

Contcnts

This book is in the
Addison-Wesley Microcomputer Books
Popular Series

Copyright © 1983 by Addison-Wesley Publishing Company Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of the
publisher. Published simultaneously in Canada.

Set by the authors in Helvesan and Messenger using a pagination program written by
T. J. King and running on a 68000.

Cover illustration by Stuart Hughes.

Printed in Finland by OTAVA. Member of Finnprint.

ISBN 0-201-11730-4
ABCDEFGHIJ-876543

Chapter 1 Introduction 1
Evolution of microprocessors 2
Introduction to the 68000 7
Position independent code 10
Debugging aids provided by the chip 11
Support for high level languages 11
Operating system support 13
Some typical applications 14
Other processors in the 68000 series 14

Chapter 2 Assembler syntax and addressing modes 16
Assembler syntax 16
Assembler directives 18
Summary of assembler syntax 21
Expressions 21
Addressing modes 23
Categories of effective address 32

Chapter 3 Moving and comparing data 33
Simple data movement 33
Conditional branches 35
Comparing data 37
More conditional branches 39
A simple memory diagnostic program 40
Comparing and moving zero 41
Moving small numbers 42
Testing bits 43
Testing conditions 43
Loop control 44
Simple input and output 46
Moving data to peripherals 48

Chapter 4 Stacks and subroutines 50
Subroutines 53
Absolute jumps 58
Effective addresses 60
Allocating stack space 62
A memory check example 64

Chapter 5 Arithmetic 67
Addition 67
Subtraction 69
Negating values 69
Multiplication 70
Swapping register values 70
Long multiplication 71
Division 75
Long division 75
Decimal arithmetic 78

Chapter 6 Logical operations 83
Shifting and rotating 85
Converting a hexadecimal number to characters 87
Operations on single bits 87
A free store allocation package 89

Chapter 7 Exception handling 93
Exception vectors 94
User and supervisor states 96
How exceptions are processed 97
Routines to handle exceptions 97
Interrupts 99
External reset 99
Illegal and unimplemented instructions 100
Instructions which can cause traps 100
Privilege violations 101
Tracing 102
Bus errors and address errors 103
Multiple exceptions 105
A store size finding routine 105

Chapter 8 A complete example: A monitor 107
Constant definition and exception handlers 110
Input and output 112
Branch table handling 117
Initialisation and command handling 118
Simple command routines 120
Register display and update 121
Entering a user program 124
Memory examine and update routines 127
Breakpoints 130
Exception handling 131
Messages and tables 136

Appendix The 68000 instruction set 139

Index 146

Preface

We have organised this book so that it can be read from beginning to end; read in this
way it presents a complete introduction to assembly language programming for the
68000. For the more experienced reader, a summary of the instruction set is provided
as an appendix. This gives brief details of each instruction and a page reference to a
more complete description in the main text.

The information about the successors to the 68000. the 68010 and the 68020.
has been obtained from advance publicity from Motorola. We would like to thank
Motorola for this information, and also for permission to include material from their
documentation on the 68000 itself. Motorola wish us to include the following
disclaimer.

Motorola assumes no responsibility for any inaccuracies in this text. and reserves
the right to make changes to any of the products described to improve reliability,
function or design. Motorola does not assume any liability arising out of the
application or use of any product described herein. No licence is conveyed under
patent rights in any form. Specifications of new products are subject to change
without notice.

We would like to thank various colleagues at the Universities of Cambridge and
Bath for their help with this book, and particularly Dr. Arthur Norman for permission to
include his long division routine. We would also like to thank Agi Lehar-Graham for
drawing the diagrams and Jessica King for her help with the index.

March 1983 Tim King
Brian Knight

Chapter 1

Introduction

As Its title implies, this book concentrates on the 68000 microprocessor as seen by
the programmer, and almost completely avoids discussion of hardware issues. It is
aimed at the reader who has access to a built 68000 system, and is concerned with
how to program it effectively.

The book is self-contained, introducing the architecture of the machine and its
instruction set in a logical order. It can be read without any need to refer to Motorola
documentation for the 68000, although the latter should be consulted for details such
as the bit pattern of each instruction.

The discussion of each instruction points out any unusual features of Its
operation, both pitfalls to avoid and particular uses. Many of these features are of the
kind which are easily overlooked when reading the formal definition, and which will
waste time and cause confusion when they are tripped over in practice. As each
instruction is introduced, one or more worked* examples are given to illustrate its use.
These examples are intended to be useful code fragments which can be employed in
larger programs. They are used here to build up a small monitor program which
provides simple input/output and debugging facilities.

The remainder of this chapter gives a brief history of the evolution of
microprocessors, and compares the 68000 with others in current use. It then gives a
general description of the features of the 68000 and some typical applications. The
second chapter introduces the assembler syntax employed in later chapters, and
explains the operand addressing modes of the instructions.

The following chapters present the instructions in related groups. Chapter three
describes the various ways in which data items can be moved about and compared
with one another. The concepts of stacks and subroutines are introduced in chapter
four. Chapter five covers the instructions provided for doing arithmetic and includes
routines for multiplication and division of larger numbers than can be handled directly.
The logical operations for working on individual bits are described in chapter six, and
they are used In the code of a store allocation package. Chapter seven deals with
interrupts and traps, Illustrating the writing of interrupt routines, and the use
of traps as

1

system calls, for error detection, and for debugging programs. The
final chapter gives a complete example of a small monitor, which
handles terminal input and output and provides a convenient
environment for debugging other programs.

Evolution of microprocessors

A constant trend throughout the 40-odd year history of electronic computers is that as
time goes on it becomes possible to make them smaller and smaller. The earliest
machines used thermionic valves, required a large room to house them, and
consumed huge amounts of power. The invention of transistors enabled the size and
power consumption to be reduced by several times. In the 1960s, it became possible
to produce Integrated circuits consisting of a few transistors and associated
components fabricated in one small chip of silicon, making it possible to build a
computer in one cabinet of reasonable size. In the early 1970s the technology of
Integrated circuits had advanced to the point where it was possible to put all of the
central processor of a simple computer onto one chip - the first microprocessors.
Since then we have seen a decade of rapid progress, and there are now available
microprocessors which have not compromised in power in order to fit on one chip,
and which compete directly with computers produced from discrete components.

The earliest microprocessors which found appreciable use were those which
could operate on only 4 bits of data at a time, such as the Intel 4040. These were
suitable for simple control applications (e.g. vending machines, alarm systems) and
unsophisticated arcade games but little more, as they were slow, cumbersome for
data In useful units, and could address only a very limited amount of memory.

It was after the introduction of 8-bit machines that microprocessors became
widespread. The most popular of these include the Intel 8080 and 8085, the Zilog 280
(which has the 8080 instructions as a subset of its instruction set), the MOS
Technology 6502, and the Motorola 6800 and 6809. It is usual for machines
described as 'N-bit processors' to have some capability for handling Items 2N bits in
size. Most of the above can perform arithmetical and logical operations on 16-bit
quantities, though the 6502 has no 16-bit internal registers.

Some of these 8-bit chips became very cheap, so were viable for building into
other equipment, and could also be used for moderately powerful and inexpensive
home computers. At the time of writing, almost all personal computers intended for
domestic or small business use are based on either the Z80 or the 6502.

As 8-bit micros evolved, there was a tendency towards removing 'untidy' features
of their implementation, such as requiring several power supply voltages, multi-phase
clock inputs, or multiplexed address/data lines. It is now normal for new designs to
need a single 5 volt supply, a single phase clock input (or just a crystal to control an
internal clock), and to have each connecting pin performing just one function. Some
(such as the Z80) provide assistance with refreshing dynamic semiconductor
memory.

Another development has been the introduction of limited single-chip computers,
such as the TMS9940. These have some memory holding a fixed program
(ROM) and some alterable memory

(RAM) as well as the processor, enabling special purpose computers to be produced
in a single package, improving the ease with which they can be wired up to other
circuitry. Such devices are most suited to being designed for. and built into, a
particular piece of equipment.

From the software point of view, the next important development was the
introduction of 16-bit and 32-bit microprocessors at the end of the 1970s. These
blurred the distinction between mini-computers and micro-computers, as most of the
common minis were 16-bit machines. Among the first such chips were the Texas
TMS9900 series, Intel 8086, TMS99000. Zilog Z8000, and the subject of this book,
the Motorola 68000. Newcomers which are not widely available at the time of writing
include the National Semiconductor NS16032 and Intel's 80286 and iAPX 432.

The 68000 stands out from its predecessors as being perhaps the first
microprocessor with an architecture and instruction set resembling that of a large
mainframe. It has a very large directly accessible address space, the ability to
manipulate items 8, 16, and 32 bits in size. 16 registers each 32 bits long, some
instructions intended to ease the compilation of high-level languages, a supervisor
mode which can be used to prevent unprivileged programs accessing certain regions
of memory or directly initiating I/O operations, and provision for multi-processor
interlocks.

The following tables present a brief specification of each of the above processors
for comparison. Note that some care should be exercised when comparing the
speeds of different processors, as later models of a particular machine are usually
capable of running at greater clock rates than earlier ones. Thus speed can reflect
how long a machine has been on the market, rather than indicating the potential of
the design.

*

ZHog Z80

Direct Address Range:
Quickest Instruction:
General Registers: Other
Registers: Interrupt
levels:

64 Kbytes
1 microsecond (4MHz clock) 7
(8-bit) + duplicate set
2 16-bit index registers. 16-bit stack pointer 2

TMS9900 series

Direct Address Range:
Quickest Instruction:
General Registers: Other
Registers: Interrupt
Levels:

64 Kbytes (TMS9900)
2 microseconds (4MHz clock)
16 (but held In RAM. not internally)
Workspace pointer (i.e. registers)
16 (TMS990C.9995). 4 (others)

The 8-bit registers can be paired and used as 3 16-bit registers. The instruction set
supports 16-bit arithmetic and block moves and searches in memory. The instructions
of the Intel 8080/8085 are. a subset of the Z80 instructions.

64 Kbytes
2 microseconds C2MHz clock)
2 (8 bit)
2 index registers. 2 stack pointers (16-bit)
3

The two 8-bit accumulators can be combined as a 16-bit
register. The instruction set allows limited 16-bit arithmetic and 8 * 8 bit multiplication.

Intel 8086

The registers are held in an area of RAM pointed to by the workspace pointer
register. In the TMS9995 they are cached internally. There are instructions for 16-
bit multiply and divide.

This is a family of processors with a common instruction set:

9900 basic model
9940 single chip computer with built-in RAM and ROM
9980/81 8-bit bus only, can address only 16 Kbytes
9985 single chip computer with built-in RAM (but no ROM)
9995 registers cached internally

TMS99000

64 Kbytes
0.5- microseconds (6 MHz clock)
16 (held in RAM)
workspace pointer (pointer to registers)
16

Direct Address Range: 1 Mbyte
Quickest Instruction: 0.4 microseconds (5MHz clock)
General Registers: 4 (16 bit)
Other Registers: base registers, stack/index
Interrupt levels: 2

The address space is divided into 4 segments (code. data, stack, and extra) which
may overlap. All addressing Is relative to segment base registers; a segment base
address is a multiple of 16. The 8086 has 24 operand addressing modes, can do
signed and unsigned 16-bit multiplication and division, has loop instructions, and can
do an Indivisible read-modlfy-write memory access. The Intel 8088 processor can run
all the same software as the 8086. but has an 8-oit (rather than 16-bit) external bus.
and so can be used with 8-bit support chips.

The 99000 can address up to 16M bytes of segmented memory using a support chip.
It can add. subtract, and shift 32-bit quantities. It has a supervisor mode, and test-
ai%d-set instruction for synchronizing multiple processors. Instruction decoding is
such that instruction codes which are not built-in can be handled by user microcode
(held on chip), user code in external RAM, or by an attached processor.

8 Mbytes
0.75 microseconds (8MHz clock)
16 (16 bits)
memory refresh counter, status area pointer
2

There are six address spaces, each of which can be 8
Mbytes in size. There are two versions of the chip: a 'segmented' one with 8 Mbytes
address range, and an 'unsegmented' one with 64 Kbytes address range. The first 8
registers can be used as 16 8-bit registers. The registers can be used as 16 * 16 bits.
8 * 32 bits, or 4 * 64 bits. Multiply is available for 16-bit or 32-bit operands, divide for
32-bit or 64-bit dividends. Shifting can be performed on 8. 16, or 32-bit registers.
There is a supervisor mode, test-and-set instruction, and other instructions for
interfacing multiple processors. The Z8000

Direct Address Range:
Quickest Instruction:
General Registers: Other
Registers: interrupt Levels:

Motorola 6809

Direct Address Range:
Quickest Instruction:
General Registers: Other
Registers: Interrupt
levels:

Zilog Z8000

Direct Address Range:
Quickest Instruction:
General Registers: Other
Registers: Interrupt Levels:

b

has instructions for block copy, and character translation. It has 8
address modes, but only 4 types of processor trap.

it possible to provide virtual memory of up to 1 gigabyte (1000 megabytes). There is
hardware support for rapidly performing a task switch after an interrupt, without
intervention by the operating system.

Motorola 68000

Direct Address Range: 16 Mbytes
Quickest Instruction: 0.5 microseconds (8 MHz clock)
General Registers: 16 (32 bits)
Other Registers: user stack register
Interrupt Levels: 7

The internal architecture is 32 bits wide, and most operations can be performed on 8,
16. or 32-bit values. The only important omission from a full 32-bit capability is the
lack of 32-bit multiply and divide. The address space is linear. The registers are
divided into 8 data registers and 8 address registers; some operations can use only
one type. One of the address registers is duplicated; which one is available depends
on whether the processor is in supervisor or user state. There are 14 operand
addressing modes, many types of processor trap, and instructions available only in
supervisor state. A 'Test and Set' instruction is provided for read-modify'-write
memory access.

Intel iAPX 432 system (from preliminary information)

The processor of the iAPX 432 system consists of two chips: the 43201 instruction
decoder, and the 43202 execution unit. I/O is handled by 43203 interface processors.
Data can be handled in units of up to 32 bits, and floating point numbers up to 80 bits
long are supported. Addressing is capability-based, allowing protection to be applied
to individual data structures. Up to 16 megabytes of real memory can be addressed,
while software can use up to a terabyte (1000 gigabytes) of virtual address space.
There is built-in support tor multiple processors, multitasking, and dynamic storage
allocation. The instructions vary in length from a few bits to several hundred bits, and
have the unusual property that the start of an instruction does not need to be aligned
to any particular memory boundary. Two processors may be coupled pin-to-pin such
that one checks the operation of the other, to give high system reliability.

National Semiconductor NS16032 (from preliminary specification)

Direct Address Range: 16 Mbytes
General registers: 8 (32 bits)
Other Registers: stack frame pointer, static variables pointer.

user/interrupt stack pointers, interrupt base

The 16032 has 32-bit architecture, and has several features intended to support high
level languages. There are registers for addressing stack frames and static variables
of , high level languages, and addressing modes to support communication between
software modules with different data spaces, and to handle arrays of 1, 2, 4, or 8-byte
objects. There is also support for bit fields and floating point number operations.

Intel 80286

Direct Address Range: 16 Mbytes
Quickest Instruction: 0.2 microseconds (10 MHz clock)
General Registers: 8 (16 bits)
Interrupt Levels: 2

The 80286 is upwards compatible from the 8086/8088 and can run programs written
for those machines with little or no change. The differences are in speed, and in the
support provided for protected multi-user systems. Memory management and
protection facilities are included in the processor chip, making external memory
management unnecessary. All instructions are restartable after an exception,
making

Introduction to the 68000

The rest of this chapter gives an overview of the 68000 as a background to the
detailed information in later chapters. Some specific instructions . are mentioned with
only a brief description; this is intended more for the reader who has already met
assembly language on another computer. Don't worry if these appear mystifying: they
are explained fully later.

The memory available to the 68000 is of two different kinds: the internal registers
(i.e. on the chip), and the external main memory. There are 17 registers, of which
only 16 are available at any given moment. Eight of them are data registers named
DO to D7, and tne others are address registers called A0 to A7. Each register
contains 32 bits. In many contexts either kind of register may be used, but others
demand a specific kind. Any register may be used for operations on word (16-bit) and
long word (32-bit) quantities or for indexed addressing of main memory (see chapter
2). Only data registers may be used for operations on byte (8-bit) operands. Only
address registers may be used as stack pointers or base registers for addressing
main memory. The register A7 is duplicated; which physical register is actually used
depends on whether the processor is in supervisor state (see below).

The main memory consists of a number of bytes of storage - how many there are
depends on the particular computer system. Each byte has an identifying number,
called its address. Memory is usually (but
not always) arranged so that its bytes have addresses 0, 1, 2
N-2, N-1 where there are N bytes of memory in total. The size of memory which can
be directly accessed is very large -.up to 16 million bytes. The 68000 can perform
operations on bytes, words, or long words of memory. A word is two consecutive
bytes of which the first has an even address. A long word is four consecutive
bytes also

o

starting at an even address. The address of a word or long word is
the (even) address of its (lowest numbered) first Dyte.

It is worth noting that a 68000 address can always be represented in 24 bits, so
there are 8 spare bits when an address is held in a long word or in a register. This
means that addresses are always positive numbers, so there are no catches when
two addresses are compared to see which is higher. The fact that addresses can be
negative on some other computers which have 16-bit words and 16-bit addresses can
be a cause of very obscure errors. In some situations it is very convenient to make
use of the eight spare bits, allowing some extra information to be held with a pointer in
a long word. This might be an indication of what sort of object the pointer refers to, or
simply a flag to say that this is a pointer to a value rather than the value itself. A
warning should be issued here: preliminary information from Motorola indicates that
they intend to use full 32-bit addresses in future models of the 68000 series, so
exploitation of the spare 8 bits may result in programs which are difficult to move to
these future models,

As well as holding items of data being manipulated by the computer, the main
memory also holds the instructions which tell tne computer what to do. Each
instruction occupies from one to 5 words, consisting of an operation word and
between zero and four operand words. The operation word specifies what action is to
be performed (and implicitly how many words there are in the whole instruction). The
operand words indicate where in the registers or mam memory are the items to be
manipulated, and where the result should be placed.

Instructions are normally executed one at a time in the order that they occur in
memory, rather like performing the steps in a recipe or playing the notes in a piece of
written music. There is a special register called the program counter which is used to
hold the address of the Instruction to be obeyed next. Some instructions, called
jumps or branches, upset the normal order, and force execution to continue with the
instruction at a specific address. This enables the computer to perform an action
repeatedly, or to do different things depending on the values of data items.

There is one other special register, called the status register whicn is used to
remember particular things about the state of the computer. The status register has
the following layout

The significance of the bits in the system byte will be explained more fully in
chapter 7.

Trace bit This is set to 1 if the processor is in trace mode,
and to 0 otherwise.

Supervisor bit This is set to 1 if the processor is in supervisor state,
and to 0 if the processor is in user state.

Interrupt mask Indicates which of 7 interrupt levels are enabled.

The user byte contains the five condition code flags. These flags
are set by certain instructions such as arithmetic or comparison
operations to convey information about the result to later instructions.
The condition codes have the following meanings

Z The result was zero

N The result was negative

V Overflow occurred during 2s complement arithmetic (i.e. the result is too big to fit
In the destination)

C Carry (or borrow, in subtraction) occurred

X Extend flag. This is used in multi-length operations (e.g. adding two 64-bit
numbers). When it is affected, it will be set the same as the carry flag, but X is
altered by fewer instructions than C.

The settings of the condition codes can be tested by the families of
instructions Bcc, DBcc, and Sec, which are introduced in chapter 3.

The instructions of the 68000 fail naturally into a small number of groups, and the
following chapters each deal with one group. Many instructions are concerned with
moving data about - between memory locations, between registers, or between
registers and memory. Others perform arithmetic or logical operations, such as
adding, or compare data items. The branches and jumps are used to control the
order in

10
11

which program steps are obeyed. A few other instructions do various things, such as
stopping the processor obeying Instructions, or handling external devices connected
to the computer.

Position independent code

Computer programs are often written in such a way that they contain fixed memory
addresses specifying the whereabouts of data items or the destinations of jumps.
Such a program has to be loaded into a particular place in memory, otherwise it will
not work. This may be acceptable on a simple computer system which has only one
program in store at once, but it is often much more convenient if a program can be
placed anywhere in memory. Such a program is said to be written in position
independent code.

The Instruction set of the 68000 makes It easy to write programs in such a way
that they can be loaded anywhere in store. This is because the instructions which
cause program jumps specify the destination of the jump in a relative rather than an
absolute way. For example, a branch does not have to be of the form 'go to the
instruction at address 5000', but can be specified as 'go to the instruction 192 bytes
before this one'. The latter form will work wherever the program is situated in memory.
Most computers have branch instructions like this, but usually they only allow a jump
up to 128 bytes away from the current instruction, and this is often too little. The
68000 allows jumps up to 32768 bytes away, which will be adequate for virtually any
program.,

The other aspect of position Independence relates to the addressing of data. The
rich set of addressing modes of the 68000 (see chapter 2) means that data items can
be accessed relative to an address held in a register, so that a program can easily set
up its data areas anywhere in memory.

A truly position independent program would be one which could be placed initially
anywhere in memory and then moved elsewhere during its execution. Such a
program would have to address data relative to the program counter. The 68000
allows one to read data from locations relative to the program counter, but does not
allow locations addressed in this way to be altered. This is deliberate, and intended to
encourage the clear separation of the areas of memory devoted to program and data,
which is good programming practice.

Thus the 68000 makes it straightforward to write programs which can be loaded
anywhere in memory, can set up their data areas anywhere, and which can be moved
during execution if the data areas stay in the same place.

Debugging aids provided by the chip

The 68000 processor has a number of features to make detection and location of
programming errors easier. Some of these are built-in checks for illegal actions, while
others are things which the programmer can use to help him debug a program.

The processor has the ability to force a hardware trap when certain things
happen. This means that the normal flow of Instruction execution is interrupted, the
place where It stopped is recorded, and a jump made to a fixed place in memory. This
place should contain a piece of program which can take suitable action, for instance
printing out an error message telling the user what happened, and asking him
whether or not he wants to allow his program to continue. If he does, then a jump can
be made back to the place where execution stopped.

The following events cause a trap to occur:

- Access to a word or long word with an odd address
- Encountering an unimplemented or illegal instruction
- Attempt to access memory which does not exist
- Dividing a number by zero
- Spurious interrupt from a peripheral device

Certain instructions can cause traps. The TRAPV instruction causes a trap if the
last arithmetic operation overflowed. It can thus be included after each arithmetic
operation in the program if this check is desired. Similarly, the CHK instruction will
trap if the value in a register is greater than a specified number. This can be included
to check that a memory access is within a particular region of data.

The Instruction TRAP always causes a trap. It can be inserted at strategic points
in a program to cause it to stop so that the contents of registers and memory can be
inspected, allowing the operation of the program to be checked in stages.

A final debugging aid is a tneans whereby a program can be executed one
instruction at a time, providing a very powerful way of detecting exactly where a fault
occurs. This is achieved by setting one of the bits in the status register, putting the
machine into trace mode. In this mode, a trap is taken after each instruction is
obeyed. With the help of a suitable debugging program to intercept this trap, the user
can step through critical regions of his program to check Its operation in detail. This is
a facility which it can be very difficult to provide on a computer without a trace mode.

The use of traps in debugging is Illustrated in chapter 7.

Support for high level languages

The 68000 has been designed in the knowledge that many of its users will not want to
program it in assembly code, but will instead wish to use one of the many high level
computer languages, such as FORTRAN, Pascal, or Algol68. A high level language
program is written in a form which is much closer to ordinary English than assembly
language. This means that programs can be written much more quickly and easily
than in assembly code, and mistakes in them are usually easier to find. Such
programs can also have the advantage of being

12
13

portable. That is, they will work on any machine on which the language is available;
assembly language programs can run only on the type of computer for which they
were written.

A program called a compiler is used to translate commands written in a high level
language into machine code, the instructions which the computer understands. The
machine code produced by a compiler is usually of rather poor quality compared to
that which a human could write, it tends to do things in ways which take more
Instructions than actually necessary, meaning that code from a compiler occupies
more memory and runs more slowly than that written by a human. However, now that
computing power and memory are comparatively cheap. It is quite acceptable to
waste them in order to save human effort.

The 68000 has features Intended to simplify the writing of compilers for high level
languages, and to enable them to produce reasonably efficient code. The fact that the
machine has 16 all purpose registers is helpful, as it means that frequently used
pointers and values can be kept in registers all the time, so that there will not be so
much code generated just to shuffle things around between memory and registers.
The regular and consistent structure of the instructions and address modes simplifies
the part of the compiler concerned with actually generating the machine code. Most
instructions can operate on objects of three different sizes and employ any of the
address modes. The ability to address directly a large amount of memory simplifies
the organisation of storage for a language.

Several instructions are included specifically for high level languages. Programs in
such languages are usually written as separate modules or routines which are
combined to form the complete program. When compiling one module, the compiler
does not know from where in the program it will be used, and hence does not know
which machine registers and which areas of memory can safely be used within the
module. The problem of deciding which registers are available is most easily solved
by saving the contents of some registers when the module is entered, and restoring
them all again when it is left. The instruction MOVEM does just this, copying from a
specified set of registers to memory or back again. It is very flexible, being able to
save or restore any arbitrary group of registers.

The instructions LINK and UNLK allow each program module called to allocate
itself a private area of storage from a stack (see chapter 4). The effect of LINK is to
save a pointer to the current workspace, and to reserve a new one of specified size.
UNLK inverts the operation, releasing the space allocated and restoring the pointer to
the old one.

The instructions mentioned in the section on debugging aids, such as CHK and
TRAPV, can also be employed to good effect in compiled code so that errors such as
arithmetic overflow, or an attempt to use memory outside a particular data structure,
can be detected immediately. Being single instructions, the inclusion of such checks
does not greatly slow down execution of the program. A compiler can reliably include
such instructions at every appropriate place something it would be difficult for a
human to do.

Operating system support

A bare computer is an object which is rather difficult to use. The only thing it can do is
to execute instructions coded in its own machine language. For this reason, it is
normal always to run a program to make the machine easier to use. Such a program
is called an operating system; a very simple operating system is sometimes called a
monitor.

A typical operating system will handle all the peripheral devices attached to the
computer, interpret commands typed by the user at the terminal, and manage the disc
storage to provide files with names convenient for humans. It may allow several
programs to be run apparently at the same time, in fact by switching between them at
a rapid rate. It will also handle certain errors in a running program, print an
informatory message for the user, and provide him with commands for inspecting his
program in store and the contents of the registers.

The 68000 has many features which are necessary or helpful in supporting an
operating system. It gives the operating system the means to protect itself from
damage caused by the programs it runs, and to maintain control over those programs.
This is achieved by using the two processor modes: supervisor mode and user mode.
The operating system runs in supervisor mode, and switches the processor to user
mode before allowing any other program to run. Several critical instructions are
privileged and may not be executed in user mode. The processor chip has an output
line which indicates the mode during each access to memory or peripherals, making it
possible to attach hardware so that the peripherals and certain areas of memory are
available only in supervisor mode. Thus the operating system can protect the store
holding Its code and private workspace, and be sure that it is the only program with
access to the peripherals. It must be possible to ensure that no user program can set
supervisor mode, but that it can call operating system routines and have them run In
that mode. The first is achieved because the instructions which can change mode are
privileged. The second is achieved through the TRAP instruction (see chapter 7).
which can simultaneously cause a jump and alter the mode.

The 68000 has vectored Interrupts and traps (see chapter 7): this allows each
peripheral device to signal to the processor, causing a direct jump to an appropriate
piece of code to deal with that device, thus simplifying the operating system. The
provision of several levels of interrupt makes it possible to organise the processing of
interrupt signals from different devices such that the most urgent ones get dealt with
first.

The MOVEM instruction is useful again in operating systems. When an interrupt
or trap occurs, there is an immediate jump to some point in the operating system; the
code there must save the contents of any registers which it wishes to use Itself.
Another special instruction is MOVEP, provided specifically to simplify the transfer of
data to peripheral devices.

When two programs are being run in parallel, it will sometimes be necessary to
allow one of them to claim exclusive access to some resource (e.g. a device or area
of store). This is most simply done by having a flag byte in memory which
indicates whether the resource

14 15

is free. The resource is claimed by waiting until trie flag is free and then setting it.
However, the actions of inspecting and setting the flag must be performed as an
indivisible operation, otherwise two programs could both find the flag free, and both
claim the resource. The test and set (TAS) instruction is provided for just this
purpose. It can also be used for interlocks between programs running In several
processors sharing the same memory, because the processor retains control of the
memory for the whole TAS instruction. This is sometimes called a read-modify-write
cycle.

