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Preface

We have organised this book so that it can be read from beginning to end; read in this
way it presents a complete introduction to assembly language programming for the
68000. For the more experienced reader, a summary of the instruction set is provided
as an appendix. This gives brief details of each instruction and a page reference to a
more complete description in the main text.

The information about the successors to the 68000. the 68010 and the 68020.
has been obtained from advance publicity from Motorola. We would like to thank
Motorola for this information, and also for permission to include material from their
documentation on the 68000 itself. Motorola wish us to include the following
disclaimer.

Motorola assumes no responsibility for any inaccuracies in this text. and reserves
the right to make changes to any of the products described to improve reliability,
function or design. Motorola does not assume any liability arising out of the
application or use of any product described herein. No licence is conveyed under
patent rights in any form. Specifications of new products are subject to change
without notice.

We would like to thank various colleagues at the Universities of Cambridge and
Bath for their help with this book, and particularly Dr. Arthur Norman for permission to
include his long division routine. We would also like to thank Agi Lehar-Graham for
drawing the diagrams and Jessica King for her help with the index.

March 1983 Tim King
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Chapter 1
Introduction

As lIts title implies, this book concentrates on the 68000 microprocessor as seen by
the programmer, and almost completely avoids discussion of hardware issues. It is
aimed at the reader who has access to a built 68000 system, and is concerned with
how to program it effectively.

The book is self-contained, introducing the architecture of the machine and its
instruction set in a logical order. It can be read without any need to refer to Motorola
documentation for the 68000, although the latter should be consulted for details such
as the bit pattern of each instruction.

The discussion of each instruction points out any unusual features of Its
operation, both pitfalls to avoid and particular uses. Many of these features are of the
kind which are easily overlooked when reading the formal definition, and which will
waste time and cause confusion when they are tripped over in practice. As each
instruction is introduced, one or more worked* examples are given to illustrate its use.
These examples are intended to be useful code fragments which can be employed in
larger programs. They are used here to build up a small monitor program which
provides simple input/output and debugging facilities.

The remainder of this chapter gives a brief history of the evolution of
microprocessors, and compares the 68000 with others in current use. It then gives a
general description of the features of the 68000 and some typical applications. The
second chapter introduces the assembler syntax employed in later chapters, and
explains the operand addressing modes of the instructions.

The following chapters present the instructions in related groups. Chapter three
describes the various ways in which data items can be moved about and compared
with one another. The concepts of stacks and subroutines are introduced in chapter
four. Chapter five covers the instructions provided for doing arithmetic and includes
routines for multiplication and division of larger numbers than can be handled directly.
The logical operations for working on individual bits are described in chapter six, and
they are used In the code of a store allocation package. Chapter seven deals with
interrupts and traps, lllustrating the writing of interrupt routines, and the use
of traps as



system calls, for error detection, and for debugging programs. The
final chapter gives a complete example of a small monitor, which
handles terminal input and output and provides a convenient

environment for debugging other programs.

Evolution of microprocessors

A constant trend throughout the 40-odd year history of electronic computers is that as
time goes on it becomes possible to make them smaller and smaller. The earliest
machines used thermionic valves, required a large room to house them, and
consumed huge amounts of power. The invention of transistors enabled the size and
power consumption to be reduced by several times. In the 1960s, it became possible
to produce Integrated circuits consisting of a few transistors and associated
components fabricated in one small chip of silicon, making it possible to build a
computer in one cabinet of reasonable size. In the early 1970s the technology of
Integrated circuits had advanced to the point where it was possible to put all of the
central processor of a simple computer onto one chip - the first microprocessors.
Since then we have seen a decade of rapid progress, and there are now available
microprocessors which have not compromised in power in order to fit on one chip,
and which compete directly with computers produced from discrete components.

The earliest microprocessors which found appreciable use were those which
could operate on only 4 bits of data at a time, such as the Intel 4040. These were
suitable for simple control applications (e.g. vending machines, alarm systems) and
unsophisticated arcade games but little more, as they were slow, cumbersome for
data In useful units, and could address only a very limited amount of memory.

It was after the introduction of 8-bit machines that microprocessors became
widespread. The most popular of these include the Intel 8080 and 8085, the Zilog 280
(which has the 8080 instructions as a subset of its instruction set), the MOS
Technology 6502, and the Motorola 6800 and 6809. It is usual for machines
described as 'N-bit processors' to have some capability for handling Items 2N bits in
size. Most of the above can perform arithmetical and logical operations on 16-bit
quantities, though the 6502 has no 16-bitinternal registers.

Some of these 8-bit chips became very cheap, so were viable for building into
other equipment, and could also be used for moderately powerful and inexpensive
home computers. At the time of writing, almost all personal computers intended for
domestic or small business use are based on either the Z80 or the 6502.

As 8-bit micros evolved, there was a tendency towards removing 'untidy' features
of their implementation, such as requiring several power supply voltages, multi-phase
clock inputs, or multiplexed address/data lines. It is now normal for new designs to
need a single 5 volt supply, a single phase clock input (or just a crystal to control an
internal clock), and to have each connecting pin performing just one function. Some
(such as the Z80) provide assistance with refreshing dynamic semiconductor
memory.

Another development has been the introduction of limited single-chip computers,
such as the TMS9940. These have some memory holding a fixed program
(ROM) and some alterable memory

(RAM) as well as the processor, enabling special purpose computers to be produced
in a single package, improving the ease with which they can be wired up to other
circuitry. Such devices are most suited to being designed for. and built into, a
particular piece of equipment.

From the software point of view, the next important development was the
introduction of 16-bit and 32-bit microprocessors at the end of the 1970s. These
blurred the distinction between mini-computers and micro-computers, as most of the
common minis were 16-bit machines. Among the first such chips were the Texas
TMS9900 series, Intel 8086, TMS99000. Zilog Z8000, and the subject of this book,
the Motorola 68000. Newcomers which are not widely available at the time of writing
include the National Semiconductor NS16032 and Intel's 80286 and iAPX 432.

The 68000 stands out from its predecessors as being perhaps the first
microprocessor with an architecture and instruction set resembling that of a large
mainframe. It has a very large directly accessible address space, the ability to
manipulate items 8, 16, and 32 bits in size. 16 registers each 32 bits long, some
instructions intended to ease the compilation of high-level languages, a supervisor
mode which can be used to prevent unprivileged programs accessing certain regions
of memory or directly initiating 1/O operations, and provision for multi-processor
interlocks.

The following tables present a brief specification of each of the above processors
for comparison. Note that some care should be exercised when comparing the
speeds of different processors, as later models of a particular machine are usually
capable of running at greater clock rates than earlier ones. Thus speed can reflect
how long a machine has been on the market, rather than indicating the potential of
the design.

MOS Technology 6502 e
2 e

Direct Address Range: 64 Kbytes

Quickest Instruction: 0.5 microseconds (4MHz clocky _ o
General Registers: 1 (8 biv e
Other Registers: 2 B-bit Index registers, 8~bit stack pointer

Interrupt tevels: 2

Gytes in the lowest page of memory can be paired for use in 16-bit
indexing. Tha instruction set offers a goog selection of addressing
modes., but there are no instructions for directly manipulating data
items longer than 8 bits.



ZHog Z80

Direct Address Range: 64 Kbytes

Quickest Instruction: 1 microsecond (4MHz clock) 7

General Registers: Other (8-bit) + duplicate set

Registers: Interrupt 2 16-bit index registers. 16-bit stack pointer 2
levels:

The 8-bit registers can be paired and used as 3 16-bit registers. The instruction set
supports 16-bit arithmetic and block moves and searches in memory. The instructions
of the Intel 8080/8085 are. a subset of the Z80 instructions.

Motorola 6809

Direct Address Range:

Quickest Instruction: 64 Kbytes
General Registers: Other 2 Mmicroseconds C2MHz clock)

Registers: Interrupt 2 (8 bit)
levels: 2 index registers. 2 stack pointers (16-bit)
3

The two 8-bit accumulators can be combined as a 16-bit
register. The instruction set allows limited 16-bit arithmetic and 8 * 8 bit multiplication.

Intel 8086

Direct Address Range: 1 Mbyte

Quickest Instruction: 0.4 microseconds (5MHz clock)
General Registers: 4 (16 bit)

Other Registers: base registers, stack/index
Interrupt levels: 2

The address space is divided into 4 segments (code. data, stack, and extra) which
may overlap. All addressing Is relative to segment base registers; a segment base
address is a multiple of 16. The 8086 has 24 operand addressing modes, can do
signed and unsigned 16-bit multiplication and division, has loop instructions, and can
do an Indivisible read-modlfy-write memory access. The Intel 8088 processor can run
all the same software as the 8086. but has an 8-oit (rather than 16-bit) external bus.
and so can be used with 8-bit support chips.

TMS9900 series

Direct Address Range: 64 Kbytes (TMS9900)

Quickest Instruction: 2 microseconds (4MHz clock)

General Registers: Other 16 (but held In RAM. not internally)
Registers: Interrupt Workspace pointer (i.e. registers)
Levels: 16 (TMS990C.9995). 4 (others)

The registers are held in an area of RAM pointed to by the workspace pointer
register. In the TMS9995 they are cached internally. There are instructions for 16-
bit multiply and divide.

This is a family of processors with a common instruction set:
9900 basic model

9940 single chip computer with built-in RAM and ROM
9980/81 8-bit bus only, can address only 16 Kbytes

9985 single chip computer with built-in RAM (but no ROM)
9995 registers cached internally
TMS99000

Direct Address Range: 64 Kbytes

Quickest Instruction: 0.5- microseconds (6 MHz clock)

General Registers: Other 16 (held in RAM)

Registers: interrupt Levels: workspace pointer (pointer to registers)
16

The 99000 can address up to 16M bytes of segmented memory using a support chip.
It can add. subtract, and shift 32-bit quantities. It has a supervisor mode, and test-
ai%d-set instruction for synchronizing multiple processors. Instruction decoding is
such that instruction codes which are not built-in can be handled by user microcode
(held on chip), user code in external RAM, or by an attached processor.

Zilog Z8000

8 Mbytes
Direct Address Range: 0.75 microseconds (8MHz clock)
Quickest Instruction: 16 (16 bits)

General Registers: Other memory refresh counter, status area pointer
Registers: Interrupt Levels: 2

There are six address spaces, each of which can be 8
Mbytes in size. There are two versions of the chip: a 'segmented' one with 8 Mbytes
address range, and an 'unsegmented' one with 64 Kbytes address range. The first 8
registers can be used as 16 8-bit registers. The registers can be used as 16 * 16 bits.
8 * 32 bits, or 4 * 64 bits. Multiply is available for 16-bit or 32-bit operands, divide for
32-bit or 64-bit dividends. Shifting can be performed on 8. 16, or 32-bit registers.
There is a supervisor mode, test-and-set instruction, and other instructions for
interfacing multiple processors. The Z8000
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has instructions for block copy, and character translation. It has 8
address modes, but only 4 types of processor trap.

