

Devpac 3
for the Amiga

The Old School, Greenfield, Bedford MK45 5DE, UK
tel +44 (0) 1525 718181 • fax +44 (0) 1525 713716

wwwk hisoft co. uk • www cinema4d. com

Devpac 3 for the Amiga®
By HiSoft

© Copyright 1991 HiSoft. All rights reserved.

Program: designed and programmed by HiSoft

Manual: written by David Nutkins, Alex Kiernan and Keith Wilson

This guide and the Devpac 3 program diskettes contain proprietary
information which is protected by copyright. No part of the software or
the documentation may be reproduced, transcribed, stored in a
retrieval system, translated into any language or transmitted in any
form without express prior written consent of the publisher and
copyright holder(s).

HiSoft shall not be liable for errors contained in the software or the
documentation or for incidental or consequential damages in
connection with the furnishing, performance or use of the software or
the documentation.

HiSoft reserves the right to revise the software and/or the
documentation from time to time and to make changes in the content
thereof without the obligation to notify any person of such changes.

Published by HiSoft

The Old School, Greenfield, Bedford MK45 5DE UK

First Edition, November 1991 - ISBN 0 948517 47 6
Reprinted with minor corrections - June 1992

Contents HiSoft Devpac 3 Page i

Table of Contents

Preface to Devpac 3 1

Introduction 1

How to use the Manual 2

A Course for the Beginner 2

A Course for Seasoned Assembler Programmers 3

Devpac Version 2 Users 3

System Requirements 4

Typography 4

Typefaces 4

Acknowledgements 5

A Quick Tutorial 6

Chapter 1 Introduction 11

Devpac 3 Disk Contents 11

Program Disk 12

Include disk 13

Always make a back-up 14

Installation 14

Registration Card 15

The README File 15

Page ii HiSoft Devpac 3 Contents

Chapter 2 Using the Editor 17

Introduction 17

The Editor 18

Starting the Editor 19

Requesters and gadgets 20

Menus and sub-menus 26

The Editor's windows 28

Entering text and moving the cursor 31

Bookmarks 34

Deleting text 35

Block Commands 36

Searching 39

Disk Operations 42

Macros 45

Settings 47

Assembler settings 51

Miscellaneous Commands 53

Assembling Programs 55

Program menu 57

Error commands 59

Keyboard command summary 61

Contents HiSoft Devpac 3 Page iii

Chapter 3 The Assembler 65

Introduction 65

Invoking the Assembler 65

From the Editor 65

Assembly to Memory 71

Stand-Alone Assembler 71

Assembly Process 74

Return Codes 75

Binary file types 75

Types of code 77

Assembler Statement Format 78

Label field 78

Mnemonic Field 79

Operand Field 79

Comment Field 79

Expressions 80

Local Labels 89

Instruction Set 91

Word Alignment 91

Assembler Directives 93

Assembly Control 93

Assembler Directives 106

Repeat Loops 110

Listing Control 110

Label Directives 113

Floating Point Directives 117

Conditional Assembly 119

Page iv HiSoft Devpac 3 Contents

Macro Operations 122

Output File Formats 130

Choosing the Right File Format 131

Output File Directives 131

Sections 131

Imports & Exports 133

Motorola S-records (SREC L6) 135

Directive Summary 136

Chapter 4 The Debugger 139
Introduction 139

MonAm Concepts 140

Exceptions 140

Front Panel Display 142

MonAm and Multi-Tasking 145

Symbolic Debugging 145

MonAm Requesters 146

Command Input 147

MonAm Overview 147

MonAm Reference 151

Numeric Expressions 151

Window Types 154

Cursor Keys 158

Window Commands 159

Other A Commands 164

Screen Switching 165

Contents HiSoft Devpac 3 Page v

Breakpoints 166

History 169

Quitting MonAm 170

Loading & Saving 171

Executing Programs 172

Searching Memory 173

Miscellaneous 175

Command Summary 180

Debugging Stratagem 182

Restrictions 182

Hunting 182

Exception Analysis 183

Chapter 5 The Linker 187
A simple Blink command line 187

Concepts 187

ALVs 188

Near DATA/BSS 188

Directives 188

Input directives 189

Output directives 189

Map files 191

Options 192

WITH' files 193

Special HUNK names 195

Reserved symbols 195

Page vi HiSoft Devpac 3 Contents

Blink Messages 196

Blink Warnings/messages 196

Blink Errors 197

Chapter 6 Other Tools 205
S-record Splitter 205

Command line examples 206

Operating system utility 206

FD2LVO details 207

Appendix A AmigaDOS Error Codes 209

Appendix B GenAm Error Messages 213
Errors 213

Warnings 220

Appendix C Calling the System 223
Introduction 223

Libraries 223

Disk font Library 225

DOS Library 225

Exec Library 226

Graphics Library 226

Icon Library 226

Intuition Library 227

Maths Libraries 227

Release 2.0 libraries 227

Contents HiSoft Devpac 3 Page vii

Example Programs 229

demo.s 229

freemem.s 229

helloworld.s 229

CLI vs Workbench 230

CLI Startup 230

Workbench Startup 230

Other 68000 Series Processors 231

Appendix D Using the CLI 233
Introduction 233

Files, Volumes and Directories 233

AmigaDOS Wildcards 235

Device Names 235

AmigaDOS Commands 237

Startup Sequence 244

Appendix E Floating Point Co-processor
245

Extended precision 245

Double precision 246

Single Precision 246

Packed Decimal 247

FPCR Floating point control register 248

FPSR Floating point status register 249

MAR Floating point instruction address register 250

Page viii HiSoft Devpac 3 Contents

Appendix F New Features 251
Summary of Version 3 Improvements 251

The Editor 251

The Assembler 252

The Debugger 253

Integration 254

Linker 254

New include files 254

Features added to Devpac Amiga version 2 254

Appendix G Converting Programs 257
Amiga® Macro Assembler and MCC Assembler 257

K-Seka 258

Assempro 258

ArgAsm 258

Appendix H Technical Support 259

Appendix I Bibliography 261
Amiga 261

680x0 262

Algorithms & Data Structures 264

Preface HiSoft Devpac 3 Page 1

Preface to
HiSoft Devpac 3

Introduction
HiSoft Devpac 3 (called simply HiSoft Devpac from now on) is a
complete package for the production of fast, efficient assembly language
programs on your Amiga® computer.

There is an editor for the creation and editing of your assembler source
code, a linker for building your programs together with other object files, a
debugger for helping you to stamp out those nasty bugs (problems) and, of
course, an assembler to turn your source code into speedy, compact machine code.

This chapter is an introduction to this manual which aims to cover all aspects
of installing and using HiSoft Devpac on your Amiga® computer - it does
not attempt to teach you 680x0 programming although the accompanying 68000
pocket book and the examples should be of assistance in this regard. For further
reading, you should consult the Bibliography. You may wish to take
advantage of our special offers on a range of technical books that you will
find invaluable if you are a serious assembler language programmer;
for details, see the order form included with this package.

Please spend some time and effort getting to know and learning how to use
the manual so that you can gain the maximum benefit from HiSoft Devpac.

The rest of this section explains how to use the manual, whether you are a
beginner or an expert, how to use your computer to best effect with HiSoft
Devpac and, finally, we outline the different type styles that we have
used throughout the manual to (hopefully) make it easy and enjoyable to
use.

Page 2 HiSoft Devpac 3 Preface

How to use the Manual
We have designed this manual to tell you about using HiSoft Devpac on
the Amiga® computers. We have packed a great deal of information
about the package into the manual and, in order to help you use it
efficiently and easily, we will now plot recommended courses through the
manual for you, whether you are a beginner to BASIC or a seasoned
expert.

A Course for the Beginner
If you are a newcomer to assembly language then we recommend that you
read one of the books in the Bibliography alongside this manual.

At the end of this preface there is a simple tutorial which you should
follow to familiarise yourself with the use of the main parts of the
program suite.

Chapter 1 is an introduction to using Devpac and covers the contents of
your master disk, making a back-up copy of it, installing Devpac and
registering your purchase.

Chapter 2 considers the editing environment with an overview of using
the package and is well worth reading; much of Chapter 3, detailing the
assembler, is liable to mean little until you become more experienced but
should be used as a reference. The overview of the debugger in Chapter
4 is recommended, though the detail of this package can be left for a
while. Chapters 5 and 6 can be omitted unless you are linking your
programs together or using SRecords. Looking at and running the
supplied source code should be helpful.

The Appendices are mainly for reference and you will only need to dip
into them occasionally.

We hope you find HiSoft Devpac easy and friendly to use, please do not
hesitate to write to us with any suggestions for improvements and/or
alterations.

Preface HiSoft Devpac 3 Page 3

A Course for Seasoned Assembler
Programmers

If you are experienced in the use of 680x0 assembly language but have
not used a member of the Devpac family on the Amiga® before then here
is a very quick way of assembling a source file:

Load Devpac, Press AO and select your file which will load into the
editor. Use Ctrl-1, Ctrl-2 and Ctrl-3 to access the assembly options
requesters and select the options which you require. If generating
executable code then select Assemble to Memory on the Settings
menu for additional speed. Pressing Ctrl-A will start the assembler.

Any assembly errors will be remembered and on return to the editor you
will be placed on the first one. Subsequent errors may be found by
pressing Ctrl-E.

To run your successfully-assembled program from memory or disk, press
Ctrl-X.

As a quick introduction to the debugger the example at the end of this
preface is recommended. If you have any problems please read the
relevant section of the manual before contacting us for technical support.

The Appendices are for general reference and it is worth glancing through
all of them to acquaint yourself with their contents.

Good luck, we hope you find HiSoft Devpac a powerful, flexible and
easy-to-use development system. Of course, we welcome any written
comments you may have on how we might improve both the program and
the manual.

Devpac Version 2 Users
Turn to Appendix F and read the section summarising the new features,
then read Chapter 2 which covers the editor. The beginning of
Chapter 3 covers the new assembly options.

Page 4 HiSoft Devpac 3 Preface

System Requirements

HiSoft Devpac will run on any Amiga® 680x0 computer (A500, A1000,
A2000, A3000 etc.) with at least 512Kb of memory and a disk drive. You
will undoubtedly find it useful for this and other programs to purchase a
second disk drive or hard disk.

Users with only 512Kb of RAM may run out of memory when attempting
to assemble larger programs or in other circumstances. The installation of
a RAM-disk or other device on a 512Kb machine will restrict HiSoft
Devpac.

If you are short of memory, remember that the least memory hungry thing
is to assemble a one line program (consisting of an include statement)
from the CLI. Upgrades to a megabyte of memory are available at very
reasonable prices and we strongly recommend this, not just for HiSoft
Devpac but for general use too.

Typography
In order to make the manual easy to read and to convey the maximum
information as clearly as possible, we have adopted certain typefaces and
typestyles throughout the manual.

Typefaces

Times General text.
Futura Chapter and sub-Chapter headings and

references to them.
Courier Used to show something that is typed in at

the keyboard or displayed on the screen.
Predominantly used in program listings and
references to function names, variables etc.

Avant Garde Used for filenames, menu selections and
button names. Also used to denote legends on
single keys such as Alt (the Alternate key) and
Ctrl (Control).

Preface HiSoft Devpac 3 Page 5

Typestyles
The Italic style is used mainly for emphasis.

Special Characters

[] Within syntax descriptions, information enclosed
in [] is optional.

… Indicates repetition in syntax descriptions.

.

.

.

Vertically-spaced dots show that some part of a
program has been omitted.

Acknowledgements

The trademarks (both registered and otherwise) of various companies
are used throughout this manual. In particular:

HiSoft Devpac, Power BASIC, HiSoft BASIC, GenAm and MonAm

are trademarks of HiSoft.

Amiga® is a registered trademark of Commodore Inc. AmigaDOS, Kickstart,
Intuition, Workbench are trademarks of Commodore Inc.

We acknowledge any other trademark used but not listed above.

We would like to thank the following people for their invaluable help in the
production of HiSoft Devpac and this manual:

Andy Pennell for his hard work in putting together the original Devpac, Julia
for holding the fort when lesser people would have deserted, the lady with the
dog (who was that girl?) and all the staff at The Old Bell!

Page 6 HiSoft Devpac 3 Preface

A Quick Tutorial
This is deliberately a 'quick and dirty' tutorial so you can see how
straightforward it is to edit, assemble and debug programs with Devpac
Amiga.

In this tutorial we are going to assemble and run a simple program, which
contains two errors and debug it. The program itself is intended to
print a message.

To follow this tutorial you must already be in the editor. If you are not
you should reboot your computer from the backup of Devpac Amiga disk 1
that is suitable for your version of Workbench; then open the disk icon and
double-click on the Devpac icon.

After a short delay the screen will show an empty window; to load a
file you should press the right mouse button, then move the mouse pointer
over the Project menu and select Open.... A file requester will appear;
the file we want is in the examples drawer under the name of
demo.s, so you should select this file and then click on OK or Open.

When the file is loaded the window will show the top lines of the file.
If you want to have a quick look at the rest of the program you may
press Shift - to move to the next page.

With most shorter programs it is best to have a trial assembly that
doesn't produce a listing or binary file to check the syntax of the source and
show up typing errors and so on. Move the mouse to

the Program menu and select Check .

The assembler will report an error, instruction not recognised,
pressing any key will return you to the editor. The cursor will be placed on
the incorrect line and the error message displayed in the window title bar.

The program line should be changed from MOV.L to MOVE.L, so do this,
then select Assemble from the Program menu to assemble to memory.
This is very much faster than assembling to disk and allows you to try
things out immediately, which is exactly what we want.

The assembly worked this time.

Preface HiSoft Devpac 3 Page 7

If you are using an Amiga® with a 68000 processor (as opposed, to a
68020/68030/68040) don't run it yet there is a deliberate error and you
will probably see a software error task held message from the system
and you will have to reboot the machine! Otherwise you may run the
program before proceeding.

The tool for finding bugs and checking programs is a debugger, so

select Debug from the Program menu which will call the

debugger. This is described more fully later, but for now we just want to
run the program from the debugger to 'catch' any problems and find out what
causes them, so press Ctrl-R to run the program.

On a 68000 computer, the message Address Error will appear-at the
bottom of the display, with the disassembly window showing the current
instruction

start MOVE.L dosname,al

This instruction causes an address error on a 68000 because the location
dosname is at an odd address which cannot be accessed with the
MOVE.L instruction. This is not the case on 68020s upwards and, if you
are programming on such a machine, you should be aware of this since you
may write code that works fine on your computer but crashes on a 68000.

To work on a 68000, there should a hash sign before dosname to put the
address of dosname into the register a 1. So, to return to the editor first
press Ctrl-Q to ensure that the program will be killed and press Y to
terminate the program and the debugger. We can now fix this bug in the source
code.

Press Ctrl-, to go to the top of the file, then select Find from the Search menu.
We are going to find the errant instruction so enter

 move. l

and press Return to start the search. Ahah! The first occurrence is the one we are
looking for

start move.l dosname,al

Add a hash to change it to

start move.l #dosname,al

then assemble again. If you use Run from the Program menu you should see a
message, press a key and the window will be closed, returning you to the editor.

Page 8 HiSoft Devpac 3 Preface

Although the program now works we shall use MonAm, the debugger,
to trace through the program, step by step. To do this select Debug
from the Program menu, the debugger will appear with the message
Breakpoint, showing your program.

There are various windows, the top one displaying the machine registers,
the second a disassembly of the program, and the third some other memory.

If you look at window 2, the Disassembly window, you will see the
current instruction, which in this case is

start move.1 #dosname,al

As the debug option was specified in the source code all program symbols
will appear in the debugger.

Let's look at the area around dosname. Press A3 and you should see
window 3's title inverted which means that it is selected. Next press
AA and a requester will appear, asking Window start address? - to
this enter

string

and press Return. This will re-display window 3 at that address, showing the
message in both hex and ASCII.

Now to run the program; to execute the move instruction at the start of
the program press Ctrl-Z. This will execute the current instruction and
the screen will be updated to reflect the new values of the program counter
and register Al. If you press Ctrl-Z again the next, moveq, instruction will
be executed and d0 will thus be modified. The following two instructions are
the expansion of the
CALLEXEC OpenLibrary macro. Use Ctrl-Z to single step the move to a6
instruction.
Next we have

JSR _LVOOpenLibrary(A6)
This is the call to the exec library. All calls to the Amiga's
operating system have the same form. We don't want to single step this - we
know that AmigaDOS works (at least most of the time!).
So, to treat this system call as one instruction, use Ctrl-T.

Now single step the next (TST.L D0). D0 should be non-zero, so the
Z flag won't be present in MonAm's register display area.

Preface HiSoft Devpac 3 Page 9

Now you can continue to press CtrI-Z until you get to

JSR _LVOOutput(a6)

This is the call to the dos .library to find our output handle for displaying
the message. Use Ctrl-T to skip over this. Use CtrI-Z to continue single
stepping until we get to

JSR _LVOWrite(a6)

This is the call that will actually write our string on the screen - let's make
sure that the registers are set up correctly. d l should have the output
handle that came back from the _LVOOutput call in d0.d2 should
contain the address of the message.

Now use CtrI-T to skip over the Write call. To check that it worked press
the V key, there's the message; press any other key to return to MonAm
(being careful not to activate any other windows meantime).

Now all that is left is our de-initialisation. You can use the CtrI-Z and
Ctrl-T commands to step through it as before.

The last instruction in the program is RTS. Single-stepping this will
terminate MonAm, for now, and return to the editor.

That completes our quick tutorial.

Page 10 HiSoft Devpac 3 Preface

Introduction HiSoft Devpac 3 Page 11

Chapter 1

HiSoft Devpac 3

Introduction

Devpac 3 Disk Contents

Devpac Amiga is supplied on four 3.5" disks; the first set of two is intended for
use under version 1.3 of the operating system whilst the second is for use with
Release 2 to 3.1.

The first disk of each set is the Program Disk consisting of a Workbench
disk and containing the Devpac drawer within which most of the tools can be
found. You may boot your Amiga® from this disk and proceed to use Devpac
immediately although you must ensure that you use the correct version for
your machine.

The second disk of each set contains the full set of operating system
'include' files as supplied by Commodore. The majority of the Intuition, DOS,
Graphics and Exec include files can be found on the program disk as a
pre-assembled header file for compactness and speed.

Many users will find this sufficient for their requirements although more
advanced users are urged to re-assemble this file as needed. Linkable libraries
and Function Description files are also supplied on the Include Disk.

Please note that the following list of files is intended as a guide only and for
actual disk contents you should refer to the Contents file. Subsequent
versions of Devpac may contain extra files.

Page 12 HiSoft Devpac 3 Introduction

Program Disk
The Program Disk is a cut-down bootable Workbench disk containing
the majority of development tools. Some directories and files of
particular interest are:

Contents The disk contents list for your version of HiSoft Devpac.
ReadMe A text file including latest details about Devpac

Amiga. Please read this file carefully before
contacting our technical support department with
any queries.

Devpac This drawer contains the program tools detailed
below.

Devpac/Examples
Some example programs including the short tutorial
for this manual can be found in the Examples drawer.

Libs/arp.library (1.3 version only) An additional library
containing the File Requester used by the Devpac
editor.

Prefs/Env-Archive/Devpac
The contents of the Env-Archive directory are
automatically copied into ENV: at boot time by the
Startup-Sequence script file. You may place
preferences files or default icons within this
directory (see the editor manual for details).

S/Startup-Sequence
The script file run automatically by AmigaDOS
as part of the boot process. Advanced users may
wish to modify this file in order to customise the disk.

The Devpac drawer
This drawer contains the programs and may be copied onto your hard
drive as part of the installation procedure. Each of these programs is
documented in detail elsewhere in this manual. Where disk space is limited,
some tools may be found on the Include Disk.
Devpac The multi-window editor and and control

program.

GenAm The powerful Devpac 680x0 macro assembler.

Introduction HiSoft Devpac 3 Page 13

system.gs Pre-assembled system include file for use with
the assembler.

MonAm The debugger.

MonAm.libfile A support file for the debugger enabling the
automatic naming and display of many operating
system library calls.

BLink The AmigaDOS linker.

FD2LVO A utility program to generate library offset
include files from standard FD files.

SRSplit A utility program for users of Motorola format
S-Records which splits an S-Record file into its
high and low byte components.

Include disk
All of the standard Commodore operating system include files can be found on
this disk along with linkable libraries and FD files. Users may select which
version of the disk they use according to the version of the operating system
they are devloping for rather than the appropriate version for their machine.
The contents of the 1.3 and Release 2.0 versions may differ slightly.

include.i A directory containing the system include files and LVO
include files generated from the fd directory using the
supplied FD2LVO program.

lib Various Commodore supplied linkable libraries.

fd The Function Description files giving function names,
parameter names and register conventions for
the system libraries and devices.

arp (1.3 version only) Documentation for the ARP library
containing a file requester and many useful support
routines. Most of these capabilities are now
provided as part of the Release 2 operating system.

Page 14 HiSoft Devpac 3 Introduction

Always make a back-up

Before using Devpac you should make a back-up copy of the
distribution disk and put the original away in a safe place. It is not
copy-protected to allow easy back-up and to avoid inconvenience.
This disk may be backed-up using the Workbench or any back-up utility.

Before hiding away your master disk make a note in the box below
of the serial number written on it. You will need to quote this if you
require technical support.

Installation
If backing up your Devpac disks with Workbench, rename each one
afterwards to remove the words 'copy of '. Please note that Program
Disk 2.0 is a FastFileSystem disk and is unreadable from Workbench
1.3.

When installing on a hard disk, first copy the Devpac drawer by
dragging its icon, then drag the appropriate Include drawer inside the
new Devpac drawer.

You may wish to update the Include setting on the Assembly Control
requester and the Default Tools of icons in Env-Archive (using Info
from Workbench) to include the correct volume names for your
system.

To install Devpac on a hard drive, we recommend that you drag the
Devpac drawer icon onto your hard disk using the Workbench.
Users of 1.3 will also wish to copy the libs/arp.library file to the libs
directory of their boot partition. The Env-Archive/Devpac directory
should also be copied to the hard drive for use with settings files and
default icons.

We recommend copying the contents of one or both Include Disks
(according to which operating system you are developing for) onto
your hard disk for ease of access. The Devpac directory should
normally be added to the AmigaDOS command search path to allow
convenient use from the Shell, CLI or script files.

Serial No.

Introduction HiSoft Devpac 3 Page 15

Floppy disk users are recommended to use the appropriate Program
Disk as a basis for customisation, adding or removing further files as
necessary. As with most Amiga® development packages, a second
floppy disk drive is a considerable advantage, avoiding much disk
swapping. CLI users may wish to convert the Startup-Sequence
script file to create a new CLI window at boot time, automatically.

HiSoft Devpac functions to its best advantage with 1Mb of memory
or more. However, it is perfectly possible to use the package on a
512Kb Amiga®; removing disk buffers, unwanted devices and
programs will all release memory for use with Devpac.

Larger programs may be assembled by running the editor, assembler
and debugger programs separately and through use of the assembler's
low memory mode. Splitting source files into smaller sections which
are included by a main file or assembled separately and later linked
will also reduce memory usage.

Registration Card

Enclosed with this manual is a registration card which you should
fill in and return to us. Without it you will not be entitled to your 30
day free technical support or upgrades within this period. Be sure to
fill in all the details especially the serial number and version number.

The README File

As with all HiSoft products Devpac is continually being improved
and the latest details that cannot be included in this manual may be
found in the Readme file on the disk. This file should be read at this
point, by double-clicking on its icon from the Workbench. It will
also contain last-minute details on the installation process.

Page 16 HiSoft Devpac 3 Introduction

The Editor HiSoft Devpac 3 Page 17

Introduction

HiSoft Devpac 3 (called simply HiSoft Devpac from now on) is a complete
package for the production of fast, efficient assembly language programs on
your Amiga® computer.

There is an editor for the creation and editing of your assembler source code,
a linker for linking programs together, a debugger for helping you to stamp
out those nasty bugs (problems) and, of course, an assembler to turn your
source code into speedy, compact machine code.

We have also provided all of the Amiga® 'include' files (required when using
the operating system) for both Workbench 1.3 and Release 2 together with a
number of example programs.

This chapter looks at using the editor that is supplied as the heart of HiSoft
Devpac and aims to give you a friendly introduction to most aspects of the
package - it does not detail the assembler, linker or debugger or the technical
aspects of the assembly process; these are covered in later chapters.

You may wish to take advantage of our special offers on a range of technical
books that you will find invaluable if you are a serious assembler language
programmer; for details, see the order form included with this package.

Chapter 2
HiSoft Devpac 3
Using the Editor

Page 18 HiSoft Devpac 3 The Editor

The Editor
The editor supplied with Hi Soft Devpac is fully integrated with the system
which means that you can develop programs in an intuitive and interactive
manner, creating and editing your programs in the same environment as
running and debugging your finished masterpiece.

Moreover, those of you with strong preferences for your own editor can
dispense with the HiSoft editor and use your own favourite package along
with the stand-alone version of HiSoft Devpac, although you will lose the
benefits of interactive development.

The editor for HiSoft Devpac is a multi-window screen editor which allows
you to enter and edit text and save and load from disk. It also lets you print
some or all of your text, search and replace text patterns and set bookmarks
throughout the text so that you can find key points in your program quickly.
In addition, you can define and use macros.

The editor is Intuition-based, which means it uses all the userfriendly features
of Amiga® programs that you have become familiar with such as windows,
menus and mice. However, if you're a die-hard used to the hostile world of
computers before the advent of WIMPs, you'll be pleased to know you can do
practically everything you'll want to do from the keyboard without having to
touch a mouse.

The editor is 'RAM-based'; the file you are editing stays in memory for the
whole time, so you don't have to wait while your disk grinds away loading
different sections of the file as you edit. As all editing operations, including
things like searching, are RAM-based they act extremely quickly. The file
size is only limited by the amount of memory in your computer.

When you have typed in your programs it is not much use if you are unable
to save them to disk, so the editor has a comprehensive range of save and
load options, allowing you to save all or part of the text and to load other files
into the middle of the current one, for example.

The Editor HiSoft Devpac 3 Page 19

To get things to happen in the editor, there are various methods available to
you. Features may be accessed in one or more of the following ways:

 Using a single key, such as a Function or cursor key;

 Clicking on a menu item, such as Save;

 Using a menu shortcut, by pressing the right A key in conjunction
with another, such as A F for Find;

 Using the Control key (subsequently referred to as Ctrl) or
Alternate key (called Alt from now on) in conjunction with another,
such as Alt-- for cursor word left;

 Clicking on the screen, such as in a scroll bar.

The menu shortcuts have been chosen to be, hopefully, easy to remember and
to be compatible with many other Amiga® programs.

Two versions of the Devpac editor are supplied. One is specifically designed
to take advantage of Release 2 of the operating system and its many new
features. There is also a 1.3 version which gives you the same look and feel
on an Amiga® running earlier versions of the operating system. Be sure to
use the correct version for your machine.

Starting the Editor
From the Workbench simply double-click on the Devpac icon to load it and
display an empty window. If you have selected other icons as well as the
editor icon (by Shift-clicking), these files will be opened as projects for
editing when you run the editor.

To run the editor from the CLI, type its name (Devpac) followed by an
optional list of file pathnames - a file extension of .s will be appended to
filenames where necessary.

To find its startup settings, the editor searches for a file called Devpac.prefs,
firstly in the current directory then in the editor's directory and finally in
ENV:Devpac - if it cannot find this file it will use its built-in defaults. You
may override this search from the Workbench by adding a
SETTINGS=<pref_name> tooltype to a project icon or to the Devpac icon.

Page 20 HiSoft Devpac 3 The Editor

Default icons may be provided by placing them in the ENV:Devpac
directory. An icon named def s will be used as the default for all files ending
in s - if no such icon is found for a particular file type the def_project icon
will be used instead.

We will return to a full description of projects, windows etc. after some
general information about Devpac's use of gadgets and the like.

Requesters and gadgets

The editor makes extensive use of requesters which employ the Workbench 2
user interface (even if you are running under AmigaDOS 1.3) so it is worth
recalling how to use these requesters and their associated gadgets. Note that
most Devpac requesters do not restrict you from further editing.

If you require more detail than is given below, you should look in the Amiga
User Interface Style Guide or the Using the System Software
user guide supplied with your Amiga®.

Keyboard shortcuts
Before we describe the different types of gadgets available, we should
mention that most of them can be accessed either using the mouse or the
keyboard. Keyboard shortcuts may be used whenever a text gadget is not
active and the key that addresses the gadget is shown underlined in the
descriptive text next to the particular gadget. For example, in the Find
requester shown below, you can use N or n to find the next occurrence of the
defined string or C (or c) to cancel the operation.

As we have said, the editor's requesters contain various gadgets of differing
types and we shall now describe them.

Action gadgets or buttons
Action gadgets are boxes containing a description of the action that will take
place should you left-click on the box or button.

action gadgets or buttons

The Editor HiSoft Devpac 3 Page 21

To activate the action displayed by the button, point at it and left-click - the
action will be triggered when you let go of the mouse button; this allows you
to move off the gadget while still keeping the mouse button depressed if you
change your mind.

Sometimes, clicking on a button will cause another requester or window to be
displayed. If this is the case, the action gadget's text will end in an ellipsis
(three periods):

the Set... buttons lead to a file requester

The Cancel button will always be positioned at the bottom right of the
requester with a keyboard shortcut of C and will abort the requester, leaving
everything as it was before the requester was activated.

Many requesters also have a Use button which accepts any changes you
have made and closes the requester. Clicking on a requester's close window
gadget or pressing Esc has the same effect.

Check box gadgets
A check box is a small square that is either empty or contains a check mark
or tick. This type of gadget allows you to turn some action on (checked) or
off (blank) - simply click on it, with the left mouse button, to change its state.

check box gadgets with keyboard shortcuts

Page 22 HiSoft Devpac 3 The Editor

Cycle gadgets
Cycle gadgets allow you to choose one option from a list of several related
items. To change to another option you must left-click anywhere in the
gadget which will cycle forward through the list. If you hold the Shift key
down while left-clicking, the list will cycle backwards. Here's an example:

cycle gadgets allow selection from a list

As usual, you can use any keyboard shortcut instead of the mouse - again use
Shift and the shortcut to go backwards through the list.

When you reach the end of the list, it will wrap round to the first item.

Radio buttons
Radio buttons are also used when you have to make a choice of one item
from a short list of alternatives.

Radio buttons used for a list

In the above example, you can choose to print the whole file, a marked block
or a block defined by a line number range. When you choose one, the
previous option becomes de-selected. Use Shift and the keyboard shortcut to
move back through the list.

The Editor HiSoft Devpac 3 Page 23

Text gadgets
Text gadgets allow you to enter strings of characters or numeric values.

text gadgets

To type into a text gadget you must activate it to obtain a cursor. Simply left-
click inside the text gadget or press its keyboard shortcut to activate the
gadget. Some commonly used requesters automatically activate a text gadget
so that you can type directly into it as soon as the requester pops up.

As you are entering text, certain keys allow editing of the string:

key commands available within text gadgets

To exit a text gadget simply press Return or left-click somewhere else in the
requester.

,  move the cursor left or right through the
text

Shift-, Shift- move the cursor to the start of the line
or to the end of the line

Backspace delete the character behind the cursor

Shift-Backspace, (release 2 only) delete from the cursor to

Shift-Del the start or end of line.

Del delete the character under the cursor

A X delete the entire line

A Q restore the text to its former state

Tab, Shift-Tab (release 2 only) activate the next
or previous text gadget

Return exit the text gadget

Page 24 HiSoft Devpac 3 The Editor

File requesters
Whenever a file or directory name is needed, the Devpac editor will produce
a File Requester which allows you to locate the desired object and select it.
The Workbench 2 version uses the standard ASL file requester whilst the 1.3
version utilises the ARP requester. The operation of each File Requester is
similar and straightforward. However, a brief summary is given below.

the Workbench file requester

The requester title bar shows the type of object which you are required to
select and the operation that will be performed on it. Save requesters appear
in a different colour. By using the scroll gadgets you may move about the list
of files and directories; clicking on a name will enter it into the appropriate
text gadget. You may also choose to type into these gadgets to select a known
file quickly.

The four action gadgets at the base of the requester allow you to proceed with
the operation (this button will be labelled accordingly), show all available
volume names and AmigaDOS assignments, move into the parent of the
current drawer and cancel the operation (the window close gadget is also
available for this purpose). Double-clicking over a name will both select the
file and proceed, which normally passes the filename back to the calling
program.

If the object you select does not exist or is of the wrong type you will be
given a chance to reselect. Any errors are reported in another requester.

The Editor HiSoft Devpac 3 Page 25

The ASL file requester also has the added benefit of a sizing gadget (the
requester size and position will be remembered when you Save Settings) and
a pull down menu containing useful Amiga® key shortcuts. When you are
saving a file, typing a drawer name which does not exist gives you the chance
to create that drawer.

the simple file requester

There is also a simple file requester which will appear in a number of
situations. Firstly, if the editor is unable to open the ARP or ASL library
(according to the version) from your LIBS: drawer, the simple requester will
be used instead. It will also be used if there is insufficient free memory to
open the full file requester. Note that, in extreme low memory situations, it
may not be possible to open a requester at all, in which case you may need to
close some unmodified projects or quit any other applications which are
running.

Finally, you may obtain the simple file requester by holding down the Shift
modifier when selecting a filing command from the menu or with the
keyboard. For example, Shift-A A will allow Save As... from the simple file
requester. This can be useful if some other disk-intensive program is working
and you do not wish to affect its performance.

Confirmation requesters
One other type of requester which you will see appears when it is necessary
for you to make a choice before proceeding. Perhaps the most common
occurrence of this is the modified protect requester:

Page 26 HiSoft Devpac 3 The Editor

This is produced if you select some action which would lose any changes
made to a project. By clicking on the gadgets or pressing the first letter of
their titles you can choose to save the project, to abandon the changes and go
ahead with the action or to back out, leaving everything as it was before you
selected the action.

Another way of choosing an action is to hold down the left-Amiga key and
press either V for the leftmost button or B for the rightmost button which is
always Cancel. Remember that the continue action is placed at the left and
Cancel at the right. The middle button often causes an action which would
lose or overwrite some data.

Note that, unlike most Devpac requesters, these will block any further input
to the editor until you have chosen an action.

Menus and sub-menus
Menus allow you to access editor commands quickly and easily while giving
you the opportunity to browse through the various choices. To access the
Devpac menus simply press the right mouse button and hold it down.

a typical Devpac menu

To select from the menu, still holding the right button down, move ' the
pointer over one of the menu titles which appear at the top of the screen.
Once the menu pops up, drag the selection bar to the required choice and let
go of the mouse button. Many menu commands have keyboard shortcuts
accessed by holding the right Amiga key down and pressing the relevant
command key as shown on the menu.

The Editor HiSoft Devpac 3 Page 27

To select a sequence of menu items while still viewing the menu, keep your
finger on the right mouse button and click on the left mouse button when you
are over the relevant choice - you will then still be able to move up and down
the menu and perhaps select another item.

Some options are accessed via 'sub-menus' which are shown by the >> symbol
to the right of the menu item; for example, if you move the mouse over the
Window Layout selection on the Window menu, a sub-menu like this will
appear:

A sub-menu

You can then move the mouse to the right to select the particular item that
you want. To cancel the operation just let go of the mouse without selecting a
sub-item or move to another item on the main menu.

Some menu items can have a 'tick' or check mark next to them. Selecting
such an item will select or de-select that choice. Once again you may use left-
clicking to select a number of these options. The Window Layout sub-menu
uses such items to give you a choice between the various layout styles.

If a menu item leads to a requester containing further choices, the text of the
menu item will be followed by an ellipsis (three dots) as shown below:

Print As... leads to a requester

Page 28 HiSoft Devpac 3 The Editor

The Editor's windows

Having loaded HiSoft Devpac, you will be presented with an empty window
and a graphic block, which is the cursor, in the top left-hand corner.

The window used by the editor is a standard Intuition window, so you can
move it around by using the Title bar on the top of it, you can change its size
by dragging on the Sizing gadget, close it with the Close gadget, bring it
to the front or send it to the back with the Depth gadget(s) and make it full
size (and back again) by clicking on the Zoom gadget (AmigaDOS 2 and
greater). You can also move the view on the text by using the Scroll gadgets.

the HiSoft Devpac window under AmigaDOS 2

Windows and Projects
We make the distinction between windows and projects: a project is a file
with any number of windows open on it. You can also edit many different
projects at any one time, each of which may have many windows.

The Editor HiSoft Devpac 3 Page 29

To start a new project select New from the Project menu or type A N - this
will give you an empty, untitled window. To open an existing project from
disk you should use the Open command (A O) on the Project menu which
will bring up a file requester allowing you to select a file to edit.

the Project menu

Once you have selected a file to edit you can open another window on that
file by using A-W (New Window on the Window menu); subsequently close
a window by left-clicking on its close gadget or by typing Shift-A W

To finish a project (and close all of its windows), select Close from the
Project menu, closing the last window on a project has the same effect. The
other selections on the Project menu will be discussed below under the
appropriate heading.

Switching Windows
The editor has support for any number of windows, memory permitting, you
can even have many windows (views) open on one file. Once you have some
windows open, you can move between them in a variety of ways:

Firstly, you can select a window (if you can see it) by clicking on it with the
mouse but this will not bring it to the front - you must use the window depth
gadgets or Shift-A > to achieve that.

Page 30 HiSoft Devpac 3 The Editor

Under AmigaDOS 1.3 there are two window depth gadgets; one of these
sends a window to the back and the other brings it to the front. We have
implemented two keyboard shortcuts for these actions – A > (Shift-A.) for
bring to front and A < (Shift-A,) for send to back. With AmigaDOS 2 there
is only one depth gadget which you can Shift-click to send the window to the
back. These commands leave the window upon which the action was
performed selected, so that, if you send a window to the back revealing
another window, this new window will not be selected (and therefore you
will not be able to type into it) until you click on it.

A useful action is to cycle through all the available editor windows using
Activate Next and Activate Previous commands from the Window menu
(the keyboard shortcuts are A . and A , respectively); these commands bring
the relevant window to the front and select it, ready for use.

The windows can be organised in a number of ways and you can select this
using Window Layout on the Window menu.

the Window Layout sub-menu

First of all, choose which layout you would like;

Stacked re-sizes the windows to the same width and arranges them
so that you can see the title bar of each window (depending
on which window is at the front).

Diagonal arranges all the windows diagonally and changes their size
so that you can see the top right area of all the windows
(and hence their depth gadgets).

The Editor HiSoft Devpac 3 Page 31

Horizontal organises the windows one above the other and resizes
them so that you can see the whole width of every window
- this is most useful for a small number of windows.

Vertical is like Horizontal except that the windows are arranged
side by side.

Full Size means that each window is made the size of whole screen
and placed one behind the other.

Having chosen the desired arrangement (this will not actually change any
windows) you can then Arrange All windows that are open or only Arrange
Views - this means only arrange the windows associated with the current
project.

Try this out for yourself to get the idea of how the different arrangements
work. The sub-menu works best if you left-click over a layout style then
release the right mouse button over one of the Arrange items.

Entering text and moving the cursor

To enter text, simply type on the keyboard and at the end of each line press
the Return key (or the Enter key on the numeric pad) to start the next line.
You can correct your mistakes by pressing the Backspace key, which
deletes the character to the left of the cursor, or the Delete key, which
removes the character under the cursor.