The 68000 processor includes bus arbitration logic, to allow its bus (main
communication cable) to be shared between all the devices connected to it. This
includes the memory, terminal, discs, and other processors. Intelligent devices can
get at the memory directly, without having to interrupt the processor. Such an
arrangement is called direct memory access (DMA). For instance, the processor
could asK a disc device to transfer some data from the disc to memory. The device
could do the transfer using DMA, interrupting only when it had finished, and leaving
the processor free to execute some more program in the meantime.

Some typical applications

The 68000 is as yet still too expensive to be used in equipment which does not
actually need its speed or large memory capacity; such applications are likely to
remain the domain of the inexpensive 8-bit microprocessors. Its use lies in more
demanding situations, such as computer terminals, graphics workstations, word
processors and medical equipment. As a general purpose computer, it is a serious
rival to minicomputers of all sizes. The large address space means that it can make a
powerful personal computer which can run programs which previously could only run
on a mainframe machine. It can also be used to support several users at once,
although in this case some memory mapping hardware is required to isolate one user
from another.

Other processors in the 68000 series

The 68000 is just the first model in a range of similar processors. This section briefly
describes the three other models which had been announced at the time of writing:
the 68008. 68010, and 68020.

The 68008 is simply the 68000 with an 8-bit (rather than 16-bit) external data bus.
It enables the processor to be used with 8-bit support chips, giving some reduction in
circuit complexity and cost, at the expense of reduced execution speed.

The 68010 is very similar to the 68000, but with some modifications to improve
operating system support and to make it faster. There is a new internal register,
called the Vector Base Register, which holds the address of the base of the interrupt
vectors (see chapter 7). It is set to zero by default (for compatability with the 68000),
but can be altered, allowing different operating system processes to handle their
own traps in a straightforward way.

A number of changes have been made to the information stored on the stack after
an exception. In particular this will enable an instruction which caused a bus error to
be restarted. This allows the implementation of a system with virtual memory in which
programs appear to have access to more memory than is physically available. The
operating system ensures that those sections of virtual memory actually in use at any
moment are copied Into real memory, while the rest is held on backing store such as
a disc. The translation of virtual addresses into real addresses is arranged in such a
way that an attempt to use a location which has not been copied into real memory will
cause a bus error. The operating system responds to the bus error by fetching the
relevant part of the virtual address space into real store, and then resuming execution
with the instruction that caused the bus error.

The 68010 has two new instructions: MOVEC and MOVES. MOVEC is used for
access to various control registers, including the Vector Base Pointer. MOVES allows
reading and writing of the address spaces which would normally be inaccessible. Data
accesses are normally made to the User Data or Supervisor Data address spaces,
according to the current privilege level. However, there are two 3-bit function code
registers (one for source and one for destination) which can be set by MOVEC, so
that a program running in supervisor state can then use MOVES to read or write
locations in the Supervisor Program, User Program, or User Data address spaces.

Various instructions execute more quickly in the 68010 than in the 68000,
including the 32-bit arithmetic and logical operations, CLR, Sec, and MOVE SR. Also,
the bus error timings have been relaxed, so there is no execution speed penalty for
having error detection on memory.

The 68020 processor contains all the new features of the 68010, plus others to
increase support for 32-bit operations. It has a full 32-bit external data bus, 32-bit
offsets in branch instructions, and 32-bit displacements in indexed "addressing
modes. The instructions CHK, LINK, UNLK. MUL. and DIV can take 32-bit operands.
An extra addressing mode is available, allowing indexed addressing with two levels
of Indirection.

The 68020 has an instruction cache, enabling small loops to run very fast as the
instructions do not have to be repeatedly fetched from memory. It also has a
complete coprocessor interface, allowing the instruction set to be extended by the
addition of other chips (e.g. to provide floating point arithmetic).

There are several new instructions available on the 68020. These include an
instruction for moving blocks of data between address spaces, more sophisticated
entry and exit operations for procedure calls in high level languages, and MOVEF for
moving various sized bit fields. The range of instructions for packed decimal data is
extended by PACK and UNPK, which convert between characters and decimal
numbers.

17

Chapter 2

addressing modes

This chapter provides the necessary background for the introduction of the various
machine instructions in later chapters. It explains the assembler syntax - that is, the
way a program is written down - and the addressing modes, which are the different
ways In which instructions locate the data on which they are to act.

Assembler syntax

The only language which the computer itself understands is machine code, which can
be considered as just a pattern of bits, or as a list of numbers, in its memory. A
program in this form is rather hard for a human either to understand or to write.
Consequently, programs are more usually written in assembly language, which
directly corresponds to the machine code, but makes use of mnemonic names for
Instructions and registers. It also allows the programmer to use symbolic names for
addresses within the program, and for other values. A program called an assembler is
used to translate from the assembly language into machine language. The form of the
assembly language presented below is the same as that used by Motorola and
accepted by their assemblers. If you are using an assembler from another source,
you may have to use a variant of the language: consult your manual to find out if
there are any differences.

A program is composed of a series of steps called instructions. Each instruction is
written as one line of assembly language. The instruction itself has a mnemonic name
of 3, 4. or 5 letters, and for some instructions the name is all that need be written on
the line. An example is

NOP

which is an instruction that does nothing at all! (Such an instruction is not completely
pointless: It can be useful when debugging as a replacement for some unwanted
instruction, and can also be used when a very short delay is required.)

Note that the name has been written indented from the left hand margin; the
reason for this will be made clear below.

However, for most Instructions, the name alone is not sufficient, as we must also
specify where in the registers or memory are the data on which they are to operate.
This Is done by putting the operand after the name (with one or more spaces in
between), as in

CLR D3

which clears to zero the least significant 16 bits of data register 3. If there are two
operands, then they are separated by a comma (but no spaces). The left hand
operand is usually the source from which a value is read, while the right hand one is
the destination, in which the result is placed. It is Important to note that the operands
are written in this order, particularly if you are used to an assembly language for
another computer which works the other way round. A simple example is

MOVE D1,D4

which just copies the least significant 16 bits from data register 1 to register 4
(without affecting the rest of either).

The 68000 has the useful feature that many of its instructions can work on data of
three different sizes: byte (8 bits), word (16 bits), or long word (32 bits). To indicate
which length is required, the suffix '.B'. '.W, or '.L' is added to the name; '.W is
assumed if no suffix is added. Thus, the above instruction is the same as

MOVE.W D1,D4

and to copy all 32 bits of the register, we would write

MOVE.L D1,D4 *

Similarly, to clear just the least significant 8 bits of a register, we would say

CLR.B D3

It is a good idea to get into the habit of always using the length suffix (i.e. not missing
off the optional '.W'), as a common programming error on the 68000 is using the word
form of an instruction by mistake. This can cause obscure faults in a program, which
can be difficult to track down. You are much less likely to make this mistake If you
always put in the qualifier.

Anything else on the line after the instruction and its operands (if any) is ignored
by the assembler. This allows the insertion of comments in the program in order to
make it more easily understood by a human reader. If a line starts with a star, then
the whole line is treated as a comment.

* This whole line is a comment
CLR.L D3 A comment after an instruction

16

i«
19

The extensive use of comments in programs is strongly recommended. Although
it may seem tedious to include them when the program is being written, they make It
very much easier for someone other than the author to understand it, or for the author
himself to modify it some time after he originally wrote It.

In the examples above. Instruction names have been written indented from the left
hand margin. If a line does not start with a space, then the first item Is taken to be a
label, which is a symbolic name for the memory address of the instruction on that line.
The name of a label may be any word which starts with a letter and contains just
letters and digits. (In practice, most assemblers allow some other characters to be
used in names. In the examples in this book, we have used the underline character '_'
to improve the readability of names.) The assembler remembers the label and the
address which it refers to, and the label may be used elsewhere in the program to
refer to that address. This is particularly useful with jump instructions, which cause
execution to continue at a specified address.

CLRD3 CLR.L D3 Labelled instruction

JMP CLRD3 Jump to instruction labelled CLRD3

A label may also be written Indented from the margin, by putting a
colon after its name

CLR03: CLR.L D3

Making use of labels in this way relieves us of having to know the actual address
of the CLR instruction, and means that we do not have to alter the JMP instruction
every time modifications to the rest of the program cause this address to change.

Assembler directives

As well as instructions and comments, the assembler also accepts directives, which
are commands to the assembler itself. Tney are written in the same way as
Instructions, but (with the exception of DC and DS) do not cause any code to be
generated. The only directives described here are a few basic ones which are likely to
be available in the same form in most 68000 assemblers. Most assemblers will have
other directives as well, to control things such as layout of the assembly listing, format
of object module produced, and to provide facilities for conditional assembly and
macros.

An example of a directive is EQU. which equates a symbolic name to a value
(rather like the way a label is a name for an address). For example

SIZE EQU 100

sets up SIZE as a name for the value 100. Wherever 'SIZE' is used in the program,
the assembler will act as if '100' had been written

instead. This can be useful in several ways. If several parts of the program depend on
this value, it is much easier to alter if SIZE is defined once at the beginning and used
throughout, rather than if '100' is written explicitly in several places. It can also make a
program more comprehensible to human readers if mnemonic names are used for
numbers.

Memory in the 68000 is thought of as an array of 8-bit bytes. numbered 0, 1, 2.
upwards. The number of a memory byte is called Its address. There are two
directives for controlling the location in memory of the assembled code. One is ORG,
which specifies a particular address for the origin (i.e. first instruction). The
sequence

ORG 1024
START CLR.L D3

will cause the assembler to produce the code assuming that it will be placed at
address 1024 onwards. Thus the label START will have value 1024. The assembled
code will be marked with this address so that It can be loaded at the correct position.
Code starting with ORG is called absolute code, because its address is fixed; labels
within it are said to be absolute symbols. A program which includes an ORG is
unlikely to be position independent, as it will contain explicit references to particular
addresses. ORG has an alternative form. ORG.L. which affects the assembly of the
absolute addressing mode (see below).

it is often convenient to be able to write numbers in a program in hexadecimal
(base 16). or 'hex', notation Instead of in decimal. The digits used are 0 to 9. and then
A to F representing 10 to 15. The assembler accepts hexadecimal numbers starting
with a dollar character. Thus

ORG 5400

is the same as ORG 1024 (= 4*256 + 0*16 + 0*1). Throughout this book. '$' is used
to introduce hexadecimal numbers.

The complementary directive to ORG is RORG. which indicates that the program
Is relocatable, meaning that it may be placed anywhere in memory. RORG also
takes an argument, but this should normally be zero. If we alter the above program
fragment to

RORG 0
START CLR.L D3

then the value of START will not be known to the assembler. START will be given the
value zero (because that is its offset from the beginning of the section) and the fact
that it is relocatable will be noted. Labels such as START are examples of
relocatable symbols -symbols whose value will not be known until the program is
loaded into memory. Wherever a relocatable symbol is used, the assembler will try to
produce the code in a position independent way. Thus. In

the JMP instruction will be coded as 'jump to the instruction X bytes before here',
where X is calculated by the assembler. If a relocatable value is used in such a way
that position independent code cannot be produced, then the assembler will include
with the code a list of those words within it whose values must be filled In when the
program is actually placed in store. It is not until then that those values can be
known. This list is called the relocation information.

Two directives are available for reserving and initialising memory locations. The
OS (Define Storage) directive is used to reserve an area of memory. It takes a suffix
indicating the size of the locations. and an operand which says how many such
locations are to be reserved. Examples are

The memory reserved is not initialised to any particular vaiue. Unless the size
specifier is '.B'. then the space is aligned to a word boundary, so 'DS.W 0' can be
used just to force word alignment. If the DS directive is labelled, then the label will
refer to the address of the first location reserved (after any alignment).

The DC (Define Constant) directive is used to assemble particular values into
memory locations. It takes the usual three size specifiers. and one or more operands
separated by commas. If the size specifier is not '.B'. then alignment to a word
boundary is forced as for DS. The operands may be numbers, expressions, or a string
of characters enclosed in single quotes. A string of characters after DC is treated
specially: it is not taken to be a character constant (see "Expressions" below), but
instead one byte is assembled for each character. If DC.W or DC.L is used, the final
word or long word is padded with zero bytes if necessary.

Summary of assembler syntax

There are three main types of assembler line: comment lines. instruction lines, and
directive lines. A comment line starts with an asterisk; any characters may appear
on the rest of the line.

* This is a comment line

An instruction line has the general form

label opcode operand(s) comment

Each field is separated from the next by at least one space, and the label, opcode
and operand fields may not contain embedded spaces (except inside quoted
character strings). The label and comment are always optional. The opcode field
consists of an instruction name. optionally followed by a length qualifier C.B'. '.W, '.L',
or '.S'). The number of operands is determined by the instruction opcode. If no
operands are expected, then the assembler will treat anything after the opcode field
as comment. If there are two operands, then they should be separated by a comma
(but no spaces). A directive line has the general form

label directive argument(s) comment

The label field is not allowed for some directives, and is compulsory for others. If
there are two or more arguments, they should be separated by commas.

Expressions

As we have seen above, in most places where you might write a number, you can
write a symbol representing that number. In fact, we can replace a number by an
arithmetic expression containing symbols and numbers. A variety of arithmetic
operators are available, including +, -, * (multiply), and / (divide). We can write
things like

20

Summary of assembler directives

The directive END is used simply to mark the end of an assembler program.
The last line of any program should be

END

22 23

DAYHRS EQ0 24 Hours in a day
DAYMINS EQU DAYHRS*60 Minutes in a day
DAYSECS EQU DAYMINS*60 Seconds in a day

The value is worked out using integer arithmetic, so all results are whole numbers.
This matters only for division, where the result is rounded down so, for example, 7/3
is 2.

Numbers may be written in decimal or hexadecimal (preceded by a '$'). Another
way of specifying a number is as a character constant. This consists of between one
and four characters enclosed in single quotes, and its value Is that of a long word with
the specified characters in the rightmost (least significant) byte positions, and zeros
on the left. Character constants are most useful for single characters, and should be
used in preference to the numerical code for a character to improve readability. For
example

CHARZ EQU 'Z' Code for letter Z
CASEDIFP EQU 'A'-"a" Difference between codes
* for upper and lower case
* forms of same letter

We have seen above that symbols are of two types: absolute and relocatable.
There are no problems in arithmetic with absolute symbols, as they are just like
numbers. However, there are restrictions on what you can do with relocatable
symbols and still produce a meaningful result. The basic rule is that the answer must
either be absolute, or relocatable in the same way as the original symbols. Thus
multiplication or division involving relocatable quantities is not allowed, nor is addition
of two relocatable values. A constant may be added to or subtracted from a
relocatable value, giving a relocatable result (which is just the address of a different
point in the same relocatable section). We could write

RORG o Relocatable section
START CLR.L D3 This instruction is two bytes long

CLR.L D4

JMP START+2 Jump to second CLR.L above

though it would be better practice to put a label on the instruction we actually
want to jump to.

It is illegal to subtract a relocatable number from an absolute one, but perfectly all
right to subtract one relocatable number from another. The result is an absolute
number, as it represents the distance apart of two points in a program, which will be
the same wherever it happens to be placed in memory. In the program

RORG 0 Relocatable section
PSTART MOVE.L PEND-PSTART,DO Set DO to program length

the first instruction moves the length (in bytes) of the whole program into
DO. Note that we have used a label on a line by itself: its value is the address
of the byte after the last one assembled. The above rules can be summarised in
a table:

Addressing modes

Most of the instructions of the 68000 can accept their operands in a variety of forms.
They can be in registers, in memory locations addressed by a variety of methods, or
even included in the instruction itself. Because the instruction set is organised in such
a regular way. it is possible to describe the various addressing modes independently
of the instructions. The term used to describe an operand which can be expressed in
any (or almost any) of the addressing modes is an effective address.

Register direct addressing

Operand data may be held in one of the data registers or one of the address
registers. The register name is written as Dn or An, where n is a digit from 0 to 7.
For example

MOVE.L A7,D5

copies all 32 bits of address register 7 into data register 5. If the length is 'word', only
the least significant 16 bits of the register are read or altered. Length code 'byte' may
not be used with address registers; with data registers only the bottom 8 bits are
affected.

Absolute addressing

An operand in memory may be located by giving the absolute address of its first
(most significant) byte. The operand is written simply as a number, or as a label or
other symbol representing the number. To clear the byte at location 1000 (hex),
we could write

CLR.B 51000

PEHD

24 25

There are in fact two forms of this addressing mode, as the absolute address can
be held as a 16-bit or a 32-bit number in the instruction. In the short form, the 16-bit
address is sign-extended to 32 bits before it is used. This means that the most
significant bit of the 16-bit number is copied to the most significant 16 bits of the
address. Thus, the short form can be used to address the bottom 32K bytes of
memory, and a region of up to 32K at the top of memory, but nowhere in between.
For backward references, the assembler can always choose the correct length, as it
already knows the address of the location being referred to. A length qualifier may be
added to the ORG directive in order to control which form of this addressing mode will
be chosen for forward references: ORG.L asks for the long mode, while ORG asks for
the short one. What this means in practice is that, if a program in absolute code
extends to addresses above 32K (=$8000), then ORG.L must be used in order to
inform the assembler that forward references may need more than 16 bits.

These address calculations can be represented diagramatically (with '<«' used to
Indicate sign extension).

Short absolute Mode

Relative addressing

Two modes allow memory to be addressed relative to the current value of the
program counter (PC). This is used mainly for jumps in position independent code,
but can also be used to read constants bulit into the program. A location addressed in
this way may not be written to: this Is to encourage the writing of pure code. This is
code which does not alter itself as it runs, and so can be executed again with the
same effect, or indeed executed as part of several programs running simultaneously.
Pure code is said to be re-entrant, meaning that it is always available to be used
again. A lower level of 'purity' is code which is serially reusable, meaning that
it can be used again

once it has finished, but may not be in its proper state all the time that
it is running.

In the simpler of the two relative addressing modes, the memory address is
calculated as the sum of the current program counter and a 16-bit displacement
value. During the execution of an instruction. the value of the program counter is two
more than the address of the start of the instruction. The displacement is treated as a
signed 16-bit number, so it is possible to represent addresses from instruction-32766
to instruction+32769 in this way.

operand address

This mode can be requested by writing the operand address as an offset from the
start of the current instruction. The symbol '*' is available to refer to the current
location. We can thus write things like

JMP *+10 Jump to the instruction 10 bytes on

but it is not advisable to do so, as firstly we must calculate the offset ourselves, and
secondly, remember to alter It if any instructions are inserted in between. It is
easier and safer to use labels.

The assembler will generate this mode automatically if a reference
is made in a relocatable section to a relocatable symbol defined in
the same section. If we write »

then the assembler will use the program counter with displacement mode
for the JMP Instruction.

The other program counter relative mode is similar, but the contents of a register
are also added in when calculating the address. Such a register is called an index
register, and may be any of tne 16 registers. How much of the index register is
significant is indicated by suffixing the register name with '.W' (the default) or '.L'. The
displacement value in this mode is only 8 bits long, .but signed, so can modify the
PC value by -128 to +127.

26 27

30 31

Take care if you choose to use A7 in either of these modes. This register is
special in that the hardware uses it automatically In some situations (interrupts,
exceptions, and subroutine calls), and expects it always to contain an even address.
Because of this, these two modes will adjust the value of A7 by two. not one. in a
byte-size instruction, to keep its value even.

Immediate data

This addressing mode allows the operand value to be held in the instruction itself,
and is allowed for source operands only. The data value is written #number, and the
length to which it is stored depends on the data size of the instruction. Thus

MOVE.B #$FF,DO

inserts the hex number FF into the low byte of DO, while

MOVE.I, #$56789ABC,D0

sets the whole of DO to 56789ABC (hex).
A common programming mistake, and one that is not necessarily detected

quickly, is to miss off the '#' in an immediate operand. If we had written

MOVE.B $FE,D0

by accident, then the result would be to load the contents of memory location $FE,
instead of the value $FE, into DO.

Some instructions have a so-called 'quick' variant which allows a small immediate
operand to be included in the Instruction. The syntax Is as for the normal immediate
mode. An example is the MOVEQ instruction, which takes an 8-bit signed operand

MOVEQ #-3,D7 Set D7 to -3 (size is Long)

There are similar instructions for adding or subtracting a number between 1 and 8.
For example

ADDQ.Ii #4,A2
SUBQ.B #1,(A1)

Summary of addressing modes

The table below provides a brief summary of the addressing modes
described above.

Implicit addressing

This is not a general addressing mode like the ones above, but is another way of
locating an operand. Implicit reference to operands occurs in a few instructions which
automatically make use of particular machine registers or stack locations. Registers
whose use can be implicit are the program counter (PC), the processor status
register (SR). and the stack pointer registers (SP) which are the two incarnations of
address register 7 (USP and SSP).

An example of implicit addressing which we have already seen is the JMP
instruction, which modifies the program counter in order to effect the jump.

32

Categories of effective address

in many instructions where an operand is specified as an effective
address, not all of the above addressing modes are allowed. The
forbidden ones may be nonsensical or just undesirable. Consider the
following (illegal) Instructions:

JMP D6 Jump to a register
JMP ~(&5) Decrement A5 by 1, 2, or 4?
MOVE D4,#77 Copy D4 into constant 77

in order that the restrictions on any operand can be expressed concisely, the
various address modes are put into four overlapping categories: data references,
memory references, alterable operands, and control references. Thus, we may talk
about 'control addressing modes', 'data alterable addressing modes', and so on.

Data operands include everything except the contents of address registers, while
memory operands are anything not held in either sort of register. An operand is
alterable if it may be written to. Control operands are those which can be used to
indicate the destination of a jump.

The categories to which each mode belongs are summarised in the table below.

Chapter 3

Moving and comparing
data

The most elementary instruction in the 68000 instruction set is called MOVE. Its
purpose is simply to move information from one part of the computer system to
another. Unlike many other computers, there is no distinction within the 68000
between moving data in to or out of registers. It is also possible to move data from
one memory location to another directly without having to use an intermediate
register.

Simple data movement

There are a number of variants on the basic MOVE instruction which we shall come
to later. Consider first a simple program to fill memory with data. The immediate
address mode may be used for the source. while the absolute form can be used for
the destination. Thus

MOVE.B #123,BYTELOC *

will set the single byte of memory defined by the label BYTELOC to contain the
decimal number 123.

We could instead use a register as the destination, and use the form

MOVE.I. #123,Dl

which sets the data register Dl to contain the value 123. Notice that in this case we
have used the long form of the instruction rather than the byte form. The data
registers are 32 bits wide, and so we have set the entire register to the value 123. If
we use any other form of the MOVE instruction, such as

MOVE.B #123,Dl

then the effect is simply to set the low order byte to the value 123.
The rest of the register Dl is left unchanged in this case. Although
this effect is often useful, it Is also an easy mistake to accidentally
move a byte into a register without first ensuring that the register is

33

34
35

empty. This Is particularly likely when moving a byte of data from memory into a
register. The instruction

MOVE.B BYTELOC,Dl

does not set register Dl to the byte value stored In location BYTELOC. Instead it slots
the byte value of BYTELOC into the bottom 8 bits of Dl. Of course if subsequent
instructions acting on the value stored in Dl are only byte length Instructions then
everything will work perfectly. But beware of using the Instruction in cases such
as

MOVE.B BYTELOC,Dl
MOVE.L Dl,LONGLOC

which will set the 32 bit value at LONGLOC to the top 24 bits of the previous value of
Dl. and the byte at LONGLOC+3 to the value stored at BYTELOC.

Another popular trap to fall into Is to forget that a byte length Instruction alters the
bottom 8 bits of a register, but the top 8 bits of a memory location. A reference to
store starts using it from the address specified, so that moving a byte to LONGLOC
will alter a single byte at that location.

If the word form of the instruction is used then two bytes will be written, at locations
LONGLOC and LONGLOC+1. But placing a word into a register using the word form

of the instruction and then storing the register at LONGLOC using the long form will
alter four bytes from LONGLOC to LONGLOC+3; the top two bytes will contain the
previous value of the register and the bottom two bytes will be the word value moved
into it.

Any data alterable address mode may be used as the destination of a MOVE
operation, and any address mode can be used as the source, with one exception.
This is when the byte sized version of the Instruction is used, and in this case an
address register may not be used as the source.

When a MOVE instruction Is used to move data into memory or into a data
register, the condition codes in the status register are set accordingly, if the data
value moved was zero then the Z bit in the status register is set. otherwise it is
cleared. If the value was negative then the N bit is set. otherwise it Is cleared. The V
bit, which is used to indicate overflow, and the C bit. normally set when a carry has
occurred, are both cleared. The X bit is used to remember that a carry has occurred
at the last arithmetic instruction, and so this status bit is unchanged.

These changes to the status register do not take place when a value is moved
into an address register. This is because it is useful to adjust the value of an address
register used as an index without altering the condition codes which might be tested
in a subsequent instruction. In order to remind you of the difference, a separate
instruction MOVEA (for MOVE Address) is used to move data into an address
register. In fact the instruction opcode is the same as that used for MOVE, and many
assemblers will allow you to simply use MOVE to an address register instead of
specifying MOVEA. It is normally a good idea to use MOVEA where required in order
to remind yourself that the condition codes are not set.

If we now wanted to set a number of consecutive locations to the same value we
could write the following small program to do it.

The first line of the program sets the assembler into absolute mode starting at location
$1000. Line two loads address register AO with a value which will be used as a

pointer further on. This pointer is initially $2000. Similarly line three sets all 32 bits of
data register D2 to the value 0. Lines four to six take the value stored In register D2
and place it into the location given by the contents of address register AO. The
operation is of size long, so the four bytes $2000 to $2003 are set to zero. Because
the (A0) is followed by a plus sign. we have asked for the address register to be
incremented after the operation has been performed. The address register A0 will be
incremented by 4 because the MOVE instruction was of size long. If we had specified
MOVE.W then A0 would have been incremented by 2. and If we had used MOVE.B
then it would only have been Incremented by 1.

The register A0 therefore now contains $2004, and so line five will set bytes
$2004 to $2007 to zero, and increment A0 again to $2008. Similarly line six will set
bytes $2008 to $200B, leaving A0 containing $200C.

Conditional branches

We have already seen that the MOVE instruction will set the condition codes while
moving data from one place to another. We can use this fact to write a small program
to clear a large section of memory. Not a very exciting program perhaps, but all we
can manage with only two instructions. The new instruction which we require is one
found on most computers - the conditional branch.

A conditional branch is an instruction which tests one or more ot the condition
codes and jumps to another part of the program depending on whether the condition
code is set or not. There are several sorts of conditional branch instruction
memonics corresponding

36 37

to the various condition codes. Initially we are only interested in the instructions BEQ
and BNE. The former causes the computer to jump to the location specified if the Z
status bit is set, otherwise the next Instruction after the BEQ is executed. It can be
read as 'branch it equal to zero'. Similarly the latter is 'branch if not equal to zero', and
causes a jump unless the Z status bit is set.

With these limited tools we can design a program which clears
memory from a given location to location zero.

As in the previous example, the first line sets up our program origin, while the next
line initialises our pointer register. Line three moves immediate data of zero into the
location pointed at by address register AO. The MOVE instruction is of size long, and
the address register is used in predecrement mode, so the value in AO is
decremented by 4 before the instruction is executed. Thus the first time the instruction
is executed AO will contain $FC, and locations $FC to $FF will be set to zero. Note
that the byte at location $100 is not altered.

Line 4 at first seems rather strange, as we are simply moving the value of the
pointer into the data register Dl. But remember that all MOVE instructions except
those where the destination is an address register cause the condition codes to be
set. Thus if AO contained zero then the Z status bit would be set after this operation.
The first time through AO will be $FC, and so the Z bit will not be set. This means that
line 5 will cause control to be moved back to line 3, labelled LOOP. Again, AO will be
decremented to $F8 and locations $F8 to $FB will be set to zero. As AO is still not
zero, line 4 will ensure that Z is not set, and we will loop round again. This will
continue until AO is $4. This time when AO is decremented it will be zero. Locations 0
to 3 will be cleared by line 3, but line 4 will move the value zero from AO into Dl. This
will set the Z condition code, so that the branch is not taken, and the program
terminates.

Our tiny program could be improved in a number of ways. One way is to replace
line 3 by

MOVE.B #0,-(AO)

which would only set the single byte pointed at by AO to zero. In this case the
instruction is of length byte, which means that AO would be decremented by one
before the operation. The program would work in exactly the same way as before, but
would only set a single byte each time round the loop rather than four bytes at a time.
This will take much longer to execute, as the loop is performed four times as often.
The extra time is partly offset by the fact that a MOVE instruction of length byte
takes less time than one of length long.