Motorola 68000

Direct Address Range: 16 Mbytes

Quickest Instruction: 0.5 microseconds (8 MHz clock)
General Registers: 16 (32 bits)

Other Registers: user stack register

Interrupt Levels: 7

The internal architecture is 32 bits wide, and most operations can be performed on 8,
16. or 32-bit values. The only important omission from a full 32-bit capability is the
lack of 32-bit multiply and divide. The address space is linear. The registers are
divided into 8 data registers and 8 address registers; some operations can use only
one type. One of the address registers is duplicated; which one is available depends
on whether the processor is in supervisor or user state. There are 14 operand
addressing modes, many types of processor trap, and instructions available only in
supervisor state. A 'Test and Set' instruction is provided for read-modify'-write
memory access.

National Semiconductor NS16032 (from preliminary specification)

Direct Address Range: 16 Mbytes

General registers: 8 (32 bits)

Other Registers: stack frame pointer, static variables pointer.
user/interrupt stack pointers, interrupt base

The 16032 has 32-bit architecture, and has several features intended to support high
level languages. There are registers for addressing stack frames and static variables
of , high level languages, and addressing modes to support communication between
software modules with different data spaces, and to handle arrays of 1, 2, 4, or 8-byte
objects. There is also support for bit fields and floating point number operations.

Intel 80286

Direct Address Range: 16 Mbytes

Quickest Instruction: 0.2 microseconds (10 MHz clock)
General Registers: 8 (16 bits)

Interrupt Levels: 2

The 80286 is upwards compatible from the 8086/8088 and can run programs written
for those machines with little or no change. The differences are in speed, and in the
support provided for protected multi-user systems. Memory management and
protection facilities are included in the processor chip, making external memory
management unnecessary. All instructions are restartable after an exception,
making

it possible to provide virtual memory of up to 1 gigabyte (1000 megabytes). There is
hardware support for rapidly performing a task switch after an interrupt, without
intervention by the operating system.

Intel iIAPX 432 system (from preliminary information)

The processor of the iIAPX 432 system consists of two chips: the 43201 instruction
decoder, and the 43202 execution unit. I/O is handled by 43203 interface processors.
Data can be handled in units of up to 32 bits, and floating point numbers up to 80 bits
long are supported. Addressing is capability-based, allowing protection to be applied
to individual data structures. Up to 16 megabytes of real memory can be addressed,
while software can use up to a terabyte (1000 gigabytes) of virtual address space.
There is built-in support tor multiple processors, multitasking, and dynamic storage
allocation. The instructions vary in length from a few bits to several hundred bits, and
have the unusual property that the start of an instruction does not need to be aligned
to any particular memory boundary. Two processors may be coupled pin-to-pin such
that one checks the operation of the other, to give high system reliability.

Introduction to the 68000

The rest of this chapter gives an overview of the 68000 as a background to the
detailed information in later chapters. Some specific instructions . are mentioned with
only a brief description; this is intended more for the reader who has already met
assembly language on another computer. Don't worry if these appear mystifying: they
are explained fully later.

The memory available to the 68000 is of two different kinds: the internal registers
(i.e. on the chip), and the external main memory. There are 17 registers, of which
only 16 are available at any given moment. Eight of them are data registers named
DO to D7, and tne others are address registers called A0 to A7. Each register
contains 32 bits. In many contexts either kind of register may be used, but others
demand a specific kind. Any register may be used for operations on word (16-bit) and
long word (32-bit) quantities or for indexed addressing of main memory (see chapter
2). Only data registers may be used for operations on byte (8-bit) operands. Only
address registers may be used as stack pointers or base registers for addressing
main memory. The register A7 is duplicated; which physical register is actually used
depends on whether the processor is in supervisor state (see below).

The main memory consists of a number of bytes of storage - how many there are
depends on the particular computer system. Each byte has an identifying number,
called its address. Memory is usually (but
not always) arranged so that its bytes have addresses 0, 1, 2.............
N-2, N-1 where there are N bytes of memory in total. The size of memory which can
be directly accessed is very large -.up to 16 million bytes. The 68000 can perform
operations on bytes, words, or long words of memory. A word is two consecutive
bytes of which the first has an even address. Along word is four consecutive
bytes also
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starting at an even address. The address of a word or long word is
the (even) address of its (lowest numbered) first Dyte.

It is worth noting that a 68000 address can always be represented in 24 bits, so
there are 8 spare bits when an address is held in a long word or in a register. This
means that addresses are always positive numbers, so there are no catches when
two addresses are compared to see which is higher. The fact that addresses can be
negative on some other computers which have 16-bit words and 16-bit addresses can
be a cause of very obscure errors. In some situations it is very convenient to make
use of the eight spare bits, allowing some extra information to be held with a pointer in
a long word. This might be an indication of what sort of object the pointer refers to, or
simply a flag to say that this is a pointer to a value rather than the value itself. A
warning should be issued here: preliminary information from Motorola indicates that
they intend to use full 32-bit addresses in future models of the 68000 series, so
exploitation of the spare 8 bits may result in programs which are difficult to move to
these future models,

As well as holding items of data being manipulated by the computer, the main
memory also holds the instructions which tell the computer what to do. Each
instruction occupies from one to 5 words, consisting of an operation word and
between zero and four operand words. The operation word specifies what action is to
be performed (and implicitly how many words there are in the whole instruction). The
operand words indicate where in the registers or mam memory are the items to be
manipulated, and where the result should be placed.

Instructions are normally executed one at a time in the order that they occur in
memory, rather like performing the steps in a recipe or playing the notes in a piece of
written music. There is a special register called the program counter which is used to
hold the address of the Instruction to be obeyed next. Some instructions, called
jumps or branches, upset the normal order, and force execution to continue with the
instruction at a specific address. This enables the computer to perform an action
repeatedly, or to do different things depending on the values of data items.

There is one other special register, called the status register whicn is used to
remember particular things about the state of the computer. The status register has
the following layout

System byte User byte
o
Bit 15 13 1o B 43210
L0 [l [ Jelefelvle]
Trace bit

Supervigor bit
Interrupt mask

Negative bit
Extend bit
Zero bit
Overflow bit
Carry bit

The significance of the bits in the system byte will be explained more fully in
chapter 7.

Trace bit This is set to 1 if the processor is in trace mode,
and to O otherwise.

Supervisor bit This is set to 1 if the processor is in supervisor state,
and to O if the processor is in user state.

Interrupt mask  Indicates which of 7 interrupt levels are enabled.

The user byte contains the five condition code flags. These flags
are set by certain instructions such as arithmetic or comparison
operations to convey information about the result to later instructions.

The condition codes have the following meanings
Z The result was zero
N  The result was negative

V Overflow occurred during 2s complement arithmetic (i.e. the result is too big to fit
In the destination)

C Carry (or borrow, in subtraction) occurred

X Extend flag. This is used in multi-length operations (e.g. adding two 64-bit
numbers). When it is affected, it will be set the same as the carry flag, but X is
altered by fewer instructions than C.

The settings of the condition codes can be tested by the families of
instructions Bcc, DBcc, and Sec, which are introduced in chapter 3.

The instructions of the 68000 fail naturally into a small number of groups, and the
following chapters each deal with one group. Many instructions are concerned with
moving data about - between memory locations, between registers, or between
registers and memory. Others perform arithmetic or logical operations, such as
adding, or compare data items. The branches and jumps are used to control the

order in
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which program steps are obeyed. A few other instructions do various things, such as
stopping the processor obeying Instructions, or handling external devices connected

to the computer.

Position independent code

Computer programs are often written in such a way that they contain fixed memory
addresses specifying the whereabouts of data items or the destinations of jumps.
Such a program has to be loaded into a particular place in memory, otherwise it will
not work. This may be acceptable on a simple computer system which has only one
program in store at once, but it is often much more convenient if a program can be
placed anywhere in memory. Such a program is said to be written in position
independent code.

The Instruction set of the 68000 makes It easy to write programs in such a way
that they can be loaded anywhere in store. This is because the instructions which
cause program jumps specify the destination of the jump in a relative rather than an
absolute way. For example, a branch does not have to be of the form 'go to the
instruction at address 5000', but can be specified as 'go to the instruction 192 bytes
before this one'. The latter form will work wherever the program is situated in memory.
Most computers have branch instructions like this, but usually they only allow a jump
up to 128 bytes away from the current instruction, and this is often too little. The
68000 allows jumps up to 32768 bytes away, which will be adequate for virtually any
program.,

The other aspect of position Independence relates to the addressing of data. The
rich set of addressing modes of the 68000 (see chapter 2) means that data items can
be accessed relative to an address held in a register, so that a program can easily set
up its data areas anywhere in memory.

A truly position independent program would be one which could be placed initially
anywhere in memory and then moved elsewhere during its execution. Such a
program would have to address data relative to the program counter. The 68000
allows one to read data from locations relative to the program counter, but does not
allow locations addressed in this way to be altered. This is deliberate, and intended to
encourage the clear separation of the areas of memory devoted to program and data,
which is good programming practice.

Thus the 68000 makes it straightforward to write programs which can be loaded
anywhere in memory, can set up their data areas anywhere, and which can be moved
during execution if the data areas stay in the same place.

11

Debugging aids provided by the chip

The 68000 processor has a number of features to make detection and location of
programming errors easier. Some of these are built-in checks for illegal actions, while
others are things which the programmer can use to help him debug a program.

The processor has the ability to force a hardware trap when certain things
happen. This means that the normal flow of Instruction execution is interrupted, the
place where It stopped is recorded, and a jump made to a fixed place in memory. This
place should contain a piece of program which can take suitable action, for instance
printing out an error message telling the user what happened, and asking him
whether or not he wants to allow his program to continue. If he does, then a jump can
be made back to the place where execution stopped.

The following events cause a trap to occur:

- Access to aword or long word with an odd address
- Encountering an unimplemented or illegal instruction
- Attempt to access memory which does not exist

- Dividing a number by zero

- Spurious interrupt from a peripheral device

Certain instructions can cause traps. The TRAPV instruction causes a trap if the
last arithmetic operation overflowed. It can thus be included after each arithmetic
operation in the program if this check is desired. Similarly, the CHK instruction will
trap if the value in a register is greater than a specified number. This can be included
to check that a memory access is within a particular region of data.

The Instruction TRAP always causes a trap. It can be inserted at strategic points
in a program to cause it to stop so that the contents of registers and memory can be
inspected, allowing the operation of the program to be checked in stages.

A final debugging aid is a tneans whereby a program can be executed one
instruction at a time, providing a very powerful way of detecting exactly where a fault
occurs. This is achieved by setting one of the bits in the status register, putting the
machine into trace mode. In this mode, a trap is taken after each instruction is
obeyed. With the help of a suitable debugging program to intercept this trap, the user
can step through critical regions of his program to check Its operation in detail. This is
a facility which it can be very difficult to provide on a computer without a trace mode.

The use of traps in debugging is lllustrated in chapter 7.

Support for high level languages

The 68000 has been designed in the knowledge that many of its users will not want to
program it in assembly code, but will instead wish to use one of the many high level
computer languages, such as FORTRAN, Pascal, or Algol68. A high level language
program is written in a form which is much closer to ordinary English than assembly
language. This means that programs can be written much more quickly and easily
than in assembly code, and mistakes in them are usually easier to find. Such
programs can also have the advantage of being
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portable. That is, they will work on any machine on which the language is available;
assembly language programs can run only on the type of computer for which they
were written.

