locate, as 
the debugging information will refer to the new program counter, while what is 
required is information about why the program  was  there  in  the first  place.

Absolute jumps

It Is clearly important to be able to jump to another part of a program, and we have 
already seen the use of Instructions such as BRA which enable us to set up loops. 
We have also looked at BSR which  allows  us  to  call  subroutines,  and  conditional  
branches  such  as
BEQ.

In all these cases the instruction has been called a branch rather than a jump, 
and there is a good reason for this. All these branch instructions specify that program 
control Is to be transferred to an address relative to our current position. Although we 
may write a statement such  as

BRA LOOP

the assembler converts this to an instruction which contains the difference between 
the current value of the program counter and the address of the label LOOP. This 
address offset can be negative or positive, depending on whether we want to jump 
backwards or forwards. The offset can be specified as a word, so that we use sixteen 
bits to hold the offset, or as a byte if we use the short form of the  instruction.

The alternative to using BRA Is JMP. which represents an absolute jump. The 
address given as part of the JMP instruction is an actual address, and control is 
transferred to it when the instruction is executed. The effect of

JMP LOOP

will    be   the   similar   to   the   BRA   Instruction,   but   with   a   number   of
differences.

Firstly the JMP instruction will be longer when jumping to a label, as the  full  
address  is given  in the  Instruction.

Secondly a section of code using JMP to jump to a label within itself may not be 
position Independent. The 68000 contains a number of instructions which allow code 
to be written no matter where it loaded in memory. For example, a BRA instruction 
may specify that a jump to the address 24 bytes away from the current position. This 
will work no matter where the program is placed in memory. If a program uses the 
JMP instruction then the value may be specified using any control addressing mode. 
If the address was specified as an absolute value   then   it   would   refer  to   a   
single,   specific   memory   location.   The

program  would   only  work  if  it  was   loaded   into   memory  at  the  address 
specified  by the ORG  statement at the start.

In many cases it is perfectly acceptable to load a program into memory at a given 
address, but it may not be possible If the machine is running an operating system. 
Here a program may well be loaded into any available space, and if it is position 
independent then It will run without alteration. Otherwise the program will have to 
contain some relocation information. This is information generated by some 
assemblers which allows the operating system to alter those addresses held as part of 
instructions. This ensures that the program will work at the address at which it is 
loaded. Unfortunately not all assemblers produce suitable relocation information, so is 
good practice to write position  independent code.

Another advantage of assembly code which is position independent is that It 
means that a program can not only be loaded anywhere in memory, it can also be 
moved around if required. Unless great care is taken this code shuffling cannot 
happen while the program is running, as the stack may contain return addresses 
which refer to absolute locations in memory. But it can certainly be done between 
runs of the  program.

The JMP instruction can be used in position independent programs to great effect 
- it is only position dependent when used to jump to a label in your own section of 
code. A common use for it is to jump to program sections which are known to reside 
at certain memory locations. For example a monitor may live in EPROM at a known 
location, and contain a warmstart entry address which should be entered when your 
own program has finished. We would then end our program  with

JMP WARMS

which   would   ensure   that  we   entered   the   monitor   no   matter  where   our 
program was  loaded.

The BSR instruction also has a counterpart, called JSR. Again, JSR takes an 
address rather than an offset, and could be used to call subroutines  known to  exist 
in  specific  memory  locations.

The JMP and JSR instructions are very important, mainly because they take any 
control addressing mode as the address. In our examples above we have used the 
absolute addressing mode to enable us to jump to a known memory location. We 
could also use the program counter relative mode to reference locations in our 
program. while still maintaining position independence. In this case the effect would  
be very similar to  using  BRA or BSR.

Perhaps the most useful addressing mode available here is one of the indexed 
modes. Consider writing a program which worked off single letter commands. For 
each command typed at the terminal, a subroutine is called to perform that job. We 
can program this by creating a table which contains four bytes for each of the ASCII 
characters. Each entry in the table represents the address of a routine which must be 
called if that character is typed. Thus the first entry in the table will be the routine to be 
called if a zero byte is typed, which corresponds to the ASCII character NUL. The 
routine to be called if 'A' is typed is placed at the offset for the character 'A', which  is  
long  word  offset  $41.
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ASL.L       #2,DO Multiply by four
MOVEA. L #TABLE,A3 Get table address
JSR 0(A3,D0.W)      Call subroutine to do job

The first line shifts the contents of register DO to the left by two places, thus 
multiplying it by 4. This is required because each slot in the table will take up four 
bytes. The second line takes the address of the table and loads it into address 
register A3. Finally the last line extracts the address stored at the location pointed at 
by the sum of A3 and DO. and calls it as a subroutine, placing a suitable return 
address on the stack.

Effective addresses

The last example used the MOVEA instruction with an immediate addressing mode to 
load the value of TABLE into A3. Although this works perfectly well, the instruction is 
not position independent. What we are actually doing is asking the 88000 to load a 
data value into a register. This data item happens to be the value of a label declared 
at the start of a table. If the program is not loaded into memory at the position 
declared by the ORG statement then the MOVEA instruction will still load this data 
value, even though it does not now refer to  the  start of our table.

The solution is to use the LEA instruction, which stands for Load Effective 
Address. The instruction can only be used with an address register as the destination, 
and it causes the address given as the source to be evaluated in the same way as if 
the instruction was MOVE, for instance. Instead of then loading the value at the 
address, the  address  itself  is  placed  in  the  destination  register.

Consider the  following   program  segment.

ORG     $1000 LAB     
DC.L    1234

MOVEA.L LAB,A3 
MOVEA.L #LAB,A3 
LEA.L   LAB,A3

Here we declare four bytes of memory at address $1000, initialised to 1234. The first 
MOVEA instruction wiil evaluate the address given by LAB, which Is $1000. and then 
proceed to load the contents of that location, which is 1234. The second MOVEA will 
load register A3 with the immediate value given by the label LAB, which is $1000. 
However this instruction is position dependent, and will only work if the program   is  
assembled   in  absolute   mode.

A much better may to perform this operation is to load the address using LEA. 
This evaluates the address given by the label LAB using program counter relative 
addressing if required, thus making the code position independent. Remember that 
LEA evaluates the address. and places the address itself into the specified register. It 
does not access the value stored at the address. Clearly the instruction only makes 
sense in the long version, and the form LEA is equivalent to LEA.L. It is good practice 
to always specify the length of each instruction   explicitly   because   different   
instructions   default   to   different

lengths.
The LEA instruction is important, because the reference to the label LAB above 

can be made using program counter relative addressing, which ensures that the 
Instruction is position independent. LEA should always be used to load the address of 
a location in your program, while the immediate form of MOVE should be used to load 
immediate  data  items.

LEA can also be used to perform simple sums which are done as part of address  
evaluation.  For example.

LEA 20(A3),A3

will evaluate the effective address specified by 20(A3). This Is the contents of A3 plus 
the constant 20, which is then placed into A3. The effect is to add 20 to A3. Any 
control addressing mode is allowed,  so that another example would be

LEA 20(A2,D1.L),A3

which will load A3 with the sum of the constant 20, the contents of A2 and the 
contents of Dl. Although addresses are normally only 24 bits long the entire 32 bits of 
an address register are altered in this way.

A cousin of LEA is called PEA. for Push Effective Address. This instruction 
evaluates the address given as the source in the same way as LEA, but instead of 
placing the resulting effective address into an address register, it stores It on the 
stack. In fact this action is performed as part of BSR and JSR, where the effective 
address of the next instruction is stored on the stack. We could even simulate the 
effect of BSR as follows.

PEA.L      NEXT Save return address on stack
BRA SUBR Branch to subroutine

NEXT .... Return to here

Here we push a return address onto the stack, and then use BRA rather than BSR to 
enter a subroutine. When the subroutine returns using RTS it will pick up the saved 
address on the stack, and return to the instruction labelled NEXT, which in this case 
happens the be next instruction after the subroutine call. Here we simulated the action 
of BSR. but of course the address specified to PEA does not have to refer to the 
instruction after BRA. and could refer to anywhere. PEA can  also  be  used  in  
elementary sums,  so that

PEA.L      20(A3) Save A3 + 20 on stack
MOVE.L   (SP)+,DO Load DO with saved value

will save the contents of A3 plus 20 on the stack, and then read this value off the 
stack and into DO. This is one possible way of obtaining the effect of an LEA 
instruction using a data register as the destination.
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Allocating  stack space

In previous examples we have seen how the stack may be used to hold return 
addresses, saved copies of registers and temporary results. However in all of these 
cases we have to remove Items from the stack in the opposite order to that in which 
they were placed there. It is often useful to be able to allocate an area of memory 
where results are saved, and to be able to read or write to these locations whenever 
we wish.

One way of doing this is to use absolute memory locations, but again we come up 
against the problems of position independence; we would have to reserve a particular 
memory area for our program to use. Although we might go to some lengths to ensure 
that the program can be placed anywhere in memory, this is no use if the data areas 
are tied to a specific location. We could reserve areas of memory within the program 
space, and refer to these using program counter relative addressing. However we can 
only read memory locations specified in this way. as the architecture of the 68000, 
quite rightly,  discourages the writing  of programs which  overwrite themselves.

Another solution is to use an address register, and to ensure that it points to an 
area of memory which can be used to hold results. We reserve offsets from this
address register and use them to store our data. So if AT points to our data space, we 
could refer to locations  as follows.

DATA1      EQO 0 Data area offsets
DATA2        EQU 4

Set up Al
MOVE.L    #20,Dl Get value
MOVE.L    D1,DATA1(A1) Save in data area

This works reasonably well, but we have two problems. The first is concerned with 
allocating the data space. We will have to use an operating system call to obtain 
some free space and initialise AT to point to It. Such operating system calls can be 
rather expensive, but an example of a suitable free space allocation package is given 
in chapter 6. The second problem is that we will have to allocate this space every time 
we enter a subroutine which needs a data area, so that any subroutine can call any 
other. To avoid eating up all the space, we will also have to ensure that we give the 
space back whenever we exit from a subroutine.

The solution is to take the space we need for permanent data from the stack. Up 
to now we have only considered allowing the stack to grow when we actually place a 
data item onto it. Thus a subroutine might be called which saves one register, and 
then calls another subroutine. The stack will contain the return address for the second 
subroutine, then the saved, register and return address from the first subroutine.

Now consider allocating part of the stack as a data area. When we enter the first 
subroutine we Immediately save our register, so that the stack contains the saved 
register value and the return address. We now set up our data area pointer AT so that 
it is the same as the  stack pointer A7,  and alter A7  so that sufficient space  Is 
allocated

beyond Al for our needs. When we call the second subroutine the return address will 
be stored at the stack position indicated by A7, out of the way  of our data  area.

The second subroutine is now free to save registers and to allocate its own data 
area on the stack if required. It will have to save the old contents of register AT before 
it can allocate a new work area, and restore the stack and all the registers when it has 
finished.

This may sound rather complicated, but in fact it is very easy and the. 68000 
provides special instructions to help us. Before we learn about these, let us review 
what a subroutine should have to do when it is entered and when it is left. These two 
sections of code are called  the  entry and  exit sequences.

Entry sequence

1) On entry, A7 points to return address and Al points to previous data  area.

2) Save any work registers used. A7 points to to saved registers and return   
address,  Al   points to  previous  data  area.

3) Save old value of Al on stack and load Al with A7, so that it points to a new work 
area. Decrement A7 by size of required work area, remembering that the stack 
runs from high memory to low  memory.

The  resulting  stack frame will  be  as  follows.

Exit sequence

1) Load A7 with value of Al, thus deallocating work area. A7 now points to the 
saved values of Al, any work registers and the return  address.   Reload  
previous value  of Al   from  stack.

2) Restore saved values of work registers from stack. A7 now points to the return 
address and all other registers have their original value  restored.

3) Load  return  address  from  the  stack and jump  to  it.

We can now try to turn this into 68000 assembly code. Stage 1 of the entry 
sequence is performed by the calling subroutine using BSR or JSR. Stage 2 is 
performed by a MOVE or, more usually, MOVEM onto the stack using predecrement 
address mode. Stage 3 is peformed all   in   one   operation   by  the   LINK   
instruction.   This  saves   the   address
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register specified as the source on the stack, then loads it with the (updated) value of 
A7. Finally it adds the immediate value given as the destination to the stack pointer 
A7. Because the stack runs down memory we  must use a  negative value as the 
displacement.

Once in the subroutine proper we can use negative offsets from AT as our data 
locations, so long as we do not use any offsets which are beyond the current value of 
A7. it is important that sufficient work space is reserved by specifying a large enough 
displacement to the LINK instruction. If offsets are used which extend below the top of 
the stack they will be corrupted by any further subroutine  calls.

The exit sequence is just as simple. Stage 1 is performed by UNLK. which is the 
opposite of LINK. The stack pointer A7 Is loaded from the register specified as 
argument, and then this register is loaded from the top of the stack. Stage 2 Is 
another MOVE or MOVEM using postincrement addressing mode from the stack 
pointer. Finally stage  3  is  simply  RTS.

This arrangement is often used by implernentors of high level languages, especially 
those which work with a stack such as Pascal or Ada. If you want to write a 
subroutine which is callable from a high level language you must ensure that it 

conforms to the standard used by subroutines in that particular language. Inevitably 
there will be some variations in the actual scheme used in different implementations.

A memory check example

We have now learnt enough about the 68000 to be able to write a complete program. 
It will not be terribly exciting, but will contain examples  of  some  of the  instructions  
met so far.

The program will check that the memory locations in a certain range do in fact 
work as expected - in other words that the memory really does remember. Because of 
the way in which hardware is organised memory faults often appear as certain store 
locations always returning a 0 or 1 In a particular bit position. Just writing a zero into 
memory and checking that this remains the same is not good enough. as such a 
check will not trap a bit always returning zero, in fact some faults are only evident 
when a particular pattern Is written into the offending location, so an exhaustive check 
should be done on memory  using  all   possible  bit combinations.

We can now define the subroutine WRITES which will write out a string. The string is 
pointed at by register AT and is terminated by a byte containing zero.

For each possible . bit pattern we want to write the value into all memory locations 
within the specified range. Once this has been done we must then run through 
memory again checking the value has not changed. It is not sufficient to check 
immediately after writing as the action of writing to one address may alter another 
location unexpectedly. However the. loop is identical in each case - it is only the  
action to be  performed  which  changes.

A rather neat way to accomptish this is to have a subroutine which runs through 
memory. For each address it calls another subroutine to perform the required action. 
The first subroutine will be called SCAN, and register A2 will contain the address of 
another subroutine to do the required action. The register DO will contain the current 
test bit pattern and A0 will point to the location under test. Both of these registers will 
be used by the two possible subroutines addressed by A2, and A0 will be 
incremented by one each time these subroutines  are  called.

SCAN MOVE.L     AO,-(SP) Save  AO
MOVEA.L #MEMLO,AO Start of test area

SCN1 JSR (A2) Call routine to do work
* AO is incremented by subroutine called

CMPA.L    #MEMHI,AO Check if loop finished
BNE. S       SOU No   . .   carry on
MOVE.L     (SP)+,AO Restore AO
RTS And return

The two subroutines called by SCAN are simple. The first simply places the value 
held in DO into the location addressed by AO and increments AO.

The first part of the program will handle the output of information to the terminal. 
The subroutine WRCH will write out the character stored  in  register  DO.
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Chapter 5

Arithmetic
The final stage is to write the main part of the program. We will assume that the ACIA 
has already been initialised for us by the monitor or operating system. During the 
execution of the program we will keep the current test value in register DO. This will 
be initialised to $FF, and we will use DBcc to control the loop for all possible bit 
patterns. We use a word length instruction to perform this initialisation because DBcc 
decrements the entire bottom 16 bits of a register. We will also keep AT pointing to a 
message which we will print out once round  the  loop  as  a  reminder that the  
program  is  indeed  working.

we have so tar managed to discuss a large number of the instructions of the 68000. 
and have not yet mentioned any way of performing arithmetic. This Is not accidental -
most computers spend much more time moving and comparing data than they ever 
do performing sums. The idea of a computer simply being a complicated calculating  
machine  is extremely old-fashioned.

Addition

We have, in fact, already learnt how to perform simple addition, as the 68000 will add 
while it is evaluating addresses. We have already learnt how the LEA and PEA 
instructions can be used to add values. so long as at least one of the values Is in an 
address register. While this Is a useful trick, the most common arithmetic operations 
take place on the data  registers.

The name of the addition instruction is, not surprisingly, ADD. Like so many of the 
68000 instruction set, there Is a whole family of ADD Instructions.

The basic ADD instruction must be used with a data register as either the source 
or the destination, if the data register Is the destination, then any addressing mode 
may be used. If the data register is the source, then the destination must be specified 
using a memory alterable address mode. The operation can take any of the sizes 
byte, word or long unless the source is an address register, in which  case only word  
and  long  sizes  are allowed.

The operation affects the condition codes according to the result. The N and Z 
bits are set if the result is negative or zero respectively, and cleared otherwise. The V 
bit is set if an overflow Is generated, and cleared otherwise. The C and X bits are 
both set or cleared  depending on whether a carry is generated.

The ADD Instruction can be used to alter just the low order 16 or 8 bits of the 
destination data register. Its cousin, ADDA, is used to add values in address 
registers. Like MOVEA. ADDA does not affect any of the condition codes and can 
only be used as length word or long.   If   the   word   version   is   used   this   only   
affects   the   size   of   the
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source value, which is sign extended to 32 bits and added to the entire 32 bits held in 
the destination address register. Again this is a trap for the unwary, as adding a word 
value with the most significant bit set will  cause  a  negative value to  be  added  to 
the  destination.

