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Preface

Like many American kids in 1979, I woke up to find that Santa
had left a brand new Atari VCS1 under the tree (thanks, Mom
and Dad, for paying Santa’s invoice!). This was a pretty big
deal for a six-year-old who could tell you the location and
manufacturer of every standup arcade cabinet within a five mile
radius. Having an “arcade in your home” wasn’t just a thing you
saw on Silver Spoons, it was now a real thing.

The sights and sounds that jumped off of our little Panasonic
color TV probably deserve a gigantic run-on sentence worthy
of Dylan Thomas, as my brother and I bounced tiny pixellated
missiles off of walls in Combat, combed through the perplexing
game modes of Space Invaders, battled angry duck-like dragons
in Adventure, and became Superman as we put flickering bad
guys in a flickering jail. These cartridges were opaque obelisks
packaged in boxes with fantastically unattainable illustrations,
available at K-Mart for $30 or so.

You could tell these species of video games weren’t related to
arcade games, though they had a unique look-and-feel of their
own. We also had an Apple ][ by this time, so I tried to fit all of
these creatures into a digital taxonomy. Atari games had colors
and fast motion, but not as much as arcade games, and they
never were as complex as Apple ][ games. What made them tick?
Why were Activision games so much more detailed? Would the
missile still blow up your spaceship if you turned the TV off?
(Turns out the answer is yes.)

1 It wasn’t sold as “Atari 2600” until 1982. We’ll use “VCS” in this book,
which stands for Video Computer System.
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An Atari 2600 four-switch "wood veneer" version, dating from
1980-1982 (photo by Evan Amos)

Soon afterwards, I would start dissecting the Apple ][, and never
really got my mitts on the viscera inside those VCS cartridges. It
wasn’t until the Internet came around that I’d discover the TIA
chip, scanlines, and emulators like Stella. I’d also read about the
people who wrote the games, often uncredited, who pushed the
envelopes of both game design and technology while working
solo against impossible deadlines.

It’s now been 37 years since that Christmas morning, and thanks
to the Web, very fast modern CPUs, and lots of open-source
sharing, you can program Atari VCS games in your browser. It’s
probably the most effort you can expend for the fewest number
of pixels, but it’s also really rewarding.

If the modern software ecosystem is a crowded and bureaucratic
megalopolis, programming the VCS is like tinkering in a tiny
cabin in the woods with 10-foot snow drifts outside. At least
the stove is working, and there’s plenty of wood. Enjoy.

xiii



1

Introduction to 6502

In 1974, Chuck Peddle was a Motorola employee trying to sell
their 6800 microprocessor to customers for $300 each. He and
a few co-workers left the company with the vision of a much
cheaper alternative, and landed at MOS Technology in Valley
Forge, Pennsylvania.

They began drawing the layout for the chip on a huge sheet
of paper in one of the offices. Later, they’d cut the table-sized
Rubylith photomask for the 3,510 transistors by hand, wearing
clean socks so they wouldn’t damage the mask when they had
to step over something. The design (mostly) worked on the first
run, and the 6502 was sold out of large jars for $25 at the 1975
Wescon trade show.[1] It would sell tens of millions of units over
the next decade.

The 6502 CPU was not that much different from other micro-
processors in function; it was just cheap and widely available.
Yet it powered the Apple I and Apple ][ computers, the Com-
modore 64, the Nintendo Entertainment System, and the Atari
2600/VCS, as well as a myriad of other computers and game
devices.

While there are plenty of books and online resources devoted
to 6502 programming, we’re going to cover the basics in this
chapter before we jump straight into programming the Atari

1



1.1. Bits, Bytes, and Binary

2600. Feel free to skip to the next chapter if you already know
most of this stuff; we won’t cover VCS-specific topics until
Chapter Two.

1.1 Bits, Bytes, and Binary

All digital computers operate on bits and bytes and, on the VCS,
you’ll be manipulating them directly. Let’s review a few things
about them.

A bit is a binary value – it can be either zero (0) or one (1). A
byte is a sequence of eight bits.

We can create a written representation of a byte in binary
notation, which just lists the bits from left to right, for example:
%00011011. We can then shorten the byte notation by removing
the leading zeros, giving us %11011. The % denotes a binary
number, and we’ll use this notation throughout the book.

The eight bits in a byte are not just independent ones and zeros;
they can also express numbers. We assign values to each bit and
then add them up. The least-significant bit, the rightmost (our
index starts at zero, i.e. bit 0), has a value of 1. For each position
to the left, the value increases by a power of two until we reach
the most-significant bit, the leftmost (bit 7) with a value of 128.
Here are the values for an entire byte:

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

Let’s line up our example byte, %11011, with these values:

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1
Our Byte 0 0 0 1 1 0 1 1
Bit*Value 16 8 2 1

When we add up all the bit values, we get 16 + 8 + 2 + 1 = 27.

2



1.2. Hexadecimal Notation

1.2 Hexadecimal Notation

Binary notation can be unwieldy, so it’s common to represent
bytes using hexadecimal notation, or base 16. We split the byte
into two 4-bit halves, or nibbles. We treat each nibble as a
separate value from 0 to 15, like this:

Bit # 7 6 5 4 3 2 1 0
Value 8 4 2 1 8 4 2 1

Table 1.1: Bit Values in Hexadecimal Notation

We then convert each nibble’s value to a symbol – 0-9 remains 0

through 9, but 10-15 becomes A through F.

Let’s convert the binary number %11011 and see how it would be
represented in hexadecimal:

Bit # 7 6 5 4 3 2 1 0
Value 8 4 2 1 8 4 2 1
Our Byte 0 0 0 1 1 0 1 1
Bit*Value 1 8 2 1
Decimal Value 1 11
Hex Value 1 B

Table 1.2: Example Hex Conversion

We see in Table 1.2 that the decimal number 27, represented as
%11011 in binary, becomes $1B in hexadecimal format. (The $

prefix indicates a hexadecimal number.)

1.3 Signed vs. Unsigned Bytes

One more thing about bytes: We’ve described how they can be
interpreted as any value from 0 through 255, or an unsigned
value. We can also interpret them as negative or signed quan-
tities.

This requires a trick known as two’s complement arithmetic. If
the high bit is 1 (in other words, if the unsigned value is 128 or
greater), we treat the value as negative, as if we had subtracted
256 from it:

3



1.4. The CPU and the Bus

0-127 ($00-$7F): positive
128-255 ($80-$FF): negative (value - 256)

Note that there’s nothing in the byte identifying it as signed –
it’s all in how you interpret it, as we’ll see later.

Now that we know what bits and bytes are, let’s see how the
CPU manipulates them.

1.4 The CPU and the Bus

Think of the CPU as an intricate timepiece. An electronic spring
unwinds and an internal clock ticks 1.19 million times per
second. On every tick, electrons turn tiny gears, and the CPU
comes to rest in a different state. Each tick is called a clock cycle,
or CPU clock, and you’ll learn to become aware of their passing
as you learn how to program the VCS.

All the CPU does is execute instructions, one after another, in
a fetch-decode-execute cycle. It fetches an instruction (reads
it from memory), decodes it (figures out what to do) and then
executes it (does some things in a prescribed order). Each
instruction may take several clock cycles to execute, each clock
cycle performing a specific step. The CPU then figures out
which instruction to grab next, and repeats the process. The
CPU keeps the address of the next instruction in a 16-bit
register called the Program Counter (PC).

Fetch

Decode

Execute

Read Memory[PC++]
Result: $88

"no operand"
"decrement register"
"Y register"

Y = Y - 1

Figure 1.1: CPU Cycle

During each clock cycle, the CPU can read from or write to the
bus. The bus is a set of “lanes” where each lane can hold a single

4



1.4. The CPU and the Bus

bit at a time. The 6502 is an 8-bit processor, so the data bus is
eight bits (one byte) wide.

Devices like memory and graphics chips are attached to the
bus, and receive read and write signals. The CPU doesn’t know
which devices are connected to the bus – all it knows is that it
either receives eight bits back from a read, or sends eight bits
out into the world during a write.

6502 CPU

Memory and peripherals

Data Address
Bus Bus

Figure 1.2: Bus

Besides the 8-bit data bus, the 6502 has a 16-bit address bus.
The address bus describes “where” and the data bus describes
“what.”

Let’s look at what happens when the CPU executes this example
instruction, LDA (LoaD A):

lda $1234

The CPU will set the pins on the address bus to the binary
encoding for $1234, set the read/write pin to “read,” and wait
for a response on the data bus. Devices on the bus look at the
address $1234 and determine whether the message is for them –
by design, only one device should respond. The response must
arrive by the end of the clock cycle, then the CPU reads the value
from the data bus and puts it in the A register.

Let’s say we are executing the STA instruction (STore A):

sta $1234

The CPU will set the address bus to $1234 and the data bus to
whatever is in the A register, then set the read/write pin to

5



1.4. The CPU and the Bus

“write.” Again, the bus devices look at the address bus and
the write signal and decide if they should listen or ignore it.
Let’s say a memory chip responds – the memory chip would
read the 8-bit value off the data bus and store it in the memory
call corresponding to address $1234. The CPU does not get a
response from a write; it just assumes everything worked out
fine.

You’ll note that both of these instructions operate on the A
register. The 6502 has three general-purpose registers: A, X,
and Y. These are all 8-bit variables that you can manipulate at
will. You’ll often have to use the registers as temporary storage,
for instance: Load a constant value into A, then store A to a
given address.

You’ll notice that the CPU instructions have a three-letter
format. This is called a mnemonic, and it’s part of the human-
readable language used by the CPU, called assembly language.
The CPU doesn’t understand this, but it understands a compact
code called machine code. A program called an assembler takes
the human-readable assembly code and produces machine code.

Let’s take another example instruction:

lda $1234 -> ad 34 12

The machine code for this instruction is three bytes, $ad, $34,
and $12. $ad is the opcode which identifies the instruction and
addressing mode. $34 and $12 are part of the operand, which in
this case is a 16-bit number spanning two bytes. You’ll note that
the $34 is first and the $12 is second – this is because the 6502 is
a little-endian processor, expecting the least-significant parts of
multibyte quantities first.
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1.5. Writing Loops

$F000
$AD

LDA $####

$F1
LDA $1234

Cycle CPU Address Data
Bus Bus

0

1

2

3

Figure 1.3: LDA Cycle

1.5 Writing Loops

Now we’re ready to write a program. Typically, we’d start with
the classic example that prints “Hello, World” on the display,
but we don’t have a display yet! The equivalent program on the
Atari 2600 would require us to define the bitmaps for all of the
letters in “Hello, World” and we’d also need to learn how CRTs
work. So we’ll start with something simpler: a loop that counts
from 100 (decimal) down to zero.

ldy #100 ; Y = 100
Loop dey ; subtract 1 from Y

bne Loop ; repeat until Y == 0

Here we have three instructions and one label named Loop. In
our dialect of 6502 assembler (DASM), instructions are always
indented, and labels are always flush against the left margin.
Labels can be on their own line or coexist with an instruction.
Comments are denoted with a “;” and go until the end of the
line.

The first instruction LDY (LoaD Y) loads the Y register with a
constant value, 100. Constants start with a “#” and tell the

7



1.5. Writing Loops

assembler to use the value directly, not as a memory-load or
memory-store instruction.

The next instruction DEY (DEcrement Y) subtracts 1 from the Y
register. It also sets the Zero (Z) flag in the CPU, which is an
internal bit that is set to 1 if the result of an instruction is zero.
We use these flags to test for conditions in the code.

The final instruction BNE (Branch Not Equal) is a branch in-
struction, which means the next instruction may be one of two
choices. BNE transfers control to its target label if the Z flag is
unset, and will fall through to the next instruction if it is set. In
our case, since DEY just set the Z flag, the branch will be taken
until the Y register decreases to zero, and so the loop will repeat
100 times.

Let’s make a loop that uses the different addressing modes of the
6502. These allow you to target areas of memory beyond a single
constant location, by adding another register to an address.
For example, this demonstrates the absolute indexed addressing
mode with the STA instruction:

lda #0 ; A <- 0
ldy #$7F ; Y <- 127

Loop sta $100,y ; store A in [$100+y]
dey ; decrement Y, set flags
bne Loop ; repeat until Y == 0

This loop makes use of two registers, A and Y. A is initialized to
zero and Y counts down from $7F (127) to zero. The STA (STore
Accumulator) instruction stores A to an address at every loop
iteration. We use the addressing mode “absolute,indexed" here,
which means we compute the destination address by adding a
register (Y in this case) to a constant ($100 in this case). Since Y
counts from $7F down to zero, we’ll store A (which we set to 0)
to addresses $17F to $100 in decreasing order.

In 6502 parlance, the absolute indexed mode means add an 8-
bit value (Y register in this case) to a 16-bit constant. There
is another mode, zero page mode, which operates only on 8-bit
values. Zero page refers to the memory locations $00-$FF which
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1.5. Writing Loops

get special treatment. Instructions using zero-page addressing
modes generate smaller code, and most of the VCS registers live
in zero-page space.

There are restrictions to these modes, and all combinations do
not have a corresponding encoding. For example, only X and Y
can be used as indices, the A register cannot be used as an index.
Also, Y can only be used as a zero-page index with the LDX and
STX instructions – otherwise it is expanded to an absolute index.
Your assembler will throw an error if you try to use an invalid
addressing mode.

Our last loop has a problem, though. We used the BNE instruc-
tion to repeat the loop until Y is zero. But since the store
happens before we decrement Y, we don’t store anything when
Y is zero! To fix this, we just change the loop so that the DEY

happens before the STA, and add 1 to the starting Y value:

lda #0
ldy #$80 ; Y <- 128

Loop dey ; set flags
sta $100,y ; does not modify flags
bne Loop ; repeat while Y != 0

Since STA does not modify any flags, we can DEY first (which
does modify flags) and then exit the loop when Y==0 rather
than Y<0. There will be lots of opportunities to tweak loops
like this for optimal performance, and VCS programming often
demands it.
We could also count upwards from zero using the CPY (ComPare
Y) instruction:

lda #0
tay ; Y <- 0

Loop sta $100,y
iny
cpy #$80 ; set flags as if (Y - 128)
bne Loop ; branch until Y == 128

The CPY instruction performs a comparison: It subtracts the
operand from the Y register and sets flags, but discards the

9



1.6. Condition Flags and Branching

result. So in this example if Y is $80, (Y-$80) will be zero and
the Zero flag will be set.

We can also compare the A register with CMP (CoMPare accumu-
lator) and the X register with CPX (ComPare X register).

1.6 Condition Flags and Branching

We’ve covered the Z (Zero) flag already, but there are others.
Here’s the list of condition flags you’ll be using most often:

Flag Name Description
Z Zero Set when the result is zero.
N Negative/Sign Set when the result is negative

(high bit set).
C Carry Set when an arithmetic operation

wraps and carries the high bit.
V Overflow Set when an arithmetic operation

overflows; i.e. if the sign of the
result changes due to overflow.

Table 1.3: Condition Flags

A lot of instructions just set the Zero and Negative flags, which
makes it easy to test for zero values or to test the high bit. The
Carry flag is set by compare, add, subtract, and shift operations.

The Overflow bit is less commonly used than the Carry bit,
but it’s worth explaining the difference between wrapping and
overflow. When we say a value wraps, we mean that an operation
exceeds the boundaries of its byte and the result is truncated. So
if you add $01 to $FF, you’ll wrap around to $00.

Overflow is set when the result of a addition or subtraction
changes its sign – for example, $40 + $40 = $80 which overflows
because $80 is a negative number in two’s complement represen-
tation. If you are using unsigned numbers, you can generally
ignore this flag.
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1.6. Condition Flags and Branching

Mnem. Description Flag Test Condition
BNE Not Equal Zero clear A != B
BEQ Equal Zero set A == B
BCC Carry Clear Carry clear A < B (unsigned)
BCS Carry Set Carry set A ≥ B (unsigned)
BMI Minus Negative set A < B (signed)
BPL Plus Negative clear A ≥ B (signed)
BVC Overflow clear no signed overflow
BVS Overflow set signed overflow
JMP Jump — always taken

Table 1.4: Branch Instructions

The JMP instruction doesn’t test any flags but just moves the PC
directly to the target. The branch instructions can only modify
the PC by -128 to +127 bytes, so for longer distances you’ll need
JMP.

It’s good to memorize the BCC (less than) and BCS (greater than
or equal) instructions, since these are used often. Also note that
the BPL and BMI instructions are the same for signed quantities,
so we could use them to stop when a value goes negative, like
this:

lda #0 ; A <- 0
ldy #$7F ; Y <- 127

Loop sta $100,y ; store A in [$100+y]
dey ; decrement Y, set flags
bpl Loop ; repeat until signed(Y) < 0

Note that this technique would not work if we started with Y
= $81 or higher, because the first DEY would result in a negative
number, exiting the loop on the first iteration!
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1.7. Addition and Subtraction

1.7 Addition and Subtraction

We’ve covered DEY, but there is a whole group of instructions
that increment (add one) or decrement (subtract one):

DEC -1 from memory location
DEX -1 from X register
DEY -1 from Y register
INC +1 to memory location
INX +1 to X register
INY +1 to Y register

There’s no INC or DEC for the A register, but you can add or
subtract the A register to/from another memory location or
constant. ADC adds, and SBC subtracts. An example of addition:

lda $81 ; load memory location $81 -> A
clc ; clear carry flag
adc #10 ; add 10 to A
sta $82 ; store A -> memory location $82

Note the CLC (Clear Carry Flag) instruction. The ADC instruction
adds the Carry flag to the result (0 or 1) so usually it must be
cleared before addition. For subtraction, it must be set first
using SEC (Set Carry Flag):

lda $81 ; load memory location $81 -> A
sec ; set carry flag
sbc #10 ; subtract 10 from A
sta $82 ; store A -> memory location $82

The increment/decrement instructions modify the Negative and
Zero flags, while the addition/subtraction additionally modify
the Carry flag.

1.8 The Stack

In computing terminology, a stack is a list of values that can
grow and shrink. You grow the stack by pushing a value on top,
and shrink by pulling a value off the top.
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1.9. Logical Operations

On the 6502, the stack is stored in RAM, and the top of the stack
is a memory location stored in the S (Stack pointer) register. It
usually starts at $FF.

The PHA instruction pushes the A register to the stack, storing it
to the memory location pointed to by S. It then decrements S by
1. We say the stack "grows upward" because the stack pointer
decreases as new values are added.

You can retrieve the top value on the stack with the PLA instruc-
tion. It first increments S by 1, then reads the location pointed
to by S into A.

Another important instruction that uses the stack is JSR. It
pushes the Program Counter to the stack, then transfers control
to another location, just like a JMP. When the RTS instruction is
encountered, the CPU pulls the top address off of the stack and
transfers control there. We’ll demonstrate this in Chapter 11.

1.9 Logical Operations

The “logical" instructions combine the bits of the A register and
the operand, performing a bit (logic) operation on each bit.

AND A&B Set bit if A and B are set.
ORA A|B Set bit if A or B (or both) are set.
EOR AˆB Set bit if either A or B are set, but not both

(exclusive-or).
BIT A&B Same as AND, but just set flags and throw

away the result.

Table 1.5: Logical Instructions
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1.9. Logical Operations

For example, let’s combine $55 and $f0 with the AND operation:

lda #$55
and #$f0

For AND, if a bit was set in both the A register and the operand,
it’ll be set in A after the instruction executes:

$55 01010101
AND $f0 11110000
---------------------

$50 01010000

The AND operation is useful for limiting the range of a value. For
example, AND #$1F is the same as (A mod 32), and the result will
have a range of 0..31.

What if we did an ORA instead?

$55 01010101
ORA $f0 11110000
---------------------

$f5 11110101

ORA sets bits if they are set in either A or the operand, i.e. unless
they are clear in both.

What about an EOR?

$55 01010101
EOR $f0 11110000
---------------------

$a5 10100101

EOR (exclusive-or) is like an OR, except that bits that are set in
both A and the operand are cleared. Note that if we do the same
EOR twice, we get the original value back.
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1.10. Shift Operations

1.10 Shift Operations

ASL Shift Left Shift left 1 bit (multiply by 2), bit 7→ Carry
LSR Shift Right Shift right 1 bit (divide by 2), bit 0→ Carry
ROL Rotate Left Same as ASL except Carry→ bit 0
ROR Rotate Right Same as LSR except Carry→ bit 7

Table 1.6: Shift and rotate instructions

There is also the family of “shift" operations that move bits left
and right by one position within a byte. The bit that is shifted
off the edge of the byte (i.e. the high bit for shift left, and the
low bit for shift right) gets put into the Carry flag.

The “rotate” operations are similar, but they also shift the
previous Carry flag into the other end of the byte. So for rotate
left, the Carry flag is copied into the rightmost (low) bit. For
rotate right, it’s copied into the leftmost (high) bit.

Example of ASL (shift left):

lda #$83
asl ; shift left

Result (C means carry flag is set):

$83 10000011
ASL -> $06 00000110 C

Remember that just like decimal notation, we consider the
“leftmost” bit to be the most significant. So if we shift left one
bit, we are essentially multiplying by 2. If we shift right one bit,
we essentially divide by 2, discarding the remainder.

[Carry] [7] [6] [5] [4] [3] [2] [1] [0] 0 ASL (Shift Left)

0 [7] [6] [5] [4] [3] [2] [1] [0] [Carry] LSR (Shift Right)

[Carry]
ROL (Rotate Left)

[7] [6] [5] [4] [3] [2] [1] [0]

[Carry]
ROR (Rotate Right)

[7] [6] [5] [4] [3] [2] [1] [0]

Figure 1.4: Shift and rotate bit flow

15



1.10. Shift Operations

Another example, this time of ROR (rotate right):

lda #$03
sec ; set carry flag
ror ; rotate right
ror ; rotate right
ror ; rotate right

Note that we SEC to set the carry first. Here’s the result:

$03 00000011 C
ROR -> $81 10000001 C
ROR -> $81 11000000 C
ROR -> $81 11100000

Note that if you ROL or ROR nine times in succession, you’d have
the original byte.

Now that you have a working knowledge of the 6502, we’ll use
an online tool to program it in the next chapter.
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2

The 8bitworkshop IDE

Back in the 1980s, programmers didn’t have many tools to help
them write games. They certainly didn’t have the Internet,
and in many cases had to reverse-engineer the VCS themselves!
Developers might print out their programs, edit them by hand,
then make changes with a cumbersome line editor. Fortunately,
we have more efficient tools at our disposal.

In this chapter, we’ll discuss the tools we’ll use to develop
and test our game code. These tools comprise our interactive
development environment, or IDE.

Figure 2.1: 8bitworkshop.com IDE
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Editor

Assembler

Emulator

Figure 2.2: IDE Flow

To start the IDE, visit http://8bitworkshop.com/ in a web browser
that supports Javascript (for best results, use a recent version of
Google Chrome, Mozilla Firefox, or Apple Safari).

The IDE includes an emulator which simulates the game console
hardware. The emulator we use is called Javatari by Paulo
Augusto Peccin[2]. It runs in a web browser, and attempts to
simulate the 6502 and all of the VCS hardware cycle-by-cycle as
if it were connected to a TV monitor.

The other tool is an assembler. The one we use is called DASM[3]
and also runs in the web browser, along with a web-based text
editor. Each time you make a change to the code, the IDE
immediately assembles it and then sends the final ROM image
to the VCS emulator, allowing you to see code changes instantly.

The last tool is a simple debugger that allows you step through
6502 instructions, view memory, and start and stop the pro-
gram.
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Figure 2.3: IDE Pulldown

The IDE is packaged with several example 6502 assembly files,
each roughly corresponding to a chapter in this book. At the top
left of the screen, you can access a pulldown menu that allows
you to select a file to load. You can edit these files as much as you
want – all changes are persisted and they’ll be there if you close
the browser tab and come back. To reset and fully clear your
changes, select «Reset to Default» at the bottom of the list.

The buttons at the top of the screen perform several debugging
functions:

Figure 2.4: Debugging Functions

• Pause - Stop the emulator.
• Run - Resume the emulator after pausing.
• Run To Line - Set a "breakpoint" on the current line

(the one the cursor is on). The emulator will stop when
execution reaches that instruction.

• Step - Execute the next intruction, then stop.
• Reset and Run To Line - Hard reset the emulator, then

perform the same function as Run To Line.
• See Timing - This performs a flow analysis on your code,

computing timing values for each instruction. We’ll cover
this again in Chapter 39: Timing Analysis.
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2.1. Debug Window

2.1 Debug Window

Whenever the IDE hits a breakpoint, a debug window appears
in the lower-right of the screen. This shows the internal state of
the CPU:

• PC - Program Counter
• A - A register
• X - X register
• Y - Y register
• SP - Stack Pointer (or S register)

Some other important values include:

• V - Current vertical position (scanline)
• H - Current horizontal position

PC F041 - - - - - V-39 H-62
A 07
X 00
Y C0 SP FF

$80: 46 A8 34 8D E6 F2 01 FF 40 00 00 00 01 10 FF FF
$90: FF FF FF FF FF FF FF FF FF EF FF FF FF FF FF FF
$A0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
$B0: FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00
$C0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
$D0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
$E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
$F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 0F 7F F2

Figure 2.5: Debug Window
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2.2. Keyboard Shortcuts

2.2 Keyboard Shortcuts

You can click on the Settings icon in the lower-right of the
emulator window to display keyboard shortcuts. You usually
have to click on the emulator before using them. There are a
few that are particularly useful during development (Note: On
Macs, Ctrl might be Option/Alt):

Ctrl-G: Displays the number of scanlines drawn in the current
frame. This can vary between frames, and as we’ll see in
upcoming chapters, it’s important to make this a stable value
(around 262).

Ctrl-D: Toggles between debug modes, which displays different
colors for various game objects.

Ctrl-C: Enable/disable collisions.

Figure 2.6: Emulator Keyboard Shortcuts

NOTE: The IDE is under active development and may differ
from what we describe here.
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3

VCS Memory Map

One vital aspect of the VCS that we must cover is where
things are located in address space. “Where” means at which
addresses. Due to its 16-bit address bus, there are 65,536 (216)
possible addresses that the 6502 can access. Most of those
addresses are unused on the VCS.

There are three components connected to the VCS bus:

• TIA (Television Interface Adapter) - The main video and
sound chip.

• PIA (Peripheral Interface Adapter) - RAM, timers, and
controller input.

• ROM (Read Only Memory) - The 6502 program code
included on the game cartridge.

Each component is responsible for handling read and write
commands for a range of addresses. We organize these ad-
dresses into a memory map so that we can easily remember which
addresses correspond to which component. Figure 3.1 provides
an overview of this address space breakdown; a more detailed
list is in Appendix A: VCS Memory Map.

3.1 Equates

No one likes keeping a bunch of weird numbers in their head,
so the assembler helps you track all of these memory locations.
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3.1. Equates

TIA Registers

PIA RAM

PIA Ports and Timer

Cartridge ROM

$00-$7F

$80-$FF

$280-$297

$F000-
$FFFF*

* also at $1000, $3000, $5000, etc.

Figure 3.1: Memory Map

You can define equates, which assign names to memory locations
and other constants for programming convenience. Most of the
TIA/PIA memory locations are already defined in the include
file vcs.h. For example, it defines the COLUBK background color
register, which maps to address $09:

COLUBK ds 1 ; $09 xxxx xxx0 Color-Luminance

To use it, you just include the vcs.h file, which should be done
in pretty much every VCS program you write. For example:

include "vcs.h"

org $f000
lda #$ff ; pale yellow
sta COLUBK ; change background color

We can also define our own equates. For example, if we wanted
to define a variable LivesLeft at memory location $81 (in RAM),
we’d just say:

LivesLeft equ $81

We could also define the number of starting lives as a constant:

StartLives equ 5 ; start with five lives

23



3.2. Segments

Using an equate is easy: just type its name. You may be tempted
to do something like this:

lda StartLives ; load the number 5 (WRONG!!!!)
sta LivesLeft ; store in memory

But this would load the value at address $5, not the number 5!
So we add a “#” to let the assembler know that StartLives should
be treated as a constant:

lda #StartLives ; load the number 5 with "#"
sta LivesLeft ; store in memory

3.2 Segments

The assembler can separate definitions and instructions into
segments, which is useful for declaring variables. Since the VCS’s
RAM starts at address $80, we declare an “uninitialized seg-
ment” with the SEG.U directive, and then declare some variables:

seg.u Variables
org $80

DataByte .byte ; declare 8-bit value
DataWord .word ; declare 16-bit value
DataArray ds 20 ; reserve 20 bytes for array

The assembler will reserve one byte at $80 for the DataByte

variable, one word (two bytes) at $81 for the DataWord variable,
and 20 bytes for the DataArray variable starting at $82.

This is often more convenient and foolproof than separate EQU

instructions, since the assembler ensures that variables do not
overlap in memory. Sometimes, though, you want multiple
labels to reference the same memory location – you can use EQU

for that:

Temp1 .byte ; declare byte
Temp2 equ Temp1 ; same as Temp1 address
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3.2. Segments

Our “uninitialized” segment just reserves space, it doesn’t let
you generate code. When we’re ready to write code, we’ll
declare an initialized segment called Code (the name isn’t im-
portant). Then use the ORG directive to set the code’s origin. This
tells the assembler that our code will start at a certain address.
Our generated machine code is not relocatable, which means that
it must be loaded at a certain address to work properly. For the
VCS, that address starts at $f000:

seg Code
org $f000 ; start code at $f000

Note that because the VCS only has 13 address pins, and only
recognizes 8,192 ($2000) unique addresses, you could actually
declare the origin as $1000, $3000, $5000, etc. This is trivia at
this point, but we’ll revisit it later when we learn how to use
multiple memory banks.
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4

Writing Your First Assembly Code

We now know enough to write our first VCS ROM in 6502
assembler. It won’t do very much at first – we’ll just draw some
lines on the screen, but it’ll introduce some key concepts we’ll
use throughout the rest of the book.

Our first line declares to the assembler that we are writing
code for a 6502. This line is actually optional in the Web IDE
because we add it automatically, but we’ll include it here for
completeness:

processor 6502

Next, we’ll include some header files. There are a few stan-
dard files commonly used in VCS programming: vcs.h pro-
vides names for all of the hardware addresses you’ll need and
macro.h defines a few macros – templates of commonly-used
functions that can be included as needed.

include "vcs.h"
include "macro.h"

After listing our header files, we define our code segment:

seg Code
org $f000 ; start code at $f000
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A typical thing to do on the VCS is to initialize several flags and
registers when the cartridge starts or is reset. We also make sure
the stack pointer starts at $FF which will give the stack as much
room as possible if we use subroutines:

Start sei ; disable interrupts
cld ; disable BCD math mode
ldx #$ff ; init stack pointer to $FF
txs ; transfer X register to S register

(Oddly, most Atari 2600 cartridges from back in the day have
a SEI instruction at the beginning to disable interrupts even
though the interrupt pin is not even exposed on the 6509 chip
in the console. Maybe it’s a fear of spurious voltages on the pin,
or maybe just a superstition...who knows. Anyway, it’s just one
byte.)