A program called a compiler is used to translate commands written in a high level
language into machine code, the instructions which the computer understands. The
machine code produced by a compiler is usually of rather poor quality compared to
that which a human could write, it tends to do things in ways which take more
Instructions than actually necessary, meaning that code from a compiler occupies
more memory and runs more slowly than that written by a human. However, now that
computing power and memory are comparatively cheap. It is quite acceptable to
waste them in order to save human effort.

The 68000 has features Intended to simplify the writing of compilers for high level
languages, and to enable them to produce reasonably efficient code. The fact that the
machine has 16 all purpose registers is helpful, as it means that frequently used
pointers and values can be kept in registers all the time, so that there will not be so
much code generated just to shuffle things around between memory and registers.
The regular and consistent structure of the instructions and address modes simplifies
the part of the compiler concerned with actually generating the machine code. Most
instructions can operate on objects of three different sizes and employ any of the
address modes. The ability to address directly a large amount of memory simplifies
the organisation of storage for a language.

Several instructions are included specifically for high level languages. Programs in
such languages are usually written as separate modules or routines which are
combined to form the complete program. When compiling one module, the compiler
does not know from where in the program it will be used, and hence does not know
which machine registers and which areas of memory can safely be used within the
module. The problem of deciding which registers are available is most easily solved
by saving the contents of some registers when the module is entered, and restoring
them all again when it is left. The instruction MOVEM does just this, copying from a
specified set of registers to memory or back again. It is very flexible, being able to
save or restore any arbitrary group of registers.

The instructions LINK and UNLK allow each program module called to allocate
itself a private area of storage from a stack (see chapter 4). The effect of LINK is to
save a pointer to the current workspace, and to reserve a new one of specified size.
UNLK inverts the operation, releasing the space allocated and restoring the pointer to
the old one.

The instructions mentioned in the section on debugging aids, such as CHK and
TRAPV, can also be employed to good effect in compiled code so that errors such as
arithmetic overflow, or an attempt to use memory outside a particular data structure,
can be detected immediately. Being single instructions, the inclusion of such checks
does not greatly slow down execution of the program. A compiler can reliably include
such instructions at every appropriate place something it would be difficult for a

human to do.

Operating system support

A bare computer is an object which is rather difficult to use. The only thing it can do is
to execute instructions coded in its own machine language. For this reason, it is
normal always to run a program to make the machine easier to use. Such a program
is called an operating system; a very simple operating system is sometimes called a
monitor.

A typical operating system will handle all the peripheral devices attached to the
computer, interpret commands typed by the user at the terminal, and manage the disc
storage to provide files with names convenient for humans. It may allow several
programs to be run apparently at the same time, in fact by switching between them at
a rapid rate. It will also handle certain errors in a running program, print an
informatory message for the user, and provide him with commands for inspecting his
program in store and the contents of the registers.

The 68000 has many features which are necessary or helpful in supporting an
operating system. It gives the operating system the means to protect itself from
damage caused by the programs it runs, and to maintain control over those programs.
This is achieved by using the two processor modes: supervisor mode and user mode.
The operating system runs in supervisor mode, and switches the processor to user
mode before allowing any other program to run. Several critical instructions are
privileged and may not be executed in user mode. The processor chip has an output
line which indicates the mode during each access to memory or peripherals, making it
possible to attach hardware so that the peripherals and certain areas of memory are
available only in supervisor mode. Thus the operating system can protect the store
holding Its code and private workspace, and be sure that it is the only program with
access to the peripherals. It must be possible to ensure that no user program can set
supervisor mode, but that it can call operating system routines and have them run In
that mode. The first is achieved because the instructions which can change mode are
privileged. The second is achieved through the TRAP instruction (see chapter 7).
which can simultaneously cause a jump and alter the mode.

The 68000 has vectored Interrupts and traps (see chapter 7): this allows each
peripheral device to signal to the processor, causing a direct jump to an appropriate
piece of code to deal with that device, thus simplifying the operating system. The
provision of several levels of interrupt makes it possible to organise the processing of
interrupt signals from different devices such that the most urgent ones get dealt with
first.

The MOVEM instruction is useful again in operating systems. When an interrupt
or trap occurs, there is an immediate jump to some point in the operating system; the
code there must save the contents of any registers which it wishes to use lItself.
Another special instruction is MOVEP, provided specifically to simplify the transfer of
data to peripheral devices.

When two programs are being run in parallel, it will sometimes be necessary to
allow one of them to claim exclusive access to some resource (e.g. a device or area
of store). This is most simply done by having a flag byte in memory which
indicates whether the resource
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is free. The resource is claimed by waiting until trie flag is free and then setting it.
However, the actions of inspecting and setting the flag must be performed as an
indivisible operation, otherwise two programs could both find the flag free, and both
claim the resource. The test and set (TAS) instruction is provided for just this
purpose. It can also be used for interlocks between programs running In several
processors sharing the same memory, because the processor retains control of the
memory for the whole TAS instruction. This is sometimes called a read-modify-write
cycle.

The 68000 processor includes bus arbitration logic, to allow its bus (main
communication cable) to be shared between all the devices connected to it. This
includes the memory, terminal, discs, and other processors. Intelligent devices can
get at the memory directly, without having to interrupt the processor. Such an
arrangement is called direct memory access (DMA). For instance, the processor
could asK a disc device to transfer some data from the disc to memory. The device
could do the transfer using DMA, interrupting only when it had finished, and leaving
the processor free to execute some more program in the meantime.

Some typical applications

The 68000 is as yet still too expensive to be used in equipment which does not
actually need its speed or large memory capacity; such applications are likely to
remain the domain of the inexpensive 8-bit microprocessors. Its use lies in more
demanding situations, such as computer terminals, graphics workstations, word
processors and medical equipment. As a general purpose computer, it is a serious
rival to minicomputers of all sizes. The large address space means that it can make a
powerful personal computer which can run programs which previously could only run
on a mainframe machine. It can also be used to support several users at once,
although in this case some memory mapping hardware is required to isolate one user
from another.

Other processors in the 68000 series

The 68000 is just the first model in a range of similar processors. This section briefly
describes the three other models which had been announced at the time of writing:
the 68008. 68010, and 68020.

The 68008 is simply the 68000 with an 8-bit (rather than 16-bit) external data bus.
It enables the processor to be used with 8-bit support chips, giving some reduction in
circuit complexity and cost, at the expense of reduced execution speed.

The 68010 is very similar to the 68000, but with some modifications to improve
operating system support and to make it faster. There is a new internal register,
called the Vector Base Register, which holds the address of the base of the interrupt
vectors (see chapter 7). It is set to zero by default (for compatability with the 68000),
but can be altered, allowing different operating system processes to handle their
own traps in a straightforward way.
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A number of changes have been made to the information stored on the stack after
an exception. In particular this will enable an instruction which caused a bus error to
be restarted. This allows the implementation of a system with virtual memory in which
programs appear to have access to more memory than is physically available. The
operating system ensures that those sections of virtual memory actually in use at any
moment are copied Into real memory, while the rest is held on backing store such as
a disc. The translation of virtual addresses into real addresses is arranged in such a
way that an attempt to use a location which has not been copied into real memory will
cause a bus error. The operating system responds to the bus error by fetching the
relevant part of the virtual address space into real store, and then resuming execution
with the instruction that caused the bus error.

The 68010 has two new instructions: MOVEC and MOVES. MOVEC is used for
access to various control registers, including the Vector Base Pointer. MOVES allows
reading and writing of the address spaces which would normally be inaccessible. Data
accesses are normally made to the User Data or Supervisor Data address spaces,
according to the current privilege level. However, there are two 3-bit function code
registers (one for source and one for destination) which can be set by MOVEC, so
that a program running in supervisor state can then use MOVES to read or write
locations in the Supervisor Program, User Program, or User Data address spaces.

Various instructions execute more quickly in the 68010 than in the 68000,
including the 32-bit arithmetic and logical operations, CLR, Sec, and MOVE SR. Also,
the bus error timings have been relaxed, so there is no execution speed penalty for
having error detection on memory.

The 68020 processor contains all the new features of the 68010, plus others to
increase support for 32-bit operations. It has a full 32-bit external data bus, 32-bit
offsets in branch instructions, and 32-bit displacements in indexed "addressing
modes. The instructions CHK, LINK, UNLK. MUL. and DIV can take 32-bit operands.
An extra addressing mode is available, allowing indexed addressing with two levels
of Indirection.

The 68020 has an instruction cache, enabling small loops to run very fast as the
instructions do not have to be repeatedly fetched from memory. It also has a
complete coprocessor interface, allowing the instruction set to be extended by the
addition of other chips (e.g. to provide floating point arithmetic).

There are several new instructions available on the 68020. These include an
instruction for moving blocks of data between address spaces, more sophisticated
entry and exit operations for procedure calls in high level languages, and MOVEF for
moving various sized bit fields. The range of instructions for packed decimal data is
extended by PACK and UNPK, which convert between characters and decimal
numbers.



Chapter 2

addressing modes

This chapter provides the necessary background for the introduction of the various
machine instructions in later chapters. It explains the assembler syntax - that is, the
way a program is written down - and the addressing modes, which are the different
ways In which instructions locate the data on which they are to act.

Assembler syntax

The only language which the computer itself understands is machine code, which can
be considered as just a pattern of bits, or as a list of numbers, in its memory. A
program in this form is rather hard for a human either to understand or to write.
Consequently, programs are more usually written in assembly language, which
directly corresponds to the machine code, but makes use of mnemonic names for
Instructions and registers. It also allows the programmer to use symbolic names for
addresses within the program, and for other values. A program called an assembler is
used to translate from the assembly language into machine language. The form of the
assembly language presented below is the same as that used by Motorola and
accepted by their assemblers. If you are using an assembler from another source,
you may have to use a variant of the language: consult your manual to find out if
there are any differences.

A program is composed of a series of steps called instructions. Each instruction is
written as one line of assembly language. The instruction itself has a mnemonic name
of 3, 4. or 5 letters, and for some instructions the name is all that need be written on
the line. An example is

NOP
which is an instruction that does nothing at all! (Such an instruction is not completely

pointless: It can be useful when debugging as a replacement for some unwanted
instruction, and can also be used when a very short delay is required.)
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Note that the name has been written indented from the left hand margin; the
reason for this will be made clear below.

However, for most Instructions, the name alone is not sufficient, as we must also
specify where in the registers or memory are the data on which they are to operate.
This Is done by putting the operand after the name (with one or more spaces in
between), as in

CLR D3

which clears to zero the least significant 16 bits of data register 3. If there are two
operands, then they are separated by a comma (but no spaces). The left hand
operand is usually the source from which a value is read, while the right hand one is
the destination, in which the result is placed. It is Important to note that the operands
are written in this order, particularly if you are used to an assembly language for
another computer which works the other way round. A simple example is

MOVE D1,D4

which just copies the least significant 16 bits from data register 1 to register 4
(without affecting the rest of either).