The source for ADDA can also be specified using any address mode, but again 
there is a special version of the instruction for adding immediate data. The ADDI 
instruction takes an immediate value as source, and any data alterable addressing 
mode as the destination. This means that ADDI cannot be used to add immediate 
data to an address register, but could be used if the destination was a data register,  
although  the ADD  Instruction  could  also  be  used  in  this  case.

ADDI is used to add constant values to memory locations. It can take any of the 
three sizes, and sets the condition codes in the same way as ADD. However, one of 
the most popular values to add is one. so that some location or register is 
incremented each time round a loop, for instance. Some instruction sets provide a 
special 'increment' operation, but the 68000 goes further. The ADDQ (for ADD Quick) 
instruction can be used to add a number between 1 and 8 to any alterable address. 
This is very useful - for example it is common to add  four to  a  register which  is  
acting  as  a  pointer.

The ADDQ instruction behaves just like ADDI, except for two points. Firstly, it is 
shorter, and so should be used in preference to the ADDI form, particularly when the 
long size is used. The condition codes are set in exactly the same way as ADDI in 
this case. The second difference is that ADDQ can be used with an address register 
as the destination, in which case it acts just like ADDA with immediate data. In this 
case the only sizes allowed are word or long, (although whichever is used is irrelevent 
as the entire address register Is altered),  and the condition codes are  not affected.

The final member of the ADD family Is ADDX (ADD extended). This comes in two 
distinct flavours, depending on whether the operands are a pair of data registers or a 
pair of memory locations specified by address registers In predecrement mode. In 
either case the instruction can  be of length  byte, word  or long.

The ADDX instruction is used to add two values together just like ADD, but it also 
adds In the X bit. This will normally be set or unset by some other arithmetic operation 
immediately before the ADDX is used, and allows multiple precision arithmetic to be 
performed. Notice that the X bit is set to the same value as the C bit in arithmetic 
operations, but is not affected by other instructions such as MOVE which  may alter 
the C  bit.

The condition codes are set In the same way as In the ADD instruction with one 
exception. This is the Z bit. which is cleared If the result Is non-zero in the normal 
way. However it Is unchanged, as opposed to set, if the result is zero. This Is 
normally used in multiple precision operations. The Z bit is set before a number of 
ADDX Instructions which make up a multiple precision operation. If any of the 
intermediate results are non-zero then the bit will be cleared, and will be clear at the 
end of the complete operation. If however the Z bit is still set at the end, then all the 
intermediate results were zero, and  so the  entire  multiple  precision  result  is zero.

Subtraction

The SUB family has exactly the same members as those described above for ADD. 
The basic SUB operation has a data register as source or destination, and sets the 
condition codes. This time, of course,  the  C  and  X  bits  are  set if  a  borrow is  
generated.

SUBA is used if the destination is an address register, and the condition codes 
are not affected. SUBI is used if the source is immediate data, and SUBQ can be 
used if the immediate data is in the range 1 to 8. Again it should be remembered that 
if word sized values are used with SUBQ and the destination is an address register, 
then the word value  is sign  extended  before  it is  used.

SUBX is also available, which takes the contents of the destination, subtracts the 
source, then subtracts the X bit and places the result in the destination. Again the 
operands can only be a pair of data registers or a pair of address registers in 
predecrement mode, and the Z condition code is cleared if the result is non-zero and 
unchanged  otherwise.

Although the full range of instructions are described here, many assemblers will 
automatically make the choice between the correct form of the instruction where 
possible. It is important to make the distinction If code is being generated without an 
assembler, such as in  a compiler.

Negating values

Any value can be negated by the NEQ instruction. This simply subtracts the 
destination from zero. The operation can be of size byte. word or long and the 
destination can be specified using any data alterable  addressing   mode.

if the result is zero then the Z condition code will be set and the C and X bits will 
be cleared. If the result is non-zero then Z will be unset and C and X will be set. N and 
V will be set or cleared depending on whether the result is negative or an overflow 
occurs respectively.

There is only one variant of the NEQ instruction and that is NEGX. This negates 
the value specified and then subtracts the X bit from it. The condition codes N and V 
are set in a similar way to NEG. Z is cleared if the result is zero but unchanged
otherwise, in a similar fashion to ADDX and SUBX. C and X are set or cleared 
depending on whether a borrow is generated. This instruction is normally used when 
negating multiple precision values held in more than a single long word.
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Multiplication

The addition and subtraction instructions of the 68000 are complete, in the sense that 
they can operate on all three possible sizes of operand. Unfortunately this is not true 
of multiplication or division. The only size of instruction allowed for these two 
arithmetic operations is word. Preliminary information from Motorola indicates that 
long versions of these  instructions will  be available  in  the  68020.

There are two multiplication operations available, called MULS and MULL). The 
only difference Is that the first performs signed arithmetic and produces a signed 
result, while the second performs unsigned arithmetic  and   produces an  unsigned  
result.

Both instructions take any data addressing mode as the source operand, and a 
data register as the destination. The content of the low order 16 bits of the destination 
register is multiplied with the word value indicated by the source address. If this is a 
memory location then the value is 16 bits starting at that memory location. If the 
source is a data register then the value is the low order 16 bits of the  register.

The result is placed as a 32 bit number in the destination register. The N and and 
2 bits are set if the result is zero or negative as usual; for the unsigned case 'negative' 
means if the top bit  is  set.  V and  C  are  always cleared,  and  X  is  unaffected.

Swapping  register values

A useful Instruction to introduce here is SWAP. This simply takes a data register and 
exchanges the top 16 bits with the bottom 16. It Is very useful when providing long 
multiplication and division routines and fighting with the  16  bit operations  provided.

The condition codes are set by this instruction. The N bit is set if the most 
significant bit in the resulting 32 bit data register is set, and cleared otherwise. Notice 
that the bit which is tested is the one which was the most significant bit in the low 
order word before the operation. The Z bit is set or cleared depending on whether the 
entire register is zero or not. V and C are always cleared, while X is not affected.

There are two other instructions which can be usefully introduced here. The first 
is EXQ. which simply exchanges the values stored in two registers. The two registers 
may be both address or data registers, or they may be one of each type. The entire 
register contents is exchanged, so the operation is only of type long. The condition  
codes are  not affected.

The other instruction is EXT, which is used to sign extend the value of a data 
register. The instruction is only available as size word or long. If size word is used, 
the high order bit of the low order byte is transferred to bits 15 to 8 in the register. If 
size long is specified then the high order bit of the low order word is copied into the 
high order  word.

For example, EXT is required if a byte value representing a signed number is 
loaded into a register prior to addition to a word or long sized operand. If the addition 
was to be done using size word, then an   EXT.W  would   be   required  to   set  the  
word  value   in   the   register  as

a signed number. If an addition of size long was to be performed an EXT.L operation 
would be required as well. The first EXT would set the word representation correct, 
while the second would correct the long representation. In many cases sign extension 
from word to long Is performed automatically in the course of other instructions, 
particularly where  address  registers  are  concerned.

The X condition code is not affected by the EXT operation. V and C are always 
cleared while N and Z are set or cleared depending on the whether the  result is  
negative or zero.

Long  multiplication

Because of the lack of a long multiplication operation, we need to provide a 
subroutine to do the job. This will take two 32 bit quantities and produce a 32 bit 
answer. Obviously if we attempt to multiply two large 32 bit numbers the result will 
overflow; In this first example we will  ignore  any possible overflow.

In order to perform the multiplication we must first remember how we do long 
multiplication by hand. Those of you who do not always use a calculator will 
remember the algorithm used to multiply two decimal numbers together when each 
number contains two digits. Most of us can multiply any two single digit numbers 
together in our heads, but may have to resort to pencil and paper for anything more 
complicated. Consider multiplying two numbers AB and CD, where each letter 
represents a  single decimal digit. We  might  proceed as follows:

Because we can always multiply any single digit number with any other, we split the 
multiplication into simpler multiplies and additions. The highest digit is the result of 
multiplying the highest order digits together, while the lowest digit is the result of 
multiplying the lowest order digits. The remaining digit in the answer is the sum of the 
cross terms. Obviously we must remember to handle overflow when the result of a 
simple multiply is a two digit number - this is done by carrying  over the  extra digit  
into  the  next column.

This algorithm is exactly what is required for our long multiplication routine. The 
68000 can always execute multiplies on any two 16-bit numoers, so we split the long 
multiplication into multiplies which we can perform, along with some additions. We 
consider each 32-bit numoer as consisting of two 16-bit digits, represented as RH and 
RL if the number is held in the 32-bit register R. We can then use the method 
described above, ignoring for the time being the overflow third digit represented by 
C*A above. Thus if the two numbers are initially held  in  registers Dl   and  D2.  the  
result will be given  as
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RL  =  D1L * D2L
RH  =  (D2H * D1L) + (D1H * D2L) + carry from RL

Let us now try to turn this into 68000 code. We will write a routine which multiplies the 
two numbers held in registers D1 and D2, placing the  result  in  D1.

Here we must remember that the MULL) instruction takes two 16-bit values and 
produces a 32-bit result. The first line saves registers used, while the next four break 
up the input numbers into four 16-bit units. The high order word of the registers will be 
ignored by MULU, so it does not matter what they contain. The MOVE.W instructions 
only affect the low order word, and we use the SWAP instruction to place the  high  
order word  into  the  low order  part of a  register.

The next three lines produce three 32-bit results as products from the 16-bit input 
values. We then- use an ADD.W instruction to add the cross products together. This 
may well cause an overflow, which we ignore. This 16-bit sum is moved into the high 
order word of the result  register  D1,  and  the  low order word  is  cleared.

The final action required is to insert the low order word of the result into the 
correct place in the result register. However this cannot be done by a MOVE.W from 
D3 into D1, as we must allow for a carry from the low order digit to the high order one. 
The product of D1L and D2L is held in the high order word of D3. A simple ADD.I of 
D3 and D1 ensures that the low order word is correctly inserted into the answer. 
Again any overflow generated by this instruction   is  ignored.

The next routine will take two 32-bit numbers in registers D1 and D2 and will 
produce a 64-bit result in the register pair D6.D7. In other words, D6 will hold the 
most significant part of the answer and D7 will hold the least significant part. We must 
extend the algorithm used to obtain  the  result as follows:

D7L = D1L * D2L
D7H = (02H * OIL) + (D1H * D2L) + carry from D7L
DSL = D1H * D2H + carry from D7H
D6H = carry from D6L

We   shall   have   to   make   use   of  the   X   bit  which   indicates   whether  a carry  
has  been  generated  during  an  arithmetic  instruction.

The first few lines of this routine save the work registers D3 and D4, and then place 
the high order words of the operands into the low order words of the work registers.

The next lines create the product terms. The lowest order digit of the answer is 
going to be placed In D7, so it is computed immediately. Similarly the highest order 
digit is placed in D6. We use the work registers D3 and D4 to hold the two cross 
products. These are then added together to giye a 32-bit result In D4, with the X bit 
indicating whether a carry has been generated." We must take care to add the X bit 
to. D6  later on.
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The next lines handle the cross product. The low order word of the cross product 
must be placed in the second digit position of the result, which is D7H. We must also 
include the carry digit from the low order product which is held in D7H. We therefore 
move D4L into D3L. swap register halves and clear the low order word to give us the 
low order word of the cross product In D3H. In a moment this will be added to D7, but 
we cannot do this yet because that will affect the X bit which still Indicates whether a 
carry was generated when the  cross  product terms were added.

The high order part of the cross product is to be placed in the bottom half of a 
work register prior to being added to D6. We must also take care of the X bit now. 
The bottom half of D4 is cleared with a CLR.W. and the X bit is placed into D4L This 
might possibly be done by an ADDX with an immediate argument of zero, but ADDX 
can only be used with two data registers or two address registers in predecrement 
mode. We therefore use ADDX.W on D3 and D4, noticing that D3L just happens to 
have been cleared to zero two Instructions previously. Once this has been done D4H 
contains the high order digit of the cross product, and D4L contains 0 or 1 depending 
on the state of the X bit. A simple SWAP now ensures that D4 contains the high  
order  17  bits of the  cross  product.

We are now nearly home and dry. Adding D3 to D7 ensures that the two low 
order digits of the answer are correct, with the X bit set if there is a carry pending from 
D7 into D6. An ADDX.L of D4 to D6 adds this carry bit and the high order part of the 
cross product into the high order product generated earlier, leaving us with the 64-bit 
result  in   D6  and   D7.

This works fine for positive numbers, but we have in fact performed an unsigned 
multiplication on the input values. This means that if we intended to multiply -1 by 2, 
for example, we have in fact multiplied $FFFFFFFF by $2 using unsigned arithmetic. 
This will give us D6 containing $1 and D7 containing $FFFFFFFE; this is not the 
value -2 which we would  expect if performing  signed  arithmetic.

The correction for this is simple, and is based on the fact that we are using two's 
complement arithmetic. Thus -A is represented by the value  M-A,  where  M  is 2  
raised to the  power 32.  Hence

(-A)   *  B  =  (M-A)   *  B =  (M*B)  -  (A*B)

Therefore the unsigned product of a negative number A and a positive number B will 
be the same as the signed product plus M*B. However it is very simple to perform the 
multiplication M*B, as It simply entails shifting the 64-bit representation of B 32 places 
to the left. As B is held in a single 32-bit register, and the answer is held in the 
register pair D6.D7 we simply subtract the value of B from the high order register of 
the answer, which is D6. The original operands are still held In registers D1 and D2, 
so if D1 was originally negative then we must subtract D2 from D6. If 02 was negative 
we must subtract 01 from 06. This correction then completes our signed arithmetic  
routine.

Division

We stated earlier that the 68000 did not have long forms of multiplication or division. 
There are two division instructions provided which handle signed and unsigned 
division. They both take a word sized value as the source, which can be specified 
using any data addressing mode. The destination must be a data register of size long. 
The entire 32-bit value held in this data register is divided by the word value specified 
as source. The DIVU instruction performs this divison using unsigned arithmetic, while 
the DIVS instruction uses signed  arithmetic.

In both cases two results are produced. The low order word of the destination is 
set to the quotient, assuming that it will fit into a word. The high order half is set to the 
integer remainder. In the case of DIVS this  remainder will have the same  sign  as  
the  numerator.

The N and Z status bits are set or cleared as usual depending on whether the 
quotient Is negative or zero. The C bit is always cleared and the X bit is unaffected. If 
the resulting quotient is larger than a 16-bit value then overflow will be detected and 
the V bit will be set. However the detection of overflow may occur while the 68000 is 
in the middle of processing the instruction, in this case the result and hence the state 
of the N and Z bits will be undefined. The TRAPV instruction, described in chapter 7, 
can be used to cause a trap if overflow has in fact occurred. If the source is zero then 
a 'division by zero'  trap will  occur.

Long division

Because DIVS and DIVU will only work If the result is less than 16 bits, we are also 
going to need a long division routine. This is a little more difficult than the long 
multiplication routine described earlier. The following routine is due to Dr. Arthur 
Norman, and divides a 32-bit numerator held In D1 by a 32-bit denominator In D2. 
The 32-bit quotient is returned in D1 with D2 holding the integer remainder.

The first section handles the sign, so that the main work can be done using 
unsigned arithmetic. First we check to see if the denominator is negative. If it is then 
we make it positive, perform the division  and  then  reverse the sign of the  answer.

DIV TST.L D2 Check denominator  <  0
BPL.S DIVOO No
NEG.L D2 Make denominator positive
BSR.S DIVOO Do division as  if positive
NEG.L DI Now negate the answer
RTS And return

This next case deals with a negative numerator but a positive denominator. Here we 
must convert the numerator to positive, perform the division and then reverse' the 
sign of both the quotient and the remainder.
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The next section deals with division of unsigned numbers where Dl and D2 are 
greater than or equal to zero and less than or- equal to $80000000. If D2 is actually 
equal to zero then a 'divide by zero' trap will occur. In order to avoid performing too 
much work we check for a number of easy cases. The first of these is the situation 
where the denominator is less than 16 bits, and hence we can use the standard DIVU 
instruction. If this Is the case then we jump to a standard subroutine DIVX which does 
the division and sets the remainder correctly.

DIVU        CMPI.L    #$PPFP,D2        Test if D2H is zero
BLS.S      DIVX D2  <  16 bits,   use subroutine

At this stage we check for two other special cases. If the numerator is less than the 
denominator then the answer is zero, and if they are equal  the quotient is  1.

The more general case is where the denominator is larger than 16 bits. As the 
numerator fits into 32 bits the resulting quotient will be a 16-bit object. We produce an 
approximation to the required quotient by dividing both the numerator and the 
denominator by a scale factor which is chosen so that the scaled denominator will fit 
into 16 bits. We can then perform a standard division on the new scaled operands. 
We must choose a scale factor which will itself fit into 16 bits, and which will produce 
a suitably accurate approximation. We actually use 1+(D2/$ 10000) as the scale 
factor, which we note will always fit into 16 bits because the largest value we allow D2 
is $80000000, thus ensuring  that the  largest possible scale factor is  $8001.

At this point D1L contains an estimate for the quotient we are looking for. We check 
the result by multiplying the approximation to the quotient by the original denominator 
and comparing this with the original numerator. We can also produce the remainder at 
the same time. If the quotient is not correct we either add or subtract one and try 
again  until  the  result Is correct.