Next, we want to make sure the memory and the hardware
is reset to a known state, since in the “real world” (i.e. non-
emulator), it will be more or less in a random state. The easy
way to do this is to set the entire zero page region ($00-$FF) to
zero, which includes the entire TIA register space and the entire
RAM space:

lda #0 ; set A register to zero
ldx #$ff ; set X to #$ff

ZeroZP sta $0,X ; store A register at address ($0 + X)
dex ; decrement X by one
bne ZeroZP ; branch until X is zero

(Note: We could have left out the LDX #$ff since previous
instructions have already set X to that value.)

The TIA chip doesn’t mind having all of its registers set to zero,
and will respond by generating an utterly black screen. VCS
programming is mainly about setting various TIA registers at
the appropriate time. For instance, we’ll tell it to make the
background color red:

lda #$30 ; load value into A ($30 is deep red)
sta COLUBK ; store A into the background color

register
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Normally, we’d do a lot more here, but since this is our first
program, we’ll make it short. We’ll tell the CPU to return to the
start (literally the label Start) and do everything all over again.

jmp Start

Finally, we’ll use the ORG directive again so we can do two things:
Fill out the ROM size to exactly 4K (4096 or $1000) bytes in size,
and tell the 6502 where our program will start. When the 6502
is reset, it reads a 16-bit address from location $FFFC/$FFFD and
sets the instruction pointer there. The .WORD directive will emit
that two-byte address verbatim:

org $fffc
.word Start ; reset vector at $fffc
.word Start ; interrupt vector at $fffe (unused

in VCS)

The second Start vector is used for interrupts, which the VCS
doesn’t use, but we include it anyway so that our ROM is exactly
the right size.

What do we see when we load this program? We should see
alternating thick black and white horizontal lines. This is
because we spent some time setting all of the TIA registers to
zero, which made the output black, then we set the background
color to red, then repeated the process forever. We never
instructed the TIA to tell the TV where the frame begins! We’ll
correct this in the next chapter.

TIP: Use the VCS emulator at 8bitworkshop.com and the
Hello 6502 and TIA example to review and modify the code
discussed in this chapter.
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5

Painting on the CRT

Our previous program generated some colors on the display, but
not in a controlled way. We’ll fix that now and explain some core
concepts behind graphic generation on the VCS.

The VCS was designed to work in lockstep with a ubiquitous
1970s-era fixture, the CRT television. These TVs were designed
to standards (NTSC in North America and PAL in Europe) that
dictated certain timing constraints. These, in turn, will dictate
our program’s structure.

A cathode ray tube (CRT) has an electron beam that paints
horizontal lines of pixels, or “scanlines” from left-to-right. The
NTSC standard recommends 262.5 scanlines per frame, 60
frames per second. (We’ll round that down to 262, because
that extra half of a scanline relates to interlacing and isn’t worth
our time right now.) The TIA chip is responsible for generating
scanlines, as described in the Stella Programmer’s Guide[4]:

When the electron beam scans across the TV screen
and reaches the right edge, it must be turned off
and moved back to the left edge of the screen to
begin the next scan line. The TIA takes care of this
automatically, independent of the microprocessor.
A 3.58 MHz oscillator generates clock pulses called
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“color clocks” which go into a pulse counter in
the TIA. This counter allows 160 color clocks for
the beam to reach the right edge, then generates a
horizontal sync signal (HSYNC) to return the beam
to the left edge. It also generates the signal to
turn the beam off (horizontal blanking, or HBLANK)
during its return time of 68 color clocks. Total
round trip for the electron beam is 160 + 68 = 228
color clocks. Again, all the horizontal timing is
taken care of by the TIA without assistance from the
microprocessor. (Wright, 1979, Section 3.1)

A “color clock” is equivalent to a pixel. There are 160 visible
color clocks, so the TIA outputs 160 visible pixels per scanline.

HORIZONTAL VISIBLE SCANLINE
BLANK

68 color clocks 160 color clocks (pixels)

228 color clocks

Figure 5.1: Anatomy of a Scanline

In a more modern computer, all of the pixels for a frame would
be stored in memory. The VCS doesn’t have nearly enough
memory to store pixels for the entire frame, or even pixels for a
single scanline – in 1977, enough RAM to store 160x192 full-
color pixels would cost several thousand dollars. So it was
designed so that the CPU could reprogram the TIA chip on a
line-by-line basis.

The basic idea is that the CPU should change registers in the TIA
during the horizontal blank period (the first 68 color clocks),
perform some internal logic during the next 160 color clocks
while the scanline is being drawn, and then wait for the next
scanline to begin. Some people call this “racing the beam”
because programs must always be aware of where the electron
beam is at every step of the program. This is described in the
Guide[4]:
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5.1. Timing is Everything

The microprocessor’s clock is the 3.58 MHz oscil-
lator divided by 3, so one machine cycle is 3 color
clocks. Therefore, one complete scan line of 228
color clocks allows only 76 machine cycles (228/3
= 76) per scan line. The microprocessor must be
synchronized with the TIA on a line-by-line basis,
but program loops and branches take unpredictable
lengths of time. To solve this software sync. prob-
lem, the programmer can use the WSYNC (Wait
for SYNC) strobe register. Simply writing to the
WSYNC causes the microprocessor to halt until the
electron beam reaches the right edge of the screen,
then the microprocessor resumes operation at the
beginning of the 68 color clocks for horizontal blank-
ing. (Wright, 1979, Section 3.2)

You can think of WSYNC as a “skip to the next scanline” register.
So a typical video routine looks like this (see Figure 5.2):

1. Strobe (write to) WSYNC to halt the CPU until the next
scanline starts.

2. During the initial HBLANK period, write whatever TIA reg-
isters are needed to draw this scanline.

3. While the scanline is drawing, do any additional opera-
tions needed to prepare for the next scanline.

Since one CPU cycle = three TIA clocks, we only have 22 CPU
cycles during the HBLANK period to safely set registers, and then
53 CPU cycles to prepare for the next scanline.

68 HBLANK clocks 160 pixels of scanline data

Write TIA registers
Set up for next scanline

STA WSYNC

CPU cycle +22 +76

Figure 5.2: Setting up the TIA for a scanline

5.1 Timing is Everything

So we know we can program the TIA on each scanline to draw
stuff and handle the horizontal timing. What about the vertical
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5.1. Timing is Everything

timing? Well, we have to do that ourselves. An “official” NTSC
frame looks something like this:

• Three lines of VSYNC signal (dictated by the NTSC standard)
• 37 lines of vertical blank, or VBLANK

• 192 lines of visible scanlines
• 30 lines of overscan

VERTICAL SYNC

VERTICAL BLANK

VISIBLE
HORIZ.
BLANK FRAME

160 color clocks

OVERSCAN

3 lines

37 lines

262

s
c
a
n
l
i 192 lines
n
e
s

30 lines

228 color clocks
76 CPU cycles

Figure 5.3: An official NTSC-compliant video frame

The 37 lines of VBLANK and 30 lines of overscan are periods when
the electron beam is to be turned off; this was used to prevent
the electron beam from being visible as it traced from the lower-
right to the upper-left of the screen for the next frame. The TIA
has a special bit that creates this “blacker than black” signal,
but most emulators don’t care if you set it or not.

The VBLANK and overscan also creates a safe margin on the top
and bottom of the frame, since TVs were manufactured with
differing numbers of visible lines. Most TVs will display some
lines above and below the 192 visible lines recommended, and
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5.2. Making Rainbows

can even handle if the total number of lines is a few more or
less than the recommended 262. It’s important to be consistent,
however, or the picture can “jump.”

The three lines of VSYNC are essential, though, because they tell
the TV that a frame has ended and a new frame is beginning.

Hex Bits Used
Addr Name 76543210 Description
00 VSYNC ......x. Vertical Sync
01 VBLANK xx....x. Vertical Blank
02 WSYNC strobe Wait for Horizontal Blank

Table 5.1: Frame and Scanline Sync Registers

5.2 Making Rainbows

Enough talk, let’s make some rainbows! We start with the same
preamble as last time:

include "vcs.h"
include "macro.h"
org $f000

We’re also going to define a variable in memory at the address
$81. This will hold a background color that we’ll use later:

BGColor equ $81

We’re also going to use one of our predefined macros to save
some typing. Macros are code “templates” that are expanded
on-demand. You can define your own, but some are predefined
in the above macro.h file.

This macro is called CLEAN_START. It initializes the CPU and zeros
out memory just like in the previous chapter, but it uses fewer
instructions and it’s easier to type. Since it’s at the beginning of
our program, we’ll give it the Start label:

Start
CLEAN_START ; macro to safely clear memory and TIA
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5.2. Making Rainbows

Macros are expanded inside of your code and take up additional
ROM space. They may also modify registers or flags – so be
aware of this when using them.

Now we’re ready to start outputting a frame! Because we’ll visit
this routine repeatedly, we’ll also give it a label. The first thing
we do is enable the VBLANK and VSYNC bits in the TIA:

NextFrame
lda #2 ; same as binary #%00000010
sta VBLANK ; turn on VBLANK
sta VSYNC ; turn on VSYNC

Now that we’re emitting a VSYNC signal, we need to hold it for
three scanlines. We strobe this register (i.e., write to it) to make
it halt the CPU until the next scanline begins. If we do this three
times, the TIA will have generated our three lines of VSYNC signal
and can then turn off the VSYNC bit:

sta WSYNC ; first scanline
sta WSYNC ; second scanline
sta WSYNC ; third scanline
lda #0
sta VSYNC ; turn off VSYNC

WSYNC doesn’t care which value is stored – it triggers the CPU to
wait as soon as it receives any write command. A register that
triggers an action like this is commonly called a strobe register.

We’ll now let the TIA output the recommended 37 lines of
VBLANK. The TIA’s VBLANK bit is still set, so we’ll just loop 37 times,
hitting WSYNC each time. We use the X register to count down the
number of scanlines:

ldx #37 ; count 37 scanlines
LVBlank

sta WSYNC ; wait for next scanline
dex ; decrement X
bne LVBlank ; loop while X != 0
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5.2. Making Rainbows

At this point, we’re now ready to start drawing to the screen.
Let’s first disable VBLANK which releases the TIA to generate some
color:

lda #0
sta VBLANK ; turn off VBLANK

Next, we’ll draw our 192 visible scanlines. We’ll use X again
to count. We’ll also load Y with the BGColor variable before
the loop, incrementing it each loop iteration. This will paint
a different color for each scanline, creating a venetian blind
rainbow effect:

ldx #192 ; count 192 scanlines
ldy BGColor ; load the background color out of RAM

LVScan
sty COLUBK ; set the background color
sta WSYNC ; wait for next scanline
iny ; increment the background color
dex ; decrement X
bne LVScan ; loop while X != 0

After this, we’ll output 30 more lines of VBLANK (overscan) to
complete our frame:

lda #2
sta VBLANK ; turn on VBLANK again
ldx #30 ; count 30 scanlines

LVOver
sta WSYNC ; wait for next scanline
dex ; decrement X
bne LVOver ; loop while X != 0

For the next frame, we’ll decrement the BGColor variable so that
the colors animate down the screen.

dec BGColor
jmp NextFrame
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5.2. Making Rainbows

We finish with the standard epilogue, as described in the
previous chapter:

org $fffc
.word Start
.word Start

That’s all we need to draw a NTSC-compatible frame. You can
check our work by clicking the emulator window and hitting
Ctrl-G – the display should read 262 lines.
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6

Playfield Graphics

So far, we’ve managed to draw some colorful horizontal lines
and learned how to output a proper NTSC-compatible frame for
a television. Now we’re going to draw some more complicated
graphics.

The playfield is the lowest-resolution object that the TIA can
draw. It was meant to be used to draw simple rectangular
barriers, scoreboard digits, and other coarse objects. It’s made
up of 40 pixels which go all the way across the screen. Only 20
pixels are unique – the rightmost 20 are either exact duplicates
or a mirrored reflection of the first 20, depending on a bit in the
CTRLPF register.

We’ve learned about the COLUBK register, which describes the
background color of the screen. There is also a COLUPF register
for the foreground color of the playfield. The playfield bitmap
is set in the PF0, PF1, and PF2 registers, which are arranged on
the screen differently depending on the playfield mode in CTRLPF

(see Figure 6.1).

Note that the four lower bits of PF0 are not used, and that the
direction of the bits in PF1 are reversed with respect with PF0

and PF2.

Like everything else the TIA draws, the playfield has to be
programmed line-by-line. If nothing changes, the TIA will just
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PF0 PF1 PF2 PF0 PF1 PF2

4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

PF0 PF1 PF2 PF2 PF1 PF0

4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 7 6 5 4

NORMAL PLAYFIELD MODE

Register

Bit #

Pixel 0 4 12 20 24 32 39

REFLECTED PLAYFIELD MODE

Register

Bit #

Pixel 0 4 12 20 28 36 39

Figure 6.1: Layout of Playfield Register Pixels

repeat what was on the previous line. You can change the colors
and the playfield bits at the beginning of each line if you like (or
during, but let’s not discuss that now!).

ldx #192 ; counts # of lines left
lda #0 ; changes every scanline
ldy counter ; changes every frame

lvscan
sta WSYNC ; wait for next scanline
sta PF0 ; set the PF1 playfield pattern

register
sta PF1 ; set the PF1 playfield pattern

register
sta PF2 ; set the PF2 playfield pattern

register
sta COLUBK ; set the background color
sty COLUPF ; set the foreground color from Y
clc
adc #1 ; increment A
dex
bne lvscan

Here, we’re just incrementing a counter and loading the value
into each of the playfield registers. The result will look kind of
like an arch (see Figure 6.2).

Note that we set all of the TIA registers immediately after the
WSYNC strobe. We only have a limited number of cycles before
the beam moves out of the HBLANK region and onto the visible
part of the screen. This loop is relatively simple, but for some
displays, it will be very challenging to set all of the registers
we need to before the scanline begins drawing. Sometimes you
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Figure 6.2: Example Symmetric Playfield

might hear such video display code called a kernel, denoting a
small but well-optimized routine that is timing-sensitive.

To draw useful backdrops with the playfield, you’ll typically
have to set different register values for each scanline. Storing
a unique bitmap for every scanline would require 192 ∗ 3 =
576 bytes, so cartridges usually have some kind of simple
compression scheme to reduce the playfield data to a managable
size. We’ll talk more about this in future chapters.

Hex Bits Used
Addr Name 76543210 Description
08 COLUPF xxxxxxx. Color-Luminance

Playfield/Ball
09 COLUBK xxxxxxx. Color-Luminance Background
0D PF0 xxxx.... Playfield 0 (pixels 0-3)
0E PF1 xxxxxxxx Playfield 1 (pixels 4-11)
0F PF2 xxxxxxxx Playfield 2 (pixels 12-19)

Table 6.1: Playfield Registers
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Coordinates
It’s common on graphic displays to call the horizontal
position the X coordinate, and the vertical position the Y
coordinate. The X coordinate almost always goes left-to-
right. The Y coordinate usually goes from top-to-bottom,
but there will be times when it’ll be more efficient to make
Y go from bottom-to-top. Sometimes we’ll even use both
coordinate systems!

DISPLAY

0

Y Y

0

0 X

Figure 6.3: XY Coordinate Systems

We’ll try to clarify which Y coordinate system we’re using in
the various examples. Also, we’ll try to avoid confusion as
to whether we’re talking about X and Y coordinates or the
6502’s unfortunately-named X and Y registers.
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7

Players and Sprites

Now that we know how to draw the playfield, which usually
serves as the background, let’s draw some more detailed objects
in the foreground.

The VCS predates Pac-Man and Space Invaders, and so it was
designed with two particular 70s-era arcade games in mind:
Pong and Tank. These were both games with very simple
monochrome graphics and few moving objects. In Pong, a
square ball is bounced between two rectangular paddles. In
Tank, two rotating tanks fire at each other in a blocky playfield.
The terminology for VCS’s moveable objects – players, missiles,
and ball – seem directly inspired by those games.

Figure 7.1: Pong and Tank

This chapter covers the moveable objects called players. The
TIA supports two player objects, each eight pixels wide and one
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pixel high. They can be positioned anywhere horizontally on
the scanline and the TIA remembers their position.

Hex Bits Used
Addr Name 76543210 Description
06 COLUP0 xxxxxxx. Color-Luminance Player/Mis-

sile 0
07 COLUP1 xxxxxxx. Color-Luminance Player/Mis-

sile 1
10 RESP0 strobe Reset Player 0
11 RESP1 strobe Reset Player 1
1B GRP0 xxxxxxxx Graphics Bitmap Player 0
1C GRP1 xxxxxxxx Graphics Bitmap Player 1

Table 7.1: Player Registers

Note that we never said “sprites,” since the term had not
yet been invented! But you can draw sprites with the player
objects by changing registers on successive scanlines, stacking
up horizontal 8-pixel slices. Going forward, we’re going to use
player objects when discussing the TIA hardware, and sprites
when discussing CPU routines that program the player registers
on multiple scanlines.

The basic recipe for putting a player object on the screen:

1. Wait for the start of a scanline (do a WSYNC).
2. Set the player’s bitmap register for the current scanline.
3. Set the player’s color register (optional).

Like just about everything else in the TIA, the values you set
persist across scanlines unless you change them. So if you don’t
need the player’s color to vary line-by-line, you can set it before
the frame starts. You must also set the player’s bitmap to zero
after the sprite has finished drawing, or you’ll get a big smear of
pixels going down the screen.
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7.1. Horizontal Positioning

Here’s a simple example of a sprite routine that pulls 16 bytes
of data from an array named SpriteData in decreasing order:

ldy #15 ; draw 16 lines of sprite
Loop sta WSYNC ; wait until next scanline

lda SpriteData,y ; look up sprite data
sta GRP0 ; set player 0 bitmap register
dey ; decrement Y
bpl Loop ; repeat until Y < 0

In this routine, the sprite begins drawing on the next scanline
from wherever the TIA is currently drawing. It then goes
through 16 scanlines before exiting the loop. At the start of each
scanline, it sets the GRP0 register, which changes the bitmap for
the player 0 object.

Note that all of our instructions take place in the HBLANK period
at the beginning of each scanline. This guarantees that the
player registers will be set by the time the TIA gets to the visible
part of the scanline, no matter where the player is positioned
horizontally.

Figure 7.2: Players 0 and 1 over background

7.1 Horizontal Positioning

So far we’ve said nothing about setting the player’s horizontal
position! It turns out that this is a little tricky. It would have
been nice if the TIA had an easy-to-use “Set Horizontal Position”
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7.1. Horizontal Positioning

register, but the TIA designers went with a clever internal
design that offloads this problem to us – the programmers.

To set the horizontal position of a player object, we have to wait
for the TIA (and thus the TV’s electron beam) to reach a certain
horizontal position, then send a command to the TIA telling it
to fix the player object to that position.

The TIA draws three pixels (color clocks) for every one CPU
cycle, so we can build a loop and count the number of cycles
for each instruction to figure out how many pixels have passed
before we strobe the RESP0 register. The HBLANK period lasts 68
TIA clocks – so the CPU has to wait at least 22 CPU cycles for
the TIA to start drawing the left edge of the screen, then wait
until the TIA moves to the desired horizontal position.

Here’s a quick recipe:

Assume X is the desired horizontal position of the sprite in
pixels from the visible left side of the screen:

1. Wait for the start of a scanline (do a WSYNC).
2. Wait (X + 68)/3 CPU cycles.
3. Strobe (write to) the RESP0 register to fix player 0’s position.

Some simple code might look something like this:

ldx #5
sta WSYNC ; wait for scanline start

.loop
dex
bne .loop ; loop 5 times, 5 CPU cycles each
sta RESP0 ; fix player 0 horizontal position
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7.1. Horizontal Positioning

Let’s count both CPU cycles and the TIA clock as we execute
each instruction:

Instruction Cycles CPU TIA X Coord.
sta WSYNC 0 0 -
dex 2 2 6 -
bne .loop 3 5 15 -
dex 2 7 21 -
bne .loop 3 10 30 -
dex 2 12 36 -
bne .loop 3 15 45 -
dex 2 17 51 -
bne .loop 3 20 60 -
dex 2 22 66 -
bne .loop 2 24 72 4
sta RESP0 3 27 81 13

Table 7.2: Example Timing of Horizontal Positioning Loop

Between the STA WSYNC and the end of the STA RESP0, we’ve used
up 27 CPU cycles, or 81 TIA color clocks. So on the next
scanline, the horizontal coordinate of the player will be (81 −
68) = 13 pixels from the left.

HBLANK X player position

sta WSYNC
dex

bne .loop
dex

bne .loop
dex

bne .loop
dex

bne .loop
dex

bne .loop
sta RESP0

Figure 7.3: Instruction Timing of Setting Player Position

You might notice that the DEX/BNE loop takes 5 CPU cycles
per iteration, which means 15 pixels will pass between each
iteration. This means we can only position objects in 15-pixel
increments using this method. This would lead to very jerky
motion! The TIA designers accounted for this, and we’ll learn
how to do better in the next chapter.
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8

Color Sprites

Now that we know that player objects can be used to create
sprites on the VCS, and how to position them, let’s draw some
sprites!

Remember that we have to program the TIA on a line-by-line
basis. It’s the same for sprites. There are many ways to go about
it depending on how detailed you want the sprite to be and how
much CPU time you have in a given scanline.

Typically, games include a lookup table containing the bytes that
define the on bits for each horizontal slice of the sprite. These go
directly into the GRP0 register for each successive scanline.

Often, there will also be a color table containing the colors for
each scanline. Sometimes this isn’t used – especially in older
games where it was common to have monochrome objects where
the colors were set at the beginning of the game or before each
frame.

When these tables map one table entry to one scanline, they are
called “single-height” sprites. When a single table entry is used
for two successive scanlines, they are deemed “double-height”
sprites. Sometimes the bitmap table is single-height and the
color table is double-height. You’re writing the code, so it’s your
call!
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The height of a sprite is only limited by ROM memory; it can
take up an entire vertical screen column. It can be hard-coded
or pulled from a lookup table.

Let’s look at one example routine. We’re going to hard-code the
height of the sprite as a constant:

SpriteHeight equ 17

Our sprite is really 16 scanlines high, but we’re going to add one
line for padding. The padding is a zero entry, and serves to clear
the TIA register when we’ve finished drawing the sprite.

We also define a variable YPos, which holds the Y coordinate of
the sprite:

YPos .byte ; Y coordinate

We have memory locations $80-$FF to play with (minus a few
at the end if we use the stack), so we can choose anything
within that range. In our program, this will hold the number of
scanlines from the bottom of the visible screen (192nd scanline)
to the bottom of the sprite – so we’re using a bottom-to-top
coordinate system in this routine.

Earlier in the program, we initialize this variable:

lda #5
sta YPos ; YPos = 5

This places the sprite’s feet five scanlines from the bottom.

Our routine begins right after the 37-line VBLANK period:

ldx #192 ; X contains # scanlines remaining

First, we load X with the number of scanlines remaining, which
we’ll use to count downwards to zero. We could also start with
zero and count upwards, but we save an instruction since we
don’t have to CMP to a number in the loop – we just repeat until
DEX sets the zero flag.
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In the first part of our loop, we subtract YPos from X to get a
local coordinate relative to the sprite’s position:

LVScan
txa ; transfer X to A
sec ; make sure carry is set
sbc YPos ; subtract sprite Y coordinate

The SBC instruction subtracts its operand from the A register and
puts the result back in A. Note that we set the Carry flag with
SEC first – if it was addition, we would have cleared it with CLC.

Lookup
Index

16 __@@@___
15 @@@@@@@_
14 _@@@@@__
13 _@_@_@__
12 _@@@@@__
11 _@@@@@__
10 _@___@__
9 __@@@___
8 __@@@___
7 _@@@@@__
6 @_@@@_@_
5 @_@@@_@_
4 __@@@___
3 __@_@___
2 __@_@___
1 _@@_@@__
0 ________ YPos

Figure 8.1: Bottom-to-top Sprite Layout

Now we have to see if this local coordinate is within the sprite
bounds, meaning if it is less than zero or greater than the height
of the sprite. It turns out we can do both by using the BCC

instruction, which is an unsigned “less-than” comparison.
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If the local coordinate is within the sprite’s vertical bounds, we
keep it as the index into the lookup table. Otherwise we set it to
zero, which loads the blank padding entry:

cmp #SpriteHeight ; are we inside sprite bounds?
bcc InSprite ; if result < SpriteHeight,

yes
lda #0 ; no, set index to blank entry

Now that we have our sprite index in the A register, we have
to load the sprite bitmap data from the lookup table. The A
register can’t index, so we transfer it into Y to perform the
lookup:

InSprite
tay
lda Frame0,y ; load bitmap data

Next, we store it to the TIA register GRP0, which defines the
pixels for player 0. We do a STA WSYNC first so that this happens
in the initial HBLANK period of the scanline:

sta WSYNC ; wait for next scanline
sta GRP0 ; set player 0 pixels

We can also look up a color entry for each line and set the
player’s COLUP0 register, which gives us a multicolored sprite:

lda ColorFrame,y ; load color data
sta COLUP0 ; set player 0 color

After this, we just decrement X and repeat the loop until we
have completed the 192 scanlines:

dex ; decrement X
bne LVScan ; repeat next scanline until finished
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The bitmap and color tables are included in the program ROM,
usually with .BYTE or HEX directives. See Figure 8.2 for an
example of a 9-line (including 0 padding) sprite with bitmap
and color tables. These are defined in bottom-to-top order
because that’s the way the subtraction works out in the routine.

; Cat-head graphics data
Frame0

.byte #0 ; zero padding, also clears register

.byte #%00111100;$AE

.byte #%01000010;$AE

.byte #%11100111;$AE

.byte #%11111111;$AC

.byte #%10011001;$8E

.byte #%01111110;$8E

.byte #%11000011;$98

.byte #%10000001;$98

; Cat-head color data
ColorFrame0

.byte #0 ; unused (for now)

.byte #$AE;

.byte #$AC;

.byte #$A8;

.byte #$AC;

.byte #$8E;

.byte #$8E;

.byte #$98;

.byte #$94;

Figure 8.2: Sprite Bitmap and Color Table Example

You can create your own sprites with a nifty web-based tool,
kirkjerk’s PlayerPal[5].
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9

Sprite Fine Positioning

We’ve figured out how to position player objects (sprites) hori-
zontally to 15-pixel increments, but we’d like to do better than
that. The TIA has fine-positioning registers that we can use to
tweak the position of a moveable object several pixels to the left
or to the right. We can set the “coarse” position using the timing
technique in Chapter 7, and then set the “fine” adjustment
immediately afterwards.

We can use the following basic recipe (example is for player 0):

1. Wait for a scanline to start (WSYNC).
2. Wait (x+ 68)/15 CPU cycles and save the division remain-

der.
3. Using the remainder, compute the fine offset.
4. Write to the RESP0 register to fix the coarse position.
5. Write to the HMP0 register to set a fine adjustment from -7

to +8 pixels.
6. Wait for the next scanline (WSYNC).
7. Strobe the HMOVE register to apply the changes.

There are many variations on this routine, but we’ll show you a
common one here.
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First, we wait for the scanline to start, and strobe HMCLR which
resets any previous fine offsets that were pending:

lda #70 ; load the desired horizontal position
sec ; set carry flag for SBC
sta WSYNC ; wait for beginning of scanline
sta HMCLR ; reset the old horizontal position

We’ve also loaded the desired X-coordinate (horizontal position)
into the A register in preparation for our next step. (The
two STA instructions are strobes and don’t care which value is
stored.)

Next, we divide A (the X coordinate) by 15. Why 15? Because 15
is the number of TIA color cycles in our loop, as we’ll see below.

The 6502 doesn’t have a divide instruction, so we just subtract
15 until the result goes below zero. We’ll use the SBC (SuBtract
with Carry) instruction for this.

Note that we’ve set the Carry flag above in preparation for this
step. The SBC instruction expects the Carry flag to be initially
set, as opposed to the ADC (addition) instruction, which expects
it to be clear. Also, when SBC wraps around below zero, it clears
the Carry flag. So our loop will branch as long as the Carry flag
is set.

DivideLoop
sbc #15 ; subtract 15
bcs DivideLoop ; branch while Carry still set

For each loop iteration, the SBC takes two CPU cycles, and the
BCS (Branch if Carry Set) takes three CPU cycles (two on the final
iteration). The TIA runs three times faster than the CPU, so it
moves (2 + 3) ∗ 3 = 15 color clocks (pixels) per loop iteration.
We also subtract this number from the A register during each
iteration.
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As soon as A goes below zero, the loop ends and we’re left with
a remainder in the A register. We use this value to calculate a
fine offset that will correct the player position:

; A now contains (the remainder - 15).
; We’ll convert that into a fine adjustment, which has
; the range -7 to +8.

eor #7 ; this calculates (23-A) % 16
asl
asl
asl ; HMOVE only uses the top 4 bits,
asl ; so shift left by 4
sta HMP0 ; set fine position

That tricky calculation with EOR and ASL converts the remainder
into a value appropriate for the horizontal motion register:

70 60 50 40 30 20 10 00 F0 E0 D0 C0 B0 A0 90 80

LEFT RIGHT

-7 -6 -5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5 +6 +7 +8 PIXELS

Value in HMxx Register (Hexadecimal)

Figure 9.1: Horizontal Motion Register Values

Now let’s fix the coarse position of the player, which as you
remember is solely based on timing. If you rearrange any of
the previous instructions, position 0 won’t be exactly on the left
side. We’ve timed everything so that the store will place exactly
on cycle 23 when zero is passed:

sta RESP0 ; reset coarse position

At this point, we’ve set the coarse position of the player, and
we’ve set the fine offset in the HMP0 register. But the fine offset
isn’t applied until you do another WSYNC and then strobe the HMOVE

register:

sta WSYNC ; wait for next scanline
sta HMOVE ; apply fine offsets
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HBLANK X initial player position

HBLANK X final player position

sta WSYNC
sta HMCLR
sbc #15

bcs DivideLoop
sbc #15

bcs DivideLoop
eor #7
asl
asl
asl
asl

sta HMP0
sta HRESP0

sta WSYNC
sta HMOVE

Figure 9.2: Fine Horizontal Positioning with HMOVE

The HMOVE strobe must be right after the WSYNC or funny things
happen.

There’s no requirement that HMP0 be changed before RESP0, but
we do it this way because the timing works out right. You can
certainly rewrite this routine to suit different purposes – and we
will, later on.

The HMOVE strobe applies fine offsets to all objects, so we could
set the position of several moveable objects and then only do the
STA WSYNC and STA HMOVE at the end of this process. It’s common
to do horizontal positioning in the off-screen VBLANK period
since it usually takes the CPU’s full attention for at least one
scanline per object.

There are other ways to perform horizontal positioning besides
the divide-by-15 trick – one early technique used by Warren
Robinett’s Raiders of the Lost Ark (and copied by several 3rd
party carts) is to use a lookup table that stores the loop delay
and the HMOVE register value in the same byte. But this uses a lot
more ROM space.
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Hex Bits Used
Addr Name 76543210 Description
20 HMP0 xxxx.... Horizontal Motion Player 0
21 HMP1 xxxx.... Horizontal Motion Player 1
22 HMM0 xxxx.... Horizontal Motion Missile 0
23 HMM1 xxxx.... Horizontal Motion Missile 1
24 HMBL xxxx.... Horizontal Motion Ball
2A HMOVE strobe Apply Horizontal Motion (fine offsets)
2B HMCLR strobe Clear Horizontal Motion Registers

Table 9.1: Horizontal Motion Registers
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10

Player/Missile Graphics

Besides the two 8x1 sprites (players), the TIA has two missiles
and one ball, which are just variable-length dots or dashes. They
are similar to the player objects, except instead of an arbitrary
8-pixel bitmap, they are single dots that can be stretched to 1,
2, 4, or 8 pixels wide.