The 68000 has the useful feature that many of its instructions can work on data of
three different sizes: byte (8 bits), word (16 bits), or long word (32 bits). To indicate
which length is required, the suffix ".B'. "W, or 'L' is added to the name; "W is
assumed if no suffix is added. Thus, the above instruction is the same as

MOVE.W DI,D4

and to copy all 32 bits of the register, we would write
MOVE.L DI1,D4 *

Similarly, to clear just the least significant 8 bits of a register, we would say
CLRB D3

It is a good idea to get into the habit of always using the length suffix (i.e. not missing
off the optional .W'), as a common programming error on the 68000 is using the word
form of an instruction by mistake. This can cause obscure faults in a program, which
can be difficult to track down. You are much less likely to make this mistake If you
always put in the qualifier.

Anything else on the line after the instruction and its operands (if any) is ignored
by the assembler. This allows the insertion of comments in the program in order to
make it more easily understood by a human reader. If a line starts with a star, then
the whole line is treated as a comment.

* This whole line is a comment
CLRL D3 A comment after an instruction
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The extensive use of comments in programs is strongly recommended. Although
it may seem tedious to include them when the program is being written, they make It
very much easier for someone other than the author to understand it, or for the author
himself to modify it some time after he originally wrote It.

In the examples above. Instruction names have been written indented from the left
hand margin. If a line does not start with a space, then the first item Is taken to be a
label, which is a symbolic name for the memory address of the instruction on that line.
The name of a label may be any word which starts with a letter and contains just
letters and digits. (In practice, most assemblers allow some other characters to be
used in names. In the examples in this book, we have used the underline character '’
to improve the readability of names.) The assembler remembers the label and the
address which it refers to, and the label may be used elsewhere in the program to
refer to that address. This is particularly useful with jump instructions, which cause
execution to continue at a specified address.

CLRD3 CLRL D3 Labelled instruction

IMP CLRD3 Jump to instruction labelled CLRD3
A label may also be written Indented from the margin, by putting a
colon after its name

CLRO3: CLRL D3

Making use of labels in this way relieves us of having to know the actual address
of the CLR instruction, and means that we do not have to alter the JMP instruction
every time modifications to the rest of the program cause this address to change.

Assembler directives

As well as instructions and comments, the assembler also accepts directives, which
are commands to the assembler itself. Tney are written in the same way as
Instructions, but (with the exception of DC and DS) do not cause any code to be
generated. The only directives described here are a few basic ones which are likely to
be available in the same form in most 68000 assemblers. Most assemblers will have
other directives as well, to control things such as layout of the assembly listing, format
of object module produced, and to provide facilities for conditional assembly and
macros.

An example of a directive is EQU. which equates a symbolic name to a value
(rather like the way a label is a name for an address). For example

SIZE EQU 100

sets up SIZE as a name for the value 100. Wherever 'SIZE' is used in the program,
the assembler will act as if 100" had been written
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instead. This can be useful in several ways. If several parts of the program depend on
this value, it is much easier to alter if SIZE is defined once at the beginning and used
throughout, rather than if '100' is written explicitly in several places. It can also make a
program more comprehensible to human readers if mnemonic names are used for
numbers.

Memory in the 68000 is thought of as an array of 8-bit bytes. numbered 0, 1, 2.
upwards. The number of a memory byte is called Its address. There are two
directives for controlling the location in memory of the assembled code. One is ORG,
which specifies a particular address for the origin  (i.e. first instruction). The
sequence

ORG 1024
START CLR.L D3

will cause the assembler to produce the code assuming that it will be placed at
address 1024 onwards. Thus the label START will have value 1024. The assembled
code will be marked with this address so that It can be loaded at the correct position.
Code starting with ORG is called absolute code, because its address is fixed; labels
within it are said to be absolute symbols. A program which includes an ORG is
unlikely to be position independent, as it will contain explicit references to particular
addresses. ORG has an alternative form. ORG.L. which affects the assembly of the
absolute addressing mode (see below).

it is often convenient to be able to write numbers in a program in hexadecimal
(base 16). or 'hex’, notation Instead of in decimal. The digits used are 0 to 9. and then
A to F representing 10 to 15. The assembler accepts hexadecimal numbers starting
with a dollar character. Thus

ORG 5400

is the same as ORG 1024 (= 4*256 + 0*16 + 0*1). Throughout this book. '$' is used
to introduce hexadecimal numbers.

The complementary directive to ORG is RORG. which indicates that the program
Is relocatable, meaning that it may be placed anywhere in memory. RORG also
takes an argument, but this should normally be zero. If we alter the above program
fragment to

RORG 0
START CLR.L D3

then the value of START will not be known to the assembler. START will be given the
value zero (because that is its offset from the beginning of the section) and the fact
that it is relocatable will be noted. Labels such as START are examples of
relocatable symbols -symbols whose value will not be known until the program is
loaded into memory. Wherever a relocatable symbol is used, the assembler will try to
produce the code in a position independent way. Thus. In
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RORG 0
START CLR.L D3

.
H

H
JMP START

the JMP instruction will be coded as 'jump to the instruction X bytes before here',
where X is calculated by the assembler. If a relocatable value is used in such a way
that position independent code cannot be produced, then the assembler will include
with the code a list of those words within it whose values must be filled In when the
program is actually placed in store. It is not until then that those values can be
known. This list is called the relocation information.

Two directives are available for reserving and initialising memory locations. The
OS (Define Storage) directive is used to reserve an area of memory. It takes a suffix
indicating the size of the locations. and an operand which says how many such
locations are to be reserved. Examples are

BUFFER DS.B 80 Regerve 80 bytes of memory

DS.W 520 Reserve 32 words
s 520 Regerve 32 words
D5.L 3 Resarve 3 long words

The memory reserved is not initialised to any particular vaiue. Unless the size
specifier is '.B'. then the space is aligned to a word boundary, so 'DS.W 0' can be
used just to force word alignment. If the DS directive is labelled, then the label will
refer to the address of the first location reserved (after any alignment).

The DC (Define Constant) directive is used to assemble particular values into
memory locations. It takes the usual three size specifiers. and one or more operands
separated by commas. If the size specifier is not '.B'. then alignment to a word
boundary is forced as for DS. The operands may be numbers, expressions, or a string
of characters enclosed in single quotes. A string of characters after DC is treated
specially: it is not taken to be a character constant (see "Expressions" below), but
instead one byte is assembled for each character. If DC.W or DC.L is used, the final
word or long word is padded with zero bytes if necessary.

MESSAGE DC.B ‘Hello® 5 bytes containing the

® codes for 'H', 'e’, etc,
DC.L ‘Hello” 8 bytes are assembled:

* the last 3 hold zeros.
DC.W 10,20,20 3 words are assembled

DC.L $FF,99 Z long words are assembled

The directive END is used simply to mark the end of an assembler program.
The last line of any program should be

END

Summary of assembler directives

Directive - Punction
[label] PC.& exp,exp, .. Asgemble values of size s
[label] DS.s n Reserve n locations of size 8
END End of scurce program

Equate symbol to value
Set origin of absclute section
Set origin of relocatable section

symbol EQU value
ORG address
RORG address

Summary of assembler syntax

There are three main types of assembler line: comment lines. instruction lines, and
directive lines. A comment line starts with an asterisk; any characters may appear
on the rest of the line.

* This is a comment line

An instruction line has the general form
label opcode operand(s) comment

Each field is separated from the next by at least one space, and the label, opcode
and operand fields may not contain embedded spaces (except inside quoted
character strings). The label and comment are always optional. The opcode field
consists of an instruction name. optionally followed by a length qualifier C.B". "W, ".L',
or '.S'). The number of operands is determined by the instruction opcode. If no
operands are expected, then the assembler will treat anything after the opcode field
as comment. If there are two operands, then they should be separated by a comma
(but no spaces). A directive line has the general form

label  directive argument(s) comment

The label field is not allowed for some directives, and is compulsory for others. If
there are two or more arguments, they should be separated by commas.

Expressions

As we have seen above, in most places where you might write a number, you can
write a symbol representing that number. In fact, we can replace a number by an
arithmetic expression containing symbols and numbers. A variety of arithmetic
operators are available, including +, -, * (multiply), and/ (divide). We can write
things like
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DAYHRS EQO 24 Hours in a day
DAYMINS EQU DAYHRS*60 Minutes in a day
DAYSECS EQU DAYMINS*60  Seconds in a day

The value is worked out using integer arithmetic, so all results are whole numbers.
This matters only for division, where the result is rounded down so, for example, 7/3
is 2.

Numbers may be written in decimal or hexadecimal (preceded by a '$'). Another
way of specifying a number is as a character constant. This consists of between one
and four characters enclosed in single quotes, and its value Is that of a long word with
the specified characters in the rightmost (least significant) byte positions, and zeros
on the left. Character constants are most useful for single characters, and should be
used in preference to the numerical code for a character to improve readability. For
example

Code for letter Z
Difference between codes

for upper and lower case
* forms of same letter

CHARZ EQU 7'
CASEDIFP EQU 'A'-"a"
*

We have seen above that symbols are of two types: absolute and relocatable.
There are no problems in arithmetic with absolute symbols, as they are just like
numbers. However, there are restrictions on what you can do with relocatable
symbols and still produce a meaningful result. The basic rule is that the answer must
either be absolute, or relocatable in the same way as the original symbols. Thus
multiplication or division involving relocatable quantities is not allowed, nor is addition
of two relocatable values. A constant may be added to or subtracted from a
relocatable value, giving a relocatable result (which is just the address of a different
point in the same relocatable section). We could write

RORG o Relocatable section

START CLR.L D3 This instruction is two bytes long
CLR.L D4
JMP START+2 Jump to second CLR.L above

though it would be better practice to puta label on the instruction we actually
want to jump to.

It is illegal to subtract a relocatable number from an absolute one, but perfectly all
right to subtract one relocatable number from another. The result is an absolute
number, as it represents the distance apart of two points in a program, which will be
the same wherever it happens to be placed in memory. In the program

RORG 0 Relocatable section
PSTART MOVE.L PEND-PSTART,DO Set DO to program length

PEHD
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the first instruction moves the length (in bytes) of the whole program into

DO. Note that we have used a label on a line by itself: its value is the address
of the byte after the last one assembled. The above rules can be summarised in

a table:

Expression Result
relocatableranything {illegal}
relogatable/anything {illegal)
relocatabletabsolute relocatable
relocatable-absolute relocatable
relocatable-relocatable abgolute
abaolute~-relocatabia (illegal)

Addressing modes

Most of the instructions of the 68000 can accept their operands in a variety of forms.
They can be in registers, in memory locations addressed by a variety of methods, or
even included in the instruction itself. Because the instruction set is organised in such
a regular way. it is possible to describe the various addressing modes independently
of the instructions. The term used to describe an operand which can be expressed in
any (or almost any) of the addressing modes is an effective address.