The only operation left now is the specification of the subroutine DIVX. This is used if 
the original quotient fits into 16 bits, and is also called to scale the numerator In the 
more difficult case. It sets D1 to the original value of D1 divided by D2. and sets D2 to 
the Integer remainder. Note the use of MOVEM.W to save the low order words of D1 
and D3. We do not use MOVEM.W to restore the registers partly because it is 
convenient to pick them off one by one, but mainly because MOVEM.W will alter the 
entire contents of registers if used to restore them.



Decimal  arithmetic

The preceding discussion has been about performing arithmetic on binary values -
that is numbers held in two's complement binary form. Arithmetic on such quantities is 
fast, but it is rather awkward to convert between decimal values as read by humans 
and binary values as  read  by computers.

Some high level languages such as COBOL provide the programmer with the 
ability to choose whether operations are to be performed in decimal arithmetic or 
binary arithmetic. The advantage of using binary is that sums are quick, but the 
conversion process from decimal to binary is slow. The advantage of using decimal 
arithmetic is that it Is very quick and easy to read values Into the machine in decimal 
form from decimal input; conversly the disadvantage is that the sums are slow.

The 68000 provides three instructions which can be used to perform decimal 
arithmetic. They are ABCD (Add Binary Coded Decimal), NBCD (Negate Binary 
Coded Decimal) and SBCD (Subtract Binary Coded Decimal). They all work on a byte 
value which represents two decimal digits stored in Binary Coded Decimal or BCD. 
Each 'nibble', or 4 bits, is used to hold a decimal value between 0 and 9. Thus the 
decimal number 16 will be stored as $10 in binary form,   and  will  be  stored  as  $16  
in  BCD.

Normally a number will be read in from some external medium in decimal form a 
character at a time. In order to convert the entire decimal number to binary we must 
use a routine such as the following.

This routine assembles the binary version of a decimal number read from some 
external source - the subroutine RDCH Is used to obtain information a character at a 
time. The character is checked to be a valid digit and converted to the binary 
equivalent. The previous value of the total is multiplied by 10, and the new digit added 
to the total. This routine will only read a number which fits into a word, and would 
have to be adapted to call the long multiplication subroutine if larger numbers were 
required. A process just as complex must be followed in order to convert a number 
into decimal again so that It may be written  out.

This all takes time, and it may be the case that the only action to be done to the 
numbers obtained in this way is to add them to some other value. An example might 
be reading through a long list of figures adding them all together. We could write a 
routine to do this, using our subroutine to read the decimal number and convert it to 
binary.

In this case using decimal arithmetic might be better. We will have to use memory 
locations to hold the two numbers involved. The following routine reads a number and 
places the result in BCD form in an eight byte area addressed by AT. We shall 
assume that we are reading the numbers from a right justified field of sixteen 
characters, so that the number read exactly fills the BCD area, if this was not the case 
we would have to clear the area before we read the number. Leading blanks will be 
treated as zero, and we shall not check that the field only contains digits and spaces. 
The routine will return with A1   pointing to just beyond  the  BCD area.
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The first few lines save registers and initialise a counter. A call to RDCH then returns 
with the character representation of a decimal digit or a space held in DO. In ASCII 
the digits are hexadecimal $30 to $39, and space is $20. If we only look at the bottom 
four bits we will get the correct value for the number so long as the field only contains 
spaces or numbers. We assume this is the case and shift the character 
representation left by four bits, clearing the bottom nibble and setting the top nibble to 
the value of the decimal digit. This  is then  stored  at the  current value  of A1.

A further call to RDCH returns the next digit or space. This time we AND the value 
with $F to clear the top nibble, and then OR the result Into memory to fill the bottom 
nibble In the stored version. We use postincrement addressing so that AT now points 
to the next byte. When we have finished AT will end up pointing to eight bytes higher 
in memory, and the storage area will contain the BCD representation of the number. 
Note that this number can be larger than that which can   normally  be  stored  in  32-
bit binary form.

The next routine uses ABCD to add decimal numbers together, in the same way 
that we used ADD in the earlier example to add binary numbers.
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purpose of this example we will assume that the total will fit into eight bytes. We use 
the first area for the total and the second area for the  current  number.

The first small loop sets all the bytes in the total to zero, noting that A7 marks the 
limit of available memory. The first two instructions in the main loop which does the 
totalling simply reset AT to the start of the input value area and A2 to just after the 
result area. Once the number has been read by DRDN Al will point to just after the 
number  in  the  input area.

The next loop will add the input number to the result using decimal arithmetic. The 
state of the X status bit is very important here, as ABCD adds the source and 
destination together and also includes the X bit. The X bit is set if a decimal carry is 
generated, so the repeated additions will work correctly. Before the loop is started we 
must clear the X bit, and so we subtract the byte contents of DO from itself to ensure 
that this is clear. We will see later how the X bit can  be cleared  more elegantly.

Each time round the loop one byte each from the two decimal values are added 
together along with the X bit. If a decimal carry is generated then the C and X bits will 
reflect this the next time round. The Z bit will be cleared if any of the bytes are non-
zero, but will not be affected if the result Is zero. We have set the Z bit by means of 
the SUB instruction so that once the entire addition loop Is complete the Z bit will be 
set only if all the bytes were zero. In this case we could, if we wished, test the Z bit to 
perform some action only if the result was zero. The other two condition codes £N and 
V) are undefined after an ABCD instruction. The X bit is unaffected by the  CMPA 
instruction which  sees  if we  have  completed  the  loop yet.

You will notice that we have used address register predecrement mode for both of 
the operands to ABCD. This is one of only two allowed address modes, the other 
being both data registers. The memory version is normally the» most useful, and it 
must take predecrement mode as that is the order in which the bytes must be added. 
The data register case simply allows the individual bytes to be placed in the two 
registers; in either case the instruction is of size byte,

The SBCD instruction is very similar. Again it can only take the same two address 
modes, and the destination byte will contain the original decimal value of the 
destination less the decimal value of the source and the X bit. The condition codes 
are altered in the same way except that C  and X are  set  if a  decimal   borrow  is  
generated.

The final decimal instruction is NBCD. which may be used to negate decimal 
values. In fact the NBCD instruction is similar to NEQX. as the destination byte is 
negated • and the X bit then subtracted from it. The condition codes are set in the 
same way as in SBCD. Unlike the previous two instructions, any data alterable 
address  mode may be  used  as the operand to  NBCD.

Although not a decimal operation, the CMPM instruction which we met earlier is 
often useful when handling decimal arithmetic. It can only be used with the 
postincrement addressing mode, but is useful to compare two decimal numbers held 
in memory to see if they are equal.
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Our final requirement when handling decimal arithmetic is to write out a number 
stored in BCD. Such a routine would be the opposite of the DRDN subroutine 
described earlier. It is passed a pointer to the start of a BCD storage area In Al and 
prints the number out using WRCH. A1 is left pointing to just past the end of the area. 
This simple example prints out all leading zeros; a more sophisticated version would  
convert leading zeros to spaces.

The main loop of this routine firstly sets DO to the value $30300. for reasons which 
will become apparent. We then extract a byte from the BCD area which contains two 
decimal digits to be printed, and place this in the low order byte of DO. Thus if the 
byte contained $56. DO will  now  contain  $30356.

The ROR.W instruction rotates the low order word by four bits, thus placing the 
lowest nibble in the top half of the bottom word and shifting the rest of this word right 
by four. In our example DO wili now contain $36035. The low order byte now contains 
$35. which is the ASCII representation of the number '5', and which is written out by a  
call  to WRCH.

The LSR.L instruction wishes to shift the entire contents of DO right by twelve 
places. The amount to shift can only be expressed as an immediate value if it is less 
than eight places, so we have to use D2 which we have previously initialised to 12. 
This will move the value $36 into the low order byte in our example, which is the 
ASCII value of '6'. This is then written out and we loop back if required to print all the 
digits.

The contortions which we have to go through to convert to and from character 
form and BCD are indeed faster than the equivalent conversions to and from binary, 
but in many machines instructions called something like 'pack' and 'unpack' are 
provided. These convert from one form to the other in one simple instruction. In fact 
early documentation on the 68000 mentioned just these instructions. We are now  
promised  PACK and   UNPK  in  the  68020.

Chapter 6

Logical operations

in the previous chapters we have seen how the patterns of bits in registers and 
memory locations can be regarded as representing numbers or characters. and 
manipulated appropriately. Binary representation is used in computers because it is 
much easier to make reliable electronic devices which have just two states (e.g. 'on' 
and 'off') than ones which have more. Although the precise way in which numbers and 
characters are stored Is usually unimportant, it is nevertheless sometimes useful to 
take advantage of binary representation, and to manipulate values regarding them just 
as collections of bits. Such manipulations are called logical operations to distinguish 
them from arithmetic operations. A single bit can be thought of as having the logical 
value true or false rather than 1 or 0.

Perhaps   the   simplest  logical   operation   is  that  of  inverting   every   bit of 
the  operand.

NOT.L       D3

will convert every 1 bit in D3 to a 0, and vice versa. In common with the other logical 
instructions. NOT is allowed only on data alterable operands; this reinforces the 
convention that address registers are intended only for holding addresses, and that 
logical operations on addresses are likely to be symptomatic of an incorrect or 
deviously-written program. However, it is sometimes useful to be able to perform bit 
manipulation on addresses, as we shall see in the store allocation  routines  later  in  
this  chapter.

There are several logical operations which take two operands. They differ from 
arithmetic operations in that the corresponding bits of each operand are combined 
separately, rather than treating the whole byte or word as a single value. It is like 
performing a set of 8, 16 or 32 one-bit calculations  in  parallel.

The OR operation produces a result with a bit set in every position where either 
the source or the destination has one set. If the low byte of D1   Is  11001100 in  
binary,  and  that of D2  is  11100001.  then
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OR.B D1,D2

will leave D2 containing 11101101 in its low byte. Another way of thinking about OR is 
to say that ORing with 0 leaves a bit unchanged. while ORing with 1 always sets it. 
Thus we can set the more significant  half of a  register to   Is without disturbing  the  
rest  by  using

OR.L    #$FFFPOOO0,D3

A complementary way of combining bits is by ANDing them. The result of an AND 
operation has 1—bits only in the positions where both the first and the second 
operand had Is. Using the same values in  D1   and   D2  as  above

AND.B        D1,D2

will leave D2 with 11000000 in its least significant byte. AND is the inverse of OR in 
the sense that ANDing with 0 gives 0. while ANDing with 1 leaves the bit unaltered. 
The AND instruction is useful for masking part of a value: that is, setting the unwanted 
bits to zero without affecting the rest. Suppose we have just done some calculation 
which leaves an 8-bit result in the low byte of D4. but makes no guarantee about the 
state of the other bits. We can clear these bits so that the value of the whole of D4 Is 
just the wanted result by writing

AND.L   #$000000PP,D4

The third instruction provided for combining two sets of bits Is the exclusive-or 
(EOR) instruction. This gives a 1 in the result where tne two operand bits are 
different; where they are both 0 or both 1, the result is 0. If, once again, Dl contains 
11001100 and D2 holds 1110001.  then

EOR.B        D1,D2

will   put  00101101   in   D2.
Another view of this operation is that EOR with 0 leaves a bit unchanged, while 

EOR with 1 inverts the bit. Thus EOR with all Is is equivalent to  NOT.
The form of operands allowed for EOR is slightly different from those of AND and 

OR. as the source must be a data register. The other two must have a data register 
as at least one of the operands. but it can be source or destination. All three 
instructions have an immediate form (ANDI, ORI. and EORI) for use when the source 
is a constant bit pattern (though an immediate source operand can be used with the 
ordinary AND and OR forms as well). A peculiarity of these instructions is that the 
destination may be the status register (SR). If the operation size is byte, then only the 
low order byte of the status register is affected: this is the condition code register 
(CCR). If the size is word, then the whole status register is used, and the operation is 
privileged. These forms of the three instructions enable particular status and condition 
code flags to be set (ORI). cleared (ANDI),   or  inverted   (EORI).  without  affecting  
other  bits.   For  instance,  to
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clear the  carry flag  we would write 

ANDI.B     #SFE,CCR

and to  set trace mode we could  say

ORI.W       #58000,SR

Shifting  and  rotating

We have seen how individual bits may be manipulated in place, and will now see how 
to move bit patterns about within a register or store location. There are four types of 
instruction for doing this, and each has a version for moving left and one for moving 
right. All of the shift instructions take three forms of operands. The operand can be in 
memory, in which case the operation size is always word, and the shift Is by one bit. If 
the operand is in a data register then all three operation sizes are allowed, and the 
shift may be either by a fixed amount  (1   to 8  bits),  or by a  number given  in  
another data  register.

The logical shift instruction LSL moves to the left all the bits in its operand, and 
introduces Os on the right. Suppose that the word of memory addressed  by Al   
contains  1011111111111111.  The  effect of

LSL.W       (Al)

is to set this word' to 0111111111111110. The carry (C) and extend (X) condition 
codes are set from the lost bit, and the N and Z flags are  set  in  the  normal way 
from  the  result value.

As mentioned above, a value in a data register may be shifted by more than one 
bit at once, antf the number of places may be specified in two ways. A constant shift 
of 1 to 8 bits is expressed as immediate data,   as  in

LSL.L        #4,D2

Alternatively,  the  shift count can  be  given   in  another data  register:

LSL.I.       D1,D2

The count used  is the value  in the register modulo 64.
The LSR instruction performs rightwards logical shifts, bringing in zeros from the 

left, and setting the C and X flags from the last bit shifted  off the right hand end.
When we shift a binary number one bit to the left, the effect Is to multiply its value 

by two. Shifting one place to the right is like dividing by two and throwing away the 
remainder. Thus we can use shifting as a way of multiplying and dividing by powers of 
2 (2, 4, 8, 16, etc.). We could use the LSL instruction for multiplying in this way, but 
using LSR for division would not give the correct- answers with negative numbers. 
Zeros would be shifted in on the left, unsettlng the sign  bit.
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To get round this problem, two more shift instructions are provided. These are the 
arithmetic shifts ASL and ASR. which assume that their operand is a number in twos-
complement form. They take exactly the same operand formats as LSL and LSR. but 
differ from those instructions in the treatment of the sign bit and condition codes. For 
left shifts, the difference is subtle: LSL always clears the V (overflow) condition code 
flag, while ASL sets it if arithmetic overflow has occurred, and clears it otherwise. The 
final bit pattern in the operand location  or  register  is the  same for  both   
instructions.

The different handling of the sign bit affects right shifts only. The bits shifted in 
from the left are copies of the original sign bit. ensuring that ASR will have the effect 
of division for both positive and negative numbers. For positive numbers. LSR and 
ASR have identical effects, but for negative numbers, ASR will shift in Is rather than 
Os from the left. For example, if the least significant byte of Dl is 11101100  (=  -20  in  
decimal),  then  the effect of

ASR.B        #2,D1

is to set this byte to 11111011 (= -5 in decimal). Any fractional part of the result is of 
course lost, meaning that the result of division will be  truncated  towards  minus  
infinity.  Thus

5  shifted right by 1    = 5/2    =    2
-5  shifted right by 1    = (-5)/2    = -3

Both arithmetic and logical shifts lose bits which fall off the end of the operand. An 
alternative is to use the rotate operations (sometimes called circular shifts), in which 
bits moved out of one end of tne operand are reintroduced at the other end. Thus no 
information Is lost, and shifting sufficient times (e.g. 8 for a byte) will restore the 
operand  to  Its original  state.

There are two kinds of rotate instruction. Both take the same forms of operands 
as the other shift instructions, and have left and right variants. ROL and ROR rotate 
the operand value by the specified amount, and leave in the C flag a copy of the last 
bit which was taken round from one end to the other. The N and Z flags are set from 
the result value. V is always cleared, and X is unaffected. ROXL and ROXR are very 
similar, except that each bit shifted out goes into the X flag, and the bit introduced at 
the other end is the old value of X. These instructions will take one more step to 
restore an operand than the simple rotates (e.g. 9 steps for a byte). Their importance 
lies in the fact that they are the only shift operations which allow the value of the bit 
which is brought into the operand to be determined by a previous instruction. Thus, 
they can be used for shifting objects larger than 32 bits. For example, if we had a 64-
bit quantity in D1 and D2, we could do a logical left shift of the whole thing   by writing

LSL.i      #1,D2 LS half:   lost, bit goes into X
ROXL.L    #1,D1 MS half:  get bit from LS half from X

Converting  a  hexadecimal  number to  characters

We can use the logical operations that we have seen so far to write a piece of code 
which will convert a number held in a register into the characters of its hexadecimal 
representation. Each hexadecimal digit corresponds to four bits of the number, 
sometimes called a nibble (half a byte!). We can use a rotation to bring each nibble in 
turn to the least significant end of a register, and then mask with an AND operation. 
This gives us a number from 0 to 15 which can be used  to  select the  appropriate  
character  from  a  table  of sixteen.

* The number to be converted to characters is in Dl

* AO points to an eight-byte buffer for the character form

MOVEQ       #7,DO Use DO  as  loop count

LOOP ROL.L #4,D1 Get next nibble to bottom of Dl

MOVE.B D1,D2 Copy two lowest nibbles
ANDI.L #SP,D2 Mask low nibble
MOVEA.L D2,A1 Need it in address register
MOVE.B CHARTAB(Al),(AO)+ Put corresponding character in

* next buffer position and step
DBRA DO,LOOP On to next nibble

* Exit here:  conversion complete

CHARTAB DC.B •0123456789ABCDEP'   Conversion table

Operations on single  bits

Five instructions are available for operating on single bits in a data register or byte of 
memory. One of them. TAS. is rather special, and will be dealt with later. The other 
four, BTST, BCLR, BSET, and BCHG, form a family which all take the same operand 
formats. Each of these four operates on a single bit, and the position of that bit is 
specified by its number in the memory byte or register operand. Bits are numbered 
from zero upwards, starting from the least significant (or right hand) end of the 
operand. Thus a register has bits numbered 31   to 0.  and a byte  has  bits from  7 to  
0.