These objects share the colors of other objects. Missile 0 shares
player 0’s color, and missile 1 shares player 1’s color. The ball
shares the same colors as the playfield.

You set the horiziontal position exactly the same way you set
the player objects using the RESM0/RESM1 and RESBL registers. But
instead of setting a bitmap register, you just turn them on and
off with the ENAM0/ENAM1 registers.

Missiles have one additional special ability – you can lock their
horizontal position to that of their corresponding player by
setting the 2nd bit of RESMP0/RESMP1. For example, you could set
and then clear this bit whenever the fire button is pressed, so
that a missile originates from the player’s position.
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Table 10.1 lists the registers for Missiles and Ball objects.

Hex Bits Used
Addr Name 76543210 Description
06 COLUP0 xxxxxxx. Color-Luminance Player/Mis-

sile 0
07 COLUP1 xxxxxxx. Color-Luminance Player/Mis-

sile 1
08 COLUPF xxxxxxx. Color-Luminance

Playfield/Ball
12 RESM0 strobe Reset Missile 0
13 RESM1 strobe Reset Missile 1
14 RESBL strobe Reset Ball
1D ENAM0 ......x. Enable Missile 0
1E ENAM1 ......x. Enable Missile 1
1F ENABL ......x. Enable Ball
22 HMM0 xxxx.... Horizontal Motion Missile 0
23 HMM1 xxxx.... Horizontal Motion Missile 1
24 HMBL xxxx.... Horizontal Motion Ball
28 RESMP0 ......x. Reset Missile 0 to Player 0
29 RESMP1 ......x. Reset Missile 1 to Player 1

Table 10.1: Registers for Missiles and Ball
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11

The SetHorizPos Subroutine

We learned how to set the horizontal positions of movable
objects in Chapter 9, but we’d like to make it easier. So we’re
going to introduce a subroutine called SetHorizPos that you can
use again and again in your program.

As we discussed in Chapter 10, besides the two 8x1 sprites
(players), the TIA has two missiles and one ball, which are just
variable-length dots or dashes. They have similar positioning
and display requirements, so we’re going to make a subroutine
that can set the horizontal position of any of them. But we can
also use the HMxx/HMOVE registers directly to move the objects by
small offsets without using this routine every time.

; SetHorizPos - Sets the horizontal position of an object.
; The A register contains the desired X-coordinate of the

object.
; The X register contains the index of the desired object:
;
; X=0: player 0
; X=1: player 1
; X=2: missile 0
; X=3: missile 1
; X=4: ball
;
SetHorizPos subroutine

sta WSYNC ; start a new line
sec ; set carry flag
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.DivideLoop
sbc #15 ; subtract 15
bcs .DivideLoop ; branch until negative
eor #7 ; calculate fine offset
asl
asl
asl
asl
sta HMP0,x ; set fine offset
sta RESP0,x ; fix coarse position
rts ; return to caller

Note that the label .DivideLoop begins with a “.” – this is
called a local label. Local labels are only accessible within the
subroutine. This ensures that label names don’t collide across
subroutines.

To use the subroutine:

1. Load the X register with the index from 0-4 of the object
you wish to set (see comment section above).

2. Load the A register with the desired horizontal position.
3. Call the subroutine with JSR SetHorizPos.
4. Repeat steps 1-3 for other objects that need positioning.
5. To apply the fine offsets, do a STA WSYNC followed by

STA HMOVE.

For example, to set the X-coordinate of player object 0 to 70,
we’d do the following:

lda #70
ldx #0
jsr SetHorizPos2
sta WSYNC
sta HMOVE

Also don’t forget that HMOVE updates the position of all moveable
objects, so you might need to strobe HMCLR or zero out any
unwanted HMxx registers individually.

There are plenty of variations of this subroutine; for instance
you could automatically do a WSYNC and HMOVE before the sub-
routine returns. But this would require two scanlines – for
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multiple objects, you could instead call SetHorizPos multiple
times and then strobe WSYNC/HMOVE after you are done with all
of them. There are also situations where cycles are so scarce you
can’t justify the JSR/RTS and have to inline or macro-include this
code inside of another routine. This is part of the “fun” of VCS
programming!

You will often call this routine in the underscan or overscan
regions outside of the visible frame. One problem with this
is that we should be counting our scanlines at all times, and
these kind of complicated routines make it difficult to guarantee
we’ll get an exact number of scanlines. In the next chapter we’ll
discover another handy feature that makes this much easier.

You can also call SetHorizPos at the beginning of your program,
and for the rest of your program just use the HMxx/HMOVE registers
to move the sprites horizontally by small amounts. This is
doable, but for most games it’s just easier to call SetHorizPos on
every frame for any moving objects.
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12

The PIA Timer

One of the most challenging things about VCS programming
is constantly tracking which scanline the TIA is drawing. The
obvious solution is to simply count your STA WSYNCs for every
routine and loop, making sure they add up to 262. This is
acceptable for simple code, but what if you have some complex
logic you want to execute? Scattering WSYNCs all over the place is
awkward, and the resulting code can be difficult to analyze.

Never fear! The PIA (the 6532 chip that holds the RAM, as
well as the controller inputs) has a timer circuit that comes to
the rescue. Let’s say we want to execute some logic during the
VBLANK period before the visible frame starts. After the 3-line
VSYNC we could set a timer that lasts almost for 37 scanlines.
Then we do our time-intensive logic, and when finished we wait
for the timer to fire. The TIA will happily output scanlines in
the meantime, WSYNC or no.

There are four different timers on the PIA, each with different
intervals. After a timer is set, it counts down to zero at the
specified interval. For example, the 64-clock timer decrements
once every 64 CPU cycles. This is the timer we’ll use most often.

The basic recipe is:

1. Write a value between $01-$FF to one of the timer registers.
2. Do some computation.
3. Loop until INTIM reaches zero.
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Hex Bits Used
Addr Name 76543210 Description
0284 INTIM xxxxxxxx Timer Counter
0294 TIM1T xxxxxxxx Set 1 Cycle Timer
0295 TIM8T xxxxxxxx Set 8 Cycle Timer
0296 TIM64T xxxxxxxx Set 64 Cycle Timer
0297 T1024T xxxxxxxx Set 1024 Cycle Timer

Table 12.1: Timer Registers

To set up the timer, we store a value in TIM64T (for the 64-cycle
timer). This is usually done right after a WSYNC so we know
exactly how many scanlines we’ll iterate through:

lda #nnn ; load timer value
sta WSYNC ; go to start of next scanline
sta TIM64T ; store 64-cycle timer value

Then we go about our business, whether it’s setting registers
or just letting the TIA coast along drawing scanlines. When
we’re ready to wait for the timer to complete, we check the INTIM

register. When it’s zero, we exit the loop:

WaitForTimerDone
lda INTIM ; load timer value
bne WaitForTimerDone ; wait until == 0

We can’t guarantee the timer ends exactly at the end of a
scanline, only some time before it ends. You can add a STA WSYNC

if you want to continue at the beginning of the next scanline.

Usually we want to wait for a given number of scanlines, which
take 76 CPU cycles each. Each timer tick takes 64 CPU cycles, so
how do we figure out which timer value to load to wait a given
number of scanlines? We can leverage the awesome power of
math to figure it out.

First, we need to figure out how many CPU cycles are used to
set up the timer, and the worst-case number of cycles for the
loop. The STA to the timer register takes three cycles, and the

62



loop takes six cycles for each iteration. Add four cycles to make
room for another STA WSYNC, and we have a total of 13 cycles.

So if N is the number of scanlines to skip, the target timer value
is b(N ∗ 76 + 13)/64c.

We can also expose this functionality as macros and use them
in multiple programs without doing the complicated math
ourselves every time. In our distribution, these are included in
xmacro.h.

To use these macros, just do something like this:

include "xmacro.h"

VERTICAL_SYNC
lda #2
sta VBLANK ; turn on VBLANK
TIMER_SETUP 37 ; wait for 37 lines

; ... do some logic here

TIMER_WAIT
lda #0
sta WSYNC ; wait for end of scanline
sta VBLANK ; turn off VBLANK

Using all of our macros described so far, we can create a minimal
VCS program skeleton that outputs a proper 262-line NTSC
frame (see Figure 12.1).
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processor 6502
include "vcs.h"
include "macro.h"
include "xmacro.h"

org $f000
Start

CLEAN_START
NextFrame

VERTICAL_SYNC
TIMER_SETUP 37
TIMER_WAIT
TIMER_SETUP 192
TIMER_WAIT
TIMER_SETUP 30
TIMER_WAIT
jmp NextFrame

org $fffc
.word Start
.word Start

Figure 12.1: Blank NTSC Frame Example
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13

Joysticks and Switches

It’s no fun to play a game without control! Fortunately, it’s
pretty easy to read the VCS’s joysticks, paddles and various
switches. In this chapter, we’ll discuss how to handle data from
input ports.

Hex Bits Used
Addr Name 76543210 Description
3C INPT4 x....... Read Latched Input Port 4
3D INPT5 x....... Read Latched Input Port 5

0280 SWCHA xxxxxxxx Joysticks/Controllers
0282 SWCHB xxxxxxxx Console Switches

Table 13.1: Input Ports Registers

13.1 Console Switches

The VCS has a variety of switches on its front panel:

• A/B difficulty switch for each player
• Color/Black-and-white
• Game Select
• Game Reset

All of these are “soft" switches, meaning that the software
program is responsible for their behavior, including the Game
Reset switch.
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13.1. Console Switches

Their values are read from address SWCHB ($282) and are defined
as follows:

Bit # Bitmask Switch Description
7 80 P1 Difficulty 0 = amateur (B), 1 = pro (A)
6 40 P0 Difficulty 0 = amateur (B), 1 = pro (A)
3 08 Color - B/W 0 = B/W, 1 = color
1 02 Game Select 0 = switch pressed
0 01 Game Reset 0 = switch pressed

Table 13.2: SWCHB Switches

The bit for a switch is zero when it’s closed (depressed). A
common way to read them is using the BIT instruction. For
example, this reads the Game Select switch:

lda #$02 ; mask for bit 1
bit SWCHB ; test bits
beq SwitchPressed ; 0 = pressed

The BIT instruction performs the same operation as AND (logical-
and of all bits) and sets the same flags, but does not store
a result. You could have just as easily done this, using the
bitmask:

lda #$02 ; mask for bit 1
and SWCHB ; AND bits, result -> A
beq SwitchPressed ; 0 = pressed

The BIT instruction has an extra trick, though. It sets the V

(Overflow) and S (Sign) flags to match bits 6 and 7 respectively
in the tested value. So if you wanted to test bit 6, the P0 difficulty
switch, you might do this:

bit SWCHB ; test bits
bvc AmateurMode ; overflow clear = 0 = amateur (B)
bvs ProMode ; overflow set = 1 = pro (A)

This saves you one instruction and keeps you from having to
modify the A register.

Many games only check the reset switch and, in fact, there’s
a shortcut you can use to do this. Just put the following in
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13.2. Joysticks

your main loop (assuming you’re within 128 bytes of the Start
routine, otherwise it’s too far for a branch and you’ll need a JMP):

lsr SWCHB ; shift bit 0 -> Carry
bcc Start ; Carry clear?

This reads the SWCHB byte and shifts it right, which moves bit 0
(the Game Reset bit) into the Carry bit. It’ll also perform a write,
but it’ll be ignored. We then branch back to the Start label if the
Carry bit is clear (which means the switch is depressed).

13.2 Joysticks

Joystick switches work the same way as the console switches.
The directions are read from SWCHA and are mapped to bits as
follows (0 = moved, 1 = not moved).

Bit # Bitmask Direction Player
7 80 right 0
6 40 left 0
5 20 down 0
4 10 up 0
3 08 right 1
2 04 left 1
1 02 down 1
0 01 up 1

Table 13.3: SWCHA Switches

Here’s an example of moving a value down and up by moving
the player 0 joystick left and right. We can use the BIT

instruction here, since left and right are bits 6 and 7:

ldx XPos0
bit SWCHA
bvs .SkipMoveLeft ; check bit 6 set
dex

.SkipMoveLeft
bit SWCHA
bmi .SkipMoveRight ; check bit 7 set
inx

.SkipMoveRight
stx XPos0
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13.2. Joysticks

Buttons are mapped to bit 7 of INPT4 (player 0) and INPT5 (player
1), so you can check both of them with the BIT instruction:

bit INPT4
bmi .SkipButton0
jsr Player0Button

.SkipButton0
bit INPT5
bmi .SkipButton1
jsr Player1Button

.SkipButton1

There are other controllers on the VCS, like paddles and a 12-
button keypad, but the joystick is by far the most popular, and
it’s pretty easy to support. We’ll cover other controllers later.
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14

Indirect Addressing

Up until now, we’ve used lookup tables like this:

lda SpriteData,y

This loads a value from the SpriteData address directly. But what
if we wanted to choose between multiple sprites, or animate the
sprite? We’d need a way to switch betweem different lookup
tables.

14.1 Pointers

First, let’s review addresses. We learned in Chapter 1 that they
are 16-bit quantities, and take up two bytes of storage. We know
we can use them as part of an instruction – for example, the
lda SpriteData,y above. But we can also load them into RAM.
These are called them pointers, and the 6502 uses them via
indirect addressing modes.

We can declare pointers like this:

SpritePtr .word ; declare 16-bit pointer (2 bytes)
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14.2. Indirect Indexed Addressing

We can then load them with the address of our lookup table like
this:

lda #<SpriteData
sta SpritePtr ; store lo byte
lda #>SpriteData
sta SpritePtr+1 ; store hi byte

The #< and #> syntax tells the assembler to extract the low and
high byte of the SpriteData address, respectively. (Remember
when we talked about little endian – this means the low byte, or
least significant, is first followed by the high byte.)

14.2 Indirect Indexed Addressing

We can use the pointer like this:

ldy #5
lda (SpritePtr),y ; load value at SpritePtr+Y
sta Value

The expression (SpritePtr),y is an indirect indexed addressing
mode. It means to look up the 16-bit value at SpritePtr and
SpritePtr+1 (low byte and high byte), convert it to an address,
then add the Y register to it.

If you know C, the following code is more-or-less equivalent:

static char* SpriteData = { ... };
char* SpritePtr = &SpriteData;
char Value = SpritePtr[5];

The indirect addressing modes only work in zero-page memory
($00-$FF) which happens to include all of the VCS’s built-in
RAM, so we’re fine there.
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14.3. Indexed Indirect Addressing

14.3 Indexed Indirect Addressing

The other indirect mode is called indexed indirect where the
addition takes place before the lookup:

ldx #4
lda (SpritePtr,x)

Let’s say that SpritePtr is at address $80. If X is 4, then we look
up the pointer at address $84, and then load the value contained
at the pointer’s address. This allows us to declare arrays of
pointers in RAM. Since each pointer is two bytes, we’d have to
ensure that the X register is always even, or multiply the index
by 2 before using it:

lda #2 ; 3rd entry
asl ; * 2
tax ; -> X
lda (ObjectType,x)

This mode is not as often-used as the (pointer),y mode in VCS
programming, because there is just not that much RAM for
multiple 16-bit pointers! Instead, many games use 8-bit offsets
like this:

ldy TableOffsets,x ; lookup in RAM
lda SpriteTable,y ; lookup in ROM

Instead of looking up an entire 16-bit pointer, we just look up
an 8-bit offset and use that to index into a ROM lookup table.
We are limited to 256 bytes, but that’s enough for many VCS
programs.

In the next chapter, we’ll use the (pointer),y mode to draw
sprites.
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15

A Complex Scene, Part I

Now that we’ve learned about the playfield, player objects,
and how to draw sprites, we can create a complex scene with
a background and foreground. For this demo, the playfield
will take up the entire screen, and we’ll have a single sprite
overlapping it.

This is a bit more difficult, because there are a lot of registers
that need to potentially change during each scanline. To change
the playfield, we need to set three different registers, and to
draw the sprite, we’ll need to set a bitmap register and a color

Figure 15.1: Two sprites over playfield
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register. We’ll also need to look up all of this data in tables.
This will make our kernel much more complex than previous
examples.

We’ll achieve this using a two-line kernel, which means that each
iteration of the main loop draws two scanlines instead of one.
This gives us a little more wiggle room to move around loads
and stores so that they happen at the right time. The tradeoff
is that the playfield and sprites must align to even scanline
numbers, but that’s not a huge problem for many games.

To avoid confusing a single TIA scanline with a pair of scanlines,
we’ll call pairs of scanlines 2xlines.

There are two parts to our loop. One sets up the playfield
registers, and the other loads the sprite data. We don’t want
to store all 192 ∗ 3 bytes of the playfield in memory, so we’ll
use a compressed storage format. We’ll store the playfield in
segments. Each segment is defined by a 2xline height and the
three playfield registers. We’ll only set the playfield registers
when a new segment begins. In summary:

1. For the next playfield segment, fetch its height (in 2xlines)
and playfield values.

2. WSYNC and store values to the playfield registers.
3. For each 2xline in this playfield segment, look up and set

sprite bitmap and color data.
4. Go back to step 1 until we see a height 0 playfield segment.

The data defining the playfield looks something like this:

align $100; make sure data doesn’t cross page boundary
PlayfieldData

.byte 4,#%00000000,#%11111110,#%00110000

.byte 8,#%11000000,#%00000001,#%01001000

.byte 15,#%00100000,#%01111110,#%10000100

.byte 20,#%00010000,#%10000000,#%00010000

.byte 20,#%00010000,#%01100011,#%10011000

.byte 15,#%00100000,#%00001100,#%01000100

.byte 8,#%11000000,#%00110000,#%00110010

.byte 4,#%00000000,#%11000000,#%00001100

.byte 0
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Each playfield segment takes four bytes, starting with the height
and then the PF0/PF1/PF2 register values. The ALIGN directive
ensures that it starts on a page boundary (i.e. the low byte is
$00) because the 6502 adds an extra CPU cycle when an indexed
lookup crosses a page boundary, and this could mess with our
timing.

We’ll use the (pointer),y addressing mode here, as discussed
in Chapter 14. This allows us to switch between different
playfields – useful if we want the player to walk between rooms,
for example. We’ll also use this mode to look up sprite data so
that we can switch between sprite graphics.

We’ll first load the PFPtr pointer with the address of our play-
field table:

lda #<PlayfieldData
sta PFPtr ; store lo byte
lda #>PlayfieldData
sta PFPtr+1 ; store hi byte

Our loop starts by loading the first segment:

NewPFSegment
ldy PFIndex ; load index into PF array
lda (PFPtr),y ; load length of next segment
beq NoMoreSegs ; == 0, we’re done
sta PFCount ; save for later
iny
lda (PFPtr),y ; load PF0
tax ; PF0 -> X
iny
lda (PFPtr),y ; load PF1
sta Temp ; PF1 -> Temp
iny
lda (PFPtr),y ; load PF2
iny
sty PFIndex
tay ; PF2 -> Y

To review, we’ve loaded the height of the playfield segment and
stored it in PFCount. We’ve also loaded all three playfield bitmap
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bytes and stored them in registers and a temporary memory
location. The next step is to do a WSYNC and quickly set all of
the playfield registers before the scanline starts drawing:

sta WSYNC
stx PF0 ; X -> PF0
lda Temp
sta PF1 ; Temp -> PF1
lda Bit2p0 ; player bitmap
sta GRP0 ; Bit2p0 -> GRP0
sty PF2 ; Y -> PF2

Note that we’ve also loaded the memory location Bit2p0 and
stored that in GRP0, the player 0 bitmap register. That’s because
we just did a WSYNC, and the sprite data can potentially change
on every individual scanline. We’ll compute that value later in
the part of the loop that loads the sprite data.

Now we move on to the sprite loop, loading X with the number
of 2xlines in the current playfield segment. We then see if our
current scanline intersects the sprite:

ldx PFCount ; load playfield length into X
KernelLoop

lda #SpriteHeight ; height in 2xlines
inc YP0
sbc YP0
bcs DoDraw ; inside bounds?
lda #0 ; no, load the padding offset

(0)
DoDraw

The important thing is that we’ve computed the distance in
2xlines from the bottom of our sprite, and we’ve put that value
in A. Now we’ll use that to look up the color for this 2xline, and
move it into a temporary location:

pha ; save original offset
tay ; -> Y
lda (ColorPtr),y ; color for both lines
sta Colp0 ; -> colp0
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We need to save the sprite Y offset that we just computed, so
we use PHA to push the A register onto the stack. We’ll retrieve
it later with PLA. (We could have just as well stored it into a
temporary location.)

The color table defines colors for each 2xline, not for each
scanline. But our bitmap table has two entries for each 2xline,
so that each scanline has a unique bitmap value and thus higher
resolution. So we look up both of them in the table:

pla ; retrieve original offset
asl ; offset * 2
tay ; -> Y
lda (SpritePtr),y ; bitmap for first line
sta Bit2p0 ; -> bit2p0
iny
lda (SpritePtr),y ; bitmap for second line

Here we’ve PLAed the original offset and multiplied it by 2 with
ASL. This is because our bitmap table contains a unique value for
each scanline, and we have to read both of them.

Now, we WSYNC and quickly set all the values for our first
upcoming scanline:

sta WSYNC
sta GRP0 ; 1st line of sprite -> GRP0
lda Colp0
sta COLUP0 ; Colp0 -> COLUP0

If we’ve run out of 2xlines for this playfield segment, we
immediately go back and fetch the next segment:

dex
beq NewPFSegment ; fetch another playfield

segment

Otherwise, we do another WSYNC and set the bitmap value for the
second line in the 2xline, then go back for the next pair:

sta WSYNC
lda Bit2p0
sta GRP0 ; 2nd line of sprite -> GRP0
jmp KernelLoop ; repeat sprite-drawing loop
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As you can see from the timing diagram in Figure 15.2, all of
our register stores take place in the HBLANK period, and we use
the visible scanline period to lookup values for future scanlines.
This guarantees no visual artifacts no matter where the sprite is
positioned horizontally.

HBLANK Visible Pixels

Lookup playfield values
Set PF0, PF1, PF2, GRP0
Lookup sprite values loops
Set GRP0, COLUP0
Set GRP0

+0 CPU cycle +76

Figure 15.2: Timing of Double-Height Kernel With Playfield

Our kernel loop isn’t 100% optimized, and there are certainly
a couple of cycles to save here and there. But you can see
the tradeoff in VCS programming – visual complexity vs. code
complexity. Our kernel only draws the playfield and a single
multicolor sprite. If we wanted to add a second sprite, missiles,
or a ball, we’d have to do even more code gymnastics. The code
to lookup the playfield registers takes almost an entire scanline,
and we don’t have time to do much else when this happens.

We could also make further tradeoffs, like have two monochrome
sprites instead of a single color sprite, or lower-resolution
sprites, or a simpler playfield. It all comes down to how much
you can get done in 76 cycles per scanline. This example
shows you that you can get a lot done if you spread your
logic across multiple scanlines and choose tradeoffs that have
minimal visual impact.

TIP: To review and modify this code in the VCS emulator,
visit 8bitworkshop.com and select the Playfield + Sprite I
example.
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16

A Complex Scene, Part II

In the last chapter, we drew a scene with a complex playfield
and a single sprite. A game isn’t very fun without at least one
opponent, so we’re going to write another kernel that supports
two sprites.

Our previous kernel spent a lot of time loading the three
playfield registers (PF0/PF1/PF2) and that limited what we could
do on each scanline. This time, we’re going to take a different
approach. We’re going to split our kernel up into four phases
which draw two scanlines each:

1. Fetch value for PF0, update players
2. Fetch value for PF1, update players
3. Fetch value for PF2, update players
4. Store PF0/PF1/PF2, update players

Player register updates occur every other scanline, which re-
duces our effective sprite resolution. The playfield is updated
every eight scanlines. This is similar to games like Atari’s
Adventure and Superman.

Our kernel will use a subroutine called DrawSprites to load the
sprite data and write to player registers during each phase. The
JSR/RTS instructions take an additional 12 cycles of overhead, so
we can only really do this in a two-line kernel.
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HBLANK Visible Pixels

Fetch sprite values

Set players Fetch PF0 Fetch sprite values

Set players Fetch PF1 Fetch sprite values loop

Set players Fetch PF2 Fetch sprite values

Set players Store PF regs

+0 CPU cycle +76

Figure 16.1: Timing of 4-Phase Double-Height Kernel

The kernel code would look like this:

KernelLoop
; Phase 0: Fetch PF0 byte

jsr DrawSprites
ldy PFOfs ; no more playfield?
beq NoMoreLines ; exit loop
dey
lda (PFPtr),y ; load value for PF0
sty PFOfs
sta tmpPF0

; Phase 1: Fetch PF1 byte
jsr DrawSprites
ldy PFOfs
dey
lda (PFPtr),y ; load value for PF1
sty PFOfs
sta tmpPF1

; Phase 2: Fetch PF2 byte
jsr DrawSprites
ldy PFOfs
dey
lda (PFPtr),y ; load value for PF2
sty PFOfs
sta tmpPF2

; Phase 3: Write PF0/PF1/PF2 registers
jsr DrawSprites
lda tmpPF0
sta PF0 ; store PF0
lda tmpPF1
sta PF1 ; store PF1
lda tmpPF2
sta PF2 ; store PF2

; Go to next scanline
jmp KernelLoop
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Our DrawSprites routine from the last chapter looks similar,
except this time, we draw two sprites instead of one. Because
timing is tight, we rely on one clever design feature of the TIA
chip. If we set the VDELP0 flag (see Table 16.1), we can write to the
GRP0 register for player 0, but the change won’t take effect until
we write to GRP1. (We’ll explain this more in the next chapter.)
This saves us from having to store and load a temporary value.

DrawSprites
; Fetch sprite 0 values

lda #SpriteHeight ; height in 2xlines
sec
isb yp0 ; INC yp0, then SBC yp0
bcs DoDraw0 ; inside bounds?
lda #0 ; no, load the padding offset

(0)
DoDraw0

tay ; -> Y
lda (ColorPtr0),y ; color for both lines
sta colp0 ; -> colp0
lda (SpritePtr0),y ; bitmap for first line
sta GRP0 ; -> [GRP0] (delayed due to

VDELP0)
; Fetch sprite 1 values

lda #SpriteHeight ; height in 2xlines
sec
isb yp1 ; INC yp0, then SBC yp0
bcs DoDraw1 ; inside bounds?
lda #0 ; no, load the padding offset

(0)
DoDraw1

tay ; -> Y
lda (ColorPtr1),y ; color for both lines
tax
lda (SpritePtr1),y ; bitmap for first line
tay

; WSYNC and store sprite values
lda colp0
sta WSYNC
sty GRP1 ; GRP0 is also updated due to

VDELP0
stx COLUP1
sta COLUP0 ; store player colors

; Return to caller
rts
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Hex Bits Used
Addr Name 76543210 Description
25 VDELP0 .......x Vertical Delay Player 0
26 VDELP1 .......x Vertical Delay Player 1
27 VDELBL .......x Vertical Delay Ball

Table 16.1: Vertical Delay Registers

We’ve also used an illegal instruction, ISB, which consists of a
INC followed by a SBC. An illegal instruction just means that it’s
undocumented. We use it here to save a couple of cycles, because
ISB is combination of two operations in a single instruction.

The critical timing happens after the WSYNC, where we write the
registers for player objects. Thanks to the VDELP0 flag, we only
have to perform three writes here. But in Phase 3, we write
to the PF0/PF1/PF2 registers right after this subroutine returns.
We’ve got just barely enough time left in the HBLANK period to
write the first playfield register before the TIA starts drawing
it. So we can’t do much more after the WSYNC without affecting
things downstream.

Before the WSYNC, we’ve actually got a lot of cycles left over
(about 40 or so, depending on how many table lookups cross
page boundaries) to do other things, like drawing missiles. But
since our timing before the WSYNC isn’t precise, we might update
a register after the TIA has already drawn the object. This might
be acceptable, depending on the game, because the missile will
likely appear on the next line.
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17

NUSIZ and Other Delights

There are a couple of other fun graphical features of the VCS
provided by the Number Size (NUSIZ), Control Playfield (CTRLPF),
and Reflect Players (REFP) registers that we should discuss here.
Well, they’re not so much fun as convenient, and it’s worth taking
the time to understand them. Table 17.1 lists each of these
registers’ hex addresses, names, used bits, and descriptions.

Hex Bits Used
Addr Name 76543210 Description
04 NUSIZ0 ..xxxxxx Number-Size Player/Missile 0
05 NUSIZ1 ..xxxxxx Number-Size Player/Missile 1
0A CTRLPF ..xx.xxx Control Playfield, Ball
0B REFP0 ....x... Reflect Player 0
0C REFP1 ....x... Reflect Player 1

Table 17.1: NUSIZ, Control, Reflect Registers

17.1 Player Reflection

Let’s say you have a little person that runs left and right. You’d
like the sprite to face left when running left, and right when
running right. Instead of having separate sprites for left/right,
you can use the REFP0 and REFP1 reflection bits.
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17.2. NUSIZ and Multiple Player Copies

To display a mirror image of a sprite, set bit 3 (#$08) of the
reflection register for the desired player object (REFP0, REFP1).
Clear bit 3 to restore the original image.

17.2 NUSIZ and Multiple Player Copies

The NUSIZ (NUmber-SIZe) register configures the size of player
objects and also the number of copies. You can set it up to
draw one or two additional copies of a player object on the
same scanline, or to draw a 2x-wide or 4x-wide player. Games
like Combat and Space Invaders take advantage of it to show
formations of objects without much complexity.
Val Half-scanline (80 pixels)
0 XXXXXXXX One copy
1 XXXXXXXX XXXXXXXX Two copies, close
2 XXXXXXXX XXXXXXXX Two copies, medium
3 XXXXXXXX XXXXXXXX XXXXXXXX Three copies, close
4 XXXXXXXX XXXXXXXX Two copies, wide
5 XXXXXXXXXXXXXXXX Double-size player
6 XXXXXXXX XXXXXXXX XXXXXXXX Three copies, medium
7 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX Quad-size player

Figure 17.1: NUSIZ Number-Size Register Spacing

Multiple copies of missile objects are also drawn if selected in
NUSIZ.

17.3 VDELP: Vertical Delay

We’ve seen that sprite kernels can be very tight timing-wise. The
TIA designers realized this and added a feature called vertical
delay which especially helps with two-line kernels. We covered
it briefly in Chapter 16, but we’ll go into more detail here.

Internally, the TIA keeps two GRP registers for each player. For
player 0, we’ll call them GRP0(a) and GRP0(b). Every time there’s
a write to GRP1, GRP0(a) gets transferred into GRP0(b). The VDELP0

register selects whether the TIA uses GRP0(a) or GRP0(b) for
outputting pixels. Similarly, there’s a pair of GRP1(a) and GRP1(b)

registers that are shifted whenever GRP0 is written.