Register direct addressing

Operand data may be held in one of the data registers or one of the address
registers. The register name is written as Dn or An, where n is a digit from 0 to 7.
For example

MOVE.L A7,D5

copies all 32 bits of address register 7 into data register 5. If the length is 'word', only
the least significant 16 bits of the register are read or altered. Length code 'byte' may
not be used with address registers; with data registers only the bottom 8 bits are
affected.

Absolute addressing

An operand in memory may be located by giving the absolute address of its first
(most significant) byte. The operand is written simply as a number, or as a label or
other symbol representing the number. To clear the byte at location 1000 (hex),
we could write

CLR.B 51000
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There are in fact two forms of this addressing mode, as the absolute address can
be held as a 16-bit or a 32-bit number in the instruction. In the short form, the 16-bit
address is sign-extended to 32 bits before it is used. This means that the most
significant bit of the 16-bit number is copied to the most significant 16 bits of the
address. Thus, the short form can be used to address the bottom 32K bytes of
memory, and a region of up to 32K at the top of memory, but nowhere in between.
For backward references, the assembler can always choose the correct length, as it
already knows the address of the location being referred to. A length qualifier may be
added to the ORG directive in order to control which form of this addressing mode will
be chosen for forward references: ORG.L asks for the long mode, while ORG asks for
the short one. What this means in practice is that, if a program in absolute code
extends to addresses above 32K (=$8000), then ORG.L must be used in order to
inform the assembler that forward references may need more than 16 bits.

These address calculations can be represented diagramatically (with '<«' used to
Indicate sign extension).

Short absolute Mode

31 15 7 13

(LCLCeieeqqi<es

address —' from instruction

operand address

Long Absolute Mode

31 15 7 Q

address

operand address

from instruction

Relative addressing

Two modes allow memory to be addressed relative to the current value of the
program counter (PC). This is used mainly for jumps in position independent code,
but can also be used to read constants bulit into the program. A location addressed in
this way may not be written to: this Is to encourage the writing of pure code. This is
code which does not alter itself as it runs, and so can be executed again with the
same effect, or indeed executed as part of several programs running simultaneously.
Pure code is said to be re-entrant, meaning that it is always available to be used
again. A lower level of 'purity' is code which is serially reusable, meaning that
it can be used again
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once it has finished, but may not be in its proper state all the time that
it is running.

In the simpler of the two relative addressing modes, the memory address is
calculated as the sum of the current program counter and a 16-bit displacement
value. During the execution of an instruction. the value of the program counter is two
more than the address of the start of the instruction. The displacement is treated as a
signed 16-bit number, so it is possible to represent addresses from instruction-32766
to instruction+32769 in this way.

31 15 1 [
Program Counter rC
+ <c<<<<<<<<<(<<<, displacement from instruction

operand address

This mode can be requested by writing the operand address as an offset from the
start of the current instruction. The symbol ™' is available to refer to the current
location. We can thus write things like

IMP *+10 Jump to the instruction 10 bytes on
but it is not advisable to do so, as firstly we must calculate the offset ourselves, and
secondly, remember to alter It if any instructions are inserted in between. It is
easier and safer to use labels.

The assembler will generate this mode automatically if a reference
is made in a relocatable section to a relocatable symbol defined in
the same section. If we write »

JMP START

then the assembler will use the program counter with displacement mode
for the JMP Instruction.

The other program counter relative mode is similar, but the contents of a register
are also added in when calculating the address. Such a register is called an index
register, and may be any of tne 16 registers. How much of the index register is
significant is indicated by suffixing the register name with "W' (the default) or '.L". The
displacement value in this mode is only 8 bits long, .but signed, so can modify the
PC value by -128 to +127.
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Long form

31 15 7 0
Program Counter PC
+ Contents of Index Register Ri.L
+ R R R F R P Disp from instruction

operand address
Word form

RS 15 7 1]

Program Countex EC

+ CeLLLCLLLeCLeeq

Index Register | Ri.W

+ £EKCLLLLLCLLELEECCECeCdd Disp from instruction

opaerand address

The wmost common use of this mode is when jumping t0 one ot
sgveral locations. when the actual one wanted has Dbeen decided
earlier in the program. This mode Is chosen when a relgcatable
symbot |s followed by the name of a (data or address) register in
brackets. For example

RORG o
: Code which calculateg which routine
1 ghould be executed, and places
H 0, 4, 8, or )2 in A0 acceordingly.
H {We know each JMP is 4 bytes long.)}
X
JMP JTABLE(AC } Jump to appropriate JMP instruction
X
JTABLE JMP ROUTINEA Executed if RO contains 0O
JMP ROUTINER Executed if A0 containz 4
JME ROUTINEC Executed if A0 contains £
JMP ROUTINED Executed if AG containg 12

This mode has two different forms, using either 16 or 32 bits of
the index register

JTABLE(A0.W) ia the same a3 in the example above.

JMP
* Only the bottom 16 bits of A0 used
* treated ag a lé-bit signed number,

JMP JTAPLE(A0.L) uges all 32 bits of AD.
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Address register indirect

There are five acdressing modes based on an operand address heig
in one of the address registers, This is caltegd indirect addressing
because the register is not itself the operand, but only points at the
operang in memory.

ENN 15 7 o

Contents of Address Register l An

y

operand address

The simplest of these modes is specified by writing the name of
the address register in brackets., as in

CLR.B  (AZ)

which ctears the byte whose address is in A2

Register indirect with displacement

The address in an address register can be modified by the addition
of a signed 16-bit displacement value.

31 i5 7 ]

Contents of Address Register An

+ CCECEELILLCLCaK I Displacement from instruction

operand address

Suppose that A2 contains 50000:

CLR.B 100¢A2) Clears byte at 50100
CLR.B —-32000{AZ) Clears byte at 19000

This mode is used when an address register points ai someg dala
structure which contains ltlems at fixed offsets that we want to access
individuaily.
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Register indirect with displacement and index

This is similar to the last mode, except that the contents of another
register are added in. and the displacement value is only 8 bits in
size.

Long form

31 15 7 L]

Contents of Address Register An

+ Contents of Index Register Ri.L

=+ CLLLELCLCECLECCCLCLCKS

v

coperand address

Disp from instruction

Word form

31 15 7 aQ

Contents of Addresas Register An

+ cececcccc<cec<¢| Index Register | Ri.W

+ <<<<<u(<<<<<<<<((u<<<l Disp from instruction

J

operand address

The index rogister may be any of the 16 registers; how much of it
is signiitlcant ts indicated by suffixing the register name with ‘W' (he
defauity or ‘L.

Suppose A0 contains $230000. Al contains $FFFC (= -4 as a
16-bit number) and A2 contains $20. Then

CLR.B 510{A0,AZ) clears byte $230030

CLR.B S10{A0,A2.W) " " $230030
CLR.B S16{A0,A2.L) " - $230030
CLR.B $10{AZ2,A0,.L) ” " $230030
CLR.B $10(AZ, A0 W} " - 330
CLR.B $10(A0,A1.W) » " $23000C
CLT.B $10{A0,Al.L) " " $24000C

The use of this mode allows access tg caiculated offsets in a data
structure whose address Is held in a register.
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Register indirect with predecrement or postincrement

Two variants of the basic address register indirect mode are included
to simplify the management of stacks (see chapter 4). Both of these
refer t0 a location whose address s in a register, and aiter the
register's contents so that it points to an adjacent iocation.

The pradecrement mode is written -(An), its eflect is to reduce the
valug in An by one. two, or four, depending on whether the operand
size of the instruction is byte, word. or long. and then to access the
iccation addressed by the adjusted An,

Predecrement mode
Contenta of An are decremented by 1, 2, or 4.

ax 15 7 o

New Contents of An 1 an

Y

operand address

Thus, If A1, A2, and A3 each contain 1000, then

CLR.BE  —(Al) sets Al to 999,

* and ¢leara the byte at 999
CLR.W  —(A2) gsets Az to 998,

* and clears the word at 998
CLR.L —(A3) gsets A3 to 296,

* ands ¢learg the long word at 996

L3
The postincrement mode is written (AnJ+ and Is the exact opposite.
The access is made to the location originally addressed by An. and
then the value in An is increased by one, iwo. or four.

Postincresment mode

31 15 7 Q

01d Contents of An An

operand address

Contents of An are then incremented by 1, 2, or 4.

i Al contains 1000. then

CLR.W (ALY clears the word at 1000,
" and then sets Al to 1002
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Take care if you choose to use A7 in either of these modes. This register is
special in that the hardware uses it automatically In some situations (interrupts,
exceptions, and subroutine calls), and expects it always to contain an even address.
Because of this, these two modes will adjust the value of A7 by two. not one. in a
byte-size instruction, to keep its value even.

Immediate data

This addressing mode allows the operand value to be held in the instruction itself,
and is allowed for source operands only. The data value is written #number, and the
length to which it is stored depends on the data size of the instruction. Thus

MOVE.B #S$SFF, DO

inserts the hex number FF into the low byte of DO, while

MOVE.I, #$56789ABC, DO

sets the whole of DO to 56789ABC (hex).
A common programming mistake, and one that is not necessarily detected
quickly, is to miss off the '# in an immediate operand. If we had written

MOVE.B S$FE,D0

by accident, then the result would be to load the contents of memory location $FE,
instead of the value $FE, into DO.

Some instructions have a so-called 'quick’ variant which allows a small immediate
operand to be included in the Instruction. The syntax Is as for the normal immediate
mode. An example is the MOVEQ instruction, which takes an 8-bit signed operand

MOVEQ #-3,D7 Set D7 to -3 (size is Long)

There are similar instructions for adding or subtracting a number between 1 and 8.
For example

ADDQ.Ii #4,A2
SUBQ.B #1, (Al)
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Summary of addressing modes

The table below provides a brief summary of the addressing modes
described above.

Mode Syntax Effective Address
Data Register Bn EA = Dn
Addresg Regigter an EA = An
Absclute Address numbey or ASYMB |EA = fixed numbey

(16 or 32 bits)

PC Relative RSYMB EA = [PC] + dl6
PC Rel. with Index | RSYMB(ki) ER = [PC] + [Ri] + 48
Register Indirect {An) EA = [An]
R.I. with Offset Al6({an)} EA = [An] + 416
R.I. Index & Offset | d8{An,Ri) Ea = [An] + [Ri] + d8
Predecrement R.I. ~{an) fan] := [An] - N; EA = [An]
Pogtincrement R.X. {An})+ EA = [An]; [An] := [An] + N
Immediate Data #inumber or #ASYMB|Operand in instruction

Explanation of symbols:

EA = Effective Address Ri = any A or D register

Dn = Data Register An = Address Register

ds = 8-bit displacement dlé = 16-bit dimplacement

PC = Program Counter N =1, 2, or 4 (according to size)
[1 = 'contents of’ 1= = 'becomes'

ASYMB = Absolute Symbol RSYMB = Relocatable Symbol

Implicit addressing

This is not a general addressing mode like the ones above, but is another way of
locating an operand. Implicit reference to operands occurs in a few instructions which
automatically make use of particular machine registers or stack locations. Registers
whose use can be implicit are the program counter (PC), the processor status
register (SR). and the stack pointer registers (SP) which are the two incarnations of
address register 7 (USP and SSP).