The BTST instruction simply tests the specified bit, and sets the Z flag to its value; 
no other condition code flag is affected. The bit number can be given either as an 
immediate value, or in a data register. The destination operand may be of any data 
addressing mode, except the immediate addressing mode. If the operand Is a data 
register, then the bit numbering is taken to be modulo 32. This means that the number 
used is the remainder when the specified number is  divided  by 32, so the two  
instructions



BTST   #3,D7        and 
BTST    #35,D7

would   both  test  bit  number  3  of  D7.  When  the  operand   is  a   byte  of 
memory,  the  bit number is taken  modulo 8.

The other three instructions in this family also test the specified bit. but they may 
also alter it, and so must have a destination operand   of  a  data  alterable  
addressing   mode.   BCLR  clears  the   bit  to
0. BSET sets it to 1. and BCHG gives it the opposite value from the
one  it  had  before.

Since memory is organised in bytes, a bit operation must read a whole byte, alter 
one bit within it. and then write it all back. This means that using BCLR. BCHG, or 
BSET to alter bits in memory-mapped peripheral control registers may have 
unexpected effects, as the action of reading the location may itself cause some action 
in the peripheral device. It Is safer to construct the required bit pattern  and  then  use  
MOVE to set such  control  registers.

The 'test and set' (TAS) instruction also affects just one bit in its operand. It is less 
flexible than the other bit Instructions, as Its length attribute is always 'byte', and it is 
always bit 7 of the byte which is tested and then set. Both the N and Z flags are set 
from the original value of the operand byte. TAS can be used with any data alterable 
operand, but its importance lies In the way it accesses a byte in memory. It uses what 
is called a 'read-modify-write' memory cycle. This means that TAS retains control of 
the memory for the whole time it Is executing, so that nothing else can look at or alter 
the operand byte   while   TAS   is   inspecting   and   setting   it.   As   mentioned   In   
chapter
1, this Is a vital operation in a system where several computers share
the same memory, as it enables them to use flag bytes in memory to
indicate whether or not resources that they all share are currently in
use. Such flags are called semaphores. It is necessary that eacn
computer should be able to set a semaphore and find out whether It
was set before, in a way that prevents the other computers from
altering  the flag  during  this  operation.

Semaphores can also be needed within a single computer, if that computer 
contains several programs running more or less independently. Many operating 
systems allow several programs to be active at once, and arrange to share out the 
processor's time between them. Even in a simpler system, the code of interrupt 
routines (see chapter 7) can run at random times during the execution of the main 
program. In a single computer, BCLR, BCHG, and BSET (as well as TAS) can be 
used for handling semaphores, as they all do a 'test and set' type of operation in a 
single instruction. This means that no program can alter a semaphore while another is 
in  the  process  of looking  at  it and  setting  it.

A free store allocation package

In simple programs, it is usually possible to predict in advance how much data storage 
will be required for the various data structures. buffers, and so on, and to divide up the 
available memory accordingly. However, many programs need to be able to split the 
total store between different uses, and the amounts needed for some structures may 
not be known until the program is actually run. In these cases it is useful to have some 
mechanism for reserving areas of store, and for releasing them again when they are 
no longer needed. Such a mechanism can be provided as a collection of routines 
forming a store allocation  package.

A simple package contains just two routines: one for allocating memory, and 
another for releasing it. One way to organise the store is as follows. Assuming that all 
the available store is in one contiguous region, it is possible to divide it up into blocks, 
placed end to end. Each block has a header word which indicates firstly the length of 
the block, and secondly, whether it Is free or in use. The very last block consists of 
just a  header word containing zero.

We will make a rule that all blocks are a multiple of 4 bytes in length, and have 
headers which are long words. This allows the size of a block to be as large as the 
memory on any 68000 system, and also ensures that we will never get left with any 
gaps between blocks into which we cannot fit a header. We will also insist that ail 
blocks start at even addresses, so that the headers can be manipulated with 
instructions of size long. Since all lengths are multiples of 4, the least significant two 
bits of a length will always be zero. We can therefore use the least significant bit as a 
flag to say whether or not the  block is free.



90

The routine which allocates store is called GETBLK. It uses a 'first fit' algorithm for 
allocating memory: i.e. it works its way through the blocks and allocates from the first 
free one which is large enough, It joins together any adjacent free blocks that it 
passes on the way. After a while, when many blocks have been obtained and then 
freed again, it is quite likely that some free blocks will be next to each other. It would 
be silly to reject a later GETBLK request simply because no single free block was big 
enough, but there is no need to do the work of combining adjacent ones until such a 
request Is made.

The routine for giving back a block of allocated store is called FREEBLK. its job is 
very simple, as all It has to do is to set the least significant bit of the header word. In 
order to mark the block as being free. However, it can do some simple checks in order 
to be reasonably sure that the address It has been given is Indeed that of a block 
previously allocated by GETBLK. The supplied address Is checked for being even (as 
we made the rule that all blocks start at even addresses), and the flag bit in the 
header word is inspected to make sure the block was allocated. The most common 
programming error   is   freeing   a   block   twice,   and   this   simple   test   will   
detect  that.

91
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FREEBLK also checks that neither address nor header has any bits set in the most 
significant byte. We have not gone In for more elaborate (and time consuming)
checks such as scanning down the whole list of blocks to make sure that the address 
really does refer to an  allocated  block.

FREEBLK returns Immediately if It is given Eero as its argument. This ensures 
that the result of GETBLK is always a valid argument to FREEBLK,  even  if the 
former fails to  allocate  any  store. Chapter 7

Exception handling

in an me program examples we nave seen so far, tne address of tne next instruction 
to be executed is determined (implicitly or explicitly) by the instruction currently 
executing. Usually it is just the next instruction in sequence, but a branch, jump, or 
return instruction can force execution to continue elsewhere.

This chapter Is about the situations when control is diverted in other ways: these 
situations are called exceptions. There are two purposes for which exceptions are 
used. One is to enable action to be taken rapidly when some event occurs, such as a 
user pressing a key on his terminal keyboard. The other purpose Is to provide the 
computer with a means of reporting that some error has been detected, and calling a 
routine to take appropriate action. An example is when  an   illegal  instruction   is  
encountered.

When an exception is processed, the 68000 saves the current values of the 
program counter and status register, and then continues execution at an address 
given in an exception vector at a low memory address. The saved information 
enables execution to be resumed later at the point where it was interrupted; the effect 
is like calling a subroutine  between two  instructions,

Exceptions can be generated in two ways: either internally when the processor 
itself detects some anomalous situation, or externally, when some other hardware 
needs to gain the processor's attention. External exceptions are usually called 
interrupts, while internal ones are  often  called  traps.

The external  exceptions are

Interrupts Bus 
error External  
reset
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The  internal exceptions are caused  by

Illegal  instructions
Unimplemented  Instructions
Address  error
Privileged  instructions  In  user state
Tracing
Divide  by zero
TRAP,   TRAPV.   CHK

Exception Vectors

When an exception occurs, the processor calls a routine provided by the user to 
handle that exception. We have to give it a way of finding the address of that routine. 
On some computers, the same routine is called for any exception, and its address is 
held in some fixed store location. This routine must start by inspecting some system 
registers to find  out what actually happened.

The 68000 has a more general scheme which allows a separate routine to be 
provided for each type of exception, and for each external device. The lowest 1024 
bytes of memory are reserved for holding the addresses of all these routines. Each 
address is held In a 4-byte slot known as an exception vector. Each vector has a 
number, which is just Its byte address divided by four. The position and number of the 
vectors  is given  in the following table.

The exception vector number is implicit for all internal traps and for external 
interrupts which use the auto-vector mechanism. Circuitry which causes other 
interrupts must present a vector number to the 68000; the choice of vector number is 
up to the designer.

If the three function code output lines from the 68000 are being used to separate 
the memory into distinct address spaces, then all but the reset vector will be taken 
from the supervisor data space. The reset vector will  be taken  from  the  supervisor  
program  address  space.
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User and  supervisor states

As mentioned in chapter one, the 68000 can execute instructions in either user state 
or supervisor state. The two states correspond to different levels of privilege. 
Supervisor state is the more privileged, and programs forming part of an operating 
system should normally run in this state. Any instruction may be executed while in this 
state. User state is used for running all other programs. Several key instructions are 
forbidden in this state, and any attempt to execute them will cause a trap which will 
pass control back to the operating system. The instructions which are disallowed fall 
into two categories: those which could interfere with the operation of the computer, 
such as STOP and RESET, and those which would allow the program to enter 
supervisor state  but continue  executing  its own  Instructions.

The processor chip has an output line which signals the current state. This can be 
used in two ways to protect memory belonging to the supervisor. It could be checked 
on each memory access in the hardware In order to forbid access to certain regions 
while in user state. The other way it could be used would be to completely separate 
the memory available to the supervisor from that available in user programs. Thus 
address 1000 when in user state would access a different memory location to address 
1000 in supervisor state. In this way, the private supervisor memory would be invisible 
to user programs.

Address register 7 is special, as it is used implicitly as a stack pointer by some 
Instructions and during exceptions and interrupts. It is also peculiar in that the name 
corresponds to two physical registers, the user stack pointer (USP) and the 
supervisor stack pointer (SSP). The one accessed by a reference to A7 depends on 
the processor state. The name SP is sometimes used for the current stack pointer. 
Thus SSP is not accessible in user state. However, there is a special instruction 
which gives access to USP in supervisor state, as an operating system will need to be 
able to read and set this register. This Instruction is a special case of the MOVE 
instruction, with USP as either source or destination. It is privileged, not for reasons of 
protection, but because any program which does use it in user state is  doing  
something  silly.

The only way that the state can change from user to supervisor is when a trap or 
interrupt occurs. This means that the change is always associated with a jump to a 
address determined by the trap vectors in low store. By protecting this store from 
access in user state, it is possible to ensure that it is impossible to enter supervisor 
state without also jumping to a system program, and thus restrict what user  programs  
are  able  to  do.

There are several ways of returning from supervisor to user state. The supervisor 
is allowed to execute those instructions which directly update the processor status 
register (SR), so can simply negate the bit which controls the state. It can also set 
user state as part of returning  from  an  exception  via  the  RTE  instruction   (see  
below).

How exceptions  are  processed

The action taken by the processor is similar for all the different kinds of exception. In 
all cases, the current values of the program counter and status register are saved, so 
that the Interrupted program can eventually be resumed as if nothing had happened. 
They are saved in three words  of the  system  stack,  as  shown

Note that it is always the supervisor stack which is used (i.e. that pointed to by SSP 
rather than USP), regardless of which state the processor was in when the exception 
occurred. The address error and bus error exceptions save more information than this 
(see below). In most cases, the saved program counter points at the instruction which 
would have been executed next if the exception had not happened. Note that the 
68010 and 68020 processors save one more word on the stack which contains the 
exception vector number. This makes it easier to share the same code to handle 
different exceptions.

The status register is set to a standard state after the old version has been saved. 
The supervisor state bit Is set on so that the exception handling routine will always 
start in supervisor state. The Trace bit is turned off, so that exceptions can be taken 
normally even when the main program is being traced (see below). The 3-bit interrupt 
mask is affected only by the reset exception, and by interrupts. Reset sets this mask 
to 7, while an interrupt sets it to the priority level  of that interrupt  (see  below).

Routines to handi© exceptions

A program which is going to handle exceptions will start by inserting in the exception 
vectors the addresses of the routines which are to be called when each exception 
occurs. The skeleton layout of an exception  routine  Is as follows
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An exception can occur at an arbitrary time, between any pair oi instructions. In 
order to be able to resume properly, it is essential to preserve the original status 
register, and the contents of all the address and data registers. The status register is 
saved automatically, but it is the job of the handler routine to make sure It does not 
corrupt any other registers. The easiest way to do this is to use MOVEM to save on 
the stack any registers which are used in the routine,  and to  use it again  at the end 
to get them  all  back.

The RTE Instruction does the rest of the work of returning from an exception 
handler. It expects the old program counter and status register to be on the stack in 
the order shown above, and restores both of them, thus resuming the program that 
was interrupted. The action  of  RTE  is  similar to

MOVE.W     (SP)+,SR RTS

However, it cannot be replaced by these two instructions, as RTE always pops the 
program counter from the supervisor stack, whereas RTS takes it from the user or 
supervisor stack, according to the current processor mode. If the MOVE.W to SR 
instruction changed the mode from supervisor to user, then RTS would operate on 
the wrong stack.

Note that use of RTE is forbidden in user state, as it allows the status register to 
be set directly, and so would provide an uncontrolled  means  of getting  into  
supervisor state.

An unprivileged instruction very similar to RTE is RTR. It too sets the program 
counter and status register from values on the stack, the only difference being that it 
sets only the user byte of the status register (the half containing the condition codes). 
It takes a whole word of stack for the status register, but only the low byte is actually 
used.  Thus  RTR is  like the sequence

MOVE.W     (SP)+,CCR 
RTS

One use of RTR is as an alternative to RTS in a subroutine which preserves the 
condition codes present when it was called. Such a subroutine would  have the form

Another use for RTE, RTR, and RTS is as jump instructions. To use JMP to go to 
an address that was not known at the time the program was written, we must hold 
that address in an address register. If we want to jump somewhere, having set all the 
registers to particular values, we can do so by putting the destination address on the 
stack and  using  RTS.

RTR or RTE can be used like this to set up the condition codes, or (in  supervisor 
state)   the whole  status  register,   before jumping.

Interrupts

Interrupts are the means by which external devices request action from the processor. 
A device requests an interrupt by presenting a priority level between 1 and 7 to the 
processor. The Interrupt will be accepted only if the current processor priority level 
(held in the status register) is less than the interrupt level, or if the requested level is 
7. Level 7 thus acts like a non-maskable interrupt (NMD on other computers. The 
logic which requests the Interrupt must also indicate whether it will supply a vector 
number, or whether auto-vectoring should be used. This means that the processor 
uses a vector from the range 25 to 31, according to the requested priority level. A 
vector number is normally supplied when many devices interrupt at the same priority  
level.

The processing of an interrupt follows the normal sequence for an exception, with 
the program counter and status register being saved on the stack, and the status 
register being set to a standard state. The saved program counter points to the 
instruction which would have been executed next if the interrupt had not occurred. 
The priority level in the status register is set to the level of the interrupt. The purpose 
of this Is to prevent further interrupts of the same or lower levels, but to allow ones of 
higher priority. Some computer peripherals need fast response to an interrupt request, 
otherwise data may be lost, whereas for others there is less, or no, urgency. The 
designer of a computer system can choose the interrupt priorities in such a way as to 
guarantee to give rapid servicing to the interrupts for which it matters. Interrupts of the 
same or lower levels than the current one are inhibited in order to simplify the 
programming of the interrupt routines. If the inhibition were not there, then an interrupt 
service routine could be interrupted and the same routine called again. This would 
cause chaos if the routine thought it had exclusive use of any memory locations  or  
ports.

External  reset

A reset exception can be caused by circuitry outside the processor. This Is used to 
start the processor initially, or to restart it after some crash which cannot be recovered 
from in any other way. All record of what was  going on  at the time of the  reset Is  
lost.

Reset differs from all other, exceptions In two ways. Firstly, nothing is saved on 
the stack, as the stack pointer may not refer to a valid address. Secondly, the 
exception vector is eight bytes long (rather than   four),   and   contains  the   initial  
value   of  the   system   stack   pointer
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as well  as  the  new  program  counter.

Illegal and  unimplemented  Instructions

If the 68000 attempts to execute a word which does not contain a valid instruction, 
then It will cause a trap to occur, saving a program counter value which points to the 
offending word. One of three exception vectors  is  used.

If the most significant four bits of the word are 1010 or 1111, then the instruction 
is considered to be unimplemented rather than illegal. These groups of instructions 
are ones which may be assigned meanings in future models of the 68000, or for 
which separate co-processor chips may be provided. Unimplemented instructions 
provoke traps to one of two vectors, according to these four bits. This is to allow 
emulation of unimplemented instructions in software. Given the specification of an 
instruction, an exception handling routine can be written to have precisely the same 
effect as that instruction, albeit rather more slowly. This means that Is is possible to 
provide software so that programs containing unimplemented instructions (perhaps 
written  for a  later version  of the  68000)  can  be  run  unchanged.

Illegal instructions which fall into neither of these groups cause a trap through the 
'illegal instruction' vector. Encountering this trap is a symptom of either a wild jump 
(e.g. indirecting through an address; register that had not been initialised), or of 
running off the end of a program   into  data  or  unused  memory.

Instructions which  can  cause traps

Some instructions can cause traps as part of their normal execution, either because 
that is their main job, or because some abnormal condition  can  arise during  their 
execution.

The TRAP instruction always causes an exception. Its operand is a number from 
0 to 15, and one of sixteen exception vectors is used accordingly, so there is, in 
effect, a family of sixteen TRAP instructions. It has a variety of uses. The major use is 
as a call to an operating system or monitor. As has been explained earlier, in a 
protected system it is necessary to run the operating system code in supervisor state 
so that it can restrict the actions of user programs (which run in user state). The 
TRAP instruction allows programs to call subroutines in the operating system, and to 
put the processor into supervisor state as part of the call. The reason for the cail can 
be conveyed either by the operand of the TRAP, or by an argument In a register.