In two-line kernels, the sprite registers are updated every two
lines. This effectively halves your vertical sprite resolution,
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17.4. CTRLPF and Object Priority

as well as your vertical positioning resolution. But the VDELP

registers can give you full vertical positioning, if you alternate
GRP0 and GRP1 writes on alternate scanlines. In this case, setting
VDELP effectively delays the player’s output by one scanline, so
you can consider it a fine vertical adjustment of +1 scanline.

The VDELP registers also help when it’s inconvenient or impossi-
ble to set a GRP register in the HBLANK period. For example, let’s
say we’ve set the VDELP0 bit. You can then set GRP0 in the visible
portion of the scanline, and then when you set GRP1 in the HBLANK

period, it’ll trigger the output for GRP0 simultaneously.

The ball object also has a vertical delay bit (VDELBL) which
works the same way for the ball enable (ENABL) bit. The missile
registers, however, don’t have any vertical delay feature.

17.4 CTRLPF and Object Priority

When objects overlap, the TIA assigns each object a priority and
displays the object with the highest priority. The CTRLPF allows
you to change these priorities so that you can have sprites that
appear to overlap the playfield background, or vice-versa.

The normal priority assignments are as follows:

Priority Objects
1 Player 0, missile 0
2 Player 1, missile 1
3 Ball, playfield

Table 17.2: Normal CTRLPF Priority Assignments
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17.5. Two-Player Score Mode

If bit 2 (#$04) of the CTRLPF register is set, the modified priority
assignments are used so that the playfield and ball are in the
foreground:

Priority Objects
1 Ball, playfield
2 Player 0, missile 0
3 Player 1, missile 1

Table 17.3: CTRLPF Priority Assignments when Bit 2 is Set

17.5 Two-Player Score Mode

When bit 1 (#$2) of the CTRLPF register is set, the playfield is
put into score mode. This makes the playfield take two distinct
colors: it assumes player 0’s color in COLUP0 for the left side, and
player 1’s color in COLUP1 for the right side. We’ll use this feature
in the next chapter to draw a scoreboard at the top of the screen.
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18

Scoreboard

Displaying letters and numbers on the VCS requires the same
do-it-yourself attitude as everything else. Early Atari games
didn’t have much except a simple numeric scoreboard, but soon
cartridges like Warren Robinett’s BASIC Programming pushed
the 2600 to its limits by drawing full lines of text. In this
chapter, we’ll take a look at some common techniques for
drawing text.

Figure 18.1: Example scoreboard

Letters and numbers on the VCS are usually represented by
bitmap fonts. A common size is 4x5 pixels (the characters are
actually 3x5, one column is always blank for spacing purposes).

A good strategy is to combine two 4-pixel copies of a character
into a single byte, like this 9 digit:

.byte $EE ; |XXX XXX |

.byte $AA ; |X X X X |

.byte $EE ; |XXX XXX |

.byte $22 ; | X X |

.byte $EE ; |XXX XXX |
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This makes it easy for code to combine two digits into an eight-
pixel-wide bitmap using the following procedure:

• Look up the most-significant digit’s bitmap
• AND #$0F to extract the left digit
• Look up the least-significant digit’s bitmap
• AND #$F0 to extract the right digit
• ORA the two values to combine the two bitmaps

Here we use a convenient feature of the 6502 called BCD mode.
This allows numbers to be manipulated in a more human-
readable format. Each four-bit half of the byte contains a
decimal digit, so that the value expressed in hexadecimal reads
the same as the decimal representation. For example, $00 to $09

are the same, but 10 is stored as $10, 11 is $11, etc. all the way
up to $99.

The following routine takes a BCD-encoded number and looks
up bitmap data for each digit separately, combining them into a
5-byte array in memory:

GetBCDBitmap subroutine
; First fetch the bytes for the 1st digit

pha ; save original BCD number
and #$0F ; mask out the least significant digit
sta Temp
asl
asl
adc Temp ; multiply by 5
tay ; -> Y
lda #5
sta Temp ; count down from 5

.loop1
lda DigitsBitmap,y
and #$0F ; mask out leftmost digit
sta FontBuf,x ; store leftmost digit
iny
inx
dec Temp
bne .loop1

; Now do the 2nd digit
pla ; restore original BCD number
lsr
lsr
lsr
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lsr ; shift right by 4 (in BCD, divide by
10)

sta Temp
asl
asl
adc Temp ; multiply by 5
tay ; -> Y
dex
dex
dex
dex
dex ; subtract 5 from X (reset to

original)
lda #5
sta Temp ; count down from 5

.loop2
lda DigitsBitmap,y
and #$F0 ; mask out leftmost digit
ora FontBuf,x ; combine left and right digits
sta FontBuf,x ; store combined digits
iny
inx
dec Temp
bne .loop2
rts

The previous routine does most of the heavy lifting, so our
kernel is relatively simple. We draw the digits by loading
the bitmaps of the scoreboard from memory, then writing the
playfield registers twice – once for the left side, followed by a
delay of several cycles, followed by a write for the right side:

ldy #0 ; Y will contain the frame Y
coordinate

.ScoreLoop
sta WSYNC
tya
lsr ; divide Y by two for double-height

lines
tax ; -> X
lda FontBuf+0,x
sta PF1 ; set left score bitmap
SLEEP 28 ; wait until TIA is done drawing

leftmost digits
lda FontBuf+5,x
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sta PF1 ; set right score bitmap
iny
cpy #10
bcc .ScoreLoop ; repeat for 10 scanlines (5 font

lines)

Note the SLEEP 28 before the second STA PF1 write to the playfield
registers. We need to wait until the TIA has finished drawing the
left side of the playfield before we reset the playfield registers.
Our SLEEP gives us 28 extra cycles, so if we add up all of the cycle
times of the instructions before the STA WSYNC, we’ll write to PF1

on CPU cycle 48, which corresponds to TIA clock 48*3 = 144,
which corresponds to visible pixel (144 − 68) = 76, right before
the center of the display.

X XXX X X XXX
X X X X X X

HBLANK X XXX XXX XXX
X X X X
X XXX X XXX

Set PF1
Set PF1

+0 CPU cycle +76

Figure 18.2: Scoreboard Display

You’ve got plenty of time to do other things in this loop, like
change colors or even add additional digits (this would require
more memory usage, however).

We forgot one thing: To first put the TIA into score mode which
gives us two separate colors for the left and right half of the
playfield:

lda #%00000010 ; score mode
sta CTRLPF ; -> CTRLPF
lda #$48
sta COLUP0 ; set color for left
lda #$a8
sta COLUP1 ; set color for right
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19

Collisions

Games need to know when objects collide. In the VCS, the TIA
tells you when the pixels of any two objects overlap. This is one
thing on the VCS that’s actually easy!

The TIA has 15 different collision flags that can detect a pixel-
perfect collision between any of the moveable objects – players,
missiles, ball, and playfield. You can check these flags at any
time – at the end of the frame is pretty common. When you’re
done checking (or before drawing the next frame) you clear
them all at once by writing to CXCLR.

To see if two objects collided, just look up the register and bit
index in Table 19.1. For example, to see if player 0 and player
1 collided, we’d look at the second row from the bottom, which
has register CXPPMM and bit 7. The CX registers conveniently have
all of their flags in bit 6 or bit 7, so we can use the BIT instruction:

bit CXPPMM ; player 0 - player 1
bmi .PlayersCollided ; bit 7 set? (bpl = clear)

To see if missile 0 and missile 1 collided (bottom row) we’d
check bit 6 of the same register:

bit CXPPMM ; missile 0 - missile 1
bvs .MissilesCollided ; bit 6 set? (bvc = clear)
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Register Bit # P0 P1 M0 M1 PF BL
CXM0P 7 X X
CXM0P 6 X X
CXM1P 7 X X
CXM1P 6 X X
CXP0FB 7 X X
CXP0FB 6 X X
CXP1FB 7 X X
CXP1FB 6 X X
CXM0FB 7 X X
CXM0FB 6 X X
CXM1FB 7 X X
CXM1FB 6 X X
CXBLPF 7 X X
CXPPMM 7 X X
CXPPMM 6 X X

Table 19.1: Collision Registers

With the collision flags, we can easily test the player for colli-
sions with the playfield and other objects. If we want the player
to stop when they hit a playfield wall, we can just restore the
previous position, like this:

; Did the player collide with the playfield?
bit CXP0FB ; player 0 - playfield
bpl .NoCollision ; bit 7 clear?

; Yes, load previous position
lda YPosPrev
sta YPos
lda XPosPrev
sta XPos
jmp NoMoveJoy ; don’t move the player

.NoCollision
; No collision, update previous position and move player

lda YPos
sta YPosPrev
lda XPos
sta XPosPrev
jsr MoveJoystick ; move the player

.NoMoveJoy
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20

Asynchronous Playfields: Bitmap

We learned in Chapter 6 that the playfield is made up of 20
pixels that are either repeated or mirrored on the right 20 pixels
of the display. But this limits the kind of playfield you can draw,
and often you want the right side to be distinct from the left
side. This is called using an asymmetric playfield.

Remember that the playfield is defined by 20 bits in three
registers - PF0, PF1, and PF2. Since we want 40 unique pixels,
we need to program the TIA registers twice – once for the left
side, and once for the right side.

We also need to time our register stores so that they take place
after the TIA has finished displaying the previous value. If
we do it right, we’ll set two different values for each playfield
register per scanline, and get 40 unique pixels per line.

We can draw full-screen bitmaps this way, although it takes
quite a lot of ROM storage. We’ll have one array for each
playfield column, for a total of six arrays:

Left Side Right Side
Register PF0 PF1 PF2 PF0 PF1 PF2

Array Name Data0 Data1 Data2 Data3 Data4 Data5

Table 20.1: Asynchronous Playfield Register Layout
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Then, to draw the bitmap, we just iterate through the arrays
(high-to-low is easier), copying each of the six array values to
the PF0/PF1/PF2 registers. We introduce a little pause between
the left and right sides:

ScanLoop
sta WSYNC
lda Data0,y
sta PF0 ; store 1st playfield byte
lda Data1,y
sta PF1 ; store 2nd byte
lda Data2,y
sta PF2 ; store 3rd byte
nop
nop
nop ; 6-cycle pause
lda Data3,y
sta PF0 ; store 4th byte
lda Data4,y
sta PF1 ; store 5th byte
lda Data5,y
sta PF2 ; store 6th byte
dey
bne ScanLoop ; repeat until all scanlines drawn

Our routine relies on precise timing so that we always set the
second set of playfield registers after the previous playfield byte
has finished drawing, but before the next playfield byte has
started drawing.

HBLANK PF0 |PF1 |PF2 |PF0 |PF1 |PF2

Data0 PF0
Data1 PF1
Data2 PF2
Data3 PF0
Data4 PF1
Data5 PF2

+0 CPU cycle +76

Figure 20.1: Timing of Asynchronous Playfield Kernel
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For a full-screen bitmap, we’ll need 192 bytes per array, for a
total of 192 ∗ 6 = 1152 bytes. Enough to render a blocky yet
recognizable image of Ada Lovelace:

Figure 20.2: Playfield Bitmap of Ada Lovelace

One thing to be aware of is that the LDA aaaa,Y instruction
takes an extra CPU cycle if the effective address crosses a page
boundary. Pages are $100 (256) bytes long, so if we always align
our arrays to page boundaries ($F100, $F200, etc.), we’ll never
cross a page boundary.

We can tell the assembler to start on a page boundary with the
ALIGN directive, adding zero padding bytes until it hits a page
boundary, but this wastes ROM space. For this example, we’ve
left the arrays unaligned and made sure that even if we spend
a few extra cycles, we’ll always hit the acceptable range of CPU
cycles.

As you can see, our bitmap doesn’t look very good because the
playfield has much more vertical resolution than horizontal.
Later, we’ll learn how to draw a smaller but higher-resolution
bitmap using the player objects. (The E.T. cartridge used this
technique to draw a smiling extraterrestrial on the title screen.)
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Asynchronous Playfields: Bricks

We now know how to draw a playfield, sprites, missiles, ball,
and a scoreboard. Now we’re going to put them all together to
make a rudimentary game!

We know how collisions work, so let’s make a little Breakout-
style game where the ball knocks out rows of bricks. We’ll need
to draw several rows of bricks, any or all of which might be
missing.

We’ll use the asychronous playfield technique that we learned in
Chapter 20. Since playfield blocks will disappear as the ball

Figure 21.1: Brick game
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strikes them, we’ll have to store the playfield data in RAM. Our
array will have six bytes for each row of bricks – three playfield
registers for the left side, and a different three for the right. If
we have six rows of bricks, we have 6 ∗ 6 = 36 bytes.

PF0 PF1 PF2 PF0 PF1 PF2

4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 4 5 6 7 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7

0 6 12 18 24 30
1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35

Register

Bit #

Array
Index

Pixel 0 4 12 20 24 32 39

Figure 21.2: Layout of Bricks Array

We’ve also got to track the X and Y positions of both the player
and the ball.

Bricks ds 36 ; brick bitmap (6x6 bytes)
XPlyr byte ; player x pos
YPlyr byte ; player y pos
XBall byte ; ball x pos
YBall byte ; ball y pos

In addition, we’ve got several constants that we use to make
things easier when drawing the rows of bricks:

ScoreHeight equ 20 ; height of top scoreboard
BrickYStart equ 32 ; starting Y coordinate of bricks
BrickHeight equ 16 ; height of each brick in pixels
NBrickRows equ 6 ; number of lines of bricks
NBL equ NBrickRows ; abbreviation for number of

brick rows
BytesPerRow equ 6 ; number of bytes for each row of

bricks
BricksPerRow equ 40 ; number of bricks in each row

; (two bytes have only 4 active
pixels)

Our game will have several different kernels, each of which
draws a different area of the screen. Because we draw the ball in
all of them, we define a macro so that we don’t have to duplicate
code:
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; Enable ball if it is on this scanline (in X register)
; Modifies A.
; Takes 13 cycles if ball is present, 12 if absent.

MAC DRAW_BALL
lda #%00000000
cpx YBall
bne .noball
lda #%00000010 ; for ENAM0 the 2nd bit is enable

.noball
sta ENABL ; enable ball
ENDM

The macro expects the current scanline to be in the X register,
and then it enables or disables the ball if the ball’s vertical
position (YBall) is on the current scanline.

To draw the bricks, we have an outer loop and inner loop. The
outer loop increments the Y register, which contains the current
brick row index, and exits when we’ve drawn all the rows:

ldy #$ff ; start with row = -1
ScanLoop3b

iny ; go to next brick row
lda #BrickHeight ; for the outer loop, we count
sta Temp ; ’brickheight’ scan lines

for each row
cpy #NBrickRows ; done drawing all brick rows?
bcc ScanSkipSync ; no, but don’t have time to

draw ball!
jmp DoneBrickDraw ; exit outer loop

ScanLoop3a
DRAW_BALL ; draw the ball on this line?

ScanSkipSync

The outer loop adds enough CPU cycles that we don’t have time
to draw the ball, so we skip drawing it when we transition to
a new row. (We could have also drawn the ball but skipped
the STA WSYNC, rearranging things so that the timing worked out
either way.)

This is visually not very noticable, but since we’re checking
collision registers we have to be aware of a VCS maxim: If you
don’t draw it, it doesn’t collide! Since the ball only disappears
one out of every 16 scanlines, it’s not a huge deal.
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The inner loop looks pretty much like it did in Chapter 20,
where we learned how to draw an asynchronous playfield:

sta WSYNC
stx COLUPF ; change colors for bricks

; Load the first byte of bricks
; Bricks are stored in six contiguous arrays (row-major)

lda Bricks+NBL*0,y
sta PF0 ; store first playfield byte

; Store the next two bytes
lda Bricks+NBL*1,y
sta PF1
lda Bricks+NBL*2,y
sta PF2
inx ; good place for INX b/c of timing
nop ; yet more timing
lda Bricks+NBL*3,y
sta PF0
lda Bricks+NBL*4,y
sta PF1
lda Bricks+NBL*5,y
sta PF2
dec Temp
beq ScanLoop3b ; all lines in current brick row done?
bne ScanLoop3a ; branch always taken

Each row of bricks is 16 lines, and since VCS color hues change
every 16 values, we get a nice and inexpensive (in terms of CPU
cycles) rainbow effect just by storing the current scanline into
the COLUPF register.

HBLANK Visible Pixels

Next Row
Set Left Side PF Set Right Side-PF Loop Draw Ball
Set Left Side PF Set Right Side-PF Loop Draw Ball
Set Left Side PF Set Right Side-PF Loop Draw Ball
Set Left Side PF Set Right Side-PF Loop Draw Ball

Next Row

+0 CPU cycle +76

Figure 21.3: Timing of Brick Playfield and Ball Kernel

The player can never travel into the brick field, so our next
kernel just draws the player’s sprite and ball. It’s conceptually
similar to the routine in Chapter 8 except we also include the
DRAW_BALL macro.

98



After we draw the frame and enter the overscan period, we
check for collisions:

lda #%01000000
bit CXP0FB ; collision between player 0 and ball?
bne PlayerCollision
lda #%10000000
bit CXBLPF ; collision between playfield and

ball?
bne PlayfieldCollision
beq NoCollision

First we’ll talk about what happens when the ball is in contact
with the player. When you press the joystick button, we set the
Captured flag which allows you to grab the ball:

PlayerCollision
lda INPT4 ;read button input
bmi ButtonNotPressed ;skip if button not pressed
inc Captured ; set capture flag
bne NoCollision

(There’s a “bug” here because the Captured variable rolls over
after 255 frames – but in VCS programming, we like to call them
“features” and just get on with it.)

Now we see if the ball bounced off of the top of the player’s head,
or off of their shoes: We calculate Y P lyr+SpriteHeight/2−YBall
to see if the ball is within the top half or bottom half of the
player’s sprite, and set YBallVel (the ball’s Y velocity) to -1 or 1
accordingly:

ldx #1
lda YPlyr
clc
adc #SpriteHeight/2
sec
sbc YBall
bmi StoreVel ; bottom half, bounce down (+1)
ldx #$ff ; top half, bounce up (-1)
bne StoreVel

For the collision between playfield and ball, we need to check
to see which brick we broke. This is pretty complex, so we
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separated it out into a subroutine. First, we correct the Y
coordinate so that zero starts at the top of the brickfield:

; Subroutine to try to break a brick at a given X-Y
coordinate.

; X contains the X coordinate.
; A contains the Y coordinate.
; On return, A = -1 if no brick was present,
; otherwise A = Y offset (0-brickheight-1) of brick hit.
BreakBrick

sec
sbc #BrickYStart ; subtract top Y of brick

field

Then, we divide by the brick height (16). We could have also
done four LSRs, but this works for any BrickHeight value:

ldy #$ff
DivideRowLoop

iny
sbc #BrickHeight
bcs DivideRowLoop ; loop until < 0
cpy #NBrickRows
bcs NoBrickFound ; outside Y bounds of bricks
clc
adc #BrickHeight ; undo subtraction to get

remainder
pha ; save the remainder to return as result

We save the remainder to return as the result of this subroutine.
Now, we compute (X −3)/4 to get the brick column index (0-39)
and use that to look up the array index (PFOfsTable) and bitmask
(PFMaskTable):

txa
clc
adc #3 ; adjust because SetHorizPos is off by a few

pixels
lsr
lsr ; divide X coordinate by 4
tax ; transfer brick column to X
tya ; load brick row # in A
clc
adc PFOfsTable,x ; add byte offset
tay ; array index -> Y
lda PFMaskTable,x ; bitmask -> A
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We invert the mask with EOR (convert 1s to 0s and 0s to 1s) and
AND it with the entry in the Bricks table. If nothing changed,
we return a -1, otherwise we return the remainder computed
earlier:

eor #$ff ; invert bits
and Bricks,y ; AND with brick table entry
cmp Bricks,y ; was there a change?
beq NoBrickFound2 ; no, so return -1 as result
sta Bricks,y
pla ; return remainder as result
rts

NoBrickFound2
pla ; pull the remainder, but ignore it

NoBrickFound
lda #$FF ; return -1 as result
rts

The subroutine depends on two tables that define the bitmask
and byte offset for each of the 40 bricks in a row (the same layout
described in 6:

; Playfield bitmasks for all 40 brick columns
PFMaskTable

REPEAT 2 ; repeat twice
.byte #$10,#$20,#$40,#$80
.byte #$80,#$40,#$20,#$10,#$08,#$04,#$02,#$01
.byte #$01,#$02,#$04,#$08,#$10,#$20,#$40,#$80
REPEND ; end of repeat block

; Brick array byte offsets for all 40 brick columns
PFOfsTable

.byte NBL*0,NBL*0,NBL*0,NBL*0

.byte NBL*1,NBL*1,NBL*1,NBL*1, NBL*1,NBL*1,NBL*1,NBL*1

.byte NBL*2,NBL*2,NBL*2,NBL*2, NBL*2,NBL*2,NBL*2,NBL*2

.byte NBL*3,NBL*3,NBL*3,NBL*3

.byte NBL*4,NBL*4,NBL*4,NBL*4, NBL*4,NBL*4,NBL*4,NBL*4

.byte NBL*5,NBL*5,NBL*5,NBL*5, NBL*5,NBL*5,NBL*5,NBL*5
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We call the subroutine like so, using the remainder value
returned in A to see if we hit the top or bottom of the brick,
and thus decide which direction to bounce:

PlayfieldCollision
lda YBall
ldx XBall
jsr BreakBrick
bmi CollisionNoBrick ; return -1 = no brick found

; Did we hit the top or the bottom of a brick?
; If top, bounce up, otherwise down.

ldx #$ff ; ball velocity = up
cmp #BrickHeight/2 ; top half of brick?
bcc BounceBallUp ; yofs < brickheight/2
ldx #1 ; ball velocity = down

BounceBallUpw
stx YBallVel

We could have saved a little bit of work by checking the collision
register after each row of bricks, so at least we’d know which
row was contacted. However, this would require a few extra
CPU cycles in our kernel that we don’t have to spare (unless we
wanted blank scanlines between brick rows).

The ball will constantly be in motion, so we need to track its
velocity. We’ve got a signed value that tracks the Y velocity –
it’ll be either +1 or -1 (#$FF in signed representation). XBallVel is
a fractional value; it’s added to XBallErr every frame and the ball
is only moved when the addition wraps the byte, so the ball can
have speeds in the X direction that are less than 1 pixel/frame.

YBallVel byte ; ball Y velocity (signed)
XBallVel byte ; ball X velocity (signed)
XBallErr byte ; ball X fractional error

To move the ball horizontally each frame, we use the following
routine:

lda XBallVel ; signed X velocity
bmi BallMoveLeft ; < 0? move left
clc
adc XBallErr
sta XBallErr ; XBallErr += XBallVel
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bcc DoneMovement ; no wrap around? no move
inc XBall ; XBall += 1
lda XBall
cmp #160 ; moved off right side?
bcc DoneMovement ; no, done
lda #0
sta XBall ; wrap around to left
beq DoneMovement ; always taken

The addition (ADC) sets the carry flag when it wraps, so the higher
the XBallVel value, the more often this happens, and the more
often we INC the ball position.

There’s a similar routine for moving the ball left, with one
important difference. In this case, the velocity is negative, and if
you remember two’s complement from Chapter 1, the byte value
will be 128 or greater – so a signed value of -1 is the byte 255,
for example. The lower our velocity, the more often we wrap the
XBallErr addition. So we want to move the ball only when the
carry from the ADC is clear (no wrap), not when it’s set:

adc XBallErr
sta XBallErr ; XBallErr += XBallVel
bcs DoneMovement ; did wrap around? no move

We’ll learn another technique for fractional movement in Chap-
ter 31 called fixed-point math that doesn’t require a separate
branch.

There are other tidbits here and there, like making a sound
when the ball bounces, but feel free to study the source code
and experiment using the Playfield + Sprite II example on the
VCS emulator at 8bitworkshop.com!
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22

A Big (48 pixel) Sprite

We’ve seen that the VCS graphics are pretty limited. During
each scanline, we can draw 20 unique playfield pixels, two 8-
bit sprites, and up to three ball/missile objects. We’ve seen in
Chapter 21 how to draw 40 unique playfield pixels with some
complicated gymnastics.

We’ve also seen that we can get six sprites on a scanline by using
the NUSIZ registers, which draw up to three duplicate sprites per
player object at configurable intervals. This is used in Combat
for the three-airplanes-in-formation game mode, for example.
But this still only gives us two unique sprites per scanline, and
four clones.

We’ll use a technique similar to the Asynchronous Playfields
trick – reprogramming the TIA registers on-the-fly, writing to
each register multiple times during the scanline. If we time

Figure 22.1: 48-pixel sprite
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our writes carefully, we’ll be able to draw six unique sprites per
scanline, for example to draw a six-digit scoreboard, or one large
48-pixel sprite.

The first step is to set the NUSIZ registers for “three copies, close”
to display three copies of each 8-pixel sprite, 8 pixels apart from
one another. Our goal is to set each player’s horizontal position
so that they overlap like so:

Player 0 00000000 22222222 44444444
Player 1 11111111 33333333 55555555

Figure 22.2: Overlapping Players’ Horizontal Position

The next step is to enable the VDELPx registers for both players.
As described in Chapter 17, the VDELPx bit enables a buffer for
the GRP register, so that when you set the player’s bitmap register
it does not take effect until you set the other player’s bitmap
register. This will be essential for our 48-pixel kernel, because it
means we can pre-stage two GRP register values in the TIA chip,
flipping them during the very tight set of instructions that sets
the player registers.

Before the frame starts, we must also position the two player
objects. They must be at an exact horizontal location, and player
1 must be exactly 8 pixels to the right of player 0 so that they
meet with no overlaps. This does the trick:

sta WSYNC
SLEEP 20 ; skip 60 pixels
sta RESP0 ; position player 0 @ 69
sta RESP1 ; ...and player 1 @ 78
lda #$10
sta HMP1 ; player 1 goes 1 pixel to the left
sta WSYNC
sta HMOVE ; apply HMOVE
sta HMCLR

So here’s how we start our 48-pixel kernel:

TIMER_SETUP 192
SLEEP 40 ; start near end of scanline
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We are going to be lazy and use the TIMER_SETUP macro to make
sure we output 192 scanlines, even though our sprite is much
smaller. That macro also does a WSYNC, so we’ll SLEEP 40 so that
we start the loop near the end of the scanline.

Now the loop. We start by loading the first two sprite bytes into
GRP0 and GRP1:

BigLoop
ldy loopcount ; counts backwards
lda Data0,y ; load B0 (1st sprite byte)
sta GRP0 ; B0 -> [GRP0]
lda Data1,y ; load B1 -> A
sta GRP1 ; B1 -> [GRP1], B0 -> GRP0

Because we’ve set the VDELP0 and VDELP1 bits, the first sprite byte
(B0) goes into the GRP0 buffer, not the real GRP0 register. This is
indicated by the [GRP0] notation.

The next sprite byte (B1) goes into [GRP1]. Since there is some-
thing in [GRP0], this triggers [GRP0] to store into the real register
GRP0.

sta WSYNC ; sync to next scanline
lda Data2,y ; load B2 -> A
sta GRP0 ; B2 -> [GRP0], B1 -> GRP1

Now we’ve loaded the third byte B2, and that goes into GRP0.
Since we just stored B1 to [GRP1], that goes into the real GRP1.

Now we have to get ready for the time-critical step, the “one
weird trick.” We load B4, B3, and B5 into the X, A, and Y registers,
with the help of a temporary location:

lda Data5,y ; load B5 -> A
sta temp ; B5 -> temp
ldx Data4,y ; load B4 -> X
lda Data3,y ; load B3 -> A
ldy temp ; load B5 -> Y

Everything’s all set for the Grand Finale. We alternately store to
the GRP0/GRP1 registers four times with an amazing flourish!
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sta GRP1 ; B3 -> [GRP1]; B2 -> GRP0
stx GRP0 ; B4 -> [GRP0]; B3 -> GRP1
sty GRP1 ; B5 -> [GRP1]; B4 -> GRP0
sta GRP0 ; __ -> [GRP0]; B5 -> GRP1

Since we have stored B2 in [GRP0] previously, these four writes
store B2, B3, B4, and B5 to their appropriate registers in quick
succession. Each instruction takes 3 cycles, which is nine TIA
pixels. If we time it right, the writes will occur right before
the TIA draws each of the four copies of the two player objects.
Since we set “three copies close” in the NUSIZ registers, each copy
of a given player object will be separated by eight pixels – about
two CPU clocks of wiggle room.

The timing diagram looks sort of like this:

Player 0 00000000 22222222 44444444
Player 1 11111111 33333333 55555555
TIA clock ....................................................
CPU clock . . . . . . . . . . . . . . . . . .

GRP0 B0 B2 B4
GRP1 B1 B3 B5

Figure 22.3: Timing Diagram for Overlapping Players

Note that we really need the buffered registers that the VDELPx

flags give us, because we only have three registers and simply
don’t have time to load a fourth register from memory in this
sequence!

Note also that the final STA GRP0 is only there to ensure that
[GRP1] gets moved into the real GRP1 register; the value being
stored is irrelevant.

Now we decrement our counter and go back for another pass.

dec loopcount ; go to next line
bpl BigLoop ; repeat until < 0

There are plenty of other ways to write this loop. It’s common to
use the LDA (ptr),y addressing mode so that you can configure
each 8-pixel column to point to a different bitmap – good for
doing 6-digit scoreboards, “lives left” displays, etc. The crux of
the biscuit is that 4-instruction store firing at the right time.

107



23

Tiny Text

Now that we know how to draw extra-wide sprites, we can apply
this technique to another type of object: text.

We saw in Chapter 18 that we can draw scoreboards and other
kinds of text using the playfield registers. However, these are
pretty blocky, and limited to 40 pixels in width. Using the same
technique as in Chapter 22, we can draw lines of text that are 48
pixels width by five pixels high.

Figure 23.1: Tiny text

The 48-pixel kernel is the same as before, but instead of
fetching font data from ROM, we build a bitmap in RAM
using lookup tables. Building the bitmap array efficiently is
a challenge, because we’ve got to look up 60 bytes in memory
and combine those into 30 bytes. If we did this without regard
to performance, it might consume a few thousand CPU cycles,
which would require 30 or 40 scanlines just to set up the sprite.
Good luck writing very many lines of text!

Just like the scoreboard in Chapter 18, our characters are four
pixels across (three pixels active) with two characters side-by-
side in a byte, five bytes high (see Figure 23.2).
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76543210
0 .@..@@@.
1 @.@.@.@.
2 @@@.@@.. the characters A & B
3 @.@.@.@.
4 @.@.@@@.

Figure 23.2: Example 48-pixel font data

To use the routine, we’ll first define a string of text:

String0 dc "HELLO[WORLD?"

Our current routine is hard-coded to exactly 12 characters, but
you could also make your routine recognize zero-terminated
strings. Also, we’ve only got room for 50 characters in the 255-
byte array, so we’ve had to rearrange some of them, which is why
you see [ instead of a space.