An example of implicit addressing which we have already seen is the JMP
instruction, which modifies the program counter in order to effect the jump.
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Categories of effective address

in many instructions where an operand is specified as an effective
address, not all of the above addressing modes are allowed. The
forbidden ones may be nonsensical or just undesirable. Consider the
following (illegal) Instructions:

JMP D6 Jump to a register
JMP ~(&5) Decrement A5 by 1, 2, or 47
MOVE D4, #77 Copy D4 into constant 77

in order that the restrictions on any operand can be expressed concisely, the
various address modes are put into four overlapping categories: data references,
memory references, alterable operands, and control references. Thus, we may talk
about 'control addressing modes', 'data alterable addressing modes', and so on.

Data operands include everything except the contents of address registers, while
memory operands are anything not held in either sort of register. An operand is
alterable if it may be written to. Control operands are those which can be used to
indicate the destination of a jump.

The categories to which each mode belongs are summarised in the table below.

Mode Data Memory Control | Alterable

Dn x k3
An *
PC relative *® * ¥

PCR + index * * *

(An} * * * *
d16(an) * * * *
as{an,Ri) * * * *
—(an}) * * x
(an)+ x * *
Abgolute x * * *
#data * *

Chapter 3

Moving and comparing
data

The most elementary instruction in the 68000 instruction set is called MOVE. lts
purpose is simply to move information from one part of the computer system to
another. Unlike many other computers, there is no distinction within the 68000
between moving data in to or out of registers. It is also possible to move data from
one memory location to another directly without having to use an intermediate
register.

Simple data movement

There are a number of variants on the basic MOVE instruction which we shall come
to later. Consider first a simple program to fill memory with data. The immediate
address mode may be used for the source. while the absolute form can be used for
the destination. Thus

MOVEB #123,BYTELOC *

will set the single byte of memory defined by the label BYTELOC to contain the
decimal number 123.
We could instead use a register as the destination, and use the form

MOVE.I  #123,DI

which sets the data register DI to contain the value 123. Notice that in this case we
have used the long form of the instruction rather than the byte form. The data
registers are 32 bits wide, and so we have set the entire register to the value 123. If
we use any other form of the MOVE instruction, such as

MOVE.B  #123,D1

the value 123.
case. Although
to accidentally
the register is
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then the effect is simply to set the low order byte to

The rest of the register DI is left unchanged in this
this effect is often useful, it Is also an easy mistake
move a byte into a register without first ensuring that
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empty. This Is particularly likely when moving a byte of data from memory into a
register. The instruction

MOVE.B BYTELOC, D1

does not set register DI to the byte value stored In location BYTELOC. Instead it slots
the byte value of BYTELOC into the bottom 8 bits of DI. Of course if subsequent
instructions acting on the value stored in DI are only byte length Instructions then
everything will work perfectly. But beware of using the Instruction in cases such
as

MOVE.B BYTELOC, D1
MOVE.L D1, LONGLOC

which will set the 32 bit value at LONGLOC to the top 24 bits of the previous value of
DI. and the byte at LONGLOC+3 to the value stored at BYTELOC.

Another popular trap to fall into Is to forget that a byte length Instruction alters the
bottom 8 bits of a register, but the top 8 bits of a memory location. A reference to
store starts using it from the address specified, so that moving a byte to LONGLOC
will alter a single byte at that location.

If the word form of the instruction is used then two bytes will be written, at locations
LONGLOC and LONGLOC+1. But placing a word into a register using the word form
S G 4

wemory  |a|bd|c|a] [a[p]cja]
Registar [a|bfc[d] [a]pfe]a]

Long Move Byte Move

of the instruction and then storing the register at LONGLOC using the long form will
alter four bytes from LONGLOC to LONGLOC+3; the top two bytes will contain the
previous value of the register and the bottom two bytes will be the word value moved
into it.

Any data alterable address mode may be used as the destination of a MOVE
operation, and any address mode can be used as the source, with one exception.
This is when the byte sized version of the Instruction is used, and in this case an
address register may not be used as the source.

When a MOVE instruction Is used to move data into memory or into a data
register, the condition codes in the status register are set accordingly, if the data
value moved was zero then the Z bit in the status register is set. otherwise it is
cleared. If the value was negative then the N bit is set. otherwise it Is cleared. The V
bit, which is used to indicate overflow, and the C bit. normally set when a carry has
occurred, are both cleared. The X bit is used to remember that a carry has occurred
at the last arithmetic instruction, and so this status bit is unchanged.
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These changes to the status register do not take place when a value is moved
into an address register. This is because it is useful to adjust the value of an address
register used as an index without altering the condition codes which might be tested
in a subsequent instruction. In order to remind you of the difference, a separate
instruction MOVEA (for MOVE Address) is used to move data into an address
register. In fact the instruction opcode is the same as that used for MOVE, and many
assemblers will allow you to simply use MOVE to an address register instead of
specifying MOVEA. It is normally a good idea to use MOVEA where required in order
to remind yourself that the condition codes are not set.

If we now wanted to set a number of consecutive locations to the same value we
could write the following small program to do it.

The first line of the program sets the assembler into absolute mode starting at location
$1000. Line two loads address register AO with a value which will be used as a

ORG 51000

MOVEA.L #52000,30 Load gtart address
MOVE.L #0,D2 Load wvalue

MOVE.YL. D2,(A0)+ Store value and move ..,
MOVE.L D2,{A0)+ .. to next location
MOVE.L D2,{a0)}+ and again

END

pointer further on. This pointer is initially $2000. Similarly line three sets all 32 bits of
data register D2 to the value 0. Lines four to six take the value stored In register D2
and place it into the location given by the contents of address register AO. The
operation is of size long, so the four bytes $2000 to $2003 are set to zero. Because
the (AO) is followed by a plus sign. we have asked for the address register to be
incremented after the operation has been performed. The address register A0 will be
incremented by 4 because the MOVE instruction was of size long. If we had specified
MOVE.W then A0 would have been incremented by 2. and If we had used MOVE.B
then it would only have been Incremented by 1.

The register AO therefore now contains $2004, and so line five will set bytes
$2004 to $2007 to zero, and increment A0 again to $2008. Similarly line six will set
bytes $2008 to $200B, leaving A0 containing $200C.

Conditional branches

We have already seen that the MOVE instruction will set the condition codes while
moving data from one place to another. We can use this fact to write a small program
to clear a large section of memory. Not a very exciting program perhaps, but all we
can manage with only two instructions. The new instruction which we require is one
found on most computers - the conditional branch.

A conditional branch is an instruction which tests one or more ot the condition
codes and jumps to another part of the program depending on whether the condition
code is set or not. There are several sorts of conditional branch instruction
memonics corresponding
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to the various condition codes. Initially we are only interested in the instructions BEQ
and BNE. The former causes the computer to jump to the location specified if the Z
status bit is set, otherwise the next Instruction after the BEQ is executed. It can be
read as 'branch it equal to zero'. Similarly the latter is 'branch if not equal to zero', and
causes ajump unless the Z status bit is set.

With these limited tools we can design a program which clears
memory from a given location to location zero.

ORG 51000
MOVEA.L #$100,A0 Set up initial pointer
LOOP MOVE.L #0,—(30} step pointer down and zero

MOVE.L A0,D1
BNE LOOP
END

Mowve pointer into D1
and loop back until pointer is zero

As in the previous example, the first line sets up our program origin, while the next
line initialises our pointer register. Line three moves immediate data of zero into the
location pointed at by address register AO. The MOVE instruction is of size long, and
the address register is used in predecrement mode, so the value in AO is
decremented by 4 before the instruction is executed. Thus the first time the instruction
is executed AO will contain $FC, and locations $FC to $FF will be set to zero. Note
that the byte at location $100 is not altered.

Line 4 at first seems rather strange, as we are simply moving the value of the
pointer into the data register DI. But remember that all MOVE instructions except
those where the destination is an address register cause the condition codes to be
set. Thus if AO contained zero then the Z status bit would be set after this operation.
The first time through AO will be $FC, and so the Z bit will not be set. This means that
line 5 will cause control to be moved back to line 3, labelled LOOP. Again, AO will be
decremented to $F8 and locations $F8 to $FB will be set to zero. As AO is still not
zero, line 4 will ensure that Z is not set, and we will loop round again. This will
continue until AO is $4. This time when AO is decremented it will be zero. Locations 0
to 3 will be cleared by line 3, but line 4 will move the value zero from AO into DI. This
will set the Z condition code, so that the branch is not taken, and the program
terminates.

Our tiny program could be improved in a number of ways. One way is to replace
line 3 by

MOVE.B  #0,-(AO)

which would only set the single byte pointed at by AO to zero. In this case the
instruction is of length byte, which means that AO would be decremented by one
before the operation. The program would work in exactly the same way as before, but
would only set a single byte each time round the loop rather than four bytes at a time.
This will take much longer to execute, as the loop is performed four times as often.
The extra time is partly offset by the fact that a MOVE instruction of length byte
takes less time than one of length long.

The real difference is that the program would be shorter, as tne immediate data
will be held as a word rather than as two words within the program. In this case
the extra two bytes are a small price
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to pay for the increase in speed, but as in most computing problems there is always
a choice between space and speed.

One way in which the program can be made smaller with no loss of
speed is to replace the BNE instruction with

BNE.s LOOP

All the conditional branch instructions have a long version and a short version, in
either case the value stored with the branch is not the actual location to be jumped to,
but a signed number indicating how far away the required label is from the current
place in the program. The long version uses two bytes to store this displacement,
while the short version only uses one byte. Placing a ,S after the memonic tells the
assembler to use the short branch version of the instruction. It can only be used when
the label to be branched to is less than 128 bytes before or ahead of the branch. The
version without a qualifying letter allows branches up to 32767 bytes before or ahead.
Some assemblers will use the short form automatically for backwards branches, but if
the branch is to a label which has not yet been declared the assembler will always
use the long form unless told to do otherwise by specifying the short form.

Comparing data

In the previous section we used the fact that the condition codes are set by the
MOVE instruction. This is normally only useful if we want to move a value
somewhere, but also check if the value is zero or negative. In many cases we want to
compare two values, and this is exactly what the CMP instruction does.

A common use of CMP is to see if two values are the same. If the two operands
used in the CMP_ instruction are identical, then the Z condition code will be set.
Thus the section of program

CMP.L DO, D1
BEQ EQUAL

will cause a jump to the label EQUAL if DO and DI contain the same value.

The actual operation of CMP is to subtract the first operand from the second and
to set the condition codes appropriately. The actual result of the subtraction is thrown
away, and the original value of the second operand is unchanged. The condition
codes are all either set or cleared except for the X code which is unchanged.

There are four versions of the CMP instruction, and many assemblers will choose
the correct version automatically. The CMP form may only be used with a data
register as the destination operand. The vaiue compared may be specified as byte,
word or long. Any address mode may be used as the source, with one exception.
This is when the size is specified as a byte, and in this case the source cannot be
held in an address register, although it can be pointed to by one. Thus a valid
example would be



CMPB  12(a3),D0

which would compare the byte held at offset 12 from the location pointed at by A3
with the low order 8 bits of DO.