Undo Line
The Devpac editor keeps a copy of the line that you are working on so that as
long as you have not moved off the current line, you can undo the changes
you have made and recover the line as it was before you started editing it.

To restore the original line select Undo Line from the Edit menu or press A Z.
Remember, this will always work as long as the cursor is still within the line
that you wish to recover.

Page 32 HiSoft Devpac 3 The Editor

Cursor keys and the mouse
You use the cursor keys, together with various keyboard modifiers, to move
quickly around the file without needing to touch the mouse. The modifiers
used are Shift, Ctrl and Alt and their use conforms to the guidelines given in
the Amiga User Interface Style Guide which are as follows:

Using the cursor keys by themselves will move the text cursor around the file
by a character ( ) or a line ( ) at a time, scrolling the display where
necessary.

Holding the Shift key down while using the cursor keys will move to the edge
of the window (i,e, the top/bottom/left/right) or show a new windowful of
text if the cursor is already at the extreme of the window. Shift- or Shift-
have the effect of moving to the beginning or end of the current line. Shift
also modifies the Backspace and Del keys in a similar way.

Using the Ctrl key with the cursor keys moves to the appropriate extreme of
the project i.e. the beginning or end of line (Ctrl - or Ctrl -) and the top or
bottom of the file (Ctrl- and Ctrl-).

Finally the Alt modifier works on words so that Alt - or Alt - move the
cursor a word left and a word right respectively whilst Alt- and Alt- move
on a page basis (like Shift). When used with Backspace or Del, Alt has the
effect of deleting a word at a time.

The function of the Shift and Alt modifiers can be swapped (see Settings); this
maintains some compatibility with previous Devpac editors. It is also
possible to set up the numeric keypad to act like an IBM PC keypad so that
you can perform many cursor operations using its keys - see the Settings
section for details.

You can use the mouse to move the cursor to a specific position on the screen
by pointing and clicking. As usual, you can use the slider gadget to scroll
through the file, in which case the cursor will move with the text. You can
scroll the window up and down on a line basis by clicking on the vertical
scroll gadgets.

If you position the cursor past the right-hand end of the line and type some
text at that point the editor will automatically add the text to the real end of
the line. If you type in long lines the window display will scroll sideways if
required.

The Editor HiSoft Devpac 3 Page 33

All the above commands along with the other keyboard shortcuts are
summarised at the end of this chapter.

Tab key
The Tab key inserts a special character (ASCII code 9) into the text, which
on the screen looks like a number of spaces, but is rather different. Pressing
Tab aligns the cursor onto the next 'multiple of 8' column (by default), so if
you press it at the start of a line (column 1) the cursor moves to the next
multiple of 8, +1, which is column 9.

Tabs are very useful indeed for making items line up vertically and their main
use in HiSoft Devpac is for such things as indenting structured program lines.
When you delete a tab the line closes up as if a number of spaces had been
removed. The advantage of tabs is that they take up only 1 byte of memory,
but can show on screen as many more.

You can change the tab size for each individual file - see Settings for details.

Return key
In addition to entering a line of text, the return key can be used to insert a
blank line into the text by pressing Ctrl-Return.

When Return is pressed in the centre of a line, the line will be split into two.
Ctrl-= can also be used to split a line at the cursor position whilst Ctrl--
(hyphen) will join the next line to the end of the current one.

Page 34 HiSoft Devpac 3 The Editor

Bookmarks
A further way to navigate your text is through the use of bookmarks. A
bookmark is set by selecting the appropriate item on the Set Bookmark sub-
menu from the Search menu or by using Shift-A and one of the digit keys on
the top row of the keyboard, zero for 10 (e.g. Shift – A 4 sets bookmark 4).

Having set a bookmark, you are then able to select the corresponding item on
the Goto Bookmark sub-menu to return the cursor to the line on which you
set the bookmark; or use A and the appropriate digit e.g. A 2.

A possible total of 10 bookmarks are allowed per project which are saved
along with the project only if Create Icons? is selected. Bookmarks are lost if
the line they are on is deleted.

The Editor HiSoft Devpac 3 Page 35

Deleting text

Backspace key
The Backspace key (to the left of the Del key) removes text to the left of the
cursor. When pressed on its own it will delete a single character but when
used in conjunction with the Alt or Shift modifier keys, it will delete the
previous word or to the start of the the line.

If you backspace off the very beginning of a line this will normally remove
the 'invisible' return character and join the line to the end of the previous line
(although you can change this behaviour using Set Settings...). Backspacing
when the cursor is past the end of the line will move the cursor to the end of
the line without deleting a character.

Del key
The Del key removes text to the right of the cursor. Similar to Backspace,
just pressing Del will delete the character under the cursor whilst Alt and Shift
delete by word or to the end of the line (also available as Ctrl-Q for
compatibility).

Del will join lines together if used at the end of a line, unless you have
changed this behaviour using Set Settings.... Using Del when the cursor is
past the end of the line will simply move the cursor to the end of the line.

Delete line
The current line can be deleted from the text by pressing A Backspace,
Ctrl-Backspace or Ctrl-Y. The deleted line is remembered and may be later
inserted back into the text.

Undelete Line
When a line is deleted using the above command it is preserved in an internal
buffer, and can be re-inserted into the text by selecting Undelete Line from
the edit menu or pressing Ctrl-U. This can be done as many times as required
which is particularly useful for repeating similar lines or swapping individual
lines over.

Page 36 HiSoft Devpac 3 The Editor

Delete block

A marked block may be deleted from the text by pressing A Del or Ctrl-Del
or Shift-F3. These are all equivalent to Erase on the Edit menu.

The following table summarises the behaviour of Backspace and Del when
used with various modifier keys:

 Alt Shift Ctrl or Amiga

Backspace Delete
previous
word

Delete to start
of line

Delete line (also
Ctrl-Y)

Del Delete next
word

Delete to end
of line (also
Ctrl-Q)

Delete block (also
Shift-F5)

Remember that the current line is buffered, so you can undo all changes made
to the line by using A Z Undo Line.

Block Commands
A block is a marked section of text which may be copied to another section,
deleted, printed or saved onto disk. The editor will report Block required if a
marked block is needed. Blocks may be marked using the mouse or the Mark
Block (A-B) command on the Edit menu. After starting a block mark,
moving the cursor will set the current block, until the Mark Block command
is used again.

In order to maintain backward compatibility, we have retained many of the
block keyboard shortcuts used in earlier versions of Devpac, as you will see
as you read on.

Marking a block
The simplest way to mark a block is to left-click on the first character in the
block and drag the mouse to the end of the block. The block is highlighted by
showing the text in reverse as you drag the mouse. When you move the
mouse past the edge of the window, the window will automatically scroll to
allow blocks larger than the window size to be marked. You may mark a
block by clicking at the end and dragging back if you wish.

The Editor HiSoft Devpac 3 Page 37

Double-clicking will cause the word under the mouse to be marked as the
block. If you double-click and then drag, text will be highlighted a word at a
time.

A second way of marking a block is to place the cursor at one end of the
block, either with the movement keys or by pointing and clicking. Then,
holding down the Shift key, click at the other end of the block. This technique
is often useful for marking a very large block as it can be used to extend an
existing block.

The start of a block may also be marked by moving the cursor to the required
place and pressing F1. The end of a block can be marked by moving the
cursor and pressing key F2. The start and end of a block do not have to be
marked in a specific order - if it is more convenient, you may mark the end of
the block first.

To unmark any selected block, press Esc. You may also go to the beginning
or end of the currently marked block by pressing Shift-F1 or Shift-F2.

The Clipboard: Cut, Copy & Paste
HiSoft Devpac supports the Amiga® clipboard, allowing you to not only cut
and paste text within Devpac, but to share data between many different
applications. The clipboard holds the most recently cut or copied block of
text ready for subsequent pasting to another location.

Once you have marked a block you may copy it into the clipboard using
Copy from the Edit menu. The text will remain in the file and the copy of the
text held in the clipboard may then be inserted at another position by moving
the cursor there and selecting Paste.

cut, copy and paste

The current block may be removed and placed in the clipboard using Cut
from the Edit menu; selecting Paste will then insert the block that was cut as
before. To move a block of text involves marking the text, selecting Cut,
moving to a new position and then Paste.

Page 38 HiSoft Devpac 3 The Editor

Cut block
A marked block may be deleted from the text by selecting Cut on the Edit
menu or by pressing A X or Shift-F5. A cut block is remembered in the
clipboard for later use.

Copy block
The current marked block may be copied to the clipboard using Copy on the
Edit menu or by pressing A C or Shift-F4. The block is automatically
unmarked to show that it has been copied into the clipboard successfully.

This command can be very useful for moving blocks of text between
different files by loading the first, marking a block, copying it to the
clipboard then switching to another window or loading the other file and
pasting the clipboard into it.

Paste block
The contents of the clipboard may be pasted at the cursor position by
selecting Paste from the Edit menu or by pressing A V or F5. If the
clipboard is empty or contains information other than text, the message No
text in clipboard will be reported. If the editor is unable to access the
clipboard, a Clipboard error is given.

Delete block
If you wish to delete a block without placing it in the clipboard, choose Erase
on the Edit menu or press A Del or Ctrl-Del or Shift-F3. There is no way of
retrieving text which is deleted in this way.

Duplicate block
A marked block may be copied, memory permitting, to another part of the
text by moving the cursor to where you want the block copied and pressing
key F4. If you try to copy a block into a part of itself, the message Cannot
copy inside block will appear. This command does not use the clipboard
and is supplied for compatibility with previous versions of Devpac.

The Editor HiSoft Devpac 3 Page 39

Save block
Once a block has been marked, it can be saved to disk by selecting Save
Block... from the Edit menu or by pressing key F3. Assuming a valid block
has been marked, a file requester will appear, allowing you to select a
suitable drive, drawer and filename in which to save the block. You will be
warned if you specify a filename which already exists in which case a backup
will be made if requested in Settings.

To insert any previously saved file at the cursor position you may select
Paste File on the Edit menu.

Printing a block
A marked block may be sent to the printer or a file by selecting Print As... on
the Project menu. A requester will appear and you should choose Selected
Block, the number of copies and the output name.

See the Printing section for more detail on the use of this requester.

Searching

The commands on the Search menu
may be used for finding and perhaps
replacing existing text. This is done by
first selecting Find... (A F) or Find &
Replace... (A R) to specify the search
and replace text and then using either
the requester or the Find Next, Find
Previous and Replace commands.

The Find requester is a subset of the Find and Replace requester described
below with facilities for searching only.

Page 40 HiSoft Devpac 3 The Editor

the Find & Replace requester

In the example above options has been entered as the find text and
configuration as the text to replace it with.

If you click on Cancel, the requester will disappear, taking no action and
restoring the previous find and replace text. If you click Find Next (or press
Return) the search will start forwards, while clicking on Previous will start
the search backwards.

If the search is successful, the window will be re-drawn with the cursor
positioned at the start of the string. If the string could not be found, the
message Not found will appear in the window title bar and the cursor will
remain unmoved.

You may continue the search with Find Next and Find Previous or by
activating an editor window and selecting Find Next or Find Previous from
the Search menu. The keyboard shortcuts for these commands are Ctrl-N and
Ctrl-P. Note that you do not have to close the requester in order to continue
editing although this can be done via the close gadget or by pressing Esc.

Whether test is treated as the same as TEST or Test etc. depends on whether
the Case Sensitive check box is selected. Normally, searching is case
insensitive, meaning that upper and lower case letters are treated the same.
However, with Case Sensitive, an exact match for the find text must be
found before searching will stop.

Optionally, you may search for Whole Words by selecting the second check
box. This will prevent a search for the word in, for example, matching the
word finish. It will still find the word in first-in-first-out however because the
hyphen has been used to separate the words.

The Editor HiSoft Devpac 3 Page 41

Replacing Text
Having found an occurrence of the find text, it can be changed to the replace
text by clicking on the Replace button. This is identical to selecting
Replace from the Edit menu or pressing Ctrl-R whilst editing. Having
replaced it, the editor will then search for further occurrences.

You may of course replace several occurrences of the text by selecting
Replace several times in succession however, if you wish to replace every
occurrence of the find string with the replace string starting from the cursor
position, click on the Replace All gadget. This may take some time if there
are a large number of occurrences. There is deliberately no alternative way of
selecting Replace All in order to prevent it from being chosen accidentally.

You may search and replace Tab characters, line feed characters or any other
control characters in a similar way by simply entering them in the appropriate
text gadget. This facility can be used to search for something at the beginning
or end of a line by including a line feed character (Ctrl-J) at the start or end of
the find text. Note that AmigaDOS 2 users may have to hold down the left
Amiga key while typing these or other control characters.

Go to line
To move the cursor to a specific line in the text, select Go to Line... from the
Search menu, or press A.G. A small requester will appear, allowing you to
enter the line number and press Return.

The cursor will move to the specified line, centring the window over it. If the
line does not exist, you will be positioned over the start or end of file.
Pressing Return with no line number or clicking the close gadget will abort
the operation.

Another fast way of moving around the file is by dragging the window scroll
bar, which works in the usual fashion.

Page 42 HiSoft Devpac 3 The Editor

Bookmarks
The Go to Bookmark sub-menu may be used to move to one of the project's
10 bookmarks previously set up via the Set Bookmark commands. Further
details can be found in the Bookmarks section.

Disk Operations

The Project menu contains many operations that
involve disk files; you can save and load your
source file, insert text into your source, print a file
and more.

New
Select New to open an untitled project and window ready for entering text.
The number of projects is limited by available memory only.

Opening files
To load in a text file, select Open... from the Project menu, or press A O.
This will open a new window if the current one is in use and then a file
selector will appear, allowing you to specify the volume, drawer and filename.
Assuming you do not Cancel, the editor will attempt to load the file. If it
will fit, the file is loaded into memory and the window is re-drawn.

If an error occurs, a requester appears showing the error and filename, giving
you a chance to Retry or Cancel as with all file operations. Some less
common errors are reported as AmigaDOS error numbers as documented in
your system manual.

The Editor HiSoft Devpac 3 Page 43

A number of files may be opened automatically when HiSoft Devpac is
started by selecting project icons from the Workbench and Shift-double-
clicking the editor icon, or by specifying a number of filenames on the
command line.

Close
Closes the current project and all of its windows. This will also happen when
you close the last window on a project either using the close gadget or by
pressing Shift A W. If the file being edited has changed since it was loaded or
is a new file, you will be given a chance to save it before the window is
closed.

Closing the last project will present you with the above requester which
allows you to quit Devpac or open a new project.

Save
To save the text you are editing, select Save from the Project menu or press
A S. If the file was loaded from disk, it will be backed up (if requested in
Settings) and the new version is written to disk. Untitled projects will
produce a file requester, allowing you to select a name for the project like
Save As....

If Create Icons? on the Settings menu is selected, the editor will attempt to
generate a suitable Workbench icon for the file.

Devpac also saves the current tab size and positions of any bookmarks for the
project in its icon. This information can only be saved to disk (and
subsequently re-loaded) when Create Icons? is enabled.

Save As...
Save As... on the Project menu orA A allows you to save a project in a
different place or under a new name. It will be selected automatically if you
Save an untitled project.

Page 44 HiSoft Devpac 3 The Editor

The File Selector will appear, giving the name and drawer where the file is
currently located (if any). You may select the drawer and filename in the
normal way. Clicking Save or pressing Return will then save the file onto
disk. If you click on Cancel the text will not be saved.

If the filename you select already exists, a requester will appear asking you if
you wish to overwrite this file, select a new name or cancel the operation. To
save the file under the same name, use the Save command.

Backups and icons are also created if selected as described under Settings.

Save Changes
If you are editing a number of files and wish to save all of them to disk, Save
Changes is equivalent to selecting Save for each modified file. You may
use this before quitting the editor or for safety before running a program
which you are testing.

Last Saved
The shortcut Shift-A-L may be used to activate the 'Last Saved' command.
This command will load the last saved version of the file on disk. Somewhat
similar to an ‘undo’ command. 'Last Saved' is greyed-out on a project that
has not been saved previously.

Inserting a file
To read a file from disk and insert it into a project, select Insert File from the
Edit menu. The File Selector will appear allowing you to select a filename or
to cancel. The file will be read from disk and inserted, memory permitting, at
the current cursor position.

The Editor HiSoft Devpac 3 Page 45

Deleting files
This command is only available in the 1.3 version. You may want to delete a
file from disk (if for instance you have run out of disk space whilst trying to
save); click on Delete File. The File Selector will appear, allowing you to
select a suitable disk and filename. Clicking OK or pressing Return will
delete the file and its icon from disk and prompt for another one. Click on
Cancel to stop (this will not cause any files to be deleted).

If an error occurs, a requester will appear showing an AmigaDOS error, the
exact meaning of which can be found in your Amiga® manuals. Note that it
is only possible to delete a drawer after any files which it contains have been
deleted.

Quitting HiSoft Devpac
To leave HiSoft Devpac, select Quit Devpac from the Project menu or
press.A Q. If any changes have been made to the text and not saved to disk, a
modified project requester will appear for each changed file giving you a
chance to save or abandon the file. Selecting Cancel will abort the quit and
resume editing.

If you have a large number of modified projects, all of which you wish to
save to disk, it can be quicker to select Save Changes before quitting.

Macros
Macros provide a simple way of teaching the Devpac editor to perform a
sequence of actions. This facility can be used for simple operations, such as
indenting a number of lines by a single tab, or more complex ones such as
adding a comment to the end of all lines containing the instruction PMOVE.

The Macro menu gives access to the four commands used to record and
replay macros.

the macro menu

Page 46 HiSoft Devpac 3 The Editor

To begin a macro you should select Start Learning from the Macro menu or
press Ctrl-[. The editor will subsequently remember each action you perform
including all of the menu items, cursor movement commands and typed text.
Mouse or requester operations are not remembered, only editor commands
will be recorded.

One you have completed your chosen sequence of actions, select Stop
Learning or press Ctrl-] . The macro can now be played back to repeat the
recorded sequence.

Two playback commands are available. Selecting Play Macro or A M will
replay the macro once whilst Repeat Macro... or Shift A M will play the
macro several times in succession.

If you choose to repeat a macro, a number requester similar to the Go to Line
requester will appear allowing you to enter the number of iterations and press
Return. Clicking the close gadget or pressing Return without entering a
number will cancel the operation.

The following sequence of actions would be required in order to record a
macro which indented a number of lines by a single tab:

 select Start Learning (Ctrl-[).

 use Ctrl- to move to the beginning of the line, press Tab and then
cursor down a line.

 select Stop Learning (Ctrl-]) to complete the macro which will
consists of these three actions.

 choose Repeat Macro and enter the number 10 to proceed to indent
the next ten lines in exactly the same way.

The Editor HiSoft Devpac 3 Page 47

Settings
Selecting Settings... from the Settings menu will produce a requester like this:

The editor preferences

This allows you to configure the editor as you like to use it; you can then
save your customisation to disk so that the editor will always behave the
same way. Selecting Use will accept any changes you have made without
saving them to disk. Changes will be lost at the end of the current session
unless subsequently saved.

Here are the different settings that you can change.

Tab Size
By default, the tab setting is 8, but this may be changed to any value from 1
to 20. This value will be used for the current project and as the default for any
new projects. Tab sizes are saved for each individual project if Create Icons?
is selected.

End of Line
There are three possible choices of the action that is taken when the editor
reaches the end of a line. The default behaviour allows the most freedom
although you can also choose for the cursor to wrap to the next line if you
step past the end of a line or to treat the start and end line as terminators. This
latter behaviour allows you to hold down the Del key to delete to the end of
the line without it proceeding to delete the rest of your text.

The best way to find out which you prefer is to try using each setting.

Page 48 HiSoft Devpac 3 The Editor

Word qualifier key
By default, the Alt modifier is taken to mean 'by word' and Shift is 'by line' as
is standard for the Amiga®. However, users whose fingers are accustomed to
other systems can swap this behaviour via the Word Key setting.

Auto-Indent lines
Selecting this option gives automatic line indenting. When active, an indent
is added to the start of each new line created when you press Return or split a
line.

The contents of the indent of the new line is taken from the white space (i.e.
tabs and/or spaces) at the start of the previous line. This allows you to lay out
your program neatly by simply pressing Return.

Make Backups
Selecting this option causes the editor to make a backup (by adding the
extension . BAK) when saving text files.

IBM Keypad
This option enables the use of the numeric keypad in an IBM PClike way by
default allowing single key presses for cursor functions. The keypad works as
shown in the diagram below:

The Editor HiSoft Devpac 3 Page 49

When this option is not selected, the keyboard reverts to returning the digits
etc. although these functions may still be accessed by using the Ctrl modifier
in conjunction with the numeric pad keys.

At all times, the Shift modifier and the numeric pad cursor keys will scroll the
window in the appropriate direction whilst keeping the cursor in the same
position over the text.

Editor Screen
The Devpac editor may be run either from the Workbench screen or its own
screen if preferred. Selecting Editor Screen and saving the settings will
cause a new screen to be opened when the editor starts up.

The Workbench 2 version opens on a public screen named DEVPAC.1 by
default. You are free to use this screen for other programs or for opening
Shells via the SCREEN keyword of the CON: handler.

Create Icons
With Create Icons? on the Settings menu selected, the editor will attempt to
generate a suitable Workbench project icon for any saved file. The icon
image is taken from the ENV:Devpac or ENV:Sys directory and will match
the file extension where possible. For example, the icons def_s and def_i
would be used for the files amiga.s and menu.i respectively. If these
could not be found then the icon def_project would be used instead.

You may create these icons with the Workbench icon editor and include a
suitable default tool (this can be used to automatically run the editor when
you double-click the icon) and other tooltypes as desired. Some common icon
names are def.s and def.i for source files with def_project for other files,
def_prefs for settings files, def_opts for assembler options files and
def_tool for assembled programs.

Page 50 HiSoft Devpac 3 The Editor

Saving settings
To save the settings file you can choose Save Settings or Save Settings As...
from the Settings menu. This latter command saves all editor preferences to
the current settings file or creates a default file if no preferences have been
loaded. Selecting the Save gadget on the Settings requester has the same
effect. An icon of type def_prefs will also be created if you have selected
Create Icons?.

In addition to saving the editor configuration, the current font and find and
print settings are also saved. The current window position and size are saved
as the defaults for new projects and the relative position of all requesters are
remembered.

The settings file itself is formatted in a similar way to Workbench icon
tooltypes as a list of keywords in upper case followed by an equals sign and
their associated setting. Advanced users may wish to modify the files
textually within the editor in order to override only certain defaults or to
specify an exact window position etc.

Multiple settings files
The usual name for settings files is Devpac.prefs. If you want to call your
settings file a different name, you can use Save Settings As... which will
allow selection of a name and drawer for the file via the File Requester.

When the editor is loaded, it looks for the Devpac.prefs configuration file
firstly in the current directory (which is the project icon drawer when started
from Workbench by doubleclicking), then in the editor directory (used by
Save Settings when no file is available) and finally in ENV:Devpac (for the
convenience of network users). This can be overridden by the use of the
SETTINGS=<file> tooltype which can be added to editor or project icons via
the Workbench Info or Information option.

You can take advantage of this if you intend working on several projects,
each requiring different settings, by saving settings files into each project
drawer and a default settings file in the editor or ENV:Devpac directory.

The Editor HiSoft Devpac 3 Page 51

Loading settings
You may use Load Settings... from the Settings menu to select and load
editor settings files from the File Requester. Workbench 2 users may wish to
keep a number of settings files in the SYS:Prefs/Presets drawer.

Assembler settings

The Assembler sub-menu on the Settings menu allows you to select the
options used by GenAm when assembling programs. Although full details of
each option can be found in the assembler chapter of this manual, there
follows a brief description of how to use these facilities from the editor.

Assembler options are grouped into three separate requesters which can be
called up by selecting one of three items on the assembler settings sub-menu;
Control-, Options- .. and Optimisations... (Ctrl-1, 2 or 3 from the
keyboard). Note that some assembler options cannot be selected from these
requesters either because they are available as a separate Program menu
command or because they are inappropriate to the integrated environment.

The Control requester provides control over the operation of the assembler,
listing control and what type of file is produced. This requester also includes
the path and name of your main file.

The main file is the source file upon which all assembly commands on the
Program menu operate and is of use when creating a large program
comprising of a number of source files included by the main file. Where no
main file is specified (the default), assembly is carried out on the current
project.

Page 52 HiSoft Devpac 3 The Editor

The Options requester gives access to a whole range of assembly options
including processor type and enables various levels of source checking
provided by the GenAm assembler.

Finally, Optimisations allows you to determine which instructions will be
optimised by the assembler and whether you are notified of these during
assembly via a warning message.

Note that the Restore command will lose any modifications you have made
to all open assembler options requesters, effectively cancelling each
requester and re-displaying the state they were in when originally activated.

Options files
Unlike all other Devpac settings, the contents of the three assembly options
requesters is saved in a file separate from the editor settings. They are stored
in an assembly options file called GenAm.opts which may be saved and
loaded in much the same way as normal settings files.

When the editor starts up, it will search for GenAm.opts in the same
places as Devpac.prefs; the project directory, the editor directory and
ENV:Devpac. This gives you the ability to save separate options files for
different projects by placing them in the appropriate drawer.

Options files have the additional benefit of being usable from a command
line environment. GenAm will search for the GenAm.opts file before
processing its command line arguments allowing you to specify default
options in this file. These may then be overridden by further options on the
command line.

Selecting Save from the Assembler sub-menu will save all assembly
options to the current options file or create a default file in the editor
directory if none has been loaded. You may save a number of options files
in different places via the Save As... submenu command although files
named anything other than GenAm.opts will not be loaded automatically
by either the Devpac editor or the assembler. Icons for options files are
taken from def_opts or def_project.

The Editor HiSoft Devpac 3 Page 53

Options files may then be reloaded using the Load... command from the
Assembler sub-menu. If you wish to re-load the current options file, you may
wish to use the Last Saved command instead. Reset to Defaults may be
used to restore all assembler options to their original state.

Miscellaneous Commands

The About box
It you select About... from the Project menu (also available via the Help
key), a requester will appear giving various details about HiSoft Devpac,
including its version number. You will also be told the name of the current
project and its size both in lines and bytes.

Pressing C or clicking on Continue will resume editing.

Printing
A range of printing options are available from HiSoft Devpac.

To simply print a project using the current settings you may press AP or
select Print from the Project menu. A requester will appear if the printer
cannot be found or an error occurs.

You may change the printer settings from the requester below which is
accessed by selecting Print As or pressing Shift-AP.

the printer settings

Page 54 HiSoft Devpac 3 The Editor

Using the radio buttons, you may choose to print the entire project, the
currently marked block or a selected range of lines entered via the first two
number gadgets.

Optional line numbers may be added and the number of copies specified.
Multiple copies will be separated by a form feed and tabs are expanded to the
appropriate number of spaces.

The Print To gadget may be used to specify where the listing is sent. For most
uses this should be set to PRT: which is the default printer although other
AmigaDOS devices may be used. In order to select the type of printer or the
serial or parallel port, do this via system preferences in the normal way (see
your Amiga® documentation for further details).

It is possible to specify a file or pathname in order to re-direct printing to disk.
This can be used as a method of converting tabs to spaces or adding line
numbers to a file.

Read-Only projects
This feature allows a project to be temporarily locked, preventing any'
accidental modifications. Blocks may still be marked or copied into the
clipboard and the file can be saved but any command which would change
the text will simply cause a Project is Read-Only error. Use Ctrl-W to turn
this on or off for the current project.

Centre Window
Scrolls the current window so that the cursor is positioned as centrally as
possible. Many commands such as Go to Bookmark or Find Next do this
automatically although it is often a useful way of finding the cursor position
when you get confused. The keyboard shortcut is A / or Ctrl-5 or Shift-5 on
the numeric keypad.

The Editor HiSoft Devpac 3 Page 55

Select Font
By default, all windows use the currently selected system font. For
Workbench 1.3 this is normally topaz 8 or 9 as specified in preferences.
Workbench 2 may additionally set up any fixed width font from the Font
preferences editor.

The Select Font... command on the Settings menu gives you the ability to
choose a separate font for the Devpac editor. A requester will appear and
selecting a font and size followed by OK will adjust all project windows to
use your chosen font.

Assembling Programs

Having produced your assembly program using the editor you can then
assemble it to memory or disk and run it. All program operations can be
found on the Program menu with keyboard shortcuts using the Ctrl modifier
key.

Although each command is covered in greater detail later in this chapter, here
is an overview of the development process:

 Set up any options you wish to use via the Assembly sub-menu on the
Settings menu.

 If you wish to produce a stand-alone program, select Assemble to Disk
also on the Settings menu. Assemble to memory can only produce an
executable format program.

 Select the Assemble command (using Ctrl-A). If the editor cannot find the
GenAm assembler you will be given a chance to locate it. This can also be
done via Resident Tools.

Page 56 HiSoft Devpac 3 The Editor

 Step through any errors using Next Error and Previous error (Ctrl-E and
Shift-Ctrl-E).

 Once the program has successfully assembled, select Run from the
Program menu (Ctrl-X). Arguments... may be selected if you wish to
pass the program a command line.

 If the program did not function as intended, you may select the Debug
(Ctrl-D) option in order to enter the MonAm debugger and trace through
the program until you locate the problem.

A number of other assembly options are available which allow you to check
that your program assembles correctly, generate a symbol file for faster
assembly etc.

Remember that you may specify a particular file as your main source file, in
that this will be assembled instead of the current project. This can be done
from the Assembly Control requester. The main file may be loaded in the
editor or on disk and will be read in accordingly.

Resident Tools
This command, on the Settings menu, lets you control how the Devpac
programs are loaded into memory.

There are three different ways that the editor can load a resident tool. Firstly,
by default, the assembler and debugger will be read into memory the first
time that you select a command which requires them (First Use). Thus, if you
do not use the debugger, for example, no extra memory will be taken up.

The Editor HiSoft Devpac 3 Page 57

Alternatively you may specify that a tool should be loaded at all times. This
will cause the program to be loaded when the editor starts up. If you are low
on memory, the As Required option provides minimal memory usage, only
loading a tool when absolutely necessary.

The Directory... gadget produces a file requester allowing you to locate the
directory containing the GenAm and MonAm programs. This is also
displayed if the editor comes to load a tool and cannot find it.

One final way of controlling resident tools is to load them externally by use of
the AmigaDOS RESIDENT command. This way, the program will stay resident
even when you quit HiSoft Devpac which will save on loading time if you
have sufficient memory. To pre-load non-program files (such as include files
or pre-assembled symbol files) we recommend copying them into the RAM
disk.

Program menu

The commands on the Program menu are used to communicate with the
other parts of the package, the assembler, the debugger and, not least, the
program that you are developing.

Assemble
This command or its keyboard shortcut (Ctrl-A) assemble the main file
specified in the Assembler Control requester which is accessed via the
Settings menu. The rest of these settings are described at the start of the next
chapter. If no main file has been entered the file in the current window will be
assembled. If you have not even given your source code a name you can still
assemble it, although the output file won't be useful.

If you haven't checked Assemble to Disk from the Settings menu then your
file will be assembled to memory.

Whether the assembler, GenAm, is loaded from memory each time you
invoke it is controlled using the Resident Tools item on the Settings menu.

Page 58 HiSoft Devpac 3 The Editor

Note that the assembler will automatically read include files from memory if
they are being edited at the time - there is no need to save -any changes to
include files that are being edited before assembly since they are read from
memory, not disk.

Check
Check or Ctrl-C is just like assemble except that it does not produce output
to memory or disk. If you know that your file contains errors this operation is
slightly quicker than a normal assembly, even than an assemble to memory.

Output Symbols
This is used to produce a .gs file from an include file. The pre-assembled
symbol table that is produced will then be loaded when you assemble a file
that includes this file. Pre-assembly is described in detail in the next chapter.

Run
This command and its keyboard short cut (Ctrl-X) execute your program as if
you had run it from the CLI. If you think there is any chance that your
program will crash the machine, make sure that you save your source code
before selecting Run.

If you have checked Assemble to Disk from the Settings menu, the Run
command will also re-load your file from disk. Assembling to memory is a
slightly faster operation.

If you have made changes to your text files since you last assembled you can
still run your program in memory - but the executed program will not reflect
the changes that you have made to the source.

Arguments
This command lets you set up the command line that is passed to your
program when it is run. The command line is saved in the editor settings file,
so that if you are working on a project that requires a command line, it will be
set up as soon as you re-load the editor.

The Editor HiSoft Devpac 3 Page 59

Debug
The Debug command (or Ctrl-D) command invokes the MonAm
debugger which will automatically load your program, from disk or
memory depending on your setting of the Assemble to Disk item on the
Settings menu.

Execute
Execute (A-E) displays a requester for you to enter a CLI command
(and its command line) that will then be executed - when the executed
program terminates you will be returned to the editor.

One use for this command is to invoke the linker from within the
editor. If you set up Execute to perform your link for you, you can
subsequently invoke this using. A-E and Return.

Error commands

When an assembled program has errors in it the editor will report these
errors and also remember a list of the error messages that occurred and
the positions where they occurred.

If your assembly reported errors and you return to the editor, the
cursor is placed on the line where the first error occurred with the error
message displayed in the window title bar, regardless of whether this
was the current window before the assembly started. If the first error is
in a file that isn't currently loaded then this will be ignored and you
will be positioned on the first error that is in a file that is loaded.

The error positions are treated internally in a very similar way to
bookmarks - so you can insert, delete and move text and the error
messages will still be displayed on the correct line.

Next Error
This command, with the shortcut Ctrl-E, will move to the next error in
the list of errors regardless of current cursor position; it will switch
windows if required. If there are no more errors the message no more
errors will appear in the window title bar.

Page 60 HiSoft Devpac 3 The Editor

Previous Error
Previous Error (Shift-Ctrl-E) moves the cursor to the previous error in the error
list, switching windows if required.

Thus Next Error and Previous Error can be used to navigate the entire list of
errors - if you decide that you do not want to fix one mistake immediately,
you can ignore it and then go back there using Previous Error.

Find Error
Find Error (Ctrl-F) moves to the next error starting from the cursor position
in the current window. As such it works in a very similar way to the Jump to
Error command of Devpac Amiga 2.

It has the disadvantage that, if you move the cursor off the current line, the
next Find Error command may miss out some errors (if you moved to later in
the file) or repeat errors (if you moved to earlier in the file).

The Editor HiSoft Devpac 3 Page 61

Keyboard command summary
Project commands
A N New

A O Open

A S Save

A A Save As

A P Print

Shift- A P Print As

Help About

A Q Quit Devpac

Window commands
A W New Window

Shift – A W Close Window

A . Activate Next

A , Activate Previous

Shift - A > Bring to Front

Shift - A < Send to Back

Movement commands
← → Character Left/Right

↑ ↓ Line Up/ Down

Shift- ←/→ Shift Left/Right

Shift-↑/↓ Shift Up/Down

Alt-←/→ Word Left/Right

Alt-↑ ↓ Shift Up/Down

Ctrl-←/→ Start/End of Line

Ctrl-↑/↓ Top/Bottom of File

Shift-Numeric ←/→ Scroll Left/Right

Shift-Numeric ↑/↓ Scroll Up/ Down

A /, Shift-Numeric 5 Centre Window

Page 62 HiSoft Devpac 3 The Editor

Edit commands
Tab Insert Tab

Return Enter Line

Ctrl-Return Insert Line

Ctrl- - Join Lines

Ctrl-= Split Line

Backspace/Del

Delete Character Left/Right

Shift-Backspace/Del

Delete to Start/End of Line

Alt-Backspace/Del

Delete Previous/Next Word

A Backspace, Ctrl-Backspace, Ctrl-Y

Delete Line

Ctrl-U Undelete Line

A Z Undo Line

Ctrl- W Read-Only mode

Block commands
A X, Shift-F5 Cut

A C, Shift-F4 Copy

A V, F5 Paste

A Del, Shift- F3, Ctrl-Del

Erase

Esc Unmark Block

F1 Mark Start

F2 Mark End

Shift-F1 Locate Start

Shift-F2 Locate End

F3 Save Block

F4 Duplicate Block

A I Insert file

The Editor HiSoft Devpac 3 Page 63

Search commands
A F Find

A R Find & Replace

Ctrl-N Find Next

Ctrl-P Find Previous

Ctrl-R Replace

A G Go to Line

A 0-9 Go to Bookmark

Shift –A 0-9 Set Bookmark

Macro commands
Ctrl-[Start Learning

Ctrl-] Stop Learning

A M Play Macro

Shift , A M Repeat Macro

Program commands
CtrI-X Run

Shift-Ctrl- A Arguments

Ctrl-A Assemble

CtrI-C Check

CtrI-O Output Symbols

Ctrl-D Debug

Shift-Ctrl-D Debug without Program

CtrI-F Find Error

Ctri-E Next Error

Shift-Ctrl-E Previous Error

Ctrl-1 Assembly Control

Ctrl-2 Assembly Options

Ctrl-3 Assembly Optimisations

A E Execute

Ctrl-S Set Settings

Page 64 HiSoft Devpac 3 The Editor

The Assembler HiSoft Devpac 3 Page 65

Chapter 3
The Assembler

Introduction

GenAm is a powerful, fast, full specification 68000/68040/68881 assembler,
available instantly from within the editor or as a stand-alone program. It
converts the text typed or loaded into the editor, optionally together with files
read from disk, into a binary file suitable for immediate execution or
linking.It can also produce a memory image for immediate execution from
the editor.

Invoking the Assembler

From the Editor
Before using the assembler you will probably need to set up the assembler's
settings to reflect your preferences. This is achieved via the sub-menus from
the Assembler item on the Settings menu.

The first three items on this menu display requesters that enable you to select
the options. The first requester, Control, may also be selected using Ctrl-1
and is described on the next page.

Page 66 HiSoft Devpac 3 The Assembler

The Control requester

This requester is used to control the assembly process.

The No Warnings option suppresses the generation of assembler warnings.

Ignore multiple includes causes the assembler only to assemble an

include file the first time that it is included. This leads to slightly faster
assembly times and is most useful when using the operating system include
files which may be called more than once. However you should not use this
option if the multiple includes are each intended to generate code.

Low Memory Assembly lets you reduce the memory requirements

of the assembler by causing it never to cache include files in memory. Under
normal circumstances you should leave this button un-checked, and select it
only if the assembler runs out of memory.

The List Symbol Table, List macro Expansions, List Conditionals only and
First Pass listing options should be self explanatory. Generating a listing on
pass one is only normally useful when debugging complex usage of
conditional assembly.

The Format cycle gadget lets you select the output format produced by the
assembler; either Executable, Linkable or S-Records. The differences
between these are detailed later. Normally you will want to use Executable.

The Assembler HiSoft Devpac 3 Page 67

The Listing cycle gadget enables you to select an assembly listing. None will
suppress the listing, Screen and Printer will direct it to the appropriate device.
Disk will send the listing to a file based on the source filename but with the
extension . LST. You may set your own file or device for the listing file
using the List to item.