To build the sprite, we first set up a pointer to our string and JSR

to the subroutine:

lda #<String0
sta StrPtr
lda #>String0
sta StrPtr+1
jsr BuildText

BuildText uses a special trick involving the stack pointer (S)
which we’ll explain soon. First we’ll save S since we’ll be
modifying it later:

BuildText subroutine
tsx
stx TempSP

We’ve got two variables that keep track of our progress, WriteOfs
and StrLen. WriteOfs points to the end of the column of bytes
being written to, and StrLen contains the current character being
read:

lda #FontBuf+4 ; +4 because PHA goes in decreasing
order
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sta WriteOfs ; offset into dest. array FontBuf
ldy #0
sty StrLen ; start at first character

We process the characters in pairs, since two characters are
packed into each byte column:

.CharLoop
; Get first character

lda (StrPtr),y ; load next character
sec
sbc #LoChar ; subtract 32 (1st char is Space)
sta Temp
asl
asl
adc Temp ; multiply by 5
tax ; first character offset -> X

; Get second character
iny
lda (StrPtr),y ; load next character
sec
sbc #LoChar ; subtract 32 (1st char is Space)
sta Temp
asl
asl
adc Temp ; multiply by 5
iny
sty StrLen ; StrLen += 2
tay ; second character offset -> Y

At this point, we’ve got the X register pointing to the offset of
the first character’s bitmap data, and Y pointing to the second
character’s bitmap data. All we need to do is look up both of
these bitmaps, combine the two 4-bit nibbles into a single byte,
then store the result.

If we didn’t care about performance, we’d use a single table to
look up all of the character bitmaps, and shift one by four bits
to get them both side-by-side. But since we want to be time-
efficient, we’ll use two tables – one for the left nibble, and one
for the right. They’re the same, except one is shifted by four bits
to the left.
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There’s also one more problem: We’re out of registers! We’ve
got to look up one table using an index register, then look up
another table using another index register, use A to hold the
combined data, then store it into a entirely different location
using a fourth register. We only have A, X, and Y, so it seems
we’re short a register. But we also have another register, S, i.e.
the stack pointer.

What we’ll do is set up the stack pointer so that it points to the
end of the destination array, WriteOfs:

txa ; preserve old X
ldx WriteOfs ; load X with offset
txs ; X -> stack pointer
tax ; restore old X

The TXS operation transfers the X register to S, the stack pointer.
(Only X can interact with S.) This means that whenever we
do a PHA, we’ll store A to the location S points to, then S will
decrement by one. This allows us to quickly write successive
bytes to memory, in decreasing order:

lda FontTableLo+4,y
ora FontTableHi+4,x
pha
lda FontTableLo+3,y
ora FontTableHi+3,x
pha
lda FontTableLo+2,y
ora FontTableHi+2,x
pha
lda FontTableLo+1,y
ora FontTableHi+1,x
pha
lda FontTableLo+0,y
ora FontTableHi+0,x
pha

That’s all there is to it! Now we add five to WriteOfs to target the
next column of bytes, and repeat until we run out of characters:

lda WriteOfs
clc
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adc #5
sta WriteOfs

.NoIncOfs
ldy StrLen
cpy #12
bne .CharLoop

After we’ve finished building the bitmap, we restore the value
of the stack pointer that we saved at the start of the routine:

ldx TempSP
txs
rts

If you wanted to save 256 bytes of space, you could use just one
font table and do something like this:

lda FontTableLo+4,x
asl
asl
asl
asl
ora FontTableLo+4,y
pha
...

However, this would add a few scanlines of spacing between
lines of text due to the additional 240 CPU cycles required.

Drawing the sprite is pretty much the same as in Chapter 22,
except we grab bytes from FontBuf instead of ROM:

lda #4
sta LoopCount

BigLoop
ldy LoopCount ; counts backwards
lda FontBuf+0,y ; load B0 (1st sprite byte)
sta GRP0 ; B0 -> [GRP0]
lda FontBuf+5,y ; load B1 -> A
sta GRP1 ; B1 -> [GRP1], B0 -> GRP0
sta WSYNC ; sync to next scanline
lda FontBuf+10,y ; load B2 -> A
sta GRP0 ; B2 -> [GRP0], B1 -> GRP1
lda FontBuf+25,y ; load B5 -> A
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sta Temp ; B5 -> temp
ldx FontBuf+20,y ; load B4 -> X
lda FontBuf+15,y ; load B3 -> A
ldy Temp ; load B5 -> Y
sta GRP1 ; B3 -> [GRP1]; B2 -> GRP0
stx GRP0 ; B4 -> [GRP0]; B3 -> GRP1
sty GRP1 ; B5 -> [GRP1]; B4 -> GRP0
sta GRP0 ; ?? -> [GRP0]; B5 -> GRP1
dec LoopCount ; go to next line
bpl BigLoop ; repeat until < 0
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24

Six-Digit Scoreboard

We can use the 48-pixel sprite methods in Chapters 22 and 23
to draw a six-digit scoreboard where each digit is eight pixels
wide.

Figure 24.1: Six-digit scoreboard example

We represent the scoreboard as a BCD-encoded number, as seen
in Chapter 18. Our score has six digits, which means it needs
three BCD bytes. There are many ways to allocate this variable,
but the HEX directive works nicely:

BCDScore hex 000000

We also need a pointer for each of the six digits:

Digit0 word
Digit1 word
Digit2 word
Digit3 word
Digit4 word
Digit5 word

We will also use a lookup table for the bitmaps of digits 0-9.
Timing is critical, so we need to use ALIGN to make sure it doesn’t
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cross a page boundary (we can also save an addition if we know
the low byte is zero):

align $100 ; make sure data doesn’t cross page
boundary

FontTable
hex 003c6666766e663c007e181818381818
hex 007e60300c06663c003c66061c06663c
hex 0006067f661e0e06003c6606067c607e
hex 003c66667c60663c00181818180c667e
hex 003c66663c66663c003c66063e66663c

Now we need to set up the six Digit pointers. Each byte of the
score contains two BCD digits, so we’ll need to extract the high
nibble and low nibble separately, then multiply each by 8 to
arrive at the offset for each digit’s pointer:

GetDigitPtrs subroutine
ldx #0 ; leftmost bitmap
ldy #2 ; start from most-sigificant BCD value

.Loop
lda BCDScore,y ; get BCD value
and #$f0 ; isolate high nibble (* 16)
lsr ; shift right 1 bit (* 8)
sta Digit0,x ; store pointer lo byte
lda #>FontTable
sta Digit0+1,x ; store pointer hi byte
inx
inx ; next bitmap pointer
lda BCDScore,y ; get BCD value (again)
and #$f ; isolate low nibble
asl
asl
asl ; * 8
sta Digit0,x ; store pointer lo byte
lda #>FontTable
sta Digit0+1,x ; store pointer hi byte
inx
inx ; next bitmap pointer
dey ; next BCD value
bpl .Loop ; repeat until < 0
rts
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The kernel loop is similar to previous 48-pixel kernels, except it
uses the (aa),y indirect addressing mode:

; Display the resulting 48x8 bitmap
; using the Digit0-5 pointers.
DrawDigits subroutine

sta WSYNC
SLEEP 40 ; start near end of scanline
lda #7
sta LoopCount

BigLoop
ldy LoopCount ; counts backwards
lda (Digit0),y ; load B0 (1st sprite byte)
sta GRP0 ; B0 -> [GRP0]
lda (Digit1),y ; load B1 -> A
sta GRP1 ; B1 -> [GRP1], B0 -> GRP0
sta WSYNC ; sync to next scanline
lda (Digit2),y ; load B2 -> A
sta GRP0 ; B2 -> [GRP0], B1 -> GRP1
lda (Digit5),y ; load B5 -> A
sta Temp ; B5 -> temp
lda (Digit4),y ; load B4
tax ; -> X
lda (Digit3),y ; load B3 -> A
ldy Temp ; load B5 -> Y
sta GRP1 ; B3 -> [GRP1]; B2 -> GRP0
stx GRP0 ; B4 -> [GRP0]; B3 -> GRP1
sty GRP1 ; B5 -> [GRP1]; B4 -> GRP0
sta GRP0 ; ?? -> [GRP0]; B5 -> GRP1
dec LoopCount ; go to next line
bpl BigLoop ; repeat until < 0

lda #0 ; clear the sprite registers
sta GRP0
sta GRP1
sta GRP0
sta GRP1
rts
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We also need a subroutine that adds to the score. This routine
adds three BCD-encoded bytes to the BCDScore variable, doing
the appropriate thing with the carry bits:

; Adds value to 6-BCD-digit score.
; A = 1st BCD pair (rightmost)
; X = 2nd BCD pair
; Y = 3rd BCD pair (leftmost)
AddScore subroutine

sed ; enter BCD mode
clc ; clear carry
sta Temp
lda BCDScore
adc Temp
sta BCDScore
stx Temp
lda BCDScore+1
adc Temp
sta BCDScore+1
sty Temp
lda BCDScore+2
adc Temp
sta BCDScore+2
cld ; exit BCD mode
rts
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25

A Big Moveable Sprite

The trick to creating a big (48-pixel), moveable sprite is similar
to the Asynchronous Playfields (Chapter 21) trick, in that we
reprogram the TIA registers on-the-fly, writing to each register
multiple times during the scanline. But unlike the playfield,
sprites can be moved horizontally. That means we have to
time our register writes differently depending on the sprite’s
horizontal position.

In the past, we’ve used loops for this, but our tightest loop takes
up five cycles for DEY/DEX and BNE instructions. We’d like to be
able to get single-cycle precision delays.

To get precise variable timing, we’ll rely on a CPU programming
technique called a clockslide to waste a precise number of cycles.
This is a sequence of instructions that looks like this:

c9 c9 cmp #$c9
c9 c9 cmp #$c9
c9 c9 cmp #$c9

; repeat many times ...
c5 ea cmp $ea

What’s so special about these exact instructions? Well, it turns
out that CMP #$c9 assembles to c9 c9, so we’re creating a big list
of #$c9 bytes, followed by a c5 ea (CMP $ea). This sequence is
carefully crafted so that you can start the instruction pointer at
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any byte, even inside of an instruction, and it will waste cycles
proportional to the distance from the end. Let’s say we start
execution six bytes from the end:

c9 c9 cmp #$c9 2
c9 c9 cmp #$c9 2
c5 ea cmp $ea 3

We decode two CMP #$c9 instructions, which take two cycles
each, and one CMP $ea, which takes three cycles, for a total of
seven cycles. Since they are all CMP instructions, there are no
side effects besides modifying flags.

Now, what if we started five bytes from the end? Since our
instructions take up two bytes each, we’d be essentially starting
in the middle of an instruction! But the CPU doesn’t see
the boundaries of our assembler instructions – it will happily
execute whatever it sees. This is what it sees:

c9 c9 cmp #$c9 2
c9 c5 cmp #$c5 2
ea nop 2

Note that the CMP #$c9 is the same, since we started in the sea of
$c9 bytes. But the last two instructions we decode are different.
Our last instruction is a NOP, which came from the $ea in the
CMP $ea instruction. The NOP only takes two cycles, so we’ve
wasted a total of six cycles, one less than the previous run.

Let’s see what would happen if we started four bytes from the
end:

c9 c9 cmp #$c9 2
c5 ea cmp $ea 3

We’re back in alignment with our original assembler code, and
this time we take up five cycles – one less than previously.
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Using the clockslide is pretty simple, you just compute a pointer
to somewhere inside the array depending on how many cycles
you want to waste, then do an indirect jump to the pointer:

lda #<ClockslideEnd
sec
sbc DelayCycles
sta DelayPtr
lda #>ClockslideEnd
sbc #0
sta DelayPtr+1
jmp (DelayPtr)

We’re computing the target jump address by subtracting the
desired number of delay cycles from the end address.

REPEAT 36
.byte $c9
REPEND
.byte $c9,$c5

ClockslideEnd
nop

Note that we are taking advantage of the REPEAT/REPEND assem-
bler directives to succinctly create an array of 36 $c9 bytes (i.e.
18 CMP #$c9 instructions).

Now we can get to the business of drawing the sprite. The
kernel in Figure 25.1 is “WSYNC-free,” which means we’ll have
to make sure it takes exactly 76 cycles. This ensures that the
TIA clock starts at the same position at the start of every loop
iteration, which ensures that our register writes happen at the
exact same moment for every scanline. We’ll use the clockslide
immediately before entering the kernel loop. Note that we also
use the indirect (aa),y addressing mode as shown in the code
that follows.
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.KernelLoop
nop
nop
nop
ldy LineCount
lda (Data0),Y
sta GRP0
lda (Data1),Y
sta GRP1
lda (Data2),Y
sta GRP0
lda (Data5),Y
sta Temp
lda (Data4),Y
tax
lda (Data3),Y
ldy Temp
sta GRP1
stx GRP0
sty GRP1
sta GRP0
dec LineCount
bpl .KernelLoop

Figure 25.1: WSYNC-Free Big Sprite Kernel
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26

Sprite Formations

We’ve seen that we can have a total of five moveable objects on
a given scanline – two players, two missiles, and a ball.

We’ve also seen how the NUSIZ registers can be set to display
one, two, or three copies of an object at different spacings. So
if we displayed three copies of both player objects, we’d have
six objects per scanline (this is how Space Invaders works). Now
we’re going to take advantage of a quirk of this feature to display
even more objects on a scanline.

Figure 26.1: Sprite retriggering example game
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This sprite retrigger trick relies on a behavior when the NUSIZ

register is set to display multiple copies of objects (usually two).
Basically, if the RESPx register is strobed multiple times on a
given scanline, the first (leftmost) copy of the object will be
hidden, and the TIA will draw the other copy. You can keep
strobing the register to output multiple copies on the same
scanline.

The Grid Kernel that draws a single row of evenly-spaced sprites
looks like this:

KernelLoop
lda EnemyFrame0,y ; load bitmap
sta WSYNC
ldx EnemyColorFrame0,y ; load color
sta GRP0
sta GRP1
stx COLUP0
stx COLUP1
ldx #0 ; so we can do the STA RESPn,x variant

KernelStores
sta RESP0,x
sta RESP1,x
sta RESP0,x
sta RESP1,x
sta RESP0,x
sta RESP1,x
sta RESP0,x
sta RESP1,x
dey ; also acts as 2-cycle delay
stx.w GRP0 ; clear player 0 bitmap (4-cycle

version)
sta RESP0 ; reset player 0 position
stx GRP1 ; clear player 1 bitmap
sta RESP1 ; reset player 1 position
bpl KernelLoop ; repeat until Y < 0
rts

The first instructions at the beginning of KernelLoop look pretty
familiar – they are just fetching the bitmap and color data and
setting the GRP and COLUP registers for both player objects.

Those eight STA RESPn,x instructions alternately strobe the RESP0

and RESP1 registers exactly four CPU cycles apart (this is the
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only reason we use the STA aa,x addressing mode). This gives
us a spacing of 12 pixels for each sprite. Since we’ve set the
NUSIZ0 and NUSIZ1 registers to “two copies, close,” we’ll see the
sprite 16 pixels after the write takes place, for a total of eight
sprites. Alternating RESP0 and RESP1 gives each sprite enough
time to fully draw before it is reset.

The other instructions from the DEY to the BPL clean up, relying
on some careful timing to clear the GRP0/GRP1 registers to blank
out the sprite, then hitting RESP0/RESP1 again to set up for the
next scanline.

But what if we want fewer than eight sprites, or an arbitrary
combination of zero to eight sprites? We do not have any cycles
to spare to test to check that sprites should or should not exist;
we’re hitting the RESP0/RESP1 registers as fast as we can.

The only way to get the performance we need is a trick called
self-modifying code. Our nefarious plan: To copy the entire
routine into RAM, surgically replace certain parts of the code,
and then jump into RAM to execute our Frankenroutine!

We’ll copy the routine into RAM at the start of the program.
Before we go to draw a row of sprites, we’ll check to see if each
of the eight sprites exists by checking a bitmask. If it does, we’ll
write the appropriate RESP0 ($10) or RESP1 ($11) which matches
the original code. If it doesn’t exist, we’ll write a$30 which points
to a read-only register (CXM0P, if you must know) so nothing will
happen.

The full routine looks something like this:

DrawFormation
ldx CurRow
lda EnemyRows0,x
ldx #1 ; start at KernelStores+1

ShiftLoop
ldy #RESP0
ror
bcs NoClearEnemy0
ldy #$30 ; no-op

NoClearEnemy0
sty ZPWrites,x
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inx
inx
ldy #RESP1
ror
bcs NoClearEnemy1
ldy #$30 ; no-op

NoClearEnemy1
sty ZPWrites,x
inx
inx
cpx #16 ; 8*2 bytes
bcc ShiftLoop
ldy EnemyColorFrame0 ; get height -> Y
jsr ZPRoutine ; draw sprites
rts

We compute the ZPWrites label with an EQU directive, so that if we
modify the kernel routine everything will still work correctly:

ZPWrites equ ZPRoutine+(KernelStores-KernelLoop)

Note that our Grid Kernel routine does not draw missiles
because we just don’t have the time. Rather, we set the missile
registers before we draw (we actually use the ball register for the
player’s missile so that it gets its own color). This creates a long
stripe whenever the missile is present. If we wanted to draw the
missile correctly, we’d have to probably give up the line-by-line
sprite color and do something like this:

lda EnemyFrame0,y ; load bitmap
sta WSYNC
sta GRP0
sta GRP1
lda MissileData,y ; load missile data
sta ENABL

In this snippet, MissileData is an array we precompute with
either 2 or 0 for each scanline depending on whether the missile
should be drawn. But good luck drawing two missiles!
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There are also a couple of other modifications we can make to
this kernel:

• We could add more STA RESPn,x instructions to create more
sprites. We could draw up to 11 sprites this way. However,
this requires some tricky logic if you want to remove
sprites, because we’ll have to remove the instructions that
reset the sprite at the end of the scanline.

• We could replace the STA WSYNC with a couple of NOPs and
make the loop take exactly 76 cycles. Then we could use
the Clockslide technique from Chapter 25 to have some
control over horizontal position.

This technique is useful for drawing static displays, like a map
or grid of tiles. If you need horizontal movement, it’s probably
a lot easier to just use the NUSIZ registers with two player objects
and limit yourself to six sprites per scanline!
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27

Advanced Timer Tricks

We mentioned the PIA timer in Chapter 12 and how it could
be used to count exact numbers of scanlines. In some of our
kernels, we’re doing some pretty complicated logic during the
frame and it may be difficult to sprinkle STA WSYNCs around or
count CPU cycles. We could actually use the PIA timer to keep
track of our scanlines for us.

We just set the PIA timer at the beginning of our frame, as usual:

TIMER_SETUP 192

And from there, our various routines read the PIA timer (the
INTIM register) to figure out which scanline we’re on. It’s not
perfect, because our preferred PIA timer resolution is 64 cycles,
and a scanline is every 76 cycles. But it’s good enough for our
purposes, and a lot more convenient.

For instance, here we wait until it’s time to start drawing a row
of sprites:

WaitForRow
jsr DrawMissiles ; set missile registers
ldx CurRow ; get current row of sprites
lda EnemyYpos0,x ; get row Y position
cmp INTIM ; compare to timer
bcc WaitForRow ; wait until timer > Y

position
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Note that there’s no STA WSYNC here! We just keep calling
DrawMissiles (which also uses the timer to see if missiles intersect
the current scanline) until the timer counts down below a given
value.

We’ve got to be careful not to let the timer go below zero,
though, because at that point it goes negative and our code
might miss it. As described in the Stella Programming Guide[4],
this is a feature, not a bug, as it allows programmers to
determine how long ago the timer expired:

The PIA decrements the value or count loaded into
it once each interval until it reaches 0. It holds that 0
counts for one interval, then the counter flips to $FF

and decrements once each clock cycle, rather than
once per interval. The purpose of this feature is to
allow the programmer to determine how long ago
the timer zeroed out in the event the timer was read
after it passed zero. (Wright, 1979, Section 2.3)

There are also cases where the timer changes very close to the
end of a scanline, and our next WSYNC might miss it. One solution
is to always have a constant number of cycles between the point
where your timer loop exits and the next WSYNC. You’ll then at
least miss lines predictably.

For example, the example program for Chapter 26 (Formation
Flying at 8bitworkshop.com) has a DrawMissiles routine which is
used to draw 8-pixel high missiles using the PIA timer value:

DrawMissiles
lda INTIM ; load timer value
pha ; save timer value
sec
sbc MissileY0 ; subtract missile 0’s Y from timer

value
cmp #8 ; within 8 lines of missile?
lda #3 ; bit 1 now set
adc #0 ; if carry set, bit 1 cleared
sta ENABL ; enable/disable ball
pla ; restore original timer value
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27.1. Timer Tables

sec
sbc MissileY1 ; subtract missile 1’s Y from timer

value
cmp #8 ; within 8 lines of missile?
lda #3 ; bit 1 now set
adc #0 ; if carry set, bit 1 cleared
sta ENAM1 ; enable/disable missile
rts

Instead of branch instructions, we use the carry bit in the CMP

instruction to modify the result of the ADC instruction. If it’s
clear, we store a three; if it’s set, a four. Only the second bit is
valid in the ENAxx register, so three enables the object and four
disables it. This gives the routine a constant cycle count.

The timer can also be used to implement a simple timeslicing
system. If there are optional or partial routines to run in
the offscreen periods, you could check the timer to see if
there’s enough time left before executing. You could split some
routines into bite-sized pieces and execute them this way.

27.1 Timer Tables

Since scanlines take 76 CPU cycles and the closest PIA timer
period is 64 cycles, we don’t have an easy mapping between
timer values and scanlines. This diagram shows the problem:
0 O
1 O
2 O
3 O
4 O
5 O O
6 O
7 O
8 O
9 O
10 O O
11 O
12 O
13 O
14 O
15 O
16 O O
+0 CPU cycle +76

O = timer value change

Figure 27.1: PIA Timer Scanline Timing
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27.1. Timer Tables

All scanlines will span at least two consecutive timer values.
This makes it impossible to tell which scanline we’re on unless
we look for transitions between timer values.

This should work, except when the timer changes very close to
the end of the scanline – about 18% of the time. Several CPU
cycles will pass between the time we detect the timer change
and when we STA WSYNC to sync to the end of the scanline, so it’s
hard to stop on a precise scanline in this case.

The solution is to have a lookup table that maps timer values
to scanlines, except for timer values that change too close (11
cycles) to the edge – these are set to 0. Then whenever we detect
a timer change, we immediately WSYNC and then compare the
value we lookup in the table to our desired scanline. If we’re
not there yet, or if the value in the table is zero (meaning “skip
it”), we go back and try again. The table has an entry for every
scanline from 1 to 215, so we can target any scanline this way.

Here’s the routine:

; Pass: A = desired scanline
; Returns: Y = timer value - 1

align $10
WaitForScanline subroutine

ldy INTIM ; Fetch timer value
.Wait

cpy INTIM
beq .Wait ; Wait for it to change
sta WSYNC ; Sync with scan line
cmp Timer2Scanline,y ; lookup scanline
bcs WaitForScanline ; repeat until >= desired
rts

This routine requires careful analysis, since we’re building a
table based on it. All we really care about is how long it takes
this routine to get to WSYNC, since at that point we’ve chosen a
scanline. Let’s go line-by-line and consider CPU cycles for each
instruction:

ldy INTIM ; 4 (read occurs on last cycle)
.Wait

cpy INTIM ; 4
beq .Wait ; 2 (3 if branch taken)
sta WSYNC ; 3
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27.1. Timer Tables

The routine takes at least 13 cycles total, with seven or six (final)
cycles spent in each loop iteration. Let’s consider the worst-
case, where the timer changes value right after the second CPY

instruction reads from memory:
first read

ldy INTIM
second read

cpy INTIM
timer value change

beq (taken)
third read

cpy INTIM
beq (not taken)

WSYNC
sta WSYNC

13 cycles

Figure 27.2: Timer worst-case scenario

There are 13 cycles between the second CPY read and the
STA WSYNC, so that’s our effective resolution. In this case, we need
to ensure that we don’t enter this critical region in the 13 cycles
before the end of a scanline, or we could potentially wrap to the
next scanline.

Here’s the lookup table:
align $100

Timer2Scanline
.byte 215, 0,214,213,212,211,210, 0,209,208,207,206,205,204, 0,203
.byte 202,201,200,199, 0,198,197,196,195,194, 0,193,192,191,190,189
.byte 188, 0,187,186,185,184,183, 0,182,181,180,179,178, 0,177,176
.byte 175,174,173,172, 0,171,170,169,168,167, 0,166,165,164,163,162
.byte 0,161,160,159,158,157,156, 0,155,154,153,152,151, 0,150,149
.byte 148,147,146, 0,145,144,143,142,141,140, 0,139,138,137,136,135
.byte 0,134,133,132,131,130, 0,129,128,127,126,125,124, 0,123,122
.byte 121,120,119, 0,118,117,116,115,114, 0,113,112,111,110,109,108
.byte 0,107,106,105,104,103, 0,102,101,100, 99, 98, 0, 97, 96, 95
.byte 94, 93, 92, 0, 91, 90, 89, 88, 87, 0, 86, 85, 84, 83, 82, 0
.byte 81, 80, 79, 78, 77, 76, 0, 75, 74, 73, 72, 71, 0, 70, 69, 68
.byte 67, 66, 0, 65, 64, 63, 62, 61, 60, 0, 59, 58, 57, 56, 55, 0
.byte 54, 53, 52, 51, 50, 0, 49, 48, 47, 46, 45, 44, 0, 43, 42, 41
.byte 40, 39, 0, 38, 37, 36, 35, 34, 0, 33, 32, 31, 30, 29, 28, 0
.byte 27, 26, 25, 24, 23, 0, 22, 21, 20, 19, 18, 0, 17, 16, 15, 14
.byte 13, 12, 0, 11, 10, 9, 8, 7, 0, 6, 5, 4, 3, 2, 0, 1

Figure 27.3: Timer-to-Scanline Lookup Table

Note the align $100 which we use to avoid crossing page bound-
aries and upsetting the timing.
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27.1. Timer Tables

The routine assumes the timer starts at 255, so before using the
routine we should set up the timer like this:

lda #$ff
sta WSYNC
sta TIM64T

Or using the macro:

TIMER_SETUP 216

Call the routine like this:

lda #50
jsr WaitForScanline

The routine returns even if we’ve passed the desired scanline, so
if we just want to wait for the next valid scanline, we pass zero:

lda #0
jsr WaitForScanline
lda Timer2Scanline,y ; fetch exact scanline

If we don’t need precise accuracy, we can also grab the current
approximate scanline, which could be off by -1 to +1:

; Fetchs the approximate scanline (could be off by +/- 1)
; into A. Takes 11 or 14 cycles.

MAC GET_APPROX_SCANLINE
ldy INTIM ; get timer
lda Timer2Scanline,y ; lookup scanline
bne .Ok ; non-zero?
lda Timer2Scanline-1,y ; lookup next scanline

.Ok
ENDM

But why go to all this trouble? Well, sometimes we want to do
some complex stuff between scanlines and don’t want the hassle
of tracking each and every one, or we want the freedom to miss
a WSYNC or two and not have the rest of the frame be completely
goofy. We’ll use these routines in Chapter 28 for a complicated
multi-sprite kernel.
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28

Multisprites

For many games, we’d like to display more than two sprites. Un-
fortunately, the VCS hardware is really limited to two distinct
sprites per scanline, unless you get fancy with the NUSIZ register
and other TIA tricks. But if we reprogram the TIA between
sprites, we can get more on the screen – even though we’re still
limited to two sprites on a given scanline.

There are a lot of different ways to tackle this on the VCS, but
we’re going to try for a generalized approach that allows us to
use position sprites at any X-Y coordinate, each with its own
bitmap and color table. This is tricky because we can only do so
much on each scanline.

Our approach is to separate the problem into three phases:

1. Sort vertically
2. Position horizontally
3. Display sprite (then repeat steps 2 and 3)

In the Sort phase, we sort all sprites by Y coordinate. We do one
sort pass per frame, so it may take several frames for the sort to
stabilize.

In the Position phase, we look at the sprites in Y-sorted order,
looking several lines ahead to see if a sprite is coming up. We
then allocate it to one of the two TIA’s player objects and set its

133



Figure 28.1: Multiple sprites example

position using the SetHorizPos method. We can set one or both
of the player objects this way, one at a time.

In the Display phase, we draw the objects which we previously
assigned and positioned. First we figure out how many scan-
lines are required to draw. For one object, we just go to its
bottommost scanline. For two objects, we go to the bottommost
scanline of either object.

Sort sprites by vertical position

Place sprite #0
Set horizontal position player 1

Place sprite #1
Set horizontal position player 0

Wait for sprites to start

Draw sprites

Figure 28.2: Phases

We then loop through the scanlines, fetching pixels and colors
for one or both objects (up to four lookup tables) and setting
registers at the appropriate time. We don’t have time to do much
else, so we don’t look for any new objects to schedule until we’re
done with this loop.
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28.1. Variables

This scheme can only display up to two objects on a given
scanline, so if the system tries to schedule a third, it will be
ignored. Also, the positioning routine takes a few scanlines to
complete, so if the top of a sprite is too close to the bottom of
another sprite, the latter may not be displayed.

To mitigate this, we increment a priority counter when a sprite
entry is missed. In the sort phase, we move those sprites
ahead of lower priority sprites in the sort order. This makes
overlapping sprites flicker instead of randomly disappear. If all
goes well, each sprite will get an equal share of screen time.

28.1 Variables

This routine requires lots of variables in RAM, so let’s walk
through them. First, we have four arrays which keep track of
our sprites, each eight bytes long:

NSprites equ 8 ; max # of sprites
XPos0 ds NSprites ; X coord for each sprite
YPos0 ds NSprites ; Y coord for each sprite
Sorted0 ds NSprites ; sorted list of sprite indices
Priority0 ds NSprites ; sprite priority list, if missed

The XPos0 and YPos0 arrays track the coordinates of each sprite
(the "0" suffix reminds us that this is the address of the first array
element).

The Sorted0 array keeps a list of sprites sorted by vertical
position, top-first. Each entry is the index of the sprite (0-7).

Priority0 is an array tracks sprites that are missed – we’ll discuss
this later.

As we go down the screen, CurIndex keeps track of which sprite
to look at next (i.e., which entry of the Sorted0 array):

CurIndex byte ; current sorted sprite # to try to schedule
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28.2. Position

The other variables are used by our sprite kernel, and they keep
pointers to bitmap and color tables for each sprite, as well as the
positions and heights of the next sprites to draw:

PData0 word ; pointer (lo/hi) to player 0 bitmap data
PColr0 word ; pointer to player 0 color data
PData1 word ; pointer to player 1 bitmap data
PColr1 word ; pointer to player 1 color data
SIndx0 byte ; next y-position to draw player 0

; or during draw, index into sprite
; zero means not assigned

SIndx1 byte ; ... for player 1
SSize0 byte ; sprite size for player 0 (0 = inactive)
SSize1 byte ; sprite size for player 1

28.2 Position

In the Position step, we try to assign the next sprite in the sort
order to one of the two player objects. FindAnotherSprite is the
subroutine that does this:

FindAnotherSprite
GET_APPROX_SCANLINE
clc
adc #MinYDist
sta Scanline

We use the GET_APPROX_SCANLINE macro as discussed in Chapter
27 to see which approximate scanline we’re currently drawing,
plus or minus one. We bias it with MinYDist (+7) because that’s
the maximum number of lines we can afford to spend before
moving to the Display phase. Then, we check the next sprite in
the sort sequence to make sure we won’t miss it:

ldx CurIndex
cpx #NSprites
bcs .OutOfSprites ; no more sprites to check
ldy Sorted0,x ; get sprite index # in Y-sorted order
lda YPos0,y ; get Y position of sprite
cmp Scanline ; SpriteY - Scanline
bmi .MissedSprite ; passed it? (or > 127 lines away)
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28.2. Position

Now that a sprite is starting soon, we need to schedule it to one
or the other of the player objects. First, we check player 1:

lda XPos0,y
ldx SIndx1 ; player 1 available?
bne .Plyr1NotReady ; no, try player 0

Due to timing issues, we have artifacts if player 1 is too close
to the left edge of the screen. This is a problem. Many VCS
programming solutions require the type of wisdom you get from
an old vaudeville sketch: “Doc, it hurts when I do this.” “Well,
don’t do that!”