The real difference is that the program would be shorter, as tne immediate data
will be held as a word rather than as two words within the program. In this case
the extra two bytes are a small price

to pay for the increase in speed, but as in most computing problems there is always
a choice between space and speed.

One way in which the program can be made smaller with no loss of
speed is to replace the BNE instruction with

BNE . s LOOP

All the conditional branch instructions have a long version and a short version, in
either case the value stored with the branch is not the actual location to be jumped to,
but a signed number indicating how far away the required label is from the current
place in the program. The long version uses two bytes to store this displacement,
while the short version only uses one byte. Placing a ,S after the memonic tells the
assembler to use the short branch version of the instruction. It can only be used when
the label to be branched to is less than 128 bytes before or ahead of the branch. The
version without a qualifying letter allows branches up to 32767 bytes before or ahead.
Some assemblers will use the short form automatically for backwards branches, but if
the branch is to a label which has not yet been declared the assembler will always
use the long form unless told to do otherwise by specifying the short form.

Comparing data

In the previous section we used the fact that the condition codes are set by the
MOVE instruction. This is normally only useful if we want to move a value
somewhere, but also check if the value is zero or negative. In many cases we want to
compare two values, and this is exactly what the CMP instruction does.

A common use of CMP is to see if two values are the same. If the two operands
used in the CMP_ instruction are identical, then the Z condition code will be set.
Thus the section of program

CMP.L D0,D1
BEQ EQUAL

will cause a jump to the label EQUAL if DO and Dl contain the same value.
The actual operation of CMP is to subtract the first operand from the second and

to set the condition codes appropriately. The actual result of the subtraction is thrown
away, and the original value of the second operand is unchanged. The condition
codes are all either set or cleared except for the X code which is unchanged.

There are four versions of the CMP instruction, and many assemblers will choose
the correct version automatically. The CMP form may only be used with a data
register as the destination operand. The vaiue compared may be specified as byte,
word or long. Any address mode may be used as the source, with one exception.
This is when the size is specified as a byte, and in this case the source cannot be
held in an address register, although it can be pointed to by one. Thus a valid
example would be

CMP.B 12(a3),D0

which would compare the byte held at offset 12 from the location pointed at by A3
with the low order 8 bits of DO.

The CMPA version of the instruction may only be used with an address register
as the destination operand. In this case the value may only be specified as word or
long, and any address mode may be used as the source. If the word form of the
instruction is used. the value given is sign extended to 32 bits and the resulting long
value is used in the comparison. Thus

CMPA.W #$FFFF,A2

would set the Z condition code if A2 was equal to -1 ($FFFFFFFF). and would not
set Z if A2 contained $FFFF.

The CMPi version may only be used with a data alterable destination, so that the
contents of an address register or a program counter relative value may not be used.
The source must always be immediate data, and the Instruction can be any of the
three lengths. Thus

CMPI.B #$OA,-(AO)

will decrement the value stored in AO by 1. and then compare the value $0A with the
byte pointed at by the new value of AO. CMPI can be used with a data register as the
destination operand, and in this case the operation is the same as if CMP had been
used with immediate data as the source operand.

The final version of CMP is used to compare memory locations, and Is specified
by CMPM. In this case the source and destination operands can only be specified
using postincrement address mode. The comparison can take place on a byte, word
or long word. This is useful in comparing large sections of memory. Consider the
following fragment of program, which will compare TOO bytes of memory starting at
location $1000 with 100 bytes starting at $2000.

Here we load up two address registers with pointers to the area of memory which we
wish to compare. Line three compares the two bytes pointed at by the address
registers, and increments the pointers. If the two values are not equal then line four
jumps out of the loop. If they were equal, we must carry on and check the next two.

The address registers have already been incremented ready for the next comparison,
but first we must check to see if all the bytes have been examined. Line five
compares the first pointer with the base address plus 100. If A0 does not yet equal
this value, line six jumps back to label LOOP to look at the next pair of bytes.
Otherwise we drop through and we know that the two 100 byte areas are the
same.

More conditional branches

So far we have only learnt about conditional branches which test for two types of
condition. These are BEQ which branches if the Z bit is set, and BNE which branches
if the Z bit is not set. As you would probably suspect, there are are a number of other
versions of the Bcc instruction which test other conditions.

The first group of these are governed only by a single bit in the status register.
Just as BEQ and BNE cause a branch to be taken depending on the value of the Z
bit, BCS and BCC can be used to test the state of the carry bit. The former reads as
'branch if carry set', and branches If the C bit is currently set; the latter is 'branch if
carry clear' and jumps If the carry is unset.

BMI and BPL can be used in exactly the same way to test the N bit; 'branch if
minus' means that the branch is to be taken if the N bit is set while 'branch if plus'
only jumps if the N bit is unset. Note that the N bit is cleared if the value is zero, so
that BPL will jump in this case as well.

The final pair in this first group are BVS and BVC which branch if the overflow bit
is set or clear.

The second group of conditional branches test a number of conditions before
deciding whether to jump. Some of these appear very similar to the simpler tests
mentioned earlier, and the only difference is in the treatment of the overflow and carry
bits. A number of instructions, such as MOVE, always clear C and V and so in this
case the two forms are identical. The difference is only important when handling
signed numbers.

BLT and BQE are used when comparing signed numbers, and can be read as
'branch if less than' and 'branch if greater than or equal'. BLT tests the N bit in the
same way as BMI, but only branches If the N bit is set and the overflow bit V is unset.
If V is set then it will branch if the N bit is also unset. This means that so long as no
overflow occurs BLT behaves as BMI; if overflow has happened then BLT behaves
like BPL. BQE also tests the N and V bit and jumps if they are both unset or both set.
In this respect it behaves like BPL if no overflow has happened and like BMI if It
has.

BLS and BHI test the Z and C bit. The first is 'branch if low or same' and will jump
if either the carry bit ,or the zero bit are set. The second is 'branch high' and will only
jump if both C and Z are unset. The BCC and BCS are sometimes given the
alternative names BHS and BLO, for 'branch if high or same' and 'branch low'
respectively.

The most complicated conditional branches are 'branch if less than or equal' and
'branch if greater than'. BLE will jump if the conditions tested in BLT are true but will
also jump if the Z bit is set. BQT makes the same test as BQE, but for the branch to
take place the Z bit must be unset whether overflow has occurred or not.

We will see later how the same condition names are used In the DBcc and Sec
instructions to test the same combinations of status bits. With these instructions the
additional conditions T and F are allowed, meaning True and False. The equivalent to
BT, or branch If true, is of course spelt BRA. There is no equivalent to BF, which
would mean never branch, and this potential combination Is taken up by BSR.

40 41

A simple memory diagnostic program

We have now learnt sufficient instructions to write a simple memory diagnostic
program. We will take an area of memory, and place a certain bit pattern into it. We
will then check that the memory has retained the value placed Into it. This is a useful
check to see If all the RAM chips on a board are behaving themselves. As we have
not yet learnt how to perform any input or output, the program will jump to a certain
location if it finds any errors. This could be the location of a monitor routine which
wrote a message for us - the details are not important here.

Here the first few lines set up a program origin and define some values using EQU
directives. It is always good practice to use EQU to define a name for a particular

value, as this makes the program much easier to change later. For example, here our
little program tests memory from $1000 to $1FFF. These values are defined by the
labels MEMLO and MEMHI. If anyone wanted to change the program to test another
area of memory this could easily be done by altering the EQU statements, rather than
searching through the program itself trying to find uses of various numbers and
altering those.

The program is entered at the label ENTER, where A0 is set to point to the start
of the area of memory we wish to test. Label LPT defines the start of loop, placing the
test pattern defined by TPAT into the byte pointed at by A0, and incrementing A0.
The next line uses CMPA to check to see if we have filled all the memory required. If
not we branch back to LP1, only dropping through when all the memory has been
filled.

Once the memory has been filled we reset our pointer A0 and loop through the
test region again. If the value stored in memory is not what was expected then we
take a branch to MONLOC. Register A0 will already have been incremented and so
the actual location in error will be one less than the address held in A0.

Notice the use of MOVEA.L and CMPA.L. In this particular example MOVEA.W
and CMPA.W would have done just as well, and would also have made the program
shorter. But this would have left a terrible trap for anyone coming along and changing
the program later. Consider wishing to extend the upper limit of memory checked from
$2000 to $8000. Anyone wishing to do this would look at our program. and think that
all that was required was to change the definition of MEMHI from $2000 to $8000. If
we had used the word length versions of MOVEA and CMPA then when the test for
the end of the loop was made, the processor would take the Immediate value defined
by MEMHI. sign extend it to 32 bits and then make the comparison with A0. This
would cause the loop to terminate only when the value of A0 was $FFFF8000, which
is not a valid address. In fact the program would terminate due to a bus error as soon
as all the valid memory had been filled. The moral of this example is that it is always
sensible to use long versions of Instructions when placing addresses into address
registers. The other versions should normally only be used when holding data
values in address registers.

Comparing and moving zero

There are two special instructions in the repertoire of the 68000 which are used when
dealing with the value zero. We have already seen that MOVE can be used with
immediate source data to move any value into memory or into a register, and this
value could be zero. Similarly the CMP family can be used with immediate data which
could also be zero. However an immediate value is represented as one or two
extension 16 bit words following the 16 bits of the instruction word. and so the
operation

MOVE.I. #0,D0

will take up 16 bits for the instruction, and 32 bits for the representation of the long
value zero. As it is very common to set values to zero, there are two special
instructions provided which are only 16 bits long.

The first of these is CLR, which will clear the specified destination to zero. This
destination must be data alterable, so that it cannot be used to clear an address
register to zero. However a byte, word or long word in memory referenced directly or
by an address register may be set to zero. Similarly the low order 8, 16 or 32 bits of a
data register may be set to zero.

The condition codes are set as if MOVE had been used to place zero into the
destination, so that X is unaffected, Z is set and the others are cleared.

The instruction should be used with care If the memory location is actually part of
the I/O page, where memory mapped devices appear as if they are memory
locations. The instruction actually reads memory

42 43

before writing zero Into It. which might give strange effects If the action of reading an
I/O port affects the associated peripheral.

Similarly, the TST instruction may be used to test whether a value is equal to
zero. Again the destination may be specified as any data alterable location, and the
size may be byte, word or long. If the value specified is equal to zero then the Z bit
will be set. otherwise it will be cleared. Suitable BEQ, BNE or BLE instructions would
normally follow.

TST can also be used to see if a value is negative. If it is then the N bit will be set,
otherwise it will be cleared. The X bit Is not affected and the V and C bits are always
cleared. Thus BMI and BPL can be used to test the condition of the N bit. Note that
after this Instruction BLT will have the same effect as BMI as the carry bit is always
clear. Similarly BQT and BPL are also interchangable in this case.

Moving small numbers

Many programmers will wish to use the long form of instructions as much as possible,
as the ability to handle 32 bit values is one,of the features which makes the 68000 so
different from its rivals. However it Is a common requirement to initialise registers to
zero or a small integer. We have already seen how the CLR instruction may be used
to clear a register or memory location to zero, and that this may be used in any of
the three sizes.

Initialising a register to a small integer can be done by moving immediate data
into the register using the long form of the MOVE instruction. The onty problem is that
this instruction takes up six bytes; two for the MOVE instruction and four for the
immediate data. Obviously all four bytes are required to hold the immediate value if
that value is indeed of size long, but it seems rather a pity to waste so much space
simply holding bytes which are zero when the immediate value could fit into a byte.

In order to cater for this situation, a special form of the MOVE instruction is
provided. The MOVEQ (for Move Quick) instruction is only of size long, and can only
be used to move a number which will fit into a byte into a data register. The effect is
exactly the same as would be obtained if MOVE was used to move an immediate
value in the range -128 to +127 into a data register, except that the MOVEQ
instruction only takes up two bytes, with the immediate value packed into the bottom
byte of the instruction. The entire data register is altered, with the data sign extended
if required. The N or Z status bits are set if the value so moved is negative or zero,
while the V and C bits are always cleared and X is unchanged.

The MOVEQ instruction takes less time to execute than the long form of the CLR
instruction acting on a data register, and so is a better way of clearing an entire data
register to zero. Remember that MOVEQ is always of size long, and can only be used
on data registers.

Testing bits

There are a number of instructions which can be used on a single bit. These will be
described in detail in chapter 6, but one of them is of interest here. This is the BTST
instruction, which is used to test a particular bit in the destination. If the bit Is equal to
zero, then the Z bit is set. If it is one, then the Z bit is unset; all other condition codes
are unchanged.

The destination location is not affected, and may be specified using any data
addressing mode. The action of the instruction varies depending on whether the
destination is a memory location or a data register. In the former case, a byte is read
from memory and a bit in that byte is tested. The low order bit is specified as bit 0.
and the high order bit as 7. Numbers larger than 7 are regarded as modulo 8.

If a data register is used as the destination, then bit numbers range from 0 to 31,
hence allowing all the bits in the register to be tested. Again, if the number is larger
than 31 it is regarded as modulo 32. The size of the BTST instruction therefore varies
between byte and long depending on the destination operand, and is not specified by
the programmer,

The bit number is given as the source operand, and may be specified in two
ways. The first is to use an immediate form; in this case the value given is used as
the bit number. The alternative is to give a data register, which will cause the
processor to use the number held in the data register as the bit number. In either
case the bit number is used modulo 8 or 32 depending on whether the destination is
memory or a data register.

It is important to remember that the bit number itself is used, not the bit pattern
representing the particular bit to be tested.

Testing conditions

We have already seen how the Bcc family of instructions can be used to branch
depending on the state of various combinations of the condition codes. This is the
most common use of the condition codes, but there are two other instructions which
inspect the condition code value. The first of these is Sec, or Set according to
condition code. This tests the value of one or more of the condition codes, using the
same set of conditions as the Bcc family, if the condition is satisfied, then the byte
defined as the destination is set to $PF. If the condition is not satisfied, then the
destination byte is set to zero. Thus, for example,

44 45

Notice that Sec can only be used to set single bytes, which must be specified using
data alterable addressing modes. It is also a useful way of always setting a byte to
$FF, because using the condition test TRUE

ST BYTELOC

will unconditionally set all the bits in BYTELOC. The equivalent test using FALSE
(SF) is identical to using the byte form of the CLR instruction.

The Sec instruction is normally useful for remembering the state of a
particular condition code for testing at a later date.

Loop control

One of the most common operations performed in a computer is that of performing a
set of instructions over and over again. This loop is normally controlled by an iteration
variable, which Is incremented until it reaches a certain value.

The 68000 provides an instruction to help with controlling loops. but it works in
the opposite direction to that which is usually required. That is. it decrements an
iteration variable. It is also slightly confusing because the iteration stops when the
variable has become negative. not when It becomes zero.

The family of instructions are known as DBcc. read as 'Decrement and Branch'. In
fact the full operation of the Instruction is to first test a condition code, and to move
onto the decrement and branch part only if the condition is not satisfied. We will first
look at the use of the instruction when the condition is never satisfied, i.e. DBF or
decrement and branch with condition false. This is the most common version used,
and most assemblers allow the alternative syntax DBRA.

DBRA takes a data register as the source operand, and a label as the destination
operand. The instruction is always of size word. If the value of the register is zero,
then the next instruction is executed. Otherwise the value in the register is
decremented by one and a jump is made to the label given as the destination.

The previous description is not quite correct, as in fact the decrement always
takes place on the register, and so the register used will not be zero when the loop
has completed. Also only the low order 16 bits of the register are used as the counter.
The label may be before or after the DBRA instruction, although it is usually before it.
Consider the following program fragment.

MOVE.L #$2000,Al Set up pointer
MOVE.W #19,DO Set up counter

LOOP CLR.B (Al)-f Clear byte and increment pointer
DBRA DO,LOOP Loop while DO >» 0

Here the low order 16 bits of DO are used as a counter, initially these are set to 19.
while an address register Al is set up to point to a memory location. At the label
LOOP the byte referenced by Al is cleared to zero and Al is incremented by 1. as the
CLR was of size byte. The DBRA instruction decrements DO, and checks to
see if the

result is negative. If not, control is passed back to LOOP. This happens until DO is
zero, when the decrement performed as part of DBRA gives a negative value. In this
case the jump to LOOP is not made, and we exit the program with the low order 16
bits of DO set to $FFFF and Al set to $2014.

In many cases a loop is to be executed a variable number of times, and if the
iteration count is initially zero then the loop is not to be executed at all. In this case the
DBRA instruction should be placed at the end of the loop, and the instructions just
before the start of the loop should set up the iteration count into a suitable register,
and make an unconditional branch to the DBRA instruction at the end of the loop.
Note that the iteration count, and not one less than the count, should be placed in the
register. If the iteration count was zero to start with no branch will occur at the DBRA
and so the loop will be entirely bypassed.

The DBRA version of the DBcc instruction is normally the most useful, but the full
form is extremely powerful. Here a condition is specified, and if , the condition is true
then the DBcc instruction has no effect. Normal execution continues with the
instruction immediately following. If the condition is not met, then the data register is
decremented and the branch specified is taken only if the result is not equal to -1.

This allows for a number of extremely powerful looping constructs.
For example, a program may be required to copy data from one
place to another until a byte equal to some value is found. The
destination area may only be of a limited length, and so the copy
operation is also to stop if the destination has been filled. Such
situations may occur when reading a line of Information from the
terminal into an internal buffer. The copy is to terminate if the
character 'return' is found, but is also to stop if a line longer than
that allowed for is entered. We might use the following program
segment. »

CR EQU $0D ASCII carriage return
MOVEA.L #$2000,A3 Set up pointer to buffer
MOVE.W #79,DO - Allow for 80 characters

RCH ... read character into Dl
MOVE.B D1,(A3)+ Save character
CMP.B #CR,D1 Check to see if end of line
DBEQ DO,RCH Loop unless return or buffer full

The first two lines initialise A3 as a pointer into the buffer and DO as the size of that
buffer in bytes. In each iteration of the loop we read a character from the console in
some way, and save It in the buffer using postincrement addressing mode. Finally we
compare the character read in with the ASCII code for carriage return. If the character
read in was indeed a return, the DBEQ instruction has no effect and the loop has
terminated. If the end of the Input line has not been reached we branch back and read
another character only if there will be room in the buffer.

46 47

Simple Input and output

All the previous examples have assumed that the test programs were running under
a monitor, which would allow you to enter your program and to start it running.
Normally such monitors also provide a mechanism for writing information to a
terminal connected to the computer, and also to accept information from the
terminal.

Alternatively you may be running your programs under an operating system, in
which case this will provide some mechanism to input and output information. In
either case it is likely that the method used to communicate with the outside world'
will be a connection to a serial line, onto which a terminal of some sort can be
connected. The most common way for this serial line connection to be provided is by
the use of a special chip, known as an ACIA or Asynchronous Communication
interface Adapter. This description applies to the 6850 ACIA, but most input and
output chips work in a similar fashion. We will not go into too much detail about this
device; it simply handles all the work required to send and receive a byte of
information down a serial line.

An ACIA appears in part of the memory space of a 68000. Each ACIA has two
ports, a control port and a data port. In an 8 bit computer, these ports are in adjacent
memory locations. On the 68000, they appear as the low order bytes of
two adjacent 16 bit
words.

Initially the ACIA must be reset - this is done by writing the value 3 to the control
port. The instruction manual for the ACIA tells us that we should wait a little while
after resetting it to give it time to settle down.

We must next select the characteristics of the serial line, such as the parity,
whether interrupts are to be enabled and so on. Initially we will use the ACIA in polled
mode - this means that unless the 68000 is checking the port for characters arriving it
is possible that characters may be missed. The ACIA is clever enough to tell us that
we have missed a character, but there is nothing we can do to find out what it was we
missed. Later on we will see how to run an ACIA in interrupt mode, but for now polled
mode will do. We will use the value $15 as the setup mode for the ACIA. which
should just be regarded as a magic value. If you actually need to set up an ACIA you
should read the standard documentation about it to find out what the values mean.
This magic value is written into the control port.

Once an ACIA is set up. the low order two bits of the control port are used to tell
us about the state of the data port. Bit number 0 goes to a one if a character has
arrived down the serial line. We can then read the character from the data port, which
turns bit 0 off until the next character arrives. Bit number 1 is used to tell us if the
ACIA is happy to send a character down the line. If it is one. then we can write a byte
into the data port and this will be sent down the line. This takes a little time, and while
the ACIA is busy doing this bit 1 Is set to a zero. Once the byte has been transmitted
bit 1 is set to one again, and we can send another character. The sending and
receiving of characters is entirely separate - hence the Asynchronous part of the title.

The first few lines define some useful names for us, including the reset and
intialisation codes for the ACIA, and the location of the control and data ports in the
memory map. We start the program at the label ENTER, which places the reset value
into the control port. We must now waste some time, so we initialise DO as a counter
and immediately decrement it using the DBRA instruction. The processor will jump
back to the start of the same instruction until DO becomes negative, or until we have
executed the DBRA 1001 times. Finally we write the magic value associated with
Initialisation into the control port, and we are ready to write out the string.

The instruction immediately before the label NXT moves the immediate value of
the label STRING into register A0. If we look at the end of the program, we can see
the label is defined as referring to some memory which we have initialised to the
characters In our string. Thus A0 now points to the very first character of the string. It
is also worth noticing here that there is a byte containing zero immediately after the
string, which we shall use to indicate the end of the message.

The label NXT refers to a BTST instruction. If bit 1 of the control port is zero then
the ACIA is not yet ready for another character. In this case the 2 bit is set in the
condition code, and the conditional branch on the next line will cause us to go back
and check the bit again. We will sit in this loop until bit 1 of the ACIA control port
becomes set, when it is possible for us to send a character. This is done by using
A0 in postincrement mode, thus moving the character

48 49

from the string into the output port and incrementing the pointer ail in one go.
Finally we have to see if we have finished yet. The TST instruction uses address

register AO again, but does not alter its value. If AO now points to a byte which is
zero, then we have finished writing out string. The Z condition code will be set. and
we drop through the BNE instruction following the TST. If not we loop back to NXT
and write out the next character, waiting for the ACIA to become ready first of all.

Notice that is normally better to test that the ACIA is ready before we intend to
use it, and not to wait after we have used it until it is ready again. The internal logic of
the ACIA works independently of the 68000 processor, so we might as well get on
with some useful work while the output is taking place.

Note that once the string has been written out the processor will attempt to
execute the instruction following the BNE. As we have written it, this is whatever
instruction is specified by the string "Hello!", which is probably garbage. Normally an
instruction to return to the monitor would be placed at the end - the actual details are
unimportant.

the register, which is $02 in our example, and places it into the next memory location
pfus one, or $000003. The next byte goes to the next odd location, while the least
significant byte is placed in location $C00007.

If the data register is the destination then the operation is reversed, and alternate
bytes from memory are placed into the register. MOVEP should be used with care, as
it is very different from MOVE in some respects. Firstly the condition codes are not
affected, while if MOVE to a data register is used they are altered. Secondly only
alternate bytes of memory take part in the transfer, and these may be odd or even
bytes depending on whether the start address is odd or even. There is nothing special
about the way in which the bytes are accessed, and In many cases a byte sized
MOVE is simpler. However in those cases where a large amount of information is to
be transferred the instruction is useful. One circumstance might be when a floating
point processor intended for 8 bit machines is attached to a 68000. A full 32 bit value
could be transferred to the other processor in one simple MOVEP operation, while the
alternative would be four byte sized MOVEs and three shift instructions.

Moving data to peripherals

You have seen in the previous section how the ACIA had two ports, and how they
appeared as the low order bytes of two adjacent memory words. The specification of
an ACIA will normally show the ports as appearing in consecutive bytes of memory,
but the ACIA was originally designed for 8 bit microprocessors. If an ACIA is
connected in an 8 bit machine then the two ports are next door to each other in the
memory map, but in the 68000 they appear in alternate bytes. This Is true of any
peripheral device connected to a 68000 when it was originally intended for an 8 bit
machine, and is due to the 16 bit data lines generated by the 68000.

In many cases it is perfectly simple to allow for this, and to read or write from the
required bytes in memory. However in some circumstances this can be inconvenient
or slow, and so a special version of MOVE is provided which attempts to deal with the
problem. MOVEP (for Move Peripheral) takes a data register and a location specified
by an address register and displacement. When the data register is the source, the
contents held in it is placed a byte at a time into alternate memory locations, starting
at the one specified by the address register and displacement. MOVEP is only
available in word or long forms. Consider the following example.

MOVE.L #501020304,01 Load data
MOVES..L #$C00000,A1 Load address register
MOVEP.L Dl,l(Al) Move data

Here we load 01 with the value $01020304, and set Al to the address $000000. It is
asssumed that four peripheral control ports are mapped to locations $000001,
$C00003, $000005 and $000007. The MOVEP instruction takes the high order byte
and places this in the location specified, which is $000001. It then takes the
next byte from

Chapter 4

Stacks and subroutines

one 01 me most common ways ot organising tne data used in a program inside any
computer is by the use of stacks. This technique places each new data Item which we
want to remember 'on top of the last one. much like placing one piece of paper on top
of another. When we wish to remove a data Item, we must extract the one which we
placed most recently on the stack. We can then remove the previous item or add a
new one.

The stack is represented in the computer by an area of memory which we use
from high locations to low locations. Because of this 'upside down' nature of the
representation, we often talk about the, 'top of stack' - meaning the lowest memory
location currently in use.

Initially a register is set up to point to the highest location in the stack area. When
we need to remember a value, we decrement the pointer by the size of the object we
wish to store, and place the object at the memory pointed at by the updated register.
If we need to remember another value, we do the same operation, updating the
pointer (the stack pointer) and placing the object adjacent to the first one we stored.

The only problem with a stack is that we can only take objects off the stack In the
opposite order in which they were stored. So we can remove the second object on the
stack by reversing the process. reading the information out of the location pointed at
by the stack pointer and adding the size of the object to the pointer. We can now
place a new object on the stack or remove the first one we placed there.

The 68000 provides us with eight address registers, all of which can be used as
stack pointers. The predecrement and postincrement modes can be used, so that all
that is needed is to set up a register with a suitable initial 'top of stack' pointer. We
can then use this area of memory to save results in, and this is particularly useful if
we need to use some registers In a calculation, but do not want to destroy the original
contents of the registers. For example.

In this example we set up A3 as a stack pointer, and then go on to load some useful
values in all the data registers. In a later section of the program we still need all the
values in the data registers, but we have run out of registers needed in another
calculation.

One possible solution would be to store the previous values of DO and Dl in some
named memory location, and to retrieve them once we have finished. But there might
be several places where we need to do this. Using a stack is easier in this case. More
importantly, by using a stack we can ensure that we write both pure code and position
Independent code. The advantages of this were described in earlier chapters.

We therefore save the current values of the data registers on the stack. Initially
A3 contains $2000. As we are using a long MOVE operation, the predecrement
addressing mode means that 4 is subtracted from A3. The contents of DO Is then
saved In the location pointed to by the new value of A3 - in other words it is stored in
bytes $1FFC to $1FFF. The next instruction saves the contents of Dl in bytes $1FF8
to $1FFB, and A3 ends up containing $1FF8.

We are now free to use Dl and D2 in some calculation. When we have finished we
restore the old values by loading from the location pointed at by A3 using the
postincrement addressing mode. Thus the previous value of Dl is loaded from location
$1FF8, and DO is loaded from $1FFC. It Is important to remember to load the values
back off the stack in the opposite order to that in which they were stored.

There is a special form of the MOVE instruction which is especially useful when
dealing with stacks. The example above saved the value of two of the registers on the
stack, and used two instructions to do so. if we had wanted to save the values of all
sixteen registers we would have had to use sixteen Instructions, which would have
used up 32 bytes of code and taken a considerable time to execute.

The MOVEM instruction is designed to help with saving values on a stack. It
specifies that between one and sixteen of the registers are to be saved on a stack or
loaded from one. The instruction takes a list of registers as one argument and an
effective address as the other. The list of registers is converted Into a word value,
where a bit set to one indicates that the respective register is to take part in the move
operation. This form means that the entire sixteen registers can be moved to or from
a stack using an Instruction only four bytes long, and in a much shorter time than
using sixteen separate instructions.

Our example could be modified so that it read as follows.