Another use for TRAP is for setting breakpoints in a debugging program. As it is 
only two bytes long, it can be substituted for the first word of any instruction. When 
the program gets to that point, an exception will be taken, diverting control back to the 
debugger, which will then print a message to its user. The monitor in the next chapter 
provides  a  breakpoint facility  in just this way.

Two other instructions cause a trap if a particular condition is true. They are both 
intended as cheap tests for errors which may occur  when   a   program   is   running,   
and   could   be  inserted   automatically

at all appropriate points by a compiler for a high level language. TRAPV forces an 
exception if the V condition code is set. If a TRAPV Is inserted after every arithmetic 
operation in a program, then an exception will occur whenever there is overflow. For 
example, we might have a  sequence of code  like

ADD.L     (aa),D4
TRAFV
ASL.L        #2,D4
TRAPV

The other of these instructions is CHK. which is designed for checking that access 
to an array of store is within the range of that array. CHK compares the value 
referenced by its first operand to the low 16 bits of the data register which is its 
second operand. If the value in the data register is less than zero or greater than the 
first operand, a trap occurs. Suppose A1 contains the address of an array of bytes, D1 
contains the offset of the one we want to update, and the word addressed by A2 holds 
the upper bound of the array. CHK could  be  used  as follows

CHK (A2),D1 Check that offset is in range
MOVE.B    VALUE,0(A1,D1.W) Update array byte

Two more instructions which can force exceptions are those for division, DIVU 
and DIVS. Both of these will trap if they are asked to divide  by zero.

When any of the above Instructions provokes an exception, the saved  program  
counter points  to the  next  instruction  in  sequence.

Privilege violations

We mentioned earlier that some instructions may be executed only when the 
processor is in supervisor state. These instructions are all the ones which would 
enable a program to steal control of the computer from the operating system, by 
updating the status register, or  resetting  the  peripherals.  The  following   
instructions  are  privileged

The RESET Instruction asserts the reset output from the processor chip, causing 
all external devices to revert to a standard state. It will usually be one of the first few 
instructions executed when an operating system or monitor starts up, and will not be 
executed again in   normal   running.   This   instruction   has   no   direct   connection   
with   the



reset exception, but should be used in the code that the exception jumps  to,   in  
order to ensure that all  peripherals  are  in  a  known  state.

The STOP instruction puts the processor into stopped state (which should not be 
confused with the halted state set after an unrecoverable error). It stops executing 
instructions until the next interrupt or reset exception occurs. The operand of STOP is 
a 16-blt immediate value, which is placed in the status register. This allows STOP to  
set the  processor  priority  levei   before  it stops the  machine.

This instruction is intended for use when the computer system based around the 
68000 has peripheral devices capable of direct memory access (DMA). This means 
that they can read from or write to the memory directly, without having to interrupt the 
68000 itself, it is usual for a disc device to be connected using DMA, so that it can 
transfer large chunks of data quickly between memory and disc, and interrupt the 
running program only when the transfer has finished. A DMA device will often want to 
use the memory at the same time as the processor, so there is some circuitry which 
arbitrates and makes one wait for the other. If the program in the 68000 initiates some 
DMA transfer of data, and then has nothing useful to do until the transfer finishes, 
then it could just go into a loop until the interrupt comes. However, this makes 
unnecessary accesses to the memory (to fetch the instructions of the loop) and so 
may slow down the DMA transfer. It is better to use STOP to stop the 68000 
completely when it  has  nothing  to do.

The operand of STOP must have a 1 in the bit corresponding to the supervisor 
state flag of the status register, otherwise a privilege violation will occur even if STOP 
is executed in supervisor state. (This is the only way a privilege violation can happen 
in supervisor state.) Thus,  a typical  example  of this  instruction  is

STOP #$2000

which  sets  the  interrupt  mask to zero,  permitting  any level  of interrupt.
The MOVE to/from USP instructions do not need to be privileged. However, they 

are intended for use only by programs running in supervisor state, as the user stack 
pointer is already accessible (as SP) in user state. They are made privileged because 
any attempt to use them in user state is likely to be due to a programming error which  
should  be  brought to the  user's attention.

Whenever a privilege violation trap is taken, the saved program counter  points  at 
the  offending   instruction.

Tracing

It is possible to request the 68000 to cause an internal exception after the execution 
of every instruction. This is the trace exception, and occurs when the trace bit in the 
status register is on. The saved program  counter  refers to the  instruction  after the  
one  saved.

The principal use of the trace exception is as a debugging aid. It allows the 
program under test to be run one instruction at a time, with control returning to a 
debugging program after every instruction. This can be a powerful tool for isolating 
the point at which the error occurs   in   a   faulty   program.   The   monitor   in   the   
next  chapter   provides

a  tracing  facility  by  using  this  exception.
The trace exception also greatly simplifies the handling of breakpoints. We saw 

above how a TRAP instruction can be used to replace the first word of a breakpointed 
instruction. When the trap is taken, control passes into the debugger, and we can 
inspect registers, store locations and so on. However, a difficulty arises when we want 
to continue execution of the program after hitting the breakpoint. We would like the 
breakpoint to remain in force in case the program reaches that point again, but, in 
order to continue, we must execute the instruction that has had a TRAP planted on it. 
What we need to do Is to restore that instruction, execute it. and then put back the 
TRAP in its place before proceeding. Having a trace exception allows this to be done: 
the instruction is executed with the trace flag on, so control passes back to the 
debugger, which can put back the breakpoint TRAP and then allow execution to 
continue normally with the trace flag  off.

Bus errors  and  address errors

A bus error is an attempt to read from or write to an address which does not belong to 
any device outside the processor. Bus errors are usually caused by trying to use a 
memory address which does not correspond to any physical memory. The only way 
that this error can be detected is by observing that no response is forthcoming when 
.the address is used. The detection is performed by logic outside the processor, so 
that the designer can decide what is a suitable time to wait for a response. If this time 
limit were built-in to the processor. then  it might be  impossible to  use  it with some  
slow devices.

An address error is an attempt to read or write a word or long word of data at an 
odd memory address. It is very similar to a bus error, but is detected by the processor 
itself, and uses a different exception vector.

It can be difficult to determine exactly what caused a bus or address error. It may 
be due to an invalid operand address within the current instruction, but it might have 
happened while trying to pre-fetch the next Instruction. Also, whereas most 
exceptions are either processed between instructions, or forced by an instruction, 
these errors can be noticed at an arbitrary point in the processing of the instruction. 
This means that the value of the program counter saved will point somewhere near 
the offending instruction, but may not point 3xactly at it.

To make it possible to decide what was wrong, the processor saves more 
Information on the stack than for other exceptions. Seven words of stack are used 
altogether,  with the following  layout



The instruction field holds the first word of the instruction which was being processed 
at the time of the bus or address error. This allows the exception handling routine to 
search back from the saved program counter to find the start of the instruction In 
store. The address field holds the address to which access was being attempted. The 
last word contains some extra information about the aborted bus cycle. Its format is 
as shown

The W bit Is 1 if the access was a write, and 0 otherwise. The N bit is 1 if the 68000 
was not processing either an instruction or an exception caused directly by an 
instruction when the error occurred. This could mean that it was in the stopped state 
(after a STOP instruction), or already processing one of the other kinds of exception. 
The F field gives the 3-bit number which was being presented on the function code 
output lines from the chip. These are the lines which classify the access as supervisor 
or user, and program or data, and which  can  be  used to divide up the  memory into 
four address spaces.

If the exception vector for bus errors, address errors, or reset contains an invalid 
or odd address, then a bus or address error will occur while the exception is being 
processed. This is known as a 'double bus fault', and is treated as an unrecoverable 
failure. The processor gives up and halts itself, so as not to corrupt any of the 
evidence in memory. The only way to restart it Is to give it an external  Reset signal.

In general the 68000 is not capable of continuing with an Instruction which 
caused a bus error, as it might have been in the middle of its internal execution. The 
68010 and 68020 save much more information on the stack, thus allowing the 
instruction which caused  the  bus error to  be  resumed.

Multiple exceptions

It is sometimes the case that several exceptions happen very close together, and it 
may be important to know the order in which they will be handled. The various 
exceptions can be placed in three distinct groups  according  to exactly when  the 
exception   is  processed.

Group  0: Reset,  bus  error,  address error
The execution  of the  current  instruction   is  aborted.

Group   1: Trace,       interrupts,       privilege       violations,       illegal
instructions
The current instruction is allowed to complete, and the exception 
is taken just before the next instruction starts. Privilege and illegal 
instruction traps occur just before the offending instruction would 
have been executed.

Group   2: TRAP,  TRAPV,   CHK,   division   by  zero
The exception occurs as part of the normal instruction execution.

There is a priority order of exceptions, which determines exactly what happens 
when several are outstanding at once. The highest priority one is processed first, and 
then the others, in decreasing priority order.  The  order  is   (highest first)

Reset
Bus error
Address  error
Trace
Interrupts
illegal  instruction,  privilege violation  (cannot happen together)
TRAP. TRAPV,  CHK,  division  by zero  (cannot happen  together)

When the trace flag is set, there is no trace exception when the current instruction 
is aborted by a reset, bus error, or address error. If an interrupt is pending after a 
traced instruction, then the trace trap is taken before the interrupt. However, if the 
current instruction forces  an  exception,  then  that  is  processed  before the trace  
exception.

A store size finding  routine

We can use the bus error exception in a routine which determines the amount of 
memory available on our computer. A routine like this is usually executed by an 
operating system when it starts running so that the same operating system can be 
loaded Into machines with different amounts of store, and will always make use of all 
that is available.

The routine works by stepping up the memory, trying to access each byte In turn. 
Eventually it will try to touch one which does not exist, causing a bus error exception 
to occur. Before the main loop is entered,   the   bus   error   exception   vector   is   
set   up   to   point   to   an
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instruction in this routine (at label SSF„BERR). We do not actually need any of the 
information stored on a bus error, so can just reset the stack  pointer to  its original 
value.

It Is possible that the memory address decoding hardware is arranged in such a 
way that the bus error logic will not detect attempts to access memory just past the 
highest location that actually exists. To guard against this, the routine checks each 
byte to see If It does indeed function as memory, by storing a bit pattern and then 
seeing if It is still there. The bit pattern chosen contains both Is and Os, as non-
existent memory Is likely to appear as either all Is or all Os. The original contents of 
each byte are saved in a register and restored after the test, so that memory remains 
unaltered. We must be careful not to test the memory in which our program resides,' 
as we would at some point alter a byte in the next Instruction to be executed, with 
unfortunate results! This routine starts the test just after Its  last byte.

Chapter 8

A complete example:
*™* JUL

a monitor
in this chapter we present a complete example. This is a small monitor which will 
supply a limited range of facilities for running and debugging assembler programs. 
Such a monitor would normally reside in read only memory, and a real monitor would 
probably have a great deal more commands than those described here. However the 
example demonstrates the way in which the 68000 interrupt and trap vectors are  
used  and the  use of the  supervisor and  user  modes.

The monitor is intended to reside in any location in memory, and some care has 
been taken to ensure that the code Is all position independent. The monitor Itelf runs 
in supervisor mode, while a user program  may  be  executed  only in  user mode.

Commands are provided to examine and alter the user's register set, to set and 
clear breakpoints, to examine and alter memory locations, and to start a user program 
either normally or in trace mode.

The current value of the user's registers may be printed by using the R command; 
this will print the value of all the registers. Alternatively the value of a specific address 
register or data register may be printed by using the A or D command. Similarly the 
program counter and status register may be selectively printed by the P and S 
commands.

The contents of any register may be updated by following one of the A, D, P or S 
commands with a value in hexadecimal. A memory location may be opened by 
means of the M command, once this has been done the byte at the address specified 
after the M will be printed.

A further set of commands are provided once a memory location has been 
opened in this way. A memory location is initially opened as a byte value, but the 
word (two bytes) or long word (four bytes) starting at that address may be specified 
by typing W or L, while S restores the size to a single byte. Odd numbered bytes may 
not be opened  as  word  or  long.



Once a memory location has been opened a new value may be entered in 
hexadecimal. This will replace four, two or one bytes depending on the currently 
selected size. The uparrow symbol C) will open the previous location in the currently 
selected size, while 'return' opens the next location. The equals symbol (=) may be 
used to print out the current location again, which is useful if the memory address is 
actually a memory mapped I/O location. The memory subcommand level is 
terminated by a fullstop (.). which returns to the normal monitor.

A user program would normally have to be entered into memory by means of the 
M command, specifying the program in hexadecimal. A more complete monitor would 
have facilities for loading a program from  another  computer.

Once a program has been entered into memory it may be executed by the Q 
command. This causes the computer to enter user mode and to jump to the location 
specified in the user program counter. A new value for the program counter may be 
specified after the G command  if required.

In order to debug a program, the T command can also be used to start execution. 
In this case one instruction is executed and control returns to the monitor again. The 
register values are printed out, and another monitor command may be issued. 
However if just a 'return' is typed at this stage, the next instruction is executed. This 
makes it simple  to trace through  a  program step by step.

The monitor also allows breakpoints to be set in a user program. The B command 
,by itself prints ail current breakpoints; Bn deletes breakpoint n and Bn followed by a 
hexadecimal number, sets breakpoint n at the specified address. Once a breakpoint 
is executed control returns to the monitor. The T command can be used to trace a few 
instructions, or the C command will continue past the breakpoint.

All exceptions and traps are handled. TRAP #15 is used to indicate that a user 
program has terminated, while TRAP #14 is used to cause breakpoints. The TRACE 
vector is used while tracing user programs. All other traps or exceptions cause a 
suitable message to be written and the user program to be terminated with the 
contents of the registers saved. After a breakpoint or trace the contents of the 
registers are printed. In addition, after a trace exception has occurred, the  response  
'return'  will  cause  another instruction  to  be traced.

The only interrupt location used is the level 2 auto-vector location; It is assumed 
that an ACIA will interrupt here. The ACIA location is held as a long value in the 
program so that this could be patched to alter the actual location of the ACIA in the 
memory map. Similarly the two areas of RAM used by the monitor for the stack and 
for other data locations are defined by two other long values within the program.
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The first requirement is to define various  constants used and  to specify  the   layout 
of RAM locations. This first section defines various ASCII constants, bits    within the 
status register and some default  values. It also specifies the binary opcode for TRAP 
14 which is used as  a  breakpoint.

Constant definition and exception  handlers



This next section defines the structure of the RAM area used. We do not use fixed 
locations as workspace, but instead always use an offset from an address register 
(usually A6). We need three pointers into a line buffer and the buffer itself in order to 
handle input characters typed. We also allocate space for the user's registers and for 
the breakpoint locations. We also provide names for offsets within the user's  register 
save  area.

Having completed all our definitions we will now proceed to allocate some constant 
areas. This first area defines the exception, interrupt and trap locations. They are 
placed at the start of the program In case  the   code   is   loaded   to   start  at   
location  zero;   in   this   case  they

will be in the correct place assuming that the hardware of the machine does not 
provide different memory areas for program and data. The initialisation section of the 
monitor also copies these locations into memory starting at zero in case the program 
is loaded somewhere else. The first two long locations define the initial values for the 
stack and program counter which are picked up when the 68000 is reset. In order for 
this to work the whole monitor must be loaded at location zero or else the first eight 
bytes must be mapped by hardware into the first address within the monitor. In the 
latter case the  start address will  have to  be relocated  in  a  suitable fashion.
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I_BHK       DC.L TKP15-TS User requests

INTSIZE EQU (I_BRK-I„BESEO? )/4 Size of fixed vectors

Finally we specify the location of the ACIA and of the RAM area used. This is placed 
Into program space so that these locations can be  patched without assembling  the 
entire  program all  over again.

ACIA        DC.L 583FF01 Address of ACIA
RAMBASE DC.L $1000 RAM base pointer

Character reflection is handled by the routine WRCH which writes the character 
held in DO to the output part of the ACIA and hence to the terminal. Although an ACIA 
can be configured to interrupt when the output request has finished this is not used In 
this example; interrupts are only generated when an input character arrives. As the
monitor is only intended to run one program at a time there is nothing that could 
usefully be done while we wait for the ACIA to complete a transmission. Using 
reception interrupts means that characters  may  be  typed  ahead  at any time.

Input and output

We can now start the code proper. The first few subroutines are intended to be called 
by any user program, and hence do not expect any registers to have particular 
values. In the later subroutines which handle the various monitor commands it is 
assumed that the last character typed is in register DO and that register A6 points to 
the base  of the  RAM  area.

The first routine to be defined Is the Interrupt routine. This will be called whenever 
a character has been typed at the keyboard, as the address of the start of the routine 
has been placed In the autovector for interrupt level 2. It must take the character and 
attempt to place It into a circular buffer. If this is not possible because the buffer Is full 
the character will simply be ignored. If the character Is 'rubout' then the last character 
typed will be removed unless there are no more  characters  left on  the current  line.

Normally the character typed will be reflected at the terminal. If 'rubout' is typed 
then the reflection will be backspace, space, backspace in order to remove the 
character from the terminal screen. If 'return' Is typed then the reflection will be 
'return' followed by 'linefeed'.

it is of course vital to save any registers used in an interrupt routine as it may be 
called at any time. Notice also the use of RTE which replaces the saved status 
register before returning to whatever code was  being  executed  at the time.