One solution is to just not allow player 1’s sprite to get too far
to the left.

TIP: To run and modify an example that shows multiple
sprites in action, check out the Multiple Sprites sample
available at 8bitworkshop.com. Use the arrow keys to move
the sprite (and move to the left to see the too-close-to-the-
edge issue in action!).

We try to put those sprites in the player 0 slot:

cmp #34 ; X < 34
bcc .Plyr1NotReady

Whichever player object we pick, the first step is to set the
sprite’s horizontal offset using the SetHorizPos subroutine – this
could use up to two scanlines:

ldx #1 ; player 1 object
jsr SetHorizPos ; set horizontal position (does WSYNC)
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28.3. Display

Then, we set various variables for the player 1 sprite, including
Y position, pointers to bitmap and color maps, and set the
height of the sprite:

lda YPos0,y
sta SIndx1

; Get index into SpriteDataMap (index * 4)
ldx MultBy4,y

; Copy addresses of pixel/color maps to player 1
lda SpriteDataMap,x
sta PData1
lda SpriteDataMap+1,x
sta PData1+1
lda SpriteDataMap+2,x
sta PColr1
lda SpriteDataMap+3,x
sta PColr1+1

; Get the sprite height as the first byte of the color map
ldy #0
lda (PColr1),y
sta SSize1
jmp .SetupDone

There’s a similar routine to set up the player 0 sprite.

28.3 Display

After we set up the sprites, we now enter the display phase. First
we use the WaitForScanline subroutine as described in Chapter
27 to wait for an exact scanline. We pass it zero, which makes it
wait for the next scanline that can be measured, and returns its
value in A:

DrawSprites subroutine
lda #0 ; 0 = wait for next
jsr WaitForScanline
lda Timer2Scanline,y ; lookup scanline #
sta Scanline ; save it
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28.3. Display

Next, we calculate how many scanlines need to be drawn for
each sprite, starting at the current scanline.

lda SIndx0
beq .Empty0 ; sprite 0 is inactive?
sec
sbc Scanline
clc
adc SSize0
sta SIndx0 ; SIndx0 += SSize0 - Scanline

.Empty0
lda SIndx1
beq .Empty1 ; sprite 1 is inactive?
sec
sbc Scanline
clc
adc SSize1
sta SIndx1 ; SIndx1 += SSize1 - Scanline

.Empty1

Now that we have the scanline counts for each player, we take
the maximum value, and that’s the total number of lines to draw
(if it’s zero, that means there weren’t any sprites to draw):

cmp SIndx0
bpl .Cmp1 ; sindx0 < sindx1?
lda SIndx0

.Cmp1
tax ; X = # of lines left to draw
beq .NoSprites ; X = 0? we’re done
sta WSYNC ; next scanline

The main sprite-drawing loop should be pretty familiar – it first
draws player 0:

.DrawNextScanline
; Make sure player 0 index is within bounds

ldy SIndx0
cpy SSize0
bcs .Inactive0 ; index >= size? (or index < 0)

; Lookup pixels for player 0
lda (PData0),y

; Do WSYNC and then quickly store pixels for player 0
sta WSYNC
sta GRP0
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28.3. Display

; Lookup/store colors for player 0
lda (PColr0),y
sta COLUP0

There’s an alternate player 0 path when this sprite is inactive:

.Inactive0
sta WSYNC
lda #0
sta GRP0
sta COLUP0
beq .DrawSprite1 ; always taken due to lda #0

And then we draw player 1, with the understanding that we
might be up to 34 pixels (about 36 CPU cycles) into the scanline
by the time it finishes writing to registers. This is why the
FindAnotherSprite routine doesn’t put sprites that are close to the
left side of the screen in the player 1 slot.

.DrawSprite1
; Make sure player 1 index is within bounds

ldy SIndx1
cpy SSize1
bcs .Inactive1 ; index >= size? (or index < 0)

; Lookup/store pixels and colors for player 1
; Note that we are already 30-40 pixels into the scanline
; by this point...

lda (PData1),y
sta GRP1
lda (PColr1),y
sta COLUP1

Now we just repeat the loop, decrementing the various indices:

.Inactive1
dey
sty SIndx1
dec SIndx0

Repeat until we’ve drawn all the scanlines for this job:

dex
bne .DrawNextScanline
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At the end, we free up both player slots by zeroing them out, as
well as cleaning up the player registers:

stx SIndx0
stx SIndx1
stx SSize0
stx SSize1
sta WSYNC
stx GRP0
stx GRP1

.NoSprites
rts

28.4 The Main Loop

The main kernel loop relies on the timer functions in Chapter
12, so the first thing we do is set up the timer:

TIMER_SETUP 216 ; timer <- #$ff
lda #$90
sta COLUBK

The main loop starts by calling FindAnotherSprite twice, which
tries to schedule the next two sprites in the sort order to player
slots:

NextFindSprite
jsr FindAnotherSprite
jsr FindAnotherSprite

We defer the WSYNC and HMOVE so we can do them both at once (if
two sprites were scheduled) which saves us a scanline:

sta WSYNC ; start next scanline
sta HMOVE ; apply the previous fine position(s)

Now we draw any sprites that have been scheduled:

jsr DrawSprites

We strobe HMCLR to erase any previous fine offsets, and then we
check INTIM (the timer) to see if we’re far enough down the
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screen to finish the loop. If so, we call WaitForScanline so that
we end the loop on a known scanline.

sta HMCLR ; reset the old horizontal position(s)
lda INTIM
cmp #$14 ; scanline 198
bcs NextFindSprite
lda #201 ; + 9 lines, end exactly
jsr WaitForScanline

28.5 Sort

The sort routine is called during the VBLANK period. It’s a bubble
sort algorithm, which is pretty simple to implement. The idea
is that you compare successive pairs of entries, and swap them
until they are in order. We just sort the Sorted0 array, not all four
object arrays. The pseudocode looks like this:

if Priority[i] < Priority[i+1]:
Priority[i] = Priority[i+1] = 0
Swap Sorted[i], Sorted[i+1]

else if Y[i] >= Y[i+1]:
Swap Sorted[i], Sorted[i+1]

We run this for each pair of sprite indices – e.g. if there are 8
sprites, we run it for indices 0 through 6 (which swap with 1
through 7).

The 6502 code is not very complicated, just a bunch of indexed
lookups, comparisons, loads, and stores:

; Perform one sort iteration
; X register contains sort index (0 to NSprites-1)
SwapSprites
; First compare Priority[i] and Priority[i+1]

lda Priority0,x
cmp Priority0+1,x
bcs NoPrioritySwap

; If Priority[i] < Priority[i+1], do the swap
; anyway after resetting priorities

lda #0
sta Priority0,x
sta Priority0+1,x ; reset
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ldy Sorted0+1,x
bcc DoSwap ; swap due to priority

NoPrioritySwap
; Compare Y[i] and Y[i+1]

ldy Sorted0,x
lda YPos0,y
ldy Sorted0+1,x
cmp YPos0,y
bcc NoSwap ; Y[i] < Y[i+1]? don’t swap

DoSwap
; Swap Sorted[i] and Sorted[i+1]

lda Sorted0,x ; A <- Sorted[i]
sty Sorted0,x ; Y -> Sorted[i]
sta Sorted0+1,x ; A -> Sorted[i+1]

NoSwap
rts

28.6 Improvements

• Our timing is heavily constrained here by our insistence
on using single-height bitmap and color tables, which
requires we update four registers on every scanline. If we
used double-height tables we would only have to update
two registers per line, but our sprites would have half the
vertical resolution.

• We also are still using WSYNC to find the beginning of the
next scanline, but in really optimized kernels we carefully
analyze our code so that each loop iteration takes exactly
76 CPU cycles, or one scanline. (We made such a kernel in
Chapter 25.)

• Our priority-based sorting algorithm works OK, but has
some weird flickers at times. It also uses too much
memory; we could combine the Sorted0 array with the
Priority0 array (since they both need less than 8 bits) at
the expense of extra CPU cycles.

• You might notice that there are 8-pixel wide black bands
on the left edge of the screen. These are artifacts caused by
the HMOVE register strobe. If you have a black background,
you won’t see this problem. Some Activision games
worked around it by strobing HMOVE after every WSYNC,
whether or not it was needed.

143



29

Random Number Generation

Most games have a need to generate random numbers. Maybe
the game needs an enemy that behaves unpredictably, or re-
quires that a game element appears at random positions on the
screen. This is usually accomplished by using a pseudorandom
number generator (PRNG). This is an algorithm that starts from
a number called a seed and modifies it in a complex way to
generate successive random numbers.

If designed correctly, the PRNG will cycle through a large range
of values that seemingly do not repeat themselves, or only
repeat after many thousands of iterations. This is called the
period of the PRNG.

A common type of PRNG is a linear-feedback shift register (LFSR)
which combines shifts with bit operations to generate numbers.
The operations are usually carefully chosen to maximize the
period of the sequence. For math reasons, only 16 different 8-
bit LFSRs have the maximal period of 255 values (zero is not
allowed, otherwise it’d be 256). This means it’ll cycle through
every non-zero 8-bit number exactly once, in a seemingly
haphazard order, until it repeats.

Because memory is so scarce on the Atari 2600, many games use
LFSRs to generate random worlds for a game instead of a map
stored in the ROM. This is often called procedural generation.
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As long as the game starts with the same seed, the sequence of
numbers will be predictable (deterministic) and all players will
see the same level.

For example, in the classic Activision game Pitfall!, the bits in
the generated numbers correspond to features of the room –
whether it has a pit, vine, etc. In River Raid, they are used to
generate the countours and obstacles in a infinitely scrolling
river course. Since the LFSR eventually cycles through every
value, every possible combination of features will be seen if the
game plays through long enough.

The type of LFSR used in these games is called a Fibonacci LFSR,
and it is computed like this:

lda Random
asl
eor Random
asl
eor Random
asl
asl
eor Random
asl
rol Random

A handy property of some LFSRs is that they can be reversed.
This is used in Pitfall! when the player exits a room to the left.
This code reverses the effect of the previous routine:

lda Random
asl
eor Random
asl
eor Random
asl
asl
rol
eor Random
lsr
ror Random
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There is another type of LFSR called a Galois LFSR which is even
more compact:

lda Random
lsr
bcc .NoEor
eor #$d4 ; #%11010100

.NoEor:
sta Random

We used $D4 in our example, but other constants that give you
the full range of 255 unique numbers include: $8E, $95, $96,
$A6, $AF, $B1, $B2, $B4, $B8, $C3, $C6, $D4, $E1, $E7, $F3, and
$FA.

The inverse is just as simple, we just have to shift left instead of
right, and use a different constant (the original constant rotated
left 1 bit):

lda Random
asl
bcc .NoEor
eor #$a9 ; #%10101001

.NoEor:
sta Random

Since half of the time a Galois LFSR just performs a simple shift,
you may have to iterate them at least twice to get plausible-
looking random values. Because the period of a maximal LFSR
is odd, you can iterate twice and still get the full range of values.

You can also extend a Galois LFSR to 16 bits. It’s pretty much
the same as the 8-bit version, except we use the 16-bit constant
$d400:

lsr Random+1
ror Random
bcc .NoEor
lda Random+1
eor #$d4
sta Random+1

.NoEor:
rts
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And the reverse, which uses the constant $a801 (the previous
constant rotated left by 1 bit):

asl Random
rol Random+1
bcc .NoEor
lda Random
eor #$01
sta Random
lda Random+1
eor #$a8
sta Random+1

.NoEor:
rts

These “magic numbers” give us the full range of values (255 for
the 8-bit version and 65,535 for the 16-bit version) but other
constants will result in shorter periods. LFSRs are also used
in the TIA chip to generate sound, and we’ll see that they are
configurable in a similar way.

Another cheap source of pseudo-randomness is to just read
bytes from the code in the ROM directly, say starting at $F000.
This is sometimes used to provide noisy backgrounds, since
the pattern of bytes is usually random enough to trick the eye.
It’s not great for procedural generation, though, because many
values will be over- or under-represented.

147



30

Procedural Generation

We learned how to use LFSRs to generate sequences of pseudo-
random numbers – now let’s put them to use. We’re going
to build a random series of rooms that the player can walk
through.

We’ll use an 8-bit value to track the room number, just like
Pitfall!. As the player moves from room to room, we’ll use the
LFSR to modify the number. The rooms will look like they’re
random, but the player will be able to revisit old rooms and
they’ll look the same.

Figure 30.1: Procedurally-generated room
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TIP: To access an example with the sample code described
in this chapter, access the Procedural Generation example
available at 8bitworkshop.com. Not only can you modify
the code and see your changes in real-time, but you can also
use arrow keys to navigate rooms!

We’ll use a Galois LFSR (as described in the last chapter) to
modify the value forward and backward:

NextRandom SUBROUTINE
lsr
bcc .NoEor
eor #$d4

.NoEor:
rts

PrevRandom SUBROUTINE
asl
bcc .NoEor
eor #$a9

.NoEor:
rts

We’ll start at room number 1. When we move down off the
bottom of the screen, we’ll go to the next room number by
iterating the LFSR two times. When we move up, we’ll go to the
previous room by reverse-iterating two times. Going left and
right will teleport seven rooms back or seven rooms forward.

These routines will handle changing rooms, using the Y register
to count moving by multiple rooms:

MoveNextRoom
lda RoomType
jsr NextRandom
dey
sta RoomType
bne MoveNextRoom
rts

MovePrevRoom
lda RoomType
jsr PrevRandom
dey
sta RoomType
bne MovePrevRoom
rts
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We’ll use the bits of the room number to define where walls will
be in the room. The plan is to divide the playfield into three
sections:

• Top (3x2 playfield bytes)
• Middle (3x3 playfield bytes)
• Bottom (3x2 playfield bytes)

We’ll store various “wall components” in tables, and use the bits
of the room number to index into these tables. The first two bits
are used to choose between four different top sections:

BuildRoom
lda RoomType
and #3
jsr MulBy3ToX
lda PFRoomTop0+0,x
sta PFData+0
lda PFRoomTop0+1,x
sta PFData+1
lda PFRoomTop0+2,x
sta PFData+2
lda PFRoomTop1+0,x
sta PFData+3
lda PFRoomTop1+1,x
sta PFData+4
lda PFRoomTop1+2,x
sta PFData+5

Then the next two bits are used for the middle:

lda RoomType
ror
ror
and #3
jsr MulBy3ToX
lda PFRoomMid0+0,x
sta PFData+6
lda PFRoomMid0+1,x
sta PFData+7
lda PFRoomMid0+2,x
sta PFData+8
lda PFRoomMid1+0,x
sta PFData+9
lda PFRoomMid1+1,x
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sta PFData+10
lda PFRoomMid1+2,x
sta PFData+11
lda PFRoomMid2+0,x
sta PFData+12
lda PFRoomMid2+1,x
sta PFData+13
lda PFRoomMid2+2,x
sta PFData+14

The bottom section is the reflection of the top section of the
next room, so that the openings match up. (The left and right
rooms will always have compatible openings.) We can easily call
NextRandom to fetch the next room’s value:

lda RoomType
jsr NextRandom
pha
and #3
jsr MulBy3ToX
lda PFRoomTop1+0,x
sta PFData+15
lda PFRoomTop1+1,x
sta PFData+16
lda PFRoomTop1+2,x
sta PFData+17
lda PFRoomTop0+0,x
sta PFData+18
lda PFRoomTop0+1,x
sta PFData+19
lda PFRoomTop0+2,x
sta PFData+20

We also set the room colors, using this room’s number, and since
we’ve already got it, the next room’s number:

lda RoomType
and #$f0
sta COLUBK ; background color
pla ; next random value, stored
ora #$08
sta COLUPF ; foreground color
rts
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We use this subroutine to multiply A by three, because each row
of the playfield is three bytes long:

MulBy3ToX
sta Temp
asl ; X*2
clc
adc Temp ; (X*2)+X
tax ; -> X
rts

Then we’ll display the playfield using the two-line kernel as
described in Chapter 16, but we’ll use another table that maps
a section of the screen into the 21 bytes that define the room.
We’ll call this routine every time we need a new playfield byte:

FetchPlayfield
dec PFOfs
ldx PFOfs
ldy PFOffsets,x ; get index into PFData array
lda PFData,y ; load playfield byte
rts

That’s pretty much it, though we can add a collision routine
that makes the player stop when hitting walls. It does this by
detecting a collision between player and playfield, and if one is
detected it sets the player to its previous position – so the player
appears to “wiggle” between frames:

; Did the player collide with the wall?
bit CXP0FB
bpl NoCollision

; Yes, load previous position
lda YPosPrev
sta YPos0
lda XPosPrev
sta XPos0
jmp NoMoveJoy

NoCollision
; No collision, update previous position and move player

lda YPos0
sta YPosPrev
lda XPos0
sta XPosPrev
jsr MoveJoystick
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31

Drawing Lines

One thing the VCS wasn’t really designed for (among many,
many other things) is drawing arbitrary lines. But nothing’s
stopped us yet, so we’re going to draw some. There are times
when a line comes in handy, like the vine in Pitfall!, or the
proton beams in Ghostbusters.

We’re going to define a line by four components: Its starting and
ending Y coordinate, its starting X coordinate, and a slope:

X1 .byte ; start X coordinate of line
Y1 .byte ; start Y coordinate of line
Y2 .byte ; end Y coordinate of line
Slope .word ; 16-bit slope

The slope is a 16-bit fixed-point quantity. This means that we
treat some of the bits in the value as fractional. In this case, we

Figure 31.1: A line drawn with player objects

153



consider the entire lower byte to be 1/256th of its integer value.
It’s like putting an invisible decimal point between each 8 bits
of the 16-bit value, i.e. between the two bytes.

HiByte LoByte
-------- -------- N = integer part
NNNNNNNN.xxxxxxxx x = fractional part

Since the slope is fractional, we’ll need to track the fractional
part of the line’s X position:

XFrac .byte ; X fractional part

Before we draw anything, we set up the initial horizontal
position of the missile 0 object, which we’ll use to draw the line:

lda X1 ; starting X
ldx #2 ; missile 0
jsr SetHorizPos
sta WSYNC
sta HMOVE ; apply fine offsets

From now on, we’re going to use the HMOVE registers to move the
missile, so we don’t need to actually track its X coordinate in
memory. We’ll look up the HMOVE values in a table that range
from -7 to +8 pixels (as seen in Figure 9.1):

HMoveTable
hex 7060504030201000f0e0d0c0b0a09080

We also have a table that defines the width of the missile for
each X movement. If the X coordinate moves by just -1, 0, or +1
in a scanline, we keep the missile just 1 pixel wide. If it moves
more than that, we progressively expand it to make the line look
solid.

DotWidths
hex 40403030201000000010203030404040
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We track the Y position in the Y register starting at 0. The first
step in the loop is to see if we’re within the upper and lower Y
values:

ldy #0
sty XFrac ; reset X fractional part

ScanLoop
cpy Y1
bcc NoLine ; out of bounds (< Y1)?
cpy Y2
bcs NoLine ; out of bounds (> Y2)?

The NoLine branch just does a WSYNC, hides the missile, and goes
to the next scanline:

NoLine
sta WSYNC
lda #0
sta ENAM0 ; hide missile
jmp NextScan

Then we add the fixed-point slope to the X fractional coordinate:

lda XFrac
clc
adc Slope ; this sets carry flag
sta XFrac

The Carry flag will be set if the X fractional part exceeds 255.
Now we add the high byte of the slope to the Carry flag, plus 7
so that we can index our two tables:

lda Slope+1
adc #7 ; 7 + carry flag
tax ; -> X
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Now we can index our two tables. One looks up the HMOVE value
so we can move the missile, and the other looks up the width of
the missile so we have a solid-looking line if we move more than
1 pixel:

lda DotWidths,x ; lookup register for missile
width

sta Temp ; -> Temp
lda HMoveTable,x ; lookup HMOVE register for X

offset

Now we WSYNC and apply the register values, and also enable the
missile in case it is hidden. Note that we HMOVE before we set
the HMM0 register – this is because we want to delay the line’s
movement until the next scanline, so that the missile’s width
fills up the gap:

NextScan
sta WSYNC
sta HMOVE ; apply moves on previous scanline
ldx #2
stx ENAM0 ; enable missile
ldx Temp
stx NUSIZ0 ; set missile width
sta HMM0 ; set HMM0 for next scanline

Now we increment Y and repeat until we’re out of scanlines:

iny
cpy #192
bcc ScanLoop ; any more scanlines?
beq DoneLine ; branch always taken

Note that we can’t draw near-horizontal lines with this scheme
– we can’t move a missile more than 8 pixels in a single scanline,
and we can’t make the missile more than 8 pixels wide.

Our routine has only got about 10 cycles left to do other stuff.
For a more time-efficient routine, we’d move the Y bounds check
and missile enable/disable out of the loop.

If we didn’t need slopes greater than 45 degrees, we’d could take
out the table lookups and just use a predetermined HMOVE value,
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since each scanline would move either 0 or 1 pixel. Pitfall! uses
a simplified routine that does something like this:

lda XFrac
clc
adc Slope
sta XFrac ; add slope to X fractional part
lda #0
sta HMCLR ; clear HMOVE registers
bcc .noMove
lda HMoveDir ; HMOVE direction, either #$10 or #$f0

.noMove:
sta HMM0 ; store HMOVE register

To run and manipulate a line drawing and animation example,
check out the Drawing Lines sample available at 8bitwork-
shop.com.
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32

The Sound and Music

Generating sound and music on the VCS is a bit tricky. Because
RAM and ROM space is limited, fine control of frequency
(pitch) is limited, which requires us to perform some gymnastics
to compose VCS-compliant tunes.

The TIA chip in the VCS supports two sound channels, which
means it can play two sounds simultaneously. Each channel has
three different registers to tweak, which are:

• Volume (AUDVx) - Can be set from 0 (off) to 15 (loudest).
• Control (AUDCx) - Controls the type of tone, or distortion,

which varies from pure tones to noise to buzzing sounds.
Tone can also be set using values between 0 and 15, though
some values are duplicates.

• Frequency (AUDFx) - Determines pitch, the range of which
varies depending on tone settings. Frequency can be set
from 0 (highest pitch) to 31 (lowest pitch).

The different tones are output by a circuit called a polynomial
counter, also known as a pseudorandom shift register. These nifty
little circuits are heavily used in the TIA chip because they
require fewer transistors to implement than a binary counter.
In the case of sound generation, they also can be configured to
output interesting noises. The shift registers emit a stream of
binary 0s and 1s (before volume is applied), but changing the
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Hex Bits Used
Addr Name 76543210 Description
15 AUDC0 ....xxxx Audio Control Channel 0
16 AUDC1 ....xxxx Audio Control Channel 1
17 AUDF0 ...xxxxx Audio Frequency Channel 0
18 AUDF1 ...xxxxx Audio Frequency Channel 1
19 AUDV0 ....xxxx Audio Volume Channel 0
1A AUDV1 ....xxxx Audio Volume Channel 1

Table 32.1: Sound Registers

Channel 0

AUDC0
AUDF0
AUDV0

Audio Output

Figure 32.1: Audio Channels to Output

tone varies the complexity of the waveform – from simple (like
the pure tone modes) to complex (like white noise).

The Base Frequency column shows the highest frequency pos-
sible for each tone, i.e., when the pitch register is set to 0. This
value acts as a frequency divider, so a pitch value of 1 divides
the frequency by 2, a value of 2 divides by 3, and so on.

The exact frequencies heard by the ear depend on the waveform
output by the shift register. For example, Tones 14 and 15 have
the same base frequency, but Tone 15 sounds one or two octaves
higher because it has more harmonics.

Most of the tones are based on the TIA pixel clock (3.579545
MHz) except for Tones 12-15 which are based on the CPU clock
(divide TIA clock by 3, or 1.193182 MHz).

Since each channel only has 32 distinct values to configure
pitch, playing music can be challenging as the frequencies
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32.1. Music Player

Values Description Base Frequency (Hz)
0,11 Silent
8 White noise
4,5 Pure tone 15720
12,13 Pure tone 5240
1 Buzz 2096
6,10 Square wave 1014.2
7,9 Buzz 1014.2
14 Square wave 338.1
15 Buzz 338.1
2,3 Rumble 67.6

Table 32.2: Audio Control Register Settings

rarely line up with the desired notes of a musical scale, and if
they do, they’re likely out of tune. The best results often come
from VCS-specific compositions. Online tools are available to
optimally match musical notes to VCS register values; check out
webTune2600[6].

We can update the sound registers at any time and the change
takes effect immediately. It’s usually sufficient to only update
them once per frame, i.e., every 1/60th second on NTSC.

32.1 Music Player

Our score (the encoded representation of the music) consists of
three types of objects: Tracks, patterns, and notes.

There are two tracks, one for each audio channel. Each track
consists of a list of patterns, each entry being a byte offset into
the Patterns array.

A pattern is a list of variable-length notes, each of which is
defined by a pitch and duration.

The patterns in the tracks are played in-order until one ends,
and then both tracks are restarted. It’s up to the composer to
make sure that the durations in each track line up properly.

160



32.1. Music Player

Patterns consist of NOTE or TONE commands. TONE sets the tone
of the channel (the AUDCx register) and NOTE plays a note with a
duration taken from a lookup table. TONE 0 ends a pattern.

Notes have the following format:

• lower 5 bits - pitch
• upper 3 bits - duration

If duration is zero, then it’s a TONE command, and instead of
setting the pitch, we set the tone of that channel.

Both channels share the same logical array for tracks and
patterns, so both tracks can take up to 255 bytes total, and all
patterns can use up to 255 bytes total.

The music player as-implemented uses 8 bytes of RAM (not
counting stack). We store the current byte offset into the tracks

array, one for each track. Same thing for the patterns array.
We also store the current note and duration remaining for each
track.

trk0idx equ $e0 ; offset into tracks for
channel 0

trk1idx equ $e1 ; offset into tracks for
channel 1

pat0idx equ $e2 ; offset into patterns for
channel 0

pat1idx equ $e3 ; offset into patterns for
channel 1

chan0dur equ $e4 ; current note duration
channel 0

chan1dur equ $e5 ; current note duration
channel 1

chan0note equ $e6 ; current note pitch channel 0
chan1note equ $e7 ; current note pitch channel 1

In our main frame loop, we call the music subroutine during the
VBLANK period, once for each channel/track:

TIMER_SETUP 37
ldx #0
jsr MusicFrame
ldx #1
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32.1. Music Player

jsr MusicFrame
TIMER_WAIT

This should take no more than a few scanlines to complete in the
worst case. The MusicFrame routine first decrements the note’s
duration, checking to see if it is finished playing:

MusicFrame
dec chan0dur,x ; decrement note duration
bpl SkipLoadNote ; only load if duration < 0

If a note is currently playing, we grab its pitch and set the
appropriate TIA register. We also calculate the volume as
(duration_remaining/2) and stuff that into the TIA volume
register:

PlayNote
lda chan0note,x
sta AUDF0,x
lda chan0dur,x
clc
ror
sta AUDV0,x
rts

But if there is no note yet playing, or if we just finished one, we
have to load the next note in the pattern:

TryAgain
ldy pat0idx,x ; load index into pattern

table
lda Patterns,y ; load pattern code
beq NextPattern ; end of pattern?

If the byte loaded is zero, our pattern has ended and we have
to go to NextPattern which loads the next pattern in the track.
Otherwise, we continue:

inc pat0idx,x ; increment pattern index for
next time

pha ; save A for later
clc ; clear carry for ROR
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32.1. Music Player

ror ; shift A right by 5 to get
top 3 bits

ror
ror
ror
ror
and #7 ; only take top 3 bits
beq NoteTone

Note that instead of 5 RORs we could also do 4 ROLs, sinced the
rotate instructions shift through the carry bit and wrap around
to the other side.

This decodes the note’s duration, by shifting right five bits with
ROR and isolating the first three bits with AND. We use BEQ to check
if the duration is zero, since this indicates a special case with a
TONE command. Otherwise, we continue:

tay ; Y = duration
lda DurFrames,y ; look up in duration table
sta chan0dur,x ; save note duration
pla ; pop saved value into A
and #$1f ; extract first 5 bits
sta chan0note,x ; store as note value

We’ve looked up the duration in DurFrames, which gives us the
number of frames to play the note. We store that value and then
PLA to get the original note so we can extract the first 5 bits as
the note’s pitch. Then we store that value too, and continue on
to PlayNote.

If we had got a TONE command, we’d have a zero duration, and
we’d branch to this routine which would set the tone register:

NoteTone
pla
and #$f
beq NextPattern
sta AUDC0,x
jmp TryAgain

But if we got a TONE 0 command, we’d instead go to NextPattern,
which would load the next pattern offset in the track and then
continue:
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32.1. Music Player

NextPattern
ldy trk0idx,x
lda Track0,y
beq ResetTrack
sta pat0idx,x
inc trk0idx,x

And if the next pattern offset was also zero, we’d reset both
tracks back to the beginning:

ResetTrack
lda #0
sta trk0idx
lda #Track1-Track0
sta trk1idx

Improvements:

• The NoteTone subroutine just tapers off the volume linearly.
We could have a different “envelope” that tapers upwards
then downwards, or any other shape driven by a table.
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33

Pseudo-3D: Sunsets and Starry
Nights

If there’s one thing the VCS can’t do well, it’s 3D graphics! In
1977, the closest thing to a 3D game was Atari’s Night Driver,
which featured a track of black and white rectangular pylons.
Nevertheless, game developers quickly learned how to “fake
it,” giving players the impression of 3D graphics using 2D
techniques. This is often refered to as pseudo-3D, or “2 1/2-D.”
It’s more art than science, using smoke and mirrors (color and
shape) to fool the eye into perceiving depth.

We’ll do this scene in multiple segments:

1. Sky, clouds, and sunset
2. Mountains
3. Stars at night

33.1 Sky, Clouds, and Sunset

One easy way to convince the player that they’re gazing into the
distance is to show them a pretty sunset. The team at Activision
specialized in sunsets, starting with the title Barnstorming. A
sunset-colored stripe even became part of their logo.

It turns out the VCS is pretty good at sunsets, since it has 128
different colors and can draw horizontal lines pretty well.
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33.1. Sky, Clouds, and Sunset

Figure 33.1: Sunset with clouds and mountains

A convincing sunset is going to need a couple of things. First, it
needs to appear to recede to the horizon. So we’re going to draw
horizontal segments of color starting at 16 pixels of height, then
14, 12, 10, 8, 6, 4, and 2 pixels high.