The Debug Symbols cycle gadget lets you choose which symbols to
include ,in the executable. You normally include symbols in a file so that you
can see them when using the debugger. The choice is:

None Outputs no symbols

All Outputs all symbols

Exports When using linkable code only exports are
output

Choosing Line Debug includes information about the code addresses
corresponding to the line numbers in your program for use with the MonAm
debugger. Two formats are available: Standard which uses LINE debug
hunks that are compatible with the CodeProbe debugger that is supplied with
SAS/C. Compressed uses HCLN hunks which need approximately one
quarter of the space of LINE hunks but are not understood by CodeProbe.
Beware that even using the compressed format increases the size of your
program substantially. MonAm understands both formats.

Tab Size sets the size of tabs in listing files.

The Define item enables you to initialise the values of labels. This takes the
form: label=value,label-value,…. Thus:

A3000=1,STANDALONE=0

would set the label A3000 to have the value 1 and STANDALONE to have the
value 0. Note that omitting the xxx causes the label to be set to the value 1.

Main sets the main file for assembly. If you are working on a project with
multiple include files, you will want to set this up to be the main file to
assemble. You may either type this in explicitly or set it via the File
Requester by selecting the Set... gadget to the right of this item. If you leave
this blank the file in the current window will be assembled when you select
the Assemble item from the Program menu or use Ctrl-A.

Page 68 HiSoft Devpac 3 The Assembler

Output is used to override the default name for the assembler's output file
which is the same as the main file but without an extension if executable,
with a .o extension if linkable or an .mx extension if S-records are being
produced. Even if you have specified an output filename with this option you
will still need to ensure that the Assemble to Disk item is selected.

Include lets you set a list of directories that will be searched for include files.
Typically you will set this up to point to the main directory for your operating
system include files. You can add items to this using the File Requester by
selecting the Add... gadget. To delete an entry you must use the keyboard.

Headers lets you set any pre-assembled header files that will be loaded
before assembly begins. Such header files contain the symbol table
information for macros and absolute labels and are produced using the
Output Symbols (Ctrl-S) command from the Program menu. These files are
described in detail later.

The Options requester
The second assembler settings requester is called Assembler Options and
may be selected using Ctrl-2 as well as via the appropriate sub-menu. It looks
like this:

The Processor cycle gadget lets you select for which main processor the
assembler will generate code. If you are writing a program that is to run on
all Amigas leave this as 68000. If you are writing a program specifically for
the A3000 then you should select 68030.

The Assembler HiSoft Devpac 3 Page 69

The 68881 /2 Maths Coprocessor and 68851 Memory Management
Unit check boxes enable the instructions for these coprocessors. Note that the
68851 should only be selected if you are generated code for a 68020/68851
combination; the 68030 and 68040 processor options automatically enable
the MMU instructions for those particular chips. Equally it is not necessary to
select the maths co-processor when using the 68040.

The Default Base disp and Default Outer disp cycle gadgets set the default
sizes for these elements of the 68020 addressing modes. See below for a
detailed discussion of these modes.

The Default Branch size option sets the default size for branch instructions.
Using Word gives the same code as produced by 68000-only assemblers.

Use Case Insensitive symbols to select whether labels are case dependent
or not. If Case Insensitive is checked, then Test and test would be treated
as the same label, when not checked they are treated as different.

Symbol Significance lets you define the number of characters that will be
considered when labels are compared. The default value is 127 characters, the
maximum. The minimum value is 8.

The Ensure PC-relative code, Check Absolute values for missing # and
No Even indirection checking options correspond to the CHKPC, CHKIMM
and NOEVEN options when checked. These are described in detail below.

The Underscore for Local labels, No Supervisor instructions, Allow
narrow zero operands, Add automatic PC-relative, No Even
indirection checking and No expression Type checking items correspond
to the LOCALU, USER, ALLOWZERO, AUTOPC, NOEVEN and
NOTYPE options when selected. See below for details.

Page 70 HiSoft Devpac 3 The Assembler

The Optimisations requester
The final assembler settings requester is that used for optimisations. The
keyboard shortcut for this is Ctrl-3.

This requester controls the optimisations that will be made automatically by
the assembler. Most of these can be set to one of On, Off or Warn, When
Warn is selected the assembler makes the optimisation and issues a warning
so that you can see where it is modifying your code. Switching an
optimisation On causes it to be made without any warning.

The No Optimisations, All Optimisations and All Warnings gadgets can be
used to switch off, on or warn of all optimisations at once. Note that the
Forward branches gadget may only be set to Warn or Off.

The exact code transformations that these options perform are detailed below.

You will also need to check the setting of the Assemble to disk menu item
on the Settings menu. When this is not selected assembly will be made
directly to memory from where the program can immediately be Run or
debugged via MonAm using the Debug item on the Program menu.

Having selected your required options you should select the Assemble menu
item from the Program menu or press Ctrl-A to start the assembly. At the end
of assembly press any key to return to the editor. If any errors occurred the
cursor will be positioned on the first offending line.

The Assembler HiSoft Devpac 3 Page 71

If you wish to check the syntax of a program rather than actually assembling
it to memory or disk, you can use the Check item from the Program menu -
this is exactly like a normal assembly but it does not output any code. The
keyboard shortcut for this is Ctrl-C.

The final form of assembly is to produce a pre-assembled header file so that
you can use it via the Headers item on the Assembler Control requester. To
produce a pre-assembled file select Output Symbols (Ctrl-S). Note that files
that are used in this context may not contain code - only definitions of macros
and constants. This is most useful for the operating system include files.

Assembly to Memory

To reduce development time GenAm can assemble programs to memory,
allowing immediate execution or debugging from the editor. Such programs
may self-modify if required as a re-executed program will be in its original
state.

You should be careful when running from memory under the 68020
processor and above; these chips have an instruction cache and, if you modify
an address that is already in the instruction cache, your new code will not be
executed!

Stand-Alone Assembler

You can invoke the assembler from within the editor or from the Shell or CLI
using the standalone assembler.

The standalone version of the assembler is called GenAm and, if it is called
without a command line, you will be prompted for one conforming to the
rules below; enter the options you want and press Return or press Return
immediately to abort.

At the end of an assembly invoked from the editor, GenAm will pause, press
any key to exit the program and return to the editor. If a command line has
been supplied manually the assembler will not wait for a key at the end of the
assembly as it assumes it has been run from a CLI or batch file.

Page 72 HiSoft Devpac 3 The Assembler

Before GenAm processes its command line it looks for a file called
GenAm.opts. This file can contain a number of lines of options in exactly
the same format as the command line described below. This is exactly the
format used by the editor for saving the assembler settings so that you can
use the editor to set up your settings and just use the simplest form of
command line for assembly.

Command Line Format

The GenAm command line consists of a series of options and the name of the
main file that you wish to assemble. There may be options before and/or after
the filename. You can use any of the long forms of OPT option names directly
without any preceding character. These are described in detail later.

The main filename way be enclosed in quotes if you wish and can be
preceded by the keyword FROM. This is compulsory in the unlikely event
that your filename clashes with an OPT name. The main file's extension
defaults to .S

The additional options that can be used from the command line are as follows;
the corresponding OPT directive is shown in parentheses, where relevant. The
latter options may be used on the command line without the OPT if you prefer.

TO specify output filename.
WITH specify a file that contains a list of options to be used. There may

only be one WITH file per assembly and this option may only be
used on the command line. Such files may be created using the
editor's command for saving an assembler settings file. Be careful
when using this as any main file that is set via the editor will be
included in the WITH file.

- . (or QUIET) disable assembly messages.
- B no binary file will be created.
- C case insensitive labels (OPT NOCASE).
- D debug (OPT DEBUG).
- E allows labels to be set; assignments must be separated by commas.

Labels will be set as if they were on line 2 of the main source file.
See below for further details.

- H (or HEADER) specify the pre-assembled header files that are to be
loaded before assembly starts. Multiple files may be separated with a
comma.

The Assembler HiSoft Devpac 3 Page 73

- I (or INCDIR) specify include directories to be searched (follow
immediately with path). These directories will be searched when the
assembler is opening include files. These should normally be
terminated with a slash.

- L Amiga® linkable code (OPT ALINK).
- L6 output Motorola S-records (OPT SREC).
- M use low memory (slower) assembly mode. See the section on

integrated options in the previous chapter. Not the same as OPT M+.
-0 specify output filename (which should follow immediately after O).
-P specify listing filename (which should follow immediately after P),

defaults to source filename with extension of .LST. This may be any
device.

- Q pause for key press after assembly.
- S include a symbol table at the end of the listing.
- T specifies the tab setting for listing. For example -T10 uses a tab

setting of 10.
- V specify options as if they were specified using opt on the second line

of the main source file.
- X use just exported labels in debugging (OPT XDEBUG).
- Z enable listing on pass 1. The information in the code field may be

incorrect but this can be used to find mistakes when omitting an
ENDC (OPT LIST 1). This is provided for backward compatibility;
OPT TRACE IF can normally be used to find such errors more
quickly.

The default is to create a executable binary file with a name based on the
source file and output file type, no listing, with case sensitive labels.

Some examples of command lines:

genam test -b

assembles test.s with no binary output file.

genam test to ram:test -p

assembles test.s into a binary file ram:test and sends a listing file to
test.lst.

genam test –l1dppar:

Page 74 HiSoft Devpac 3 The Assembler

assembles test.s into linkable code with debug and a listing to the parallel
port. (A listing to the serial port can be obtained by specifying ser: as the
listing name).

genam test alink debug -ppar:

achieves the same effect.

genam test with test-opts

assembles the file test.s using the options contained in the file test. opts.

Defining Labels on the Command-Line
The - E option allows symbols to be defined at assembly time without
having to change the source file. This option can be followed by one or more
assignments of the form

<symbol>=<expression>

where <symbol> and <expression> follow the normal rules of the
assembler and may contain values that have been defined previously.
Multiple assignments must be separated by commas. If you omit the
=<expression>, then the symbol will be assigned the absolute value 1.
Such assignments occur as if they were the second line in the main source file,
after any options.

Assembly Process

GenAm is a two-pass assembler; during the first pass it scans all the text in
memory and from disk if required, building up a symbol table. If syntax
errors are found on the first pass these will be reported and assembly will
stop at the end of the first pass, otherwise, during the second pass the
instructions are converted into bytes, a listing may be produced if required
and a binary file can be created on the disk. During the second pass any
further errors and warnings will be shown, together with a full listing and
symbol table if required.

Assembly may be aborted by pressing Ctrl-C, although doing so will make
any binary file being created invalid as it will be incomplete and should not
be executed.

The Assembler HiSoft Devpac 3 Page 75

Return Codes

If using the CLI version of the assembler from batch- or make-files, you may
exploit the codes the program returns. These are:

100+ initialisation failure

20 fatal error

10 error(s)

5 warning(s)

0 OK

Binary file types

There are three main types of binary files which may be produced by GenAm,
for different types of applications. They are Arniga® executable, Arniga®
linkable, and Motorola S-records.

GenAm can also assemble executable code directly to memory when using
the integrated version allowing very fast edit-assembledebug-run times.

When producing linkable code, GenAm does not produce an executable file,
but a file that needs to be processed by a linker to produce an executable file.
An advantage of using this format is that your program can be linked with the
output of a high level language compiler such as HiSoft BASIC. You can
also use linkable code to split your assembly program into a number of
modules.

Motorola S-records are the industry standard method of programming
EPROMs and for standalone systems that use the 680x0 family of processors.
The code produced is an ASCII file that runs at a particular address. As a
result S-records are not suitable for executing directly on the Amiga® but are
ready for downloading to an EPROM programmer or stand-alone system.

The type of executable file may be specified using the assembly options box,
by using - L on the command like or OPT and then the format name within the
source code. Such a directive must be placed before any code is generated
and to avoid any confusion should be before any module or section directives.

Page 76 HiSoft Devpac 3 The Assembler

The different possibilities are summarised in the table below:

Lx OPT Name Result Extension

3 ALINK ALINK linkable .O

4 AMIGA Amiga® executable

6 SREC Motorola S-records .MX

Thus you can select linkable code from the assembler control requester or by
using a command line like

test -13

or

test alink

or by including

opt ALINK

at the start of the file.

For the curious, option L values of 1, 2, 5 and 7 are used by other products in
the Devpac family - ensuring source code compatibility across the range.

Output Filename
GenAm has certain rules regarding the calculation of the output filename,
using a combination of that specified at assembly time (either in the Output:
field in the assembler control options box or using the -o option on the
command line) and the OUTPUT directive:

If an output filename is explicitly given at assembly time then

name=explicit filename

else

if the OUTPUT directive has not been used then

name=source filename +.O or .MX

else if the OUTPUT directive specifies an extension then

name=source filename + extension in OUTPUT

The Assembler HiSoft Devpac 3 Page 77

else

name=name in OUTPUT

Types of code

Unlike most 8-bit operating systems, but like most 16-bit systems, an
executable program under AmigaDOS will not be loaded at a particular
address but, instead, be loaded at an address depending on the exact free
memory configuration at that time.

To get around the problem of absolute addressing the Amiga® file format
includes relocation information allowing AmigaDOS to relocate the program
after it has loaded it but before running it. For example, the following
program segment

move.l #string,a0

.

.

string dc.b 'Press any key',0

places the absolute address of string into a register, even though at assembly
time the real address of string cannot possibly be known. Generally the
programmer may treat addresses as, absolute even though the real addresses
will not be known to him, while the assembler (or linker) will look after the
necessary relocation information.

NOTE: For certain programs, normally games or for S-record
production an absolute start address may be required, for
this reason the ORG directive is supported.

The syntax of the language accepted by the assembler will now be described.

Page 78 HiSoft Devpac 3 The Assembler

Assembler Statement Format

Each line that is to be processed by the assembler should have the following
format:

Label Mnemonic Operand(s) Comment

start move.l d0,(a0)+ store the result

Exceptions to this are comment lines, which are lines starting with an asterisk
or semi-colon, and blank lines, which are ignored. Each field has to be
separated from the others by white space - any number or mixture of space
and tab characters.

Label field

The label should normally start at column 1, but if a label is required to start
at another position then it should be followed immediately by a colon (:).
Labels are allowed on all instructions, but are prohibited on some assembler
directives, and absolutely required on others. A label may start with the
characters A-Z, a-z, @ or underline (_), and may continue with a similar
set together with the addition of the digits 0-9 and the period (.). Note that
the @ character is allowed as the first character except when followed by a
digit from 0-7 when it is taken as the start of an octal number.

Labels starting with a period are local labels, described later. Sequences of
digits terminated by a $ are also local labels. Macro names and register
equate symbols may not have periods in them, though macro names may start
with a period. By default the first 127 characters of labels are significant,
though this can be reduced if required. Labels should not be the same as
register names, or the reserved words SR, CCR, USP or any of the other
special registers described under Special Addressing Modes below.

By default labels are case-sensitive though this may be changed. Some
example legal labels are:

test,TEST,_test,-test.end,test5,_5test,@test

Some example illegal labels are:

5test,_&e,test>,

The Assembler HiSoft Devpac 3 Page 79

There are three reserved symbols in GenAm, all starting with two underline
characters. These are __LK, __RS and __G2.

Mnemonic Field

The mnemonic (or opcode) field comes after the label field and can consist of
680x0 assembler instructions, assembler directives or macro calls. Some
instructions and directives allow a size specifier, separated from the
mnemonic by a period. Allowed sizes are .B for byte, .W for word, .L for
long and .S for short. In addition floating point instructions may also have
sizes of .X for extended, .D for double, .P for packed decimal and .S for
short floating point. Some of the MMU instructions have a size of .D
indicating a double long word (64-bits).

The specifiers which are allowed depend on the particular instruction or
directive. GenAm is case-insensitive to mnemonic and directive names, so
Move is the same as move and the same as mOvE, for example.

Operand Field

For those instructions or directives which require operands, this field contains
one or more parameters, separated by commas. GenAm is case-insensitive
regarding register names so they may be in either, or mixed, case.

Comment Field

Any white space not within quotation marks found after the expected
operand(s) is treated as a delimiter for a start of the comment and will be
ignored by the assembler.

Page 80 HiSoft Devpac 3 The Assembler

Examples of valid lines
move.l d0,(a0)+ comment is here

loop TST.W d0
lonely.label
 rts
* this is a complete line of comment
; and so is this

indented: link a6,#-10 make room
a_string: dc.b 'spaces allowed in quotes' a string

Expressions

GenAm allows complex expressions and supports full operator precedence,
parenthesis and logical operators.

Expressions are of two main types - absolute and relative - and the
distinction is important. Absolute expressions are constant values which are
known at assembly-time.

Relative expressions are program addresses which are not known at
assembly-time as the AmigaDOS loader can put the program where it likes in
memory. Some instructions and directives place restrictions on which types
are allowed and some operators cannot be used with certain type-
combinations.

Symbols used in expressions will be either relative or absolute, depending on
how they were defined. Labels within the source will be relative, while those
defined using the EQU directive will be the same type as the expression to
which they are equated.

The use of an asterisk (*) denotes the value of the program counter at the
start of the instruction or directive and is always a relative quantity.

The Assembler HiSoft Devpac 3 Page 81

Operators
The operators available, in decreasing order of precedence, are:

• monadic minus (-) and plus (+)
• bitwise not (~)
• shift left (<<) and shift right (>>)
• bitwise And (&), Or (!) and Xor (^)
• multiply(*) and divide (/)
• addition (+) and subtraction (-)
• equality (=), less than (<), greater than (>), inequality (<>) less than or

equals (<=), greater than or equals (>=)

The comparison operators are signed and return 0 if false or -1 ($FFFFFFFF)
if true. The shift operators take the left hand operand and shift it the number
of bits specified in the right hand operand; vacated bits are filled with zeroes.

This precedence can be over-ridden by the use of parentheses (and). With
operators of equal precedence, expressions are evaluated from left-to-right.
Spaces in expressions (other than those within quotes as ASCII constants) are
not allowed as they are taken as the separator to the comment.

All expression evaluation is done using 32-bit signed-integer arithmetic, with
no checking of overflow.

Note that | (vertical bar) may be used as a synonym for ! (or) and that ! = may
be used as a synonym for <> (inequality).

Numbers
Absolute numbers may be in various forms:

• decimal constants, e.g. 1029
• hexadecimal constants, e.g. $12f
• octal constants, e.g. @730
• binary constants, e.g. %01100010
• character constants, e.g. 'X'

$ is used to denote hexadecimal numbers, % for binary numbers, @ for octal
numbers and single ' or double quotes " for character constants.

Page 82 HiSoft Devpac 3 The Assembler

The default base for numbers may be changed using the RADIX directive.

Character Constants

Whichever quote is used to mark the start of a string must also be used to
denote its end and quotes themselves may be used in strings delimited with
the same quote character by having it occur twice. Character constants can be
up to 4 characters in length and evaluate to right-justified longs with null-
padding if required. For example, here are some character constants and their
ASCII and hex values:

“Q” 0 $00000051
'hi' hi $00006869
"Test" test $54657374
"it's" it's $6974277C
'it"s, it's $6974277C

Strings used in DC.B statements follow slightly different justification rules,
detailed with the directive later.

Floating point constants
Floating point constants are only allowed as arguments for floating point
instructions and FEQU directives. Such constants may either be expressed in
hexadecimal or conventional decimal notation. Hexadecimal floating point
constants should be preceded by : or $. The colon is the Motorola standard.
When using hexadecimal the way in which the value is interpreted depends
on the size used in the instruction. Thus

fmove.x #$400000008000000000000000,fpo
fmove.s #$40000000,fpO
fmove.d #:4000000000000000,fpO
fmove.p #$000000020000000000000000,fp0
fmove.s #2.0,fpO

all load the floating point, register FPO with the value 2.0.

For a description of the floating point formats see Appendix E.

The Assembler HiSoft Devpac 3 Page 83

Decimal numbers consist of one or more decimal digits followed by an
optional fractional part consisting of a full stop (period) and an arbitrary
number of decimal digits, optionally followed by an exponent consisting of
the letter E or e and a signed decimal exponent. The maximum values
allowed depend on the size of the appropriate instruction.

fmove.s #2,fp0
fmove. x #2E1,fpo
fmove.x #12345.678e -789,fpl
fmove.x #0.001,fp2
fmove.x # -1.2345E1234,fp3

The only operator that is allowed in floating point expression is the unary
minus (-) operator.

Allowed Type Combinations
The table below summarises for each operator the results of the various type
combinations of parameter and which combinations are not allowed. An R
denotes a Relative result, an A denotes absolute and a * denotes that the
combination is not allowed and will produce an error message if attempted.

 A op A A op R R op A R op R
Shift operators A * * *

Bitwise
operators

A * * *

Multiply A * * *

Divide A * * *

Add A R R *

Subtract A * R A

Comparisons A * * A

Addressing Modes
The available 68000 addressing modes are shown in the table below. Please
note that GenAm is case-insensitive when scanning addressing modes, so d0
and A3 are both valid registers.

Page 84 HiSoft Devpac 3 The Assembler

Form Meaning Example
dn data register direct d3

An address register direct a5

(An) address register indirect (al)

(An)+ address register indirect with post-
increment

(a5)+

-(An) address register indirect with pre-
decrement

-(a0)

d An) address register indirect with
displacement

20(a7)

d(An,Rn.s) address register indirect with index 4(a6,d4.L)

d.W absolute short address $0410.W

d.L absolute long address $12000.L

d(PC) program counter relative with offset NEXT(PC)

d(PC,Rn.s) program counter relative with index NEXT(PC,a2.W)

#d immediate data #26

n denotes register number from 0 to 7

d denotes a number

R denotes index register, either a or d

s denotes size, either W or L, when
omitted defaults to W

When using address register indirect with index the displacement may be
omitted, for example

move.1 (a3,d2.1),d0

will assemble to the same as

move.1 0(a3,d2.1-),d0

The modes discussed above can be used regardless of the processor type. The
following are additional modes that are only available when using a 68020 or
later processor.

The Assembler HiSoft Devpac 3 Page 85

Extended Index Registers for 68020
Certain existing modes have been extended to support a scale on the index
register as follows:

exp(An,Xn<.size><*sca1e>)

exp(PC,Xn<.size><*sca1e>)

If the above syntax is used then the expression must fit into 8 bits; if it is
larger then the new modes (bd,an,Xn) / (bd,PC,Xn) should be used.
Suppressed (Z) registers cannot be used with this syntax. See below.

New 68020 Modes
The new modes in their most basic form are:

(bd,An,Xn) address register indirect with index
(base displacement)

([bd,An],Xn,od) memory indirect post-indexed
([bd,An,Xn],od) memory indirect pre-indexed
(bd,PC,Xn) program counter indirect with index

(base displacement)
([bd,PC],Xn,od) program counter indirect post-indexed
([bd,PC,Xn],od) program counter indirect pre-indexed

Every item in the above is optional and within each set of brackets the item
list may be in any order. In general the meaning of the syntax is that the
processor takes the sum of any items in brackets and then performs an
indirection (memory access) for each set of brackets.

For example, consider,

move.w ([$12.w,a1,d1],$24.w),dO

and let us assume that a1 has the value $1230002 and d1 has the value
$1234. Then this will cause the processor to calculate a1+d1+$1234 (giving
$1231248) and fetch the long word value from that address. Assuming
$1231248 contains $12345678 then $24 will be added to this (giving
$1234569C) and finally the word contents of $1234569C will be loaded into
the least significant word of d0.

Page 86 HiSoft Devpac 3 The Assembler

Depending on which items have been omitted, the assembler may change the
choice of addressing mode to be more optimal. If you wish to have a
particular mode with missing items then the item may be suppressed using Z-
notation, i.e. specifying ZAn, or ZPC, as required. The elements described
above are further detailed below:

bd - Base Displacement

This is an expression which may be relative or absolute, word or longword in
size. The default size is long, but word may be forced by adding .W after the
expression. The default size itself may be changed with the BDW and BDL
options. If the base displacement is known on pass 1 the size can be
optimised automatically by GenAm using opt 08+.

Xn - Index Register, with optional size and scale

This item has the general form Xn <.size> <*scale> where the size may
be .W (the default) or .L. The scale must evaluate to 1, 2, 4 or 8.

od - Outer Displacement

This is an expression which may be word or longword in size but must be
absolute. The default size is word, but long may be forced by adding L after
the expression. The default size itself may be changed with the ODW and
ODL options. If the outer displacement is known on pass I the size can be
optimised automatically by GenAm using opt o9+.

New 68020 Syntax for Old Modes
The new syntax for the old modes is:

(d16,An) equivalent to exp (An)
(d8,An,Xn) equivalent to exp (An, Xn), though Xn

may be scaled
(d16,PC) equivalent to exp(PC)
(d8,PC,Xn) equivalent to exp (PC, Xn), though Xn

may be scaled

If any items are explicitly suppressed then a suitable new 68020 addressing
mode will be used.

The Assembler HiSoft Devpac 3 Page 87

Ordering Rules
Any set of items within brackets may be ordered arbitrarily, though care
should be taken if two address registers are specified; the leftmost register
will be used as the base register, the rightmost as the index register. For
example if the mode

(a3,isize,a2)

is specified the assembler will assume a3 is the base register and a2 will be
sign-extended from 16-bits, as .W is the default index size.

Data Register Indirect
The 68020 allows data register indirection, by suppressing suitable items, but
take care; the default size for index registers is word, so the line

move.l (d3),d0

will actually be coded as

move.1 (0,za0,d3.w),d0 the (bd,An,Xn) form

which will indirect via the sign-extended value of d3; the likely correct line is

move.1 (d3.1),d0

Special Addressing Modes
CCR condition code register
SR status register
USP user stack pointer

In addition to the above, SP can be used in place of A7 in any addressing
mode, e.g. 4(SP,d3.W)

The data and address registers can also be denoted by use of the reserved
symbols R0 through R15. R0 to R7 are equivalent to d0 to d7; R8 to
R15 are equivalent to A0 to A7. In general we recommend sticking to the
standard register names, but this option can be useful when porting code from
other assemblers or to simplify tools which generate assembly language.

Page 88 HiSoft Devpac 3 The Assembler

The registers above are available on all 68000 family processors. The
following registers are only available on the The following registers are only
available on higher processors and in the 68851 MMU. The use of some of
these registers varies from chip to chip.

SFC, DFC alternate function code registers

VBR vector base register

CACR cache control register

CHAR cache address register

MSP master stack pointer

ISP interrupt stack pointer

CRP CPU root pointer

SRP supervisor root pointer

TC MMU translation control register

TTO, TT1 translation control registers

MMUSR MMU status register

ITTO , ITT1 instruction transparent translation registers

DTTO, DTT1 data transparent translation registers

DRP DMA root pointer register

PCSR MMU cache status register

AC access control register

CAL current access level

VAL validate access level register

SCC stack change control register

PSR MMU status register

BAD0 - 7 breakpoint acknowledge data register

BAC0 - 7 breakpdint acknowledge control register

In general, user programs running under AmigaDOS should not use these
registers since they are reserved for use by the operating system. Some low
level programs may find it necessary to manipulate the cache control register
if using self-modifying code; but these should call the Exec Cache Control
routine rather than modifying the register directly.

The Assembler HiSoft Devpac 3 Page 89

Floating point registers
FP0-FP7 general purpose floating point registers
FPCR floating point control register
FPSR floating point status register
FPIAR floating point instruction address register

The addressing modes used in conjunction with the floating point instructions
are the same as those for the 'ordinary' instructions, although you should not
that the floating point instructions always use at least one floating point
register.

Calling the system maths libraries will automatically use a coprocessor if
present. Whilst this is not nearly as fast as using the FPU directly it has the
advantage of working on all systems.

Local Labels
GenAm supports local labels, that is labels which are local to a particular area
of the source code. These are denoted by starting with a period and are
attached to the last non-local label, for example:

len1 move.l 4(sp),a0
.loop tst.b (a0)+
 bne.s .loop
 rts
len2 move.1 4(sp),a0
.loop tst.b -(a0)
 bne.s .loop
 rts

There are two labels called .loop in this code segment but the first is
attached to len1, the second to len2.

As the local labels are attached in this way, you must have at least one real
label before the first local one.

If you wish to use global labels starting with a dot you may use OPT
LOCALU to allow this an make the underline character introduce local labels.

The local labels .W and .L are not allowed to avoid confusion with the
absolute addressing syntax.

Page 90 HiSoft Devpac 3 The Assembler

You may also use strings of decimal digits terminated by a $ sign as local
labels. This facility has been provided for compatibility with other
assemblers; we recommend the use of form shown above as this makes
programs much more readable.

Symbols and Periods
Symbols which include the period character can cause problems with GenAm
due to absolute short addressing.

The Motorola standard way of denoting absolute short addresses causes
problems as periods are considered to be part of a label, best illustrated by an
example:

move.1 ExecBase.w,d0

where ExecBase is the absolute value 4 This would generate an undefined
label error, as the label would be scanned as

ExecBase.w.

To work around this, the expression, in this case a symbol, may be enclosed
in brackets, e.g.

move.1 (ExecBase).w,d0

though the period may still be used after numeric expressions, e.g.

move.1 4.w,d0

NOTE: GenAm version 1 also supported the use of \ instead of a
period to denote short word addressing and this is still
supported in this version, but this is not recommended, due
to the potential for \W and \L to be mistaken for macro
parameters.

The Assembler HiSoft Devpac 3 Page 91

Instruction Set

Word Alignment

All instructions with the exception of DC.B and DS.B are always assembled
on a word boundary. Should you require a DC.B explicitly on a word
boundary, use the EVEN directive before it. Although all instructions that
require it are word-aligned, labels with nothing following them are not word-
aligned and can have odd values. This is best illustrated by an example:

nop this will always be word aligned
dc.b 'odd'

start
tst.l (a0)+
bne.s start

The above code would not produce the required result as start would have an
odd value. To help in finding such instructions the assembler will produce an
error if it finds an odd destination in a BSR or BRA operand. Note that such
checks are not made on any other instructions, so it is recommended that you
precede such labels with an EVEN directive if you require them to be
wordaligned. A common error is deliberately not to do this, as you know that
the preceding string is an even number of bytes long. All will be well until
the day you change the string...

Instruction Set Extensions
The complete 68000-68040 instruction set is supported (depending on the
processor selected) together with the 68881/68882 and 68551 coprocessors.
A number of standard shorthands are automatically accepted as detailed
below. A complete description of the 68000 instruction set can be found in
the supplied pocket guide. Full details of the instructions for the other chips
including syntax and addressing modes can be found in the M68000 Family
Programmer's Reference Manual which is available from HiSoft.

Condition Codes

The alternate condition codes HS and LO are supported in BCC, DBCC and SCC
instructions, equivalent to CC and CS, respectively.

Page 92 HiSoft Devpac 3 The Assembler

Branch instructions

To force a short branch use Bcc.B or Bcc.S, to force a word branch use
BCC.W or to leave to the optimiser use BCC. To use a 32 bit branch when
68020 or above code generation is in effect then use

Bcc.L.

When 68000/68008/68010 code generation is selected Bcc.L is interpreted
as a Bcc.w with a warning for compatibility with GenAm 1. To cause BCC.L
to be converted to Bcc.W regardless of the processor selected then use OPT
OLD as described elsewhere.

A BRA.S to the immediately following instruction is not allowed but may be
converted, with a warning, to a NOP using OPT 07+ (see the options sub-
section for details). A BSR.S to the immediately following instruction is not
allowed and will produce an error.

DBcc Instruction

DBRA is accepted as an equivalent to DBF.

ILLEGAL Instruction

This generates the op-code word $4AFC.

LINK Instruction

If the displacement is positive or not even a warning will be given.

MOVE from CCR Instruction

This is a 68010 and upwards instruction, converted with a warning to MOVE
from SR when 68000 only code is selected.

MOVEQ Instruction

If the data is in the range 128-255 inclusive a warning will be given. It may
be disabled by specifying a long size on the instruction.

The Assembler HiSoft Devpac 3 Page 93

Assembler Directives

Certain pseudo-mnemonics are recognised by GenAm. These assembler
directives, as they are called, are not (normally) translated into opcodes, but
instead direct the assembler to take certain actions at assembly time. These
actions have the effect of changing the object code produced or the format of
the listing. Directives are scanned exactly like executable instructions and
some may be preceded by a label (for some it is obligatory) and may be
followed by a comment. If you put a label on a directive for which it not
relevant, the result is undefined but will usually result in the label being
ignored.

Each directive will now be described in turn. Please note that the case of a
directive name is not important, though they generally are shown in upper
case. The use of angled brackets (< >) in descriptions denote optional items,
ellipses (…) denote repeated items.

Assembly Control

END

This directive signals that no more text is to be examined on the current pass
of the assembler. It is not required.

INCLUDE filename

This directive will cause source code to be taken from a file on disk and
assembled exactly as though it were present in the text. The directive must be
followed by a filename in normal AmigaDOS format.

A drive specifier, directory and extension may be included as required, e.g.

include df1:constants/header.i

Include directives may be nested as deeply as memory allows and if any error
occurs when trying to open the file or read it, assembly will be aborted with a
fatal error. When using the integrated editor if an include file is loaded then
this will be read direct from memory; there is no need to save it to disk before
assembly.

Page 94 HiSoft Devpac 3 The Assembler

If you have checked the Ignore multiple includes item in the
Assembler Control requester or used the OPT INCONCE option, then attempts
to include a file a second time will be ignored.

If no drive is specified, that of the main source file will be used when trying
to open the file.

For maximum flexibility, GenAm allows a two ways of specifying where
include files may be found without the need to specify the full pathname as in
the example above.

First, the Assembler Control requester Include item (and its command line
equivalent the -I option) lets you set directories that will be searched to find
the include files via the . Second you can use the INCDIR directive itself to
add to this path list.

Thus typically you use the assembler requester to set up the directory for the
system includes and use the INCDIR directive for any files that are specific to
this particular program.

NOTE: The more memory the better, GenAm will read the whole
of the file in one go if it can and not bother to re-read the
file during pass 2.

Pre-assembled files
When searching for include files GenAm also looks for a file with the same
name as the include file but with any extension replaced with gs. This is
assumed to be a pre-assembled symbol table file corresponding to that file
name.

Such a file is produced using the Output Symbols option from the Program
menu or by using the OPT GENSYM option. The .gs file that this produces
contains the symbol table definitions for the absolute labels and macros that
are defined by the include file. It also lists the files that the include file has
included itself.

When the assembler loads a .gs file the labels and macros contained within
it are added to the symbol table for the new assembly. If a definition is
already present then it is ignored. Any subsequent references to this include
file and the files that it includes will be ignored.

The Assembler HiSoft Devpac 3 Page 95

Thus if you Output Symbols from the system include file
Intuition/Intuition.I this will generate intuition/intuition.gs.
Your programs that use this include file will then load the .gs file and will
assemble much more quickly. You can even delete the original include file if
you wish (make sure you have a copy of the source first, though!).

If you know that your program is going to include a particular .gs file you
can load it before assembly starts using the Headers requester from the
Assembler Control requester or via the command line -H option.

Note that you cannot pre-assemble files that generate code. However the
entire operating system includes may be preassembled in this way.

INCDIR pathnamelist

The INCDIR directive lets you specify directories that will be searched for
include files as well as those specified via the -I command line flag or
Include list in the assembler control requester.

The format for the pathnamelist is a list of items separated by commas or
semi-colons and the directories should be terminated by a backslash.
Pathnames that contain spaces should be enclosed in quotes.

INCBIN filename

This takes a binary file and includes it, verbatim, into the output file.
Suggested uses include screen data, sprite data and ASCII files. The INCBIN
directive uses the same method for finding files as the INCLUDE directive
above.

The included data is forced to an even boundary, however the section counter
is not forced to an even boundary after the include if the file is an odd
number of bytes in length.

OPT option <,option>

There are a very wide range of options controlling all aspects of the assembly
process; some may be set with their own option letter on the command-line,
all may be set with an OPT directive within the source file, and most may also
be set on the command-line using the -v option.

Page 96 HiSoft Devpac 3 The Assembler

Devpac Amiga 2 and below only supported options denoted with an
alphabetic character followed by + or -; however owing to the large number
of options, these have been supplemented with keywords. The old format
options are still accepted.

The options are as follows:

Processor selection
P=680x0 allows selection of processor type; main processor may be

68000, 68008, 68010, 68020, 68030, 68040 or 68332.
Optional co-processors may be specified, separated by a /
and may be any combination of 68881, 68882 or 68851.
Specifying a main processor will de-select any current co-
processor.

NOTE: The processor selected using the assembler control
requester will be inserted as if on line 2 of the program;
thus overriding any selection on line I of the source
code. Equally you should not use a 680x0 instruction
on the first line of your program since the new
processor will not have been selected yet!

68020 Default Displacement Sizes
BDW makes any un-sized base displacements used in 68020

addressing modes word-sized; this will cause errors if you
have any relocatable references as they cannot fit into a
word.

BDL makes any un-sized base displacements long-sized

ODW makes any un-sized outer displacements word-sized

ODL makes any un-sized outer displacements long-sized

All of the above can be overridden on an individual basis by specifying .W
or .L after the expression. In general we recommend the use of such explicit
specifiers as it makes code more portable.

See below for automatic optimisation of long displacements into short ones.

The Assembler HiSoft Devpac 3 Page 97

Branch Control
OLD ordinarily a BRA.L is converted into a BRA.W with a

warning, unless you selected a 68020 or higher processor
in which case it will generate a BRA.L, a 32-bit PC-
relative branch. The use of this option will force BRA.Ls
to always be converted to BRA.Ws, regardless of the
processor type selected. Note that this option is not
available in the integrated environment.

BRW unsized branch instructions will default to BRA.W, unless
optimisation type 1 is selected when it may be promoted
to BRA.S.

BRB unsized branch instructions will default to BRA.S; errors
will be generated if the branch is out of range.

BRS as above; included for Motorola compatibility
BRL unsized branch instructions will default to BRA.L;

P=68020 or P=68030 mode must be selected for this
option to be valid

The default option is BRW.

Symbol Case Sensitivity
By default all symbols are case-sensitive, though this can be overridden on
the command-line. The default length of symbol significance is 127
characters, the maximum.

CASE symbols are case sensitive
NOCASE symbols are case-insensitive
Cx treat x characters as significant (x=8 -127).
Cx+ symbols are case-sensitive to x characters
Cx- symbols are case-insensitive to x characters

Although it is unlikely to be useful, it is possible to use these options at any
time in a source file and an unlimited number of times.

Listing Control
By default an assembly listing will show macro calls in the same form as
those in the source.

MEX expand macro calls in the listing
NOMEX don't expand macro calls

Page 98 HiSoft Devpac 3 The Assembler

By default there will be no symbol table listing, unless -S is specified on the
command-line, or the option below is used:

SYMTAB select a symbol table listing
NOSYMTAB disable a symbol table listing
LIST1 enable assembly listing on pass one
NOLIST1 disable listing on pass one (default)

Pass one listing is not useful generally, because the data for the instructions
may be wrong. It can be useful when tracking down mistakes with
conditional assembly and macros.

TRACEIF enable tracing of conditional assembly on pass one.
NOTRACEIF disable this tracing (default).

The TRACEIF option is designed for finding mistakes in complex use of
conditional assembly and as such is only for experienced assembly language
users. Conditional assembly is described in a later section in this chapter.
TRACEIF gives a list of only the IFxx, ELSExx and ENDC directives
together with a display of the conditional assembly counter.

Debugging information
The AmigaDOS binary file format supports the inclusion of a SYMBOL
hunk, which may be read by debuggers such as MonAm and can be
extremely useful when debugging programs, since it allows you to use the
labels from your program within the debugger. It also supports the idea of
debug hunks. Whilst the contents of these are not defined by Commodore,
there is a defacto standard for these that is supported by SAS/C, HiSoft
BASIC 2, HighSpeed Pascal and Devpac 3. These enable the debugger to
find the program counter corresponding to a source line and vice versa.