The circular buffer is maintained by three pointers. BUFWR is used as the current 
write position, and points at the last character entered in the buffer. In the normal 
case this pointer is Incremented via the subroutine INCPTR which takes account of 
the circular buffer and the new character placed in the buffer at that point. The pointer 
BUFRD is used to indicate how far the read routine has got in removing characters 
from the buffer. If the BUFWR reaches BUFRD then there is no more room in the 
buffer. The read routine will only extract characters from the buffer once an entire line 
has been typed, thus allowing characters to be deleted. The pointer BUFLS is set to 
point to the start of the current line both to enable the read routine to check this and 
so that rubouts are ignored If the entire line has already been deleted. When a rubout 
is typed the BUFWR pointer is cyclically decremented.

This little subroutine assumes that A2 contains a pointer into the circular buffer, and 
that A6 points to the base of the RAM area. It increments A2 and resets it to the start 
of the buffer if it has reached  the  end.



The   next  few  routines  are  concerned  with   output.   The  first routine
is   WRCH,   which   transmits   the   character   held    in    DO   to   the output
section    of    the    ACIA.    It    uses    a    subsidiary    routine    WRCH1 which
assumes that A1   points to the ACIA.

The routine WRCH1 is called by WRCH and WRITES after setting up AT to point to 
the ACIA control register. The ACIA data register appears in memory two bytes 
higher. It simply waits for the ACIA to become  ready and  then  transmits the 
character  held   In  DO.

The next few routines are just generally useful subroutines to do with output. BLANK 
writes a space to the output while NEWLINE writes carriage  return followed  by 
linefeed to the output.

This is a variation on a routine we have already seen. WRITES is called with AO 
pointing to some characters terminated by a zero byte. The characters are all written 
to the output. It calls WRCH1 rather than WRCH as it sets up the pointer to the ACIA 
once and for all at the  start  of  printing  the  string.
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Finally it branches to NEWLINE to print a newline at the end of the string. This 
demontrates a common trick. If the last action of a subroutine is to call another routine 
and then to execute an RTS instruction It Is simpler to branch directly to that 
subroutine. The return address for WRITES will still be on the stack, so that when 
NEWLINE finally executes its own RTS the jump Is made back to the caller  of 
WRITES.

WRITES    MOVEM.L D0/A0-A1,-(SP) Save registers
MOVEA.L ACIA,A1 Extract ACIA address

WRITES1 MOVE.B    (AO)+,DO Extract character from string
BEQ.S      WRITES2 Zero - end of string
BSR.S      WRCH1 Write out character using ACIA in Al
BRA.S       WRITES1 WRITES2 MOVEM.L 

(SP)+,D0/A0-A1 Restore registers
BRA.S      NEWLINE Print newline and return

The final set of output routines are used to print hexadecimal numbers. WRHEX4 
prints four hexadecimal bytes. WRHEX2 prints two and WRHEX1 prints a single byte. 
Finally WRHEXO prints four bits, or a 'nibble'. Any of these routines can be called 
individually although they all end up calling WRHEXO the required number of times. 
Note that register values are not corrupted as they are swapped around and then  
replaced.

WRHEX4 swaps register halves to print out the top two bytes via a call of 
WRHEX2. and then drops into the code of WRHEX2 to print the bottom two bytes.

WRHEX4    SWAP        DO Swap high and low halves
BSR.S       WRHEX2 Write high  2 bytes
SWAP        DO Swap high and low halves again

* Drop through to WRHEX2

WRHEX2 performs a similar trick. It rotates the low order word to print the high order 
byte of the pair via a call of WRHEX1. and then rotates it back again to restore the 
register. It then drops through to the code of WRHEX1  to print the  low order byte.

WRHEX2    ROR.W      #8,DO Shift top byte down to low order
BSR.S      WRHEX1 Write single byte
ROL.W      #8,DO Shift bottom byte back again

* ..  and drop into WRHEX1  for this byte

WRHEX1 is very similar to WRHEX2. In this case the top four bits are rotated down 
so that they may be printed by WRHEXO, then rotated "nek and the bottom  four  bits  
printed.

Finally  WRHEXO   actually  writes  out  a   single   hexadecimal  digit   held   in DO.   
It  takes   care   not  to   corrupt   DO,   and   calls  WRCH   to   handle   the



The last part of this section concerns input routines. The opposite of WRCH is 
RDCH which returns a character from the terminal in register DO. It is convenient to 
clear the high order three bytes of DO and  to  return  the  character  in  the  low order  
byte.

We must remember the circular line buffer maintained by the interrupt routine, and 
the fact that two pointers BUFRD and BUFLS point to the last character read out of 
the buffer and the start of the current line respectively. We compare the read pointer 
BUFRD with the start of line pointer BUFLS. and If these are the same then we loop 
waiting until they are not. This will happen, of course, when the interrupt routine has 
accepted a 'return' from the keyboard which indicates that the user has completed his 
line of Input. If characters have been typed ahead then there is no need to wait and 
we can extract them at once. We also call the same routine INCPTR to step a  pointer 
through  the  circular  buffer.

This routine reads a hexadecimal number from the keyboard. Two entry points are 

provided. READHEX reads the next character from the input, while READH assumes 
that the next character has already been read and is sitting in register DO. The result 
is returned in D1, and DO is set to the last character read by the routine. If an invalid 
character is found the Z bit is unset, if all goes well the 2 bit is set. This can be tested 
later with BNE to jump to some sort of error handler.

Branch  table  handling

Within the monitor we will want to take a command letter from the input and to 
determine some action on the basis of the letter typed. We shall use the routine 
SEARCH to perform this. It expects a character  in  DO  and  a  pointer to  a  branch  
table  in  register AO.

The branch table indicates the required action for each valid character,- and a 
default action if the character is not valid. Each entry in the table consists of four 
bytes. The first byte is a flag which is set to zero if there are more entries in the table 
and set non-zero if there are no more entries. In this case the entry in the table is to 
be  taken  as  representing  the  default  action  required.

The second byte in each entry holds the character with which the specified  action  
is associated.  It is  ignored when  the flag  byte  Is  set.

The final two bytes are used to indicate the action to be performed. For each 
action there is an associated subroutine, and the address of this subroutine is 
indicated in the two byte slot. In order to maintain position independent code the entry 
in the table represents the offset of the  subroutine from the  base of the table.

We use a branch table for two reasons. Firstly the same code can be used to 
decode different sets of commands which are valid in different circumstances. Here 
we shall use SEARCH to decode normal commands and memory change commands. 
Secondly It makes it easy to add new commands, simply by providing a new entry in 
the table and  a  subroutine to  do the job.

The routine SEARCH is passed a character in register DO which is converted into 
lower case, by the routine LOCASE. Each entry in the table is checked to see if it 
contains this character; if a match is found in the table the associated routine is called. 
If the non-zero flag byte at the end of the table is encountered the routine specified is 
always called.
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No registers are corrupted by this subroutine. In order to achieve this we use the 
stack as workspace. Firstly the original value of DO is restored by reading it from the 
penultimate stack frame slot; this slot is then updated with the address of the 
subroutine which is to be called. Register AO is then restored and the stack pointer 
lowered so that the stack contains the required entry point, followed by the return 
address to whatever called SEARCH. The final RTS instruction then picks this value 
off the stack and hence jumps to the required subroutine, which will return to the 
caller of SEARCH if it executes an RTS.

The following small routine converts the character in register DO to lower case if 
required. Once we have established that the character requires conversion we add a 
value which represents the difference between  lower and  upper case  letters.

D1T ,! P 'S t0 C°Py the interruP* handlers into their defined slots in RAM. If the program 
is loaded at zero then they will be in the correct place anyway, but no harm will be 
done copying them back on top of themselves unless the program is held in ROM and 
the hardware ,s set up to indicate a bus error if ROM Is written to. In most  hardware 
configurations this would  not  be the case

We   also   wish   to   maintain   position   independence,   and   so  the  value
™H" IH® tab'e iSn0t the actual address but th® °ffset of the required address from the base of the 
program. Again this will be correct if the program is loaded starting at location zero, 
and if not then we simply add the address of the base of the program to each of the 
offsets to obtain the correct addresses.

The next step is to set up the system stack pointer which is obtained from the value 
stored in the reset vector. Again, this is only required if the entry point has been 
jumped to rather then entered because of an external reset. Once this has been done 
we can safely turn interrupts  on   again.

We can now initialise the ACIA and set up the correct initial values for the pointers 
into the circular buffer used by the ACIA interrupt handler. We also establish A6 as 
our pointer to the base of the RAM that we are using. This value is expected to 
remain in A6 while the monitor  is  running.

Initialisation and command  handling

The next section of code is the initialisation section of the monitor, and the label 
START is the entry point for the entire program. We have placed this address In the 
reset vector so that this program will be called when the  machine  is turned  on or 
reset.

The first action is to turn interrupts off. as the interrupt handlers are not yet 
defined and so any interrupts would be embarassing. We then issue the RESET 
command to simulate an external reset in case this entry point was simply jumped to. 
We then reset the ACIA which is  not affected  by the 68000  reset.

The next stage is to clear the breakpoint and user register store to zero. We pick up 
one less than the number of slots as our counter because DBRA stops when the 
counter is -1. We also set up the initial value for the  user stack  pointer.
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We are now in a position to write out the header message. We call WRITES to do 
this, having first loaded AO with a pointer to the message.

LEA.L  MESS1,A0    Point to header message 
BSR    WRITES      Write message

This is the main execution loop, which Is very simple. First we write out the prompt, 
calling WRCH. We then load AO with a pointer to the table which contains the entry 
points for the subroutines which handle each command. The subroutine SEARCH is 
then called which will eventually call the correct routine. If that .routine returns we 
branch back for another command. If the command caused an error or entered a user 
program we will jump back to label ST1 directly from the  exception  handling  section.

Simple command  routines

The rest of the monitor consists of a number of subroutines which are called via the 
command search table. In all cases these routines are entered with register DO 
containing the character which initiated the action, and they may corrupt any register 
except A6, which is assumed to hold a pointer to the base of the RAM work area. The 
routines all return to their caller except for those connected with executing a user 
program (Q and T). In this case the entry back into the  monitor will  occur when  an  
exception  takes  place.

The first routine is the default routine and is called if an unknown command is 
entered. It simply prints a message and drops into a standard   routine  to  skip  to  
the end  of the  typed  input  line.

COMERR    LEA.L      MESS2,A0 Point to message
BSR WRITES Print  it

This next subroutine is called when most other command subroutines are about to 
finish. It simply reads and ignores anything else which may follow the command on 
the input line. DO must contain the last character read from the input in case that was 
a carriage return. This routine is also called as the response to a return typed at the 
console.

The next set of routines are called when an error has been detected. The first is used 
when a number was expected but not found. Because it calls SKIPNL register DO 
must contain the last character read from the line.

The   next   is   almost  the  same   and   is   called   when   an   invalid   memory 

change  command  has  been found.

Register display and  update

The following routines handle the commands which display and alter the contents of 
the user's registers.' The first is REG which is called after the R command has been 
entered. It simply displays the contents of all the user's registers. There are in fact two 
entry points. REG is used when the R command has been given, and REGX is used 
when the registers are to be displayed after a trace or breakpoint exception. The only 
difference is that the REG entry point skips the  rest of the  command  line.  If any.

The first few lines print out the user program counter and status register, using 
WRHEX4 and WRHEX2 respectively. Note that it is assumed  that  register A6 refers 
to the  base of the  RAM work area.
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and a newline

The next lines print out the data registers and the address registers. Because of the 
similarity in printing the two different types, REG! is a subroutine which is called once 
with the register letter 'D' held in Dl and A3 pointing to the start of the data register 
save area. When REGl returns A3 is left pointing to the start of the address registers. 
The register letter is updated to contain 'A', and REGl is entered again   by dropping  
into  it  rather than  calling  it  as  a  subroutine.

LEA.L      RDUMPD(A6),A3 Point to data registers
MOVEQ      #'D',DX Register letter into Dl
BSR.S      REGl Display register set
MOVEQ      #'A',D1 Register letter

*   ..   and drop through

The REGl section of code prints out the value of the eight user registers saved in the 
memory location pointed at by A3. It identifies the registers using the letter held in Dl. 
It calls WRHEXO to write the register number and WRHEX4 to write the value. 
Subroutines BLANK and NEWLINE are called where required to ensure that we get 
four registers per line suitably spaced. The address register A3 is incremented 
through the register save area as the register values are printed, and so is left 
pointing to just beyond the end of the region when  the task  has  been  completed.
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There are four commands provided to alter or inspect the value of a particular user 
register. The A and D commands are each followed by a register number. If no value 
is given after the register name the value is printed. Otherwise a hexadecimal value is 
read and the register in  question  Is  set to this  new value.

The routines for D and A share common code once register A3 has been set up 
to point to the start of the data or address register save area.

This section of common code first reads the register number following the letter D or 
A. It calls READHEX and checks the value returned to see if it is valid. If not then a 
jump to SETRE is made, which is a common error exit for all of the register update 
commands. If the value is correct it is multiplied by four to provide a byte offset into 
the  data  register store.

The next part of the code is also shared by the P command, which examines or alters 
the user's program counter. First the last character read from the input is checked to 
see If it was a return. This is returned from READHEX in register DO. if no value 
follows the current value  is  printed  out  at label  SETR2.

If the line did not terminate with a return the value specified is read using the 
READH entry point to READHEX. This ensures that whatever character is held in DO 
is taken into account when reading the hexadecimal value. If an error is detected in 
this a jump is made to the standard code at NUMERR. Otherwise the value is inserted 
into the correct slot, which is identified as the offset computed from the register 
number and the base register A3 which either points to the data or address register 
save area. Finally the routine returns through SKIPNL which  skips  any other text on  
the  line.
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The subroutine SETP is called when the P command is used to alter or examine the 
user's program counter. This value can also be updated by specifying a value after 
thai G or T command. It simply loads A3 with a pointer to the program counter save 
area and sets the offset for the register number to zero. This ensures that when the 
shared code at label SETR1 is entered the correct location will be referenced. Before 
it jumps there it reads the next character from the input into DO. This is because DO 
will be set to contain the last character read when  READHEX has  been  called  in  
the previous cases.

SETP BEA.L RDUMPPC(A6),A3 Point to PC  store
CLR.W D3 Offset zero
BSR RDCH Get next character
BRA.S SETR1 Jump to shared code

The S command is used to print or change the user's status register. The subroutine 
involved cannot share the same code as the preceding routines because the status 
register is only a word sized object. We do not check the value of the status register -
if the user wishes to set the trace bit then his code will be traced. We do not allow the 
supervisor bit to be set when the program is started, but no check is made at this  
point.

The  final   part  of  the   register  change   section   simply  prints  a   message if an   
invalid  register  number  has  been  given.

SETRE   LEA.L  MESS6,A0    Message
BSR    WRITES      Print it out
BRA    SKIPNL      Skip rest of line £ return

Entering  a  user program

This section implements the T, G and C commands which are used to enter a user's 
program. The entry point TGO is used for the T command, and GO for the G 
command. The TGO entry point simply sets the trace bit in the saved copy of the 
user's status register. The CONT entry point is used for the C command, which 
continues executing  a  user  program  past a  breakpoint.

The first step is to see if an entry point for the user's program has been given. If 
no value has been given then a jump is made to the   label   GOl.   Otherwise   the   
entry   point  is   read   using   the   READH

__________________________________________________________, ___________        mo

entry point to READHEX because the current character is already held in DO. If there 
is no error then the saved copy of the user's program counter is  updated  with  the 
new value.

Label   GOT   starts   a   user   program   running. This   code   can   also   be
entered    from    the    exception    handler    when a    program    has    been
interrupted  because of a trace exception,  and the next instruction  is to
be traced.

The  first job  is  to  check  that  the  supervisor  bit   is   not  set   in  the
copy   of   the   user's   status   register.   If  this   is so   the   program   will   not
be  run.

GOl BTST #SBIT,RDUMPSR(A6) Check supervisor bit not set
BNE.S      GOERR Error if so
CLR.B      BFLG(A6) Clear breakpoint  flag

The next stage is to insert breakpoints into the user's code. Breakpoints are only 
inserted when the program is about to be run so that if the user examines his code it 
appears unchanged. The addresses where breakpoints are to be placed are held in 
the table BRKP. This contains six bytes per entry. The first four bytes hold the address 
for the breakpoint or zero if this breakpoint Is not used. The last two bytes are used to 
hold the original code which is replaced by the two byte instruction TRAP #14. We 
move the breakpoint address into D1 because we wish to detect if it is zero -
remember that MOVEA does not alter condition codes. As we wish to also use this 
value as an address later, we clear A2 to zero. This means that the construction 
0(A2.D1,L) effectively allows us to use D1 as an address  register.

There is an added complication concerned with actually executing the code which 
should reside in the memory location where we have placed a breakpoint. Having 
reached a breakpoint it is very common to trace on for a few instructions. In this case 
we do not want to insert the breakpoint trap, instead we want to actually execute the 
instruction. For this reason we also check to see if the breakpoint is about to be 
placed at the address given by the user's program counter. If so then we do not insert 
the breakpoint this time. Note that we do in fact take a copy of the instruction so that 
when all the breakpoints are removed in the exception handler we can insert the 
correct code  back in  without  making  another special  case.

In order to continue past breakpoints the special command C must be used. This 
uses the fact that a breakpoint will not be set at the current program counter address. 
Firstly it sets the trace bit. then jumps   to   the   label   CGO.   We   will   therefore   
execute   the   instruction   at
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the breakpoint address, and enter the monitor again due to the trace exception. We 
set a special flag called BFLG which Is set to a nonzero value when we have just 
given the C command. The exception handler will check this flag, and unless it is zero 
it will simply restart the program using the standard Q routine. This ensures that the 
breakpoint Is replaced in the correct place ready to be executed again if required. We 
have already set the flag BFLQ to zero so that this  special   processing  will  not take  
place  if T or G  were  specified.