50

51

52 53

MOVEA.L #$2000,A3 Set up A3 to stack top *
Set up data registers to important values

MOVEM.L D0-D1,-<A3) Save registers DO and Dl on stack
MOVE.I. #$123,DO Use DO and Dl in some way

MOVEM.L (A3)+,D0-D1 Restore registers DO and Dl
Use old values of DO and Dl

The MOVEM instruction takes a list of registers in the form of the first register, a
hyphen and the last register. All registers between the first and last Inclusive are
transferred to or from the stack. Another form for the register list is a register name, a
slash and another register name. The two possibilities can be mixed, so for example

MOVEM.L D1~D4/D7/&0-A2/A6,-(A3)

will save registers Dl to 04 inclusive, D7, AO to A2 and A6. Some assemblers will not
accept a mixture of data registers and address registers in a range, so that the
form

MOVEM.L D0-D7/A0-A6,-(A7)

would be required to save all the registers except A7 onto the stack pointed at by A7.
The order in which the registers are saved on the stack is independent of the

order in which the list is specified to the assembler, as the assembler simply sets the
relevant bits in the instruction to indicate that the named registers are to take part in
the transfer. The order in which registers are saved is from A7 to AO and then D7 to
DO; they are restored in the opposite order so that DO is loaded first if it is specified
in the register list, then Dl and so on up to AO and finally A7.

In the examples given so far, we have always used the predecrement address
mode for saving values and the postincrement mode for restoring them again. When
this mode is used the registers are transferred as indicated, and the address register
used as the stack pointer is incremented or decremented by the total size of the
registers transferred. In this way the MOVEM instruction behaves very much like the
equivalent number of MOVE instructions required to save or restore the registers.
However there are a number of differences.

Firstly, there are only Word or Long versions of MOVEM - it is not possible to
save single byte values on a stack using this operation. If Word values are restored
then the entire value of the register is reloaded with the 32 bit value obtained by sign
extending the word read from the stack. This means that it is not possible to save the
bottom sixteen bits of some registers, use the bottom half of them in a calculation and
then restore them without losing the top sixteen bits of their value. It is therefore
normally only sensible to use the long form of the MOVEM instruction and save the
entire contents of all the registers.

Secondly, the MOVEM instruction uses what is technically called 'pre-fetch'. All
this means is that the 68000 processor tries to transfer the registers as quickly
as possible, and in order to do this

it reads the memory locations it is going to need a short time before it actually requires
them. This speeds up the multiple transfer, but when the processor gets to the end of
the list of registers It has read one word of memory too much. Normally this is not
Important, as the final content of the stack pointer is correct, and it does not matter If
one word of memory is read and then forgotten. The only time it does matter Is when
the stack starts at the highest available location in memory. In this case the registers
will be stored in locations running down from the top of memory, but when they are
restored the processor will attempt to read the word just beyond the top of memory. It
Is going to forget the value obtained in this way, but the access will normally cause a
bus error and the program will not work as expected.

Finally the MOVE instruction will alter the condition codes while MOVEM does
not. This enables a condition code to be set in a subroutine to indicate whether it
worked or not, and this code will remain unchanged as the original values of the
registers are restored.

Earlier we remarked that the registers are transferred in the form stated only if
using the predecrement or postincrement address modes. The MOVEM instruction
may be used with other address modes which are control modes. If the transfer is
taking place to memory then the address mode must be control alterable - in other
words the program counter relative mode can only be used when reading from
memory.

When used with an address mode other than predecrement or postincrement the
order of transfer is always the same. This order is DO to D7 and then AO to A7, just
as if the postincrement address mode was used. Thus

MOVEM.L D0-D7,§20O0

would store the contents of DO in bytes $2000 to $2003, Dl in $2004 to $2007
and so on. To reload them again

MOVEM.L 32000,D0-D7

would be needed.

Subroutines

in one of the earlier MOVEM examples we used A7 as the address register holding
the stack pointer. Although any address register can be used in the predecrement or
postincrement mode as a stack pointer, it is normal to use A7. This is because of the
action of a number of other instructions which assume that A7 is pointing to an area of
memory which can be used as a stack. In fact there are two separate versions of
register A7, called the user stack pointer or USP. and the supervisor stack pointer or
SSP. For now we can assume that A7 always refers to the supervisor stack pointer.

When writing a program for the 68000 it is normal practice to ensure that the
stack pointer is set up to the top of a stack area before starting any real work. This
will often be done by the operating system or monitor which is providing the facilities
for running the program, but it can always be done explicitly by, for example.

54 55

MOVEA.L §2000,A7

which will set up the area below $2000 as a stack. Chaos can ensue if the stack area
is overwritten, so it is normally wise to leave a more than generous margin for the
stack to grow - we will see in a minute how this can happen. So we will allow our
stack to grow from location $2000 down to $1000. and this means that we can start
our program at location $2000 upwards. Remember from the discussion of MOVEM
that the byte pointed at by the initial value of the stack pointer is not actually written to
as we use the predecrement addressing mode which alters the stack pointer
before using it.

Once we have set up our stack pointer we can start to use instructions which
assume that A7 is indeed set to a valid stack area. Perhaps the most obvious is the
Branch to Subroutine instruction, or BSR. This is a very important instruction which
allows a jump to be made to another area of program in the same way as BRA; in fact
in many ways it is identical except that when you use BRA to jump somewhere you
have no way of finding out how you arrived at your destinaton.

There might be several places where ttte instruction

BRA ERROR

occurs in a program. At the label ERROR you may wish to give some error message
and stop. There is no way for the code at ERROR to find out the place where the
branch was made. We could place a value in a register or a fixed location in memory
to signify the reason we made the jump to ERROR, so that a suitable message was
printed out. We might want to write out this message and then continue with the
normal execution of the program. In this case we would use the BSR instruction
instead. The action of the processor is to first of all save the address of the next
instruction, and then make the branch to the label ERROR. The code at ERROR can
then use this saved address to return to when it has finished, so that once it has
written the message out execution can continue at the instruction immediately
following the BSR. It could also inspect this saved address and use it to say exactly
where the error occurred.

The value saved by BSR is called the return address, ana you have probably
guessed by now that it is saved on the stack pointed at by A7. If you could get hold of
the address of the next instruction, say in a register called PC, then the action of BSR
would be similar to

MOVE.L PC,-(A7) Save return address on stack
BRA ERROR Branch to subroutine

In fact there is no way of explictly referencing the value of the program counter; the
BSR instruction decrements A7, stores the return address at the four bytes
referenced by this new value and then branches to the label all in one go.

We now want to be able to get hold of this value saved on the stack and jump
back to the instruction after the BSR. The value can be read explicitly from the top of
the stack if required, so that we could return by using code something like

MOVEA.L (A7)+,A6 Extract return address
JMP (A6) And jump to that location

The normal way of returning is by using RTS or Return from Subroutine. This is
exactly the inverse of BSR, and it reads the return address from the value saved on
the stack, increments A7 by four so that the stack slot is now available once again,
and then jumps to this new address.

The advantage of using a stack is now clear, as we can use BSR as many times
as we like, even within sections of code which have themselves been entered via
another BSR. Each time the value of A7 is decremented by four and the new return
address saved in the next slot on the stack. Each time an RTS is encountered the
stack is incremented and execution continues at the instruction just after the BSR
which was used to enter the subroutine.

It is important to remember the special use of A7, and to make sure that it always
points to a suitable stack area. Some assemblers provide the synonym of SP (for
Stack Pointer) for register A7, and using this reminds you that it is not a normal
address register. It can, of course, be used in many circumstances just like any other
address register, but there is one important difference. The values stored on the stack
must be aligned to an even address, and the hardware ensures, that this is so. This
means that if you use a byte sized instruction specifying register A7 in predecrement
or postincrement mode, the value of A7 will be altered by two, not one as would
happen with any of the other registers.

The idea of a subroutine is a very Important one, and anyone with any experience
of programming will have met it before. The idea is that instead of writing a section of
code many times In order to perform some operation, we write it once and use it as a
subroutine. The most obvious example might be the code required to write out a
character, such as described in chapter 3. It would be very wasteful of program space
if each time we wanted to write a character we had to include the code to test to see if
an ACIA was ready before placing the character into the output port. Instead we write
a subroutine to do this, and then use BSR to call the subroutine to write the character.
When the character has been written an RTS will drop us back to whatever we were
doing before.

WRCB BTST #1,A_CTRL
BEQ.S WRCH
MOVE.B D0,A_DATA
RTS

This subroutine will write a character to a device connected to a serial port, assuming
that it has previously been correctly set up. To use it, all we need to do is to include a
BSR to' the label WRCH, having first placed the character to be written in the bottom
byte of register DO. The subroutine then tests to see if the ACIA is busy - if so it loops
round again until it is ready. Then the character passed in DO is placed into the data
register, and control is passed back to the instruction following the BS*R which
brought .us here.

56

Normally a programmer will have a stock of ready to use subroutines available 'off
the shelf. Nearly all programs have some area of similarity - for example nearly all
programs are going to want to write out results of some sort. It Is therefore normal to
divide a program up into subroutines as much as possible, so that the useful parts
can be saved and included later in another program. A normal subroutine library will
have very many different subroutines in it. There are a great number of useful
operations which may be required when simply performing output, besides simply
writing out a character. For example, we might want to write out a string, or a number
in decimal or hexadecimal, and so on.

This subroutine library can be built up a little at a time, but there are a number of
good programming practices which should be followed. These are good habits to get
into no matter what language or what processor you use. but we are fortunate in that
the 68000 instruction set helps us write well structured programs.

The first good practice is to ensure that all subroutines are usable under all
circumstances. For example, let us consider extending our subroutine library to
include a subroutine to write out a string. We will call it using BSR with address
register A4 pointing to a string. We will define a string as being a sequence of
characters terminated by a byte containing zero. We might write the following.

Here we extract a byte from the string and increment A4 ready for next time. If the
byte is zero then we branch to the label WOVER and return to whoever called us.
Otherwise we use another subroutine In our library to write out the character, and
loop back to get the next byte from the string. Notice the use of the short form of the

Branch to Subroutine instruction specified as BSR.S. This is just like BRA.S, and Is
simply a shorter version of the instruction which can be used when the label Is less
than 128 bytes away.

Although this may serve our needs perfectly well, there are a number of problems
with this routine. The first fault is that If we use the subroutine WRITES we must
remember that DO is corrupted - in fact the bottom byte will always be set to zero. In
our immediate application we may not care what happens to register DO, but if we
want to make this a useful subroutine which can be used in all cases then it is
extremely bad practice to corrupt a register.

Looking at the code more carefully, we can also see that the address register A4
is corrupted. This is set to point to the byte just beyond the end of the string. Although
the user of the subroutine must know that his string is to be passed in A4, it Is not
really fair of us to alter the value of A4 as a side effect of writing the string out for him.
A general useful rule is that subroutines should not alter registers, except of course
when a result from the subroutine is being passed back in a register.

Having decided that it is bad programming style to alter registers. we must decide
where to save the old values of registers which we are going to use. One possibility is
to simply allocate an area of memory and use that as storage. Although this will
appear to work. there are a number of problems. Firstly we would have to use a
different area of storage for each subroutine, otherwise one subroutine could not call
another without the possibility of having the saved values overwritten by another
subroutine attempting to save register contents. This would be wasteful of space and
difficult to organise. Secondly we would have to make sure that we did not use the
storage area allocated to each subroutine for some other purpose in the main
program which we were attempting to write. Thirdly the program would not be re-
entrant, the full details of which were described in chapter 2.

The answer is of course to save register values on the user stack, using MOVEM
where approriate. We have already allocated a register to point to ;an area of memory
in order for us to use BSR. As long as the area is big enough for all the saved
registers and the return addresses in the maximum nesting of subroutines then we
shall be fine. The advantage is that this is an efficient use of space, as we only use
space when it is actually required. We might have several hundred subroutines all
wanting to save registers, but the maximum stack use would only be that
corresponding to the highest number of subroutines called from each other.

We can now write our improved subroutine to print out a string

Now we can use WRITES from wherever we like, confident that none of the registers
will be altered. In fact, no memory location will be altered except beyond the end of
the current stack pointer, and this is an area which is known to be liable to be altered
as a result of subroutine calls anyway.

There are two other rules which should be borne in mind when writing general
purpose subroutines. The first is that a consistent set of registers should be used for
arguments passed over to subroutines and results returned from them. Thus one
might always expect arguments in registers D1, D2, etc., and a single result returned
in DO. Clearly this is not always possible, as some routines will expect arguments in
data registers and some in address registers, but it is useful as a general rule; the
programmer is less likely to become confused about what value .must be placed in
which register before a particular subroutine is called.

Finally it is important to ensure that there is normally only one exit point from a
subroutine. Rather than have several RTS instructions in a subroutine it is better
practice to have one and branch to that location from other places as required. This
means that restoring the registers, deallocating the stack and so on can be
done all in one

58 ;>w

place Then if the subroutine has to be altered to use. and hence save, an extra
register, we need only change the code at the single entry and exit points. It is a very
common programming error to save a register on the stack and then accidentally
forget to restore it before executing the RTS. The effect is catastrophic as the
program lumps to the location specified by the value of the register saved on the
stack which might refer to anywhere. This is a particularly difficult error to locate, as
the debugging information will refer to the new program counter, while what is
required is information about why the program was there in the first place.

Absolute jumps

It Is clearly important to be able to jump to another part of a program, and we have
already seen the use of Instructions such as BRA which enable us to set up loops.
We have also looked at BSR which allows us to call subroutines, and conditional
branches such as
BEQ.

In all these cases the instruction has been called a branch rather than a jump,
and there is a good reason for this. All these branch instructions specify that program
control Is to be transferred to an address relative to our current position. Although we
may write a statement such as

BRA LOOP

the assembler converts this to an instruction which contains the difference between
the current value of the program counter and the address of the label LOOP. This
address offset can be negative or positive, depending on whether we want to jump
backwards or forwards. The offset can be specified as a word, so that we use sixteen
bits to hold the offset, or as a byte if we use the short form of the instruction.

The alternative to using BRA Is JMP. which represents an absolute jump. The
address given as part of the JMP instruction is an actual address, and control is
transferred to it when the instruction is executed. The effect of

JMP LOOP

will be the similar to the BRA Instruction, but with a number of
differences.

Firstly the JMP instruction will be longer when jumping to a label, as the full
address is given in the Instruction.

Secondly a section of code using JMP to jump to a label within itself may not be
position Independent. The 68000 contains a number of instructions which allow code
to be written no matter where it loaded in memory. For example, a BRA instruction
may specify that a jump to the address 24 bytes away from the current position. This
will work no matter where the program is placed in memory. If a program uses the
JMP instruction then the value may be specified using any control addressing mode.
If the address was specified as an absolute value then it would refer to a
single, specific memory location. The

program would only work if it was loaded into memory at the address
specified by the ORG statement at the start.

In many cases it is perfectly acceptable to load a program into memory at a given
address, but it may not be possible If the machine is running an operating system.
Here a program may well be loaded into any available space, and if it is position
independent then It will run without alteration. Otherwise the program will have to
contain some relocation information. This is information generated by some
assemblers which allows the operating system to alter those addresses held as part of
instructions. This ensures that the program will work at the address at which it is
loaded. Unfortunately not all assemblers produce suitable relocation information, so is
good practice to write position independent code.

Another advantage of assembly code which is position independent is that It
means that a program can not only be loaded anywhere in memory, it can also be
moved around if required. Unless great care is taken this code shuffling cannot
happen while the program is running, as the stack may contain return addresses
which refer to absolute locations in memory. But it can certainly be done between
runs of the program.

The JMP instruction can be used in position independent programs to great effect
- it is only position dependent when used to jump to a label in your own section of
code. A common use for it is to jump to program sections which are known to reside
at certain memory locations. For example a monitor may live in EPROM at a known
location, and contain a warmstart entry address which should be entered when your
own program has finished. We would then end our program with

JMP WARMS

which would ensure that we entered the monitor no matter where our
program was loaded.

The BSR instruction also has a counterpart, called JSR. Again, JSR takes an
address rather than an offset, and could be used to call subroutines known to exist
in specific memory locations.

The JMP and JSR instructions are very important, mainly because they take any
control addressing mode as the address. In our examples above we have used the
absolute addressing mode to enable us to jump to a known memory location. We
could also use the program counter relative mode to reference locations in our
program. while still maintaining position independence. In this case the effect would
be very similar to using BRA or BSR.

Perhaps the most useful addressing mode available here is one of the indexed
modes. Consider writing a program which worked off single letter commands. For
each command typed at the terminal, a subroutine is called to perform that job. We
can program this by creating a table which contains four bytes for each of the ASCII
characters. Each entry in the table represents the address of a routine which must be
called if that character is typed. Thus the first entry in the table will be the routine to be
called if a zero byte is typed, which corresponds to the ASCII character NUL. The
routine to be called if 'A' is typed is placed at the offset for the character 'A', which is
long word offset $41.

60 M I

ASL.L #2,DO Multiply by four
MOVEA. L #TABLE,A3 Get table address
JSR 0(A3,D0.W) Call subroutine to do job

The first line shifts the contents of register DO to the left by two places, thus
multiplying it by 4. This is required because each slot in the table will take up four
bytes. The second line takes the address of the table and loads it into address
register A3. Finally the last line extracts the address stored at the location pointed at
by the sum of A3 and DO. and calls it as a subroutine, placing a suitable return
address on the stack.

Effective addresses

The last example used the MOVEA instruction with an immediate addressing mode to
load the value of TABLE into A3. Although this works perfectly well, the instruction is
not position independent. What we are actually doing is asking the 88000 to load a
data value into a register. This data item happens to be the value of a label declared
at the start of a table. If the program is not loaded into memory at the position
declared by the ORG statement then the MOVEA instruction will still load this data
value, even though it does not now refer to the start of our table.

The solution is to use the LEA instruction, which stands for Load Effective
Address. The instruction can only be used with an address register as the destination,
and it causes the address given as the source to be evaluated in the same way as if
the instruction was MOVE, for instance. Instead of then loading the value at the
address, the address itself is placed in the destination register.

Consider the following program segment.

ORG $1000 LAB
DC.L 1234

MOVEA.L LAB,A3
MOVEA.L #LAB,A3
LEA.L LAB,A3

Here we declare four bytes of memory at address $1000, initialised to 1234. The first
MOVEA instruction wiil evaluate the address given by LAB, which Is $1000. and then
proceed to load the contents of that location, which is 1234. The second MOVEA will
load register A3 with the immediate value given by the label LAB, which is $1000.
However this instruction is position dependent, and will only work if the program is
assembled in absolute mode.

A much better may to perform this operation is to load the address using LEA.
This evaluates the address given by the label LAB using program counter relative
addressing if required, thus making the code position independent. Remember that
LEA evaluates the address. and places the address itself into the specified register. It
does not access the value stored at the address. Clearly the instruction only makes
sense in the long version, and the form LEA is equivalent to LEA.L. It is good practice
to always specify the length of each instruction explicitly because different
instructions default to different

lengths.
The LEA instruction is important, because the reference to the label LAB above

can be made using program counter relative addressing, which ensures that the
Instruction is position independent. LEA should always be used to load the address of
a location in your program, while the immediate form of MOVE should be used to load
immediate data items.

LEA can also be used to perform simple sums which are done as part of address
evaluation. For example.

LEA 20(A3),A3

will evaluate the effective address specified by 20(A3). This Is the contents of A3 plus
the constant 20, which is then placed into A3. The effect is to add 20 to A3. Any
control addressing mode is allowed, so that another example would be

LEA 20(A2,D1.L),A3

which will load A3 with the sum of the constant 20, the contents of A2 and the
contents of Dl. Although addresses are normally only 24 bits long the entire 32 bits of
an address register are altered in this way.

A cousin of LEA is called PEA. for Push Effective Address. This instruction
evaluates the address given as the source in the same way as LEA, but instead of
placing the resulting effective address into an address register, it stores It on the
stack. In fact this action is performed as part of BSR and JSR, where the effective
address of the next instruction is stored on the stack. We could even simulate the
effect of BSR as follows.

PEA.L NEXT Save return address on stack
BRA SUBR Branch to subroutine

NEXT Return to here

Here we push a return address onto the stack, and then use BRA rather than BSR to
enter a subroutine. When the subroutine returns using RTS it will pick up the saved
address on the stack, and return to the instruction labelled NEXT, which in this case
happens the be next instruction after the subroutine call. Here we simulated the action
of BSR. but of course the address specified to PEA does not have to refer to the
instruction after BRA. and could refer to anywhere. PEA can also be used in
elementary sums, so that

PEA.L 20(A3) Save A3 + 20 on stack
MOVE.L (SP)+,DO Load DO with saved value

will save the contents of A3 plus 20 on the stack, and then read this value off the
stack and into DO. This is one possible way of obtaining the effect of an LEA
instruction using a data register as the destination.

62 63

Allocating stack space

In previous examples we have seen how the stack may be used to hold return
addresses, saved copies of registers and temporary results. However in all of these
cases we have to remove Items from the stack in the opposite order to that in which
they were placed there. It is often useful to be able to allocate an area of memory
where results are saved, and to be able to read or write to these locations whenever
we wish.

One way of doing this is to use absolute memory locations, but again we come up
against the problems of position independence; we would have to reserve a particular
memory area for our program to use. Although we might go to some lengths to ensure
that the program can be placed anywhere in memory, this is no use if the data areas
are tied to a specific location. We could reserve areas of memory within the program
space, and refer to these using program counter relative addressing. However we can
only read memory locations specified in this way. as the architecture of the 68000,
quite rightly, discourages the writing of programs which overwrite themselves.

Another solution is to use an address register, and to ensure that it points to an
area of memory which can be used to hold results. We reserve offsets from this
address register and use them to store our data. So if AT points to our data space, we
could refer to locations as follows.

DATA1 EQO 0 Data area offsets
DATA2 EQU 4

Set up Al
MOVE.L #20,Dl Get value
MOVE.L D1,DATA1(A1) Save in data area

This works reasonably well, but we have two problems. The first is concerned with
allocating the data space. We will have to use an operating system call to obtain
some free space and initialise AT to point to It. Such operating system calls can be
rather expensive, but an example of a suitable free space allocation package is given
in chapter 6. The second problem is that we will have to allocate this space every time
we enter a subroutine which needs a data area, so that any subroutine can call any
other. To avoid eating up all the space, we will also have to ensure that we give the
space back whenever we exit from a subroutine.

The solution is to take the space we need for permanent data from the stack. Up
to now we have only considered allowing the stack to grow when we actually place a
data item onto it. Thus a subroutine might be called which saves one register, and
then calls another subroutine. The stack will contain the return address for the second
subroutine, then the saved, register and return address from the first subroutine.

Now consider allocating part of the stack as a data area. When we enter the first
subroutine we Immediately save our register, so that the stack contains the saved
register value and the return address. We now set up our data area pointer AT so that
it is the same as the stack pointer A7, and alter A7 so that sufficient space Is
allocated

beyond Al for our needs. When we call the second subroutine the return address will
be stored at the stack position indicated by A7, out of the way of our data area.

The second subroutine is now free to save registers and to allocate its own data
area on the stack if required. It will have to save the old contents of register AT before
it can allocate a new work area, and restore the stack and all the registers when it has
finished.

This may sound rather complicated, but in fact it is very easy and the. 68000
provides special instructions to help us. Before we learn about these, let us review
what a subroutine should have to do when it is entered and when it is left. These two
sections of code are called the entry and exit sequences.

Entry sequence

1) On entry, A7 points to return address and Al points to previous data area.

2) Save any work registers used. A7 points to to saved registers and return
address, Al points to previous data area.

3) Save old value of Al on stack and load Al with A7, so that it points to a new work
area. Decrement A7 by size of required work area, remembering that the stack
runs from high memory to low memory.

The resulting stack frame will be as follows.

Exit sequence

1) Load A7 with value of Al, thus deallocating work area. A7 now points to the
saved values of Al, any work registers and the return address. Reload
previous value of Al from stack.

2) Restore saved values of work registers from stack. A7 now points to the return
address and all other registers have their original value restored.

3) Load return address from the stack and jump to it.

We can now try to turn this into 68000 assembly code. Stage 1 of the entry
sequence is performed by the calling subroutine using BSR or JSR. Stage 2 is
performed by a MOVE or, more usually, MOVEM onto the stack using predecrement
address mode. Stage 3 is peformed all in one operation by the LINK
instruction. This saves the address

«4 65

register specified as the source on the stack, then loads it with the (updated) value of
A7. Finally it adds the immediate value given as the destination to the stack pointer
A7. Because the stack runs down memory we must use a negative value as the
displacement.

Once in the subroutine proper we can use negative offsets from AT as our data
locations, so long as we do not use any offsets which are beyond the current value of
A7. it is important that sufficient work space is reserved by specifying a large enough
displacement to the LINK instruction. If offsets are used which extend below the top of
the stack they will be corrupted by any further subroutine calls.

The exit sequence is just as simple. Stage 1 is performed by UNLK. which is the
opposite of LINK. The stack pointer A7 Is loaded from the register specified as
argument, and then this register is loaded from the top of the stack. Stage 2 Is
another MOVE or MOVEM using postincrement addressing mode from the stack
pointer. Finally stage 3 is simply RTS.

This arrangement is often used by implernentors of high level languages, especially
those which work with a stack such as Pascal or Ada. If you want to write a
subroutine which is callable from a high level language you must ensure that it

conforms to the standard used by subroutines in that particular language. Inevitably
there will be some variations in the actual scheme used in different implementations.

A memory check example

We have now learnt enough about the 68000 to be able to write a complete program.
It will not be terribly exciting, but will contain examples of some of the instructions
met so far.

The program will check that the memory locations in a certain range do in fact
work as expected - in other words that the memory really does remember. Because of
the way in which hardware is organised memory faults often appear as certain store
locations always returning a 0 or 1 In a particular bit position. Just writing a zero into
memory and checking that this remains the same is not good enough. as such a
check will not trap a bit always returning zero, in fact some faults are only evident
when a particular pattern Is written into the offending location, so an exhaustive check
should be done on memory using all possible bit combinations.

We can now define the subroutine WRITES which will write out a string. The string is
pointed at by register AT and is terminated by a byte containing zero.

For each possible . bit pattern we want to write the value into all memory locations
within the specified range. Once this has been done we must then run through
memory again checking the value has not changed. It is not sufficient to check
immediately after writing as the action of writing to one address may alter another
location unexpectedly. However the. loop is identical in each case - it is only the
action to be performed which changes.

A rather neat way to accomptish this is to have a subroutine which runs through
memory. For each address it calls another subroutine to perform the required action.
The first subroutine will be called SCAN, and register A2 will contain the address of
another subroutine to do the required action. The register DO will contain the current
test bit pattern and A0 will point to the location under test. Both of these registers will
be used by the two possible subroutines addressed by A2, and A0 will be
incremented by one each time these subroutines are called.

SCAN MOVE.L AO,-(SP) Save AO
MOVEA.L #MEMLO,AO Start of test area

SCN1 JSR (A2) Call routine to do work
* AO is incremented by subroutine called

CMPA.L #MEMHI,AO Check if loop finished
BNE. S SOU No . . carry on
MOVE.L (SP)+,AO Restore AO
RTS And return

The two subroutines called by SCAN are simple. The first simply places the value
held in DO into the location addressed by AO and increments AO.

The first part of the program will handle the output of information to the terminal.
The subroutine WRCH will write out the character stored in register DO.

66

Chapter 5

Arithmetic
The final stage is to write the main part of the program. We will assume that the ACIA
has already been initialised for us by the monitor or operating system. During the
execution of the program we will keep the current test value in register DO. This will
be initialised to $FF, and we will use DBcc to control the loop for all possible bit
patterns. We use a word length instruction to perform this initialisation because DBcc
decrements the entire bottom 16 bits of a register. We will also keep AT pointing to a
message which we will print out once round the loop as a reminder that the
program is indeed working.

we have so tar managed to discuss a large number of the instructions of the 68000.
and have not yet mentioned any way of performing arithmetic. This Is not accidental -
most computers spend much more time moving and comparing data than they ever
do performing sums. The idea of a computer simply being a complicated calculating
machine is extremely old-fashioned.

Addition

We have, in fact, already learnt how to perform simple addition, as the 68000 will add
while it is evaluating addresses. We have already learnt how the LEA and PEA
instructions can be used to add values. so long as at least one of the values Is in an
address register. While this Is a useful trick, the most common arithmetic operations
take place on the data registers.

The name of the addition instruction is, not surprisingly, ADD. Like so many of the
68000 instruction set, there Is a whole family of ADD Instructions.

The basic ADD instruction must be used with a data register as either the source
or the destination, if the data register Is the destination, then any addressing mode
may be used. If the data register is the source, then the destination must be specified
using a memory alterable address mode. The operation can take any of the sizes
byte, word or long unless the source is an address register, in which case only word
and long sizes are allowed.