DEBUG generates symbol hunks foe all non-local labels
D as above, included for Motorola compatibility.
NODEBUG disable debug (default).
XDEBUG generates symbol hunks only for exported labels.
LINE generate LINE debug hunks for this file. This is the

format that is supported by SAS/C and by Kink. If an
error occurs when linking BLink will report the
appropriate line number. This considerably increases the
size of executable files however. 8 bytes are required for
each line that generates code.

The Assembler HiSoft Devpac 3 Page 99

HCLN generate HCLN (HiSoft Compressed Line Numbers)
debug hunks for this file. These provide the same
information as LINE hunks but normally require only 2
bytes of extra information per line that generates code.

NOLINE these options both suppress the output of line

NOHCLN debug (default).

Output - File Format
AMIGA, ALINK,, SREC

These select the output file format and must be before the first line of the
source file that generates code; for further details please see the beginning of
this chapter.

GENSYM

This causes GenAm to output a symbol table (or pre-assembled) file with
extension .gs rather than a conventional output file. As such this command
can only be used for include files that do not generate any code. See the
section above on Pre-tokenised files.

Optimisation
GenAm is capable of optimising certain statements to faster and smaller
versions. By default all optimising is off but each type can be enabled and
disabled as required. This option has several forms:

01+ will optimise backward branches to short if within range,
can be disabled with 01-.

02+ will optimise address register indirect with displacement
addressing modes to address register indirect, if the
displacement evaluates to zero. It can be disabled with
02-. For example

move.1 next(a0),d3
will be optimised to

move.1 (a0),d3
if the value of next is zero.

Page 100 HiSoft Devpac 3 The Assembler

03+ will optimise absolute addresses to short-word addressing
if in the signed 32 bit range $FFFF8000 to $7FFF
inclusive.

04+ will optimise instructions of the form MOVE.L #x, dn to
MOVEQ if x is in the range -128 to 127 inclusive.

05+ ADD #x and SUB #x instructions will be optimised to
quick forms if x is in the range 1 - 8 inclusive.

06+ not strictly an optimisation; a warning will be issued for
each forward branch that could be made short; this must
be used in conjunction with option type 1.

07+ convert BRA.S to next instruction to NOP; note that this
instruction is not possible on the 680x0, so an error will
be issued if this attempted without this optimisation.

08+ will optimise 68020 base displacements to the short form
addressing if in the signed 32 bit range $FFFF8000 to
$7FFF inclusive.

09+ will optimise 68020 outer displacements to the short form
addressing if in the signed 32 bit range $FFFF8000 to
$7FFF inclusive.

010+ will optimise ADD #x,An and SUB #x,An instructions to
LEA x(An),An or LEA -x(An),An if this is possible but
not in the case when an ADDQ/SUBQ instruction is
preferable. This option is normally used in conjunction
with 05+.

011+ will optimise LEA x(An),An or LEA -X(An),An
instructions to ADDQ.W #x,An and SUBQ.W #x,An if
this is possible.

012+ will optimise MOVE.L #x,An to MOVE.W #x,An if
possible and if another optimisation has not been
performed. This also optimises the correspond ADD, SUB
and CMP instructions.

0+ will turn all optimising on

0- will turn all optimising off

01-, 02- etc. will disable the relevant optimisation

The Assembler HiSoft Devpac 3 Page 101

OW- will disable the warning messages generated by each
optimisation, OW+ will enable them. OWn+/- (where n is
1-9) may be used to enable/disable a particular warning
message.

If any optimising has been done during an assembly the number of
optimisations made and bytes saved will be shown at the end of assembly.

Source Checking
The assembler has various ways of detecting possible programming errors,
using these options:

CHKPC will force errors if any attempt is made to generate non-
position-independent code

NOCHKPC disables the above (default)

CHKIMM will give errors if an absolute value is used in such a way
that the assembler thinks it should be an immediate value,
for example

and.b $df,dl

will generate the error # probably missing Can be
overridden on an individual basis by specifying .W or .L
after the expression. Note that omitting the # in front of 4
does not give an error when using the Amiga® formats so
that lazy programmers do not need to change their
references to ExecBase!

NOCHKIMM disables the above (default)

EVEN causes the assembler to check that the value of an
indirection is not odd on non-byte sized instructions to
avoid address errors (default), for example

 move.1 data2,d0

datal ds.b 1

data2 ds.b 1

Do not confuse this option with the EVEN directive itself.

NOEVEN disables the above, useful if you are writing code to run
only on a 68030.

Page 102 HiSoft Devpac 3 The Assembler

Miscellaneous
INCONCE causes multiple includes of the same file to be ignored. i.e.

included only once. Whilst this speeds up the assembly of
files that are 'protected' against multiple includes like the
operating system header files, this will cause some files that
need to be processed more than once. For example, rather
than using a macro you might include a file a number of
times to obtain two copies of the same routine or data.

NOINCONCE causes include files to be re-scanned each time they are
included (default).

AUTOPC forces automatic PC addressing where possible; this is done
on a lexical basis, not a value basis, and can be overridden
individually by specifying .L, for example

move.l test,a3
will be changed to test (pc), a3
Use of this option can significantly reduce program size and
running time without a lot of extra typing. Please note
however that it does not guarantee that the code generated
will be position independent. We discourage the use of this
option since it can easily cause confusion, particularly when
using complex expressions.
If you need to override the automatic use of PC mode then
use the form (expression).L in a similar manner to that
for short word addressing as described above under labels
and periods.
So the example above could be forced to use absolute
addressing by using the following:

MOVE.L (int_in).L,d0
NOAUTOPC disables the above (default).
NOTYPE Disables the type-checking of the expression evaluator

which is capable of detecting incorrect type mixing; if you
get an error absolute not allowed or relative not
allowed and you are sure you know that you want to do
what you're trying to do, then this will disable the checks.

TYPE restores the type checking referred to above.
NOWARN disables all warning messages.

The Assembler HiSoft Devpac 3 Page 103

WARN enables warning messages (default).

USER any privileged instructions used after this option will
generate an error; useful for system programmers wishing
to separate user and supervisor code spaces.

SUPER permits privileged instructions to be used without errors
(default).

LOCALU changes the lead-in character for local symbols to be an
underscore (_) instead of period; useful if you need to
specify periods in external names.

LOCALDOT changes the lead-in character for local symbols to be a
period (.) (default).

Option Summary

Name Default Action Old
form

ALINK linkable output
ALLOWZERO Allow narrow zero operands
AMIGA executable output
AUTOPC use PC relative addressing A+
BDW default base disp. to word
BDL * defaults base disp. to long
BRB default branches to short
BRL default branches to long
BRS default branches to short
BRW * default branches to word
CASE * case-sensitive symbols C+
Cx+ * case-sensitive symbols Cx+
Cx - case-insensitive symbols Cx-
CHKIMM check immediate operands I+
CHKPC disallow non-PC addressing P+
D debug D+

Page 104 HiSoft Devpac 3 The Assembler

Name Default Action Old

form
DEBUG debug D+
EVEN * ensure indirections are even E+
GENSYM Generate GEN symbol table file
HCLN Generate compressed line numbers
INCONCE Process multiple includes only once
LATTICE * Obsolete option to enable extensions Y+
LINE Generate standard line numbers
LIST1 generate pass 1 listing Z+
LOCALDOT * use periods for local labels U-
LOCALU use underscores for local labels U+
MEX expand macro calls
NOALLOWZERO * disable narrow zero operands
NOAUTOPC disable automatically PC A-
NOCASE case-insensitive symbols C-
NOCHKIMM * disable immediate checks I-
NOCHKPC disable PC-only checks P-
NODEBUG * disable debug D-
NOEVEN disable indirec checks E-
NOINCONCE * Re-process mul includes
NOHCLN * no output of line numbers
NOLINE * no output of line numbers
NOLISTI * no pass 1 listing Z-
NOMEX * don't expand macro calls M-
NOSYMTAB * no symbol table listing S-

The Assembler HiSoft Devpac 3 Page 105

Name Default Action Old
form

NOTRACEIF * don't trace conditionals

NOTYPE no type-checking T-

NOWARN no warning messages W-

O+ enable all optimisations O+

O- * disable all optimisations O-

ODW * default outer disp. to word

ODL defaults outer disp. to long

OLD obsolete - treat BRA.L as BRA.W

OW- disable all opt. warnings OW-

OWx+ enable an optimisation warning OWx+

OWx - disable an optimisation warning Owx-

Ox+ enable an optimisation Ox+

Ox- disable a specific optimisation Ox-

P=680x0 / 68 68000 specify processor

xxx

SREC S-record output

SUPER * privileged op-codes allowed

SYMTAB enable a symbol table listing S+

TRACEIF trace conditionals

TYPE * enable type checking T+

USER privileged op-codes disallowed

WARN * enables warning messages

XDEBUG specify extended debug X+

Page 106 HiSoft Devpac 3 The Assembler

Assembler Directives

<label> EVEN

This directive forces the program counter to be even, i.e. wordaligned. As
GenAm automatically word-aligns all instructions (except DC.Bs and DS.Bs)
it should not be required very often, but can be useful for ensuring buffers
and strings are word-aligned when required.

CNOP offset,alignment

This directive aligns the program counter using the given offset and
alignment. An alignment of 2 means word-aligned, an alignment of 4 means
long-word-aligned and so on. The alignment is relative to the start of the
current section. For example,

cnop 1,4

aligns the program counter a byte past the next long-word boundary.

<label> DC.B expression<,expression> …
<label> DC.W expression<,expression>
…
<label> DC.L expression<,expression>
…
<label> DC.X fp_const<fp_const> …
<label> DC.D fp_const<fp-const> …
<label> DC.S fp_const<fp_const> …

These directives define constants in memory. They may have one or more
operands, separated by commas. The constants will be aligned on word
boundaries for DC.W and DC.L. No more than 128 bytes can be generated
with a single DC directive.

DC.B treats strings slightly differently to those in normal expressions. While
the rules described previously about quotation marks still apply, no padding
of the bytes will occur and the length of any string can be up to 128 bytes.

Be very careful about spaces in DC directives, as a space is the delimiter
before a comment.

The Assembler HiSoft Devpac 3 Page 107

For example, the line

dc.b 1,2,3 ,4

will only generate 3 bytes - the , 4 will be taken as a comment.

The DC.X, DC.D and DC.S directives generate floating point constants and
are only available if you have selected a maths coprocessor.

<label> DS.B expression
<label> DS.W expression
<label> DS. L expression

These directives will reserve memory locations and the contents will be
initialised to zeros. If there is a label then it will be set to the start of the area
defined, which will be on a.word boundary for DS.W and DS.L directives.
There is no restriction on the size, though the larger the area the longer it will
take to save to disk (except in the case of true BSS sections).

For example, all of these lines will reserve 8 bytes of space, in different ways:

ds.b 8
ds.w 4
ds.l 2

<label> DCB.B number<,value>
<label> DCB.W number<,value>
<label> DCB.L number<,value>

This directive allows constant blocks of data to be generated of the size
specified. number specifies how many times the value should be repeated.
If value is omitted then the default value, zero is used.

FAIL

This directive will produce the error user error. It can be used for such
things as warning the programmer if an incorrect number of parameters have
been passed to a macro.

Page 108 HiSoft Devpac 3 The Assembler

MACHINE machine_number

This directive sets the processor for which code is generated and should be
one of:

MC68000 MC68008 MC68010

MC68020 MC68030 MC68040

MC68832 CPU32

The last two items are equivalent. Note that you can also use the OPT p=
option which also allows co-processors to be selected.

OUTPUT filename

This directive sets the normal output filename though can be overridden by
specifying a filename at the start of assembly. If filename starts with a
period then it is used as an extension and the output name is built up as
described previously.

RADIX radix

This directive sets the default base for number literals. radix may be one of
2, 4, 8, 10 or 16 and must be specified in decimal; expressions are not
allowed.

The default is decimal (base 10). Two reasons for using this command are to
enter tables in a non-decimal base and to assemble code that has been
generated by a disassembler or other tool that emits non-decimal numbers
without the appropriate prefix.

When using hexadecimal base (16) numbers must still start with a decimal
digit. For example,

radix 16
dc. b 0ff
dc. b ff

Here 0ff would have the valve 255 whereas ff would refer to the label ff.

The Assembler HiSoft Devpac 3 Page 109

__G2 (reserved symbol)

This is a reserved symbol that can be used to detect whether a Devpac family
assembler (other than Devpac 1) is used. To test that a Devpac family
assembler is being used to use the IFD conditional. The value of this symbol
depends on the version of the assembler and is always absolute.

To ensure that the assembler facilities over and above those of Devpac
Amiga 2 are are available (for example RADIX) you should check that the
lower 8 bits of __G2 are at least 43 (don't ask why!). This does not guarantee
that the 68030 and co-processor instructions are supported.

To check for which processor you are assembling look at bits 8-15: these
give the last two digits of processor number. For example $1E if you are
producing code for a 68030.

To ensure that you are running on an Amiga® machine (rather than, say, an
Atari ST) check that bits 16 to 23 are 1.

__LK (reserved symbol)

This is a reserved symbol that can be used to detect which output mode is
specified The value of this symbol is always absolute and one of the
following:

3 Amiga® linkable
4 Amiga® executable
6 Motorola S-records

Other values are reserved for other members of the Devpac family.

Page 110 HiSoft Devpac 3 The Assembler

Repeat Loops

It is often useful to be able to repeat one or more instructions a particular
number of times and the repeat loop construct allows this.

<label> REPT expression

ENDR

Lines to be repeated should be enclosed within REPT and ENDR directives and
will be repeated the number of times specified in the expression. If the
expression is zero or negative then no code will be generated. It is not
possible to nest repeat loops. For example

REPT 512/4 copy a sector quickly
move.l (a0)+,(al)+
ENDR

NOTE: Program labels should not be defined within repeat
loops to prevent label defined twice errors.

Listing Control
LIST

This will turn the assembly listing on during pass 2, to whatever device was
selected at the 'start of the assembly (or to the screen if None was initially
chosen). All subsequent lines will be listed until an END directive is reached,
the end of the text is reached, or a NOLIST directive is encountered.

The Assembler HiSoft Devpac 3 Page 111

Greater control over listing sections of program can be achieved using LIST+
or LIST- directives. A counter is maintained, the state of which dictates
whether listing is on or off. A LIST+ directive adds 1 to the counter and a
LIST- subtracts 1. If the counter is zero or positive then listing is on, if it is
negative then listing is off. The default starting value is -1 (i.e. listing off)
unless a listing is specified when the assembler was invoked, when it is set to
0. This system allows a considerable degree of control over listing
particularly for include files. The normal LIST directive sets the counter to 0,
NOLIST sets it to -1.

If you would like a listing on pass -1, you can use

OPT LIST1

For further details of pass one listing see the Options section.

NOLIST

This will turn off any listing during pass 2.

When a listing is requested onto a printer or to disk, the output is formatted
into pages, with a header at the top of every page. The header itself consists a
line containing the program title, date, time and page number, then a .line
showing the program title, then a line showing the sub-title, then a blank line.
The date format will be printed in the form DD / MM / YY, unless the
assembler is running on a US machine, in which case the order is
automatically changed to MM / DD / YY. Between pages a form-feed
character (ASCII FF, value 12) is issued.

PLEN expression

This will set the page length of the assembly listing and defaults to 60. The
expression must be between 12 and 255.

LLEN expression

This will set the line width of the assembly listing and defaults to 132. The
value of the expression must be between 38 and 255.

Page 112 HiSoft Devpac 3 The Assembler

TTL string

This will set the title printed at the top of each page to the given string, which
may be enclosed in single quotes. The first TTL directive will set the title of
the first printed page. If no title is specified the current include file name will
be used.

SUBTTL string

Sets the sub-title printed at the top of each page to the given string, which
may be enclosed in single quotes. The first such directive will set the sub-title
of the first printed page.

SPC expression

This will output the number of blank lines given in the expression in the
assembly listing, if active.

PAGE

Causes a new page in the listing to be started.

LISTCHAR expression<,expression> …

This will send the characters specified to the listing device (except the screen)
and is intended for doing things such as setting condensed mode on printers.
For example, on Epson printers and compatibles the line

listchar 15

will set the printer to 132-column mode.

FORMAT parameter<,parameter> …

This allows exact control over the listed format of a line of source code. Each
parameter controls a field in the listing and must consist of a digit from 0 to 2
inclusive followed by a + (to enable the field) or a - (to disable it):

0 line number, in decimal

1 section name/number and program counter

The Assembler HiSoft Devpac 3 Page 113

2 hex data in words, up to 10 words unless printer is less than 80 characters
wide, when up to three words are listed.

Label Directives

label EQU expression

This directive will set the value and type of the given label to the result of the
expression. It may not include forward references, or external labels. If there
is any error in the expression, the assignment will not be made. The label is
compulsory and must not be a local label.

label = expression

Alternative form of the EQU statement.

Label EQUR register

This directive allows a data or address register to be referred to by a user-
name, supplied as the label to this directive. This is known as a register
equate. A register equate must be defined before it is used.

label SET expression

This is similar to EQU, but the assignment is only temporary and can be
changed with a subsequent SET directive. Forward references cannot be used
in the expression. It is especially useful for counters within macros, for
example, using a line like:

zcount set zcount+l

(assuming zcount is set to 0 at the start of the source). At the start of pass 2
all SET labels are made undefined, so their values will always be the same on
both passes.

Page 114 HiSoft Devpac 3 The Assembler

label REG register-list

This allows a symbol to be used to denote a register list within MOVEM
instructions, reducing the likelihood of having the list at the start of a routine
different from the list at the end of the routine. A label defined with REG may
be used in expressions, with a warning; they have a value which is the same
as that used in the MOVEM post-increment opcode.

Defining offsets
There are three different ways to define lists of constant labels without using
explicit numbers that would need to be changed if you decided to add or
delete an item near the front of the lists. The first is using the RS directives,
the second using an OFFSET section and the last is using the CARGS directive.
The first two methods provide the same functionality although OFFSET
directives usually require more lines of code than RS directives. CARGS
requires less typing than the other two methods but can not be used for items
of sizes other than 2 or 4 bytes.

<label> RS.B expression
<label> RS.W expression
<label> RS. L expression

These directives let you set up lists of constant labels, which is very useful
for data structures and global variables and is best illustrated by a couple of
examples.

Let's assume you have a data structure which consists of a long word, a byte
and another long word, in that order. To make your code more readable and
easier to update should the structure change, you could use lines such as

rsreset
d_next rs.l 1
d_flag rs. b 1
d_where rs.l 1

then you could access them with lines like

move.l d_next(a0),al
move.l d_where(a0),a2
tst.b d_flag(a0)

The Assembler HiSoft Devpac 3 Page 115

As another example let's assume. you are referencing all your variables off
register A6 (as done in GenAm and MonAm) you could define them with
lines such as

Onstate rs.b 1
Start rs.l 1
end rs.l 1

You then could reference them with lines such as

move.b onstate(a6),d1
move.1 start(a6),d0
cmp.l end(a6),d0

Each such directive uses its own internal counter, which is reset to 0 at the
beginning of each pass. Every time the-assembler comes across the directive
it sets the label according to the current value (with word alignment if it is .W
or .L) then increments it according to the size and magnitude of the directive.
If the above definitions were the first RS directives, onstate would be 0,
start would be 2 and end would be 6.

RSRESET

This directive will reset the internal counter as used by RS.

RSSET expression

This allows the RS counter to be set to a particular value.

__RS (reserved symbol)

This is a reserved symbol having the current value of the RS counter.

OFFSET expression

This switches code generation to a special section to generate absolute labels.
The optional expression sets the program counter for the start of this section
(otherwise the value left over from the last OFFSET section will be used. No
bytes are written to the disk and the only code-generating directive allowed is
DS. Labels defined within this section will be absolute.

Page 116 HiSoft Devpac 3 The Assembler

To return to ordinary code generation, use a suitable SECTION directive. See
under the different output formats below.

Thus if the current section is TEXT then

OFFSET
labl ds.w 1
lab2 ds.l 2

SECTION TEXT

works in a similar way to

labl rs.w 1
lab2 rs.1 2

and would assign the same values to labl and lab2.

CARGS <#offset,>labl.siz-e,<lab2.size>…

This directive is designed for accessing subroutine parameters that have been
passed on the stack and as such it is very useful when interfacing with high-
level languages.

This defines 1ab1 to have the value given by offset . The value of lab2
would then depend on the size used for lab1. If this was .L then it will be 4
more than offset; if it is .W or .B then it will be 2 more than offset .
Subsequent labels are defined in a similar way. The default value for off set is
4 and the default size for labels is 2 bytes.

Here is an implementation of the C function strcat which appends one null
terminated string to the end of another. Its first parameter in C is the original
string and the second is the string to be added. As is usual in C, the second
parameter is pushed on the stack, and then the first parameter. The assembly
language code is

strcat cargs original.l,added.1
 move.l original(sp),a0
findend tst.b (a0)+

bne.s findend
subq.w #1,a0 ready to replace null
move.l added(sp),al

copylp move.b (al)+,(a0)+
bne.s copylp
rts

The Assembler HiSoft Devpac 3 Page 117

Thus original will have a value of 4 and added will have a value of 8
corresponding to their offsets on the stack after a jsr or bsr instruction has
been used.

If you are using a language in which parameters are passed in 'Pascal order'
where the first parameter is pushed on the stack first, then you will need to
reverse the order of the arguments in the CARGS directive.

Also note that although in many ways the CARGS directive is equivalent to
use the RSSET directive to the value of the offset expression followed by the
equivalent RS directives for the labels, it differs in one very important respect.
Using .B is exactly equivalent to using .W. This is because the instruction

move.b d0,-(sp)

will decrease the stack pointer by 2 and place the low byte of the register on
the even address of the new stack pointer. Thus to access such a parameter on
the stack, previously pushed parameters will be two bytes further up the stack.

Thus CARGS cannot be used for defining data structures that contain byte
aligned data.

Floating Point Directives

Note that DC.S, DC.D and DC.X are really floating point directives but they
are documented above with their integer cousins.

label FEQU.x constant

This directive will set the value and type of the given label to be a floating
point constant of the given value. The constant may be specified in
hexadecimal or decimal as described previously under expressions.
Alternatively you may use a previously defined floating point constant,

The label is compulsory and must not be a local label.

Page 118 HiSoft Devpac 3 The Assembler

Note that the size (.x) is compulsory and should be one of

 .S single precision

 .D double precision

 .X extended precision

 .P packed decimal

 .W word

 .L long

For example:

ten fequ.x 10.0
two fequ.s :40000000
million fequ.x 1E6
minusmillion fequ.x -million

FOPT option<,option> …

This directive allows you to set the floating point co-processor identifier and
the rounding and precision of the assembler's internal floating point
calculations. The valid options are:

ID=<id> This sets the co-processor identifier. By default, this is 1 as
used on the Amiga® 3000 and as recommended by
Motorola. However for systems with more than one FPU
you will need to set this.

ROUND=<type>

This is used to set the rounding method used by internal
floating point operations. <type> should be one of:

N round to the nearest

Z round towards zero

P round towards + infinity

M round towards - infinity

These correspond to the RND portion of the FPCR mode control byte. The
default value is N.

The Assembler HiSoft Devpac 3 Page 119

PREC=<type>

This is used to set the precision used by internal floating
point operations. <type> should be one of:

X extended precision
S single precision
D double precision

These correspond to the PREC portion of the FPCR mode
control byte. The default value is X.

For example:

fopt ID=2 set the co-proc ID
fopt ROUND=Z round towards 0
fopt PREC=S single precision

Conditional Assembly

Conditional assembly allows the programmer to write a comprehensive
source program that can cover many conditions. Assembly conditionals may
be specified through the use of arguments, in the case of macros, and through
the definition of symbols in EQU or SET directives. Variations in these can
then cause assembly of only those parts necessary for the specified conditions.

There are a wide range of directives concerned with conditional assembly. At
the start of the conditional block there must be one of the many IF directives
and at the end of each block there must be an ENDC directive. Conditional
blocks may be nested up to 65535 levels.

Labels should not be placed on IF or ENDC directives as the directives will be
ignored by the assembler.

Page 120 HiSoft Devpac 3 The Assembler

IFEQ expression

IFNE expression

IFGT expression

IFGE expression

IFLT expression

IFLE expression

These directives will evaluate the expression, compare it with zero and
then turn conditional assembly on or off depending on the result. The
conditions correspond exactly to the 68000 condition codes. For example, if
the label DEBUG had the value 1, then with the following code,

IFEQ DEBUG
logon dc.b 'Enter a command:’,0

ENDC
IFNE DEBUG
opt d+ labels please

logon dc.b 'Yeah, gimme man:',0
ENDC

the first conditional would turn assembly off as 1 is not EQ to 0, while the
second conditional would turn it on as 1 is NE to 0.

NOTE: IFNE corresponds to IF in assemblers with only one
conditional directive.

The expressions used in these conditional statements must evaluate correctly.

IIF exp statement

This directive can be used for pieces of conditionally assembled code that
only consist of one line. IIF stands for Immediate IF. If the value of exp is
non-zero then the given statement is assembled, otherwise it is ignored. No
ENDC should be used in conjunction with this directive: For example,

IIF BASIC c1r.b basic-flag(a6)

will cause the line

c1r.b basic_f1ag(a6)

to be assembled if the variable BASIC has a non-zero value.

The Assembler HiSoft Devpac 3 Page 121

The statement part cannot contain a label field, but you may include a label
before the IIF. For example

mary IIF john equ 42

will set the value of the label mary to be 42 if the value of the label john is
non-zero. If the expression evaluates to 0 then mary will have the value of
the current program count as if the line

mary

had been included in the code. As a result it is generally not a good idea to
use IIF to assign to variables, although it is suitable for ordinary program
labels that are the targets of branch instructions.

IFD label
IFND label

These directives allow conditional control depending on whether a label is
defined or not. With IFD, assembly is switched on if the label is defined,
whereas with IFND assembly is switched on if the label is not defined. These
directives should be used with care otherwise different object code could be
generated on pass I and pass 2 which will produce incorrect code and
generate phasing errors. Both directives also work on reserved symbols.

IFC 'string l','string2'

This directive will compare two strings, each of which must be surrounded
by single quotes. If they are identical then assembly is switched on, else it is
switched off. The comparison is case sensitive.

IFNC I string l','string2'

This directive is similar to the above, but only switches assembly on if the
strings are not identical. This may at first appear somewhat useless, but when
one or both of the parameters are macro parameters it can be very useful, as
shown in the next section.

Page 122 HiSoft Devpac 3 The Assembler

ELSEIF

This directive toggles conditional assembly from on to off, or vice versa.
ELSE can be used instead of ELSEIF although ELSEIF is the traditional
Devpac name for this directive.

ENDC

This directive will terminate the current level of conditional assembly. If
there are more IF s than ENDC s an error will be reported at the end of the
assembly.

Macro Operations

GenAm fully supports extended Motorola-style macros, which together with
conditional assembly allows you greatly to simplify assembly-language
programming and the readability of your code.

A macro is a way for a programmer to specify a whole sequence of
instructions or directives that are used together very frequently. A macro is
first defined, then its name can be used in a macro call like a directive with
up to 36 parameters.

label MACRO

This starts a macro definition and causes GenAm to copy all following lines
to a macro buffer until an ENDM directive is encountered. Macro definitions
may not be nested.

If the word MACRO is followed by .W or .L then when expanding the macro
the program counter will be rounded up to an even boundary.

ENDM

This terminates the storing of a macro definition, after a MACRO directive.

MEXIT

This stops prematurely the current macro expansion and is best illustrated by
the INC example given later.

The Assembler HiSoft Devpac 3 Page 123

NARG (reserved symbol)

This is not a directive but a reserved symbol. Its value is the number of
parameters passed to the current macro, or 0 if used when not within any
macro. If GenAm is in case-sensitive mode then the name should be all
upper-case. \# may be used as a synonym for NARG.

Macro - Parameters
Once a macro has been defined with the MACRO directive it can be invoked by
using its name as a directive, followed by up to 36 parameters. In the macro
itself the parameters may be referred to by using the backslash character (\)
followed by an alpha-numeric (1-9, A-Z or a-z) which will be replaced
with the relevant parameter when expanded or with nothing if no parameter
was given. There is also the special macro parameter \ 0 which is the size
appended to the macro call and defaults to W if none is given. If a macro
parameter is to include spaces or commas then the parameter should be
enclosed in between < and > symbols; in this case a > symbol may be
included within the parameter by specifying >>.

A special form of macro expansion allows the conversion of a symbol to a
decimal or hexadecimal sequence of digits, using the syntax \<symbol> or
\<$symbol>, the latter denoting hex expansion. The symbol must be
defined and absolute at the time of the expansion.

The parameter \@ can be useful for generating unique labels with each
macro call and is replaced when the macro is expanded by the sequence - nnn
where nnn is a number which increases by one with every macro call. It may
be expanded up to five digits for very large assemblies.

A true \ may be included in a macro definition by specifying \\.

The abbreviation \# is equivalent to NARG giving the number of parameters
that have been passed to the macro.

A macro call may be spread over more than one line, particularly useful for
macros with large numbers of parameters. This can be done by ending a
macro call with a comma then starting the next line with an & followed by
tabs or spaces then the continuation of the parameters.

Page 124 HiSoft Devpac 3 The Assembler

In the assembly listing the default is to show just the macro call and not the
code produced by it. However, macro expansion listings can be switched on
and off using the OPT M directive described previously.

Macro names are stored in a separate symbol table to normal symbols so will
not clash with similarly-named routines, and may start with a period.

Macro Examples
Example 1 - Calling a library

As the first example, a common way.of calling an Amiga® library routine is:

• save register A6
• load A6 from a library pointer
• do a JSR with offset
• restore A6

A macro to follow these specifications could be

call_lib MACRO
move.l a6,-(sp) get lib pointer

 move.l \2,a6
 jsr _LVO\1(a6) call it
 move.l (sp)+,a6 restore
 ENDM

The directives are in capitals only to make them stand out: they don't have to
be. If you wanted to call this macro to use the DOS function Output the
code would be:

call lib Output,_DOSBase

When this macro call is expanded, \1 is replaced with Output and \2 is
replaced with _DOSBase. \0, if it occurred in the macro, would be W as no
size is given on the call. So the above call would be assembled as:

move.l a6,-(sp)
move.l _DOSBase,a6 get lib pointer
jsr _LVOOutput(a6) call it
move.l (sp)+,a6 restore a6

The Assembler HiSoft Devpac 3 Page 125

Example 2 - an INC instruction

The 68000 does not have the INC instruction of other processors, but the
same effect can be achieved using an ADDQ #1 instruction. A macro may be
used to do this, like so:

inc MACRO
IFC ’’,’\1’
fail missing parameter!
MEXIT
ENDC
addq.\0 #1,\l
ENDM

An example call would be

inc.1 a0

which would expand to

addq.1 #1,a0

The macro starts by comparing the first parameter with an empty string and
causing an error message to be issued using FAIL if it is equal. The MEXIT
directive is used to leave the macro without expanding the rest of it.
Assuming there is a non-null parameter, the next line does the ADDQ
instruction, using the \0 parameter to get the correct size.

Example 3 - A Factorial Macro

Although unlikely actually to be used as it stands, this macro defines a label
to be the factorial of a number. It shows how recursion can work in macros.
Before showing the macro, it is useful to examine how the same thing would
be done in a high-level language such as Pascal.

function factor(n:integer):integer;
begin

if n>0 then
factor:=n*factor(n-1)

else
factor:=1

end;

Page 126 HiSoft Devpac 3 The Assembler

The macro definition for this uses the SET directive to do the multiplication n
(n-1)(n-2) etc. in this way:

* parameter 1=label, parameter 2='n'
factor. MACRO
 IFND \1
\1 set 1 set if not yet defined
 ENDC \2
 IFGT
 factor \1,\2-1 work out next level
down
\1 set \1*(\2) n=n*factor(n-1)
 ENDC
 ENDM
* a sample call
 factor test,3

The net result of the previous code is to set test to 3! (3 factorial). The
reason the second SET has (\2) instead of just \2 is that the parameter will
not normally be just a simple expression, but a list of numbers separated by
minus signs.

So it could assemble to

test set test*5-1-1-1

(i.e. test*5-3) instead of the correct

test set test*(5-1-1-1)
(i.e. test*2).

Example 4 - Conditional Return Instruction

The 68000 lacks the conditional return instructions found on other processors,
but macros can be defined to implement them using the \@ parameter. For
example, a return if EQ macro could look like:

rtseq MACRO
bne.s \@
rts

\@
ENDM

The \@ parameter has been used to generate a unique label every time the
macro is called, so will generate in this case labels such as _002 and _017.

The Assembler HiSoft Devpac 3 Page 127

Example 5 - Numeric Substitution

Suppose you have a constant containing the version number of your program
and wish this to appear as ASCII in a message:

showname MACRO
dc.b \1,'\<version>',0
ENDM
.
.

version equ 42
showname <'Real Ale Search Program v'>

will expand to the line
dc.b 'Real Ale Search Program v','42',0

Note the way the string parameter is enclosed in <>s as it contains spaces.

Example 6 - Processor selection

Suppose you are writing a program that you intend to provide both A500 and
A3000 specific versions. Say you use the label PROC30 with value 1 to
indicate that you are producing the 68030 version and with a value of 0 for
the A500 version then you could define macros like these:

* An extb.l instruction if available
extbl MACRO

IFNE PROC30
opt p=68030
extb.l \1
ELSE p=68000
opt
ext.w \1
ext.1 \1
ENDC
ENDM

Page 128 HiSoft Devpac 3 The Assembler

* Move 4 characters to memory using post decrement
movel MACRO

IFNE PROC30
move.w #'\1\2\3\4',\5
ELSE
move.b #'\1',\5
move.b #'\2',\5
move.b #'\3',\5
move.b #'\4',\5
ENDC
ENDM

Then an appropriate call would be:

extbl d0

which would expand to

extb.l d0

or

 ext.w d0
 ext.l d0

and

 movel F,R,E,D,(a0)+

would expand to

move.1 #'FRED',(a0)+

or

move.b #'F',(a0)+
move.b #'R',(a0)+
move.b #'E',(a0)+
move.b #'D',(a0)+

The Assembler HiSoft Devpac 3 Page 129

Example 7 - Complex Macro Call

Suppose you program needs a complicated table structure which can have a
varying number of fields. A macro can be written to only use those
parameters that are specified, for example:

table-entry:
MACRO
dc.b .end\@-* length byte
dc.b \1 always
IFNC '\2',''
dc.w \2,\3 2nd and 3rd together
ENDC \4,\5,\6,\7
dc.l
IFNC ’\8’,’’
dc.b '\8' text
ENDC
dc.b \9

.end\@ dc.b 0
ENDM

* sample call
table-entry $42,,,tl,t2,t3,t4,

& <Enter name:>,%0110

This is a non-trivial example of how macros can make a programmer's life
much easier when dealing with complex data structures. In this case the table
consists of a length byte, calculated in the macro using \@, two optional
words, four longs, an optional string, a byte, then a zero byte. Note the use of
the macro continuation character &.

The code produced in this example would be

dc.b .end_001
dc.b $42
dc.1 tl,t2,t3,t4
dc.b 'Enter name:’
dc.b %0110

.end_001 dc.b 0

Page 130 HiSoft Devpac 3 The Assembler

Output File Formats

GenAm is very flexible in terms of output file formats. These are detailed in
this section together with notes on the advantages and disadvantages of each.
Certain directives take different actions, depending on what output file format
is specified.

The exact details of using each format will now be described.

Executable Files
This type of file is directly executable, for example by doubleclicking on its
icon from the Workbench or by typing its name in the CLI. The file may
include multiple sections, relocation information and/or symbolic information.
These files normally have no extension.

Advantages reduced development time for all but the largest programs.

Disadvantages messy if more than one programmer.

Linkable Files
When writing larger programs, or when writing assembly language modules
for use from the high-level language, you need to generate a linkable file. The
AmigaDOS linker format is supported by the majority of high-level
languages for the Amiga® and normally have the extension of .O or, OBJ.

Advantages great degree of freedom.

Disadvantages library format means selective library linking can be slow.

S-records
Motorola S-records are the only format that produces absolute code directly.

Advantages Can be sent to most EPROM programmers directly. Easy to
transmit to other systems because they are pure 7-bit ASCII
characters.

The Assembler HiSoft Devpac 3 Page 131

Disadvantages Can't run on the Amiga® 'as is' and are approximately twice
the size of the equivalent executable file. If you are writing
your own communication routines, it may be best to use
executable files as your starting point.

Choosing the Right File Format

If you are writing entirely in assembly language then the normal choice has to
be executable - it is fast to assemble, no linking required, and allows
assemble to memory for decreased development time.

If you are writing a larger program, say bigger than 32k object, or writing a
program as a team, then linkable code often makes most sense.

Output File Directives

This section details those directives whose actions depend on the output file
format chosen. The file format itself can be selected by one of the following
methods: command line options using GenAm directly from the CLI;
clicking on the radio buttons in the Assembly Options dialog box from the
editor; or with the OPT L directive at the beginning of the source file.

Sections
SECTION string<,type>

This defines a switch to the named section and optionally defines its type. A
program may consist of several sections which will be concatenated together
with other sections of the same name in the final executable file.This will use
the supplied string and type as the section name and type of this section (or
hunk) respectively.

Each can be up to 32 characters long and should not include tabs or spaces or
be enclosed in quotes. The casing of the name is significant. You may have
many SECTION directives in your program.

Page 132 HiSoft Devpac 3 The Assembler

The type can be one of the following (in upper or lower case):

CODE code section, public memory
CODE_F code section, fast memory
CODE_C code section, chip memory
DATA data section, public memory
DATA_F data section, fast memory
DATA_ C data section, chip memory
BSS BSS section, public memory
BSS_ F BSS section, fast memory
BSS_C BSS section, chip memory

CODE sections are used for executable instructions, DATA sections for
initialised data (constants), and BSS for un-initialised data. BSS sections
have the advantage that they take no disk space - only the length of the BSS
section is stored. If you define a section to be BSS you can only use the DS
directive to produce code - any other code generating instructions will cause
a binary file I/O error.

Data and BSS sections that are called __MERGED are treated specially by the
linker; they are merged together into one section. This, coupled with the
BLink reserved symbol __LinkerDB, enables both pre-initialised and un-
initialised data references to be made via a single global address register. See
the BLink section for more details. Do not use __MERGED as the name of a
CODE section.

NOTE: Do not use types requesting Chip or Fast memory, with versions
prior to version 2.3 of the ALINK linker - these versions will
crash!

CODE/DATA/BSS

These directives are supported for compatibility with the Amiga® Macro
Assembler. They are the same as specifying the directive as the section name
and type.

IDNT string

This will use the supplied name as the hunk unit name for this section. It
can be up to 32 characters long and should not include tabs or spaces or be
enclosed in quotes.

MODULE string

This is a synonym for the IDNT directive.

The Assembler HiSoft Devpac 3 Page 133

Imports & Exports

With both linkable types of program it is crucial to be able to import and
export symbols, both relative symbols (i.e. program references) and absolute
symbols (i.e. constants). The AmigaDOS linker format does not distinguish
between these types; however by specifying the type when importing, the
assembler can type check, often finding programming errors that would
otherwise be missed.