We are now ready to start the user program running. First we extract the saved copy 
of the user stack pointer into register AO, and then Into the user stack pointer USP. 
This is required because only address  registers  can  be  moved  into  USP.

The next step Is to extract the user's program counter and status register and 
save them on the system stack, ready for the subsequent RTE instruction. We then 
reload all the user's registers from the save area with an enormous MOVEM. and then 
execute RTE which resets the status register and program counter. Because the 
status register does not have the supervisor bit set we will end up running the user's 
program in user mode. The only way in which the program will return control to the 
monitor is if an exception occurs, and we have reserved TRAP 15 as the way in which 
a user program signifies that it has  ended.

The C command is used to continue after a breakpoint. The standard test for 
supervisor bit set is made, the trace bit Is turned on and the code branches to label 
CGO in order to start the user program. As the user program counter will be equal to 
the breakpoint address the particular breakpoint will not be inserted this time. We also 
set the flag BFLQ to non-zero by using the Sec instruction with the condition TRUE. 
This will be used in the exception handler to distinguish between a proper trace 
exception and the trace exception generated after executing the code at which a 
breakpoint has been placed. In the  latter  case we will  simply  replace the  
breakpoints  in  the  code  and

continue   execution.   This   ensures   that   breakpoints   appear   to   the   user to be  
installed  all  the time.

Memory examine and  update routines

The next set of routines are used to inspect and alter memory. Typing the letter M 
causes this code to be entered, whereupon the location specified is 'opened' and the 
value stored there printed out. Subsequent memory change commands are then read 
which can alter the value in the open location, open- another location or return to 
normal  command  mode.

Memory locations can be opened as a byte, word or long object. Initially a location 
is opened as a byte. Register D2 is used to hold the size of the object. Thus if the 
location is to be opened as a byte D2 will contain 1, if as a word 2, and 4 if it is 
opened as long. We will keep the current memory location in register A3. The first part 
of the subroutine takes the  location  and  prints the  address of It out.

The next step is to look at the size qualifier held D2 and to print a byte, word or long 
value. This entails extracting a suitable sized value and  printing   It  using  WRHEX1,  

WRHEX2 or WRHEX4.

MEMW



The   next  step   is  to  attempt  to   read  a  new  value. If  an   error  occurs
then   rather  than   simply  print an  error  message  we go  on  to  see   if  a
valid memory change command was given - in this case DO will
contain the  last character read.

In this case a valid number was given, and we must update the memory location. 
Having done this we do not want to read the same memory location again, as this 
sometimes causes problems when attempting to place values into memory locations 
which are in fact registers within I/O chips such as an ACIA. We have a subroutine 
called NMEM which moves us on to the next memory location, and this must be 
called. Rather than BSR to it and then branch to MEM1 in three different cases we 

place the address of MEM1 onto the stack with a PEA instruction. We can then 
branch to the routine NMEM, which  will  return  to  MEM1  when  it executes the  RTS 
at the  end.

In this case an invalid number was read, and the offending character is In DO. We will 
use the same routine SEARCH to identify the correct action to take, passing it in this 
case the table MEMTAB. This is of the same form as COMTAB which was used in the 
main execution loop, but contains address offsets and letters for memory change 
commands. When any of these return we will still be in the memory change 
environment. As a special case we see if the exit command (.) has been given and 
terminate the M command if this is so. We also clear the rest of the input line via a call 
to SKIPNL after any of the  memory commands  have finished.

If the location is to be opened as a word or long value, the current address must be 
even. The subroutine CHKEVEN is called to make this check. The subroutine will only 
return if the check succeeded. Otherwise  it jumps  back to  the  routine which  called  
SETW or SETL

This routine is used to check if A3 contains an even address. If the check fails the 
normal return address is Ignored and the routine returns to the caller of the routine 
which called it. This will always be MEM  in  this  case.

129



130

Breakpoints

The next routines handle the setting, clearing and listing of breakpoints. We have 
already noted in the GO routine that a table of breakpoints is maintained. For each 
breakpoint six bytes are used to hold the address of the breakpoint and the code 
word which the breakpoint replaces when  it is  inserted.

In this section we are only concerned with the manipulation of the breakpoint 
addresses. The B command all by itself simply lists the current breakpoints. Unused 
breakpoints have an address set to zero. so this is checked and if the breakpoint Is 
set the breakpoint, number and  the address  is  printed  out.

In this case a breakpoint number is expected after the B command. Register DO will 

contain the character following this as we have called RDCH earlier, so we use the 
READH entry point to READHEX to obtain the  breakpoint number.

Having satisfied ourselves that the breakpoint number is correct we must work out the 
correct offset. As there are six bytes per entry we shall have to use the MULS 
instruction to obtain it. Fortunately there are only ten breakpoints allowed so the limit 
on the size of the arguments to MULS does not affect us. We then check to see if any 
value was given after the breakpoint number. If not then we clear the breakpoint,  
otherwise we  set a  new one.

Exception  handling

This section of code Is concerned with the handling of any exception, interrupt or trap 
that may occur. The standard action is to print a suitable  message after saving the 
user's  registers  if required.

The following labels define addresses which have been patched into the correct 
exception vectors by the Initialisation code. At each label a short branch to subroutine 
instruction takes us to the code to handle the two different types of exception which 
may occur. A BSR is used so that the return address saved on the stack can be used 
as an  Index to determine which  interrupt occurred.
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in this case we must handle the more complicated case of an address or bus error. 
Because of the instruction pre-fetch of the 68000 the program counter will be smaller 
than the saved value on the stack might lead us to believe. There are a number of 
extra words of information saved on the stack, including the instruction register. We 
can step the program counter back until the instruction at the program counter 
matches that stored in the instruction register. We must be very careful to save all of 
the user's registers. The layout of the stack is as follows, with the address of the entry 
point to the  monitor saved   most recently  by the  BSR earlier.

This   represents   a   simpler   type   of   exception.   The   system   stack   now looks  
as follows.

We have now managed to save all of' the user's registers and we must proceed to 
replace any breakpoints inserted in the code. The original value of the code is held in 
the last two bytes of each six byte area. Even If the breakpoint has not been inserted 
because the user's program counter was equal to the breakpoint address a copy of 
the original  instruction will  still  be  held  in the breakpoint table.

In this case an error (hopefully bus error during M command) occurred while running 
the monitor. Do not alter user's registers, but give the  message as  usual.

EXCP3      MOVE.L    (SP)+,A1 Extract return address stacked by BSR
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We now have saved all the user's registers, and AT contains the address of the next 
instruction after the one we jumped to via the interrupt vector locations. We must 
correct this to point to the actual instruction.

We must also reset the system stack to the original value given it when we 
entered the monitor. After we have done this it is safe to turn interrupts on again, as 
even If we have a large number of unexpected interrupts we will have reset our stack 
back to base again before  attempting  to  handle  another one.

stack.
We write a small letter r as a prompt to show that the monitor is in a special mode, 

and then read the response of the user. If this is not a simple 'return' we branch to the 
standard SEARCH subroutine to handle it. Because we have placed the address of 
ST1 onto the stack, when the subroutine called by SEARCH finally returns it will 
return  to  ST1   rather than   back  here.

If the character read in is indeed a return, we set the trace bit and  continue  
execution  of the  user  program  by jumping  to  GOl.

At this point it was some other type of exception. We call the subroutine WRABO 
which writes a message based on the value of AT. This is still pointing at the entry 
point specific to the abort, and is used to select the correct message. Once this has 
been done we can branch to the start of the command loop to look for any more 
commands.

BSR.S      WRABO Write suitable message
BRA ST1 And handle any more commands

We get here if a trace exception has occurred. There are two possible reasons for a 
trace exception. The first is that it was generated by the C command. This sets the 
trace bit so that once we have executed the instruction normally overwritten by the 
TRAP #14 used for breakpoints we can replace the breakpoint. If this was the case 
the flag BFLQ will be non-zero, and we simply enter the user's program once again. 
The breakpoint will then be Installed ready for another time.

EXCP5       TST.B      BFU5<A6) Test to see if C was last command
BNE GOl Continue execution if so

This handles a normal trace exception. First we write a suitable message using 
WRABO agin. We then call the entry point REGX of REG to display the  registers.

Because it is very common to require one trace after another, we will patch the 
normal command handling so that the response 'return' is the same as typing T. Any 
other command will be handled as normal. To do this we make AO point to the 
command table, and then use  PEA to  place the entry point of the  main  command  
loop  onto the

At this point we must handle a breakpoint. The user will have set a breakpoint at 
some address which we have patched to contain the TRAP #14 instruction. This 
always works as TRAP instructions are only one word long, which is the same as the 
shortest possible instruction. This TRAP #14 will have caused us to arrive here. We 
have not yet executed the instruction which normally resides at the breakpoint 
address. Therefore the first thing to do is to decrement the program counter by two  
bytes.

We then write a suitable message and call REGX to display the state of the 
registers. We can then branch to ST1 to read any subsequent commands. When the 
user asks for the program to be continued we will not insert the breakpoint which 
caused this trap because the breakpoint address will be equal to the program counter. 
Control will return to the monitor immediately after the instruction has been executed if 
C or T commands were used, and we will then be in a position to replace the TRAP 
14 instruction when the user program  is  next  restarted.

The final subroutine in our monitor uses the value stored in register A1 to write a 
suitable message corresponding to the exception which has just happened.

We have already adjusted A1 so that It is the address of the label at which the 

exception handler was entered. We load the address of the first possible label into AO 
and subtract the two. As each BSR.S instruction takes up a word, the result will be a 
word offset corresponding to the exception type. This is then used as an index into  
the  table  ABOTAB.   Each  entry  in  ABOTAB   is  the  offset  from   the
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base of the table of a string describing the error. We add the base of the table to the 
string offset to give us the string address which is then written  out using WRITES,

WRABO      LEA.I, B_EXCPT,&0 Base of table
SUBA.t A0.A1 Now a word offset from zero
LEA.L ABOTAB,A2 Pointer to abort table base
MOVE.L A1,D0 Offset into DO
MOVE.W 0(A2,D0.L),A0 Offset of string from table base
ADDA.L A2,A0 Add table base to point to string
BRA WRITES Write it out and return

The addresses of the preceding messages are stored in the following table. They are 
stored as offsets from the table base to preserve position independence. The ordering 
in the table corresponds to the ordering  of the  labels  used to enter the exception  

handler.

The following two tables are in the correct form for the SEARCH subroutine. This 
means that the first byte of each four byte entry is zero except for the last entry in the 
table. The second byte contains the lower case version of a character, while the next 
two bytes refer to a subroutine to be called if the character read matches the 
character in the entry. The subroutine is specified as an offset from the base of the 
table. The last entry in each table has the first byte set to a non-zero value, and the 
specified routine is always called. This first table  is  used  to  handle to  normal  
commands.

Finally   we    have   the   table    used   to   decode    memory   subcommands issued  
after an  M  command.

137











Index

#.   30 add,   9,   30,   67,   71
*,  25 address value   (ADDA),  67-8
4040,   2 binary  (ADD),   67-9.   72
6502,  2,  3 binary coded  decimal   (ABCD).
6800.   2 78,   80-1
68000,   14 extended   (ADDX),   68-9,   74
68008,   14 immediate  data  (ADDI),  68
68010.   14.   97,   104 quick   (ADDQ),   68
68020.   15.   70,   82,   97,   104 ADDA,   67-8
6809.   2,   4 ADDI,   68
80286.   3,   6 ADDQ,   30.   68
8080,   2,   4 address,   7.   19,   23
8085, 2,   4 absolute,   19,   23,   33,   35
8086. 3,  4 data  relative to  PC,   10
8088,  4 effective,  23,  32,  60
A0-A7  (address  registers),  7 error,  94,  97,   103
ABCD,   78,   80-1 implicit,   31
absolute address  mode,   19,  23, register direct,  23

33.   35 register  indirect,   27,   28,   29
absolute code,   19 register indirect with
absolute  branch,   10 postincrement.  29
absolute jump.   10.  58 register indirect with
absolute  symbols,   19.  22 predecrement.  29
access  to  data  items  relative to registers   (A0 to A7),  7

address  in  register.   10 relative,  24-5
ACIA  chip,   46-8,   55,   66,   109, space,   15

112-14,   119,   128 symbolic names,   16
control  port,  46-7 address  mode,   15-16,  23,  31-2
data  port,  46-7 control,  32
interrupt mode,  46 data alterable,  32
polled   mode,  46 immediate  data,  30,  33
reset and  Initialisation,  47 memory,  32
setup  mode,  46 postincrement.  29.  45

Ada.  64 predecrement,  29
ADD,   67-9,   72 summary,   31

ADDX,   68-9,   74

146

Algol68.   11
allocating   stack  space.  62 
allocation  of store,   83.  89.   91 
alter  memory  locations.   107 alter  
user's  register  set.   107 An   (any
address  register).   23.

29 AND.   80.   
84.   87 ANDI.   84 
ANDI   to   CCR.   84 
ANDI   to   SR.   84 
applications,   14 
arithmetic.   67

binary,   78
decimal.   78-82
integer.  22
multiple  precision.   68
operations.   9.   83
operators,  21
overflow.   12,   86
shift,   86
shift   left   (ASL),   86
shift  right   (ASR),   86
signed.  70,   75
unsigned.  70,  75 

ASL.   86 ASR.   86
assembler.   16-21,   24-5,   35,   37, 

52,   58,   69,   107
directives.   18
syntax.   16.  21 assembly 

language.  7.   11,
16-17 asynchronous 

communication
interface adapter  (ACIA),  46 

auto-vectoring.  99

B  suffix  (byte).  17 
backward  branch.  37 
backward  jump.   58 
backward  references,  24 
BCC,   39
Bcc,   9,   35,   37,   39,   43,   58 
BCD  (binary coded  decimal),

78-80,   82 
BCHG.   87-8 
BCLR,   87-8 BCS.   
39
BEQ.   36,   39,   42,   58 
BGE,   39 BQT,   39,   42 
BHI.   39 BHS,   39 binary 
arithmetic,  78

binary  coded  decimal   (BCD),
78-80.   82 bit  

instructions
bit  test   (BTST).   43.   47.   87 bit 
test  and  change   (BCHG).

87-8 bit test  and  clear  (BCLR).
87-8 bit test  and   set   (BSET).   87-
8 test  and  set  (TAS).   6,   14. 87-8 
BLE.   39.   42 BLO.   39 BLS.   39 
BLT.   39.   42 BMI,   39.   42
BNE.   36,   37,   39.   42.   48.   116 
BPL  39,   42 BRA.   39,   54,   58-9.   
61 brackets,  27 branch,  8,   9,   58.   
115 absolute.   10 backward,  37 
conditional  (Bcc),  9,  35,  37,

39,   43,   58 if  carry  clear   
(BCC),   39 if carry  set  (BCS),  39 
if equal  to zero   (BEQ),  36,

39,   42,   58 if greater than   
(BGT),  39,  42 if greater than  or 
equal

(BGE),   39 If  high   (BHI),   39 if  
high   or the   same   (BHS).

39 if  less  than   (BLT),   39,   42 
if  less  than   or  equal   (BLE).
39.  42 if  low   (BLO),   39 if  low or  
the  same   (BLS).   39 if  minus   
(BMI),   39,   42 if  not  equal  to 
zero   (BNE), 36,   37.   39.   42,   
48.   116 if  overflow  clear   (BVC),   
39 if overflow set  (BVS).  39 if  plus   
(BPL).   39.   42 to absolutely 
specified

destination,   10 to  subroutine   (BSR),  
39,  54-8, 59,   61,   63,   115.   128. 
131-2 unconditional   (BRA).  39,  54. 
58-9,   61 branch  table,   117



breakpoints.   13.   109.   124-6. 130.   
133-4 clear.   107 set,   107 BSET.   
87-8 BSR.   39.   54-8.   59.   61.   63.   
115.
128,   131-2 BTST,   43.   47.   87 bus   
(main  communication cable).   14 
arbitration  logic.   14 double fault.   
104 error,   53.   93,   97.   103.   105. 
132 BVC.   39 BVS.   39 byte  (8-bit).  
7 byte address.  94

C  condition  code flag  -
carry/borrow,  9 CCR  (condition  

code  register),
84 character constant,  20,  22 

character  reflection,   112-13 
character string.  20 check and   
possibly trap   (CHK),

11,   12.   15.   101 
CHK.   11.   12.   15.   101 
circular  buffer,   112 circular  
shifts,   86 clear,

breakpoints,   107
condition  code,  84
memory  location  to zero (CLR).   

15.   18.   41,   42,   44
overflow condition  code.  86
status,  84 CLR,   15,   18,   

41,   42,   44 CMP,   9,   37-
8,   41 CMPA,   38 CMPI.   
38 CMPM,   38,  81 
COBOL,   78 code,

absolute,   19
position  independent.  10.   19. 20.   