The operation affects the condition codes according to the result. The N and Z
bits are set if the result is negative or zero respectively, and cleared otherwise. The V
bit is set if an overflow Is generated, and cleared otherwise. The C and X bits are
both set or cleared depending on whether a carry is generated.

The ADD Instruction can be used to alter just the low order 16 or 8 bits of the
destination data register. Its cousin, ADDA, is used to add values in address
registers. Like MOVEA. ADDA does not affect any of the condition codes and can
only be used as length word or long. If the word version is used this only
affects the size of the

67

HK 69

source value, which is sign extended to 32 bits and added to the entire 32 bits held in
the destination address register. Again this is a trap for the unwary, as adding a word
value with the most significant bit set will cause a negative value to be added to
the destination.

The source for ADDA can also be specified using any address mode, but again
there is a special version of the instruction for adding immediate data. The ADDI
instruction takes an immediate value as source, and any data alterable addressing
mode as the destination. This means that ADDI cannot be used to add immediate
data to an address register, but could be used if the destination was a data register,
although the ADD Instruction could also be used in this case.

ADDI is used to add constant values to memory locations. It can take any of the
three sizes, and sets the condition codes in the same way as ADD. However, one of
the most popular values to add is one. so that some location or register is
incremented each time round a loop, for instance. Some instruction sets provide a
special 'increment' operation, but the 68000 goes further. The ADDQ (for ADD Quick)
instruction can be used to add a number between 1 and 8 to any alterable address.
This is very useful - for example it is common to add four to a register which is
acting as a pointer.

The ADDQ instruction behaves just like ADDI, except for two points. Firstly, it is
shorter, and so should be used in preference to the ADDI form, particularly when the
long size is used. The condition codes are set in exactly the same way as ADDI in
this case. The second difference is that ADDQ can be used with an address register
as the destination, in which case it acts just like ADDA with immediate data. In this
case the only sizes allowed are word or long, (although whichever is used is irrelevent
as the entire address register Is altered), and the condition codes are not affected.

The final member of the ADD family Is ADDX (ADD extended). This comes in two
distinct flavours, depending on whether the operands are a pair of data registers or a
pair of memory locations specified by address registers In predecrement mode. In
either case the instruction can be of length byte, word or long.

The ADDX instruction is used to add two values together just like ADD, but it also
adds In the X bit. This will normally be set or unset by some other arithmetic operation
immediately before the ADDX is used, and allows multiple precision arithmetic to be
performed. Notice that the X bit is set to the same value as the C bit in arithmetic
operations, but is not affected by other instructions such as MOVE which may alter
the C bit.

The condition codes are set In the same way as In the ADD instruction with one
exception. This is the Z bit. which is cleared If the result Is non-zero in the normal
way. However it Is unchanged, as opposed to set, if the result is zero. This Is
normally used in multiple precision operations. The Z bit is set before a number of
ADDX Instructions which make up a multiple precision operation. If any of the
intermediate results are non-zero then the bit will be cleared, and will be clear at the
end of the complete operation. If however the Z bit is still set at the end, then all the
intermediate results were zero, and so the entire multiple precision result is zero.

Subtraction

The SUB family has exactly the same members as those described above for ADD.
The basic SUB operation has a data register as source or destination, and sets the
condition codes. This time, of course, the C and X bits are set if a borrow is
generated.

SUBA is used if the destination is an address register, and the condition codes
are not affected. SUBI is used if the source is immediate data, and SUBQ can be
used if the immediate data is in the range 1 to 8. Again it should be remembered that
if word sized values are used with SUBQ and the destination is an address register,
then the word value is sign extended before it is used.

SUBX is also available, which takes the contents of the destination, subtracts the
source, then subtracts the X bit and places the result in the destination. Again the
operands can only be a pair of data registers or a pair of address registers in
predecrement mode, and the Z condition code is cleared if the result is non-zero and
unchanged otherwise.

Although the full range of instructions are described here, many assemblers will
automatically make the choice between the correct form of the instruction where
possible. It is important to make the distinction If code is being generated without an
assembler, such as in a compiler.

Negating values

Any value can be negated by the NEQ instruction. This simply subtracts the
destination from zero. The operation can be of size byte. word or long and the
destination can be specified using any data alterable addressing mode.

if the result is zero then the Z condition code will be set and the C and X bits will
be cleared. If the result is non-zero then Z will be unset and C and X will be set. N and
V will be set or cleared depending on whether the result is negative or an overflow
occurs respectively.

There is only one variant of the NEQ instruction and that is NEGX. This negates
the value specified and then subtracts the X bit from it. The condition codes N and V
are set in a similar way to NEG. Z is cleared if the result is zero but unchanged
otherwise, in a similar fashion to ADDX and SUBX. C and X are set or cleared
depending on whether a borrow is generated. This instruction is normally used when
negating multiple precision values held in more than a single long word.

?0 n

Multiplication

The addition and subtraction instructions of the 68000 are complete, in the sense that
they can operate on all three possible sizes of operand. Unfortunately this is not true
of multiplication or division. The only size of instruction allowed for these two
arithmetic operations is word. Preliminary information from Motorola indicates that
long versions of these instructions will be available in the 68020.

There are two multiplication operations available, called MULS and MULL). The
only difference Is that the first performs signed arithmetic and produces a signed
result, while the second performs unsigned arithmetic and produces an unsigned
result.

Both instructions take any data addressing mode as the source operand, and a
data register as the destination. The content of the low order 16 bits of the destination
register is multiplied with the word value indicated by the source address. If this is a
memory location then the value is 16 bits starting at that memory location. If the
source is a data register then the value is the low order 16 bits of the register.

The result is placed as a 32 bit number in the destination register. The N and and
2 bits are set if the result is zero or negative as usual; for the unsigned case 'negative'
means if the top bit is set. V and C are always cleared, and X is unaffected.

Swapping register values

A useful Instruction to introduce here is SWAP. This simply takes a data register and
exchanges the top 16 bits with the bottom 16. It Is very useful when providing long
multiplication and division routines and fighting with the 16 bit operations provided.

The condition codes are set by this instruction. The N bit is set if the most
significant bit in the resulting 32 bit data register is set, and cleared otherwise. Notice
that the bit which is tested is the one which was the most significant bit in the low
order word before the operation. The Z bit is set or cleared depending on whether the
entire register is zero or not. V and C are always cleared, while X is not affected.

There are two other instructions which can be usefully introduced here. The first
is EXQ. which simply exchanges the values stored in two registers. The two registers
may be both address or data registers, or they may be one of each type. The entire
register contents is exchanged, so the operation is only of type long. The condition
codes are not affected.

The other instruction is EXT, which is used to sign extend the value of a data
register. The instruction is only available as size word or long. If size word is used,
the high order bit of the low order byte is transferred to bits 15 to 8 in the register. If
size long is specified then the high order bit of the low order word is copied into the
high order word.

For example, EXT is required if a byte value representing a signed number is
loaded into a register prior to addition to a word or long sized operand. If the addition
was to be done using size word, then an EXT.W would be required to set the
word value in the register as

a signed number. If an addition of size long was to be performed an EXT.L operation
would be required as well. The first EXT would set the word representation correct,
while the second would correct the long representation. In many cases sign extension
from word to long Is performed automatically in the course of other instructions,
particularly where address registers are concerned.

The X condition code is not affected by the EXT operation. V and C are always
cleared while N and Z are set or cleared depending on the whether the result is
negative or zero.

Long multiplication

Because of the lack of a long multiplication operation, we need to provide a
subroutine to do the job. This will take two 32 bit quantities and produce a 32 bit
answer. Obviously if we attempt to multiply two large 32 bit numbers the result will
overflow; In this first example we will ignore any possible overflow.

In order to perform the multiplication we must first remember how we do long
multiplication by hand. Those of you who do not always use a calculator will
remember the algorithm used to multiply two decimal numbers together when each
number contains two digits. Most of us can multiply any two single digit numbers
together in our heads, but may have to resort to pencil and paper for anything more
complicated. Consider multiplying two numbers AB and CD, where each letter
represents a single decimal digit. We might proceed as follows:

Because we can always multiply any single digit number with any other, we split the
multiplication into simpler multiplies and additions. The highest digit is the result of
multiplying the highest order digits together, while the lowest digit is the result of
multiplying the lowest order digits. The remaining digit in the answer is the sum of the
cross terms. Obviously we must remember to handle overflow when the result of a
simple multiply is a two digit number - this is done by carrying over the extra digit
into the next column.

This algorithm is exactly what is required for our long multiplication routine. The
68000 can always execute multiplies on any two 16-bit numoers, so we split the long
multiplication into multiplies which we can perform, along with some additions. We
consider each 32-bit numoer as consisting of two 16-bit digits, represented as RH and
RL if the number is held in the 32-bit register R. We can then use the method
described above, ignoring for the time being the overflow third digit represented by
C*A above. Thus if the two numbers are initially held in registers Dl and D2. the
result will be given as

72 73

RL = D1L * D2L
RH = (D2H * D1L) + (D1H * D2L) + carry from RL

Let us now try to turn this into 68000 code. We will write a routine which multiplies the
two numbers held in registers D1 and D2, placing the result in D1.

Here we must remember that the MULL) instruction takes two 16-bit values and
produces a 32-bit result. The first line saves registers used, while the next four break
up the input numbers into four 16-bit units. The high order word of the registers will be
ignored by MULU, so it does not matter what they contain. The MOVE.W instructions
only affect the low order word, and we use the SWAP instruction to place the high
order word into the low order part of a register.

The next three lines produce three 32-bit results as products from the 16-bit input
values. We then- use an ADD.W instruction to add the cross products together. This
may well cause an overflow, which we ignore. This 16-bit sum is moved into the high
order word of the result register D1, and the low order word is cleared.

The final action required is to insert the low order word of the result into the
correct place in the result register. However this cannot be done by a MOVE.W from
D3 into D1, as we must allow for a carry from the low order digit to the high order one.
The product of D1L and D2L is held in the high order word of D3. A simple ADD.I of
D3 and D1 ensures that the low order word is correctly inserted into the answer.
Again any overflow generated by this instruction is ignored.

The next routine will take two 32-bit numbers in registers D1 and D2 and will
produce a 64-bit result in the register pair D6.D7. In other words, D6 will hold the
most significant part of the answer and D7 will hold the least significant part. We must
extend the algorithm used to obtain the result as follows:

D7L = D1L * D2L
D7H = (02H * OIL) + (D1H * D2L) + carry from D7L
DSL = D1H * D2H + carry from D7H
D6H = carry from D6L

We shall have to make use of the X bit which indicates whether a carry
has been generated during an arithmetic instruction.

The first few lines of this routine save the work registers D3 and D4, and then place
the high order words of the operands into the low order words of the work registers.

The next lines create the product terms. The lowest order digit of the answer is
going to be placed In D7, so it is computed immediately. Similarly the highest order
digit is placed in D6. We use the work registers D3 and D4 to hold the two cross
products. These are then added together to giye a 32-bit result In D4, with the X bit
indicating whether a carry has been generated." We must take care to add the X bit
to. D6 later on.

74
75

The next lines handle the cross product. The low order word of the cross product
must be placed in the second digit position of the result, which is D7H. We must also
include the carry digit from the low order product which is held in D7H. We therefore
move D4L into D3L. swap register halves and clear the low order word to give us the
low order word of the cross product In D3H. In a moment this will be added to D7, but
we cannot do this yet because that will affect the X bit which still Indicates whether a
carry was generated when the cross product terms were added.

The high order part of the cross product is to be placed in the bottom half of a
work register prior to being added to D6. We must also take care of the X bit now.
The bottom half of D4 is cleared with a CLR.W. and the X bit is placed into D4L This
might possibly be done by an ADDX with an immediate argument of zero, but ADDX
can only be used with two data registers or two address registers in predecrement
mode. We therefore use ADDX.W on D3 and D4, noticing that D3L just happens to
have been cleared to zero two Instructions previously. Once this has been done D4H
contains the high order digit of the cross product, and D4L contains 0 or 1 depending
on the state of the X bit. A simple SWAP now ensures that D4 contains the high
order 17 bits of the cross product.

We are now nearly home and dry. Adding D3 to D7 ensures that the two low
order digits of the answer are correct, with the X bit set if there is a carry pending from
D7 into D6. An ADDX.L of D4 to D6 adds this carry bit and the high order part of the
cross product into the high order product generated earlier, leaving us with the 64-bit
result in D6 and D7.

This works fine for positive numbers, but we have in fact performed an unsigned
multiplication on the input values. This means that if we intended to multiply -1 by 2,
for example, we have in fact multiplied $FFFFFFFF by $2 using unsigned arithmetic.
This will give us D6 containing $1 and D7 containing $FFFFFFFE; this is not the
value -2 which we would expect if performing signed arithmetic.

The correction for this is simple, and is based on the fact that we are using two's
complement arithmetic. Thus -A is represented by the value M-A, where M is 2
raised to the power 32. Hence

(-A) * B = (M-A) * B = (M*B) - (A*B)

Therefore the unsigned product of a negative number A and a positive number B will
be the same as the signed product plus M*B. However it is very simple to perform the
multiplication M*B, as It simply entails shifting the 64-bit representation of B 32 places
to the left. As B is held in a single 32-bit register, and the answer is held in the
register pair D6.D7 we simply subtract the value of B from the high order register of
the answer, which is D6. The original operands are still held In registers D1 and D2,
so if D1 was originally negative then we must subtract D2 from D6. If 02 was negative
we must subtract 01 from 06. This correction then completes our signed arithmetic
routine.

Division

We stated earlier that the 68000 did not have long forms of multiplication or division.
There are two division instructions provided which handle signed and unsigned
division. They both take a word sized value as the source, which can be specified
using any data addressing mode. The destination must be a data register of size long.
The entire 32-bit value held in this data register is divided by the word value specified
as source. The DIVU instruction performs this divison using unsigned arithmetic, while
the DIVS instruction uses signed arithmetic.

In both cases two results are produced. The low order word of the destination is
set to the quotient, assuming that it will fit into a word. The high order half is set to the
integer remainder. In the case of DIVS this remainder will have the same sign as
the numerator.

The N and Z status bits are set or cleared as usual depending on whether the
quotient Is negative or zero. The C bit is always cleared and the X bit is unaffected. If
the resulting quotient is larger than a 16-bit value then overflow will be detected and
the V bit will be set. However the detection of overflow may occur while the 68000 is
in the middle of processing the instruction, in this case the result and hence the state
of the N and Z bits will be undefined. The TRAPV instruction, described in chapter 7,
can be used to cause a trap if overflow has in fact occurred. If the source is zero then
a 'division by zero' trap will occur.

Long division

Because DIVS and DIVU will only work If the result is less than 16 bits, we are also
going to need a long division routine. This is a little more difficult than the long
multiplication routine described earlier. The following routine is due to Dr. Arthur
Norman, and divides a 32-bit numerator held In D1 by a 32-bit denominator In D2.
The 32-bit quotient is returned in D1 with D2 holding the integer remainder.

The first section handles the sign, so that the main work can be done using
unsigned arithmetic. First we check to see if the denominator is negative. If it is then
we make it positive, perform the division and then reverse the sign of the answer.

DIV TST.L D2 Check denominator < 0
BPL.S DIVOO No
NEG.L D2 Make denominator positive
BSR.S DIVOO Do division as if positive
NEG.L DI Now negate the answer
RTS And return

This next case deals with a negative numerator but a positive denominator. Here we
must convert the numerator to positive, perform the division and then reverse' the
sign of both the quotient and the remainder.

76

The next section deals with division of unsigned numbers where Dl and D2 are
greater than or equal to zero and less than or- equal to $80000000. If D2 is actually
equal to zero then a 'divide by zero' trap will occur. In order to avoid performing too
much work we check for a number of easy cases. The first of these is the situation
where the denominator is less than 16 bits, and hence we can use the standard DIVU
instruction. If this Is the case then we jump to a standard subroutine DIVX which does
the division and sets the remainder correctly.

DIVU CMPI.L #$PPFP,D2 Test if D2H is zero
BLS.S DIVX D2 < 16 bits, use subroutine

At this stage we check for two other special cases. If the numerator is less than the
denominator then the answer is zero, and if they are equal the quotient is 1.

The more general case is where the denominator is larger than 16 bits. As the
numerator fits into 32 bits the resulting quotient will be a 16-bit object. We produce an
approximation to the required quotient by dividing both the numerator and the
denominator by a scale factor which is chosen so that the scaled denominator will fit
into 16 bits. We can then perform a standard division on the new scaled operands.
We must choose a scale factor which will itself fit into 16 bits, and which will produce
a suitably accurate approximation. We actually use 1+(D2/$ 10000) as the scale
factor, which we note will always fit into 16 bits because the largest value we allow D2
is $80000000, thus ensuring that the largest possible scale factor is $8001.

At this point D1L contains an estimate for the quotient we are looking for. We check
the result by multiplying the approximation to the quotient by the original denominator
and comparing this with the original numerator. We can also produce the remainder at
the same time. If the quotient is not correct we either add or subtract one and try
again until the result Is correct.

The only operation left now is the specification of the subroutine DIVX. This is used if
the original quotient fits into 16 bits, and is also called to scale the numerator In the
more difficult case. It sets D1 to the original value of D1 divided by D2. and sets D2 to
the Integer remainder. Note the use of MOVEM.W to save the low order words of D1
and D3. We do not use MOVEM.W to restore the registers partly because it is
convenient to pick them off one by one, but mainly because MOVEM.W will alter the
entire contents of registers if used to restore them.

Decimal arithmetic

The preceding discussion has been about performing arithmetic on binary values -
that is numbers held in two's complement binary form. Arithmetic on such quantities is
fast, but it is rather awkward to convert between decimal values as read by humans
and binary values as read by computers.

Some high level languages such as COBOL provide the programmer with the
ability to choose whether operations are to be performed in decimal arithmetic or
binary arithmetic. The advantage of using binary is that sums are quick, but the
conversion process from decimal to binary is slow. The advantage of using decimal
arithmetic is that it Is very quick and easy to read values Into the machine in decimal
form from decimal input; conversly the disadvantage is that the sums are slow.

The 68000 provides three instructions which can be used to perform decimal
arithmetic. They are ABCD (Add Binary Coded Decimal), NBCD (Negate Binary
Coded Decimal) and SBCD (Subtract Binary Coded Decimal). They all work on a byte
value which represents two decimal digits stored in Binary Coded Decimal or BCD.
Each 'nibble', or 4 bits, is used to hold a decimal value between 0 and 9. Thus the
decimal number 16 will be stored as $10 in binary form, and will be stored as $16
in BCD.

Normally a number will be read in from some external medium in decimal form a
character at a time. In order to convert the entire decimal number to binary we must
use a routine such as the following.

This routine assembles the binary version of a decimal number read from some
external source - the subroutine RDCH Is used to obtain information a character at a
time. The character is checked to be a valid digit and converted to the binary
equivalent. The previous value of the total is multiplied by 10, and the new digit added
to the total. This routine will only read a number which fits into a word, and would
have to be adapted to call the long multiplication subroutine if larger numbers were
required. A process just as complex must be followed in order to convert a number
into decimal again so that It may be written out.

This all takes time, and it may be the case that the only action to be done to the
numbers obtained in this way is to add them to some other value. An example might
be reading through a long list of figures adding them all together. We could write a
routine to do this, using our subroutine to read the decimal number and convert it to
binary.

In this case using decimal arithmetic might be better. We will have to use memory
locations to hold the two numbers involved. The following routine reads a number and
places the result in BCD form in an eight byte area addressed by AT. We shall
assume that we are reading the numbers from a right justified field of sixteen
characters, so that the number read exactly fills the BCD area, if this was not the case
we would have to clear the area before we read the number. Leading blanks will be
treated as zero, and we shall not check that the field only contains digits and spaces.
The routine will return with A1 pointing to just beyond the BCD area.

79

The first few lines save registers and initialise a counter. A call to RDCH then returns
with the character representation of a decimal digit or a space held in DO. In ASCII
the digits are hexadecimal $30 to $39, and space is $20. If we only look at the bottom
four bits we will get the correct value for the number so long as the field only contains
spaces or numbers. We assume this is the case and shift the character
representation left by four bits, clearing the bottom nibble and setting the top nibble to
the value of the decimal digit. This is then stored at the current value of A1.

A further call to RDCH returns the next digit or space. This time we AND the value
with $F to clear the top nibble, and then OR the result Into memory to fill the bottom
nibble In the stored version. We use postincrement addressing so that AT now points
to the next byte. When we have finished AT will end up pointing to eight bytes higher
in memory, and the storage area will contain the BCD representation of the number.
Note that this number can be larger than that which can normally be stored in 32-
bit binary form.

The next routine uses ABCD to add decimal numbers together, in the same way
that we used ADD in the earlier example to add binary numbers.

81

purpose of this example we will assume that the total will fit into eight bytes. We use
the first area for the total and the second area for the current number.

The first small loop sets all the bytes in the total to zero, noting that A7 marks the
limit of available memory. The first two instructions in the main loop which does the
totalling simply reset AT to the start of the input value area and A2 to just after the
result area. Once the number has been read by DRDN Al will point to just after the
number in the input area.

The next loop will add the input number to the result using decimal arithmetic. The
state of the X status bit is very important here, as ABCD adds the source and
destination together and also includes the X bit. The X bit is set if a decimal carry is
generated, so the repeated additions will work correctly. Before the loop is started we
must clear the X bit, and so we subtract the byte contents of DO from itself to ensure
that this is clear. We will see later how the X bit can be cleared more elegantly.

Each time round the loop one byte each from the two decimal values are added
together along with the X bit. If a decimal carry is generated then the C and X bits will
reflect this the next time round. The Z bit will be cleared if any of the bytes are non-
zero, but will not be affected if the result Is zero. We have set the Z bit by means of
the SUB instruction so that once the entire addition loop Is complete the Z bit will be
set only if all the bytes were zero. In this case we could, if we wished, test the Z bit to
perform some action only if the result was zero. The other two condition codes £N and
V) are undefined after an ABCD instruction. The X bit is unaffected by the CMPA
instruction which sees if we have completed the loop yet.

You will notice that we have used address register predecrement mode for both of
the operands to ABCD. This is one of only two allowed address modes, the other
being both data registers. The memory version is normally the» most useful, and it
must take predecrement mode as that is the order in which the bytes must be added.
The data register case simply allows the individual bytes to be placed in the two
registers; in either case the instruction is of size byte,

The SBCD instruction is very similar. Again it can only take the same two address
modes, and the destination byte will contain the original decimal value of the
destination less the decimal value of the source and the X bit. The condition codes
are altered in the same way except that C and X are set if a decimal borrow is
generated.

The final decimal instruction is NBCD. which may be used to negate decimal
values. In fact the NBCD instruction is similar to NEQX. as the destination byte is
negated • and the X bit then subtracted from it. The condition codes are set in the
same way as in SBCD. Unlike the previous two instructions, any data alterable
address mode may be used as the operand to NBCD.

Although not a decimal operation, the CMPM instruction which we met earlier is
often useful when handling decimal arithmetic. It can only be used with the
postincrement addressing mode, but is useful to compare two decimal numbers held
in memory to see if they are equal.

82

Our final requirement when handling decimal arithmetic is to write out a number
stored in BCD. Such a routine would be the opposite of the DRDN subroutine
described earlier. It is passed a pointer to the start of a BCD storage area In Al and
prints the number out using WRCH. A1 is left pointing to just past the end of the area.
This simple example prints out all leading zeros; a more sophisticated version would
convert leading zeros to spaces.

The main loop of this routine firstly sets DO to the value $30300. for reasons which
will become apparent. We then extract a byte from the BCD area which contains two
decimal digits to be printed, and place this in the low order byte of DO. Thus if the
byte contained $56. DO will now contain $30356.

The ROR.W instruction rotates the low order word by four bits, thus placing the
lowest nibble in the top half of the bottom word and shifting the rest of this word right
by four. In our example DO wili now contain $36035. The low order byte now contains
$35. which is the ASCII representation of the number '5', and which is written out by a
call to WRCH.

The LSR.L instruction wishes to shift the entire contents of DO right by twelve
places. The amount to shift can only be expressed as an immediate value if it is less
than eight places, so we have to use D2 which we have previously initialised to 12.
This will move the value $36 into the low order byte in our example, which is the
ASCII value of '6'. This is then written out and we loop back if required to print all the
digits.

The contortions which we have to go through to convert to and from character
form and BCD are indeed faster than the equivalent conversions to and from binary,
but in many machines instructions called something like 'pack' and 'unpack' are
provided. These convert from one form to the other in one simple instruction. In fact
early documentation on the 68000 mentioned just these instructions. We are now
promised PACK and UNPK in the 68020.

Chapter 6

Logical operations

in the previous chapters we have seen how the patterns of bits in registers and
memory locations can be regarded as representing numbers or characters. and
manipulated appropriately. Binary representation is used in computers because it is
much easier to make reliable electronic devices which have just two states (e.g. 'on'
and 'off') than ones which have more. Although the precise way in which numbers and
characters are stored Is usually unimportant, it is nevertheless sometimes useful to
take advantage of binary representation, and to manipulate values regarding them just
as collections of bits. Such manipulations are called logical operations to distinguish
them from arithmetic operations. A single bit can be thought of as having the logical
value true or false rather than 1 or 0.

Perhaps the simplest logical operation is that of inverting every bit of
the operand.

NOT.L D3

will convert every 1 bit in D3 to a 0, and vice versa. In common with the other logical
instructions. NOT is allowed only on data alterable operands; this reinforces the
convention that address registers are intended only for holding addresses, and that
logical operations on addresses are likely to be symptomatic of an incorrect or
deviously-written program. However, it is sometimes useful to be able to perform bit
manipulation on addresses, as we shall see in the store allocation routines later in
this chapter.

There are several logical operations which take two operands. They differ from
arithmetic operations in that the corresponding bits of each operand are combined
separately, rather than treating the whole byte or word as a single value. It is like
performing a set of 8, 16 or 32 one-bit calculations in parallel.

The OR operation produces a result with a bit set in every position where either
the source or the destination has one set. If the low byte of D1 Is 11001100 in
binary, and that of D2 is 11100001. then

rm

OR.B D1,D2

will leave D2 containing 11101101 in its low byte. Another way of thinking about OR is
to say that ORing with 0 leaves a bit unchanged. while ORing with 1 always sets it.
Thus we can set the more significant half of a register to Is without disturbing the
rest by using

OR.L #$FFFPOOO0,D3

A complementary way of combining bits is by ANDing them. The result of an AND
operation has 1—bits only in the positions where both the first and the second
operand had Is. Using the same values in D1 and D2 as above

AND.B D1,D2

will leave D2 with 11000000 in its least significant byte. AND is the inverse of OR in
the sense that ANDing with 0 gives 0. while ANDing with 1 leaves the bit unaltered.
The AND instruction is useful for masking part of a value: that is, setting the unwanted
bits to zero without affecting the rest. Suppose we have just done some calculation
which leaves an 8-bit result in the low byte of D4. but makes no guarantee about the
state of the other bits. We can clear these bits so that the value of the whole of D4 Is
just the wanted result by writing

AND.L #$000000PP,D4

The third instruction provided for combining two sets of bits Is the exclusive-or
(EOR) instruction. This gives a 1 in the result where tne two operand bits are
different; where they are both 0 or both 1, the result is 0. If, once again, Dl contains
11001100 and D2 holds 1110001. then

EOR.B D1,D2

will put 00101101 in D2.
Another view of this operation is that EOR with 0 leaves a bit unchanged, while

EOR with 1 inverts the bit. Thus EOR with all Is is equivalent to NOT.
The form of operands allowed for EOR is slightly different from those of AND and

OR. as the source must be a data register. The other two must have a data register
as at least one of the operands. but it can be source or destination. All three
instructions have an immediate form (ANDI, ORI. and EORI) for use when the source
is a constant bit pattern (though an immediate source operand can be used with the
ordinary AND and OR forms as well). A peculiarity of these instructions is that the
destination may be the status register (SR). If the operation size is byte, then only the
low order byte of the status register is affected: this is the condition code register
(CCR). If the size is word, then the whole status register is used, and the operation is
privileged. These forms of the three instructions enable particular status and condition
code flags to be set (ORI). cleared (ANDI), or inverted (EORI). without affecting
other bits. For instance, to

___ 85

clear the carry flag we would write

ANDI.B #SFE,CCR

and to set trace mode we could say

ORI.W #58000,SR

Shifting and rotating

We have seen how individual bits may be manipulated in place, and will now see how
to move bit patterns about within a register or store location. There are four types of
instruction for doing this, and each has a version for moving left and one for moving
right. All of the shift instructions take three forms of operands. The operand can be in
memory, in which case the operation size is always word, and the shift Is by one bit. If
the operand is in a data register then all three operation sizes are allowed, and the
shift may be either by a fixed amount (1 to 8 bits), or by a number given in
another data register.