XDEF export<,export>…

This defines labels for export to other files. If any of the labels specified are
not defined an error will occur. It is not possible to export local labels.

NOTE: This directive is ignored if you are generating directly
executable files.

XREF import<, import>…
XREF. L import <,import >…

This defines labels to be imported from other files. If any of the labels
specified are defined an error will occur. The normal XREF statement should
be used to import a relative label (i.e. program reference), while XREF.L
should be used to import absolute labels (i.e. constants). If you do not type
your imports you should turn type-checking off using OPT T-.

Importing a label more than once will not produce an error.

NOTE: This directive is ignored if you are generating directly
executable files.

COMMENT commentstring

This directive is ignored at present.

Page 134 HiSoft Devpac 3 The Assembler

ORG expression

This will make the assembler generate position-dependent code and set the
program counter to the given value. Normal AmigaDOS programs do not
need an ORG statement even if position-dependent. More than one ORG
statement is allowed in a source file but no padding of the file is done.

This directive is not allowed for linkable code.

Using Imports in Expressions
Executable code does not allow or require the use of imports but inter-section
references are subject to the restrictions described below.

Only one import may be used in each expression; however, they may be
added to an arbitrarily complex expression, so long as this lexically precedes
it, for example:

move.1 3+(1<<count+5)+import

There are a number of different sorts of possible imports as shown below:

Name Example
PC-word move.w import(pc),a0
 bsr import
PC-byte move.b import(pc,d0)
 bsr.s import
byte move.b #import,d0
word move.w import(a3),d0
long move.l import,d0
word base relative move.l _import(a4)
byte base relative move.l import(a4,d0),d0

Note that a reference to a symbol in a different section is regarded as an
import and subject to the above rules, except that PC-relative inter-section
references are not supported.

The Assembler HiSoft Devpac 3 Page 135

The base-relative facilities allow references to imports and other sections to
be word offsets, to allow such things as

move.l _symbol(a4),d0

where _symbol is a relative import, which, strictly speaking, is nonsense.
However this is converted to

move.l _symbol-_LinkerDB(a4),d0

__LinkerDB is a symbol created by the linker. See the BLink section for
further details of the memory map.

Motorola S-records (SREC L6)

S-records are a standard way of transferring binary images between machines,
using 7-bit ASCII codes only. It is particularly useful for uploading data to
EPROM programmers.

The S-record file produced by the assembler is of the following format:

SO module name
<for each section>

S1/2/3 data
S9/8/7 execute address

The file may be split into low and high bytes (or 4 if generating code for
machines with 32-bit buses) if required by the use of the SRSplit utility,
described in Chapter 6.

S1/S2/S3 records are produced for the data according to whether the
address is a 16, 24 or 32 bit value respectively. Up to 28 data bytes per line
are generated. The execute address is taken as the first ORG in the program,
with an S9/S8/S7 as appropriate to the value.

The individual S-records contain 5 fields, mostly in the form of ASCII hex
bytes as follows:

• type (2 bytes) Sx where x is the type of the record (as above)
• count (2 bytes) The number of address, data and checksum bytes

remaining on this line
• address (4,6 or 8 bytes) the address of this data

Page 136 HiSoft Devpac 3 The Assembler

• data (varies) the actual data, upper-case hex (2 for each byte)
• checksum (2 bytes) checksum of everything (taken as bytes) except

the type

The default extension is .MX.

SECTION name<,offset>

If off set is specified then the section will be assembled to run at the address
specified in the following ORG (as normal) but the addresses contained
within the S-records themselves will start at the off set address. This is useful
for writeable data areas that will initially be in EPROM and are copied into
RAM at startup, or for the situation where a PROM programmer requires the
data to be uploaded to a particular address.

ORG address

Should always follow a SECTION directive. The first ORG in a non BSS
section is taken as the execute address. Using more than one ORG per section
is at your own risk; it is your responsibility to put the code in the correct
place if you intend executing it.

Directive Summary

Assembly Control

END terminate source code
INCLUDE read source; file from disk
INCBIN read binary file from disk
OPT option control
EVEN ensure PC even
CNOP align PC arbitrarily
DC define constant
DS define space
DCB define constant block
FAIL force assembly error
RADIX set number base

The Assembler HiSoft Devpac 3 Page 137

Repeat Loops

REPT start repeat block
ENDR end repeat block

Listing Control

LIST enable listing
NOLIST disable listing
PLEN set page length
LLEN set line length
TTL set title
SUBTTL set sub-title
PAGE start new page
LISTCHAR send control character
FORMAT define listing format

Label Directives

EQU define label value
EQUR define register equate
SET define label value temporarily
REG define register list
RS reserve space
RSRESET reset RS counter
RSSET set RS counter
CARGS define parameter labels
OFFSET define offset table

Floating Point Directives

FEQU define floating point constant
FOPT floating point options

Conditional Assembly

IFEQ assemble if zero
IFNE assemble if non-zero
IFGT assemble if greater than
IFGE assemble if greater than or equal to
IFLT assemble if less than
IFLE assemble if less than or equal to
IFD assemble if label defined
IFND assemble if label not defined

Page 138 HiSoft Devpac 3 The Assembler

IFC assemble if strings same
IFNC assemble if strings different
ELSEIF switch assembly state
ENDC end conditional
IIF immediate IF

Macros

MACRO define macro
ENDM end macro definition

Output File Directives

MODULE set hunk unit name
IDNT SAS/C synonym for the above
SECTION switch section
CSECT SAS/C switch section directive
XDEF define label for export
XREF define label for import
COMMENT send linker comment
ORG set absolute code generation
TEXT abbreviated section commands
DATA
BSS
CODE

Reserved Symbols

NARG number of macro parameters
__G2 internal version number
__RS RS, counter
__LK output file type

The Debugger HiSoft Devpac 3 Page 139

Chapter 4
The Debugger

Introduction

Programs written in assembly language are particularly errorprone; even a
slight coding mistake can result in the entire machine crashing since you are
programming at such a low level.

These programming mistakes (known as bugs, after a spider that was found
crawling around the core memory of one of the early computers) can range
from the trivial, such as a missing CR in a printout, through the usual (an
incorrect result) to the very serious where the computer crashes because you
have used the wrong register or corrupted the system memory (like that
spider).

To help you find and correct all forms of bugs, Devpac Amiga includes a
debugger, MonAm. MonAm is a powerful symbolic debugger and
disassembler which lets you examine programs and memory, execute
programs an instruction at a time and trap processor exceptions caused by
programmer error.

Although MonAm is a low-level debugger, displaying such things as 680x0
instructions and registers, it can also be used for debugging programs written
with any compiler that generates machine-code output. If the compiler has
the option to output the symbols into the executable file then you will see
your procedure and function names within the code; you can even view your
original source code and step through it, if the package that produced the
code has line number debug support.

MonAm uses its own screen (in the Amiga® sense), so if you are debugging
a program with windows your program will not be sent re-draw messages
whilst you are using the debugger. Many other Amiga® debuggers do send
these messages, which can be very confusing.

Page 140 HiSoft Devpac 3 The Debugger

MonAm Concepts

Here is a swift look at the concepts behind MonAm; it is a good idea to read
this section before moving on to the next sections, even if you are an
experienced programmer..

Exceptions

MonAm employs the 680x0 processor exceptions to stop runaway programs
and to single-step, so at this point it would be useful to explain them and
detail what normally happens when they occur on an Amiga.

While using the 680x0 processors, there are various types of exception that
can occur, some deliberately, others accidentally. An exception is a special
condition that takes priority over normal processing - it might be an interrupt
from an external device, an illegal instruction, an address error, a co-
processor violation or a number of other pre-defined events.

When an exception occurs the processor's context is saved on the supervisor
stack and execution is then transferred to any one of 256 different addresses,
held in the exception table (on the 68010 upwards, the address of the start of
this table is held in the vector base register, or VBR). This table is set up by
the Amiga's operating system so that an exception effectively transfers
control to Exec, which is part of the Amiga's operating system.

The operating system then looks to see if the task that was running when the
exception occurred has installed an exception handler i.e. the task wants to
handle exceptions itself. If it has, control is passed to that exception handler;
this is how MonAm traps exceptions because MonAm has attached such an
exception table to the task that it has executed.

Unfortunately, there a few exceptions that MonAm cannot trap because Exec
does not pass them on - in these cases the operating system does what it
normally does in the absence of an exception handler, it produces a Software
Error alert (the dreaded Guru).

MonAm actually uses two of the exception vectors itself, one to set
breakpoints in programs and the other to allow single-stepping.

The Debugger HiSoft Devpac 3 Page 141

The various forms of exceptions, their usual results, and what happens when
they occur with MonAm active is shown in the following table, which is a
summary of the exception table. Note that the first 64 vectors are defined by
Motorola:

Exception
no.

Exception MonAm
active

0 reset initial interrupt stack pointer not trapped

1 reset initial program counter not trapped

2 bus error trapped

3 address error trapped

4 illegal instruction breakpoint

5 zero divide trapped

6 CHK instruction trapped

7 TRAPV instruction trapped

8 privilege violation trapped

9 trace single-step

10 line 1010 emulator trapped

11 line 1111 emulator trapped

12 reserved trapped

13 co-processor protocol violation trapped

14 format error guru

16-23 reserved trapped

24 spurious interrupt guru

25-31 level x interrupt autovector where x=26-exception no. not trapped

32-47 trap #0 to #15 trapped

48 FPCP branch or set on unordered condition trapped

49 FPCP inexact result trapped trapped

50 FPCP divide by zero trapped

51 FPCP underflow trapped

52 FPCP operand error trapped

Page 142 HiSoft Devpac 3 The Debugger

Exception
no.

Exception MonAm
active

53 FPCP overflow trapped

54 FPCP signalling NAN trapped

55 reserved trapped

56 MMU configuration error guru

57 68851 illegal operation guru

58 68851 access level violation trapped

59-63 reserved trapped

64-255 user defined vectors not trapped

The causes of the above exceptions (and how best to recover from them) are
given at the end of this section.

Front Panel Display

When MonAm is invoked it displays a Front Panel showing registers,
memory, source code and instructions. The name Front Panel stems from the
type of panels that were mounted on mainframe and mini computers to
provide information on the state of the machine at a particular moment,
usually through the use of flashing lights. These lights represent whether or
not particular flip-flops (electronic switches) within the computer are open or
closed; the flip-flops that are chosen to be shown on this panel are normally
those that make up the internal registers and flags of the computer thus
enabling programmers and engineers to observe what the computer is doing
when running a program.

These were hardware front panel displays; what MonAm provides you with
is a software front panel - the code within MonAm works out the state of the
computer and then displays this information on the screen.

The MonAm display consists of a number of windows through which you
can view the 680x0 registers, a disassembly of your program, your program's
source code or a portion of memory - you choose what you want in each
window (within certain limitations). The layout of MonAm's front panel is
shown on the next page.

The Debugger HiSoft Devpac 3 Page 143

MonAm's front panel

MonAm's Windows

As we have said, there are four different types of view through a window:

 a register window in which you can see the various 680x0 data and
address registers, the program counter (PC), the status register (SR) and
the current instruction. The values of the data and address registers are
shown in hexadecimal together with some information about the
locations to which the registers point.

 a disassembly window which shows a 680x0 disassembly of the
memory that it is addressing, including any symbols that are found.

 a memory window which displays the contents of memory locations in
hexadecimal and ASCII.

 a source code window. In this type of window you can view a text file
which may be the source code of the program that you are debugging,
assuming that this exists. You can display line numbers if you wish and,
if the program that owns the source code has line number information in
a HUNK.DEBUG hunk, you will be able to use this information to step
through the program's source code and set breakpoints on source lines.

Page 144 HiSoft Devpac 3 The Debugger

Up to five windows can be shown simultaneously or, by changing the width
and height of the windows you, can show just two.

Each window is numbered from 1 to 5 and can display different types -of
information - window 1 can be of any type, register, memory, source code or
disassembly; windows 2 and 4 can be memory, disassembly or source code
windows whilst windows 3 and 5 are restricted to being memory windows.

Stacking Windows

Each window also has depth - you can stack views beneath a window so that
you have almost limitless flexibility in what you choose to display.

In addition you can split and widen most windows; split means to grow or to
shrink the window vertically whilst widen means to do the same horizontally.
These operations may hide other windows temporarily or they may uncover
hidden windows.

Locking Windows

Each window may also be locked to an arbitrary expression. Thus, you can
lock a memory window to a register so that it displays the contents of the
memory addressed by that register. Or you might want to lock a disassembly
window to the PC, which is the default condition for window 2 unless you
have saved.

Each view on the window stack can be locked to a different expression
although it does not make sense to lock the register window.

All the above window features will be discussed in more detail later.

The Current Window

MonAm has the concept of a current window - this is denoted by displaying
its title highlighted and is the window on which any operation will take place.

The current window may be changed by pressing the Tab key to cycle
between them, or by pressing the A key together with the window number,
for example A2 selects window number 2, even if it is hidden currently.

The Debugger HiSoft Devpac 3 Page 145

NOTE: If your typing seems to be ignored in MonAm don't be alarmed;
it means that another screen is active, such as that of your
program. To correct this click on any part of the MonAm
display. You can always tell when the MonAm display is active
because the mouse pointer will be bug-shaped.

MonAm and Multi-Tasking

The Amiga® is a multi-tasking machine, and this imposes some restrictions
on what MonAm can do. Having loaded a program (or task) into memory,
that task is suspended. This means it is waiting, in this case for a MonAm
command to let it continue.

The other state the task can be in is executing - running at the same time as
MonAm. Some commands require one or other of these states to operate - for
example you can only single-step a task that is suspended. If the task is
running you will get the error Task must be suspended! when you try to
single-step it.

MonAm can only debug one task at a time.

Symbolic Debugging

A major feature of MonAm is its ability to use symbols taken from the
original program whilst debugging. MonAm uses standard AmigaDOS file
HUNK_SYMBOL hunks as produced by most Amiga® programs that produce
executable files, such as linkers, compilers and GenAm.

MonAm can also accept line number information from various different types
of HUNK _DEBUG hunk, which enables the debugger to handle source code
files that are connected with the program being debugged on a line basis. If
the program to be debugged contains this line number information, you will
be able to set breakpoints in its source code and even single-step it, source
line by source line. Products that support this, currently, are : HighSpeed
Pascal, Devpac Amiga 3, HiSoft BASIC 2 and SAS/Lattice C 5.

Page 146 HiSoft Devpac 3 The Debugger

MonAm Requesters

MonAm makes extensive use of requesters which are similar in concept to
those in Intuition programs but have several differences.

a MonAm requester

A MonAm requester displays the prompt ESC to abort above the top left
corner of the box together with a prompt, normally followed by a blank line
or some text to edit, with a cursor. At any time a requester may be exited by
pressing Esc, or data may be entered at the cursor by normal typing. Various
keys may be used to edit the text:

←, → move the cursor left or right through the text

Shift-←, Shift-→ move the cursor to the start of the line or to
the end of the line

Backspace delete the character behind the cursor

Del delete the character under the cursor

A X delete the entire line

Esc abandon the requester

commands available within MonAm requesters

When you have finished ,entering a line, press the Return key; if the line
contains errors the screen will flash and the Return key will be ignored
allowing correction of the data before pressing Return again.

Some MonAm requesters simply display a message together with the prompt
Return; these are normally used to inform you of some form of error. The box
will disappear on pressing the Return or Esc keys, whichever you find more
convenient.

The Debugger HiSoft Devpac 3 Page 147

Command Input

MonAm is controlled by single-key commands which gives a fast user-
interface, although this can take getting used to if you are familiar with a line-
oriented command interface of another debugger. Users of HiSoft Devpac on
other machines such as the Atari ST/TT will find many commands are
identical.

In general the A key is the window key - when used in conjunction with
other keys it acts on the current window. The Ctrl key is usually used to
invoke commands connected with execution of the program that is being
debugged.

Commands may be entered in either upper or lower case. Those commands
whose effects are potentially disastrous require the Ctrl key to be pressed in
addition to a command key. The keys used were chosen to be easy to
remember, wherever possible. Commands take effect immediately - there is
no need to press Return and invalid commands are simply ignored. The
relevant sections of the front panel display are updated after each command
so any effects can be seen immediately.

MonAm is a powerful and sometimes complex program and we realise that it
is unlikely that many users will use every single command. For this reason
the remainder of the MonAm manual is divided into two sections - the former
is an introduction to the basic commands of the program, while the latter is a
full reference section. It is possible for new users and beginners to use the
debugger effectively while having only read the Overview; but don't be
intimidated by the Reference section.

MonAm Overview

Starting MonAm

MonAm is invoked by typing the command

monam [Return]

or by calling it from the Devpac editor.

Page 148 HiSoft Devpac 3 The Debugger

If you start MonAm from a CLI you can include, optionally, a program name
and a command line to be passed to the program. For example,

monam,c:mytest examples/demo.s [Return]

will cause MonAm to be invoked which will load a program called mytest
and pass a filename to this program.

When MonAm has loaded, the screen will look like this:

The MonAm initial screen

If you started MonAm without asking for a program to be loaded, the prompt
Executable file to load will appear. This gives you another chance to
load a program to debug; either type the filename of the program that you
want to investigate and hit Return or press Return by itself (or Esc) to quit
the requester.

Should MonAm have been called from the Devpac editor, the program that
you are developing will be loaded automatically or used from memory, if it
was assembled there.

The Debugger HiSoft Devpac 3 Page 149

Debugging a Program

If you have asked MonAm to load a program to debug you may now be
prompted for a command line, if you haven't already given one; enter the line
you want or just press Return. MonAm will then try to load the program. If it
fails, it will display

AmigaDOS error xx

You can use the Load Program command to try to load the program again.

Assuming the filename is valid, MonAm will load the executable file and any
symbols within the file. After the file and its symbols have been loaded
successfully, the message

Breakpoint

will appear; this is because MonAm places a breakpoint at the first
instruction of the program and then executes it.

The most common command in MonAm is probably single-step, obtained by
pressing Ctrl-Z (or Ctrl-Y if you find it more convenient, perhaps because you
have a German keyboard). This will execute the instruction at the PC, shown
in the Register window and, normally, also in the Disassembly window. After
executing it the debugger re-displays the values of the windows, so you can
watch the processor execute your program, step by step. Single-stepping is
the best way of going through sections of code that are suspect and require
deeper investigation, but it is also the slowest - you may only be interested in
a section of code near the end of your program which could take a long tome
to reach if you have to single-step all the way. There is, of course, an answer.

A breakpoint is a special instruction placed into your program to stop it
running and enter MonAm. There are many types of breakpoint but we will
restrict ourselves to the simplest for now. A breakpoint may be set by
pressing A B, then entering the address you wish to place the breakpoint.
You can enter addresses in MonArn in hex (the default base), as a symbol, or
as a complex expression. Examples of valid addresses are 1A2B0, prog_start,
10+mydata. If you type in an invalid address the screen will flash and
allow you to correct the expression.

Page 150 HiSoft Devpac 3 The Debugger

Having set a breakpoint you need some way of letting your program actually
run, and Ctrl-R will do this. If will execute your program using the values of
the registers displayed and starting from the PC. MonAm will be re-entered if
a breakpoint has been hit, or if an exception occurs.

MonAm uses its own screen which is independent of your program's screen.
If you use the screen gadgets at the top right of the MonAm screen you will
see your current program's display. This allows you to debug programs
without disturbing their output. The MonAm screen will go to the back when
you run a program from within the debugger and pop to the front when a
breakpoint or other exception is reached. As usual, you can drag the MonAm
screen from the top to reveal your program's screen.

MonAm uses its own windows too, and any window may be zoomed to the
full screen size by pressing A Z. To return to the main display press A Z
again, or the Esc key. The Esc key is also the best way of getting out of
anything you may have invoked by accident. The Zoom command, like all A
commands, works on the current window which you can change by pressing
Tab. You can dump the current window to your printer by pressing A P.

To change the address from which a window displays its data, press A A,
then enter the new address. The locking of a window to an expression is
detailed in the Reference section.

To quit MonAm press Ctrl-C. This returns MonAm directly to the CLI. If the
task you are debugging is still running or suspended when you try and quit,
you will be warned. If MonAm terminates while the task under investigation
is running, the machine will crash if any exception occurs subsequently. A
safer way to exit is to use the Ctrl-Q command 'to stop the task first. If you
used the Debug option from the editor then Ctrl-C will always terminate your
program as well as MonAm.

We hope this overview has given you a good idea of the most common
features of MonAm to let you get on with the complex process of writing and
debugging assembly language programs. When you feel more confident you
should try and read the Reference section, probably best taken, like all
medicine, in small doses.

The Debugger HiSoft Devpac 3 Page 151

MonAm Reference

This is the reference section to MonAm; it is a complete description of the
features and commands of this powerful debugger.

Numeric Expressions

There are many occasions within MonAm when you will want to enter a
numeric expression; perhaps to lock a window to an expression, to assign a
value to a register or to set the start address of a window.

For these cases, MonAm has a full expression evaluator, based on that in
GenAm, including operator precedence. The main differences are that the
default base is hexadecimal (decimal may be denoted with a \ sign not # as in
MonAm version 1), there is no concept of a type of an expression (relative or
absolute), * is used only for multiplication, there are two source operators (#
and ?) and there is a not-equals operator !=.

The precedence table for MonAm's operators is given below:

Precedence
of Operator

Operator(s)

1 monadic minus (-) and plus (+), source operators (# and ?)

2 bitwise not (~)

3 shift left (<<) and shift right (>>)

4 bitwise And (&), Or (!) and Xor (^)

5 multiply (*) and divide (/)

6 addition (+) and subtraction (-)

7 equality (=) less than (<), greater than (>), inequality (<>
and !=), less than or equals (<=), greater than or equals
(>=)

Symbols may be referred to and are normally case-insensitive and significant
to 32 characters although this can be changed with the MonAm Preferences
command.

Page 152 HiSoft Devpac 3 The Debugger

Registers may be referred to simply by name, such as A3 or d7 (case
insensitive), but this causes a clash with certain hex numbers. To obtain such
hex numbers precede them with either a leading zero or a $ sign.

There are several reserved symbols which are case insensitive, namely CODE,
SP, SR, and SSP. Both A7 and SP refer to either the user- or supervisor-
stack, depending on the current value of the status register. CODE refers to
the first hunk in the program. This is the same as HUNK1. The second hunk
is HUNK2 and so on.

Source Operators

There are two operators which allow debugging at a source code level; these
are the # and ? operators.

To use these operators, you must have a source window open which is
associated with the loaded executable program. In turn, this loaded program
must have been produced by a package that includes line number information
in the program's HUNK.DEBUG hunk. Otherwise the # and ? operators are
invalid.

The # operator takes a source line number as its argument and returns the
associated memory address, within the loaded program. So, say you have the
source of hello .s loaded into window 2 and the executable of hello loaded as
the current program then:

m3=#20

will set the start address of window 3 to the address of line number 20 of the
hello program (assuming that window 3 is not locked to another expression).

If the line number is out of range of the source (e.g. if you ask for line
number 100 when there are only 90 lines of source), the result will be the
address of the first or last line of the source, accordingly. If you use the #
operator when there is no line number information available, the result will
be 0.

The ? operator is the reverse of #; it returns the source line number, given a
memory address. If the address is out of range of the code connected with the
source window, ? returns a value of 0.

The Debugger HiSoft Devpac 3 Page 153

If you have only one source file loaded, the use of these operators is
unambiguous. However, if you have loaded two or more source files into
MonAm's windows, # and ? may return unpredictable results; in this case it is
best to use them when one source file is open in the current window - they
will then relate to this file.

These operators allow you to perform a variety of commands on a source
level such as: Set Breakpoint, Run Until and Lock Window. This can
make the process of debugging a complex program a far simpler and less
tiresome task.

Indirection

The MonAm expression evaluator also supports indirection using the { and }
symbols. Indirection may be performed on a byte, word or long basis, by
following the } with a period then the required size, which defaults to long. If
the pointer is invalid, either because the memory is unreadable or even (if
word or longword indirection is used) then the expression will not be valid.

For example, the expression

{data_start+10}.w

will return the word contents of location data _s t a r t + 10, assuming
data_start is even. Indirection may be nested as you would nest ordinary
parentheses.

Memory Registers

In addition there are 10 memories numbered M0 through M9, which are
treated in a similar way to registers and can be assigned to using the Register
Set command. These are available for your own use although some have
special functions as described below - you can view the memory registers by
zooming the register window.

The values of memories I through 5 inclusive are the current start address of
the relevant window (including source code displays) and assigning to them
will change the start address of the display within that window. Here's a full
table of the memory registers (on the next page):

Page 154 HiSoft Devpac 3 The Debugger

Memory
Register

Contents

m0 the destination effective address of the current
instruction

m1 the start address of window 1
m2 the start address of window 2
m3 the start address of window 3
m4 the start address of window 4
m5 the start address of window 5
m6 spare
m7 spare
m8 the start address of any binary file that has been loaded
m9 the end address of any binary file that has been loaded

m8 and m9 are useful if you have loaded a binary file and then want to save
it out to disk again - you do not have to remember the .start and end
addresses of the file, just use m8 and m9 when saving.

If window 1 has a register display in it, m1 will be meaningless but will
retain any previous value.

Window Types

There are five possible windows within the MonAm display and the exact
contents of these windows and how they are displayed is detailed below. The
allowed types of each window are:.

Window Allowed Type(s)

1 register, memory, disassembly, source

2 memory, disassembly, source

3 memory only

4 memory, disassembly, source

5 memory only

A window can have a number of different views attached to it; you can think
of the window as a stack, having depth.

The Debugger HiSoft Devpac 3 Page 155

So, in window 2, you can view a disassembly of code, a section of memory
and a portion of an ASCII file, although only one of these at a time is visible.
To cycle through the different views use the Next/Previous View
commands and to create or delete a display use the Open View and Close
View commands.

Most windows can also be split, either vertically or horizontally so that more,
or less, can be displayed within the window - this action may hide or reveal
other windows and it is best to experiment with the split commands
(described below) to understand how they work.

A window can be locked to an expression so that its start address is
dependent on the value of that expression - see the Lock to Expression
command below.

You can also zoom a window; it will then occupy the whole of MonAm's
screen.

Each type of window will now be described.

Register Window

the register window

The data registers are shown in hex, together with the ASCII display of their
four bytes. The address registers are also shown in hex, together with a hex
display of the memory that each register is addressing. This is word-aligned
or byte-aligned as necessary, with non-readable memory displayed as * * . To
the right of this hex display is its ASCII interpretation.

The status register is shown in hex and in flag form, additionally with U or S
denoting user- or supervisor-modes.

The PC value is shown together with a disassembly of the current instruction.
Where this involves one or more effective addresses these are shown in hex,
together with a suitably-sized display of the memory they point to.

Page 156 HiSoft Devpac 3 The Debugger

For example, the display

TST.L $12A(A3) ;00001FAE OF01

signifies that the value of $12A plus register A3 is $1FAE, and that the word
memory pointed to by this is $0F01. A more complex example is the display

MOVE.W $12A(A3),-(SP) ;00001FAE 0F01 > 0002AC08 FFFF

The source addressing mode is as before but the destination address is
$2AC08, presently containing $FFFF. Note that this display is always of a
suitable size (MOVEM data being displayed as a quadword) and when pre-
decrement addressing is used this is included in the address calculations.

Disassembly Window

the disassembly window

Disassembly displays show memory as disassembled instructions to the
standard described below. On the left the hex address is shown, followed by
any symbol, then the disassembly itself. The current value of the PC is
denoted with a >, if it is visible.

You can scroll through the disassembly window as described under Cursor
Keys below.

If the instruction has a breakpoint placed on it this is shown using square
brackets ([]) afterwards, the contents of which depend on the type of
breakpoint.

The Debugger HiSoft Devpac 3 Page 157

For stop breakpoints this will be the number of times left for this instruction
to execute, for conditional breakpoints it will be a ? followed by the
beginning of the conditional expression, for count breakpoints it is an = sign
followed by the current count and for permanent breakpoints a * is displayed.

The exact format of the disassembled op-codes is to the Motorola standard,
as GenAm accepts. All output is upper-case (except lower-case, labels) and
all numeric output is in hexadecimal, except Trap numbers. Leading zeroes
are suppressed and the $ hex delimiter is not shown on numbers less than 10.
Where relevant numerics are shown signed.

The only deviation from Motorola standard is the register lists shown in
MOVEM instructions - in order to save display space the type of the second
register in a range is abbreviated, for example

MOVEM.L d0-d3/a0-a2,-(sp)

will be disassembled as

MOVEM.L d0-3/a0-2,-(sp)

Certain library calls will be shown symbolically even if no symbol
information was loaded with your program. The disassembles is intelligent
and recognises a MOVE into register A6 followed by a JSR using A6 so that
the call, if valid, will be displayed by name; for example

MOVE.L 4,A6
JSR _LVOOpenLibrary(A6)

The disassembler does this for the exec, graphics, dos and Intuition
libraries, using the special file monam.libfile. If this file is not found in the
current directory or the current libs: assignment during MonAm's
initialisation then such disassembly will not occur.

Memory Window

the memory window

Page 158 HiSoft Devpac 3 The Debugger

Memory displays show memory in the form of a hex address, wordformatted
hex display and ASCII. Unreadable memory locations are denoted by * *.
The number of bytes shown is calculated from the window width, up to a
maximum of 16 bytes per line. You can scroll through the memory window
as described under Cursor Keys below.

Source Window

the source window

The source window shows ASCII files in a similar way to a screen editor
with the name of the file displayed in the title bar. The default tab setting is 8
though this can be toggled to 4 with the Edit Window command.

You can choose whether or not to display line numbers for the file and
whether they are shown in decimal or hexadecimal. When line number
information exists in the HUNK_DEBUG hunk of your program, you can use
the medium level debugging features of MonAm to step through the source
and set breakpoints within it, rather like you can with a source code debugger.

You can scroll through the source window as described under Cursor Keys
below.

Cursor Keys

The cursor keys can be used on the current window, the action of which
depends on the display type.

The Debugger HiSoft Devpac 3 Page 159

On a memory display all four cursor keys chap e the current address, by byte
or line, while Shift ↑ and Shift ↓ move a page in either direction.

On a disassembly display ↑ and ↓ change the start address on an instruction
basis, ← and → change the address on a word basis and Shift ↑ and Shift ↓
on a page basis.

On a source-code display ↑ and ↓ change the display on a line basis, and
Shift ↑and Shift ↓ on a page basis.

Window Commands

Commands that are reached through the use of the A (right Amiga) key are
normally available at any time. Many of these commands are connected with
and apply to the current window. The current window is denoted by having
an inverse title and it can be changed by pressing Tab or A plus the window
number.

Most window commands work in any window, zoomed or not, though when
it does not make sense to do something the command is ignored.

The exceptions to the above are the Stack, Unstack and View Stack
commands which, for ease of use, are not reached through the A key and do
not work on a zoomed window.

A A or M Set Address
Allows you to set the starting address of a memory, disassembly or source
window (the latter only if line number information exists in the HUNK
DEBUG hunk). You can use any valid expression to generate this start
address e.g.

_main
$C227B8
StartProgram+8
PC

Page 160 HiSoft Devpac 3 The Debugger

A E Edit View

On a memory window this lets you edit memory in hexadecimal or ASCII.
Hex editing can be accomplished using keys 1-9, A-F, together with the
cursor keys. Pressing Tab switches between hex & ASCII, ASCII editing
takes each keypress and writes it to memory. The cursor keys can be used to
move about memory. To leave edit mode press the Esc key.

On a register display using this command is the same as using A R, Register
Set, described shortly.

Within a source window this command toggles the tab setting between 4 and
8.

You cannot edit a disassembly window.

A G Goto Source Line

This command works on source windows and allows you to choose the line
that will appear at the top of the window. If you select a line that is beyond
the end of the file, the last line will be shown at the top of the window.

A L Lock to Expression

This allows source (with line number information), disassembly and memory
windows to be locked to a particular expression. After any exception the start
address of the display is re-calculated, depending on the locked expression.
Each stacked view within a window can have its own lock.

MonAm will ignore you if you try to lock a source window that refers to a
program that does not have line number information attached to it.

If you try to lock a source window to an expression that lies outside the
address range of the source file you will be ignored. This, in fact, is very
useful; it means that if you have a stack of source windows (see below for
details of stacking windows) which make up the executable that you are
debugging and you lock each display to the PC, you will be able to trace the
path of the program through each source file.

The Debugger HiSoft Devpac 3 Page 161

If an instruction in the top view calls a subroutine in the stack, the top view
will not change but, if you then view the relevant stacked view, it will change
to show you the called subroutine.

To unlock, simply enter a blank string.

You can lock one window to another window by using the memory registers
such as M2. You can even lock a window to the indirection of its own
memory register (e.g. {m2}) which might be useful to step through a linked
list (in conjunction with the Esc key to update the window each time).

A P Print Window

Dumps the current window contents onto the printer or to a file. This
command can be aborted by pressing Esc. You can choose the printer device
and the filename using the Preferences command.

A S Split Window

Splits a window vertically i.e. makes it taller or shorter depending on its
current state; this may hide or uncover another window. You would normally
use this to set up the display as you like it and then save the set-up with the
Save Preferences command. It can be useful at any time, though, if you
would like to see more information in a window or you need another window;
this command has no effect on window 1.

Note that as an alternative using A 1-5 will split the windows in such a
manner as to make the selected window visible. Also beware that unlike
MonAm2 splitting a window will not automatically select the newly opened
window.

A T Type

This command works on windows 1, 2 and 4; it changes the type of the
display between register (for window 1), disassembly, memory and source (if
a source file has been loaded into the window).

Page 162 HiSoft Devpac 3 The Debugger

A W Widen Window

Splits a window horizontally i.e. makes it wider or narrower depending on its
current state; this may hide or uncover another window. You would normally
use this to set up the displa as you like it and then save the set-up with the
Save Preferences command. It can be useful at any time, though, if you
would like to see more information in a window or you need another window.

This command has no effect on window 1.

A Z Zoom Window

This zooms the current window to be full size. Other A commands are still
available and normal size can be achieved by pressing Esc or A Z again.

Zooming a register window shows some extra information (which depends
on the processor type) and the memory registers (m0-m9):

the zoomed register display (on a 68020 machine)

The Debugger HiSoft Devpac 3 Page 163

NOTE: A zoomed window behaves differently from a normal window
in that, as you scroll through it, it does not update the
associated memory register (ml to m5). Also, if you change the
value of the memory register while in a zoomed window, the
start address of the display will not change. Think of a zoomed
window as only temporary.

Shift-. Open View

Creates a new view on the current window and numbers it accordingly. The
type of the new view will be the same as the previous one if this is possible.

The display will be numbered xa, xb, xc, xd etc. where x is the number of
the window e.g. if you stack a new display on window 2, it will be numbered
2b with the original display being numbered 2a. Remember, though, that
there is only one memory register per window, but you can lock each display
to a different expression. This gives a tremendous amount of flexibility.

This command does not work on a zoomed window.

The associated memory register is bound to the top view only, although all
locks on all views are re-calculated where necessary.

Shift-, Close View

Removes the visible display from the current window's display list, unless
there is only one display attached to this window, in which case the command
does nothing. If you close a view on a source window, the source file will be
un-loaded from memory and a disassembly window will replace the closed
source view.

All other displays attached to this window will be re-numbered if necessary
i.e. if you remove display 2c from (2a, 2b, 2c, 2d), 2d will be re-numbered
to be 2c.

This command does not work on a zoomed window.

Page 164 HiSoft Devpac 3 The Debugger

. and , Next/Previous View

These two commands allow you to cycle through views that have been
stacked onto a window. Pressing . (full stop or period) cycles forward
through the available displays whilst , (comma) cycles backwards. Both will
roll round in a loop.

For example, say you have 3 displays stacked on window 4 (4a Source, 4b
Memory and 4c Disassembly) and you are currently displaying 4b
Memory. Press . and 4c Disassembly will appear, press . again and you will
see 4a Source.

These commands do not work on a zoomed window.

Esc

Pressing Esc will update all the window displays, if necessary and re-
calculate the addresses to which any windows and views are locked.

This can be very useful in many cases; for example say you have window 3
locked to {m5} (the address pointed to by window 5) and you then scroll
through window 5. Normally this will not update window 3. However, all
you have to do is to press Esc when you want to update window 3 (and all the
other windows).

You can press the Esc key while your program is running to see how the
machine state is changing (assuming that the MonAm screen is at the front).

Other A Commands

All A (right Amiga) commands (like the window commands described above)
are available for use at any time whilst you are using MonAm. There are a
few other such commands that are not related to the current window:

A B Set Breakpoint

Allows the setting of any type of breakpoint, described later under
Breakpoints.

The Debugger HiSoft Devpac 3 Page 165

A O or O Show Other Bases

This prompts for an expression and displays its value in hexadecimal,
decimal and as a symbol if relevant.

example of Show Other

A R Register Set

Allows any register to be set to a value, by specifying the register, an equals
sign and its new value. It can also be used to set the value of the memory
registers. For example the line

a3=a2+4

sets register A3 to be A2 plus 4 whereas:

m3=m2

will set the value of the window 3 register to be the same as the window 2
register. All windows will then be re-drawn, which may cause a display that
you did not expect if, say, the display in window 3 is locked to an expression.

You can also use this to set the start address of a window when in zoom
mode so that, on xit from zoom mode, the relevant window starts at the
required address.

Screen Switching

MonAm uses its own Screen display and will always make itself the front
and active window whenever an exception (including breakpoints) occurs.

Page 166 HiSoft Devpac 3 The Debugger

V View other Screen

This will put the MonAm screen to the back, normally showing your
program's screen. Pressing any key will return the MonAm screen (so long as
you have not activated any other window).

Breakpoints

Breakpoints allow you to stop the execution of your program at specified
points within it. MonAm allows up to eight simultaneous breakpoints, each
of which may be one of five types. When a breakpoint is hit MonAm is
entered and it then decides whether to halt execution of your program (when'
it will enter the front panel display) or continue; this decision is based on the
type of the breakpoint and the state of your program's variables.

Simple Breakpoint [1]
These are one-off breakpoints which, when executed, are cleared and cause
MonAm to be entered.

Stop Breakpoint [n]
These are breakpoints that cause program execution to stop after the break-
pointed instruction has been executed a specified number of times. In fact a
simple breakpoint is really a stop breakpoint with a count of one.

Count Breakpoint [=]
Merely counters; each time such a breakpoint is reached a counter associated
with it is incremented, and the program will resume. These breakpoints are
more like monitors - they never cause a program to stop and are useful for
profiling.

Permanent Breakpoint [*]
These are similar to simple breakpoints except that they are never cleared -
every time execution reaches a permanent breakpoint MonAm will be entered.

The Debugger HiSoft Devpac 3 Page 167

Conditional Breakpoint [?]
The most powerful type of breakpoint; these allow program execution to stop
at a particular address only if an arbitrarily complex set of conditions apply.
Each conditional breakpoint has associated with it an expression (conforming
to the rules already described). Every time the breakpoint is reached this
expression is evaluated, and if it is non-zero (i.e. true) then the program will
be stopped, otherwise the program will continue.

A B Set Breakpoint

This is a window command allowing the setting or clearing of breakpoints at
any time. The line entered should be one of the following forms, depending
on the type of breakpoint required:

<address>
will set a simple breakpoint.