The sunset is also going to need convincing color. We’re going
to give each successive segment a different color, looking them
up from a table. The table will go from the black of night all the
way through the colors of the sunrise and morning to blue, then
back again through sunset, twilight, and back to black. Our
starting index will be based on time-of-day in the game, so as
we cycle around the array, we’ll see sunrise and sunset.

We’ll also add clouds. We’ll just use the playfield registers to
display them, and the bitmaps will come from another table.
Their color will come from the same table used for the sky color;
we’ll just offset the index by 2.

This will give the clouds a nice glowing effect at sunrise, since
they’ll be a little brighter than the sky and give a nice contrast.
At sunset, they’ll be a little darker. (Fun fact: The cloud
tables are actually too short, and the lookups spill over into
neighboring arrays, but it looks okay anyway... Rule #1 of VCS
programming: if it looks alright, keep it!)

lda TimeOfDay+1 ; offset into sunset color table
and #$3f
tay
lda #16 ; initial height of sky segment

.SkyLoop2
tax ; height -> X
pha ; push original height

.SkyLoop
lda SunsetColors,y ; get sunset color
sta WSYNC ; start scanline
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33.2. Mountains

sta COLUBK ; set background color
lda SunsetColors+2,y ; get cloud color
sta COLUPF ; set foreground color
lda CloudPFData0,x ; load clouds -> playfield
sta PF0
lda CloudPFData1,x
sta PF1
lda CloudPFData2,x
sta PF2
dex
bne .SkyLoop ; repeat until sky segment

done
iny ; next sky color
tya
and #$3f ; keep sky color in range 0-63
tay ; sky color -> Y
pla ; restore original segment

height
sec
sbc #2 ; segment height - 2
cmp #2 ; done with segments?
bcs .SkyLoop2 ; no, repeat

33.2 Mountains

Now, after the sky is done, we’ll draw a short seven-line segment
of mountains. This will give an even more interesting look.
We’ll again use the playfield for the mountains, and make them
a flat color. We’ll keep incrementing the sky color on every
scanline to make the sunset look like it’s peeking out from
behind the mountains.

We’ll also have the mountains change colors during the game-
day, using a lookup table with only 16 entries (as opposed to
64 for the sky and clouds). This is similar to the previous loop,
except we do one scanline at a time. We also have a 16-entry
table for the ground color, which we’ll set after we draw the
mountains.

lda TimeOfDay+1
lsr
lsr ; divide time-of-day by 4
and #$f ; keep in range 0-15
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33.3. Stars at Night

tax ; -> Y
lda MountainColors,x ; load mountain color
sta COLUPF ; set foreground
lda GroundColors,x ; load ground color
pha ; save it for later
ldx #0
stx PF0
stx PF1 ; to avoid artifacts, we have

to
stx PF2 ; clear previous clouds

.MtnLoop
lda SunsetColors,y ; get sunset color
sta WSYNC ; start scanline
sta COLUBK ; set background color
lda MtnPFData0,x ; load mountains -> playfield
sta PF0
lda MtnPFData1,x
sta PF1
lda MtnPFData2,x
sta PF2
iny ; next sky color
tya
and #$3f ; keep sky color in range 0-63
tay ; sky color -> Y
inx
cpx #7 ; only 7 scanlines for the

mountains
bne .MtnLoop
pla ; restore ground color
sta COLUBK ; set background

33.3 Stars at Night

Since drawing the sky is fun, let’s try to do a night sky with
stars. This takes advantage of a TIA “feature” involving the ball

object. Whenever you reset the ball position with RESBL, the TIA
draws it immediately at the current TIA color clock. You can
draw as many balls as you want on a given scanline, and if you
strobe RESBL in a loop across multiple scanlines, you can make a
pattern of dots.

For stars, we’re going to wait a “random” time between each
ball. We don’t need a lot of variation, but just enough to make
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33.3. Stars at Night

Figure 33.2: Pseudo-3d road with stars

sure the stars don’t line up in any discernable pattern. So we
generate pseudorandom numbers by reading the code in ROM,
test/shift a few of their bits, and use branch instructions (which
take three cycles if the branch is taken, two if not) to add
between zero and four additional cycles between each star. This
gives us a nice star density but also adds enough spacing that
the stars look randomly distributed.

To figure out when to stop drawing stars, we’ll read the timer
register and stop when it goes below a predetermined value.

DrawNight subroutine
lda #6
sta ENABL ; enable ball
sta COLUPF ; set ball color
ldy #0

.MoreStars
sta RESBL ; strobe the ball to display a star
adc Start,y ; "randomize" the A register
bmi .Delay1 ; +1 cycle if bit 7 set

.Delay1
ror ; shift lo bit into carry
bcs .Delay2 ; +1 cycle if bit 0 set

.Delay2
ror ; shift lo bit into carry
bcs .Delay3 ; +1 cycle if bit 1 set

.Delay3
ror ; shift lo bit into carry
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33.3. Stars at Night

bcs .Delay4 ; +1 cycle if bit 2 set
.Delay4

iny ; next "random" number
ldx INTIM ; load timer
cpx #$89 ; timer says we’re done?
bcs .MoreStars ; nope, make more stars
lda #0
sta ENABL ; disable ball
rts

You can tweak the various delay branches until you get a star
pattern that looks good to you.

So far so good; we’ve got a nice little gradiated sky with clouds
and mountains, and a solid-colored ground. In the next chapter
we’ll learn how to build a curving road disappearing to the
horizon.

TIP: To see this code and the code from Chapter 34:
Driving Down the Road in action and directly manipulate
it in real-time, check out the Pseudo 3D example on
8bitworkshop.com.
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34

Pseudo-3D: Driving Down the
Road

You may have seen games on the VCS like Activision’s Enduro
and Atari’s Pole Position that are from the perspective of a
camera above and behind a car. The car is driving on a track that
disappears into the horizon. It’s not sorcery, just some clever
manipulation of TIA graphics objects.

We already used the playfield to draw clouds and mountains,
but we’re going to now leave that alone and use the two missiles
and ball objects. With these, we’ll draw the two shoulders of the
road, and also the dashed center line.

Our plan is this: The two missiles and ball all start at the same
position on the horizon. As we go down the screen, we’ll move
the three objects slightly based on the curve of the road. The left
shoulder of the road will be biased a little more to the left, and
the right shoulder will bias a little more right. We can use the
HMOVE registers for movement, since each object will not need to
move more than seven pixels on any given scanline.

It’d be easier if the scanlines went from bottom to top, because
we could just start at the horizontal center of the screen and
follow the road curve to the horizon, ending up wherever the
road takes us. But scanlines go top to bottom, so we have to
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Figure 34.1: Pseudo-3d road with sunset

also do some preprocessing before the frame begins to figure
out where the road ends up.

We’re also going to need an array to define the contours of the
track as it ascends to the horizon. We’ll generate this curve data
on-demand using the random number generators described in
previous chapters. Positive values indicate a curve to the right,
negative values curve left.

So let’s review our plan:

1. Preprocessing: Evaluate the track from near-to-far, build-
ing an array of X coordinates from bottom-to-horizon.

2. Setup: Set all three objects (missile 0, missile 1, ball)
to the same X position, which is the final point we just
evaluated closest to the horizon.

3. Kernel: Draw successive road segments from far to near,
moving the three objects in accord with the X coordinate
array we built. To show perspective, we’ll bias missile 0 to
the left and missile 1 to the right. The ball will be used to
draw the centerline.

4. Generate: Add the player’s speed to the fractional track
position, and if this overflows, generate a new piece of
track curve data.

Each of these steps will be a little complicated, so we’ll go one
at a time. First, we’ll describe the preprocessing step.
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Because we want our track to be able to curve by less than one
pixel, we’ll use fixed-point math (as described in Chapter 31).
We’ll use a 16-bit value for the current X coordinate, and a 16-
bit value for the current line slope (XVel).

We start at the bottom center of the screen, and, as we evaluate
the curve into the distance, we modify XPos (horizontal position)
using XVel (horizontal slope), and modify TPos (the track posi-
tion) using TrackLookahead (the increment of the track position
at each step).

The C-ish pseudocode looks like this:

XPos = 72;
TPos = TrackFrac;
for (int i=31; i>=0; i++) {

XPos += XVel;
RoadX[i] = XPos>>8;
XVel += TrackData[TPos>>8];
TPos += TrackLookahead;
TrackLookahead++;

}

We only need an 8-bit value for TrackFrac, which is the fractional
track position: how far the player has traveled along the track. If
we were keeping the curve data for the track in ROM, we’d use
a 16-bit value and use the high byte to index into that array. But
since we generate track data on-demand, we shift the array and
only use the fractional part of the track position.

Note that the 6502 does not have a “shift right 8 bits” instruc-
tion – how could it, with 8-bit registers? Instead, we just load
the high byte of the 16-bit number. For example, LDA XPos loads
the low byte, and LDA XPos+1 loads the high byte.

Here’s the code:

XPos .word ; 16-bit X position
XVel .word ; 16-bit X velocity
TPos .word ; 16-bit track position
TrackLookahead .byte ; current fractional track increment

NumRoadSegments equ 28
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; Preprocessing result: X positions for all track segments
RoadX0 REPEAT NumRoadSegments

.byte
REPEND

; Setup initial values
lda #0
sta XVel
sta XVel+1
sta XPos
lda #70 ; approx. center of screen
sta XPos+1
lda TrackFrac
sta TPos
lda #0
sta TPos+1
lda #10 ; initial lookahead
sta TrackLookahead
ldx #NumRoadSegments-1

.CurveLoop
; Modify X position
; XPos += XVel (16 bit add)

lda XPos
clc
adc XVel
sta XPos
lda XPos+1
adc XVel+1
sta XPos+1
sta RoadX0,x ; store in RoadX0 array

; Modify X velocity (slope)
; XVel += TrackData[TPos]

ldy TPos+1 ; get track data offset
lda TrackData,y ; load track curve data
clc ; clear carry for ADC
bmi .CurveLeft ; track slope negative?
adc XVel
sta XVel
lda XVel+1
adc #0 ; carry +1
jmp .NoCurveLeft

.CurveLeft
adc XVel
sta XVel
lda XVel+1
sbc #0 ; carry -1
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nop ; make the branch timings are the same
.NoCurveLeft

sta XVel+1
; Advance TPos (TrackData index)
; TPos += TrackLookahead

lda TPos
clc
adc TrackLookahead
sta TPos
lda TPos+1
adc #0
sta TPos+1

; Go to next segment
inc TrackLookahead ; see further along track
dex
bpl .CurveLoop

The preprocessing routine takes up a fair number of cycles; in
fact we can’t really do it in the standard 37-line VBLANK section,
so we extend VBLANK to 40 lines.

Now we have to set up the TIA moveable objects. We load the
first X coordinate of our array, which is the last coordinate we
computed and the one closest to the horizon. Then we use the
tried-and-true SetHorizPos technique to set the position of the
two missiles and ball, all in the same scanline. We’ll use a
lookup table (HMoveTable) to save a couple of cycles.

lda RoadX0 ; get horizon X position
sta HMCLR ; clear HMOVE registers
sec ; set carry for SBC
sta WSYNC

.DivideLoop
sbc #15 ; subtract 15
bcs .DivideLoop ; branch while carry still set
adc #15 ; +15 to make positive remainder
tay
lda HMoveTable,y ; lookup HMOVE value
sta HMM0 ; set missile 0 fine offset
sta HMBL ; set ball fine offset
sta HMM1 ; set missile 1 fine offset
sta RESM0 ; set missile 0 position
sta RESBL ; set ball position
sta RESM1 ; set missile 1 position
sta WSYNC
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sta HMOVE ; apply fine offsets

Because the three STA RESM0/RESBL/RESM1 instructions take three
cycles each, our objects will be nine pixels apart. We’d like them
a little closer than that, so we do an HMOVE for each of them to
bring them a little closer together:

lda #$90 ; right 7 pixels
ldy #$70 ; left 7 pixels
ldx #$00 ; no movement
sta HMM0
sty HMM1
stx HMBL
sta WSYNC
sta HMOVE ; apply fine offsets

Historical Note: Pole Position used the BRK instruction to set
all three HMxx registers in just three cycles – I’ll leave it as an
exercise to the reader to figure out how they did it!

You might be wondering why we load all three registers before
storing all three values – it’s because the HMxx registers don’t like
being set within 24 CPU cycles of strobing HMOVE, or weird things
can happen. So we give them a little breathing room.

Now that we have our moveable objects where we want them at
the horizon, we walk back up the road (down the screen). For
each segment, we look up the X coordinate difference between
this segment and the next. Then we look up the appropriate
value in HMoveTable to move the center line object (the ball).
For the left and right shoulders, we simply look up a value in
HMoveTable offset by -2 or +2 so that each side is biased toward
the left or right:

lda TrackFrac
asl
asl ; TrackFrac * 4
sta ZOfs ; for animated stripe
ldx #0
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.RoadLoop
lda RoadColors,x ; color of sides and center line
sta COLUP0
sta COLUP1
sta COLUPF
lda RoadX0+1,x ; get next X coordinate
sec
sbc RoadX0,x ; subtract this X coordinate
clc
adc #7 ; add 7
tay ; -> Y
lda HMoveTable-2,y ; left side biased -2
sta HMM0 ; -> missile 0 fine offset
lda HMoveTable,y ; center line
sta HMBL ; -> ball fine offset
lda HMoveTable+2,y ; right side biased +2
sta HMM1 ; -> missile 1 fine offset
sta WSYNC
sta HMOVE ; apply fine offsets
sta WSYNC

The dashed road stripe is a prime example of “fake it ’til you
make it” and its appearance has nothing to do with geometry.
We initialize a counter to the fractional track position, then
we subtract the PIA timer (which decreases as we go down the
screen) for each segment as an approximation of Z distance (the
Z coordinate = into the screen).

We also have a lookup table that we use to load the NUSIZ

registers so that the missiles (road shoulders) get wider as we
get closer to the bottom of the screen:

lda ZOfs
sec
sbc INTIM
sta ZOfs ; ZOfs -= timer
rol
rol
rol ; shift left by 3
sta ENABL ; enable ball (bit 2)
sta WSYNC
lda RoadWidths,x ; lookup register for missile size
sta NUSIZ0
sta NUSIZ1
sta WSYNC
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inx
cpx #NumRoadSegments-1
bne .RoadLoop

Finally, we describe how we generate the track curve data. The
curve data is stored in a five-byte buffer – this is about as far as
our display routines look ahead. When a new value needs to be
generated, we’ll discard the first (nearest to the camera) value,
move the other values up one slot, and put the new value in the
last (furthest toward the horizon) slot. We’ll do this whenever
the TrackFrac value overflows, and the player won’t even notice
the transition.

To make meandering curves, we’ll have a target value (GenTarget),
a current value (GenCur), and a delta value (GenDelta). We’ll move
the current value toward the target, and whenever they cross
we’ll make a new random target and delta value, ensuring that
the delta value is always going in the direction of the target. The
pseudocode looks like this:

PrevGenCur = GenCur
GenCur += GenDelta
if ((GenCur >= GenTarget && GenTarget >= 0) ||

(GenCur < GenTarget && GenTarget < 0)) {
GenTarget = random number from -31..32
if (GenTarget - GenCur >= 0)

GenDelta = random number from 1..15
else

GenDelta = random number from -15..-1
GenCur = PrevGenCur

}

Here’s the code:

Random .byte ; random counter
GenTarget .byte ; target of current curve
GenDelta .byte ; curve delta
GenCur .byte ; current curve value

; Generated track curve data
TrackLen equ 5
TrackData REPEAT TrackLen

.byte
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REPEND

GenTrack subroutine
; Shift the existing track data one byte up
; (a[i] = a[i+1])

ldx #0
.ShiftTrackLoop

lda TrackData+1,x
sta TrackData,x
inx
cpx #TrackLen-1
bne .ShiftTrackLoop

; Modify our current track value and
; see if it intersects the target value

lda GenCur
clc
adc GenDelta
cmp GenTarget
beq .ChangeTarget ; target == cur?
bit GenTarget ; see if target >=0 or <0
bmi .TargetNeg
bcs .ChangeTarget ; target>=0 && cur>=target
bcc .NoChangeTarget

.TargetNeg
bcs .NoChangeTarget ; target<0 && cur<target

; Generate a new target value and increment value,
; and make sure the increment value is positive if
; the target is above the current value, and negative
; otherwise
.ChangeTarget

jsr NextRandom ; get a random value
and #$3f ; range 0..63
sec
sbc #$1f ; range -31..32
sta GenTarget ; -> target
cmp GenCur
bmi .TargetBelow ; current > target?
jsr NextRandom ; get a random value
and #$f ; mask to 0..15
jmp .TargetAbove

.TargetBelow
jsr NextRandom
ora #$f0 ; mask to -16..0

.TargetAbove
ora #1 ; to avoid 0 values
sta GenDelta ; -> delta
lda GenCur
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.NoChangeTarget
; Store the value in GenCur, and also
; at the end of the TrackData array

sta GenCur
sta TrackData+TrackLen-1
rts

TIP: To see this code in action and directly manipulate
it in real-time, check out the Pseudo 3D example on
8bitworkshop.com.

There are several improvements we could make to this:

• We only move the road objects every four scanlines. This
makes road shoulders in the distance look like tall pylons.
It’d be better if we could move every scanline, but we don’t
have enough memory or CPU cycles to compute and store
112 lines of X positions. One possible solution is to use
multiple HMOVE lookup tables to interpolate each TIA object
between two X positions.

• We could add sprites of several different scales to repre-
sent cars and road objects. We could probably use the
same HMOVE technique to move them, as long as we limit
ourselves to two sprites per screen. Alternatively, we
could sneak in a repositioning step on a spare scanline.
One problem is that we’ve already set all three of our color
registers to the same value, so we’d either have to make
sprites the same color or lose the center line.

• There are lots of different ways to color the road graphics
– alternating stripe colors, or schemes that depend on
changing weather.

• Allow the viewpoint to move left and right between lanes.
Since you want to keep the vanishing point at the horizon
fixed, you’d have to introduce a bias to the preprocessing
step that’s proportional to the offset of the viewpoint.

• Implement clipping, where we’d track the position of the
road components and hide them when they stray off the
sides of the screen.

• Can we draw a sun? A moon? A speedometer? A track
timer?
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35

Bank Switching

The VCS design has a couple of significant limitations that we’ve
discussed:

• 128 bytes of RAM
• 4096 (4KB) of ROM program memory

Thanks to a “forgiving” architecture, many games have gotten
around both limitations by adding hardware to the cartridge
itself. For example, the Super Chip was an extension from
Atari that added another 128 bytes of RAM, which was usually
mapped at address $1000. Only later games like Dig Dug and
Crystal Castles took advantage of this.

The ROM limitation was a bit trickier. The VCS has a cheaper
variant of the 6502 (the 6507) that is physically missing address
bus pins, and so can only map 8KB of memory. 4KB of that is
reserved for cartridge ROM, and there’s no way for the cartridge
to expose anything beyond its address space at $1000-1FFF.

Because of the missing pins of the 6507, the full 16-bit address
space is not used, and only 13 bits are valid. Since we can only
address 213 ($2000) bytes, the following ranges are equivalent:

$0000-$1FFF, $2000-$3FFF, $4000-$5FFF, $6000-$7FFF
$8000-$9FFF, $A000-$BFFF, $C000-$DFFF, $E000-$FFFF
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35.1. Trampolines

By convention, most people use $F000-$FFFF for non-bankswitched
4K ROMs.

Starting with the Atari port of Asteroids, many cartridges got
around the 4KB ROM code limit using a method called bankswitch-
ing. The cartridge uses the same 4KB address space, but can
swap in different sections of code when the CPU touches a
special set of soft switch addresses in ROM address space.

There are many different bankswitching methods, and they’re
commonly referred to by the address of the first soft switch.
We’ll talk about F8 bankswitching, which is the earliest method.

F8 bankswitching has two soft switchs, $1FF8 and $1FF9. Access-
ing the first address switches to bank #0, accessing the second
switches to bank #1. Each bank is 4KB, so the entire 4K region
from $1000-$1FFF is replaced.

The bank switch happens more or less instantaneously as far as
the CPU is concerned. What happens if the CPU is currently
executing instructions in the section being swapped out? The
PC (Program Counter) remains the same, but the next instruc-
tion fetched will be from the new ROM segment. If we’re not
careful, we could switch out the current instruction from under
our feet!

35.1 Trampolines

One way to be safe is to put a trampoline at the same location in
all ROM segments to safely switch banks without the rug being
pulled out under you. Instead, we bounce into another code
bank. The trampoline needs to hit the soft switch address, then
transfer control to a new routine. We might use the trampoline
like so:

ldy #<(NewRoutine-1) ; lo byte of new PC
lda #>(NewRoutine-1) ; hi byte of new PC
ldx #0 ; bank number
jmp BankSwitch ; do the switch

182



35.1. Trampolines

The trampoline would look like this:

BankSwitch
pha ; push hi byte
tya ; Y -> A
pha ; push lo byte
bit $1FF8,x ; do the bank switch
rts ; return to target

This is a pretty succinct trampoline, but requires some explain-
ing. We’re using the RTS instruction to transfer control to a new
location after the bank switch, but without a JSR. Instead, we’re
faking the JSR by pushing the return address of the non-existent
JSR onto the stack, which we’ve passed in registers Y and A to
the trampoline. When we RTS, the CPU will pop off the address
and go where we want.

Note that we use the address (NewRoutine-1) as the destination –
this is because RTS increments the Program Counter before exe-
cuting the next instruction. Make sure you use the parenthesis,
because you want to subtract before taking the lo/hi byte, not
afterwards.

There’s another case we need to worry about, which is power-
up time. We don’t know which bank will be selected at power-
up, so the first thing we need to do is select it and jump to the
starting routine. The easiest way is to just put this code right
before the trampoline:

BankResetStart
ldy #<(Start-1)
lda #>(Start-1)
ldx #0
; ... execution continues with trampoline

Then we just ensure that each bank contains an identical RESET

vector in $FFFC/FFFD that points to this routine, and that the
BankResetStart/BankSwitch code is present at the same location
in all banks.

In a real program, you’d probably use a macro to make this stuff
foolproof. The example in subsection 35.4 demonstrates this.
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35.2. Common Bankswitching Methods

You can also check out the Bankswitching example available in
the 8bitworkshop emulator.

NOTE: When bankswitching, we always use a read instruction
(BIT and CMP work well, or even the undocumented nop aaaa

instruction) because write instructions may cause bus conflicts.

35.2 Common Bankswitching Methods

There are three “simple” bankswitching schemes used in Atari
games:

Method Size Soft Switches
F8 8K $1FF8-$1FF9

F6 16K $1FF6-$1FF9

F4 32K $1FF4-$1FFB

Table 35.1: Common Bankswitching Schemes

There are many other third-party and homebrew mapping
schemes; you can find more detailed descriptions online[7].

35.3 ORG vs. RORG

You might see statements in bankswitched code that look like
this:

;;; BANK 0
org $1000
rorg $F000

;;; BANK 1
org $2000
rorg $F000

We’ve seen ORG before, but not RORG. ORG means origin and RORG

means relocatable origin. ORG affects where the code is physically
placed in the ROM image, but RORG is where the code thinks it’s
placed. In most VCS bankswitching methods, the ORGs will be
evenly spaced and the RORGs will be identical.
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35.4. Bankswitching Example

35.4 Bankswitching Example

processor 6502
include "vcs.h"
include "macro.h"
include "xmacro.h"

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

seg.u Variables
org $80

Temp .byte

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; Macro that implements Bank Switching trampoline
; X = bank number
; A = hi byte of destination PC
; Y = lo byte of destination PC

MAC BANK_SWITCH_TRAMPOLINE
pha ; push hi byte
tya ; Y -> A
pha ; push lo byte
lda $1FF8,x ; do the bank switch
rts ; return to target
ENDM

; Macro that performs bank switch
MAC BANK_SWITCH

.Bank SET {1}

.Addr SET {2}
lda #>(.Addr-1)
ldy #<(.Addr-1)
ldx #.Bank
jmp BankSwitch
ENDM

seg Code
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; BANK 0

org $1000
rorg $F000

;----The following code is the same on both banks----
Start
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35.4. Bankswitching Example

; Ensure that bank 0 is selected
lda #>(Reset_0-1)
ldy #<(Reset_0-1)
ldx #0

BankSwitch
BANK_SWITCH_TRAMPOLINE

;----End of bank-identical code----
Reset_0

CLEAN_START
lda #$30
sta COLUBK ; make the screen red
bit INPT4 ; test button
bmi Reset_0 ; button not pressed, repeat

; Switch to Bank 2 routine
lda #>(Main_1-1)
ldy #<(Main_1-1)
ldx #1
jmp BankSwitch

; Bank 0 epilogue
org $1FFA
rorg $FFFA
.word Start ; NMI
.word Start ; RESET
.word Start ; BRK

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; BANK 1

org $2000
rorg $F000

;----The following code is the same on both banks----
Start
; Ensure that bank 0 is selected

lda #>(Reset_0-1)
ldy #<(Reset_0-1)
ldx #0

BankSwitch
BANK_SWITCH_TRAMPOLINE

;----End of bank-identical code----
Main_1

inc Temp
lda Temp
sta COLUBK ; make rainbows
bit INPT4 ; test button
bpl Main_1 ; button is pressed, repeat
BANK_SWITCH 0,Reset_0

186



35.4. Bankswitching Example

; Bank 1 epilogue
org $2FFA
rorg $FFFA
.word Start ; NMI
.word Start ; RESET
.word Start ; BRK
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36

Wavetable Audio

The VCS can produce a variety of shrill and flatulent noises
which work surprisingly well for sound effects, but unless
you’re a fan of “flat twos” and the Phrygian mode, you may not
be completely satisfied with its musical abilities.

Activision’s Pitfall 2 was the zenith of VCS technical achieve-
ments in 1984. It featured a custom “Display Processor Chip”
(DPC) chip inside the cartridge, to which the CPU would offload
several CPU-intensive functions like sprite calculation. Another
thing it would do is generate three-voice music and pipe it
through a single VCS sound channel.

It turns out we can do the same thing the DPC chip does with
music, except we’ll use most of our CPU time doing it.

36.1 Audio Waveforms

A digital device produces audio by varying the amplitude of a
waveform at fixed intervals, driven by a table of values. Each
value is called a sample. On the VCS, these samples are all
generated by the TIA chip output at configurable frequencies.

Instead of letting the TIA have all the fun, we can have the
CPU output samples. The TIA has a mode (0) that continuously
outputs a flat signal. If the CPU varies the volume of the TIA’s
output, it can generate its own waveform.
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36.2. Generating Samples

For timing, we can use the TIA’s scanline generator. It outputs
262 scanlines per frame, 60 times a second, which gives us an
effective upper frequency of 15720 Hz. The range of human
hearing is usually 10-17 Khz, so this will be fine.

36.2 Generating Samples

For each software-generated voice, we have a 16-bit cycle counter,
and a 16-bit delta value. When we need a sample, we add the
delta to the cycle counter and use the high byte to look up a
value in the wavetable. Using pseudocode, this looks like:

Cycle = (Cycle + Delta) & $1F00
AUDV0 = Wavetable[Hi(Cycle) & $1F]

Here’s the equivalent 6502 code:

lda Cycle0Lo
clc
adc Delta0Lo
sta Cycle0Lo
lda Cycle0Hi
adc Delta0Hi
and #$1F
sta Cycle0Hi ; Cycle = (Cycle+Delta) &

0x1f00
tay ; hi byte -> Y
lda Wavetable,y ; lookup sample in wavetable
sta AUDV0 ; store in audio volume

register

To mix two voices together, we just perform this operation twice
and average the result:

; Get first channel phase, put in X
lda Cycle0Lo
clc
adc Delta0Lo
sta Cycle0Lo
lda Cycle0Hi
adc Delta0Hi
and #$1F
sta Cycle0Hi
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36.2. Generating Samples

tax
; Get second channel phase, put in Y

lda Cycle1Lo
clc
adc Delta1Lo
sta Cycle1Lo
lda Cycle1Hi
adc Delta1Hi
and #$1F
sta Cycle0Hi
tay

; Lookup wavetable entry and sum
lda Wavetable,y
clc
adc Wavetable,x

; Divide by 2 and store to volume register
lsr
sta AUDV0

We can mix two voices for each TIA audio channel for a total of
four simultaneous voices. This takes the CPU about 140 cycles,
which is almost two scanlines, so when generating four-voice
wavetable audio, we don’t have time left over to do much video,
unfortunately. It also gives us an upper frequency of 7860 Hz.

Our wavetable is 32 bytes long. This table defines a simple
triangle-shaped wave, but it could be a sine wave or any other
form:

Wavetable
hex 00010203 04050607 08090a0b 0c0d0e0f
hex 0f0e0d0c 0b0a0908 07060504 03020100

We can use a precomputed table of delta values for each note in
the chromatic scale:

align $100
NoteDeltas

word 9, 9, 10, 10, 11, 11, 12, 13, 14, 14, 15, 16
word 17, 18, 19, 20, 22, 23, 24, 26, 27, 29, 30, 32
word 34, 36, 38, 41, 43, 46, 48, 51, 54, 57, 61, 65
word 68, 72, 77, 81, 86, 91, 97, 102, 108, 115, 122,

129
word 137, 145, 153, 163, 172, 182, 193, 205, 217,

230, 244, 258
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36.2. Generating Samples

word 273, 290, 307, 325, 344, 365, 387, 410, 434,
460, 487, 516

word 547, 579, 614, 650, 689, 730, 773, 819, 868,
920, 974, 1032

word 1093, 1159, 1227, 1300, 1378, 1460, 1546, 1638,
1736, 1839, 1948, 2064

word 2187, 2317, 2455, 2601, 2755, 2919, 3093, 3277,
3472, 3678, 3897, 4128

word 4374, 4634, 4910, 5202, 5511, 5839, 6186, 6554,
6943, 7356, 7793, 8257

word 8748, 9268, 9819, 10403, 11022, 11677, 12371,
13107

And load them into one of the 4 voices like this:

ldy #48
lda NoteDeltas,y
sta Delta0Lo
lda NoteDeltas+1,y
sta Delta0Hi

All we’ve done here is play a droning infinite chord, but you
could extend this code to make a music player by loading differ-
ent notes at appropriate intervals, as we do in the Wavetable
Sound example in the 8bitworkshop emulator. Displaying
graphics at the same time would be tricky to say the least,
but dedicated Atari homebrew authors have done it (look for
a cartridge called Stella’s Stocking online).
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37

Paddles

The paddles are potentiometers (knobs) that travel 330 degrees
and have a single button. The VCS supports up to four of
them. There’s really no equivalent device on most standard
game controllers or keyboards, but here’s how to read them
anyway.

First, reading the switches on each paddle is just like reading
the joysticks/switches, as we did in Chapter 19. There are 4 bits
in the SWCHA register, one for each paddle:

Paddle # Register Bit #
0 SWCHA 7
1 SWCHA 6
2 SWCHA 3
3 SWCHA 2

Table 37.1: Paddle Buttons

Just like the joysticks, the bit is 0 if the paddle button is pressed,
1 otherwise.