24.   51,   59,   107,   119, 136
pure.   24.   51
re-entrant,   24
serially  reusable,  24 

command  search table,   120

commands.
memory.   109
monitor,   108 comments,   17,  

21 compare   (CMP),   9.   37-8,  
41

address   (CMPA),  38
immediate data  (CMPi),  38
memory   (CMPM).   38.   81
with  zero   (TST).   42,   48 

compiler,   12,  69 condition  
code,

carry/borrow  (C),  9
clear,  84
extend  (X).  9
invert,  84
negative   (N),  9
overflow  (V),  9,  86
register  (CCR),  84
set.   9.   37.   39.   43-4,   84
test setting  (Bcc,  DBcc,  Sec), 9
zero   (Z),   9 conditional   branch,  

9,  35,  37,
39,   43,   58 constant definition  

and  exception
handlers  In  monitor,   110 

control  addressing  modes,  32 
control  of  memory,  88 control  
operands,  32 control   port  of  ACIA,   
46-7 convert to  lower case,   118 
converting  hexadecimal  numbers

to  characters.  87 
coprocessors.   16 current 
location,  25

data,
address  relative  to  PC,   10
alterable  addressing  modes, 32
area  pointer.  62
immediate.  30,  36,  41,  42
operands,  32
port  of  ACIA,   46-7
registers   (DO  to  D7),   7
storage,  89
transfer to  peripherals.   13 DBcc.   

9.   39.   44-5.   66 DBEQ.  45 DBF,   
44 DBRA,   44-5,   47 DC  directive,  
20 debugging.   11,   102,   107.   109 
rificimal   arithmetic.   78-82

decrement  test  and   branch. 
conditional   (DBcc),  9,  39,

44-5,   66 if  equal   (DBEQ),   45 if 
false   (DBF),  44 unconditional   
(DBRA),  44-5, 47 define  constant  
(DC)  directive,

20 define  storage   (DS)   
directive,  20 direct address  range,  6 
direct  memory access  (DMA),

14,   102 directive  syntax.   
18.  20-1 division.   15.   75-6.   
85-6 long,   75
signed   (DIVS).   75,   101 unsigned   
(DIVU),  75-6,   101 zero  trap,   75-6 
DIVS,   75.   101 DIVU,   75-6.   101 
DMA  (direct  memory access).

14.   102 Dn   (data  
register),  23 double  bus 
fault.   104 DS  directive.  20

effective  address.  23,  32,  60
END  directive,   20
entering  a  user  program  from

monitor,   124 entering   
hexadecimal  numbers,

19 entry sequence.   
63 EOR.  84
EOR  to  CCR.   84 EOR  to   SR.   84 
EORI,   84 EPROM.   59 EQU  
directive.   18,   40 error  messages,   
11 evolution  of  microprocessors,   2 
examine  memory  locations  in

monitor,   107,   108 examine  
user's  register set  in

monitor,   107 exception  handler,  
97,   125,   141,

136 exception  vector,   93-4,  
97

exceptions,  30,   93,  96,   109
address  error.  97
bus  error,  97
external,  93
internal,   93
reset,  97
routine  handling,  97-8.   109 

exchange  registers  (EXQ),   70 
excluslve-or  (EOR),  84 EXO,   70
exit sequence, 63-4 
expressions, 21, 23 
EXT,   70-1
external device  handling,  10,  13 
external  reset,  93 externally  
generated  exceptions, 93

FORTRAN,   11 forward 
jump,   58 forward  
references,  24 free store  
allocation,  89

halted  state,   102
handling  exceptions,  97-8,   109
handling  external devices.   10.

13 handling  traps.   109 
hardware  trap,   11 hexadecimal,   19,  
87,   108 high  level   language  
support,   11 history of  
microprocessors,   1 home  
computers,  2

I/O.   46.   112
I/O  page,  41
iAPX  432,   3,   7
illegal  actions.   11,  94.   100
illegal   instruction  exception.   100
illegal   instructions.   94
immediate,

add   (ADDI),   68
address  mode,  30,  33
AND   (ANDI),   84
compare   (CPMI),   38
data.   30.   36.   41,   42
EOR   (EORI),   84
OR   (ORI),   84

subtract   (SUBI),   69 implicit  
addressing,   31 index  register,  
25-6 indirect addressing,   27 
initialisation   and  command 
handling,   118



Input.   116
input and  output.  46,   112 
Instruction  prefetch.   132 
instruction  syntax,  21 
instructions  -  use  of

mnemonics.   16 
instructions that can  cause

traps.   11.   100 integer 
arithmetic,   22 integrated  circuits,  2 
Intel  4040.  2 Intel   80286.   3.   6 
Intel   8080.   2,   4 Intel   8085,   2,   
4 Intel   8086,   3,   4 Intel   8088,   4 
Intel   iAPX  432,   3,   7 internal  
registers.   7 internally  generated  
exceptions,
93 Interrupt,   13.   30.   93,   96-7,   
99, 131

level.  6
mask.   97
mode  of ACIA.  46
priority  mask,   9
routines,   88.   112
vectors.   14 Introduction  to  the  

68000.   7 invert condition  code.  84 
invert status,  84

JMP.   18,   20.   25.   31.   58-9
JSR.   59.   61.   63
jump,   8.   9.   24,   26.   35.   54.   58.

98.   115 absolute.   10.   58 
back  In  hardware  debugging,

11 backwards,   58 forwards,   
58 jump   (JMP).   18,   20.   25.   
31.

58-9 to  absolutely 
specified

destination.   10 to fixed  place  
in  hardware

debugging,   11 to  
relatively  specified

destination,   10 to  subroutine   
(JSR),   59,   61.

63

L suffix  (long  word).   17.  25.  28 
label.   18,  25

LEA,   60-1.   67
left  arithmetic  shift   (ASU,   86
left  logical  shift  (LSD.  85-6
left  rotate   (ROD.  86
left  shift,  86
length  suffix.   17.  25.  28
level  of priority.  97
library of  subroutines.   56
LINK,   12,   15,   63-4
link   (LINK),   12,   15,   63-4
load  effective  address   (LEA),

60-1,  67 loading  program  in  
store,   10 logical  operations,  9,  83,  
87

and   (AND).   80.   84,   87
complement  (NOT),  83-4
exclusive  (EOR),  84
or   (OR).   80.   83-4
shift.   85-6
shift  left  (LSD.  85-6
shift   right   (LSR).   82.   85-6 long   

division.   75 long  multiplication,  71 
long  word   (32-bit),   7 loop,   36,   
44-5,   58. lower case -  convert to.   
118 LSL.   85-6 LSR,   82.   85-6

machine code.   12-13.   16 main  
communication  cable

(bus).   14 mainframe  
computer,   3 main  
memory,  7 mask,  97 
masking,   84.   87 memory

addressing   modes.  32
byte.   19
check.  64-6
commands  in  monitor.   109
control,   88
diagnostic  program,  40
examine  and  update  routines in   

monitor,   127
locations  examine  and  alter. 107
map.   109
operands,  32
simple  diagnostic  program,  40
virtual,   15 mini   

computer,   3

mooes,
absolute   (Assembler),  35 
address.   15-16.  23,  31-2 data  
alterable  address.  32 immediate  
address,  30,  33 postincrement  
address,  45,

50-3,   64,   81 predecrement  
address.   36.
50-3.   63.   81 processor.   13 

supervisor,   107 trace,   9,   11,   107 
user,   13,   107 monitor,   13,   107-8,   
124 MOS Technology 6502,  2,  3 
Motorola  6800.   2 Motorola  68000,   
3,   14 Motorola  68008.   14 Motorola   
68010,   14.   97.   104 Motorola  
68020.   15.   70.  82,   97.

104 Motorola   6809.   2,  4 
MOVE,   33-7,   39.   41-2.   48-9.
51-3;  60-1.   64.   68.   72,   88, 96 
move,

address, (MOVEA),   35,   60,   67 
data   (MOVE),   33-7,   39,   41-2, 
48-9.   51-3.   60-1.   64,   68, 72.   
88.   96 from   SR.   98 multiple   
(MOVEM),   12-13.

51-4.   57.   63-4,   98 
quick   (MOVEQ),   42 to 
and  from  a  stack
(MOVEM),   12,   13,   51-4,   57. 
63-4.   98 to  CCR,   98 to  
peripheral  (MOVEP).   13.
48-9 to  SR.   98 USP,   96,   102 

MOVE  to   CCR,   98 MOVE   SR,   
15,   98 MOVE  to/from   USP,   96,   
102 MOVEA.   35.   60,   67 MOVEC,   
15 MOVEF,   15 MOVEM,   12,   13,   
51-4.   57.   63-4.

98 MOVEP.   13.   48-9 
MOVEQ,   30.   42 MOVES.   15 
moving  small  numbers.' 42

MULS.   70,   130 multi-processor  
interlocks,   3 multiple exceptions,   
105 multiple precision  arithmetic,  68 
multiply,   15,   70-1.   85 long,   71
signed   (MULS).  70,   130 
unsigned   (MULU).  70.   72 
MULU.   70.   72

N  condition code flag  -
negative,  9 National  

Semiconductor
NS16032,   3.   6 

NBCD.   78,   81 NEG.   
69
negating values. 69 binary (NEG). 69 

binary coded  decimal   (NBCD).
78.  81 binary with  extended   

(NEGX).
69.   81 NEGX.   69.   81 nesting  

subroutines,  57 nibble,  87 NMI,   99 
non-maskable  interrupt  (NMI),

99 no  operation   
(NOP),   16 NOP,   16 NOT.   
83-4

operand
control,   32
data,   32
left-hand   (source),   17
memory,   32
order  In  assembler,   17
right-hand  (destination),   17
word,  8 operating  

system,   13-14 operation  
word,   8 operations

arithmetic.  9,   83
logical,   9,  83,  87
on  single  bits.  87 OR,   80,   83-4 

order of operands in  assembler
17 ORG  directive,   19.  

24 ORG.L directive,   19.  24 
ORI,   84
ORI  to  CCR,  84 
ORI  to  SR,   84



output,   65.   114-15 
overflow.   12.   86

PACK.   15.   82 
Pascal.   11,  64
PC   (Program  Counter),  9.  24-5 
PEA,   61,   67,   128.   134 peripheral  
handling,   13 physical  registers,  96 
polled mode of ACIA, 46 portablity of  
programs,   11 position  independent 
code,  10,

19-20,   24.   51.   59,   107,
119,   136 postincrement 

address  mode,
45,   50-3,   64,   81 

predecrement address mode,  36,
50-3,   63.   81 pre-fetch,   52 

printing  hexadecimal  numbers,
115 priority  level, 97 priority order 

of exceptions.   105 privilege.   13 
level,  96 violations,   101 privileged  
instructions  in  user

state,  94 processing  
exceptions,  97 processor modes,   13 
program  counter  (PC),  8,  24-5 pure  
code,  24,  51 push  effective address  
(PEA).

61,   67,   128,   134

quick form  of  instructions,  30 add   
(ADDQ),   30,   68 move   
(MOVEQ),  30,  42 subtract  
(SUBQ),  30

RAM,   3,   5,   40
re-entrant code,  24
read  a  hexadecimal  number

from  keyboard,   116 read  
character,  112 read-modlfy-write,  6,   
14,  88 references  (backward),  24 
references   (forward),  24 reflection  
of characters,   112-13

register,  6-7,   14
direct addressing,  23 display and   
update,   121 indirect with  
displacement,  27 indirect with  
displacement  and

index,  28 indirect with   
predecrement or

postincrement.  29 use  
of mnemonics.   16

relative addressing,  24-5
relative  destination  branch,   10
relative destination jump,   10
releasing  areas of store,  89
relocatable  information,  20
relocatable  program,   19
relocatable  section,  25
relocatable  symbols,   19,  22, 

25-6
relocatable value,  20
reserving  areas of store,  89
RESET.   96,   101
reset.   47.   95.   97.   99.   118
reset and   initialisation  of ACIA. 47
reset exception.  97. 99
reset vector.  95
return  address.  54
return  and  restore  (RTR),  98
return  from  exception   (RTE).  96, 

98.   112
return  from  subroutine  (RTS), 55,   

57,   61,   98,   115,   118, 128
right arithmetic  shift  (ASR),  86
right  logical   shift   (LSR).   85-6
right  rotate   (ROR).  86
right shift,   86
ROL,   86
ROM,   2,   5,   119
ROR.   82,   86
RORQ  directive,   19
rotate,   85-6 extended  left  

(ROXL).  86 extended   right  
(ROXR),  86 left   (ROD.   86 
right   (ROR).   82.   86

routine addresses,  97
routines exception  handling,  97
ROXL,   66
ROXR,   86
RTE,   96,   98,   112
RTR.   98
RTS.   55.   57.   61,   98,   115,   118, 

128

saving  values  on  a  stack,   51
SBCD,   78,   81
See.   9.   15,   39,   43-4
semaphores,  88
serial  line  interrupts,  46
serial   line  parity selection,  46
serially  reusable  code,  24
set,

breakpoints,   107 condition  code.  
9.  37,   39,

43-4,   '84 overflow condition  
code,  86 status,  84

to zero   (CLR),   18,  41-2,  44, 
setup  mode  of ACIA,  46 shift,   49,   
85-6 arithmetic,  86 circular,   86 left.  
86

left  arithmetic   (ASL).  86 left  
logical   (LSL).   85-6 logical,  
85-6 right,  86

right arithmetic  (ASR),   86 right  
logical   (LSR),  85 sign  extend   
(EXT).   70-1 sign extension,  24 
signed  arithmetic,  70,  75 
signed  division,   75,   101 
simple  data   movement,  33 
simple  input output,  46 simple  
memory diagnostic

program,  40 simple  
monitor command

routines,   120 single  chip  
computer,  2 SP  (stack  pointer),   7,  
31,  50-5,

57,   62,   64,   96 specifications 
of  processors,   3-7 SR  (status  
register),   8,  31,   84,

93,   96-8 SSP  (supervisor  
stack  pointer),
31,   53,   96-8 stack,   12,   29,   31,   
50-5,   57. 60-4,   80,   97-8.   109.   
115. 118,   128,   132 pointer   (SP),   
7,   31,   50-5,   57.

62.   64.   96 
register,  6
saving  values  on,   51 
space  allocation,  62 
system.  97,   133-4 top of,  
50 user.  57.  98

stack  (continued;.
user  pointer  (USP).  31,   53,
96-7,   126 user  register,  6 star  

symbol   (*).  25 star/comment  line  
in  assembler,

17 status clear,   84 invert,  84 
register   (SR).   8.   31.   84,   93,

96-8 set,   84 STOP,   96,   102,   
104 stop  execution  and  wait  
(STOP),

96,   102,   104 stopping  the  
processor obeying

instructions,   10 
store,   7
allocation,   83,   89.   91 
releasing,  89 reservation,   89 
size  finding   routine,   105 SUB,   
69,   81 SUBA,   69 SUBI,   69 
SUBQ.   30.   69
subroutine,   53-9,  61-5.   71.   76, 79,   
82.   93.   98.   112,   114. 120 calls.   
30 library,   56 link   (LINK),   63-4 
nesting,   57 unlink   (UNLK),   64 
subtract,   22.   30.   69 address   
(SUBA).   69 binary   (SUB).   69.   81 
binary coded  decimal   (SBCD),

78,  81 extended   (SUBX).  69 
immediate data  (SUBI),  69 quick  
(SUBQ).   30.   69 SUBX.   69
suffix  .B  (byte  length),   17 suffix  .L 
(long  word  length),   17,

25,   28 suffix  .W  (word   length),   
17,   25,
28 summary of addressing   modes, 31



I

supervisor,  96 
bit.   9
mode.   3.   13.   107 stack.   97-8 
stack  pointer  (SSP),  31.  53,
96-8 state.   6-7.   9,   15,  

96-8 support for  high  level
languages.   11 SWAP,   70,   

72 swap  register  halves  (SWAP).
70.   72 swapping  register 

values.   70 symbol  #.  30 symbol   
*.  25 symbolic  name for  memory

address  of instruction,   18 
symbols  (absolute),   19,  22 
symbols  (relocatable),  19,  22,

25-6 syntax,  21 system  
byte,  9 system  registers.  94 
system  stack,  97,   133-4

TAS,   6,   14.   87-8
terminal  output,  65
test.

and   set   (TAS).   6.   14.   87-8 
bits   (BTST),   43.   47.   87 
condition  codes.  9.  35,  43-5 if 
equal  to zero   (TST).  42

thermionic valves.   2
TMS9900.   5
TMS99000,   3.   5
TMS9940.   2,   5
TMS9980.   5
TMS9981.   5
TMS9985.   5
TMS9995,   5
top  of stack,  50
trace,   85,   94,   97,   102,   125 bit,   

9
exception,   134 mode,  
9,   11.   107

transfer of data to  peripherals. 13
transistors,  2
TRAP,   11,   13,   100.   103.   110. 

135

trap.   93.   96,   109,   125,   131
causes  (debugging).  11
division   by zero,   75-6
exception,   11
hardware,   11
if overflow   (TRAPV).   11-12. 

75,   101
vector.  96,   107 TRAPV,   

11-12,   75,   101 TST,   41-2,   
48

unimplemented  instruction
exception,   100 unimplemented  

Instructions,  94 unlink   (UNLK),   12,   
15,   64 UNPK.   82
unsigned  arithmetic,   70,  75 
unsigned  division,  75 updating   
registers.   108 user.

byte of the  status  register,  98
mode,   13.   107
register set - alter.  107
register set - examine.   107
stack,   57,   98
stack  pointer  (USP).  31,   53, 96-7,   

126
state,   6,   9,   96,   98 USP  (user  
stack  pointer),   31, 53.   96-7.   
126

V condition  code flag  -
overflow,  9,  86

valves,  2 <•
vector base  register,   14 
virtual   memory,   15

W  suffix   (word).   17.   25.   28 
warmstart,   59 word   (16-bit).   7 
write  character,   113

X condition  code  flag  -  extend, 9

Z condition  code flag  - zero,  9 280,  2,  
4 Z8000,   3,   5 Zilog  Z80,   2,   4 Zilog  
Z8000,   3,   5