<address>, <expression>
will set a stop breakpoint at the given address, which will execute
<expression> times. The expression is evaluated before the program is
executed.

<address>,=
will set a count breakpoint. The initial value of the count will be zero.

<address>,*
will set a permanent breakpoint.

<address>,?<expression>
will set a conditional breakpoint, using the given expression.

<address>,-
will clear any breakpoint at the given address.

Page 168 HiSoft Devpac 3 The Debugger

Breakpoints cannot be set on addresses which are odd, unreadable, or within
ROM.

Every time a breakpoint is reached, regardless of whether the program is
interrupted or resumed, the program state is remembered in the History buffer,
described below

Help Show Help and Breakpoints

This displays the current breakpoints, task status, its segment list (showing
where your program is), free memory and the system memory list.

UK A500 1.2 users (who cannot use the Help key) can also obtain this
command by pressing A ii.

Ctrl-B Simple Breakpoint

Included mainly for compatibility with MonAm 1, this sets a simple
breakpoint at the start address of the current window, so long as it contains a
disassembly display. If a breakpoint is already there then it will be cleared.

U Run Until

This prompts for an address and a breakpoint specifier (1, n, =, */ or ?).
The chosen type of breakpoint is then placed at the given address and
program execution resumed.

Ctrl-K Kill Breakpoints

Clears all set breakpoints. This is also done automatically when you quit
MonAm with a task still running.

The Debugger HiSoft Devpac 3 Page 169

Ctrl-A Breakpoint After

A command that places a simple breakpoint at the instruction after the
instruction at the PC and resumes execution from the PC. This is particularly
useful for DBF-type loops if you don't want to go through the loop, but just
want to see the result after the loop is finished .

Ctrl-X Stop executing

This is a command to stop your task while it is executing. It does this by
forcing the Trace bit to be set, so you will get a Trace exception. While this
does work, be very careful if you stop a task in the middle of some
AmigaDOS ROM routines, particularly signal handling and message passing.

NOTE: The above command accesses memory fields that are not
guaranteed to remain the same for different versions of the
Amiga® operating system.

NOTE: This command was Ctrl-S in MonAm version 1

History

MonAm has a history buffer in which the machine status is remembered for
later investigation.

The most common way of entering data into the history buffer is when you
single-step, but in addition every breakpoint reached and every exception
caused enters the machine state into the buffer. The various forms of the Run
command also cause entries to be made into this buffer.

NOTE: The history buffer has room for five entries - when it fills the
oldest entry is removed to make room for the newest entry.

Page 170 HiSoft Devpac 3 The Debugger

H Show History Buffer

This opens a large window displaying the contents of the history buffer. All
register values are shown including the PC as well as a disassembly of the
next instruction to be executed.

NOTE: If a disassembly in the History display includes an
instruction which has a breakpoint placed on it, the [] s will
show the current values for that breakpoint, not the values at
the time of the entry into the history buffer.

Quitting MonAm

Ctrl-C or A Q Exit MonAm

This exits MonAm, returning control to whatever task invoked MonAm. All
breakpoints are killed although, if the task you are debugging is still running
or suspended when you try and quit, you will be warned. If MonAm
terminates while the task under investigation is running, the machine will
crash should any exception occurs subsequently. A safer way is to use the
Ctrl-Q command to stop the task first.

If the Debug option has been used from the GenAm editor then MonAm will
terminate automatically when the program it is debugging has terminated.

Ctrl-Q Quit a program

This is a way of forcing the task being debugged to quit. This can be
hazardous to use, and should only be done as a last resort. If your program is
terminated in this way it will not clean up, and thus not de-allocate any
memory it was using or close windows etc.

NOTE: The above command accesses memory fields that are not
guaranteed to remain the same for different versions of the
Amiga® operating system.

The Debugger HiSoft Devpac 3 Page 171

Loading & Saving

Ctrl-L Load Program

This will prompt for a filename and a command line and will attempt to load
the file ready for execution. If MonAm has already loaded a program it is not
possible to load another until the former has terminated.

The file to be loaded must be an executable file. Use the Load Binary File
command if you wish to edit other file types.

NOTE: This command is not available if MonAm has been invoked
using Debug from the editor.

B Load Binary File

This will prompt for a filename and an optional load address (separated by a
comma) and will then load the file where specified. If no load address is
given then memory will be allocated from the system. M8 will be set to the
start address of the loaded file and M9 to the end address.

NOTE: This is a change from previous versions of MonAm, where
M0 and M1 were set to the start and end addresses of the
loaded file.

S Save Binary File

This will prompt for a filename, a start address and an (inclusive) end address.
To re-save a file recently loaded with the Load Binary File command

<filename>,M8,M9

may be specified, assuming of course that M0 and Ml have not been re-
assigned.

Page 172 HiSoft Devpac 3 The Debugger

A or A Q Load ASCII File

This powerful command allows an ASCII file, normally of source code, to be
loaded and viewed within MonAm. This can be loaded into window 2 or
window 4. If the loaded program has line number information relevant to this
source file; you will be able to use line number operators on this display to
step through the source code, set breakpoints within it etc.

A new view on this window will be opened if the window already contains an
ASCII file, otherwise the text will replace the current window. You can
unload a source window using the Close View command.

The source window will be locked automatically to the PC.

Memory for source code displays is taken from the system so sufficient free
memory must be available.

Executing Programs

Ctrl-R Return to program /Run

This runs the current program with the given register values at full speed and
is the normal way to resume execution after entry via a breakpoint or an
exception.

Ctrl-Z Single-Step

Single-steps the instruction at the PC with the current register values. Single-
stepping a Trap, Line-A or Line-F opcode will, by default, be treated as a
single instruction.

Ctrl-Y Single-Step

Identical to Ctrl-Z above but included for the convenience of users of
German keyboards.

The Debugger HiSoft Devpac 3 Page 173

Ctrl-T Trace Instruction

This interprets the instruction at the PC using the displayed register values. It
is similar to Ctrl-Z but obeys BSRs, JSRs, Traps, Line-A and Line-F calls as
if one instruction, re-entering the debugger on return from them to save
stepping all the way through the routine or trap. It works on instructions in
ROM or RAM.

Ctrl-S Skip Instruction

Ctrl-S increments the PC register by the size of the current instruction thus
causing it to be skipped. Use this instead of Ctrl-Z when you know that this
instruction is going to do something it shouldn't.

R Run (various)

This is a general Run command and prompts for the type of execution,
selected by pressing a key.

Run G Go

This is identical to Ctrl-R and resumes the program at full speed.

Run I Instruction

This executes the entered number of instructions remembering information in
the History buffer and then returning to MonAm.

Traps are treated as single-instructions.

Searching Memory

G search memory (Get a sequence)

You will see the prompt Search for B/W/L/T/I?, standing for Bytes, Words,
Longs, Text and Instructions.

Page 174 HiSoft Devpac 3 The Debugger

If you select B, W or L you will then be prompted to enter the sequence of
numbers you wish to search for, each separated by commas. MonAm is not
fussy about word-alignment when searching, so it can find longs on odd
boundaries, for example.

If you select T you may search for any given text string, for which you will
be prompted. The search will be case-dependent or caseindependent, as you
have chosen.

If you select I you can search for part or all of the mnemonic of an instruction,
for example if you searched for $14 (A you would find an instruction like
MOVE.L D2,$14(A0). The case of the string you enter is un-important
unless you have chosen it to be so, but you should bear in mind the format
that the disassembler produces, e.g. always use hex numbers, refer to A7
rather than SP and so on.

Having selected the search type and parameters, the search begins, control
passing to the Next command, described below.

Searching Source-Code Windows
If the G command is used on a source-code window the T subcommand is
automatically chosen and if the text is found the window will re-display the
line containing it.

N find Next

N can be used after the G command to find subsequent occurrences of the
search data. With the B, W, L and T options you will always find at least
one occurrence, which will be in the buffer within MonAm that is used for
storing the sequence. With the T option you may also find a copy in the
system keyboard buffer. With these options, the Esc key is tested every 64k
bytes and can be used to stop the search. With the I option, which is very
much slower, the Esc key is tested every 2 bytes.

The search will start just past the start address of the current window (except
register windows) and if an occurrence is found redisplay the window at the
given address.

The search area of memory goes from 0 to the end of chip memory, then
$F80000 to $FFFFFF (the ROM) then any additional RAM.

The Debugger HiSoft Devpac 3 Page 175

Miscellaneous

Ctrl-P Preferences

This permits control over various options within MonAm. The first three
require Y / N answers, pressing Esc aborts or Return leaves them alone.

the Preferences display

Auto-load source file
when switched to Yes, upon loading a program, MonAm will attempt to load
the first source file associated with the program. This will only occur if the
executable file contains line number debugging information and the source
file can be found in the current directory. The new source file window will
then be locked to the Program Counter in order to track program flow. This is
of most use when debugging a program generated from a single source file.

Page 176 HiSoft Devpac 3 The Debugger

Source window line numbers
Affects whether line numbers are shown for all debugger source windows.
You may select No line numbers, Decimal numbers or Hex numbers.
Hexadecimal is often the preferred setting because by default, MonAm treats
all numbers as hex. Decimal line numbers, used with the # operator for
example, require a prefix of backslash.

Automatic '_' or '@' prefix
This is provided mainly for the convenience of C compiler users. With it
enabled, MonAm will automatically add a leading underscore or @ character
to the appropriate symbols. However, symbols without the leading character
will still take precedence.

Case insensitive symbols
MonAm version 3 defaults to using case insensitive symbols, i.e. upper and
lower case characters are not distinguished between. Selecting No will mean
that you must match the case of each symbol character exactly as with
previous versions of MonAm.

Symbol significance
This prompts for the significant length of symbols, which is normally 32 but
may be reduced to as low as 8 or increased if required. Although reducing
this can save some typing, using too low a value can make some symbols
impossible to select.

Show relative offset symbols
This option defaults to YL-s and affects the disassembly of address register
indirect with offset addressing modes, i.e. xxx(An). With the option on, the
current value of the given address register is added to the offset then searched
for in the symbol table. If found it is disassembled as symbol (An). This
option is very useful for certain styles of assembly language programming as
well as high level languages which use a' base register as a major offset, such
as SAS/C which uses A4 as a pointer to the merged data section.

Show ZAn in disassembly
Is normally switched off but advanced programmers may wish to enable the
display of the normally hidden Z registers used by some 680x0 instructions.

The Debugger HiSoft Devpac 3 Page 177

Interlace
Allows you to select a double height interlaced screen for MonAm. This
option will take effect after preferences have been saved and MonAm
restarted. MonAm will normally replicate the Workbench screens format.

Printer device name
This lets you set the device that MonAm uses for its printer commands. The
default is PRT:, the system printer device

configured through Preferences You may specify an AmigaDOS filename in
order to re-direct printing to disk.

Save preferences
Reply Y to this command to save your current preferences to the file
MonAm.prefs in the current directory. When MonAm loads it will read your
preferences from this file. MonAm.prefs is firstly searched for in the current
directory, then in the ENV:devpac directory, in a similar way to the editor
preferences file.

I Intelligent Copy

This copies a block of memory to another area. The addresses should be
entered in the form

<start>,<inclusive_end>,<destination>

The copy is intelligent in that the block of memory may be copied to a
location which overlaps its previous location.

NOTE: No checks at all are made on the validity of the move, copying
to non-existent areas of memory is likely to crash MonAm and
corrupting system areas may well crash the machine.

L List Labels

This opens up a large window and displays all loaded symbols. Any key
displays the next page, pressing Esc aborts. The symbols will be displayed in
the order they were found on the disk (or in memory if using the Debug
option from the editor).

Page 178 HiSoft Devpac 3 The Debugger

Ctrl-U name Unload symbols

This command can only be used if you are debugging a task which had a
symbol table loaded with it. What it does is de-allocate the memory used for
storing the symbols, freeing it for the system to use. This can be very useful
if memory is tight while debugging a larger program, as you can load it,
together with symbols, set a breakpoint at a symbolic address, then lose the
labels before letting it run. Of course once you hit your breakpoint you won't
have any symbols.

NOTE: This command was CtrI-L in MonAm version 1

W Fill Memory With

This fills a section of memory with a particular byte. The range should be
entered in the form

 <start>,<inclusive-end>,<fillbyte>

The warning described previously about no checks applies equally to this
command.

P Disassemble to Printer/Disk

This command allows the disassembly of an area of memory to printer or
disk, complete with original labels and, optionally, an automatic list of labels'
created by MonAm, based on cross

references. The first line should be entered as

<start_address>,<end_address>

The next line prompts for the area of memory used to build the cross-
reference list, which should be left blank if no automatic labels are required
else should be of the form

<buffer_start>,<buffer_end>

Next is the prompt for data areas which will be disassembled as DC
instructions, of the form

<data-start>,<data-end>[,<size>]

The Debugger HiSoft Devpac 3 Page 179

The optional size field should be B, W or L, defaulting to L, determining the
size of the data. When all data areas have been defined, a blank line should be
entered.

Finally a filename prompt will appear; if this is blank all output will be to the
printer, else it will be assumed to be a disk file.

If automatic labels were specified there may be a delay at this point while the
table is generated. Automatic labels are of the form Lxxxxx where xxxxx is
the actual hex address.

Printer Output
This is of the form of an 8 digit hex number, then up to 10 words of hex data,
12 characters of any symbol, then the disassembly itself. Printer output may
be aborted by pressing Esc.

Disk Output
This is in a form directly loadable by GenAm, consisting of any symbol, a tab,
then the disassembly itself, with a tab separating any operand from the op-
code. If you are disassembling an area of memory without loaded symbols
then the X R E F option should be used else no symbols will appear at all in
the output file. Pressing Esc or a disk error will abort the disassembly.

M Modify Address

Included for compatibility with MonAm 1, equivalent to A A.

0 Show Other Bases

Included for compatibility with MonAm 1, equivalent to A O.

D Change Drive & Directory

This allows the current drive and sub-directory to be changed.

Page 180 HiSoft Devpac 3 The Debugger

Command Summary
Window Commands
A A Set Address
A B Set Breakpoint
A E Edit View
A G Goto Source Line
A L Lock to Expression
A P Print Window
A R Register Set
A S Split Window
A T Change Type
A W Widen Window
A Z Zoom Window
Shift-. Open View
Shift-, Close View
. and , Next/Previous View
Esc Update all Windows
Tab Activate next window
A-1-5 Activate window 1 to 5

Breakpoints
Ctrl-A Breakpoint After
Ctrl-B Simple Breakpoint
Ctrl-K Kill Breakpoints
Ctrl-X Stop Executing
A B Set Breakpoint
U Run Until
Help Show Help and Breakpoints

Loading and Saving
Ctrl-L Load Program
A Load ASCII File
B Load Binary File
S Save Binary File

The Debugger HiSoft Devpac 3 Page 181

Executing Programs
Ctrl-R Return to program / Run
Ctrl-S Skip Instruction
Ctrl-T Trace Instruction
Ctrl-Y Single-Step
Ctrl-Z Single-Step
R Run (various)

Searching Memory
G Search Memory (Get a sequence)
N Find Next

Miscellaneous
Ctrl-C or A Q Exit MonAm
Ctrl-Q Quit a program
Ctrl-P Preferences
Ctrl-U Unload symbols
A O or O Show Other Bases
D Change Drive & Directory
H Show History Buffer
I Intelligent Copy
L List Labels
M Modify Address
P Disassemble to Printer/Disk
V View other Screen
W Fill Memory With

Page 182 HiSoft Devpac 3 The Debugger

Debugging Stratagem
Restrictions

As it runs as a process MonAm relies on the exec, intuition and graphics
libraries. If your program starts destroying memory to which it has no right it
is possible for it to corrupt fatally something the system needs so that when
MonAm is entered after an exception the machine will crash. Fortunately this
type of error is rare, usually address errors occur before programs start
destroying memory.

When a program is invoked from MonAm it is set up to look as if it has been
run from the CLI, not the Workbench.

MonAm cannot single-step or breakpoint any code when executing in
Supervisor mode. This is because the exec exception handler checks for an
exception in supervisor mode, and will put up a Guru alert if this is the case.
If not it will enter MonAm and work normally.

If your program creates another program or task you cannot use MonAm to
breakpoint it or single-step. MonAm can only debug the program that was
specified when it initially loaded.

Don't try and run the standard system programs from within MonAm, such as
dir. These programs rely on undocumented registers (particularly A5) and
memory areas which MonAm cannot emulate.

Owing to a hardware feature, a word- or Iongword-access on odd memory
locations 1 to 7 inclusive will cause a complete machine crash. There seems
to be nothing we can do to prevent this.

Bug Hunting

There are probably as many strategies for finding bugs as there are
programmers; there is really no substitute for learning the hard way, by
experience. However, here are some hints which we have learnt, the hard way!

The Debugger HiSoft Devpac 3 Page 183

Firstly, a very good way of finding bugs is to look at the source code and
think. The disadvantage of reaching first for the debugger, then second for
the source code, is that it gets you into bad habits. You may switch to a
machine or programming environment that does not offer low-level
debugging, or at least not one as powerful you are used to.

If a program fails in a very detectable way, such as causing an exception,
debugging is normally easier than if, say, a program sometimes doesn't quite
work exactly as it should.

Many bugs are caused by a particular memory location being stepped on.
Where the offending memory location is detectable, by producing a bus error,
for example, a conditional breakpoint placed at one or more main subroutines
can help greatly. For example, suppose the global variable main-pt r is
somehow becoming odd during execution, the conditional expression could
be set up as

{main_ptr}&1

Count breakpoints are a good way of tracking down bugs before they occur.
For example, suppose a particular subroutine is known to eventually fail but
you cannot see why, then you should set a count breakpoint on it, then let the
program run. At the point where the program stops, because of an exception
say, look at the value of the count breakpoint (using Help). Terminate the
program, re-load it, then set a stop breakpoint on the subroutine for that
particular value or one before it. Let it run, then you can follow through the
sub-routine on the very call that is fails on, to try and work out why.

Good luck!

Exception Analysis
When an unexpected exception occurs, it's very useful to be able to work out
where and why it occurred and, possibly, to resume execution. Some of the
most common exception types are listed below with their possible causes.

Page 184 HiSoft Devpac 3 The Debugger

Bus Error
If the PC is in some non-existent area of memory then look at the relevant
stack to try and find a return address to give a clue as to the cause, probably
an unbalanced stack (i.e. some data was placed on the stack and never
retrieved, causing the program to RTS to an incorrect location).

If the PC is in a correct area of your program then the bus error must have
been caused by a memory access to non-existent or protected memory.
Recovering from bus errors and resuming execution is generally difficult.

Address Error
If the PC is somewhere strange then the method above should be used,
otherwise the error must have been caused by a program access to an odd
address. Correcting a register value may be enough to resume execution, at
least temporarily.

Note well that 68020 processors and upwards do not consider this an error
and can quite happily read words from odd addresses, albeit at reduced
efficiency. This is often the cause of programs working on a 680x0 which
crash on machines with a 68000. However, such processors will cause an
address error if the PC becomes odd.

illegal Instruction
If the PC is in very low memory, below around $30, it is probable that it was
caused by a 'jump to location 0. If you use MonAm to look here you will
normally various ORI instructions (really longword pointers) and eventually
an illegal instruction.

Privilege Violation
This is caused by executing a privileged instruction in user mode, normally
meaning your program has gone horribly wrong. Bumping the PC past the
offending instruction is unlikely to be much help in resuming the program.

If you really require to execute a privileged instruction you may call it via the
Exec library's Supervisor routine.

The Debugger HiSoft Devpac 3 Page 185

Divide by Zero
Signifies that your program has attempted to divide another value by zero.
This is normally due to an error in some previous calculation.

Trap instructions
These range of instructions are shared between all tasks running on the
Amiga. They are unused by the operating system and are available for
individual programs. As such, they will not cause an exception within
MonAm but may well cause a machine crash if incorrectly used.

In order to make use of a specific numbered trap it is important to first
successfully call Exec library's AllocTrap routine. This takes care of trap
arbitration, ensuring that no other program is currently using that trap. Your
program may then write to the trap vector and proceed to use TRAP
instructions upon it, remembering to call FreeTrap during program
termination. No attempt to use a trap which has not been previously allocated
should be made.

Floating Point Exceptions
Such exceptions are caused by a 68881 or 68882 maths coprocessor after
some error in calculation or protocol is detected. They differ from most
exceptions in that they will often be caused some time after the error was
actually detected, typically at the time of the next floating point instruction.
This is due to the fact that an FPU instruction merely initiates the sequence of
actions, the processor itself will continue to execute the instruction
concurrently with further CPU instructions.

Page 186 HiSoft Devpac 3 The Debugger

The Linker HiSoft Devpac 3 Page 187

Chapter 5
Blink

The Linker
Blink is the de-facto standard AmigaDOS linker and is used directly from the
command line. The linker command line specifies which files are to be linked
together and in what order. Note that the order of linking is significant as this
allows a symbol defined in a module linked earlier to override one in a later
module; this is often useful when replacing standard library routines with
your own custom versions.

A simple Blink command line

To link two object file together the command line used could be:

BLINK FROM first.o+second.o

this will produce an executable program (assuming no errors occur) named
second; note that the name of the executable is taken from the second
named file in the link sequence (or the first if only one is available).

Concepts

Blink provides several unusual features whilst linking, this allows more
flexibility when initially writing your program leaving many of the decisions
up to the linker.

Page 188 HiSoft Devpac 3 The Linker

ALVs

When Blink is collecting all of the CODE type sections together, if any are
more than 32K apart and a 16-bit PC relative access is attempted, rather than
simply fail with and out-of-range error message, Blink redirects the access to
a JMP to the same location. This jump is known as an automatic link vector
or ALV. Note that this may cause problems if you attempt to access data
using PCrelative mode, although this is not recommended anyway since on
the 68020, 68030 and 68040 there are separate code and data caches which
can cause consistency problems.

Near DATA/BSS

Blink supports a 64K near data section which can be accessed via a global
base register (traditionally A4). This section is formed from all sections
which are named _MERGED (as described in the assembler section) and then
several variables are created by the linker to allow the initial base of this to be
set up. This is discussed later under the Reserved symbols section.

Directives

The Blink directives allow the input files and the format of the output file to
be specified.

The Linker HiSoft Devpac 3 Page 189

Input directives

The input directives allow the names of the object files to be linked to be
passed to the linker. The linker works by collecting all sections which have
identical names into a single output section.

FROM files Specifies the object files tha are the input files for the linker.
If the first item on the command line is a filename then the
FROM keyword is optional and may be omitted. FROM may
be used more than once with the files for each FROM
adding to the list of files to be linked. Note that ROOT is a
synonym for FROM.

To specify more than one file in a single FROM statement
they may either be listed after it separated by spaces or +,
e.g.

FROM a.o+b.o

LIB files Specifies the files to be scanned as libraries. Only modules
within the library which contain symbols which are
referenced will be included in the final object module. Note
that LIBRARY is a synonym for LIB. The same syntax used
for specifying multiple FROM files may be used for
multiple libraries.

Output directives

The output directives control the format and type of the final file created by-
the linker when a link has been completed successfully.

ADDSYM This causes Blink to emit symbols for all exported symbols
in the input object files regardless of whether the input
object file was compiled with one of the debug options.

CHIP Forces all hunks are to be placed in 'Chip' memory
regardless of the input object hunk specifications.

FAST Forces all hunks are to be placed in 'Fast' memory
regardless of the input object hunk specifications.

MAXHUNK n Limits the maximum size hunk that Blink will create when
coalescing hunks. This can be used to control fragmentation
of memory. The default is no limit on hunk size.

Page 190 HiSoft Devpac 3 The Linker

NODEBUG Suppresses any symbol table information or symbolic
debug information in the final object file. Note that ND is a
synonym for NODEBUG.

PRELINK Causes Blink to output an object module with references
and definitions still intact so that it can be linked later on to
produce a final executable file. This is designed for
development of large projects where the programmer is
only changing a single source module. Note that a prelinked
object file cannot have ALVs inserted into it and so Blink
may be unable to satisfy all 16 bit PC-relative references
when linking with the prelinked file.

SMALLCODE Forces all CODE hunks to be coalesced into a single hunk.
Note that SC .is a synonym for SMALLCODE.

SMALLDATA Forces all DATA and BSS sections to be coalesced into a
single hunk. This is useful for combining all data hunks
from a program into a single hunk, decreasing load time but
producing larger hunks that are difficult to scatter load.
Note that SD is a synonym for SMALLDATA .

TO file Specifies the name of the output file which is to be created.

Pre-linking

Pre-linking is similar to a normal link, however instead of producing an
executable file, it coalesces only identically typed and named sections into
output sections. If a section is unnamed then it is merged with the first named
section of the same type. Note that the special name __MERGED is
considered a typemodifier and hence only sections named __MERGED will
be coalesced with __MERGED sections.

When pre-linking ALVs are applied according to the normal rules, i.e ALVs
will be generated for out of range branches within a section, and all cross-
output-section references.

During pre-linking variables will often have undefined values (since the
modules in which these are defined are to be linked later) and so all of these
variables are reported. Note that this means that an error has technically
occurred and the return code from Blink will be non-zero. This is likely to be
important to users of make type utilities.

The Linker HiSoft Devpac 3 Page 191

Map files

A map file is a file describing the order and location of files and variables
processed by the linker written to a normal file for perusal by the user. These
files provide a large number of options for the programmer to customise the
output format; they are enabled using the MAP directive which has the format:

MAP [[filename] ,option, option, ...]

The filename gives the name of the file to which the map file is to be written.
The options specify which parts of the map file are to be written and all
consist of single letters:

Option Meaning

F Produce a mapping of input files in the output file

H Show where the input hunks (sections) were placed

L Map the library placements

S Show all external symbols

X Show a cross reference of external symbols

When generating cross-reference information it is often useful to be able to
separate this from the map file information. This can be done using the XREF
directive which allows a separate crossreference file to be specified. It has the
form:

XREF filename

To control, the layout of the map file several directives are available which
are used in the same way as the more normal output directives or options:

FANCY Enables usage of printer control characters in the map file.

FWIDTH n Width of file names (default 16).

HEIGHT n Lines on a page in map file, 0 indicates no pagination
(default 55).

HWIDTH n Width of hunk names (default 8).

Page 192 HiSoft Devpac 3 The Linker

INDENT n Columns to indent on a line. This is included in width
(default 0).

PLAIN Turns off the FANCY map file option.

PWIDTH n Width of program unit names (default 8).

SWIDTH n Width of symbol names (default 8).

WIDTH n Sets the maximum line length for the map and cross
reference listings. This is useful when sending the output to
a device which has different line length requirements. If not
specified one width defaults to 80.

Options

Blink provides a large number of keywords to give the programmer a wide
number of options. Although some of these may seem superfluous, the
intention is to provide the programmer with as many options as possible,
even if some of these options appear rather obscure.

BATCH This causes Blink to supply the default value of 0 for all
undefined symbols. Normally, Blink will pause after each
undefined symbol to give you an opportunity to correct the
error. If you specify the BATCH option, it will not pause.

BUFSIZE n Sets the I/O buffer size for Blink. By default, all I/O is done
in blocks as large as the available memory permits; this
leads to extremely fast link times. This option may be
useful if so little memory is available that the normal
allocation scheme fails.

DEFINE symbol=val DEFINE symbol=symbol This defines a symbol
to be used in the linking process. This is particularly useful
in conjunction with the PRELINK option to force certain
routines to be pulled from the library even though no
references to them exist. Note that you can assign either a
value or another symbol.

IGNORE Force Blink to continue after serious errors. Note that the
use of this option may result in a nonexecutable file if an
error has occurred.

NOALVS Forces Blink to warn you when it creates ALVs to resolve
16 bit PC relative code. This can be Used to watch for
Blink creating a non-relocatable object from what was
intended to be relocatable code.

The Linker HiSoft Devpac 3 Page 193

QUIET Causes Blink to print out no messages unless an error
occurs.

WITH file Specifies a file containing Blink command options to be
processed for this link. More than one WITH file may be
specified and WITH files may contain WITH statements.
The contents of all WITH files will be treated as if they
were specified on the Blink command line.

VER I FY file Specifies a file to contain all the messages output by the
linker. If this is not specified all messages are written to the
standard output stream. Note that VER is a synonym for
VERIFY.

VERBOSE Causes Blink to print out the names of each file as it
processes it and a summary of memory usage and elapsed
time on completion.

'WITH' files

A WITH file provides a method for encapsulating long and complex (or short
and simple) Blink command lines in a control file, known as a WITH file,
traditionally with the extension LNK. The format of a WITH file is identical
to the normal command line driven structure, except than line breaks may be
used in place of spaces. For example the first simple command line example
could have the WITH file:

FROM first .o+second.o

Consider a slightly more complex example of program which is to consist of
two modules (object files) and a library:

FROM a.o+mine.o+hers.o ; the object files
LIB amiga.lib ; add a simple library
TO prog1 ; output file name
ADDSYM ; add exported symbols
VERBOSE ; output messages during linking
MAP mine.map,F,H,X ; produce map file

Note the use of the ; to delimit comments in a WITH file. This file can then
be passed for execution to the linker using the command line (assuming the
WITH file is saved as mywith.lnk)

BLINK WITH mywith.lnk

Page 194 HiSoft Devpac 3 The Linker

A more complex example would be to consider a mixed language example
with both C and assembler modules. Assuming that the main project was
written in C, the normal C runtimes would have to be included, additionally it
may be necessary to force some external data items defined in the assembly
language to use the _ prefix required by C, this can be done using the
DEFINE directive:

FROM LIB:c.o ; C startup code
a.o+b.o ; assembler object files
d.o+e.o ; C object files
LIB LIB:lcm.lib ; Math
LIB LIB:lc.lib ; and C runtime libraries
TO prog2 ; output file
DEFINE _menu=menu ; alias menu defined in assembly to menu

; referenced in C
MAP a.map,f,h,l,s ; map file
XREF a.xrf ; separate cross-reference file
HEIGHT 66 ; longer page length
FWIDTH 10 ; narrower filename width

Note that the contents of WITH files are always processed after any files
explicitly named on the command line, hence if the last WITH file were
named mywith2.Ink, then the command line:

BLINK WITH mywith2.lnk LIB mylib.lib

would search the mylib.lib file before searching the lcm.lib or lc.lib
files.

BLINKWITH: the Blink assign

The assignment BLINKWITH, if assigned, is taken by Blink to be the name of
a WITH file whose contents is to be searched before any of the other files
mentioned on the command line. This allows a template WITH file to be
generated with the standard startup and library files mentioned in the
BLINKWITH file, whilst the additional files are specified on the command
line. The format of the BLINKWITH variable should be:

ASSIGN BLINKWITH: s:default.lnk

The Linker HiSoft Devpac 3 Page 195

Special HUNK names

Whilst linking, Blink considers certain section names to be special. These are
as follows:

NTRYHUNK

There can only be one of these and the hunk with this name will be the first
hunk in the output executable.

__MERGED

Only data and BSS Hunks with this name are permitted. If a data or BSS
hunk has this name it is be merged with any other hunks with the same name
and the __LinkerDB symbol set up to point to the area.

NOMERGE

A hunk with this name is never merged with any other hunk and will occupy
a single, separate hunk in the final output file.

Reserved symbols

To provide access to the base of the sections created by the linker various
symbols are invented by the linker. These are as follows:

RESBASE, _RESLEN, _NEWDATAL,

__BSSBAS, __BSSLEN

Reserved symbols. These are reserved symbols used in the SAS/C resident
startup code. If you use them in your own code your programs are almost
certain not to work correctly.

_LinkerDB

Pointer to static merged data section. The address of this external variable
points to the base of the __MERGED data section.

Page 196 HiSoft Devpac 3 The Linker

Blink Messages

Whilst running Blink may discover things which it needs to bring to your
attention. These may either be error messages or observations on the program
which is being built.

Blink Warnings/messages

The messages in this section although warnings, will often indicate that the
final program will be unusable in the form intended and you should not run it
unless you are certain that you understand what you are doing.

Warning MERGED data > 64K

The merged data section has exceeded the limit of 64K. The problem may be
rectified by moving some of your data in the __MERGED section into a far
data section..

Warning! Absolute reference to <name>
module: <mod> file: <file>

An absolute reference was detected to a merged data item, whilst building a
resident load module. This warning will only be given if a reference has been
made to the symbol __RESBASE.

Warning: ALVs were generated

This message is generated when the NOALVS option is used, indicating that
ALVs were generated.

Enter a DEFINE value for <name> (default stub) :
Undefined symbols... First Referenced

These messages indicate that the linker has encountered a reference to a
symbol for which it cannot locate a definition. The second message is issued
if the BATCH keyword is specified, whereas the first allows you to specify
an alternate name for the reference.

The Linker HiSoft Devpac 3 Page 197

Blink Errors
These are the errors which may be issued by the linker. In general errors may
be ignored by use of the IGNORE keyword to Blink, however programs so
produced may not function correctly. The error numbers are broadly divided
so that 200-400 may be issued by either pass. 401-500 are issued by pass 1,
whilst 501-599 are issued during pass 2.

Note that if a module has been compiled with standard line number
debugging turned on then the line number on (or near) to where the problem
occurred will also be reported.

200 Out of memory!

The linker does not have enough memory left to successfully complete the
link.

300 System error <val> on read

A system error occurred whilst attempting to read from the disk. This should
only occur if the disk has been damaged in some way. The value of the error
is given by <val> .

301 System error <val> on write

A system error occurred whilst attempting to write to the disk. This will
normally indicate that the disk is full. The value of the error is given by
<val> .

400 *** Break: Blink terminating

This message is printed when the operation of the linker is interrupted by the
user pressing Ctrl-C.

425 Cannot find library <file>

The file named in a LIB statement could not be located by the linker. This is
probably due to a full pathname not being given for the file.

Page 198 HiSoft Devpac 3 The Linker

426 Cannot find object <file>

The file named in a FROM or ROOT statement could not be located by the
linker. This is probably due to a full pathname not being given for the file.

443 '<file>' is an invalid-file name

The filename specified in a FROM, LIB or ROOT statement is invalid.
Typically this will be because the name is null.

444 hunk_symbol has bad <val> symbol <file>

A hunk_symbol hunk type was encountered by the linker which did not
have the external type set to zero, but instead to val. If this error occurs it
indicates that the named input file was damaged in some manner.

445 Invalid hunk-symbol <name>

A hunk_symbol hunk type was encountered by the linker during parsing of
the external definitions. The named symbol was attached to this hunk.

446 Invalid symbol type <val> for <file>

Whilst parsing external declarations an unknown symbol type <val> was
encountered in the named file.

448 <file> is not a valid object file

The named file did not match the specifications for an object module.

449 No hunk end seen for <file>

On reaching the end of a hunk within the named file an end marker did not
appear.

The Linker HiSoft Devpac 3 Page 199

450 Object file <file> is an extended library

An attempt has been made to use a library as the operand of a FROM or
ROOT statement. Libraries may only be searched, not included.

501 Invalid Reloc 8 or 16 reference

An attempt has been made to generate a branch between two differently
named sections. Branches may only occur within a common section. This
error will normally indicate an attempt to execute the data section!

502 <name> symbol - Distance for Relocl6 > 32768

The target of a 16 bit branch is more than 32K away from the reference. In
general you should not see this message due to ALV generation.

503 <name> symbol - Distance for Reloc8 > 128

The. target of an 8 bit branch is more than 128 bytes away from the reference.

504 <name> symbol - Distance for Data Reloc16 > 32768

A 16 bit base-relative data section access is attempting to reach more than
32K. This error will normally indicate you are very close to the 64K limit on
near data, and a a module has had its data section fall off the end of the
merged data section (biased by 32K). The solution is to reorder your modules
putting the ones with large data sections last alternatively you may have to
move some of your data from the __MERGED section to a normal data
section.

Page 200 HiSoft Devpac 3 The Linker

505 <name> symbol - Distance for Data Reloc8 > 128

An 8 bit base-relative data section access is attempting to reach more than
128 bytes. This error will normally indicate incorrect code generation from
the compiler.

506 Can't locate resolved symbol <name>

During the second pass the linker could not locate the named symbol in its
table. This will either indicate an internal linker failure or a damaged library
file.

507 Unknown Symbol type ,<val>, for symbol <name>

During the second pass the linker could not match the type of the named
symbol in its table. This will indicate an internal linker failure.

508 Symbol type <val> unimplemented

Whilst parsing external declarations an unknown symbol type <val> was
encountered in the named file. Note that the equivalent error (446) is reported
during pass 1.

509 Unknown hunk type <val> in Pass2

The named file did not match the specifications for an object module. Note
that this message is identical to the pass 1 error 448.

510 <name> symbol - Reference to unmerged data item

A module has attempted to access an data item which the linker has not
placed in the MERGED section using merged access type.

The Linker HiSoft Devpac 3 Page 201

515 An ALV was generated pointing to data <name> symbol

An ALV was generated in the data section of the program. This will only
occur if code generation has been performed in a data section, and as such
this error will normally indicate an internal

compiler failure.

600 Invalid command '<cmd>'

The named command was not recognised by the linker.

601 <cmd> option specified more than once

An attempt has been made to specify a command, which may only appear
once, more than once, e.g. attempting to specify two TO files.

602 Unable to open output file ' <file>'

The named output file could not be opened. This may be because the disk or
directory is full.

603 <val> is not a valid number

The value <val> which appeared as a numeric argument could not be parsed
as such.

604 with file is not. readable

An error occurred whilst reading the WITH file.

605 Cannot open with file '<file>'

The named WITH file could not be opened.

607 No FROM files specified

No FROM or ROOT files were specified so the linker cannot start linking.

Page 202 HiSoft Devpac 3 The Linker

608 Premature EOF encountered

End-of-file occurred unexpectedly. This will normally indicate serious file
system structure problems.

609 Error seeking in file. <file>

An error occurred whilst attempting to seek about the named file. This will
normally indicate serious file system structure problems.

611 Reloc found with odd address for symbol <name>, file
<file>

A 16 or 32 bit relocation was attempted on a non word-aligned boundary.
This is always illegal on the 68000.

ERROR: Invalid decimal constant '<val>'.

The value <val> which was entered in response to an undefined symbol was
an invalid decimal constant.

ERROR: Invalid hex constant '<val>'.

The value <val> which was entered in response to an undefined symbol was
an invalid hexadecimal constant.

ERROR: Multiply defined symbol '<name>'

A symbol has been redefined. The file in which it first appears is named, as is
the file in which the attempted re-definition occurs.

ERROR: Symbol '<name>' is not defined.

The named symbol which was entered in response to an undefined symbol
was also undefined.

Hunk #n not written

The numbered hunk n was not written to disk. This will indicate an internal
linker failure.

The Linker HiSoft Devpac 3 Page 203

Unknown internal error

An internal error occurred whose error number was not recognised. This
indicates a serious internal linker failure.

Page 204 HiSoft Devpac 3 The Linker

Other Tools HiSoft Devpac 3 Page 205

Chapter 6
Other Tools

S-record splitter

If you are developing code for an embedded system, you will need to 'burn'
you final code into EPROM. Most EPROMs are byte-wide devices, so if you
are producing a system with a 16 bit data bus, you need-two EPROMs, one
for the odd numbered bytes and the other for the even numbered bytes. If you
are developing for a system with a 32-bit data bus, four different EPROMs
are required.