Reading the potentiometer (knob) value is a little more com-
plicated. We would like a single number that reads 0 when
the paddle is turned all the way counter-clockwise, and at its
maximum (say, 255 or $FF) when turned all the way clockwise.
But that’s not how it works on the VCS.
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The paddles are connected to a capacitor, which charges at
different rates depending on the position of the potentiometer.
You read the paddle position by measuring the time it takes for
the potentiometer to discharge. Oddly enough, the capacitor is
controlled by the VBLANK register:

VERTICAL_SYNC
lda #$82
sta VBLANK ; turn off video; dump paddles to ground

TIMER_SETUP 37
TIMER_WAIT
lda #0
sta VBLANK ; turn on video; remove ground dump

The paddles take a while to discharge, so you have to poll
(check) the paddle values during the video kernel loop:

TIMER_SETUP 192
.Loop

lda INTIM ; get timer value
beq .Exit
bit INPT0 ; paddle discharged?
bpl .Discharged ; yes, store value
.byte $2c ; skip next insn (BIT opcode)

.Discharged
sta Paddle1 ; store paddle value

; ... draw video ...
jmp .Loop

.Exit

Note that this loop doesn’t draw anything, it just checks the
paddle position continuously until the bottom of the frame. If
you wanted to add graphics, you’d have to add STA WSYNCs and
other stuff, but keep the paddle-checking code (you could make
it a macro, too).

If the paddle is turned all the way right, it will discharge almost
immediately. If centered, it will take about 190 scanlines to
discharge. It turned all the way left, it will take about 380
scanlines – way more than the number of scanlines in a frame!

This means you not only have to check paddles during the 192
scanlines of your visible frame, but all through the overscan,
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Hex Bits Used
Addr Name 76543210 Description
38 INPT0 x....... Dumped Input Port 0
39 INPT1 x....... Dumped Input Port 1
3A INPT2 x....... Dumped Input Port 2
3B INPT3 x....... Dumped Input Port 3

Table 37.2: Paddle Registers

VSYNC and VBLANK periods too – and measuring a single
paddle might take two frames! This is highly annoying, which
explains why most VCS games used the joysticks.

Confused by this code?

10 01 bpl .Discharged ; yes, store value
2c .byte $2c ; skip next insn (BIT)

.Discharged
85 80 sta Paddle1 ; store paddle value

When the branch is taken, the STA instruction executes.
When it isn’t taken, the $2C opcode is interpreted as a
BIT aaaa instruction, and the two bytes of the STA instruction
are interpreted as its operand – in other words, the STA is not
executed.

Another handy property of this routine is that no matter
which branch is taken, the timing will be the same (6 cycles).
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Illegal Opcodes

Translating the 8-bit opcode for a 6502 instruction into actions
that the CPU can perform is called decoding, and it requires
a fair bit of silicon to pull off. Not every opcode is a valid
instruction – some instructions are considered “illegal,” and
the chip designers decided to save silicon by not explicitly
preventing them from executing.

Most of these illegal instructions don’t crash the CPU, but result
in odd combinations of other instructions – if this was David
Letterman, they might be on the segment “Stupid CPU Tricks!”

However, some of them can be useful in some situations. It’s
unlikely that early VCS developers took advantage of them,
because they were probably worried about compatibility with
future hardware. But if you are willing to break the official
rules, you can save a few cycles where there’s no other good
option. (Note that some recent Atari clones, like the Flashback
2, are reported not to support these instructions, so caveat
emptor.)

A lot of these instructions combine two different 6502 opera-
tions, for instance:

SAX - Performs a bitwise AND with A and X, then stores the result.
No flags are affected.

195



LAX - LDA then TAX. All addressing modes are available except for
immediate.

ANC - AND with immediate mode operand then copy bit 7 (Nega-
tive/Sign) to Carry.

ASR - AND with immediate mode operand then LSR.
ARR - AND then ROR. Sets Carry and Overflow bits strangely.
SBX - X = (A AND X)-#operand. Sets Negative, Zero, Carry.

Some of these instructions read memory, modify the result, and
then write back to memory.

DCP - DEC followed by CMP.
ISB - INC followed by SBC.
RLA - ROL followed by AND.
RRA - ROR followed by ADC.
SLO - ASL followed by ORA.
SRE - LSR followed by EOR.

The DCP instruction is handy for sprite-drawing routines, be-
cause you often have to decrement a line-counter variable and
then compare it to a sprite-height variable. For example:

lda #SpriteHeight
dcp LinesLeft
bcs SkipDraw

The ISB instruction can be used similarly, which we saw in
Chapter 16.
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Timing Analysis

Since CPU timing is critical in VCS programming, you often
have to count CPU cycles. If any of your loops take more than 75
cycles per iteration, you risk missing a scanline. It’s even more
difficult when you have multiple branches and variable-cycle
instructions.

The IDE has a nifty little tool that helps you count cycles.
It performs a flow analysis on the code, counting the cycles
for each instruction it finds. For each instruction, it records
the minimum and maximum number of CPU cycles from the
previous STA WSYNC instruction.

You can run the flow analysis tool at any time (as long as your
code assembles properly) by clicking the hourglass button.
The tool may take a few seconds to run.

For example, let’s take this simple loop, similar to one we
described in Chapter 5:

f028 9 2 ldx #192
f02a 11 3 lda BGColor

ScanLoop
f02c 5-14 2 adc #1
f02e 7-16 3 sta COLUBK
f030 10-19 3 sta WSYNC
f032 0 2 dex
f033 2 2 bne ScanLoop
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If the timing column (second column from the left) is of the
form “X-Y”, this means that the CPU cycle count since the last
WSYNC is no less than X and no more than Y. If it is of the form
“X”, the cycle count is exactly X.

As we see here, the instruction immediately after the STA WSYNC

instruction has a cycle count of 0. This means the first cycle of
the DEX instruction starts at the very beginning of a scanline. The
next instruction, BNE, has a cycle count of 2, which means it is 6
color clocks into the scanline – still within the HBLANK period.

The BNE jumps back to the ScanLoop label. We see that the first
instruction of that loop has a range of 5-14. The minimum value
of 5 comes from the BNE instruction – 2 plus 3 cycles for the
branch. The 14 comes from the instructions leading up to the
loop. The flow analysis merges the two values at the branch
target.

The flow analysis records values up to 152 (two scanlines) so
you can analyze both one-line and two-line kernels.
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Making Games

We’ve spent a lot of time on the intricacies of VCS programming
and learned a lot of tricks and techniques. How do we use all
that we’ve learned to make a full-fledged game?

Well, it’s really just a manner of putting all the pieces together.
Chapter 21’s brick-busting game got pretty close, even though
it used less than 1000 bytes of ROM.

40.1 Game Design

On the VCS, game design is largely an answer to the question
“what can we do?” In other words, technical limitations drive
the design.

It’s common to start by mapping out the game’s primary display
scanline-by-scanline, accounting for players, missiles, and ball
along the way. The most memorable VCS games multitasked all
of the display objects – for instance, in Pitfall!, the player objects
not only were used for the player and obstacles, but also to draw
the branches of the trees overhead.

Don’t forget that you can use missiles and ball to draw up to 3
vertical lines. In Adventure, the missiles were used as walls, and
in River Raid, the ball was used as a fuel gauge.
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40.2. Game Programming

It might also be wise at this point to map out the main variables
you’ll need in your game, since you only have 128 bytes of RAM
to work with. You’ll also want to account for the memory usage
of RAM-hungry kernels like the ones in Chapters 23 and 26,
and look at possibly sharing memory between different areas of
code.

40.2 Game Programming

Now that you have the design figured out, it’s just a simple
matter of programming! Just use your fingers to type the keys
in the correct order!

Joking aside, it’s a good idea to start with a template like the
skeleton NTSC frame example in Figure 12.1 (the IDE creates
one automatically). It’s also convenient to create subroutines
where possible, like this:

NextFrame
VERTICAL_SYNC
TIMER_SETUP 37
jsr FrameSetup
TIMER_WAIT
TIMER_SETUP 192
jsr DrawFrame
TIMER_WAIT
TIMER_SETUP 30
jsr FrameEnd
TIMER_WAIT
jmp NextFrame

Sometimes you don’t have the extra 12 CPU cycles to spare for
a JSR/RTS cycle, so it’s okay to inline the code, too.

Most VCS games showed the same basic display whether or not
a game was active. If you need a title screen or other wholly
separate display kernels, you could duplicate the main loop
entirely, or maybe just use the JMP (xx) instruction to switch
between different kernels:
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40.3. Distributing Your Game

TIMER_SETUP 192
jmp (CurrentKernel)

BackFromKernel ; make sure kernel jumps back here
TIMER_WAIT

As usual, it’s a tradeoff between shaving off a few CPU cycles, a
few bytes of ROM, or making the code more readable.

Historical Note: Some games featured an “attract mode” which
cycled the color palette when the game was inactive for a period
of time, preventing CRT burn-in. This was usually done by EOR-
ing with a slowly-changing variable before setting color registers.

40.3 Distributing Your Game

Now that you’ve put hours of work into your game designing,
developing, playtesting, and tweaking, it’s time to share it with
the world!

The easiest way is to just click the "Share" button in the IDE
which generates a shareable Web URL. Anyone opening this link
will see the source code and be able to play the emulated game
in the browser. You can also download the ROM file from the
IDE and distribute it for use in other emulators like Stella.

If you want to play your game on actual hardware, there
are several options. First, you have to get a console. For
ultimate authenticity, you can pick up a vintage Atari VCS/2600
online. You’ll need to either visit a thrift store to pick up a
CRT television (recommended) or find a monitor that has a
composite input.

You could also find a used Atari Flashback 2, which is a modern
reinvention of the VCS that accepts external cartridges and
outputs HDMI.

Now you have to get your game’s ROM into the console. The
easiest way is probably the Harmony Cartridge[8]. Just put your
ROM on a SD or microSD card, slide it into the cartridge, and
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40.3. Distributing Your Game

then pop the cartridge into your game console. From there you
can select from available ROMs using an onscreen menu.

You could also DIY your own cartridge by programming a fast
microcontroller to respond to memory requests in the same way
a ROM chip would, and then building a breadboard with a
cartridge slot connector. This is outside the scope of this book,
but plenty of resources are available online.

Once you are satisfied with your game, you can pay for a service
like AtariAge to manufacture your very own cartridge complete
with a custom label.
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Troubleshooting

When programming for the Atari, there are times when nothing
seems to work no matter what you try! In this chapter, we’ll list
symptoms you may encounter that indicate common problems,
and include tips for solving them.

Screen “flips” continuously

You are not drawing the right number of scanlines. Make sure
your code draws exactly 262 scanlines by counting WSYNCs and
by using the timer routines in Chapter 12. You can see the
current number of scanlines by clicking the emulator window
and typing Ctrl-G (Alt-G on Mac).

Screen “flips” periodically

If the screen flips only every once in a while, you might have
code that misses scanlines. Make sure you don’t spend more
than 75 cycles before a STA WSYNC. If you are using the timer
routines, you may be running past the TIMER_END macro.

Sprites or objects wiggle by one scanline

You may have forgotten to clear (CLC) the carry flag before an ADC,
or set (SEC) the carry flag before a SBC. This leaves the carry flag
in whatever state it was in, and thus the addition or subtraction
might be off by zero or one.
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Garbled sprite that changes with horizontal position

You may be writing a register too late. See if you can rearrange
things so that registers are written to in the 22-CPU cycle HBLANK

period.

Sprites are smeared or move quickly horizontally across the
screen

You may be forgetting to reset the HMxx registers (STA HMCLR being
the easiest way), so the sprites move every time HMOVE is strobed.

Setting GRPx registers has no effect

You may have set a VDEL register without realizing it, and maybe
you aren’t alternating writes to GRP0 and GRP1.

Timing problems

If timing isn’t as consistent as you expect it to be, you may have
indexed memory accesses across page boundaries (which add +1
cycle) or branches across page boundaries (which add +1 cycle).

Branches don’t seem to work properly

Make sure you consult the table in Chapter 1 and that you don’t
have any intervening instructions that modify flags.

$ vs % vs #

Remember that $ is for hexadecimal numbers, and % is for
binary numbers. Anything else is treated as a decimal number.

Also remember that unless your operand is prefixed with #, the
instruction loads from memory.

Errors in include files

When using macros, errors might be flagged at the line of the
include declaration instead of where the macro is invoked.

“Unresolved symbol” in macro

For some reason, DASM does not (at the time of this writing)
allow forward references in macros. If you reference a label in a
macro, it must be declared before the macro is invoked.
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Appendix A: VCS Memory Map

Hex Bits Used
Addr Name 76543210 Description
00 VSYNC ......x. Vertical Sync
01 VBLANK xx....x. Vertical Blank /

Latched Port Enable
02 WSYNC strobe Wait for Horizontal Blank
04 NUSIZ0 ..xxxxxx Number-size

Player/Missile 0
05 NUSIZ1 ..xxxxxx Number-size

Player/Missile 1
06 COLUP0 xxxxxxx. Color – Player/Missile 0
07 COLUP1 xxxxxxx. Color – Player/Missile 1
08 COLUPF xxxxxxx. Color – Playfield/Ball
09 COLUBK xxxxxxx. Color – Background
0A CTRLPF ..xx.xxx Control Playfield, Ball
0B REFP0 ....x... Reflect Player 0
0C REFP1 ....x... Reflect Player 1
0D PF0 xxxx.... Playfield 0 (pixels 0-3)
0E PF1 xxxxxxxx Playfield 1 (pixels 4-11)
0F PF2 xxxxxxxx Playfield 2 (pixels 12-19)
10 RESP0 strobe Reset Player 0
11 RESP1 strobe Reset Player 1
12 RESM0 strobe Reset Missile 0
13 RESM1 strobe Reset Missile 1
14 RESBL strobe Reset Ball
15 AUDC0 ....xxxx Audio Control Channel 0
16 AUDC1 ....xxxx Audio Control Channel 1
17 AUDF0 ...xxxxx Audio Frequency Channel 0
18 AUDF1 ...xxxxx Audio Frequency Channel 1
19 AUDV0 ....xxxx Audio Volume Channel 0
1A AUDV1 ....xxxx Audio Volume Channel 1
1B GRP0 xxxxxxxx Graphics Bitmap Player 0
1C GRP1 xxxxxxxx Graphics Bitmap Player 1
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Hex Bits Used
Addr Name 76543210 Description
1D ENAM0 ......x. Enable Missile 0
1E ENAM1 ......x. Enable Missile 1
1F ENABL ......x. Enable Ball
20 HMP0 xxxx.... Horizontal Motion Player 0
21 HMP1 xxxx.... Horizontal Motion Player 1
22 HMM0 xxxx.... Horizontal Motion Missile 0
23 HMM1 xxxx.... Horizontal Motion Missile 1
24 HMBL xxxx.... Horizontal Motion Ball
25 VDELP0 .......x Vertical Delay Player 0
26 VDELP1 .......x Vertical Delay Player 1
27 VDELBL .......x Vertical Delay Ball
28 RESMP0 ......x. Reset Missile 0 to Player 0
29 RESMP1 ......x. Reset Missile 1 to Player 1
2A HMOVE strobe Apply Horizontal Motion

(fine offsets)
2B HMCLR strobe Clear Horizontal Motion

Registers
2C CXCLR strobe Clear Collision Latches
30 CXM0P xx...... Collision M0-P1, M0-P0
31 CXM1P xx...... Collision M1-P0, M1-P1
32 CXP0FB xx...... Collision P0-PF, P0-BL
33 CXP1FB xx...... Collision P1-PF, P1-BL
34 CXM0FB xx...... Collision M0-PF, M0-BL
35 CXM1FB xx...... Collision M1-PF, M1-BL
36 CXBLPF x....... Collision BL-PF
37 CXPPMM xx...... Collision P0-P1, M0-M1
38 INPT0 x....... Dumped Input Port 0
39 INPT1 x....... Dumped Input Port 1
3A INPT2 x....... Dumped Input Port 2
3B INPT3 x....... Dumped Input Port 3
3C INPT4 x....... Latched Input Port 4
3D INPT5 x....... Latched Input Port 5

80-FF – xxxxxxxx 128 Bytes RAM
0280 SWCHA xxxxxxxx Joysticks/Controllers
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Hex Bits Used
Addr Name 76543210 Description
0281 SWACNT xxxxxxxx Port A DDR

(Data Direction Register)
0282 SWCHB xxxxxxxx Console Switches
0283 SWBCNT xxxxxxxx Port B DDR

(hardwired as input)
0284 INTIM xxxxxxxx Timer Output
0294 TIM1T xxxxxxxx Set 1 Cycle Timer
0295 TIM8T xxxxxxxx Set 8 Cycle Timer
0296 TIM64T xxxxxxxx Set 64 Cycle Timer
0297 T1024T xxxxxxxx Set 1024 Cycle Timer

VCS Memory Map Table
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Appendix B: VCS Colors

Hex +0 +1 +2 +3 +4 +5 +6 +7
00 black dim gray dim gray gray
10 teal midnight blue sea green steel blue
20 navy midnight blue steel blue steel blue
30 navy midnight blue steel blue steel blue
40 dark blue midnight blue dark slate blue slate blue
50 indigo dark orchid dark orchid slate blue
60 purple brown indian red indian red
70 maroon brown sienna indian red
80 dark red firebrick sienna indian red
90 maroon saddle brown sienna indian red
a0 maroon saddle brown sienna dark khaki
b0 dark green dark olive green dark olive green dark khaki
c0 dark green forest green dark olive green cadet blue
d0 dark green forest green sea green cadet blue
e0 dark green dark slate gray dark slate gray cadet blue
f0 navy midnight blue dark slate blue steel blue
Hex +8 +9 +10 +11 +12 +13 +14 +15
00 dark gray silver gainsboro white smoke
10 med. turquoise med. turquoise turquoise aquamarine
20 steel blue steel blue med. turquoise sky blue
30 slate blue cornflower blue cornflower blue light sky blue
40 slate blue med. purple sky blue light sky blue
50 med. orchid med. orchid light steel blue lavender
60 pale violet-red pale violet-red violet light pink
70 indian red pale violet red dark salmon light pink
80 indian red dark salmon dark salmon light pink
90 indian red burlywood dark salmon navajo white
a0 dark khaki tan burlywood navajo white
b0 dark khaki dark khaki pale goldenrod pale green
c0 dark seagreen dark seagreen light green pale green
d0 dark seagreen med. aquamarine light green aquamarine
e0 cadetblue med. aquamarine med. aquamarine pale turquoise
f0 steel blue med. aquamarine sky blue light sky blue
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Appendix C: 6502 Opcodes

Opcode Mnemonic Addressing Mode Cycles
79 ADC aaaa,y 4+
7D ADC aaaa,x 4+
69 ADC #aa 2
61 ADC (aa,x) 6
71 ADC (aa),y 5+
75 ADC aa,x 4
65 ADC aa 3
6D ADC aaaa 4
0B ANC* #aa 2
2B ANC* #aa 2
39 AND aaaa,y 4+
3D AND aaaa,x 4+
29 AND #aa 2
21 AND (aa,x) 6
31 AND (aa),y 5+
35 AND aa,x 4
25 AND aa 3
2D AND aaaa 4
8B ANE* #aa 0
6B ARR* #aa 2
0A ASL 2
1E ASL aaaa,x 7
16 ASL aa,x 6
06 ASL aa 5
0E ASL aaaa 6
4B ASR* #aa 2
90 BCC branch if carry clear 2++
B0 BCS branch if carry set 2++
F0 BEQ branch if equal 2++
24 BIT aa 3
2C BIT aaaa 4
30 BMI branch if negative 2++
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Opcode Mnemonic Addressing Mode Cycles
D0 BNE branch if not equal 2++
10 BPL branch if positive 2++
00 BRK 7
50 BVC branch if overflow clear 2++
70 BVS branch if overflow set 2++
18 CLC 2
D8 CLD 2
58 CLI 2
B8 CLV 2
D9 CMP aaaa,y 4+
DD CMP aaaa,x 4+
C9 CMP #aa 2
C1 CMP (aa,x) 6
D1 CMP (aa),y 5+
D5 CMP aa,x 4
C5 CMP aa 3
CD CMP aaaa 4
E0 CPX #aa 2
E4 CPX aa 3
EC CPX aaaa 4
C0 CPY #aa 2
C4 CPY aa 3
CC CPY aaaa 4
C3 DCP* (aa,x) 8+
D3 DCP* (aa),y 8+
DB DCP* aaaa,y 7+
DF DCP* aaaa,x 7+
D7 DCP* aa,x 6+
C7 DCP* aa 5
CF DCP* aaaa 6
DE DEC aaaa,x 7
D6 DEC aa,x 6
C6 DEC aa 5
CE DEC aaaa 3
CA DEX 2
88 DEY 2
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Opcode Mnemonic Addressing Mode Cycles
59 EOR aaaa,y 4+
5D EOR aaaa,x 4+
49 EOR #aa 2
41 EOR (aa,x) 6
51 EOR (aa),y 5+
55 EOR aa,x 4
45 EOR aa 3
4D EOR aaaa 4
FE INC aaaa,x 7
F6 INC aa,x 6
E6 INC aa 5
EE INC aaaa 6
E8 INX 2
C8 INY 2
E3 ISB* (aa,x) 8+
F3 ISB* (aa),y 8+
FB ISB* aaaa,y 7+
FF ISB* aaaa,x 7+
F7 ISB* aa,x 6+
E7 ISB* aa 5
EF ISB* aaaa 6
4C JMP aaaa 3
6C JMP (aaaa) 5
20 JSR aaaa 6
BB LAS* aaaa,y 0
BF LAX* aaaa,y 4+
A3 LAX* (aa,x) 6+
B3 LAX* (aa),y 5+
B7 LAX* aa,y 4+
A7 LAX* aa 3
AF LAX* aaaa 4
B9 LDA aaaa,y 4+
BD LDA aaaa,x 4+
A9 LDA #aa 2
A1 LDA (aa,x) 6
B1 LDA (aa),y 5+
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Opcode Mnemonic Addressing Mode Cycles
B5 LDA aa,x 4
A5 LDA aa 3
AD LDA aaaa 4
BE LDX aaaa,y 4+
A2 LDX #aa 2
B6 LDX aa,y 4
A6 LDX aa 3
AE LDX aaaa 4
BC LDY aaaa,x 4+
A0 LDY #aa 2
B4 LDY aa,x 4
A4 LDY aa 3
AC LDY aaaa 4
4A LSR 2
5E LSR aaaa,x 7
56 LSR aa,x 6
46 LSR aa 5
4E LSR aaaa 6
AB LXA* #aa 0
EA NOP 2
1C NOP* aaaa,x 4+
3C NOP* aaaa,x 4+
5C NOP* aaaa,x 4+
7C NOP* aaaa,x 4+
DC NOP* aaaa,x 4+
FC NOP* aaaa,x 4+
80 NOP* #aa 0
82 NOP* #aa 0
89 NOP* #aa 0
C2 NOP* #aa 0
E2 NOP* #aa 0
1A NOP* - 0
3A NOP* - 0
5A NOP* - 0
7A NOP* - 0
DA NOP* - 0
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Opcode Mnemonic Addressing Mode Cycles
FA NOP* - 0
14 NOP* aa,x 4
34 NOP* aa,x 4
54 NOP* aa,x 4
74 NOP* aa,x 4
D4 NOP* aa,x 4
F4 NOP* aa,x 4
04 NOP* aa 3
44 NOP* aa 3
64 NOP* aa 3
0C NOP* aaaa 4
19 ORA aaaa,y 4+
1D ORA aaaa,x 4+
09 ORA #aa 2
01 ORA (aa,x) 6
11 ORA (aa),y 5+
15 ORA aa,x 4
05 ORA aa 3
0D ORA aaaa 4
48 PHA 3
08 PHP 3
68 PLA 4
28 PLP 4
23 RLA* (aa,x) 8+
33 RLA* (aa),y 8+
3B RLA* aaaa,y 7+
3F RLA* aaaa,x 7+
37 RLA* aa,x 6+
27 RLA* aa 5
2F RLA* aaaa 6
2A ROL 2
3E ROL aaaa,x 7
36 ROL aa,x 6
26 ROL aa 5
2E ROL aaaa 6
6A ROR 2
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Opcode Mnemonic Addressing Mode Cycles
7E ROR aaaa,x 7
76 ROR aa,x 6
66 ROR aa 5
6E ROR aaaa 6
63 RRA* (aa,x) 8+
73 RRA* (aa),y 8+
7B RRA* aaaa,y 7+
7F RRA* aaaa,x 7+
77 RRA* aa,x 6+
67 RRA* aa 5
6F RRA* aaaa 6
40 RTI 6
60 RTS 6
83 SAX* (aa,x) 6+
97 SAX* aa,y 4+
87 SAX* aa 3
8F SAX* aaaa 4
F9 SBC aaaa,y 4+
FD SBC aaaa,x 4+
E9 SBC #aa 2
EB SBC* #aa 0
E1 SBC (aa,x) 6
F1 SBC (aa),y 5+
F5 SBC aa,x 4
E5 SBC aa 3
ED SBC aaaa 4
CB SBX* #aa 2
38 SEC 2
F8 SED 2
78 SEI 2
93 SHA* (aa),y 0
9F SHA* aaaa,y 0
9B SHS* aaaa,y 0
9E SHX* aaaa,y 0
9C SHY* aaaa,x 0
03 SLO* (aa,x) 8+
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Opcode Mnemonic Addressing Mode Cycles
13 SLO* (aa),y 8+
1B SLO* aaaa,y 7+
1F SLO* aaaa,x 7+
17 SLO* aa,x 6+
07 SLO* aa 5
0F SLO* aaaa 6
43 SRE* (aa,x) 8+
53 SRE* (aa),y 8+
5B SRE* aaaa,y 7+
5F SRE* aaaa,x 7+
57 SRE* aa,x 6+
47 SRE* aa 5
4F SRE* aaaa 6
81 STA (aa,x) 6
91 STA (aa),y 6
95 STA aa,x 4
85 STA aa 3
99 STA aaaa,y 5
9D STA aaaa,x 5
8D STA aaaa 4
96 STX aa,y 4
86 STX aa 3
8E STX aaaa 4
94 STY aa,x 4
84 STY aa 3
8C STY aaaa 4
AA TAX 2
A8 TAY 2
BA TSX 2
8A TXA 2
9A TXS 2
98 TYA 2
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Appendix D: 6502 Instruction Flags

Summary of Documented 6502 Instructions
Mnemonic Flags Affected Expression

ADC NZCV A += opr
AND NZ A &= opr
ASL NZC opr «= 1
BCC - branch if C==0
BCS - branch if C==1
BEQ - branch if Z==0
BIT NZV (A & opr); V = bit 6
BMI - branch if N==1
BNE - branch if Z==1
BRK B –
BVC - branch if V==0
BVS - branch if V==1
CLC C C = 0
CLD D D = 0
CLV V V = 0
CMP NZC (A - opr)
CPX NZC (X - opr)
CPY NZC (Y - opr)
DEC NZ opr–
DEX NZ X–
DEY NZ Y–
EOR NZ A ˆ= opr
INC NZ opr++
INX NZ X++
INY NZ Y++
JMP - PC = opr
JSR - push PC-1; PC = opr
LDA NZ A = opr
LDX NZ X = opr
LDY NZ Y = opr
LSR NZC A »= 1
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Summary of Documented 6502 Instructions
Mnemonic Flags Affected Expression

NOP - –
PHA - [S–] = A
PHP - [S–] = P
PLA NZ A = [++S]
PLP all P = [++S]
ORA NZ A |= opr
ROL NZC A = (A«1) | C
ROR NZC A = (A»1) | (C*128)
SBC NZCV A -= opr
SEC C C = 1
SED D D = 1
STA - opr = A
STX - opr = X
STY - opr = Y
TAX NZ X = A
TAY NZ Y = A
TXA NZ A = X
TYA NZ A = Y
TSX NZ X = S
TXS NZ S = X

N = Negative (Sign)
Z = Zero
C = Carry
V = Overflow
D = Decimal
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Summary of Illegal 6502 Instructions
Mnemonic Flags Affected Expression

ANC NZC A &= #opr
ASR NZC A = (A & #opr) » 1
ARR NZCV A = (A & #opr) » 1
DCP NZC (A - opr–)
ISC NZCV A -= opr++
LAS NZ A=X=S = opr & S
LAX NZ A=X = opr
RLA NZC A = (rol A) & opr
RRA NZCV A = (ror A) + opr
SBX NZC X = (A & X) - #opr
SLO NZC A = (A «= 1) | opr
SRE NZC A = (A »= 1) ôpr

N = Negative (Sign)
Z = Zero
C = Carry
V = Overflow
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211
indirect addressing, 75
logical operations, 13
mnemonic, 6
pointers, 75
shift operations, 15
stack, 12
writing loops, 7

ball, 63
BCD mode, 94

6-digit score, 123
addition, 126

clockslide, 127
collisions, 97

bricks, 107
color

background, 37
playfield, 39
sprites, 49

color clock, 31
color tables, 49
controls

console switches, 71
joysticks, 73

paddles, 207
coordinates, 42
CPU cycles

constant number of,
138

DASM, 18

fixed-point math, 110, 165,
186

hexadecimal notation, 3

IDE, 17
assembler, 18
debugging, 20
emulator, 18

keyboard shortcuts,
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Javatari, 18

kernel, 41
four-phase, 85
skeleton, 69
two-line, 79
two-line and vertical

delay, 90
WSYNC-free, 129

linear-feedback shift
register, 155

16-bit, 157
Fibonacci, 156
Galois, 157
procedural generation,

159
sound circuits, 171
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starfield, 182
local labels, 64
lookup tables, 49

memory map, 23
missile

drawing, 138
missiles, 63
music player, 173

nibble, 3
NTSC, 31
NTSC frame, 33

player objects, 43
horizontal positioning,

45
playfield, 39

asynchronous, 103
full-screen bitmap, 99
kernel, 80, 85
score mode, 92, 96

pseudo-3D graphics, 179
stars, 182
sunsets, 179

pseudorandom number
generator, 155

register
strobing, 36

registers
AUD (sound), 171
ball, 62
COLUBK, 37
COLUPF, 39
CTRLPF, 91
CX (collision), 97
HMCLR, 56, 168, 189

HMOVE, 55, 151, 166,
189

artifacts, 153
INTIM (timer), 67
missiles, 62
NUSIZ, 90, 191
PF0/1/2 (playfield), 39
player bitmap, 45
REF (reflection), 89
RES (reset position), 46
SWCHA (joystick), 73
SWCHB (switches), 71
TIM64T (timer), 67
VBLANK, 36
VDEL (vertical delay),

90
VSYNC, 36
WSYNC, 33

scanlines, 31
SetHorizPos, 63, 143, 166,

189
signed vs. unsigned, 3
sound, 171

DPC chip, 203
music player, 173
wavetables, 204

sprites, 44
48-pixel, fixed, 113
48-pixel, moveable, 127
48-pixel, text, 117
color tables, 49
multiple, 143
number and size

registers, 90
priority, 91
reflection, 89
retriggering, 131
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single-height vs.
double-height, 49

text
12 character, 117
scoreboard, 93

timer, 67
approximate scanline,

142
drawing missiles, 138
macros, 69
scanline lookup table,

140
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