The CMPA version of the instruction may only be used with an address register
as the destination operand. In this case the value may only be specified as word or
long, and any address mode may be used as the source. If the word form of the
instruction is used. the value given is sign extended to 32 bits and the resulting long
value is used in the comparison. Thus

CMPAW  #$FFFF,A2

would set the Z condition code if A2 was equal to -1 ($FFFFFFFF). and would not
set Z if A2 contained $FFFF.

The CMPi version may only be used with a data alterable destination, so that the
contents of an address register or a program counter relative value may not be used.
The source must always be immediate data, and the Instruction can be any of the
three lengths. Thus

CMPLB  #3$0A,-(AO)

will decrement the value stored in AO by 1. and then compare the value $0A with the
byte pointed at by the new value of AO. CMPI can be used with a data register as the
destination operand, and in this case the operation is the same as if CMP had been
used with immediate data as the source operand.

The final version of CMP is used to compare memory locations, and Is specified
by CMPM. In this case the source and destination operands can only be specified
using postincrement address mode. The comparison can take place on a byte, word
or long word. This is useful in comparing large sections of memory. Consider the
following fragment of program, which will compare TOO bytes of memory starting at
location $1000 with 100 bytes starting at $2000.

Here we load up two address registers with pointers to the area of memory which we
wish to compare. Line three compares the two bytes pointed at by the address
registers, and increments the pointers. If the two values are not equal then line four
jumps out of the loop. If they were equal, we must carry on and check the next two.

MOVEA.L #51000,A0 Load first peointer
MOVEA.L #$2000,A1 Load second pointer
LOOP CMPM.E ({A0)+,(R21)+ Dc comparison

BNE.S NOTSAME Jump if not equal
CMPA.L #351064,R0 Check end conditiocon
BMNE.S LOOP Loop back if more to do

The address registers have already been incremented ready for the next comparison,
but first we must check to see if all the bytes have been examined. Line five
compares the first pointer with the base address plus 100. If AO does not yet equal
this value, line six jumps back to label LOOP to look at the next pair of bytes.
Otherwise we drop through and we know that the two 100 byte areas are the
same.

More conditional branches

So far we have only learnt about conditional branches which test for two types of
condition. These are BEQ which branches if the Z bit is set, and BNE which branches
if the Z bit is not set. As you would probably suspect, there are are a number of other
versions of the Bcc instruction which test other conditions.

The first group of these are governed only by a single bit in the status register.
Just as BEQ and BNE cause a branch to be taken depending on the value of the Z
bit, BCS and BCC can be used to test the state of the carry bit. The former reads as
‘branch if carry set', and branches If the C bit is currently set; the latter is 'branch if
carry clear' and jumps If the carry is unset.

BMI and BPL can be used in exactly the same way to test the N bit; 'branch if
minus' means that the branch is to be taken if the N bit is set while 'branch if plus'
only jumps if the N bit is unset. Note that the N bit is cleared if the value is zero, so
that BPL will jump in this case as well.

The final pair in this first group are BVS and BVC which branch if the overflow bit
is set or clear.

The second group of conditional branches test a number of conditions before
deciding whether to jump. Some of these appear very similar to the simpler tests
mentioned earlier, and the only difference is in the treatment of the overflow and carry
bits. A number of instructions, such as MOVE, always clear C and V and so in this
case the two forms are identical. The difference is only important when handling
signed numbers.

BLT and BQE are used when comparing signed numbers, and can be read as
'branch if less than' and 'branch if greater than or equal’. BLT tests the N bit in the
same way as BMI, but only branches If the N bit is set and the overflow bit V is unset.
If V is set then it will branch if the N bit is also unset. This means that so long as no
overflow occurs BLT behaves as BMI; if overflow has happened then BLT behaves
like BPL. BQE also tests the N and V bit and jumps if they are both unset or both set.
In this respect it behaves like BPL if no overflow has happened and like BMI if It
has.

BLS and BHI test the Z and C bit. The first is 'branch if low or same' and will jump
if either the carry bit ,or the zero bit are set. The second is 'branch high' and will only
jump if both C and Z are unset. The BCC and BCS are sometimes given the
alternative names BHS and BLO, for 'branch if high or same' and 'branch low'
respectively.

The most complicated conditional branches are 'branch if less than or equal' and
'branch if greater than'. BLE will jump if the conditions tested in BLT are true but will
also jump if the Z bit is set. BQT makes the same test as BQE, but for the branch to
take place the Z bit must be unset whether overflow has occurred or not.

We will see later how the same condition names are used In the DBcc and Sec
instructions to test the same combinations of status bits. With these instructions the
additional conditions T and F are allowed, meaning True and False. The equivalent to
BT, or branch If true, is of course spelt BRA. There is no equivalent to BF, which
would mean never branch, and this potential combination Is taken up by BSR.
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A simple memory diagnostic program

We have now learnt sufficient instructions to write a simple memory diagnostic
program. We will take an area of memory, and place a certain bit pattern into it. We
will then check that the memory has retained the value placed Into it. This is a useful
check to see If all the RAM chips on a board are behaving themselves. As we have
not yet learnt how to perform any input or output, the program will jump to a certain
location if it finds any errors. This could be the location of a monitor routine which
wrote a message for us - the details are not important here.

Here the first few lines set up a program origin and define some values using EQU
directives. It is always good practice to use EQU to define a name for a particular

ORG %400
* Dafine some useful constants
MEMED EQU 41000 lower limit
MEMHI  EQU 52000 upper limit
TPAT EQU SAA test pattern
MONLOC EQU $2000 monitor return address

x

* The memory ¢heck program

®

ENTER  MOVEA.L #MEMLO,AO Set up base pointer
* Pill memory with required value

LP1 MOVE.B #TPAT,{A0)+ Store value, increment AQ
CMFA.L #MEMHI,AO Check limit reached
BNE.S LP1 No, keep going

* Check memory has kept that value
MOVEA.L #MEMLO,AQ Reget base pointer
LP2 CMPI.B #TPAT,(RAO)+ Check value is the same
BHE MONLOC Mot the same — error at {AO)-1
CMPA,I. #MEMHI,RAOD Check limit reached
BNE.S LP2 No, keep going
* Check complete, Go back and try it again
BRA.8  ENTER
END

value, as this makes the program much easier to change later. For example, here our
little program tests memory from $1000 to $1FFF. These values are defined by the
labels MEMLO and MEMHI. If anyone wanted to change the program to test another
area of memory this could easily be done by altering the EQU statements, rather than
searching through the program itself trying to find uses of various numbers and
altering those.

The program is entered at the label ENTER, where AOQ is set to point to the start
of the area of memory we wish to test. Label LPT defines the start of loop, placing the
test pattern defined by TPAT into the byte pointed at by AO, and incrementing AO.
The next line uses CMPA to check to see if we have filled all the memory required. If
not we branch back to LP1, only dropping through when all the memory has been
filled.

41

Once the memory has been filled we reset our pointer AO and loop through the
test region again. If the value stored in memory is not what was expected then we
take a branch to MONLOC. Register A0 will already have been incremented and so
the actual location in error will be one less than the address held in AO.

Notice the use of MOVEA.L and CMPA.L. In this particular example MOVEA.W
and CMPA.W would have done just as well, and would also have made the program
shorter. But this would have left a terrible trap for anyone coming along and changing
the program later. Consider wishing to extend the upper limit of memory checked from
$2000 to $8000. Anyone wishing to do this would look at our program. and think that
all that was required was to change the definition of MEMHI from $2000 to $8000. If
we had used the word length versions of MOVEA and CMPA then when the test for
the end of the loop was made, the processor would take the Immediate value defined
by MEMHI. sign extend it to 32 bits and then make the comparison with AO. This
would cause the loop to terminate only when the value of A0 was $FFFF8000, which
is not a valid address. In fact the program would terminate due to a bus error as soon
as all the valid memory had been filled. The moral of this example is that it is always
sensible to use long versions of Instructions when placing addresses into address
registers. The other versions should normally only be used when holding data
values in address registers.

Comparing and moving zero

There are two special instructions in the repertoire of the 68000 which are used when
dealing with the value zero. We have already seen that MOVE can be used with
immediate source data to move any value into memory or into a register, and this
value could be zero. Similarly the CMP family can be used with immediate data which
could also be zero. However an immediate value is represented as one or two
extension 16 bit words following the 16 bits of the instruction word. and so the
operation

MOVE.L  #0,D0

will take up 16 bits for the instruction, and 32 bits for the representation of the long
value zero. As it is very common to set values to zero, there are two special
instructions provided which are only 16 bits long.

The first of these is CLR, which will clear the specified destination to zero. This
destination must be data alterable, so that it cannot be used to clear an address
register to zero. However a byte, word or long word in memory referenced directly or
by an address register may be set to zero. Similarly the low order 8, 16 or 32 bits of a
data register may be set to zero.

The condition codes are set as if MOVE had been used to place zero into the
destination, so that X is unaffected, Z is set and the others are cleared.

The instruction should be used with care If the memory location is actually part of
the /O page, where memory mapped devices appear as if they are memory
locations. The instruction actually reads memory
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before writing zero Into It. which might give strange effects If the action of reading an
1/0 port affects the associated peripheral.

Similarly, the TST instruction may be used to test whether a value is equal to
zero. Again the destination may be specified as any data alterable location, and the
size may be byte, word or long. If the value specified is equal to zero then the Z bit
will be set. otherwise it will be cleared. Suitable BEQ, BNE or BLE instructions would
normally follow.

TST can also be used to see if a value is negative. If it is then the N bit will be set,
otherwise it will be cleared. The X bit Is not affected and the V and C bits are always
cleared. Thus BMI and BPL can be used to test the condition of the N bit. Note that
after this Instruction BLT will have the same effect as BMI as the carry bit is always
clear. Similarly BQT and BPL are also interchangable in this case.

Moving small numbers

Many programmers will wish to use the long form of instructions as much as possible,
as the ability to handle 32 bit values is one,of the features which makes the 68000 so
different from its rivals. However it Is a common requirement to initialise registers to
zero or a small integer. We have already seen how the CLR instruction may be used
to clear a register or memory location to zero, and that this may be used in any of
the three sizes.

Initialising a register to a small integer can be done by moving immediate data
into the register using the long form of the MOVE instruction. The onty problem is that
this instruction takes up six bytes; two for the MOVE instruction and four for the
immediate data. Obviously all four bytes are required to hold the immediate value if
that value is indeed of size long, but it seems rather a pity to waste so much space
simply holding bytes which are zero when the immediate value could fitinto a byte.

In order to cater for this situation, a special form of the MOVE instruction is
provided. The MOVEQ (for Move Quick) instruction is only of size long, and can only
be used to move a number which will fit into a byte into a data register. The effect is
exactly the same as would be obtained if MOVE was used to move an immediate
value in the range -128 to +127 into a data register, except that the MOVEQ
instruction only takes up two bytes, with the immediate value packed into the bottom
byte of the instruction. The entire data register is altered, with the data sign extended
if required. The N or Z status bits are set if the value so moved is negative or zero,
while the V and C bits are always cleared and X is unchanged.