Many EPROM programmer's accept Motorola S-records as input and GenAm
will happily generate absolute S-record code, but GenArn generates the entire
output file in one go. This is fine for downloading into RAM or where the
ROM size matches the data bus width, but doesn't help in the situation above.
This is where SRSplit, the S-record splitter comes in. It splits an S-record file
into two or more S-record files. The address fields of the new files are
calculated so that they are appropriate for 'burning' into EPROM as described
above.

SRSp1it is a CLI program whose command line should be of the form:

<-options> <filename> [filename]

The filename gives the file to split; more than one split at once. The options
available are

p this must be followed by the number of pieces into which the file
will be split. The default is 2 and the most common alternative is 4,
although other values (up to 9) may be used if you wish.

b this specifies a base offset that will be added before the address
calculation is performed. The offset should be specified in decimal
or preceded by 0x for hexadecimal. You can also use octal by
specifying 0 at the start of the number. See below for an example.

Page 206 HiSoft Devpac 3 Other Tools

Note that the options must come before the filename. The output filenames
are the input filename with 1, 2 etc added.

Command line examples

bootrom.mx

This splits bootrom.mx into bootrom.mx1 and bootrom.mx2

-p4 test.mx

This splits the file test.mx into 4 files: test.mx1, test.mx2, test.mx3
and test.mx4.

-b0x14000 –p4 test.mx

This splts test. mx into 4 files, adding an offset of $14000 to the addresses in
the S-records. You might use this if your file is designed to be run at 0 but
needs to be sent directly to an EPROM miner whose memory buffer starts at
$14000.

Operating system utility

Should you obtain new include files from Commodore you should be able to
assemble them unchanged with GenAm – and you should also be able to pre-
assemble these for fast assembly times.

However should you wish to use _LVO offsets to access any new library
calls you will need to run the FD2LVO file below. Similarly if you obtain an
FD file for a third party supplied library you can use this to generate the
_LVO offsets.

FD2LVO performs the same task as ConvertFD program that was supplied
with Devpac Amiga 2; the name has been changed to avoid conflict with the
Commodore program that converts FD files to BASIC .bmap files.

FD stands for Function Description; LVO stands for Library Vector Offset.

Other Tools HiSoft Devpac 3 Page 207

FD2LVO details

FD2LVO converts Commodore FD files into library include files with
extension _lib.i containing the _LVO offsets for inclusion into your
programs.

The command-line is of the form

FD2LVO [source] [destination]

The source and destination file names should have their extensions omitted.
The -d flag indicates that a whole directory is to be converted. For example:

FD2LVO fdffiles/dos new/dos

converts the single file fdfiles/dos_lib.fd to new/dos_lib.i

Page 208 HiSoft Devpac 3 Other Tools

AmigaDOS errors HiSoft Devpac 3 Page 209

Appendix A
AmigaDOS Error Codes

This Appendix details the numeric AmigaDOS errors and their meanings.

103 insufficient free store
out of memory.

105 task table full
limit of 20 CLIs.

114 bad template

115 bad number

116 required argument missing

117 keyword requires argument

118 too many arguments

120 argument line invalid or too long
when using CLI commands.

121 file is not an object module
trying to execute non-executable file.

122 invalid resident library during load

201 no default directory

Page 210 HiSoft Devpac 3 AmigaDOS errors

202 object in use

such as a file by another program.

203-object already exists

204 directory not found

205 object not found
most commonly a file.

206 invalid window
in name specification.

207 object too large

208 invalid action

209 packet request type unknown

210 invalid stream component name
name too long or contains control chars.

211 invalid object lock

212 object not of required type
such as directory dame instead of file

213 disk not validated
disk is still being validated, or bad.

214 disk write-protected

215 rename across devices attempted

216 directory not empty
when trying to delete it.

AmigaDOS errors HiSoft Devpac 3 Page 211

217 too many levels 218 device not mounted

after specifying a volume name.

219 seek error

219 seek error

220 comment too big
file comments must be less than 80.

221 disk full

222 file is protected from deletion

223 file is protected from writing

224 file is protected from reading

225 not a DOS disk

226 no disk in drive

232 no more entries in directory

233 object is soft linked

234 object is linked

235 bad hunk

236 not implemented

240 record not locked

241 lock collision

Page 212 HiSoft Devpac 3 AmigaDOS errors

242 lock timeout

243 unlock failed

303 Buffer overf low
in internal or user buffer.

304 break received

305 file not executable
E bit is cleared.

Assembler errors HiSoft Devpac 3 Page 213

Appendix B
GenAm Error Messages

GenAm can produce a large number of error messages, most of which are
pretty well self explanatory. This appendix lists them all in alphabetic order,
with clarifications for those which require them.

Please note that GenAm is continually being improved and this list may not
agree exactly with the version you have, there may be additional messages not
documented here.

Errors
If you get a message beginning with INTERNAL please tell us - you should
never see these.

probably missing
You have used an absolute reference where an immediate one was more
likely. This will also occur if you miss out the address register when
you are accessing variables via a base register. If you really mean the
absolute reference, use an explicit .L or .W or disable OPT CHKIMM.

.W or .L expected as index size

absolute expression MUST evaluate

absolute not allowed

additional symbol on pass 2
somehow a symbol has appeared during pass 2 that did not appear
during pass 1.

Page 214 HiSoft Devpac 3 Assembler errors

address register expected

addressing mode not allowed

addressing mode not recognised

assembly interrupted

bad floating point expression

BSS or OFFSET section cannot contain data
OFFSET sections and BSS sections can only contain DS directives.

cannot create binary file
could be a bad filename, or a write-protected disk, etc.

cannot export symbol

cannot import symbol

cannot nest MACRO definitions or define in REPTs
macro definitions may not be nested or defined within repeat loops.

cannot nest repeat loops

colon (:) expected
in multi-register 68020 argument.

comma expected

data register expected

data too large

Assembler errors HiSoft Devpac 3 Page 215

DCB or DS count must not be negative

division by zero

duplicate MODULE name
module names must be unique.

error during listing output
listing will be stopped at this point.

error during writing binary file
normally disk full.

error in command line symbol

executable code only
only executable rode may be assembled to memory.

expression mismatch
normally a syntax error within an expression.

fatally bad conditional
there were more ENDCs in a macro than I Fs.

file not found

floating point constant not allowed

floating point constant too large

floating-point register expected
after floating point instruction.

Page 216 HiSoft Devpac 3 Assembler errors

forward reference

garbage following instruction

hex floating point number too large

illegal BSR.S
a BSR.S to the following, instruction is not allowed change it to BSR.

Illegal type combination

immediate data expected

imported label not allowed

includee file read error

instruction not recognised

invalid 68020 addressing mode

invalid bitfield specification

invalid floating point expression

invalid FORMAT parameter

invalid IF expression, ignored

invalid index scale

invalid k-factor

invalid MMU function code

invalid MOVEP addressing mode

Assembler errors HiSoft Devpac 3 Page 217

invalid number

invalid numeric expansion
the symbol is not defined or relative or a syntax error.

invalid opcode size for data/address register

invalid option

invalid printer parameter

invalid radix

invalid register list

invalid section name, TEXT assumed

invalid section specified

invalid section type

MMU register expected

privileged instruction
you have used an instruction that can only be used in supervisor mode
after an OPT USER directive.

invalid pre-tokenised file
Either the pre-tokenised file itself is corrupt or it was produced with an
earlier or later version of the assembler. Re-make the file from the
include file using the Output Symbols command.

invalid size

line malformed

Page 218 HiSoft Devpac 3 Assembler errors

linker format restriction
the DRI format is restrictive about where it allows imports.

local not allowed

maths co-processor required

missing close bracket

missing ENDC
there were more IFs than ENDCs.

Missing quote

Misuse of label

MMU register expected

not yet implemented

number too large

odd address

not yet implemented

number too large

odd address

only (An) allowed for this instruction
only occurs with 68040 MMU instructions

only FPIAR allowed

option must be at start

ORG/RORG not allowed

out of memory

Assembler errors HiSoft Devpac 3 Page 219

phasing error
should never happen, unless you have symbols that evaluate to different
values on different passes. Investigate immediately before the first such
error.

privileged instruction
when OPT USER is in operation.

program buffer full
change the program buffer size when assembling to memory.

register expected

relative not allowed

relocation not allowed

repeated include file
each include file may only be included once on each pass.

short branch cannot be 0 bytes

source expired prematurely
within an IF, MACRO or REPT and the source ran out.

spurious ENDC

spurious ENDM or MEXIT

spurious ENDR

symbol defined twice

symbol expected

undefined symbol

Page 220 HiSoft Devpac 3 Assembler errors

user error
caused by a FAIL directive

wrong processor
XREFs not allowed within brackets

Warnings

.L converted to .W
when optimising.

68010 instruction, converted to MOVE SR
MOVE CCR, is not a 68000 instruction (only when in 68000/8 mode).

ADD/SUB converted to LEA
when optimising.

base displacement shortened
when optimising.

branch could be short
forward branch could be optimised

branch made short
by optimising

directive ignored

invalid LINK displacement
if negative or odd.

Assembler errors HiSoft Devpac 3 Page 221

LEA converted to ADDQ/SUBQ

misuse of register list
A register list created using EOUR has been used in an expression.

MOVEQ substituted
Move.l #nn, d0 optimised to moveq #nn, d0.

no ORG specified
When generating absolute code via S-records.

offset removed
xx(An) form reduced to (An) by optimising.

outer displacement shortened
when optimising.

quick form used
when optimising.

relative cannot be relocated

short branch converted to NOP
when optimising.

short word addressing used
when optimising.

sign extended operand
data in MOVEQ needed sign extension to fit.

size should be .W

Page 222 HiSoft Devpac 3 Assembler errors

The Operating System HiSoft Devpac 3 Page 223

Appendix C
Calling the Operating

System

Introduction

The Amiga@ operating system is arguably with the exception of OS/2 the
most sophisticated on any mass-produced computer, and is also the most
complicated. The whole machine is based around the concept of libraries,
which are essentially groups of subroutines (or functions to C-programmers)
indexed off a large jump block. This Appendix is intended to explain the
basics of calling libraries from assembly-language, and to give an idea of what
each can be used for. One small Appendix ' cannot possibly describe the whole
operating system, it is only meant as an introduction. For further information
turn to the Bibliography for recommended books.

Please note that this was written with version 1.3 of Kickstart in mind. Full
documentation for Release 2.0 of the operating system can be obtained directly
from HiSoft and complete include files are already supplied on your Devpac
disks.

Libraries

The most basic library is the exec library, which has to be called to open any
other library, among other things. As with all libraries, a library base pointer is
required to access it, and this must be loaded into register A6 before calling
any function. The exec library is unique is that it doesn't have to be Opened to
obtain a base pointer - this can be obtained from the longword at location 4 -
the only location in the whole machine guaranteed to remain the same in the
future.

Page 224 HiSoft Devpac 3 The Operating System

The base pointer so obtained can then be used to open further libraries, to
obtain other library base pointers, and so on. Note that most libraries require
A6 to be contain the base pointer for correct, operation (as they call other
routines in the same library) though not all do. Parameters are passed to library
routines in registers, and as a general rule registers D0/Dl/A0/Al should be
assumed to be corrupted by any call.

A large number of Include files are supplied with Devpac Amiga to allow easy
access to the various parts of the operating system. These include files contain
macro definitions, library offset symbols, data structure definitions, and bit
field symbols. There now follows a library table showing the names of many
of the components, and where the definitions can be found in the include
directory.

File: this shows the file that contains the macro definitions and _LVO
(Library Vector Offsets) symbols for calling the library.

Name macro: this is normally consists of a DC.B statement defining the
ASCII for the name, ending in a null.

Base pointer: this is the symbolic name of the longword used for storing
the base pointer. It always starts with an underline character, though when
used from most C compilers this underline is not shown.

Calling macro: this is the name of the macro that calls a particular library.
Note that this will corrupt register A6 as it will be loaded with the relevant
library base pointer.

The following list gives the library followed by where its file can be found, the
name macro,' base pointer and calling macro, in order:

 diskfont, libraries/diskfont_lib.i,
DISKFONTNAME,_DiskfontBase, CALLDISKFONT

 dos, libraries/dos_lib.i, DOSNAME, _DOSBase,
CALLDOS

 exec, exec /exec_lib.i, EXECNAME, _SysBase, CALLEXEC

 expansion, libraries/expansion_lib.i,
EXPANSIONNAME , _ExpansionBase, CALLEXP

 graphics, graphics/graphics_lib.i, GRAFNAME,
_GfxBase, CALLGRAF

The Operating System HiSoft Devpac 3 Page 225

 icon, workbench/icon_lib.i, ICONNAME, _IconBase,
CALLICON

 intuition, intuition/intuition lib.i, INTNAME,
IntuitionBase, CALLINT

 mathffp, math/mathffp_lib.i, FFPNAME -MathBase ,
CALLFFP

 mathdouble, math /math ieeedoubbas lib.i,
IEEEDOUBNAME, MathIeeeDoubBasBase, CALLIEEEDOUB

 mathtrans, math/mathtrans_lib.i, MATHTRANSNAME,
MathTransBase, CALLMATHTRANS

 translator, libraries/translator_lib.i,
TRANSNAME, TranslatorBase, CALLTRANS

For example, to call the exec library function OpenLibrary suitable
assembler source code would be

CALLEXEC OpenLibrary

This macro is expanded into

move.1 (_SysBase).w,a6
jsr _LVOOpenLibrary(a6)

Diskfont Library

This is a library for handling fonts that are normally resident on the disk.

Files: libraries/diskfont.i and diskfont lib.i

DOS Library

One of the most straightforward of the libraries to use, this handles file I/O
(Input/Output) to devices, including disk and console. It has some slight
anomalies, notably addresses have to be passed in data registers, and many
pointers have to be BCPL-type (i.e. longword aligned and divided by 4).

Files: libraries/dos.i, dos_lib.i and doesextens.i. The
Release 2.0 includes have a separate dos directory containing various new
files although the above two are still provided for compatibility.

Page 226 HiSoft Devpac 3 The Operating System

Exec Library

This is, the lowest level of library, responsible for things like memory
management, library calls and message passing. The library never has to be
opened - its base pointer is contained in location 4 although it is usual for
programs to copy this into their own data area for maximum speed.

Files: exec/ables.i, alerts.i, devices.i, errors.i, exec.i,
execbase.i, execname.i, exec_lib.i, funcdef.i,
initializers.i, interrupts.i, io.i, libraries.i, lists.i,
memory. 1, nodes.i, ports.i, resident.i, strings.i,
tasks.i, and types.i

Graphics Library

This is responsible for controlling exactly what appears on your monitor,
including things like drawing lines, printing text, controlling RastPorts, sprite
handling and fonts.

Files: graphics/clip.i, copper.i, display.i, gels.i, gfx.i,
gfxbase.i, graphics_lib.i, layers.i, rastport.i, regions.i,
sprite.i, text.i, view.i

Icon Library

This is responsible for handling the icons displayed by the Workbench.

Files; workbench/icon.i, icon_lib.i

The Operating System HiSoft Devpac 3 Page 227

Intuition Library

This library is the largest and is responsible for the windowing Intuition user
interface. It has a very large number of functions, including those for window
control, screens, gadgets, requesters, and event handling.

The main file is large and also includes a large number of other files, so don't
be surprised if it takes a little while to read it all. It can be worthwhile to create
your own specialised version without the less-often used constants, which can
reduce the amount of other include files required.

Files: intuition/intultlon.i, intuition_lib.i

Maths Libraries

There are three maths libraries, all based on the official Motorola routines. The
FFP (Fast Floating Point) library uses an 8-bit exponent, 24-bit mantissa
format. The format used was designed for the 68000 series, and is exclusive to
Motorola. The IEEE double library offers double-precision using the IEEE
standard formats for numbers, and the Transcendental library is used for FFP
trig and other functions.

Files: math/ mathffp_lib.i, mathieeedoubbas_lib.i,
mathtrans_lib.i

As a rule you should use GenAm in case sensitive mode (the default) when
using the supplied Include files. Note that every Include file always includes
any others it needs automatically, so you don't need to worry about it.

Release 2.0 libraries

A number of new libraries were added with Release 2.0 of the operating
system.

GadTools provides simpler creation and control over the standard gadget
types similar to those used by the Devpac editor.

Page 228 HiSoft Devpac 3 The Operating System

Utility contains a number of convenient functions including those controlling
the use of tag lists (simply pairs identifier numbers and corresponding values
held as longwords in memory, terminated by a zero).. Such lists may be passed
to new DOS, Intuition and Graphics library functions and extend the
functionality of many fixed 1.3 data structures.

IFFParse, a disk loaded library also available for 1.3 which contains
extermely flexible and powerful routines for handling the reading and writing
of any IFF files. IFF is the Amiga Interchnage File Format used for pictures,
sound samples, animations, formatted text and much more. It is also the format
recognised by the Amiga® clipboard. For further information, refer to the IFF
Manual mentioned in the Bibliography.

Commodities; using this library is the preferred way of augmenting the
operating system by the addition of utilities such as 'hot key' programs, screen
blankers, automatic window activation etc.

Workbench is now a callable library giving access to new features such as
the application Tools menu, windows which are notified of icons being
dropped into them and application controlled icons (these are known as
AppMenus, AppWindows and Applcons).

ASL requester library is the standard Amiga® requester library providing file
and font requesters. The Devpac editor is an example of a program which uses
the ASL library.

Many of the Release 2.0 enhancements have gone into already existing
libraries, with DOS and Intuition containing the main additions. It is now
possible to call the DOS library for pattern matching, packet communication
with handlers, standard command line argument processing, assignments,
manipulation of path and file name strings, file record locking and notification.
Note that some of these facilities, along with a file requester, are available
under 1.3 via a third-party library called the ARP library.

The main new features of the Intuition library are control of public screens
(Amiga® screens which can be shared amongst any number of applications;
the Workbench is an example of a public screen), BOOPSI object-orientated
gadgets. These provide a new and extensible way of handling the regular
Intuition gadgets, images etc. with the additional ability of allowing creation of
your own custom gadget types which are handled by Intuition.

The Operating System HiSoft Devpac 3 Page 229

Full and comprehensive documentation for these and all other Amiga®
subsystems can be found in the Third Edition of the Amiga ROM Kernel
Manuals and The AmigaDOS Manual available directly from HiSoft.

Example Programs

To help you get started programming AmigaDOS from assemblylanguage we
have provided the source to a few example programs in the Examples drawer.

demo.s

This is the program used for the tutorial at the beginning of the manual. It uses
the DOS library to print a message on the current CLI window.

freemem.s

This is a program that uses Intuition to create a window in which the system
free memory is constantly displayed, until the close gadget is clicked on.

helloworld.s

This is the assembly-language conversion of the C program Final Version of
the Simple Program described at the beginning of Intuition - The Amiga User
Interface (revision 1.0 page 2-9). The conversion has not been optimised in
any way, for example the structure assignment for NewScreen would be
more efficient using dc.w/dc.l statements, but has been left as MOVE
instructions for a more accurate conversion. The program opens up a custom
screen and, within it, a window with a simple message.

Page 230 HiSoft Devpac 3 The Operating System

CLI vs Workbench

There are two program environments on the Arniga@ - the windows & icon
driven Workbench, and the CLI or Shell. Devpac Amiga runs under either
interface although most of the example programs can only run from a
command line environment, the difference being in the startup and exit code.

CLI Startu

When a program is run from the CLI it starts with register A0 containing the
address of the command line, and D0 containing its length. The DOS handles
returned by Input and output can be used for I/O with the console device
and to exit, the program should simply RTS.

Workbench Startup

When a program is run from the workbench it has to wait firstly message, and
on terminating it has to reply to the message (after doing a Forbid call) before
RTSing. The DOS functions Input and output will not return valid handles,
so you will need to open a window to perform any console I/

The startup differences are detailed in Chapter 30 of the Amiga ROM Kernel
Manual: Libraries and Devices, together with the assembly language source of
the startup code used by C programs.

A skeleton version of this for assembly language programmers can be found in
the file misc/easystart.i which is included by the freemem2.s
example program. It should be included at the very front of your .programs,
and handles the message-passing to allow programs to be run from the
Workbench. Of course to do this you will need to create an icon for your
program, using Create Icons? on the editor Settings menu.

The Operating System HiSoft Devpac 3 Page 231

Other 68000 Series Processors

When writing commercial programs for the Amiga® it should be borne in
mind that some users can have 68020, 68030 or even 68040 processors in their
machines instead of the regular 68000. One problem is the MOVE SR
instruction which has become privileged in the 010 processor and upwards. To
get around this, the exec library has a function called GetCC which returns
the condition codes in register D0. It uses no other registers and doesn't
actually need the library base pointer in A6. For example, if you want to save
the condition codes on the stack, instead of doing

move sr,-(sp)

you should do

movea.l 4.w,a0 get base pointer
jsr _LVOGetCC(a0) call GetCC
move.w d0,-(sp) put on stack
move d0,ccr and set codes

This uses A0 as a scratch register. Its best not to use a macro for this call in
case you inadvertently change the condition codes (movea leaves them alone).

Another difference is that exception stack frames are very much bigger with
68010, 020 processors etc., but this should only affect debuggers and the like.

Page 232 HiSoft Devpac 3 The Operating System

Using the CLI HiSoft Devpac 3 Page 233

Appendix D
Using the CLI

Introduction

Like most other programming development tools, Devpac Amiga can be run
from the Amiga® CLI (or Command Line Interface). Although you may
choose to use the simpler icon driver Workbench interface, this appendix gives
some advice which will help you to understand the operation of the CLI.

Files, Volumes and Directories

AmigaDOS files can be stored on floppy disks, the RAM-disk or a hard disk.
As floppies can hold over 800K of data and hard disks even more, AmigaDOS
supports directories, which are named sections of disks that can contain files
and other directories (when using the Workbench, directories are called
drawers). To specify a file within a directory the / symbol is used, so if you
want to edit a file called test.s which is in a directory called source the
command is:

devpac source/test.s Return

Note that the CLI doesn't care about the case of the letters in commands or
filenames - if you had typed:

devpac SourCe/Test.S Return

it would do just the same. The way Devpac, GenAm and MonAm are invoked
is similar to most other CLI commands - they consist of a command section
(Devpac in this case) and, optionally, something following it, known as a
command line. If you want to know what files you have on the disk, enter the
command

dir Return

which will show them all (dir stands for show directory).

Page 234 HiSoft Devpac 3 Using the CLI

AmigaDOS can take a little while to do, so be patient. If there are any
directories on the disk they will be shown first, followed by (dir), then all the
filenames in alphabetical order.

Incidentally, as AmigaDOS doesn't care about the case of filenames, you may
wonder how it knows the format in which to display the directory. The answer
is that the exact name specified when the file (or directory) was first created

The CLI (or Shell) keeps track of the current disk and directory; the cd
command can be used to check the current state and to change it. After initially
booting up with a backup of the Devpac Amiga disk the current disk will be
DF0: (DF0: is the internal drive, DF1: is the external one), and you can see
this by typing

cd Return

Typing cd on its own like this will always show you the current directory. If
you want to change to another directory, for example the one containing the
examples programs you follow the cd command with the directory name, e.g.

cd examples Return

If you now type dir you will see a list of files, or typing cd on its own will
show DF0: examples To look at text files, which is what the files ending
in .s are, you can enter what the files endin

type demo.s Return

which will show the contents of demo.s on the screen. If you want to pause
this you can hold down the right mouse button, or you can stop it altogether by
pressing Ctrl-C.

To change back to the previous directory you could use

cd df0: Return
or, alternatively
cd : Return

The : on its own means the top level directory on the current disk, or root. If
we now want to look at demo.s once more we could change directories again,
but an easier way would be to specify the directory together with the filename,
e.g.

type examples/demo.s Return

Note the way the / is used.

Using the CLI HiSoft Devpac 3 Page 235

AmigaDOS Wildcards

AmigaDOS has a somewhat different idea about wildcards in filenames from
other operating systems. They are very powerful and can do wonderful things,
but obvious-to-use they are not. Here is a summary of them:

? any single character

% the null string

#<P> one or more occurrences of the pattern <p>

<pl > | <p2> either pattern p1 or pattern p2

() groups patterns together

The common uses for these are ? which is straightforward enough and #?
which means all files and is analogous to * in MS-DOS and CP/M.

Device Names

All I/O devices on the Amiga have names by which you can refer to them in
CLI commands and from within programs. These all have short names ending
in a and in fact you have already met two of them - DF0: and DF1: ; the two
floppy drives. Here are some more.

RAM:

This device is a RAM-disk which can be used much like a regular floppy but is
much faster to save and load as it stores everything in memory.

The disadvantage is that all data will be lost when you switch off or reset (or if
one of your programs goes a little crazy). It is dynamic in size, allocating
memory from the system pool when it needs it.

Page 236 HiSoft Devpac 3 Using the CLI

RAD:

RAD: is a RAM-disk that differs from RAM: in two important ways:

 Its size is fixed at mount-time. See your system documentation for further
details.

 It will survive a warm boot with Ctrl-Left Amiga-Right Amiga and you
can re-boot from it using Kickstart 1.3 or above.

PAR:

This is the parallel port, usually only for output.

SER:

This is the serial port, which can be used for both input and output, normally to
printers and modems.

PRT:

This is the general printer device, which is configured by the user with the
Preferences program. Accessing the printer via this device means that
programs don't need to know which port is being used and what sort of printer
is connected.

NIL:

This is a dummy device, which throws away all input to it. It will generate
end-of-file when any attempt is made to read from it.

CON:

This is the console device, and creates a window for keyboard 1/0. The
window specification should follow the CON: in the name and be of the form

CON:x/y/width/height/title

Using the CLI HiSoft Devpac 3 Page 237

RAW:

This is, to quote the AmigaDOS User's Manual, "intended for the advanced
user". Do not use RAW: experimentally."

*

This is not actually a device, but can be used in the same place as filenames
and means the current CLI window.

NEWCON:

The 1.3 version of the operating system also includes a NEWCON: device
which gives all the functionality of CON: with the added features of a
command history buffer and more powerful line editing. Release 2.0 now
includes all of this in the standard CON: along with new keywords such as
CLOSE, AUTO and SCREEN. For example,

CON:O/25/640/150/Diagnostics/CLOSE/AUTO/WAIT/SCREEN
DEVPAC.1

AmigaDOS Commands

To help you use the CLI there now follows a brief description of the most
commonly-used commands, together with examples. It is not a complete
description and if further details are required the AmigaDOS User's Guide is
recommended for further reading.

[] s denote required parameters, < >s denote optional ones. Most commands
support redirection of output using > at the beginning of the command line, so
for example to dump a directory to a file you could use

dir >allf files.txt

Page 238 HiSoft Devpac 3 Using the CLI

ASSIGN <name> <directory>

This allows you to use special names for, particularly, directories and initially
the system sets up the following assignments (where boot is used to denote the
name of the boot disk):

Name Default Use

C: boot :c CLI looks here for all commands
entered

L: boot:l system handlers

S: boot:s startup sequence

LIBS: boot:libs libraries not in ROM

DEVS: boot:devs device drivers

FONTS: boot:fonts fonts not in ROM

SYS: boot: boot disk

As well as changing these you can add your own, so if you wanted an easy
way of getting to the graphic include files in the first external drive you could
enter the command

assign graf: df1:include/graphics

then access your files (regardless of the current directory) with commands like:

type graf:rastport.i

To show all current assignments (and devices) don't specify any parameters in
the command and to remove a definition don't specify a directory.

CD <directory>

This either changes the current directory to the supplied parameter, or if there
is no parameter, displays the current directory. Workbench 2.0 users can omit
the CD command and just name if desired.

Using the CLI HiSoft Devpac 3 Page 239

COPY [oldnamel <TO> [newname] <ALL> <QUIET>

This copies files individually, in groups or complete directories. The ALL
option copies directories, and the QUIET option disables the filename list
produced for each copy. Any existing files with the new name will be deleted
first without asking. It is best illustrated by examples:

copy examples/demo.s to ram:demo.s

copies an individual file.

copy examples to df1:genexamples all

copies the complete contents of the directory into the other directory which
will be created if it does not already exist.

copy include to dfl:include all

copies the include directory, as well as all those within it, on to the external
drive, creating the new directories if it needs to.

copy #?.info ram:

copies any files ending in .info onto the RAM-disk

DATE <date> <time>

This shows or sets the date and/or the time. The format for the date is
DD-MMM-YY, and that for the time is HH:MM. Either or both the time and
date can be set, but if no parameters are given the current date and time will be
displayed. Example:

date 25-jan-87 12:00

DELETE [name] <name> <name>. <ALL>

This can delete individual files, a list of them, or whole directories. For safety,
if you specify a directory name, it will only be deleted if it is empty - you must
give the ALL option to delete its contents first, e.g.

delete demo.s demo

delete examples all

Page 240 HiSoft Devpac 3 Using the CLI

DIR <name>

This shows the files in the current directory (if none specified) or the directory
specified.

DISKCOPY [drive] TO [drive] <NAME name>

This does a complete copy of one floppy disk to another. The destination does
not need to be formatted and any files on it previously will be destroyed. If the
same drive is specified in both parameters you will be prompted to swap disks
when necessary. It is strongly recommended that you write-protect the source
disk before running this program to ensure you cannot accidentally lose data.
By default the copy has the ' same name as the original, but the NAME option
can override this.

diskcopy df0: to dfl:

diskcopy df0: to df0: name "Backup"

ECHO <string>

This command prints a string on the screen and is mainly useful in startup
sequences or EXECUTE batch files. Example:

echo "Devpac Amiga Workbench disk"

ENDCLI

This terminates the current CLI. Be careful with this - if you execute it from
the last CLI without Workbench loaded, it will end and you will not be able to
do anything subsequently. It is intended for use in CLIs created with the
NEWCLI command.

Using the CLI HiSoft Devpac 3 Page 241

EXECUTE [name] <arguments>

If you have to do a very repetitive command sequence from the CLI it can be
easier to create a text file containing the commands, then EXECUTE the text
file and all the commands will be done for you. Parameters get substituted
(like macro parameters in GenAm), so if the text file dolt contained this

.key file /a
copy <file> to ram:copy ram :<file> to prt:
delete ram:<file>

then the command

execute doit demo.s

would copy the file demo.s to the RAM-disk, copy it from there to the printer,
then delete the RAM-disk copy when it had finished. The . key is used to
specify parameters, f ile in this case, the / a means it is always required.

FAULT [number]

This command displays the meaning of any given AmigaDOS error number.

FORMAT DRIVE [drivename] NAME [diskname]

This command initialises a floppy disk, destroying everything that was on
there previously. The drive name should be df0: or df1: as required and the
diskname is the name assigned to that disk. The full command must be typed
to save you from accidentally erasing a disk. Example:

format drive dfl: name "My backups" INFO

Shows the status of each drive and mounted disk, including the free space and
its name. The free space is shown in blocks, which are normally 512 bytes, so
half of the number gives how many Kbytes are free.

Page 242 HiSoft Devpac 3 Using the CLI

JOIN [fuel] l<file2 etc> AS [newfile]

This copies up to 15 files together into a new file e.g.

join partl part2 as allparts

LIST <name>

This shows the length and creation date of each file within a directory.

LOADWB

This command brings up the icon-driven Workbench interface in the screen
behind the CLI window. Workbench disks supplied with machines have this in
the startup file so it is done automatically.

MAKEDIR [directory]

This command creates new directories. No file or directory of the given name
should exist already.

NEWCLI <window>

This command creates additional CLIs which run as concurrent programs. You
can specify the window size of the new CLI if you want to in the manner of a
CON: device window.

RENAME [oldfile] <TO> [newfile]

This command changes the name of a given file on a disk. It can also be used
to move a file between directories (though not between disks). Examples:

rename demo.s to demo.bak

rename include/misc/start.i to example/startup.s

Using the CLI HiSoft Devpac 3 Page 243

RUN [command]

This allows commands or programs to run as concurrent tasks, i.e. run at the
same time. It does this by creating another CLI (without a window unless
redirection is specified) and passing the command on to it. When it finishes it
removes the CLI. If you wish to RUN a sequence of commands you should
follow the end of each line with a + sign e.g.

run copy demo.s to prt:

will copy a file to the printer in the background, while:

run copy demo.s to prt:+
echo "File printed"

will do as above, but additionally echo a message after the copy command
finishes.

STACK <size>

This command sets the size of stack allocated to each command or program
run from the CLI, or displays it if no size is specified. The default value is
4000 bytes which is normally enough for all the described CLI commands and
our programs, with the possible exception of d i r on heavily-nested directories.
It is also possible that other programs (such as a C compiler) will require
additional stack, and this should be documented in the manual for such
programs.

TYPE [name] <OPT N> <OPT H>

This command is normally used to show a text file on the screen, the output of
which can be paused by pressing the right mouse button. If you print a non-text
file it is possible that you may change character sets and all typing will then
appear to be gibberish. To correct this press:

[Return] [Ctrl]-0 [Return]

The N option will add line numbers to the display, and the H option will show
the hex format of the file as well as the ASCII, similar to dump programs on
other machines.

Page 244 HiSoft Devpac 3 Using the CLI

WHY

This command can be used after a CLI command has failed and will normally
tell you the reason for the failure.

Startup Sequence

When you boot from a Workbench disk the file s/startupsequence is read
and all commands contained within it executed. On Workbench disks supplied
with Amigas and the Devpac Amiga disk this is used to load the Workbench
program itself. If you want to edit this file you can use Devpac by entering

devpac s:startup-sequence

(using s : means it will find it no matter what the current directory is). You can
change this to your requirements, then save it out. The new sequence will then
be executed when you next boot.

Floating point processor HiSoft Devpac 3 Page 245

Appendix E
The Floating Point

Co-processor
This Appendix is designed to give a quick overview of the 68881/68882 maths
co-processor's registers and formats as the Motorola M68000 Family
Programmer's Reference Manual lacks this, although it does include full
details of the co-processor instructions.

The FPUs contain 8 data registers, named FP0 - FP7, each of which stores an
80 bit extended format number, and three control registers, the floating point
control register (FPCR), floating point status register (FPSR) and floating point
instruction address register (FPIAR).

Although the floating point data registers always store 80 bit extended
precision numbers, the chip can convert these to and from a number of
different formats as detailed below:

Extended precision

Extended precision format is stored in memory as 12 bytes. The bit layout is:

95 94-80 79-64 63-0

Sign Exponent zero Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The
mantissa has an implied binary point at bit 63 and thus ranges in value from
1.0 to <2:0.

The exponent is held in excess 16383 ($3FFF) format with values of 0 and
$7FFF being treated specially.

Page 246 HiSoft Devpac 3 Floating point processor

When the exponent is $7FFF, the value represents Not-A-Number (NaN), the
type of which is determined by the mantissa. Zero mantissas indicate infinity
(∞), whilst non-zero mantissas indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is
represented by all bits zero, whereas other values are denormalised numbers
with an exponent of -16383 ($3FFF).

Double precision

The double precision IEEE format represents a number in 8 bytes. The bit
layout is:

63 62-52 51-0

Sign Exponent Mantissa

The sign bit is 0 for positive numbers and 1 for negative numbers. The
mantissa has an implied binary point at bit 51 and thus ranges in value from
1.0 to <2.0.

The exponent is held in excess 1023 ($3FF) format with values of 0 and $7FF
being treated specially.

When the exponent is $7FF, the value represents Not-A-Number (NaN), the
type of which is determined by the mantissa. Zero mantissas indicate infinity
(∞), whilst non-zero mantissas indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is
represented by all bits zero, whereas other values are denormalised numbers
with an exponent of -1022 ($3FE).

Single Precision

The single precision IEEE format represents a number in 4 bytes. The bit
layout is:

31 30-23 22-0

Sign Exponent Mantissa

Floating point processor HiSoft Devpac 3 Page 247

The sign bit is 0 for positive numbers and 1 for negative numbers. The
mantissa has an implied binary point at bit 23 and thus ranges in value from
1.0 to <2.0.

The exponent is held in excess 127 format with values of 0 and $FF being
treated specially.

When the exponent is $FF, the value represents Not-A-Number (NaN), the
type of which is determined by the mantissa. Zero mantissas indicate infinity
(∞), whilst non-zero mantissas indicate other NaN conditions.

With an exponent of 0 there are two possibilities. The number zero is
represented by all bits zero, whereas other values are denormalised numbers
with an exponent of -126.

Packed Decimal

Packed decimal numbers are stored is stored in memory as 12 bytes. The bit
layout is:

Bit Meaning

95 Sign of mantissa.

94 Sign of exponent.

93-92 If %11 (i.e. both bits set) then a NAN or infinity (∞). Otherwise
0. See below.

91-80 3 least significant digits of exponent in decimal.

76-79 Most significant digit of exponent in decimal on a FMOV.P to
memory if a fourth digit is required; otherwise don't care.

75-68 Don't care.

67-64 Most significant digit of the mantissa.

63-0 Remainder of digits of the mantissa.

If bits 93 and 92 are both one then bits 91-80 (the exponent) will be $FFF. If
bits 63 to 0 are all zero then this represents infinity (bit 95 giving the sign)
otherwise the value is Not-A-Number (NaN).

We will now discuss the floating point control registers.

Page 248 HiSoft Devpac 3 Floating point processor

FPCR Floating point control register
Although this is a 32 bit register only the bottom two bytes are defined as yet.
The more significant byte is known as the FPCR Exception Enable Byte and
controls whether particular conditions will cause an exception (if the
corresponding bit is one) or whether the appropriate bit in the FPSR exception
status byte is set. See below. The bits are as follows:

Bit Name Meaning

8 INEX1 Inexact decimal input

9 1NEX2 Inexact operation

10 DZ Divide by zero

11 UNFL Underflow

12 OVFL Overflow

13 OPERR Operand error

14 SNAN Signalling Not-A-Number (NaN)

15 BSUN Branch/set on unordered

The least significant byte selects the rounding mode and rounding precision
and is known as the FPCR Mode Control Byte. It is laid out as follows:

Bits Name Meaning

3-0 Zero

54 ROUND Rounding direction. Towards:
00 nearest
01 zero
10 minus infinity
11 plus infinity

7-6 PREC Rounding precision:
00 Extended
01 Single
10 Double
11 Reserved

Floating point processor HiSoft Devpac 3 Page 249

FPSR Floating point status register

This is a 32 bit register, which is divided into four bytes:

31-25 24-17 16-8 7-0

condition
code

quotient exception
status

accrued
exception

The FPSR Condition Code Byte is updated after all the floating point
instructions whose destination is a single data register F P 0 - 7 other than
FMOVEM. The bits are as follows:

Bit Name Meaning

24 NAN Not a number

25 I Infinity

26 Z Zero

27 N Negative

31-28 Always 0

The quotient byte contains the sign of the quotient (bit 24) and 7 least
significant bits (bits 23-17) of the quotient after an FMOD or FREM instruction.
This is normally used as the first stage of performing approximations to
trigonometric functions by taking the remainder after a division by a fraction
of pi.