The logical shift instruction LSL moves to the left all the bits in its operand, and
introduces Os on the right. Suppose that the word of memory addressed by Al
contains 1011111111111111. The effect of

LSL.W (Al)

is to set this word' to 0111111111111110. The carry (C) and extend (X) condition
codes are set from the lost bit, and the N and Z flags are set in the normal way
from the result value.

As mentioned above, a value in a data register may be shifted by more than one
bit at once, antf the number of places may be specified in two ways. A constant shift
of 1 to 8 bits is expressed as immediate data, as in

LSL.L #4,D2

Alternatively, the shift count can be given in another data register:

LSL.I. D1,D2

The count used is the value in the register modulo 64.
The LSR instruction performs rightwards logical shifts, bringing in zeros from the

left, and setting the C and X flags from the last bit shifted off the right hand end.
When we shift a binary number one bit to the left, the effect Is to multiply its value

by two. Shifting one place to the right is like dividing by two and throwing away the
remainder. Thus we can use shifting as a way of multiplying and dividing by powers of
2 (2, 4, 8, 16, etc.). We could use the LSL instruction for multiplying in this way, but
using LSR for division would not give the correct- answers with negative numbers.
Zeros would be shifted in on the left, unsettlng the sign bit.

86
87

To get round this problem, two more shift instructions are provided. These are the
arithmetic shifts ASL and ASR. which assume that their operand is a number in twos-
complement form. They take exactly the same operand formats as LSL and LSR. but
differ from those instructions in the treatment of the sign bit and condition codes. For
left shifts, the difference is subtle: LSL always clears the V (overflow) condition code
flag, while ASL sets it if arithmetic overflow has occurred, and clears it otherwise. The
final bit pattern in the operand location or register is the same for both
instructions.

The different handling of the sign bit affects right shifts only. The bits shifted in
from the left are copies of the original sign bit. ensuring that ASR will have the effect
of division for both positive and negative numbers. For positive numbers. LSR and
ASR have identical effects, but for negative numbers, ASR will shift in Is rather than
Os from the left. For example, if the least significant byte of Dl is 11101100 (= -20 in
decimal), then the effect of

ASR.B #2,D1

is to set this byte to 11111011 (= -5 in decimal). Any fractional part of the result is of
course lost, meaning that the result of division will be truncated towards minus
infinity. Thus

5 shifted right by 1 = 5/2 = 2
-5 shifted right by 1 = (-5)/2 = -3

Both arithmetic and logical shifts lose bits which fall off the end of the operand. An
alternative is to use the rotate operations (sometimes called circular shifts), in which
bits moved out of one end of tne operand are reintroduced at the other end. Thus no
information Is lost, and shifting sufficient times (e.g. 8 for a byte) will restore the
operand to Its original state.

There are two kinds of rotate instruction. Both take the same forms of operands
as the other shift instructions, and have left and right variants. ROL and ROR rotate
the operand value by the specified amount, and leave in the C flag a copy of the last
bit which was taken round from one end to the other. The N and Z flags are set from
the result value. V is always cleared, and X is unaffected. ROXL and ROXR are very
similar, except that each bit shifted out goes into the X flag, and the bit introduced at
the other end is the old value of X. These instructions will take one more step to
restore an operand than the simple rotates (e.g. 9 steps for a byte). Their importance
lies in the fact that they are the only shift operations which allow the value of the bit
which is brought into the operand to be determined by a previous instruction. Thus,
they can be used for shifting objects larger than 32 bits. For example, if we had a 64-
bit quantity in D1 and D2, we could do a logical left shift of the whole thing by writing

LSL.i #1,D2 LS half: lost, bit goes into X
ROXL.L #1,D1 MS half: get bit from LS half from X

Converting a hexadecimal number to characters

We can use the logical operations that we have seen so far to write a piece of code
which will convert a number held in a register into the characters of its hexadecimal
representation. Each hexadecimal digit corresponds to four bits of the number,
sometimes called a nibble (half a byte!). We can use a rotation to bring each nibble in
turn to the least significant end of a register, and then mask with an AND operation.
This gives us a number from 0 to 15 which can be used to select the appropriate
character from a table of sixteen.

* The number to be converted to characters is in Dl

* AO points to an eight-byte buffer for the character form

MOVEQ #7,DO Use DO as loop count

LOOP ROL.L #4,D1 Get next nibble to bottom of Dl

MOVE.B D1,D2 Copy two lowest nibbles
ANDI.L #SP,D2 Mask low nibble
MOVEA.L D2,A1 Need it in address register
MOVE.B CHARTAB(Al),(AO)+ Put corresponding character in

* next buffer position and step
DBRA DO,LOOP On to next nibble

* Exit here: conversion complete

CHARTAB DC.B •0123456789ABCDEP' Conversion table

Operations on single bits

Five instructions are available for operating on single bits in a data register or byte of
memory. One of them. TAS. is rather special, and will be dealt with later. The other
four, BTST, BCLR, BSET, and BCHG, form a family which all take the same operand
formats. Each of these four operates on a single bit, and the position of that bit is
specified by its number in the memory byte or register operand. Bits are numbered
from zero upwards, starting from the least significant (or right hand) end of the
operand. Thus a register has bits numbered 31 to 0. and a byte has bits from 7 to
0.

The BTST instruction simply tests the specified bit, and sets the Z flag to its value;
no other condition code flag is affected. The bit number can be given either as an
immediate value, or in a data register. The destination operand may be of any data
addressing mode, except the immediate addressing mode. If the operand Is a data
register, then the bit numbering is taken to be modulo 32. This means that the number
used is the remainder when the specified number is divided by 32, so the two
instructions

BTST #3,D7 and
BTST #35,D7

would both test bit number 3 of D7. When the operand is a byte of
memory, the bit number is taken modulo 8.

The other three instructions in this family also test the specified bit. but they may
also alter it, and so must have a destination operand of a data alterable
addressing mode. BCLR clears the bit to
0. BSET sets it to 1. and BCHG gives it the opposite value from the
one it had before.

Since memory is organised in bytes, a bit operation must read a whole byte, alter
one bit within it. and then write it all back. This means that using BCLR. BCHG, or
BSET to alter bits in memory-mapped peripheral control registers may have
unexpected effects, as the action of reading the location may itself cause some action
in the peripheral device. It Is safer to construct the required bit pattern and then use
MOVE to set such control registers.

The 'test and set' (TAS) instruction also affects just one bit in its operand. It is less
flexible than the other bit Instructions, as Its length attribute is always 'byte', and it is
always bit 7 of the byte which is tested and then set. Both the N and Z flags are set
from the original value of the operand byte. TAS can be used with any data alterable
operand, but its importance lies In the way it accesses a byte in memory. It uses what
is called a 'read-modify-write' memory cycle. This means that TAS retains control of
the memory for the whole time it Is executing, so that nothing else can look at or alter
the operand byte while TAS is inspecting and setting it. As mentioned In
chapter
1, this Is a vital operation in a system where several computers share
the same memory, as it enables them to use flag bytes in memory to
indicate whether or not resources that they all share are currently in
use. Such flags are called semaphores. It is necessary that eacn
computer should be able to set a semaphore and find out whether It
was set before, in a way that prevents the other computers from
altering the flag during this operation.

Semaphores can also be needed within a single computer, if that computer
contains several programs running more or less independently. Many operating
systems allow several programs to be active at once, and arrange to share out the
processor's time between them. Even in a simpler system, the code of interrupt
routines (see chapter 7) can run at random times during the execution of the main
program. In a single computer, BCLR, BCHG, and BSET (as well as TAS) can be
used for handling semaphores, as they all do a 'test and set' type of operation in a
single instruction. This means that no program can alter a semaphore while another is
in the process of looking at it and setting it.

A free store allocation package

In simple programs, it is usually possible to predict in advance how much data storage
will be required for the various data structures. buffers, and so on, and to divide up the
available memory accordingly. However, many programs need to be able to split the
total store between different uses, and the amounts needed for some structures may
not be known until the program is actually run. In these cases it is useful to have some
mechanism for reserving areas of store, and for releasing them again when they are
no longer needed. Such a mechanism can be provided as a collection of routines
forming a store allocation package.

A simple package contains just two routines: one for allocating memory, and
another for releasing it. One way to organise the store is as follows. Assuming that all
the available store is in one contiguous region, it is possible to divide it up into blocks,
placed end to end. Each block has a header word which indicates firstly the length of
the block, and secondly, whether it Is free or in use. The very last block consists of
just a header word containing zero.

We will make a rule that all blocks are a multiple of 4 bytes in length, and have
headers which are long words. This allows the size of a block to be as large as the
memory on any 68000 system, and also ensures that we will never get left with any
gaps between blocks into which we cannot fit a header. We will also insist that ail
blocks start at even addresses, so that the headers can be manipulated with
instructions of size long. Since all lengths are multiples of 4, the least significant two
bits of a length will always be zero. We can therefore use the least significant bit as a
flag to say whether or not the block is free.

90

The routine which allocates store is called GETBLK. It uses a 'first fit' algorithm for
allocating memory: i.e. it works its way through the blocks and allocates from the first
free one which is large enough, It joins together any adjacent free blocks that it
passes on the way. After a while, when many blocks have been obtained and then
freed again, it is quite likely that some free blocks will be next to each other. It would
be silly to reject a later GETBLK request simply because no single free block was big
enough, but there is no need to do the work of combining adjacent ones until such a
request Is made.

The routine for giving back a block of allocated store is called FREEBLK. its job is
very simple, as all It has to do is to set the least significant bit of the header word. In
order to mark the block as being free. However, it can do some simple checks in order
to be reasonably sure that the address It has been given is Indeed that of a block
previously allocated by GETBLK. The supplied address Is checked for being even (as
we made the rule that all blocks start at even addresses), and the flag bit in the
header word is inspected to make sure the block was allocated. The most common
programming error is freeing a block twice, and this simple test will
detect that.

91

92

FREEBLK also checks that neither address nor header has any bits set in the most
significant byte. We have not gone In for more elaborate (and time consuming)
checks such as scanning down the whole list of blocks to make sure that the address
really does refer to an allocated block.

FREEBLK returns Immediately if It is given Eero as its argument. This ensures
that the result of GETBLK is always a valid argument to FREEBLK, even if the
former fails to allocate any store. Chapter 7

Exception handling

in an me program examples we nave seen so far, tne address of tne next instruction
to be executed is determined (implicitly or explicitly) by the instruction currently
executing. Usually it is just the next instruction in sequence, but a branch, jump, or
return instruction can force execution to continue elsewhere.

This chapter Is about the situations when control is diverted in other ways: these
situations are called exceptions. There are two purposes for which exceptions are
used. One is to enable action to be taken rapidly when some event occurs, such as a
user pressing a key on his terminal keyboard. The other purpose Is to provide the
computer with a means of reporting that some error has been detected, and calling a
routine to take appropriate action. An example is when an illegal instruction is
encountered.

When an exception is processed, the 68000 saves the current values of the
program counter and status register, and then continues execution at an address
given in an exception vector at a low memory address. The saved information
enables execution to be resumed later at the point where it was interrupted; the effect
is like calling a subroutine between two instructions,

Exceptions can be generated in two ways: either internally when the processor
itself detects some anomalous situation, or externally, when some other hardware
needs to gain the processor's attention. External exceptions are usually called
interrupts, while internal ones are often called traps.

The external exceptions are

Interrupts Bus
error External
reset

94 95

The internal exceptions are caused by

Illegal instructions
Unimplemented Instructions
Address error
Privileged instructions In user state
Tracing
Divide by zero
TRAP, TRAPV. CHK

Exception Vectors

When an exception occurs, the processor calls a routine provided by the user to
handle that exception. We have to give it a way of finding the address of that routine.
On some computers, the same routine is called for any exception, and its address is
held in some fixed store location. This routine must start by inspecting some system
registers to find out what actually happened.

The 68000 has a more general scheme which allows a separate routine to be
provided for each type of exception, and for each external device. The lowest 1024
bytes of memory are reserved for holding the addresses of all these routines. Each
address is held In a 4-byte slot known as an exception vector. Each vector has a
number, which is just Its byte address divided by four. The position and number of the
vectors is given in the following table.

The exception vector number is implicit for all internal traps and for external
interrupts which use the auto-vector mechanism. Circuitry which causes other
interrupts must present a vector number to the 68000; the choice of vector number is
up to the designer.

If the three function code output lines from the 68000 are being used to separate
the memory into distinct address spaces, then all but the reset vector will be taken
from the supervisor data space. The reset vector will be taken from the supervisor
program address space.

96____________________________

User and supervisor states

As mentioned in chapter one, the 68000 can execute instructions in either user state
or supervisor state. The two states correspond to different levels of privilege.
Supervisor state is the more privileged, and programs forming part of an operating
system should normally run in this state. Any instruction may be executed while in this
state. User state is used for running all other programs. Several key instructions are
forbidden in this state, and any attempt to execute them will cause a trap which will
pass control back to the operating system. The instructions which are disallowed fall
into two categories: those which could interfere with the operation of the computer,
such as STOP and RESET, and those which would allow the program to enter
supervisor state but continue executing its own Instructions.

The processor chip has an output line which signals the current state. This can be
used in two ways to protect memory belonging to the supervisor. It could be checked
on each memory access in the hardware In order to forbid access to certain regions
while in user state. The other way it could be used would be to completely separate
the memory available to the supervisor from that available in user programs. Thus
address 1000 when in user state would access a different memory location to address
1000 in supervisor state. In this way, the private supervisor memory would be invisible
to user programs.

Address register 7 is special, as it is used implicitly as a stack pointer by some
Instructions and during exceptions and interrupts. It is also peculiar in that the name
corresponds to two physical registers, the user stack pointer (USP) and the
supervisor stack pointer (SSP). The one accessed by a reference to A7 depends on
the processor state. The name SP is sometimes used for the current stack pointer.
Thus SSP is not accessible in user state. However, there is a special instruction
which gives access to USP in supervisor state, as an operating system will need to be
able to read and set this register. This Instruction is a special case of the MOVE
instruction, with USP as either source or destination. It is privileged, not for reasons of
protection, but because any program which does use it in user state is doing
something silly.

The only way that the state can change from user to supervisor is when a trap or
interrupt occurs. This means that the change is always associated with a jump to a
address determined by the trap vectors in low store. By protecting this store from
access in user state, it is possible to ensure that it is impossible to enter supervisor
state without also jumping to a system program, and thus restrict what user programs
are able to do.

There are several ways of returning from supervisor to user state. The supervisor
is allowed to execute those instructions which directly update the processor status
register (SR), so can simply negate the bit which controls the state. It can also set
user state as part of returning from an exception via the RTE instruction (see
below).

How exceptions are processed

The action taken by the processor is similar for all the different kinds of exception. In
all cases, the current values of the program counter and status register are saved, so
that the Interrupted program can eventually be resumed as if nothing had happened.
They are saved in three words of the system stack, as shown

Note that it is always the supervisor stack which is used (i.e. that pointed to by SSP
rather than USP), regardless of which state the processor was in when the exception
occurred. The address error and bus error exceptions save more information than this
(see below). In most cases, the saved program counter points at the instruction which
would have been executed next if the exception had not happened. Note that the
68010 and 68020 processors save one more word on the stack which contains the
exception vector number. This makes it easier to share the same code to handle
different exceptions.

The status register is set to a standard state after the old version has been saved.
The supervisor state bit Is set on so that the exception handling routine will always
start in supervisor state. The Trace bit is turned off, so that exceptions can be taken
normally even when the main program is being traced (see below). The 3-bit interrupt
mask is affected only by the reset exception, and by interrupts. Reset sets this mask
to 7, while an interrupt sets it to the priority level of that interrupt (see below).

Routines to handi© exceptions

A program which is going to handle exceptions will start by inserting in the exception
vectors the addresses of the routines which are to be called when each exception
occurs. The skeleton layout of an exception routine Is as follows

98__

An exception can occur at an arbitrary time, between any pair oi instructions. In
order to be able to resume properly, it is essential to preserve the original status
register, and the contents of all the address and data registers. The status register is
saved automatically, but it is the job of the handler routine to make sure It does not
corrupt any other registers. The easiest way to do this is to use MOVEM to save on
the stack any registers which are used in the routine, and to use it again at the end
to get them all back.

The RTE Instruction does the rest of the work of returning from an exception
handler. It expects the old program counter and status register to be on the stack in
the order shown above, and restores both of them, thus resuming the program that
was interrupted. The action of RTE is similar to

MOVE.W (SP)+,SR RTS

However, it cannot be replaced by these two instructions, as RTE always pops the
program counter from the supervisor stack, whereas RTS takes it from the user or
supervisor stack, according to the current processor mode. If the MOVE.W to SR
instruction changed the mode from supervisor to user, then RTS would operate on
the wrong stack.

Note that use of RTE is forbidden in user state, as it allows the status register to
be set directly, and so would provide an uncontrolled means of getting into
supervisor state.

An unprivileged instruction very similar to RTE is RTR. It too sets the program
counter and status register from values on the stack, the only difference being that it
sets only the user byte of the status register (the half containing the condition codes).
It takes a whole word of stack for the status register, but only the low byte is actually
used. Thus RTR is like the sequence

MOVE.W (SP)+,CCR
RTS

One use of RTR is as an alternative to RTS in a subroutine which preserves the
condition codes present when it was called. Such a subroutine would have the form

Another use for RTE, RTR, and RTS is as jump instructions. To use JMP to go to
an address that was not known at the time the program was written, we must hold
that address in an address register. If we want to jump somewhere, having set all the
registers to particular values, we can do so by putting the destination address on the
stack and using RTS.

RTR or RTE can be used like this to set up the condition codes, or (in supervisor
state) the whole status register, before jumping.

Interrupts

Interrupts are the means by which external devices request action from the processor.
A device requests an interrupt by presenting a priority level between 1 and 7 to the
processor. The Interrupt will be accepted only if the current processor priority level
(held in the status register) is less than the interrupt level, or if the requested level is
7. Level 7 thus acts like a non-maskable interrupt (NMD on other computers. The
logic which requests the Interrupt must also indicate whether it will supply a vector
number, or whether auto-vectoring should be used. This means that the processor
uses a vector from the range 25 to 31, according to the requested priority level. A
vector number is normally supplied when many devices interrupt at the same priority
level.

The processing of an interrupt follows the normal sequence for an exception, with
the program counter and status register being saved on the stack, and the status
register being set to a standard state. The saved program counter points to the
instruction which would have been executed next if the interrupt had not occurred.
The priority level in the status register is set to the level of the interrupt. The purpose
of this Is to prevent further interrupts of the same or lower levels, but to allow ones of
higher priority. Some computer peripherals need fast response to an interrupt request,
otherwise data may be lost, whereas for others there is less, or no, urgency. The
designer of a computer system can choose the interrupt priorities in such a way as to
guarantee to give rapid servicing to the interrupts for which it matters. Interrupts of the
same or lower levels than the current one are inhibited in order to simplify the
programming of the interrupt routines. If the inhibition were not there, then an interrupt
service routine could be interrupted and the same routine called again. This would
cause chaos if the routine thought it had exclusive use of any memory locations or
ports.

External reset

A reset exception can be caused by circuitry outside the processor. This Is used to
start the processor initially, or to restart it after some crash which cannot be recovered
from in any other way. All record of what was going on at the time of the reset Is
lost.

Reset differs from all other, exceptions In two ways. Firstly, nothing is saved on
the stack, as the stack pointer may not refer to a valid address. Secondly, the
exception vector is eight bytes long (rather than four), and contains the initial
value of the system stack pointer

100

as well as the new program counter.

Illegal and unimplemented Instructions

If the 68000 attempts to execute a word which does not contain a valid instruction,
then It will cause a trap to occur, saving a program counter value which points to the
offending word. One of three exception vectors is used.

If the most significant four bits of the word are 1010 or 1111, then the instruction
is considered to be unimplemented rather than illegal. These groups of instructions
are ones which may be assigned meanings in future models of the 68000, or for
which separate co-processor chips may be provided. Unimplemented instructions
provoke traps to one of two vectors, according to these four bits. This is to allow
emulation of unimplemented instructions in software. Given the specification of an
instruction, an exception handling routine can be written to have precisely the same
effect as that instruction, albeit rather more slowly. This means that Is is possible to
provide software so that programs containing unimplemented instructions (perhaps
written for a later version of the 68000) can be run unchanged.

Illegal instructions which fall into neither of these groups cause a trap through the
'illegal instruction' vector. Encountering this trap is a symptom of either a wild jump
(e.g. indirecting through an address; register that had not been initialised), or of
running off the end of a program into data or unused memory.

Instructions which can cause traps

Some instructions can cause traps as part of their normal execution, either because
that is their main job, or because some abnormal condition can arise during their
execution.

The TRAP instruction always causes an exception. Its operand is a number from
0 to 15, and one of sixteen exception vectors is used accordingly, so there is, in
effect, a family of sixteen TRAP instructions. It has a variety of uses. The major use is
as a call to an operating system or monitor. As has been explained earlier, in a
protected system it is necessary to run the operating system code in supervisor state
so that it can restrict the actions of user programs (which run in user state). The
TRAP instruction allows programs to call subroutines in the operating system, and to
put the processor into supervisor state as part of the call. The reason for the cail can
be conveyed either by the operand of the TRAP, or by an argument In a register.

Another use for TRAP is for setting breakpoints in a debugging program. As it is
only two bytes long, it can be substituted for the first word of any instruction. When
the program gets to that point, an exception will be taken, diverting control back to the
debugger, which will then print a message to its user. The monitor in the next chapter
provides a breakpoint facility in just this way.

Two other instructions cause a trap if a particular condition is true. They are both
intended as cheap tests for errors which may occur when a program is running,
and could be inserted automatically

at all appropriate points by a compiler for a high level language. TRAPV forces an
exception if the V condition code is set. If a TRAPV Is inserted after every arithmetic
operation in a program, then an exception will occur whenever there is overflow. For
example, we might have a sequence of code like

ADD.L (aa),D4
TRAFV
ASL.L #2,D4
TRAPV

The other of these instructions is CHK. which is designed for checking that access
to an array of store is within the range of that array. CHK compares the value
referenced by its first operand to the low 16 bits of the data register which is its
second operand. If the value in the data register is less than zero or greater than the
first operand, a trap occurs. Suppose A1 contains the address of an array of bytes, D1
contains the offset of the one we want to update, and the word addressed by A2 holds
the upper bound of the array. CHK could be used as follows

CHK (A2),D1 Check that offset is in range
MOVE.B VALUE,0(A1,D1.W) Update array byte

Two more instructions which can force exceptions are those for division, DIVU
and DIVS. Both of these will trap if they are asked to divide by zero.

When any of the above Instructions provokes an exception, the saved program
counter points to the next instruction in sequence.

Privilege violations

We mentioned earlier that some instructions may be executed only when the
processor is in supervisor state. These instructions are all the ones which would
enable a program to steal control of the computer from the operating system, by
updating the status register, or resetting the peripherals. The following
instructions are privileged

The RESET Instruction asserts the reset output from the processor chip, causing
all external devices to revert to a standard state. It will usually be one of the first few
instructions executed when an operating system or monitor starts up, and will not be
executed again in normal running. This instruction has no direct connection
with the

reset exception, but should be used in the code that the exception jumps to, in
order to ensure that all peripherals are in a known state.

The STOP instruction puts the processor into stopped state (which should not be
confused with the halted state set after an unrecoverable error). It stops executing
instructions until the next interrupt or reset exception occurs. The operand of STOP is
a 16-blt immediate value, which is placed in the status register. This allows STOP to
set the processor priority levei before it stops the machine.

This instruction is intended for use when the computer system based around the
68000 has peripheral devices capable of direct memory access (DMA). This means
that they can read from or write to the memory directly, without having to interrupt the
68000 itself, it is usual for a disc device to be connected using DMA, so that it can
transfer large chunks of data quickly between memory and disc, and interrupt the
running program only when the transfer has finished. A DMA device will often want to
use the memory at the same time as the processor, so there is some circuitry which
arbitrates and makes one wait for the other. If the program in the 68000 initiates some
DMA transfer of data, and then has nothing useful to do until the transfer finishes,
then it could just go into a loop until the interrupt comes. However, this makes
unnecessary accesses to the memory (to fetch the instructions of the loop) and so
may slow down the DMA transfer. It is better to use STOP to stop the 68000
completely when it has nothing to do.

The operand of STOP must have a 1 in the bit corresponding to the supervisor
state flag of the status register, otherwise a privilege violation will occur even if STOP
is executed in supervisor state. (This is the only way a privilege violation can happen
in supervisor state.) Thus, a typical example of this instruction is

STOP #$2000

which sets the interrupt mask to zero, permitting any level of interrupt.
The MOVE to/from USP instructions do not need to be privileged. However, they

are intended for use only by programs running in supervisor state, as the user stack
pointer is already accessible (as SP) in user state. They are made privileged because
any attempt to use them in user state is likely to be due to a programming error which
should be brought to the user's attention.

Whenever a privilege violation trap is taken, the saved program counter points at
the offending instruction.

Tracing

It is possible to request the 68000 to cause an internal exception after the execution
of every instruction. This is the trace exception, and occurs when the trace bit in the
status register is on. The saved program counter refers to the instruction after the
one saved.

The principal use of the trace exception is as a debugging aid. It allows the
program under test to be run one instruction at a time, with control returning to a
debugging program after every instruction. This can be a powerful tool for isolating
the point at which the error occurs in a faulty program. The monitor in the
next chapter provides

a tracing facility by using this exception.
The trace exception also greatly simplifies the handling of breakpoints. We saw

above how a TRAP instruction can be used to replace the first word of a breakpointed
instruction. When the trap is taken, control passes into the debugger, and we can
inspect registers, store locations and so on. However, a difficulty arises when we want
to continue execution of the program after hitting the breakpoint. We would like the
breakpoint to remain in force in case the program reaches that point again, but, in
order to continue, we must execute the instruction that has had a TRAP planted on it.
What we need to do Is to restore that instruction, execute it. and then put back the
TRAP in its place before proceeding. Having a trace exception allows this to be done:
the instruction is executed with the trace flag on, so control passes back to the
debugger, which can put back the breakpoint TRAP and then allow execution to
continue normally with the trace flag off.

Bus errors and address errors

A bus error is an attempt to read from or write to an address which does not belong to
any device outside the processor. Bus errors are usually caused by trying to use a
memory address which does not correspond to any physical memory. The only way
that this error can be detected is by observing that no response is forthcoming when
.the address is used. The detection is performed by logic outside the processor, so
that the designer can decide what is a suitable time to wait for a response. If this time
limit were built-in to the processor. then it might be impossible to use it with some
slow devices.

An address error is an attempt to read or write a word or long word of data at an
odd memory address. It is very similar to a bus error, but is detected by the processor
itself, and uses a different exception vector.

It can be difficult to determine exactly what caused a bus or address error. It may
be due to an invalid operand address within the current instruction, but it might have
happened while trying to pre-fetch the next Instruction. Also, whereas most
exceptions are either processed between instructions, or forced by an instruction,
these errors can be noticed at an arbitrary point in the processing of the instruction.
This means that the value of the program counter saved will point somewhere near
the offending instruction, but may not point 3xactly at it.

To make it possible to decide what was wrong, the processor saves more
Information on the stack than for other exceptions. Seven words of stack are used
altogether, with the following layout

The instruction field holds the first word of the instruction which was being processed
at the time of the bus or address error. This allows the exception handling routine to
search back from the saved program counter to find the start of the instruction In
store. The address field holds the address to which access was being attempted. The
last word contains some extra information about the aborted bus cycle. Its format is
as shown

The W bit Is 1 if the access was a write, and 0 otherwise. The N bit is 1 if the 68000
was not processing either an instruction or an exception caused directly by an
instruction when the error occurred. This could mean that it was in the stopped state
(after a STOP instruction), or already processing one of the other kinds of exception.
The F field gives the 3-bit number which was being presented on the function code
output lines from the chip. These are the lines which classify the access as supervisor
or user, and program or data, and which can be used to divide up the memory into
four address spaces.

If the exception vector for bus errors, address errors, or reset contains an invalid
or odd address, then a bus or address error will occur while the exception is being
processed. This is known as a 'double bus fault', and is treated as an unrecoverable
failure. The processor gives up and halts itself, so as not to corrupt any of the
evidence in memory. The only way to restart it Is to give it an external Reset signal.

In general the 68000 is not capable of continuing with an Instruction which
caused a bus error, as it might have been in the middle of its internal execution. The
68010 and 68020 save much more information on the stack, thus allowing the
instruction which caused the bus error to be resumed.