The MOVEQ instruction takes less time to execute than the long form of the CLR
instruction acting on a data register, and so is a better way of clearing an entire data
register to zero. Remember that MOVEQ is always of size long, and can only be used
on data registers.
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Testing bits

There are a number of instructions which can be used on a single bit. These will be
described in detail in chapter 6, but one of them is of interest here. This is the BTST
instruction, which is used to test a particular bit in the destination. If the bit Is equal to
zero, then the Z bit is set. If it is one, then the Z bit is unset; all other condition codes
are unchanged.

The destination location is not affected, and may be specified using any data
addressing mode. The action of the instruction varies depending on whether the
destination is a memory location or a data register. In the former case, a byte is read
from memory and a bit in that byte is tested. The low order bit is specified as bit 0.
and the high order bit as 7. Numbers larger than 7 are regarded as modulo 8.

If a data register is used as the destination, then bit numbers range from 0 to 31,
hence allowing all the bits in the register to be tested. Again, if the number is larger
than 31 it is regarded as modulo 32. The size of the BTST instruction therefore varies
between byte and long depending on the destination operand, and is not specified by
the programmer,

The bit number is given as the source operand, and may be specified in two
ways. The first is to use an immediate form; in this case the value given is used as
the bit number. The alternative is to give a data register, which will cause the
processor to use the number held in the data register as the bit number. In either
case the bit number is used modulo 8 or 32 depending on whether the destination is
memory or a data register.

It is important to remember that the bit number itself is used, not the bit pattern
representing the particular bit to be tested.

Testing conditions

We have already seen how the Bcc family of instructions can be used to branch
depending on the state of various combinations of the condition codes. This is the
most common use of the condition codes, but there are two other instructions which
inspect the condition code value. The first of these is Sec, or Set according to
condition code. This tests the value of one or more of the condition codes, using the
same set of conditions as the Bcc family, if the condition is satisfied, then the byte
defined as the destination is set to $PF. If the condition is not satisfied, then the
destination byte is set to zero. Thus, for example,

See BYTELOC Set BYTELOC according to condition

provides in a ‘single instruction the equivalent of tha following.

Bee NXT Branch if condition satisfied
CLR.B BYTELOC Clear BYTLOC, not satiafied
BRA.S NXT1 Branch to end

YT MOVE.B #3FF,BYTELOC Set BYTELOC to SFF

NXT1 P Rest of program
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Notice that Sec can only be used to set single bytes, which must be specified using
data alterable addressing modes. It is also a useful way of always setting a byte to
$FF, because using the condition test TRUE

ST BYTELOC

will unconditionally set all the bits in BYTELOC. The equivalent test using FALSE
(SF) is identical to using the byte form of the CLR instruction.

The Sec instruction is normally useful for remembering the state of a
particular condition code for testing at a later date.

Loop control

One of the most common operations performed in a computer is that of performing a
set of instructions over and over again. This loop is normally controlled by an iteration
variable, which Is incremented until it reaches a certain value.

The 68000 provides an instruction to help with controlling loops. but it works in
the opposite direction to that which is usually required. That is. it decrements an
iteration variable. It is also slightly confusing because the iteration stops when the
variable has become negative. not when It becomes zero.

The family of instructions are known as DBcc. read as 'Decrement and Branch'. In
fact the full operation of the Instruction is to first test a condition code, and to move
onto the decrement and branch part only if the condition is not satisfied. We will first
look at the use of the instruction when the condition is never satisfied, i.e. DBF or
decrement and branch with condition false. This is the most common version used,
and most assemblers allow the alternative syntax DBRA.

DBRA takes a data register as the source operand, and a label as the destination
operand. The instruction is always of size word. If the value of the register is zero,
then the next instruction is executed. Otherwise the value in the register is
decremented by one and a jump is made to the label given as the destination.

The previous description is not quite correct, as in fact the decrement always
takes place on the register, and so the register used will not be zero when the loop
has completed. Also only the low order 16 bits of the register are used as the counter.
The label may be before or after the DBRA instruction, although it is usually before it.
Consider the following program fragment.

MOVEL #$2000,Al Set up pointer
MOVEW  #19,D0 Set up counter

LOOP CLRB  (AD-f Clear byte and increment pointer
DBRA DO,LOOP Loop while DO >» 0

Here the low order 16 bits of DO are used as a counter, initially these are set to 19.
while an address register Al is set up to point to a memory location. At the label
LOOP the byte referenced by Al is cleared to zero and Al is incremented by 1. as the
CLR was of size byte. The DBRA instruction decrements DO, and checks to
see if the
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result is negative. If not, control is passed back to LOOP. This happens until DO is
zero, when the decrement performed as part of DBRA gives a negative value. In this
case the jump to LOOP is not made, and we exit the program with the low order 16
bits of DO setto $FFFF and Al setto $2014.

In many cases a loop is to be executed a variable number of times, and if the
iteration count is initially zero then the loop is not to be executed at all. In this case the
DBRA instruction should be placed at the end of the loop, and the instructions just
before the start of the loop should set up the iteration count into a suitable register,
and make an unconditional branch to the DBRA instruction at the end of the loop.
Note that the iteration count, and not one less than the count, should be placed in the
register. If the iteration count was zero to start with no branch will occur at the DBRA
and so the loop will be entirely bypassed.

The DBRA version of the DBcc instruction is normally the most useful, but the full
form is extremely powerful. Here a condition is specified, and if , the condition is true
then the DBcc instruction has no effect. Normal execution continues with the
instruction immediately following. If the condition is not met, then the data register is
decremented and the branch specified is taken only if the result is not equal to -1.

This allows for a number of extremely powerful looping constructs.

For example, a program may be required to copy data from one
place to another until a byte equal to some value is found. The
destination area may only be of a limited length, and so the copy
operation is also to stop if the destination has been filled. Such
situations may occur when reading a line of Information from the
terminal into an internal buffer. The copy is to terminate if the
character 'return’ is found, but is also to stop if a line longer than
that allowed for is entered. We might use the following program

segment. »
CR EQU $0D ASCII carriage return
MOVEA.L #$2000,A3 Set up pointer to buffer
MOVEW #79,DO - Allow for 80 characters
RCH read character into D1
MOVEB DI,(A3)+ Save character
CMPB #CR,D1 Check to see if end of line
DBEQ DO,RCH Loop unless return or buffer full

The first two lines initialise A3 as a pointer into the buffer and DO as the size of that
buffer in bytes. In each iteration of the loop we read a character from the console in
some way, and save It in the buffer using postincrement addressing mode. Finally we
compare the character read in with the ASCII code for carriage return. If the character
read in was indeed a return, the DBEQ instruction has no effect and the loop has
terminated. If the end of the Input line has not been reached we branch back and read
another character only if there will be room in the buffer.
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Simple Input and output

All the previous examples have assumed that the test programs were running under
a monitor, which would allow you to enter your program and to start it running.
Normally such monitors also provide a mechanism for writing information to a
terminal connected to the computer, and also to accept information from the
terminal.

Alternatively you may be running your programs under an operating system, in
which case this will provide some mechanism to input and output information. In
either case it is likely that the method used to communicate with the outside world'
will be a connection to a serial line, onto which a terminal of some sort can be
connected. The most common way for this serial line connection to be provided is by
the use of a special chip, known as an ACIA or Asynchronous Communication
interface Adapter. This description applies to the 6850 ACIA, but most input and
output chips work in a similar fashion. We will not go into too much detail about this
device; it simply handles all the work required to send and receive a byte of
information down a serial line.

An ACIA appears in part of the memory space of a 68000. Each ACIA has two
ports, a control port and a data port. In an 8 bit computer, these ports are in adjacent
memory locations. On the 68000, they appear as the low order bytes of
two adjacent 16 bit
words.

Initially the ACIA must be reset - this is done by writing the value 3 to the control
port. The instruction manual for the ACIA tells us that we should wait a little while
after resetting it to give it time to settle down.

We must next select the characteristics of the serial line, such as the parity,
whether interrupts are to be enabled and so on. Initially we will use the ACIA in polled
mode - this means that unless the 68000 is checking the port for characters arriving it
is possible that characters may be missed. The ACIA is clever enough to tell us that
we have missed a character, but there is nothing we can do to find out what it was we
missed. Later on we will see how to run an ACIA in interrupt mode, but for now polled
mode will do. We will use the value $15 as the setup mode for the ACIA. which
should just be regarded as a magic value. If you actually need to set up an ACIA you
should read the standard documentation about it to find out what the values mean.
This magic value is written into the control port.

Once an ACIA is set up. the low order two bits of the control port are used to tell
us about the state of the data port. Bit number 0 goes to a one if a character has
arrived down the serial line. We can then read the character from the data port, which
turns bit 0 off until the next character arrives. Bit number 1 is used to tell us if the
ACIA is happy to send a character down the line. If it is one. then we can write a byte
into the data port and this will be sent down the line. This takes a little time, and while
the ACIA is busy doing this bit 1 Is set to a zero. Once the byte has been transmitted
bit 1 is set to one again, and we can send another character. The sending and
receiving of characters is entirely separate - hence the Asynchronous part of the title.
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All of this might sound & ilttle complicated, bui In fact an AGIA is
very easy to use. especially now we have learnt some more of the
68000 Instruction set. Let us try to write the text "Hellol® to the
terminal.

* Values required by ACIA

A_RST EQU 303 RESET tode
A_INIT EQU $15 Magic setup value
A_RDY EQU 1 Bit set when ready
A_CTRL EQU $840021 Control port memory location
A_DATA EQU $840023 Data port memory location
*
ORG 21000

* Initialise ACIA
ENTER MOVE.B #A_RST,A_CTRL Reset ACIA
MOVE.W #1000,D0 Initialise counter
WAIT DBRA DO, WAIT Waste time looping back
MOVE.B #A_INIT,A_CTRL Set up ACIA
* Send string down the serial line
MOVEA.L #STRING,A0 Peinter to string

NXT BTST #A_RDY,A CTRL Test ok to transmit P
3 e BEQ.S MXT Not ready yet, try again
" MOVE.B (AO)+,A_DATA Write byte into data port
o (AO0) See if next byte is zero
N No, loop back to write it
* Data location for string
STRING DC.B 'Heldlo!l* Message
bC.B o Marker at end of string

The first few lines define some useful names for us, including the reset and
intialisation codes for the ACIA, and the location of the control and data ports in the
memory map. We start the program at the label ENTER, which places the reset value
into the control port. We must now waste some time, so we initialise DO as a counter
and immediately decrement it using the DBRA instruction. The processor will jump
back to the start of the same instruction until DO becomes negative, or until we have
executed the DBRA 1001 times. Finally we write the magic value associated with
Initialisation into the control port, and we are ready to write out the string.

The instruction immediately before the label NXT moves the immediate value of
the label STRING into register AO. If we look at the end of the program, we can see
the label is defined as referring to some memory which we have initialised to the
characters In our string. Thus A0 now points to the very first character of the string. It
is also worth noticing here that there is a byte containing zero immediately aft