Multiple exceptions

It is sometimes the case that several exceptions happen very close together, and it
may be important to know the order in which they will be handled. The various
exceptions can be placed in three distinct groups according to exactly when the
exception is processed.

Group 0: Reset, bus error, address error
The execution of the current instruction is aborted.

Group 1: Trace, interrupts, privilege violations, illegal
instructions
The current instruction is allowed to complete, and the exception
is taken just before the next instruction starts. Privilege and illegal
instruction traps occur just before the offending instruction would
have been executed.

Group 2: TRAP, TRAPV, CHK, division by zero
The exception occurs as part of the normal instruction execution.

There is a priority order of exceptions, which determines exactly what happens
when several are outstanding at once. The highest priority one is processed first, and
then the others, in decreasing priority order. The order is (highest first)

Reset
Bus error
Address error
Trace
Interrupts
illegal instruction, privilege violation (cannot happen together)
TRAP. TRAPV, CHK, division by zero (cannot happen together)

When the trace flag is set, there is no trace exception when the current instruction
is aborted by a reset, bus error, or address error. If an interrupt is pending after a
traced instruction, then the trace trap is taken before the interrupt. However, if the
current instruction forces an exception, then that is processed before the trace
exception.

A store size finding routine

We can use the bus error exception in a routine which determines the amount of
memory available on our computer. A routine like this is usually executed by an
operating system when it starts running so that the same operating system can be
loaded Into machines with different amounts of store, and will always make use of all
that is available.

The routine works by stepping up the memory, trying to access each byte In turn.
Eventually it will try to touch one which does not exist, causing a bus error exception
to occur. Before the main loop is entered, the bus error exception vector is
set up to point to an

106

instruction in this routine (at label SSF„BERR). We do not actually need any of the
information stored on a bus error, so can just reset the stack pointer to its original
value.

It Is possible that the memory address decoding hardware is arranged in such a
way that the bus error logic will not detect attempts to access memory just past the
highest location that actually exists. To guard against this, the routine checks each
byte to see If It does indeed function as memory, by storing a bit pattern and then
seeing if It is still there. The bit pattern chosen contains both Is and Os, as non-
existent memory Is likely to appear as either all Is or all Os. The original contents of
each byte are saved in a register and restored after the test, so that memory remains
unaltered. We must be careful not to test the memory in which our program resides,'
as we would at some point alter a byte in the next Instruction to be executed, with
unfortunate results! This routine starts the test just after Its last byte.

Chapter 8

A complete example:
™ JUL

a monitor
in this chapter we present a complete example. This is a small monitor which will
supply a limited range of facilities for running and debugging assembler programs.
Such a monitor would normally reside in read only memory, and a real monitor would
probably have a great deal more commands than those described here. However the
example demonstrates the way in which the 68000 interrupt and trap vectors are
used and the use of the supervisor and user modes.

The monitor is intended to reside in any location in memory, and some care has
been taken to ensure that the code Is all position independent. The monitor Itelf runs
in supervisor mode, while a user program may be executed only in user mode.

Commands are provided to examine and alter the user's register set, to set and
clear breakpoints, to examine and alter memory locations, and to start a user program
either normally or in trace mode.

The current value of the user's registers may be printed by using the R command;
this will print the value of all the registers. Alternatively the value of a specific address
register or data register may be printed by using the A or D command. Similarly the
program counter and status register may be selectively printed by the P and S
commands.

The contents of any register may be updated by following one of the A, D, P or S
commands with a value in hexadecimal. A memory location may be opened by
means of the M command, once this has been done the byte at the address specified
after the M will be printed.

A further set of commands are provided once a memory location has been
opened in this way. A memory location is initially opened as a byte value, but the
word (two bytes) or long word (four bytes) starting at that address may be specified
by typing W or L, while S restores the size to a single byte. Odd numbered bytes may
not be opened as word or long.

Once a memory location has been opened a new value may be entered in
hexadecimal. This will replace four, two or one bytes depending on the currently
selected size. The uparrow symbol C) will open the previous location in the currently
selected size, while 'return' opens the next location. The equals symbol (=) may be
used to print out the current location again, which is useful if the memory address is
actually a memory mapped I/O location. The memory subcommand level is
terminated by a fullstop (.). which returns to the normal monitor.

A user program would normally have to be entered into memory by means of the
M command, specifying the program in hexadecimal. A more complete monitor would
have facilities for loading a program from another computer.

Once a program has been entered into memory it may be executed by the Q
command. This causes the computer to enter user mode and to jump to the location
specified in the user program counter. A new value for the program counter may be
specified after the G command if required.

In order to debug a program, the T command can also be used to start execution.
In this case one instruction is executed and control returns to the monitor again. The
register values are printed out, and another monitor command may be issued.
However if just a 'return' is typed at this stage, the next instruction is executed. This
makes it simple to trace through a program step by step.

The monitor also allows breakpoints to be set in a user program. The B command
,by itself prints ail current breakpoints; Bn deletes breakpoint n and Bn followed by a
hexadecimal number, sets breakpoint n at the specified address. Once a breakpoint
is executed control returns to the monitor. The T command can be used to trace a few
instructions, or the C command will continue past the breakpoint.

All exceptions and traps are handled. TRAP #15 is used to indicate that a user
program has terminated, while TRAP #14 is used to cause breakpoints. The TRACE
vector is used while tracing user programs. All other traps or exceptions cause a
suitable message to be written and the user program to be terminated with the
contents of the registers saved. After a breakpoint or trace the contents of the
registers are printed. In addition, after a trace exception has occurred, the response
'return' will cause another instruction to be traced.

The only interrupt location used is the level 2 auto-vector location; It is assumed
that an ACIA will interrupt here. The ACIA location is held as a long value in the
program so that this could be patched to alter the actual location of the ACIA in the
memory map. Similarly the two areas of RAM used by the monitor for the stack and
for other data locations are defined by two other long values within the program.

no

The first requirement is to define various constants used and to specify the layout
of RAM locations. This first section defines various ASCII constants, bits within the
status register and some default values. It also specifies the binary opcode for TRAP
14 which is used as a breakpoint.

Constant definition and exception handlers

This next section defines the structure of the RAM area used. We do not use fixed
locations as workspace, but instead always use an offset from an address register
(usually A6). We need three pointers into a line buffer and the buffer itself in order to
handle input characters typed. We also allocate space for the user's registers and for
the breakpoint locations. We also provide names for offsets within the user's register
save area.

Having completed all our definitions we will now proceed to allocate some constant
areas. This first area defines the exception, interrupt and trap locations. They are
placed at the start of the program In case the code is loaded to start at
location zero; in this case they

will be in the correct place assuming that the hardware of the machine does not
provide different memory areas for program and data. The initialisation section of the
monitor also copies these locations into memory starting at zero in case the program
is loaded somewhere else. The first two long locations define the initial values for the
stack and program counter which are picked up when the 68000 is reset. In order for
this to work the whole monitor must be loaded at location zero or else the first eight
bytes must be mapped by hardware into the first address within the monitor. In the
latter case the start address will have to be relocated in a suitable fashion.

I 13

I_BHK DC.L TKP15-TS User requests

INTSIZE EQU (I_BRK-I„BESEO?)/4 Size of fixed vectors

Finally we specify the location of the ACIA and of the RAM area used. This is placed
Into program space so that these locations can be patched without assembling the
entire program all over again.

ACIA DC.L 583FF01 Address of ACIA
RAMBASE DC.L $1000 RAM base pointer

Character reflection is handled by the routine WRCH which writes the character
held in DO to the output part of the ACIA and hence to the terminal. Although an ACIA
can be configured to interrupt when the output request has finished this is not used In
this example; interrupts are only generated when an input character arrives. As the
monitor is only intended to run one program at a time there is nothing that could
usefully be done while we wait for the ACIA to complete a transmission. Using
reception interrupts means that characters may be typed ahead at any time.

Input and output

We can now start the code proper. The first few subroutines are intended to be called
by any user program, and hence do not expect any registers to have particular
values. In the later subroutines which handle the various monitor commands it is
assumed that the last character typed is in register DO and that register A6 points to
the base of the RAM area.

The first routine to be defined Is the Interrupt routine. This will be called whenever
a character has been typed at the keyboard, as the address of the start of the routine
has been placed In the autovector for interrupt level 2. It must take the character and
attempt to place It into a circular buffer. If this is not possible because the buffer Is full
the character will simply be ignored. If the character Is 'rubout' then the last character
typed will be removed unless there are no more characters left on the current line.

Normally the character typed will be reflected at the terminal. If 'rubout' is typed
then the reflection will be backspace, space, backspace in order to remove the
character from the terminal screen. If 'return' Is typed then the reflection will be
'return' followed by 'linefeed'.

it is of course vital to save any registers used in an interrupt routine as it may be
called at any time. Notice also the use of RTE which replaces the saved status
register before returning to whatever code was being executed at the time.

The circular buffer is maintained by three pointers. BUFWR is used as the current
write position, and points at the last character entered in the buffer. In the normal
case this pointer is Incremented via the subroutine INCPTR which takes account of
the circular buffer and the new character placed in the buffer at that point. The pointer
BUFRD is used to indicate how far the read routine has got in removing characters
from the buffer. If the BUFWR reaches BUFRD then there is no more room in the
buffer. The read routine will only extract characters from the buffer once an entire line
has been typed, thus allowing characters to be deleted. The pointer BUFLS is set to
point to the start of the current line both to enable the read routine to check this and
so that rubouts are ignored If the entire line has already been deleted. When a rubout
is typed the BUFWR pointer is cyclically decremented.

This little subroutine assumes that A2 contains a pointer into the circular buffer, and
that A6 points to the base of the RAM area. It increments A2 and resets it to the start
of the buffer if it has reached the end.

The next few routines are concerned with output. The first routine
is WRCH, which transmits the character held in DO to the output
section of the ACIA. It uses a subsidiary routine WRCH1 which
assumes that A1 points to the ACIA.

The routine WRCH1 is called by WRCH and WRITES after setting up AT to point to
the ACIA control register. The ACIA data register appears in memory two bytes
higher. It simply waits for the ACIA to become ready and then transmits the
character held In DO.

The next few routines are just generally useful subroutines to do with output. BLANK
writes a space to the output while NEWLINE writes carriage return followed by
linefeed to the output.

This is a variation on a routine we have already seen. WRITES is called with AO
pointing to some characters terminated by a zero byte. The characters are all written
to the output. It calls WRCH1 rather than WRCH as it sets up the pointer to the ACIA
once and for all at the start of printing the string.

115

Finally it branches to NEWLINE to print a newline at the end of the string. This
demontrates a common trick. If the last action of a subroutine is to call another routine
and then to execute an RTS instruction It Is simpler to branch directly to that
subroutine. The return address for WRITES will still be on the stack, so that when
NEWLINE finally executes its own RTS the jump Is made back to the caller of
WRITES.

WRITES MOVEM.L D0/A0-A1,-(SP) Save registers
MOVEA.L ACIA,A1 Extract ACIA address

WRITES1 MOVE.B (AO)+,DO Extract character from string
BEQ.S WRITES2 Zero - end of string
BSR.S WRCH1 Write out character using ACIA in Al
BRA.S WRITES1 WRITES2 MOVEM.L

(SP)+,D0/A0-A1 Restore registers
BRA.S NEWLINE Print newline and return

The final set of output routines are used to print hexadecimal numbers. WRHEX4
prints four hexadecimal bytes. WRHEX2 prints two and WRHEX1 prints a single byte.
Finally WRHEXO prints four bits, or a 'nibble'. Any of these routines can be called
individually although they all end up calling WRHEXO the required number of times.
Note that register values are not corrupted as they are swapped around and then
replaced.

WRHEX4 swaps register halves to print out the top two bytes via a call of
WRHEX2. and then drops into the code of WRHEX2 to print the bottom two bytes.

WRHEX4 SWAP DO Swap high and low halves
BSR.S WRHEX2 Write high 2 bytes
SWAP DO Swap high and low halves again

* Drop through to WRHEX2

WRHEX2 performs a similar trick. It rotates the low order word to print the high order
byte of the pair via a call of WRHEX1. and then rotates it back again to restore the
register. It then drops through to the code of WRHEX1 to print the low order byte.

WRHEX2 ROR.W #8,DO Shift top byte down to low order
BSR.S WRHEX1 Write single byte
ROL.W #8,DO Shift bottom byte back again

* .. and drop into WRHEX1 for this byte

WRHEX1 is very similar to WRHEX2. In this case the top four bits are rotated down
so that they may be printed by WRHEXO, then rotated "nek and the bottom four bits
printed.

Finally WRHEXO actually writes out a single hexadecimal digit held in DO.
It takes care not to corrupt DO, and calls WRCH to handle the

The last part of this section concerns input routines. The opposite of WRCH is
RDCH which returns a character from the terminal in register DO. It is convenient to
clear the high order three bytes of DO and to return the character in the low order
byte.

We must remember the circular line buffer maintained by the interrupt routine, and
the fact that two pointers BUFRD and BUFLS point to the last character read out of
the buffer and the start of the current line respectively. We compare the read pointer
BUFRD with the start of line pointer BUFLS. and If these are the same then we loop
waiting until they are not. This will happen, of course, when the interrupt routine has
accepted a 'return' from the keyboard which indicates that the user has completed his
line of Input. If characters have been typed ahead then there is no need to wait and
we can extract them at once. We also call the same routine INCPTR to step a pointer
through the circular buffer.

This routine reads a hexadecimal number from the keyboard. Two entry points are

provided. READHEX reads the next character from the input, while READH assumes
that the next character has already been read and is sitting in register DO. The result
is returned in D1, and DO is set to the last character read by the routine. If an invalid
character is found the Z bit is unset, if all goes well the 2 bit is set. This can be tested
later with BNE to jump to some sort of error handler.

Branch table handling

Within the monitor we will want to take a command letter from the input and to
determine some action on the basis of the letter typed. We shall use the routine
SEARCH to perform this. It expects a character in DO and a pointer to a branch
table in register AO.

The branch table indicates the required action for each valid character,- and a
default action if the character is not valid. Each entry in the table consists of four
bytes. The first byte is a flag which is set to zero if there are more entries in the table
and set non-zero if there are no more entries. In this case the entry in the table is to
be taken as representing the default action required.

The second byte in each entry holds the character with which the specified action
is associated. It is ignored when the flag byte Is set.

The final two bytes are used to indicate the action to be performed. For each
action there is an associated subroutine, and the address of this subroutine is
indicated in the two byte slot. In order to maintain position independent code the entry
in the table represents the offset of the subroutine from the base of the table.

We use a branch table for two reasons. Firstly the same code can be used to
decode different sets of commands which are valid in different circumstances. Here
we shall use SEARCH to decode normal commands and memory change commands.
Secondly It makes it easy to add new commands, simply by providing a new entry in
the table and a subroutine to do the job.

The routine SEARCH is passed a character in register DO which is converted into
lower case, by the routine LOCASE. Each entry in the table is checked to see if it
contains this character; if a match is found in the table the associated routine is called.
If the non-zero flag byte at the end of the table is encountered the routine specified is
always called.

I IB 117

118

No registers are corrupted by this subroutine. In order to achieve this we use the
stack as workspace. Firstly the original value of DO is restored by reading it from the
penultimate stack frame slot; this slot is then updated with the address of the
subroutine which is to be called. Register AO is then restored and the stack pointer
lowered so that the stack contains the required entry point, followed by the return
address to whatever called SEARCH. The final RTS instruction then picks this value
off the stack and hence jumps to the required subroutine, which will return to the
caller of SEARCH if it executes an RTS.

The following small routine converts the character in register DO to lower case if
required. Once we have established that the character requires conversion we add a
value which represents the difference between lower and upper case letters.

D1T ,! P 'S t0 C°Py the interruP* handlers into their defined slots in RAM. If the program
is loaded at zero then they will be in the correct place anyway, but no harm will be
done copying them back on top of themselves unless the program is held in ROM and
the hardware ,s set up to indicate a bus error if ROM Is written to. In most hardware
configurations this would not be the case

We also wish to maintain position independence, and so the value
™H" IH® tab'e iSn0t the actual address but th® °ffset of the required address from the base of the
program. Again this will be correct if the program is loaded starting at location zero,
and if not then we simply add the address of the base of the program to each of the
offsets to obtain the correct addresses.

The next step is to set up the system stack pointer which is obtained from the value
stored in the reset vector. Again, this is only required if the entry point has been
jumped to rather then entered because of an external reset. Once this has been done
we can safely turn interrupts on again.

We can now initialise the ACIA and set up the correct initial values for the pointers
into the circular buffer used by the ACIA interrupt handler. We also establish A6 as
our pointer to the base of the RAM that we are using. This value is expected to
remain in A6 while the monitor is running.

Initialisation and command handling

The next section of code is the initialisation section of the monitor, and the label
START is the entry point for the entire program. We have placed this address In the
reset vector so that this program will be called when the machine is turned on or
reset.

The first action is to turn interrupts off. as the interrupt handlers are not yet
defined and so any interrupts would be embarassing. We then issue the RESET
command to simulate an external reset in case this entry point was simply jumped to.
We then reset the ACIA which is not affected by the 68000 reset.

The next stage is to clear the breakpoint and user register store to zero. We pick up
one less than the number of slots as our counter because DBRA stops when the
counter is -1. We also set up the initial value for the user stack pointer.

121

We are now in a position to write out the header message. We call WRITES to do
this, having first loaded AO with a pointer to the message.

LEA.L MESS1,A0 Point to header message
BSR WRITES Write message

This is the main execution loop, which Is very simple. First we write out the prompt,
calling WRCH. We then load AO with a pointer to the table which contains the entry
points for the subroutines which handle each command. The subroutine SEARCH is
then called which will eventually call the correct routine. If that .routine returns we
branch back for another command. If the command caused an error or entered a user
program we will jump back to label ST1 directly from the exception handling section.

Simple command routines

The rest of the monitor consists of a number of subroutines which are called via the
command search table. In all cases these routines are entered with register DO
containing the character which initiated the action, and they may corrupt any register
except A6, which is assumed to hold a pointer to the base of the RAM work area. The
routines all return to their caller except for those connected with executing a user
program (Q and T). In this case the entry back into the monitor will occur when an
exception takes place.

The first routine is the default routine and is called if an unknown command is
entered. It simply prints a message and drops into a standard routine to skip to
the end of the typed input line.

COMERR LEA.L MESS2,A0 Point to message
BSR WRITES Print it

This next subroutine is called when most other command subroutines are about to
finish. It simply reads and ignores anything else which may follow the command on
the input line. DO must contain the last character read from the input in case that was
a carriage return. This routine is also called as the response to a return typed at the
console.

The next set of routines are called when an error has been detected. The first is used
when a number was expected but not found. Because it calls SKIPNL register DO
must contain the last character read from the line.

The next is almost the same and is called when an invalid memory

change command has been found.

Register display and update

The following routines handle the commands which display and alter the contents of
the user's registers.' The first is REG which is called after the R command has been
entered. It simply displays the contents of all the user's registers. There are in fact two
entry points. REG is used when the R command has been given, and REGX is used
when the registers are to be displayed after a trace or breakpoint exception. The only
difference is that the REG entry point skips the rest of the command line. If any.

The first few lines print out the user program counter and status register, using
WRHEX4 and WRHEX2 respectively. Note that it is assumed that register A6 refers
to the base of the RAM work area.

122

and a newline

The next lines print out the data registers and the address registers. Because of the
similarity in printing the two different types, REG! is a subroutine which is called once
with the register letter 'D' held in Dl and A3 pointing to the start of the data register
save area. When REGl returns A3 is left pointing to the start of the address registers.
The register letter is updated to contain 'A', and REGl is entered again by dropping
into it rather than calling it as a subroutine.

LEA.L RDUMPD(A6),A3 Point to data registers
MOVEQ #'D',DX Register letter into Dl
BSR.S REGl Display register set
MOVEQ #'A',D1 Register letter

* .. and drop through

The REGl section of code prints out the value of the eight user registers saved in the
memory location pointed at by A3. It identifies the registers using the letter held in Dl.
It calls WRHEXO to write the register number and WRHEX4 to write the value.
Subroutines BLANK and NEWLINE are called where required to ensure that we get
four registers per line suitably spaced. The address register A3 is incremented
through the register save area as the register values are printed, and so is left
pointing to just beyond the end of the region when the task has been completed.

123

NEWLINEBSR

There are four commands provided to alter or inspect the value of a particular user
register. The A and D commands are each followed by a register number. If no value
is given after the register name the value is printed. Otherwise a hexadecimal value is
read and the register in question Is set to this new value.

The routines for D and A share common code once register A3 has been set up
to point to the start of the data or address register save area.

This section of common code first reads the register number following the letter D or
A. It calls READHEX and checks the value returned to see if it is valid. If not then a
jump to SETRE is made, which is a common error exit for all of the register update
commands. If the value is correct it is multiplied by four to provide a byte offset into
the data register store.

The next part of the code is also shared by the P command, which examines or alters
the user's program counter. First the last character read from the input is checked to
see If it was a return. This is returned from READHEX in register DO. if no value
follows the current value is printed out at label SETR2.

If the line did not terminate with a return the value specified is read using the
READH entry point to READHEX. This ensures that whatever character is held in DO
is taken into account when reading the hexadecimal value. If an error is detected in
this a jump is made to the standard code at NUMERR. Otherwise the value is inserted
into the correct slot, which is identified as the offset computed from the register
number and the base register A3 which either points to the data or address register
save area. Finally the routine returns through SKIPNL which skips any other text on
the line.

124

The subroutine SETP is called when the P command is used to alter or examine the
user's program counter. This value can also be updated by specifying a value after
thai G or T command. It simply loads A3 with a pointer to the program counter save
area and sets the offset for the register number to zero. This ensures that when the
shared code at label SETR1 is entered the correct location will be referenced. Before
it jumps there it reads the next character from the input into DO. This is because DO
will be set to contain the last character read when READHEX has been called in
the previous cases.

SETP BEA.L RDUMPPC(A6),A3 Point to PC store
CLR.W D3 Offset zero
BSR RDCH Get next character
BRA.S SETR1 Jump to shared code

The S command is used to print or change the user's status register. The subroutine
involved cannot share the same code as the preceding routines because the status
register is only a word sized object. We do not check the value of the status register -
if the user wishes to set the trace bit then his code will be traced. We do not allow the
supervisor bit to be set when the program is started, but no check is made at this
point.

The final part of the register change section simply prints a message if an
invalid register number has been given.

SETRE LEA.L MESS6,A0 Message
BSR WRITES Print it out
BRA SKIPNL Skip rest of line £ return

Entering a user program

This section implements the T, G and C commands which are used to enter a user's
program. The entry point TGO is used for the T command, and GO for the G
command. The TGO entry point simply sets the trace bit in the saved copy of the
user's status register. The CONT entry point is used for the C command, which
continues executing a user program past a breakpoint.

The first step is to see if an entry point for the user's program has been given. If
no value has been given then a jump is made to the label GOl. Otherwise the
entry point is read using the READH

__, ___________ mo

entry point to READHEX because the current character is already held in DO. If there
is no error then the saved copy of the user's program counter is updated with the
new value.

Label GOT starts a user program running. This code can also be
entered from the exception handler when a program has been
interrupted because of a trace exception, and the next instruction is to
be traced.

The first job is to check that the supervisor bit is not set in the
copy of the user's status register. If this is so the program will not
be run.

GOl BTST #SBIT,RDUMPSR(A6) Check supervisor bit not set
BNE.S GOERR Error if so
CLR.B BFLG(A6) Clear breakpoint flag

The next stage is to insert breakpoints into the user's code. Breakpoints are only
inserted when the program is about to be run so that if the user examines his code it
appears unchanged. The addresses where breakpoints are to be placed are held in
the table BRKP. This contains six bytes per entry. The first four bytes hold the address
for the breakpoint or zero if this breakpoint Is not used. The last two bytes are used to
hold the original code which is replaced by the two byte instruction TRAP #14. We
move the breakpoint address into D1 because we wish to detect if it is zero -
remember that MOVEA does not alter condition codes. As we wish to also use this
value as an address later, we clear A2 to zero. This means that the construction
0(A2.D1,L) effectively allows us to use D1 as an address register.

There is an added complication concerned with actually executing the code which
should reside in the memory location where we have placed a breakpoint. Having
reached a breakpoint it is very common to trace on for a few instructions. In this case
we do not want to insert the breakpoint trap, instead we want to actually execute the
instruction. For this reason we also check to see if the breakpoint is about to be
placed at the address given by the user's program counter. If so then we do not insert
the breakpoint this time. Note that we do in fact take a copy of the instruction so that
when all the breakpoints are removed in the exception handler we can insert the
correct code back in without making another special case.

In order to continue past breakpoints the special command C must be used. This
uses the fact that a breakpoint will not be set at the current program counter address.
Firstly it sets the trace bit. then jumps to the label CGO. We will therefore
execute the instruction at

1X0 127

the breakpoint address, and enter the monitor again due to the trace exception. We
set a special flag called BFLG which Is set to a nonzero value when we have just
given the C command. The exception handler will check this flag, and unless it is zero
it will simply restart the program using the standard Q routine. This ensures that the
breakpoint Is replaced in the correct place ready to be executed again if required. We
have already set the flag BFLQ to zero so that this special processing will not take
place if T or G were specified.

We are now ready to start the user program running. First we extract the saved copy
of the user stack pointer into register AO, and then Into the user stack pointer USP.
This is required because only address registers can be moved into USP.

The next step Is to extract the user's program counter and status register and
save them on the system stack, ready for the subsequent RTE instruction. We then
reload all the user's registers from the save area with an enormous MOVEM. and then
execute RTE which resets the status register and program counter. Because the
status register does not have the supervisor bit set we will end up running the user's
program in user mode. The only way in which the program will return control to the
monitor is if an exception occurs, and we have reserved TRAP 15 as the way in which
a user program signifies that it has ended.

The C command is used to continue after a breakpoint. The standard test for
supervisor bit set is made, the trace bit Is turned on and the code branches to label
CGO in order to start the user program. As the user program counter will be equal to
the breakpoint address the particular breakpoint will not be inserted this time. We also
set the flag BFLQ to non-zero by using the Sec instruction with the condition TRUE.
This will be used in the exception handler to distinguish between a proper trace
exception and the trace exception generated after executing the code at which a
breakpoint has been placed. In the latter case we will simply replace the
breakpoints in the code and

continue execution. This ensures that breakpoints appear to the user to be
installed all the time.

Memory examine and update routines

The next set of routines are used to inspect and alter memory. Typing the letter M
causes this code to be entered, whereupon the location specified is 'opened' and the
value stored there printed out. Subsequent memory change commands are then read
which can alter the value in the open location, open- another location or return to
normal command mode.

Memory locations can be opened as a byte, word or long object. Initially a location
is opened as a byte. Register D2 is used to hold the size of the object. Thus if the
location is to be opened as a byte D2 will contain 1, if as a word 2, and 4 if it is
opened as long. We will keep the current memory location in register A3. The first part
of the subroutine takes the location and prints the address of It out.

The next step is to look at the size qualifier held D2 and to print a byte, word or long
value. This entails extracting a suitable sized value and printing It using WRHEX1,

WRHEX2 or WRHEX4.

MEMW

The next step is to attempt to read a new value. If an error occurs
then rather than simply print an error message we go on to see if a
valid memory change command was given - in this case DO will
contain the last character read.

In this case a valid number was given, and we must update the memory location.
Having done this we do not want to read the same memory location again, as this
sometimes causes problems when attempting to place values into memory locations
which are in fact registers within I/O chips such as an ACIA. We have a subroutine
called NMEM which moves us on to the next memory location, and this must be
called. Rather than BSR to it and then branch to MEM1 in three different cases we

place the address of MEM1 onto the stack with a PEA instruction. We can then
branch to the routine NMEM, which will return to MEM1 when it executes the RTS
at the end.

In this case an invalid number was read, and the offending character is In DO. We will
use the same routine SEARCH to identify the correct action to take, passing it in this
case the table MEMTAB. This is of the same form as COMTAB which was used in the
main execution loop, but contains address offsets and letters for memory change
commands. When any of these return we will still be in the memory change
environment. As a special case we see if the exit command (.) has been given and
terminate the M command if this is so. We also clear the rest of the input line via a call
to SKIPNL after any of the memory commands have finished.

If the location is to be opened as a word or long value, the current address must be
even. The subroutine CHKEVEN is called to make this check. The subroutine will only
return if the check succeeded. Otherwise it jumps back to the routine which called
SETW or SETL

This routine is used to check if A3 contains an even address. If the check fails the
normal return address is Ignored and the routine returns to the caller of the routine
which called it. This will always be MEM in this case.

129

130

Breakpoints

The next routines handle the setting, clearing and listing of breakpoints. We have
already noted in the GO routine that a table of breakpoints is maintained. For each
breakpoint six bytes are used to hold the address of the breakpoint and the code
word which the breakpoint replaces when it is inserted.

In this section we are only concerned with the manipulation of the breakpoint
addresses. The B command all by itself simply lists the current breakpoints. Unused
breakpoints have an address set to zero. so this is checked and if the breakpoint Is
set the breakpoint, number and the address is printed out.

In this case a breakpoint number is expected after the B command. Register DO will

contain the character following this as we have called RDCH earlier, so we use the
READH entry point to READHEX to obtain the breakpoint number.

Having satisfied ourselves that the breakpoint number is correct we must work out the
correct offset. As there are six bytes per entry we shall have to use the MULS
instruction to obtain it. Fortunately there are only ten breakpoints allowed so the limit
on the size of the arguments to MULS does not affect us. We then check to see if any
value was given after the breakpoint number. If not then we clear the breakpoint,
otherwise we set a new one.

Exception handling

This section of code Is concerned with the handling of any exception, interrupt or trap
that may occur. The standard action is to print a suitable message after saving the
user's registers if required.

The following labels define addresses which have been patched into the correct
exception vectors by the Initialisation code. At each label a short branch to subroutine
instruction takes us to the code to handle the two different types of exception which
may occur. A BSR is used so that the return address saved on the stack can be used
as an Index to determine which interrupt occurred.

132 133

in this case we must handle the more complicated case of an address or bus error.
Because of the instruction pre-fetch of the 68000 the program counter will be smaller
than the saved value on the stack might lead us to believe. There are a number of
extra words of information saved on the stack, including the instruction register. We
can step the program counter back until the instruction at the program counter
matches that stored in the instruction register. We must be very careful to save all of
the user's registers. The layout of the stack is as follows, with the address of the entry
point to the monitor saved most recently by the BSR earlier.

This represents a simpler type of exception. The system stack now looks
as follows.

We have now managed to save all of' the user's registers and we must proceed to
replace any breakpoints inserted in the code. The original value of the code is held in
the last two bytes of each six byte area. Even If the breakpoint has not been inserted
because the user's program counter was equal to the breakpoint address a copy of
the original instruction will still be held in the breakpoint table.

In this case an error (hopefully bus error during M command) occurred while running
the monitor. Do not alter user's registers, but give the message as usual.

EXCP3 MOVE.L (SP)+,A1 Extract return address stacked by BSR

134 135

We now have saved all the user's registers, and AT contains the address of the next
instruction after the one we jumped to via the interrupt vector locations. We must
correct this to point to the actual instruction.

We must also reset the system stack to the original value given it when we
entered the monitor. After we have done this it is safe to turn interrupts on again, as
even If we have a large number of unexpected interrupts we will have reset our stack
back to base again before attempting to handle another one.

stack.
We write a small letter r as a prompt to show that the monitor is in a special mode,

and then read the response of the user. If this is not a simple 'return' we branch to the
standard SEARCH subroutine to handle it. Because we have placed the address of
ST1 onto the stack, when the subroutine called by SEARCH finally returns it will
return to ST1 rather than back here.

If the character read in is indeed a return, we set the trace bit and continue
execution of the user program by jumping to GOl.

At this point it was some other type of exception. We call the subroutine WRABO
which writes a message based on the value of AT. This is still pointing at the entry
point specific to the abort, and is used to select the correct message. Once this has
been done we can branch to the start of the command loop to look for any more
commands.

BSR.S WRABO Write suitable message
BRA ST1 And handle any more commands

We get here if a trace exception has occurred. There are two possible reasons for a
trace exception. The first is that it was generated by the C command. This sets the
trace bit so that once we have executed the instruction normally overwritten by the
TRAP #14 used for breakpoints we can replace the breakpoint. If this was the case
the flag BFLQ will be non-zero, and we simply enter the user's program once again.
The breakpoint will then be Installed ready for another time.

EXCP5 TST.B BFU5<A6) Test to see if C was last command
BNE GOl Continue execution if so

This handles a normal trace exception. First we write a suitable message using
WRABO agin. We then call the entry point REGX of REG to display the registers.

Because it is very common to require one trace after another, we will patch the
normal command handling so that the response 'return' is the same as typing T. Any
other command will be handled as normal. To do this we make AO point to the
command table, and then use PEA to place the entry point of the main command
loop onto the

At this point we must handle a breakpoint. The user will have set a breakpoint at
some address which we have patched to contain the TRAP #14 instruction. This
always works as TRAP instructions are only one word long, which is the same as the
shortest possible instruction. This TRAP #14 will have caused us to arrive here. We
have not yet executed the instruction which normally resides at the breakpoint
address. Therefore the first thing to do is to decrement the program counter by two
bytes.

We then write a suitable message and call REGX to display the state of the
registers. We can then branch to ST1 to read any subsequent commands. When the
user asks for the program to be continued we will not insert the breakpoint which
caused this trap because the breakpoint address will be equal to the program counter.
Control will return to the monitor immediately after the instruction has been executed if
C or T commands were used, and we will then be in a position to replace the TRAP
14 instruction when the user program is next restarted.

The final subroutine in our monitor uses the value stored in register A1 to write a
suitable message corresponding to the exception which has just happened.

We have already adjusted A1 so that It is the address of the label at which the

exception handler was entered. We load the address of the first possible label into AO
and subtract the two. As each BSR.S instruction takes up a word, the result will be a
word offset corresponding to the exception type. This is then used as an index into
the table ABOTAB. Each entry in ABOTAB is the offset from the

136

base of the table of a string describing the error. We add the base of the table to the
string offset to give us the string address which is then written out using WRITES,

WRABO LEA.I, B_EXCPT,&0 Base of table
SUBA.t A0.A1 Now a word offset from zero
LEA.L ABOTAB,A2 Pointer to abort table base
MOVE.L A1,D0 Offset into DO
MOVE.W 0(A2,D0.L),A0 Offset of string from table base
ADDA.L A2,A0 Add table base to point to string
BRA WRITES Write it out and return

The addresses of the preceding messages are stored in the following table. They are
stored as offsets from the table base to preserve position independence. The ordering
in the table corresponds to the ordering of the labels used to enter the exception

handler.

The following two tables are in the correct form for the SEARCH subroutine. This
means that the first byte of each four byte entry is zero except for the last entry in the
table. The second byte contains the lower case version of a character, while the next
two bytes refer to a subroutine to be called if the character read matches the
character in the entry. The subroutine is specified as an offset from the base of the
table. The last entry in each table has the first byte set to a non-zero value, and the
specified routine is always called. This first table is used to handle to normal
commands.

Finally we have the table used to decode memory subcommands issued
after an M command.

137

Index

#. 30 add, 9, 30, 67, 71
*, 25 address value (ADDA), 67-8
4040, 2 binary (ADD), 67-9. 72
6502, 2, 3 binary coded decimal (ABCD).
6800. 2 78, 80-1
68000, 14 extended (ADDX), 68-9, 74
68008, 14 immediate data (ADDI), 68
68010. 14. 97, 104 quick (ADDQ), 68
68020. 15. 70, 82, 97, 104 ADDA, 67-8
6809. 2, 4 ADDI, 68
80286. 3, 6 ADDQ, 30. 68
8080, 2, 4 address, 7. 19, 23
8085, 2, 4 absolute, 19, 23, 33, 35
8086. 3, 4 data relative to PC, 10
8088, 4 effective, 23, 32, 60
A0-A7 (address registers), 7 error, 94, 97, 103
ABCD, 78, 80-1 implicit, 31
absolute address mode, 19, 23, register direct, 23

33. 35 register indirect, 27, 28, 29
absolute code, 19 register indirect with
absolute branch, 10 postincrement. 29
absolute jump. 10. 58 register indirect with
absolute symbols, 19. 22 predecrement. 29
access to data items relative to registers (A0 to A7), 7

address in register. 10 relative, 24-5
ACIA chip, 46-8, 55, 66, 109, space, 15

112-14, 119, 128 symbolic names, 16
control port, 46-7 address mode, 15-16, 23, 31-2
data port, 46-7 control, 32
interrupt mode, 46 data alterable, 32
polled mode, 46 immediate data, 30, 33
reset and Initialisation, 47 memory, 32
setup mode, 46 postincrement. 29. 45

Ada. 64 predecrement, 29
ADD, 67-9, 72 summary, 31

ADDX, 68-9, 74

146

Algol68. 11
allocating stack space. 62
allocation of store, 83. 89. 91
alter memory locations. 107 alter
user's register set. 107 An (any
address register). 23.

29 AND. 80.
84. 87 ANDI. 84
ANDI to CCR. 84
ANDI to SR. 84
applications, 14
arithmetic. 67

binary, 78
decimal. 78-82
integer. 22
multiple precision. 68
operations. 9. 83
operators, 21
overflow. 12, 86
shift, 86
shift left (ASL), 86
shift right (ASR), 86
signed. 70, 75
unsigned. 70, 75

ASL. 86 ASR. 86
assembler. 16-21, 24-5, 35, 37,

52, 58, 69, 107
directives. 18
syntax. 16. 21 assembly

language. 7. 11,
16-17 asynchronous

communication
interface adapter (ACIA), 46

auto-vectoring. 99

B suffix (byte). 17
backward branch. 37
backward jump. 58
backward references, 24
BCC, 39
Bcc, 9, 35, 37, 39, 43, 58
BCD (binary coded decimal),

78-80, 82
BCHG. 87-8
BCLR, 87-8 BCS.
39
BEQ. 36, 39, 42, 58
BGE, 39 BQT, 39, 42
BHI. 39 BHS, 39 binary
arithmetic, 78

binary coded decimal (BCD),
78-80. 82 bit

instructions
bit test (BTST). 43. 47. 87 bit
test and change (BCHG).

87-8 bit test and clear (BCLR).
87-8 bit test and set (BSET). 87-
8 test and set (TAS). 6, 14. 87-8
BLE. 39. 42 BLO. 39 BLS. 39
BLT. 39. 42 BMI, 39. 42
BNE. 36, 37, 39. 42. 48. 116
BPL 39, 42 BRA. 39, 54, 58-9.
61 brackets, 27 branch, 8, 9, 58.
115 absolute. 10 backward, 37
conditional (Bcc), 9, 35, 37,

39, 43, 58 if carry clear
(BCC), 39 if carry set (BCS), 39
if equal to zero (BEQ), 36,

39, 42, 58 if greater than
(BGT), 39, 42 if greater than or
equal

(BGE), 39 If high (BHI), 39 if
high or the same (BHS).

39 if less than (BLT), 39, 42
if less than or equal (BLE).
39. 42 if low (BLO), 39 if low or
the same (BLS). 39 if minus
(BMI), 39, 42 if not equal to
zero (BNE), 36, 37. 39. 42,
48. 116 if overflow clear (BVC),
39 if overflow set (BVS). 39 if plus
(BPL). 39. 42 to absolutely
specified

destination, 10 to subroutine (BSR),
39, 54-8, 59, 61, 63, 115. 128.
131-2 unconditional (BRA). 39, 54.
58-9, 61 branch table, 117

breakpoints. 13. 109. 124-6. 130.
133-4 clear. 107 set, 107 BSET.
87-8 BSR. 39. 54-8. 59. 61. 63.
115.
128, 131-2 BTST, 43. 47. 87 bus
(main communication cable). 14
arbitration logic. 14 double fault.
104 error, 53. 93, 97. 103. 105.
132 BVC. 39 BVS. 39 byte (8-bit).
7 byte address. 94

C condition code flag -
carry/borrow, 9 CCR (condition

code register),
84 character constant, 20, 22

character reflection, 112-13
character string. 20 check and
possibly trap (CHK),

11, 12. 15. 101
CHK. 11. 12. 15. 101
circular buffer, 112 circular
shifts, 86 clear,

breakpoints, 107
condition code, 84
memory location to zero (CLR).

15. 18. 41, 42, 44
overflow condition code. 86
status, 84 CLR, 15, 18,

41, 42, 44 CMP, 9, 37-
8, 41 CMPA, 38 CMPI.
38 CMPM, 38, 81
COBOL, 78 code,

absolute, 19
position independent. 10. 19. 20.

24. 51, 59, 107, 119, 136
pure. 24. 51
re-entrant, 24
serially reusable, 24

command search table, 120

commands.
memory. 109
monitor, 108 comments, 17,

21 compare (CMP), 9. 37-8,
41

address (CMPA), 38
immediate data (CMPi), 38
memory (CMPM). 38. 81
with zero (TST). 42, 48

compiler, 12, 69 condition
code,

carry/borrow (C), 9
clear, 84
extend (X). 9
invert, 84
negative (N), 9
overflow (V), 9, 86
register (CCR), 84
set. 9. 37. 39. 43-4, 84
test setting (Bcc, DBcc, Sec), 9
zero (Z), 9 conditional branch,

9, 35, 37,
39, 43, 58 constant definition

and exception
handlers In monitor, 110

control addressing modes, 32
control of memory, 88 control
operands, 32 control port of ACIA,
46-7 convert to lower case, 118
converting hexadecimal numbers

to characters. 87
coprocessors. 16 current
location, 25

data,
address relative to PC, 10
alterable addressing modes, 32
area pointer. 62
immediate. 30, 36, 41, 42
operands, 32
port of ACIA, 46-7
registers (DO to D7), 7
storage, 89
transfer to peripherals. 13 DBcc.

9. 39. 44-5. 66 DBEQ. 45 DBF,
44 DBRA, 44-5, 47 DC directive,
20 debugging. 11, 102, 107. 109
rificimal arithmetic. 78-82

decrement test and branch.
conditional (DBcc), 9, 39,

44-5, 66 if equal (DBEQ), 45 if
false (DBF), 44 unconditional
(DBRA), 44-5, 47 define constant
(DC) directive,

20 define storage (DS)
directive, 20 direct address range, 6
direct memory access (DMA),

14, 102 directive syntax.
18. 20-1 division. 15. 75-6.
85-6 long, 75
signed (DIVS). 75, 101 unsigned
(DIVU), 75-6, 101 zero trap, 75-6
DIVS, 75. 101 DIVU, 75-6. 101
DMA (direct memory access).

14. 102 Dn (data
register), 23 double bus
fault. 104 DS directive. 20

effective address. 23, 32, 60
END directive, 20
entering a user program from

monitor, 124 entering
hexadecimal numbers,

19 entry sequence.
63 EOR. 84
EOR to CCR. 84 EOR to SR. 84
EORI, 84 EPROM. 59 EQU
directive. 18, 40 error messages,
11 evolution of microprocessors, 2
examine memory locations in

monitor, 107, 108 examine
user's register set in

monitor, 107 exception handler,
97, 125, 141,

136 exception vector, 93-4,
97

exceptions, 30, 93, 96, 109
address error. 97
bus error, 97
external, 93
internal, 93
reset, 97
routine handling, 97-8. 109

exchange registers (EXQ), 70
excluslve-or (EOR), 84 EXO, 70
exit sequence, 63-4
expressions, 21, 23
EXT, 70-1
external device handling, 10, 13
external reset, 93 externally
generated exceptions, 93

FORTRAN, 11 forward
jump, 58 forward
references, 24 free store
allocation, 89

halted state, 102
handling exceptions, 97-8, 109
handling external devices. 10.

13 handling traps. 109
hardware trap, 11 hexadecimal, 19,
87, 108 high level language
support, 11 history of
microprocessors, 1 home
computers, 2

I/O. 46. 112
I/O page, 41
iAPX 432, 3, 7
illegal actions. 11, 94. 100
illegal instruction exception. 100
illegal instructions. 94
immediate,

add (ADDI), 68
address mode, 30, 33
AND (ANDI), 84
compare (CPMI), 38
data. 30. 36. 41, 42
EOR (EORI), 84
OR (ORI), 84

subtract (SUBI), 69 implicit
addressing, 31 index register,
25-6 indirect addressing, 27
initialisation and command
handling, 118

Input. 116
input and output. 46, 112
Instruction prefetch. 132
instruction syntax, 21
instructions - use of

mnemonics. 16
instructions that can cause

traps. 11. 100 integer
arithmetic, 22 integrated circuits, 2
Intel 4040. 2 Intel 80286. 3. 6
Intel 8080. 2, 4 Intel 8085, 2,
4 Intel 8086, 3, 4 Intel 8088, 4
Intel iAPX 432, 3, 7 internal
registers. 7 internally generated
exceptions,
93 Interrupt, 13. 30. 93, 96-7,
99, 131

level. 6
mask. 97
mode of ACIA. 46
priority mask, 9
routines, 88. 112
vectors. 14 Introduction to the

68000. 7 invert condition code. 84
invert status, 84

JMP. 18, 20. 25. 31. 58-9
JSR. 59. 61. 63
jump, 8. 9. 24, 26. 35. 54. 58.

98. 115 absolute. 10. 58
back In hardware debugging,

11 backwards, 58 forwards,
58 jump (JMP). 18, 20. 25.
31.

58-9 to absolutely
specified

destination. 10 to fixed place
in hardware

debugging, 11 to
relatively specified

destination, 10 to subroutine
(JSR), 59, 61.

63

L suffix (long word). 17. 25. 28
label. 18, 25

LEA, 60-1. 67
left arithmetic shift (ASU, 86
left logical shift (LSD. 85-6
left rotate (ROD. 86
left shift, 86
length suffix. 17. 25. 28
level of priority. 97
library of subroutines. 56
LINK, 12, 15, 63-4
link (LINK), 12, 15, 63-4
load effective address (LEA),

60-1, 67 loading program in
store, 10 logical operations, 9, 83,
87

and (AND). 80. 84, 87
complement (NOT), 83-4
exclusive (EOR), 84
or (OR). 80. 83-4
shift. 85-6
shift left (LSD. 85-6
shift right (LSR). 82. 85-6 long

division. 75 long multiplication, 71
long word (32-bit), 7 loop, 36,
44-5, 58. lower case - convert to.
118 LSL. 85-6 LSR, 82. 85-6

machine code. 12-13. 16 main
communication cable

(bus). 14 mainframe
computer, 3 main
memory, 7 mask, 97
masking, 84. 87 memory

addressing modes. 32
byte. 19
check. 64-6
commands in monitor. 109
control, 88
diagnostic program, 40
examine and update routines in

monitor, 127
locations examine and alter. 107
map. 109
operands, 32
simple diagnostic program, 40
virtual, 15 mini

computer, 3

mooes,
absolute (Assembler), 35
address. 15-16. 23, 31-2 data
alterable address. 32 immediate
address, 30, 33 postincrement
address, 45,

50-3, 64, 81 predecrement
address. 36.
50-3. 63. 81 processor. 13

supervisor, 107 trace, 9, 11, 107
user, 13, 107 monitor, 13, 107-8,
124 MOS Technology 6502, 2, 3
Motorola 6800. 2 Motorola 68000,
3, 14 Motorola 68008. 14 Motorola
68010, 14. 97. 104 Motorola
68020. 15. 70. 82, 97.

104 Motorola 6809. 2, 4
MOVE, 33-7, 39. 41-2. 48-9.
51-3; 60-1. 64. 68. 72, 88, 96
move,

address, (MOVEA), 35, 60, 67
data (MOVE), 33-7, 39, 41-2,
48-9. 51-3. 60-1. 64, 68, 72.
88. 96 from SR. 98 multiple
(MOVEM), 12-13.

51-4. 57. 63-4, 98
quick (MOVEQ), 42 to
and from a stack
(MOVEM), 12, 13, 51-4, 57.
63-4. 98 to CCR, 98 to
peripheral (MOVEP). 13.
48-9 to SR. 98 USP, 96, 102

MOVE to CCR, 98 MOVE SR,
15, 98 MOVE to/from USP, 96,
102 MOVEA. 35. 60, 67 MOVEC,
15 MOVEF, 15 MOVEM, 12, 13,
51-4. 57. 63-4.

98 MOVEP. 13. 48-9
MOVEQ, 30. 42 MOVES. 15
moving small numbers.' 42

MULS. 70, 130 multi-processor
interlocks, 3 multiple exceptions,
105 multiple precision arithmetic, 68
multiply, 15, 70-1. 85 long, 71
signed (MULS). 70, 130
unsigned (MULU). 70. 72
MULU. 70. 72

N condition code flag -
negative, 9 National

Semiconductor
NS16032, 3. 6

NBCD. 78, 81 NEG.
69
negating values. 69 binary (NEG). 69

binary coded decimal (NBCD).
78. 81 binary with extended

(NEGX).
69. 81 NEGX. 69. 81 nesting

subroutines, 57 nibble, 87 NMI, 99
non-maskable interrupt (NMI),

99 no operation
(NOP), 16 NOP, 16 NOT.
83-4

operand
control, 32
data, 32
left-hand (source), 17
memory, 32
order In assembler, 17
right-hand (destination), 17
word, 8 operating

system, 13-14 operation
word, 8 operations

arithmetic. 9, 83
logical, 9, 83, 87
on single bits. 87 OR, 80, 83-4

order of operands in assembler
17 ORG directive, 19.

24 ORG.L directive, 19. 24
ORI, 84
ORI to CCR, 84
ORI to SR, 84

output, 65. 114-15
overflow. 12. 86

PACK. 15. 82
Pascal. 11, 64
PC (Program Counter), 9. 24-5
PEA, 61, 67, 128. 134 peripheral
handling, 13 physical registers, 96
polled mode of ACIA, 46 portablity of
programs, 11 position independent
code, 10,

19-20, 24. 51. 59, 107,
119, 136 postincrement

address mode,
45, 50-3, 64, 81

predecrement address mode, 36,
50-3, 63. 81 pre-fetch, 52

printing hexadecimal numbers,
115 priority level, 97 priority order

of exceptions. 105 privilege. 13
level, 96 violations, 101 privileged
instructions in user

state, 94 processing
exceptions, 97 processor modes, 13
program counter (PC), 8, 24-5 pure
code, 24, 51 push effective address
(PEA).

61, 67, 128, 134

quick form of instructions, 30 add
(ADDQ), 30, 68 move
(MOVEQ), 30, 42 subtract
(SUBQ), 30

RAM, 3, 5, 40
re-entrant code, 24
read a hexadecimal number

from keyboard, 116 read
character, 112 read-modlfy-write, 6,
14, 88 references (backward), 24
references (forward), 24 reflection
of characters, 112-13

register, 6-7, 14
direct addressing, 23 display and
update, 121 indirect with
displacement, 27 indirect with
displacement and

index, 28 indirect with
predecrement or

postincrement. 29 use
of mnemonics. 16

relative addressing, 24-5
relative destination branch, 10
relative destination jump, 10
releasing areas of store, 89
relocatable information, 20
relocatable program, 19
relocatable section, 25
relocatable symbols, 19, 22,

25-6
relocatable value, 20
reserving areas of store, 89
RESET. 96, 101
reset. 47. 95. 97. 99. 118
reset and initialisation of ACIA. 47
reset exception. 97. 99
reset vector. 95
return address. 54
return and restore (RTR), 98
return from exception (RTE). 96,

98. 112
return from subroutine (RTS), 55,

57, 61, 98, 115, 118, 128
right arithmetic shift (ASR), 86
right logical shift (LSR). 85-6
right rotate (ROR). 86
right shift, 86
ROL, 86
ROM, 2, 5, 119
ROR. 82, 86
RORQ directive, 19
rotate, 85-6 extended left

(ROXL). 86 extended right
(ROXR), 86 left (ROD. 86
right (ROR). 82. 86

routine addresses, 97
routines exception handling, 97
ROXL, 66
ROXR, 86
RTE, 96, 98, 112
RTR. 98
RTS. 55. 57. 61, 98, 115, 118,

128

saving values on a stack, 51
SBCD, 78, 81
See. 9. 15, 39, 43-4
semaphores, 88
serial line interrupts, 46
serial line parity selection, 46
serially reusable code, 24
set,

breakpoints, 107 condition code.
9. 37, 39,

43-4, '84 overflow condition
code, 86 status, 84

to zero (CLR), 18, 41-2, 44,
setup mode of ACIA, 46 shift, 49,
85-6 arithmetic, 86 circular, 86 left.
86

left arithmetic (ASL). 86 left
logical (LSL). 85-6 logical,
85-6 right, 86

right arithmetic (ASR), 86 right
logical (LSR), 85 sign extend
(EXT). 70-1 sign extension, 24
signed arithmetic, 70, 75
signed division, 75, 101
simple data movement, 33
simple input output, 46 simple
memory diagnostic

program, 40 simple
monitor command

routines, 120 single chip
computer, 2 SP (stack pointer), 7,
31, 50-5,

57, 62, 64, 96 specifications
of processors, 3-7 SR (status
register), 8, 31, 84,

93, 96-8 SSP (supervisor
stack pointer),
31, 53, 96-8 stack, 12, 29, 31,
50-5, 57. 60-4, 80, 97-8. 109.
115. 118, 128, 132 pointer (SP),
7, 31, 50-5, 57.

62. 64. 96
register, 6
saving values on, 51
space allocation, 62
system. 97, 133-4 top of,
50 user. 57. 98

stack (continued;.
user pointer (USP). 31, 53,
96-7, 126 user register, 6 star

symbol (*). 25 star/comment line
in assembler,

17 status clear, 84 invert, 84
register (SR). 8. 31. 84, 93,

96-8 set, 84 STOP, 96, 102,
104 stop execution and wait
(STOP),

96, 102, 104 stopping the
processor obeying

instructions, 10
store, 7
allocation, 83, 89. 91
releasing, 89 reservation, 89
size finding routine, 105 SUB,
69, 81 SUBA, 69 SUBI, 69
SUBQ. 30. 69
subroutine, 53-9, 61-5. 71. 76, 79,
82. 93. 98. 112, 114. 120 calls.
30 library, 56 link (LINK), 63-4
nesting, 57 unlink (UNLK), 64
subtract, 22. 30. 69 address
(SUBA). 69 binary (SUB). 69. 81
binary coded decimal (SBCD),

78, 81 extended (SUBX). 69
immediate data (SUBI), 69 quick
(SUBQ). 30. 69 SUBX. 69
suffix .B (byte length), 17 suffix .L
(long word length), 17,

25, 28 suffix .W (word length),
17, 25,
28 summary of addressing modes, 31

I

supervisor, 96
bit. 9
mode. 3. 13. 107 stack. 97-8
stack pointer (SSP), 31. 53,
96-8 state. 6-7. 9, 15,

96-8 support for high level
languages. 11 SWAP, 70,

72 swap register halves (SWAP).
70. 72 swapping register

values. 70 symbol #. 30 symbol
*. 25 symbolic name for memory

address of instruction, 18
symbols (absolute), 19, 22
symbols (relocatable), 19, 22,

25-6 syntax, 21 system
byte, 9 system registers. 94
system stack, 97, 133-4

TAS, 6, 14. 87-8
terminal output, 65
test.

and set (TAS). 6. 14. 87-8
bits (BTST), 43. 47. 87
condition codes. 9. 35, 43-5 if
equal to zero (TST). 42

thermionic valves. 2
TMS9900. 5
TMS99000, 3. 5
TMS9940. 2, 5
TMS9980. 5
TMS9981. 5
TMS9985. 5
TMS9995, 5
top of stack, 50
trace, 85, 94, 97, 102, 125 bit,

9
exception, 134 mode,
9, 11. 107

transfer of data to peripherals. 13
transistors, 2
TRAP, 11, 13, 100. 103. 110.

135

trap. 93. 96, 109, 125, 131
causes (debugging). 11
division by zero, 75-6
exception, 11
hardware, 11
if overflow (TRAPV). 11-12.

75, 101
vector. 96, 107 TRAPV,

11-12, 75, 101 TST, 41-2,
48

unimplemented instruction
exception, 100 unimplemented

Instructions, 94 unlink (UNLK), 12,
15, 64 UNPK. 82
unsigned arithmetic, 70, 75
unsigned division, 75 updating
registers. 108 user.

byte of the status register, 98
mode, 13. 107
register set - alter. 107
register set - examine. 107
stack, 57, 98
stack pointer (USP). 31, 53, 96-7,

126
state, 6, 9, 96, 98 USP (user
stack pointer), 31, 53. 96-7.
126

V condition code flag -
overflow, 9, 86

valves, 2 <•
vector base register, 14
virtual memory, 15

W suffix (word). 17. 25. 28
warmstart, 59 word (16-bit). 7
write character, 113

X condition code flag - extend, 9

Z condition code flag - zero, 9 280, 2,
4 Z8000, 3, 5 Zilog Z80, 2, 4 Zilog
Z8000, 3, 5