The FPSR Exception Status Byte (EXC) is updated after all the floating point
instructions whose destination is a single data register FP0-7 other than
FMOVEM. The bits are as follows:

Bit Name Meaning
8 INEX1 Inexact decimal input
9 INEX2 Inexact operation
10 DZ Divide by zero
11 UNFL Underflow
12 OVFL Overflow
13 OPERR Operand error
14 SNAN Signalling Not-A-Number (NAN)
15 BSUN Branch/set on unordered

Page 250 HiSoft Devpac 3 Floating point processor

In the FPSR Accrued Exception Byte (AEXC) the bits are 'sticky' i.e. only
cleared by an explicit move into the FPSR. is updated after all the floating
point instructions whose destination is a single data register FP0-7 other than
FMOVEM. In the table below, the Exception status bits column gives the
condition in the FPSR Exception Status byte that will cause the appropriate bit
to be set:

Bit Name Exception status bits Meaning
2-0 Always 0
3 INEX INEX1!INEX2!0VFL Inexact
4 DZ DZ Divide by zero
5 UNFL UNFL&INEX2 Underflow
6 OVFL OVFL Overflow
7 IOP BSUN!SNAN!OPERR Invalid operation

In the table above, ! means OR and & meaning AND. Thus bit 3 of the AEXC
will be set after an instruction if it was already set or if the INEX1, INEX2 or
OVFL bits in the EXC byte get set.

FPIAR Floating point instruction
address register

The floating point co-processor stores the current program counter in the
Floating point instruction address register when it starts to process an
instruction , so that exception handlers can determine the instruction that cause
the exception. The handler cannot just look at its own program counter as most
of the FP instructions are executed concurrently with the main processor and
so will refer to a later instruction.

New features HiSoft Devpac 3 Page 251

Appendix F
New Features

Summary of Version 3 Improvements

This section is intended as a quick guide to the main additional facilities that
Devpac Amiga 3 provides for users who are familiar with version 2.14 and
2.15 of Devpac Amiga. Users of earlier versions of Devpac Amiga 2 should
note that a considerable number of features were added during its life time.

We will give an overview of the new features here; for further details you
should consult the relevant sections of this manual.

The Editor

The Devpac editor has been greatly enhanced, with multi-file editing, full
mouse control, bookmarks, clipboard cut-and-paste, pop-up option menus,
extremely fast search and replace, different font sizes being some of the major
highlights.

All icons, requesters, gadgets have a Workbench Release 2.0 look and feel,
even under 1.3, and a separate Workbench 2.0 version is supplied which takes
advantage of the operating system's many new features.

Another new feature of the editor is the ability to open an unlimited number of
windows on the same project allowing you to view several sections of a single
source file simultaneously giving incredible flexibility.

A macro recording facility is available for teaching the editor any tedious or
complex sequence of actions which can then be replayed with a single
keystroke.

Page 252 HiSoft Devpac 3 New features

Full control of assembler options and resident tools is provided via requesters
making it extremely simple to configure and customise the operation of
GenAm. Assembler options can also be saved to disk for use from the
Command Line Interface.

The Assembler

The assembler now fully supports all the 68000 to 68040 and 68332 processors,
the 68881/2 maths co-processor and the 68851 MMU. It can also produce S-
records in addition to Arniga@ executable and linkable code. To complement
the production of S-records we supply an S-record splitter for use with
EPROMs that are not the same width as the processor's bus.

The assembler can now generate and process pre-assembled include files. This
increases the speed of assembly of programs that use the operating system
include files.

LINE and HCLN debug hunks can be generated so that debuggers (including
MonAm version 3) can track the source code that corresponds to a given
address and vice versa.

The range of options has been extended and options may now be specified by
name rather than using cryptic letters. Command line support has been
enhanced to allow the setting of labels and otherwise unavailable options.
Options - are also read from a default file and this can be created using the
editor.

The assembler now gives an indication of where in a line an error was detected.
The full range of relational operators are now supported.

Options have been added for listings on pass 1 and for tracing conditional
assembly. The use of privileged instructions can now be controlled using the
SUPER and USER options.

Further optimisation facilities are provided.

The CARGS and RADIX directives have been added.

\ # may now be used as a synonym for NARGS in macros and the macro.w
feature has been added for macros that must generate code on even boundaries.

Default module names are more descriptive.

New features HiSoft Devpac 3 Page 253

Compatibility Issues

Most source files should assemble with no changes although the new directive
names may clash with existing macro names. Also . b may not be used as a
local label.

If you are using shell scripts or make files you should note that the standalone
version of the assembler is now called GenAm. Because there are now many
options that can be used directly on the command line (without a - prefix) there
is a small chance that this may conflict with the name of one of your source
files. If this is the case insert the keyword FROM in front of the file name. The
options that can be used on the command line without a prefix are summarised
at the end of the Assembler Options section.

The Debugger

The front panel window display of MonAm can now be organised as you wish.
Windows can be split horizontally, vertically and * also stacked in order to
extend the number of available work areas. Each stacked window may be
locked to an arbitrary expression allowing interactive monitoring of complex
data structures.

Any number of source files may be loaded into each window along with any
associated line number debugging information such as that output by GenAm.
Multi-module programs can thus be single stepped line by line from your
original source file. Two powerful new operators are provided which convert a
program address into a source line number and locate any part of the program
from its position in the source.

The disassembler now recognises all 68000 family processor instructions,
including the 68040. maths coprocessor and MMU instructions. The register
display has also been updated to show new registers and floating point
registers present on the more powerful processors.

Page 254 HiSoft Devpac 3 New features

Integration

The integration of the package has been further enhanced so that the error
commands now work in multiple files and the assembler will read include files
from memory without the need to save these to disk. The full range of
assembly options is now available via requesters. You can also decide when
the assembler and debugger are loaded.

Linker

A much newer version of BLink is now supplied. This is a commercial version
of the public domain linker that was supplied with Devpac Amiga 2. The new
version is faster, has more options and supports the new base relative features
of the AmigaDOS file format.

New Include files

The Commodore assembly language include files for both version 1.3 and 2.04
of the operating system are supplied.

Features added to Devpac Amiga version 2

This section indicates some of features that were added to Devpac Amiga 2
before version 2,14 was released; if you are familiar with an early version of
this product you should find it useful.

The Assembler

A number of new optimisations and error checking options were added. The @
character is now allowed in symbols. Labels may be defined on the command
line and quoted file names may be used. Local labels ending with a $ are
supported. The extensions for base relative addressing that were originally
provide by Lattice C 5.0 are now available.

New features HiSoft Devpac 3 Page 255

The Debugger

68020/030 compatibility was added and all memory is checked to see that it
exists before it is displayed.

Labels that are embedded in data areas, and full MOVEM register lists are
shown when disassembling to disk. The search command is more flexible.

Page 256 HiSoft Devpac 3 New features

Converting code HiSoft Devpac 3 Page 257

Appendix G
Converting from other

Assemblers
Most 68000 assemblers for the Amiga® follow, to one degree or another, the
Motorola standard. While the instructions themselves are thankfully standard,
the syntax rules for labels, comments and directives can, and do, vary. This
Appendix covers the changes most likely to be made when converting
programs from another assembler, whether they are your old source files or a
program listed in a magazine. It does not attempt to detail the differences in
user interfaces or options between the different assemblers.

Amiga® Macro Assembler and MCC
Assembler

Almost all source code written for assembly under the AmigaDOS Macro
Assembler supplied by Commodore and the Metacomco (MCC) assembler
should assemble with little or no change under GenAm. The differences are:

With GenAm, importing constants using XREF and then accessing them as
constants (as opposed to relative addresses) may cause warning messages.
Many source programs use XREFs for _LVO labels. To remove these warnings
either:

• Change XREF to XREF.L.
• Use OPT W- to suppress all warnings
• Use OPT T - to suppress type-checking.
• Include the relevant _lib.i file and remove the XREF.

The include files supplied with the AmigaDOS Macro Assembler will
assemble unchanged by GenAm, but we recommend that you use our pre-
assemble feature to speed up your development time.

Page 258 HiSoft Devpac 3 Converting code

K-Seka

Colons are not required after labels in GenAm though instructions or directives
that start in the label field will need a tab added before them. Several Seka
directives default to Byte instead of Word sizes for some reason. Equivalent
directives names are:

D=DC; BLK=DS; IF=IFNE; ELSE=ELSEIF; ENDIF-ENDC.

Macro syntax requires ? s to be changed to \ s, except ?0 which should be
replaced with \@

Assempro

Most of the Assempro directives are supported by GenAm directly although
the macro parameters use % instead of \. Here are some equivalents that
Devpac does not support directly:

ALIGN.W=EVEN; ALIGN.L=CNOP 0,4; IBYTES=INCBIN; DEFB=DC.B;
DEFW=DC.W; DEFL=DC.L; DEFM=DC.B

ArgAsm

As ArgAsm was designed to be compatible with Devpac 2 most files should
assemble unchanged. Equivalents of the copper instructions that are directly
supported by ArgAsm care contained in the macro file that we supply as
misc/copper.i. This may be pre-assembled if you wish.

Technical support HiSoft Devpac 3 Page 259

Appendix H
Technical Support

HiSoft Devpac comes with 30 days free technical support, starting from the
date of registration; therefore you should send in your registration card quickly.
Technical support is available by telephone during our Technical Support Hour,
by letter or by fax.

Should you wish to receive extended technical support, please complete the
relevant sections on the registration card, indicating whether you would like to
take up the Silver or the Gold service.

In addition to your name, address and postcode (very important for UK
customers), we need payment details before we can accept your extended
registration. You can pay by credit card (Mastercard, Eurocard, Access, Visa
etc.), UK debit card (Switch, Connect etc.), Eurocheque, UK cheque or Postal
Order.

You may have already registered another HiSoft product under our Gold or
Silver service; in this case, there is no need to fill out the payment section.

Page 260 HiSoft Devpac 3 Technical support

Bibliography HiSoft Devpac 3 Page 261

Appendix I
Bibliography

This bibliography contains our suggestions for further reading on the subject of
the Amiga's operating system, 680x0 assembly language and programming in
general. The views expressed are our own and as with all reference books there
is no substitute for looking at the books in a good bookshop before making a
decision.

We can supply a number of the books listed, especially the AmigaDOS titles -
see the order form enclosed with the Devpac package for details on obtaining
these books.

Amiga

The AmigaDOS Manual, 3rd Edition
Bantam Books [1991]

ISBN 0-553-35403-5, Bantam Books, London.

Amiga User Interface Style Guide
Commodore-Amiga, Inc. [1991]

ISBN 0-201-57757-7, Addison-Wesley Publishing Company, Inc.

Amiga ROM Kernel Reference Manual: Includes &
Autodocs, 3rd Edition

Commodore-Amiga, Inc. [1991]

ISBN 0-201-56773-3, Addison-Wesley Publishing Company, Inc.

Ami a ROM Kernel Reference Manual: Libraries, 3rd
Edition

Commodore-Amiga, Inc. [1991]

ISBN 0-201-56774-1, Addison-Wesley Publishing Company, Inc.

Page 262 HiSoft Devpac 3 Bibliography

Amiga ROM Kernel Reference Manual: Devices, 3rd
Edition

Commodore-Amiga, Inc. [1991]

ISBN 0-201-56775-X, Addison-Wesley Publishing Company, Inc.

Amiga Hardware Reference Manual, 3rd Edition
Commodore-Amiga, Inc. [1991]

ISBN 0-201-56776-8, Addison-Wesley Publishing Company, Inc.

Interchange File Format Specification
Commodore-Amiga, Inc. [1988]

CATS, West Chester, PA 19380, USA..

680x0
68000 Assembly Language Programming 2nd Edition

Kane, G., D.Hawkins and L.Leventhal [1987]

ISBN 0-07-881232-1, Osborne/ McGraw-Hill, 2600 Tenth Street, Berkely, CA
94710,- USA.

68000, 68010, 68020 Primer
Kelly-Bootle, Stan and Bob Fowler [1985]

ISBN 067-22405-4, Howard W.Sams & Co., 4300 W.62nd Street, Indianapolis,
IN 46268, USA.

M68000 Family Programmer's Reference Manual
Motorola Inc. [1989]

Motorola Semiconductor Products Inc., PO Box 20912 Phoenix, AZ 85036,
USA.

Mastering The 68000 Microprocessor
Robinson, Phillip R. [1985]

ISBN 0-8306-1886-4, Tab Books Inc., Blue Ridge Summit, PA 17214, USA.

Bibliography HiSoft Devpac 3 Page 263

Microprocessor Systems: A 16-Bit Approach
Eccles, William J. [1985]

ISBN 0-201-11985-4, Addison-Wesley Publishing Company, Reading, MA,
USA.

Programming the 68000
Williams, Steve [1985]

ISBN 0-89588-133-0, SYBEX Inc., 2021 Challenger Drive #100, Alameda,
CA 94501, USA.

The MC68000 User's Manual 7th Edition
Motorola Inc. [1989]

ISBN 0-13-567074-8, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The MC68020 User's Manual 2nd Edition
Motorola Inc. [1985]

ISBN 0-13-566878-6, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

The MC68030 User's Manual
Motorola Inc. [1987]

Motorola Semiconductor Products Inc., PO Box 20912 Phoenix, AZ 85036,
USA.

The MC68881/MC68882 User's Manual
Motorola Inc. 11987]

ISBN 0-13-566936-7, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632, USA.

Page 264 HiSoft Devpac 3 Bibliography

Algorithms & Data Structures
Compilers: Principles, Techniques and Tools

Aho, Alfred V, Ravi Sethi and Jeffrey Q. Ullman [1986]

ISBN 0-201-10194-7, Addison-Wesley Publishing Company, Reading, MA,
USA.

Algorithms
Sedgewick, Robert [1988]

ISBN 0-201-06673-4, Addison-Wesley Publishing Company, Reading, MA,
USA.

Data Structures and Algorithms
Aho, Alfred V, John E. Hopcroft and Jeffrey D. Ullman [1983]

ISBN 0-201-00023-7, Addison-Wesley Publishing Company, Reading, MA,
USA.

Fundamental Algorithms
Knuth, Donald E. [1973]

ISBN 0-201-03809-9, Addison-Wesley Publishing Company, Reading, MA,
USA.

Seminumerical Algorithms
Knuth, Donald E. [1981]

ISBN 0-201-03822-9, Addison-Wesley Publishing Company, Reading, MA,
USA.

Sorting and Searching
Knuth, Donald E. [1973]

ISBN 0-201-03803-X, Addison-Wesley Publishing Company, Reading, MA,
USA.

Index HiSoft Devpac 3 Page i

Index
= directive 113
__G2, reserved symbol 109
__LK, reserved symbol 109
__MERGED, linker 189
__RESBASE, __RESLEN, linker
195
__RS, reserved symbol 115
■ A
absolute expressions 80, 83
ADDQ/SUBQ, optimising 100
address ADD/SUB, optimising 100
address shortening, optimising 100
addressing modes 83
alignment, EVEN directive 91, 106
ALV, warnings, linker 192
Amiga macro assembler 257
ArgAsm 258
assembler
 addressing modes 83
 character constants 81, 82
 command line 72
 command-line
 case-insensitive labels, --C 72
 defaults 73
 defining symbols, -E 74
 extended debugging, -X 73
 Include directory, -I 73
 linkable code, -L 73
 list symbol table, -S 73
 listing file, -P 73
 listing tab size, -T 73
 options file, WITH 72
 other options, -V 73
 output file, -O 73
 output file, TO 72
 pass 1 listing, -z 73
 pause after assembly, -Q 73
 pre-assembled files, -I 72
 S-record output, -L6 73
 Setting labels, -E 72

 slow mode, -M 73
 source file name 72
 standard debug, -D 72

 suppress binary output, --B 72

 comment 79
 conditional assembly 119
 conditionals
 end, ENDC 122

 if defined, IFD 121

 if equal, IFEQ 120

 if equivalent, IFC 121

 if greater than or equal, IFGE 120

 if greater than, IFGT 120

 if less than or equal, IFLE 120

 if less than, IFLT 120

 if not defined, IFND 121

 if not equivalent, IFNC 121

 one line if, IIF 120

 toggle, ELSEIF & ELSE 122

 trace option 98

 data type 81
 DEBUG option 72
 dialog box 65
 directives 93

=, equate label 113

CARGS, define parameter offsets 116

CNOP, conditional alignment 106

conditional assembly 119

DC, define constants 106

DCB, define constant block 107

DS, define space 107

ELSE, toggle conditional assembly 122

ELSEIF, toggle conditional assembly

122

END, end assembly 93

ENDC, end conditional assembly 122

ENDM, end macro definition 122

ENDR, end repeat loop 110

Page ii HiSoft Devpac 3 Index

EQU, equate label 113

EQUR, equate register 113

EVEN, alignment 106

FAIL, user error 107

FEQU, equate float constant 117

FOPT, float options 118

FORMAT, control listing 112

IFC, if equivalent 121

IFD, if defined 121

IFEQ, if equal 120

IFGE, if greater than or equal 120

IFGT, if greater than 120

IFLE, if less than or equal 120

IFLT, if less than 120

IFNC, if not equivalent 121

IFND, if not defined 121

IFNE, if not equal 120

IIF, one line if 120

INCBIN, include binary 95

INCDIR, include directory 95

INCLUDE, include source 93

LIST, enable listing 110

LISTCHAR, output control sequence 112

LLEN, set line width 111

MACRO, define macro 122

MEXIT, exit macro invocation 122

NOLIST, disable listing 111

OFFSET, start offset section 115

OPT, set option 95

ORG

S-records 136

output 131

OUTPUT, output filename 108

PAGE, page throw 112

PLEN, set page length 111

RADIX, default number base 108

REG, register list 114

REPT, repeat loop 110

RS, reserve space 114

RSRESET, reset RS counter 115

SECTION

S-records 136

SET, temporary equate 113

SPC, output space 112

SUBTTL., set sub-title 112

summary 136

TTL, set title 112

executable code 66
executable files 130

 expressions 80
absolute 80, 83

relative 80, 83

file types 75
floating point 82
include directories 68
instruction set 91

extensions 91
branches 92
condition codes 91
DBRA 92
MOVE CCR 92

invoking 65
label 78
labels

equate register, EQUR 113
equate, EQU, = 113
float equate, FEQU 117
parameter offsets, CARGS 116
register list, REG 114
reserve space, RS 114
reset RS counter, RSRESET 115
start offset section, OFFSET 115
temporary equate, SET 113

linkable code 66
linkable files 130
listing 67

control 112

disable 111

enable 110

line width 111

output control sequence 112

output space 112

page length 111

page throw 112

sub-title 112

tab size 67, 73

Index HiSoft Devpac 3 Page iii

title 112

local labels 78, 89
macros 122

define macro, MACRO 122

end macro definition, ENDM 122

exit macro invocation, MEXIT 122

expansion in listing 124

labels, unique 123

parameters 123

size 123

memory requirements 66
mnemonic 79
multiple includes 66
numbers 81
opcode 79
operand 79
operators 81
options 65

automatic PC mode 102

base displacements 69, 96

branch control 97

case-sensitivity

CASE 97

command line 72

check evenness 101

check immediate 69, 101

co-processor96

debugging information 67,98

command line 72

defaults 103

define variables 67

dependent casing 69

disable type checking 102

export debug 98

fast 66

file name 68

generate symbol table file 71

include directories 68

include suppression 102

independent casing 69

insensitive casing 69

line debug 98

listing 67

listing control 97

local labels 89

local symbol lead in character 103

macro expansions 97

main file 67

maths co-processor 69

MMU 69

multiple include suppression 102

multiple includes 66

OPT directive 95

optimisations 70, 99

ADDQ/SUBQ 100

address ADD/SUB 100

address shortening 100

backward branches 99

base displacements 100

branch-to-next 100

disable all 100

enable all 100

forward branches 100

LEA to. ADD/SUB 100

MOVEQ 100

outer displacements 100

register indirect 99

short-word addressing 100

outer displacements 69, 96

pass one listing 66, 98

position independent checks 69, 101

processor selection, P 96

program type 66

sensitive casing 69

significance 97

slow 66

source checking 101

summary 103

supervisor instructions 103

suppress warnings 102

symbol case 69

symbol table 98

symbol table list 66

trace conditionals 66, 98

type checking 102

use symbol table file 68

Page iv HiSoft Devpac 3 Index

variables 67

warning suppression 102

 output 131
 S-records 135

output filenames 76
output formats 130
pausing 74
periods 90
position-independent code 77
processor selection, MACHINE 108
relocatable code 77
return codes 75
S-records 66, 73, 75, 130, 135
settings 51
stand-alone see assembler,

 command line

symbol table files 68, 71
syntax 78
to memory 71
type combinations 83
using from the editor 55
warnings 220
word alignment 91

assembler version, __G2 109
assembler, error messages 213
Assempro 258
assigns
 BLINKWITH variable 194
automatic PC mode, option 102
AUTOPC option 102
■ B
backspace key 35
backups

editor 44
in the editor 48
master disk 14

backward branches, optimising 99
base displacements 69
optimising 100
option 96
batch mode, linker 192
BDL option 96
BDW option 96

Bibliography 261
binary numbers 81,108
Blink The Linker 187
BLINKWITH assign variable 194
block
 delete 35

goto start/end 37
marking 36

blocks 36
bookmarks, editor 34
bookmarks, goto, editor 42
books, technical 17, 261
BRA.L 97
branch control, option 97
branch size 69
branch-to-next, optimising 100
branches, extension 92
BRB option 97
breakpoint, debugger (see
debugger, breakpoint)
BRL option 97
BRS option 97
BRW option 97
buffer size, linker 192
■ C
CARGS directive 116
case dependency, editor 40
CASE option 97
case-sensitivity, option 97
character constants 81, 82, 108
check evenness, option 69, 101
check immediate, option 69, 101
CLI, using it 233
clipboard, editor 37
CNOP directive 106
co-processor, option 96
command file, linker 193
command line
 assembler 72
 S-record splitter 205
commands, editor 19
comment field 79
compatibility

Index HiSoft Devpac 3 Page v

 with other assemblers 257
 with Devpac 2 253
condition codes, extension 91
conditional alignment, CNOP 106
conditional assembly see assembler
conditionals, trace option 98
control listing, FORMAT 112
control options, OPT 95
copy block, editor 37, 38
copy memory, debugger 177
cross referencing, linker 191
cursor keys

debugger 158
in the editor 31
with keyboard modifiers 31

cursor, use in the editor 31
cut block, editor 37
■ D
data types, assembler 81
DBRA, extension 92
DC directive 106
DCB directive 107
DEBUG

command line option 72
suppression with linker 189

debugger
abort 170
address, set 159
breakpoint 166

conditional 167

count 166

kill 168

permanent 166

remove 168

set 164, 167, 168

show 168

simple 166

stop 166

command summary 179
copy memory 177
current drive 179
cursor keys 158
disassemble 178

disassembly window 156
edit 160
exceptions

description 140
executing programs 172
expressions 151
fill memory 178
find 173
hints 182
history 169
labels 153

list 177

load binary 171
load program 171
load source 172
lock window 160
memory window 158
MonAm 139
print window 161
register

 set 165

 window 155

registers 153
running program 173

 go 173

running programs 172
save binary 171
screen switching 165
search memory 173
settings 175
single step 172
skip 173
split window 161
symbols 153
terminate 170
trace 173
user screen 165
windows 154

commands 159

disassembly 156

edit 160

lock 160

memory 158

Page vi HiSoft Devpac 3 Index

print register 155

source code 158

split 161

type 161

zoom 162

 zoom window 162
debugging information 67,98
decimal numbers 81
define constant block, DCB 107
define constants, DC 106
define macro, MACRO 122
define space, DS 107
MACRO, define macro 122
defined conditional, IFD 121
defining symbols, command line 74
defining symbols, linker 192
delete block, editor 38
deleting files, editor 45
deletion of text, editor 34
dependent casing, symbol 69
directives

=, equate label 113
assembler 93
CARGS, define parameter offsets
116
CNOP, conditional alignment 106
DC, define constants 106
DCB, define constant block 107
DS, define space 107
ELSE, toggle conditional assembly
122
ELSEIF, toggle conditional

 assembly 122

END, end assembly 93
ENDC, end conditional assembly
122
ENDM, end macro definition 122
ENDR, end repeat loop 110
EQU, equate label 113
EQUR, equate register 113
EVEN, alignment 106
FAIL, user error 107
FEQU, float equate 117

FOPT, float options 118
FORMAT, control listing 112
IFC, if equivalent 121
IFD, if defined 121
IFEQ, if equal 120
IFGE, if greater than or equal 120
IFGT, greater than 120 161
IFLE, f less than or equal 120
IFLT, if less than 1.20
IFNC, if not equivalent 121
IFND, if not defined 1.21
IFNE, if not equal 120
IIF•, one line if 120
INCBIN, include binary 95
INCDIR, include directory 95
INCLUDE, include source 93
LIST, enable listing 110
LISTCHAR, output control sequence
112
LLEN, set line width 11.1
MACHINE selection 108
MEXIT, exit macro invocation 122
NOLIST, disable listing 111
OFFSET, start offset section 115
OPT, control options 95
ORG

 s-records 136

OUTPUT, output filename 108
PAGE, page throw 112
PLEN, set page length 111
RADIX, default number base 108
REG, register list 114
REPT, repeat loop 110
RS, reserve space 114
RSRESET, reset RS counter 115
SECTION

 S-records 136

SET, temporary equate 113
SPC, output space 112
SUBTTL, set sub-title 112
summary 136
TTL, set title 112

disable all, optimising 100

Index HiSoft Devpac 3 Page vii

disable listing, NOLIST 111
disable type checking, option 102
disk contents 11
disks
 backup 14
double precision 246
DS directive 107
■ E
editor 17

automatic indent 48
backups 44, 48
block commands 36

clipboard 37

copy block 37,38

cut block 37

delete block 38

marking a block 36

paste block 37, 38

print block 39

save block 39

bookmarks 34
centre window 54
clipboard 37
commands 19
cursor keys 31
default settings 19
delete commands 36
delete file 45
deleting text 34
file requester 23
find see search
icons 19
inserting text 44
keyboard shortcut summary 60
keyboard shortcuts 20
load text 42
loading settings 51
macros 45
making backups 44
marks 34
menus 26
numeric pad 48
printing 53

project 28
replace all 41
replacing 39
requesters and gadgets 20
resident tools 56
save text 43

 search
case dependency 40

control characters 41

next 41

special characters 41

tab 41

searching 39
settings 19, 46

 saving 50

starting up 19
sub-menus 26
tab size 47
the window 27
undo line 31
using fonts 54
using the assembler 55
using the cursor 31
using workbench icons 43
window layout 30
windows, switching 29
workbench icons 49

ELSE directive 122
ELSEIF directive 122
enable all, optimising 100
enable listing, LIST 110
end conditional assembly, ENDC
122
END directive 93
end macro definition, ENDM 122
end repeat loop, ENDR 110
ENDC directive 122
ENDM directive 122
ENDR directive 110
EPROMs 205
EQU directive 113
equal conditional, IFEQ 120
equate float label, FEQU 117

Page viii HiSoft Devpac 3 Index

equate label, EQU,:= 113
equate register, EQUR 113
equivalent conditional, IFC 121
EQUR directive 113
error messages, AmigaDOS 209
error messages, assembler 213
EVEN directive 106
executable code 66
executable files 130
executing programs, debugger 172
exit macro invocation, MEXIT 122
exponent 245, 246, 247
export debug, option 98
expressions

assembler 80
imports 134
inter-section references 134

expressions, debugger 151
extensions

branches 92
condition codes 91
DBRA 92
MOVE CCR 92

■ F
FAIL directive 107
fast assembly 66
FD2LVO 206
FEQU directive 117
file name field width, linker 191
file requester 23
find next, editor 41
find, debugger 173
find, editor see editor, searching
float equate, FEQU 117
float options, FEQU 118
floating point 82

double precision format 246
extended precision format 245
options, FEQU 118
packed decimal format 247
single-precision format 246

floating point co-processor 245
floating point control register 248

floating point instruction address
register register 250
floating point status register 249
fonts 54
FOPT directive 118
FORMAT directive 112
forward branches, optimising 100
from files, linker 189
■ G
gadgets

depth 29
in the editor 20

GenAm, Stand-alone assembler 71
GenAm.opts 72
GENSYM files

generating 71
using 68

GENSYM option 94
goto bookmark, editor 42
goto line, editor 41
greater than conditional, IFGT 120
greater than or equal conditional,
IFGE 120
■ H
HCLN debug, option 99
headers, pre-assembled files 94
hexadecimal numbers 81, 108
hints
 debugger 182
history
 debugger 169
hunk field width, linker 191
■ I
icons 49
 in the editor 43
IFC directive 121
IFD directive 121
IFEQ directive 120
IFGE directive 120
IFGT directive 120
IFLE directive 120
IFLT directive 120

Index HiSoft Devpac 3 Page ix

IFNC directive 121
IFND directive 121
IFNE directive 120
ignore errors, linker 192
IIF directive 120
imports in expressions 134
INCBIN directive 95
INCDIR directive 95
include binary, INCBIN 95
INCLUDE directive 93
include directory

command-line option 73
INCDIR directive 95

include files
multiple 66
search path 68

include source, INCLUDE 93
include suppression, option 102
INCONCE option 102
independent casing, symbol 69
infinity 246, 247
insensitive casing, symbol 69
inserting text, editor 44
instruction set 91
inter-section references in
 expressions 134

■ K
K-Seka 258
keyboard shortcuts
 editor 20, 60
keys

backspace 35
de1 35

keywords, linker 189, 190
■ L
labels, debugger 153
labels, macro 123
labels, valid 78
LEA to ADD/SUB, optimising 100
less than conditional, IFLT 120
less than or equal conditional,
 IFLE 120

libraries 223
libraries, linker 189
line

delete 35
undelete 35

LINE debug, option 98
line length, linker 192
line, goto editor 41
linkable code 130

assemble from editor 66
command-line option 73

Linker 187
__LinkerDB 195
__MERGED 189
__RESBASE, __RESLEN 195
ALV warnings 192
batch mode 192
Blink 187
buffer size 192
columns, number of 191
command file 193
cross referencing 191
debug suppression 189
defining symbols 192
Errors 197
file name field width 191
from files 189
hunk field width 191
ignore errors 192
keywords

ADDSYM 189

BATCH 192

BUFSIZE 192

CHIP 189

DEFINE 192

FANCY 191

FAST 189

HEIGHT 191

HWIDTH 191

IGNORE 192

INDENT 192

LIB 189

LIBRARY 189 -

Page x HiSoft Devpac 3 Index

MAP 191

MAXHUNK 189

ND 189

NOAVLS 192

NODEBUG 189

PLAIN 192

PRELINK 190

PWIDTH 192

QUIET 193

SMALLCODE 190

SMALLDATA 190

SWIDTH 192

TO 190

VER 193

VERBOSE 193

VERIFY 193

WIDTH 192

WITH 193

XREF 191

keywords.FWIDTH 191
libraries 189
line length 192
listing indent 192
log file name 193
map file 191
number of columns 191
output filename 190
pre-linking 190
program width 192
quiet mode 193
symbol width 192
symbols 189
verbose mode 193
width, file name field 191
with file 193

LIST directive 110
LIST1 option 98
LISTCHAR directive 112
listing

filename 67
indent, linker 192
macros 124
options in assembler 97

symbol table 66
tab size 73

LLEN directive 111
load binary, debugger 171
load program, debugger 171
load source, debugger 172
local labels, assembler 78, 89
local symbol lead in character,
 option 103
LOCALDOT option 103
LOCALU option 103
log file name, linker 193
■ M
MACHINE directive 108
macro arguments, number of,
 NARG 123
macro definition, MACRO 122
MACRO directive 122
macro expansions, option 97, 124
macros 45, see assembler, macros
mantissa 245, 246, 247
manual, how to use 1
map file, linker 191
mark block, editor 36
marks, editor 34
master disk, backup 14
maths co-processor 69, 245
memory requirements 4,66
menus, in the editor 26
MetaComCo macro assembler 257
MEX option 97
MEXIT directive 122
MMU 69
mnemonic field 79
MonAm (see debugger) 139
MOVE CCR, extension 92
MOVEQ, optimising 100
multiple include suppression,
 option 102

■ N
NaN see Not-A-Number
NARG, reserved symbol 123

Index HiSoft Devpac 3 Page xi

new features 251
NOCASE

command line option 72
option 97

NOLIST directive 111
NOLIST1 option 98
NOMEX option 97
NOSYMTAB option 98
not defined conditional, IFND 121
not equal conditional, IFNE 120
not equivalent conditional, IFNC
121
Not-A-Number 246, 247
NOTRACEIF option 98
number base, default RADIX 108
number of columns, linker 191
numbers, assembler 81
■ O
octal numbers 81,108
ODL option 96
ODW option 96
OFFSET directive 115
OLD option 97
one line if, IIF 120
opcode field 79
operand field 79
operators
 debugger 151
operators, assembler 81
OPT directive 95
optimising option 70, 99

ADDQ/SUBQ 100
address ADD/SUB 100
address shortening 100
backward branches 99
base displacements 100
branch-to-next 100
disable all 100
enable all 100
forward branches 100
LEA to ADD/SUB 100
MOVEQ 100
Outer displacements 100

register indirect 99
short-word addressing 100

options
automatic PC mode 102
base displacements 96
branch control 97
case-sensitivity 97
check evenness 69, 101
check immediate 69, 101
co-processor 96
debugging information 98
defaults 103
dialog box 65
disable type checking 102
export debug 98
include suppression 102
line debug 98
listing control 97
local symbol lead in character 103
macro expansions 97
multiple include suppression 102
OPT directive 95
optimisations 70, 99

ADDQ/SUBQ 100
address ADD/SUB 100

address shortening 100

backward branches 99

base displacements 100

branch-to-next 100

disable all 100

enable all 100

forward branches 100

LEA to ADD/SUB 100

MOVEQ 100

outer displacements 100
register indirect 99
short word addressing 100
outer displacements 96
pass one listing 98
position independent checks 69, 101
processor 96
significance 97
source checking 101

Page xii HiSoft Devpac 3 Index

summary 103
supervisor instructions 103
suppress warnings 102
symbol table 98
trace conditionals 98
type checking 102
warnings suppression 102

ORG directive
 S-record format 136
outer displacements 69

optimising 100
option 96

output control sequence,
 LISTCHAR 112
OUTPUT directive 108
output directives 131
output filename 68
 linker 190
OUTPUT 108
output format, __LK 109
output formats 130
output space, SPC 112
■ P
P= option 96
packed decimal format 247
PAGE directive 112
page throw, PAGE 112
parameters, macro 123
pass one listing

command line option 73
from editor 66
option 98

paste block, editor 37, 38
pausing, assembler 74
periods, assembler 90
PLEN directive 111
position independent checks,
 option 69,101
position-independent code 77
pre-assembled files 94

command-line option 72
generating 71
using 68

pre-linking, linker 190
precedence, assembler operators 81
print block, editor 39
printing
 from the editor 53
processor type 68
processor, option 96
program type 66
program width, linker 192
project 28
 read only 54
pseudo-mnemonics 93
■ Q
quiet mode
 linker 193

■ R
RADIX directive 108
README File 15
REG directive 114
register indirect, optimising 99
register list, REG 114
registers, debugger 153
registration card 15
relative expressions 80, 83
relocatable code 77
relocation information 77
repeat loop, REPT 110
replace all, editor 41
replacing, editor 39
REPT directive 110
requesters

confirmation 25
file 23
in the editor 20

reserve space, RS 114
reserved symbols

__G2, assembler version 109
__LK, _RS, __G2 79
__LK, output format 109
__RS, RS counter 115
linker 195
NARG, number of macro arguments

Index HiSoft Devpac 3 Page xiii

123
reset RS counter, RSRESET 115
return codes, assembler 75
RS counter, RS 115
RS directive 114
RSRESET directive 115
Running program
 debugger 173
Running programs, debugger 172

■ S
S-record format 130, 135

assemble from editor 66
assembler 135
command-line option 73
definition 135
ORG directive 136
SECTION directive 136

save binary, debugger 171
save block, editor 39
saving text, editor 44
screen switching, debugger 165
search 39

case dependency 40
next 41
replace all 41
replacing 39

search, debugger 173
section (See hunk)
SECTION directive
 S-record format 136
sensitive casing, symbol 69
SET directive 113
set line width, LLEN 111
set page length, PLEN 111
set sub-title, SUBTTL 112
set title, TTL 112
settings

assembler 51
debugger (see debugger, preferences)
editor 46

short-word addressing, optimising
100

significance, option 97
single precision 246
single step, debugger 172
skip, debugger 173
slow assembly 66
source checking, options 101
source code, debugger 158
SPC directive 112
stand-alone assembler 71
SUBTTL directive 112
SUPER option 103
supervisor instructions, option 103
symbol case 69
symbol table

assembler option 98
list 66

symbol width, linker 192
symbols

debugger 153
defining to linker 192
linker 189

SYMTAB option 98
syntax, assembler 78
■ T
tab key 33
tab size 47
tab size,assembler listing 67
technical support 259
temporary equate, SET 113
terminate, debugger 170
text

insert, editor 44
load, editor 42
save, editor 43

toggle conditional assembly,
 ELSEIF & ELSE 122
trace conditionals, option 66, 98
trace, debugger 173
TRACEIF option 98
TTL directive 112
tutorial, quick 6
type checking, option 102
type combinations, assembler 83

Page xiv HiSoft Devpac 3 Index

TYPE option 102
typography 4
■ U
user error, FAIL 107
USER option 103
■ V
variables, defining from editor 67
verbose mode, linker 193

■ W
WARN option 102
warnings, assembler 220
width, file name field in linker 191
windows

debugger (see debugger, windows)
editor, centre 54
layout 30
switching editor windows 29
the editor 27

with file, linker 193
word alignment 91
■ Z
zoom window, debugger 162

	COVER
	TITLE PAGE

	TABLE OF CONTENTS

	PREFACE
	Introduction

	How to use the manual

	A course for the beginner

	A course for seasoned assembler programmers

	Devpac version 2 users

	System requirements

	Typography

	Typefaces

	Acknowledgements

	A quick tutorial

	CHAPTER 1 HiSoft Devpac 3 Introduction
	Devpac 3 disk contents

	Program disk

	The Devpac drawer

	Include disk

	Always make a back-up

	Installation

	The README file

	CHAPTER 2 HiSoft Devpac 3 Using the Editor
	Introduction

	The editor

	Starting the editor

	Requesters and gadgets

	Menus and sub-menus

	The editor's windows

	Entering text and moving the cursor

	Bookmarks

	Deleting text

	Block commands

	Searching

	Disk operations

	Settings

	Assembler settings

	Miscellaneous commands

	Assembler programs

	Program menu

	Error commands

	Keyboard command summary

	CHAPTER 3 The Assembler

	Introduction

	Invoking the assembler

	From the editor

	Assembly to memory

	Stand-alone assembler

	Assembly process

	Return codes

	Binary file types

	Types of code

	Assembler statement format

	Label field

	Mnemonic field

	Operand field

	Comment field

	Expressions

	Local labels

	Instruction set

	Word alignment

	Assembler directives

	Assembly control

	Assembler directives

	Repeat loops

	Listing control

	Label directives

	Floating point directives

	Conditional assembly

	Macro operations

	Output file formats

	Choosing the right file format

	Output file directives

	Imports & exports

	Motorola S-records (SREC L6)

	Directive summary

	CHAPTER 4 The Debugger

	Introduction

	MonAm concepts

	Exceptions

	Front panel display

	MonAm and multi-tasking

	Symbolic debugging

	MonAm requesters

	Command input

	MonAm overview

	MonAm reference

	Numeric expressions

	Window commands

	Screen switching

	Breakpoints

	History

	Quitting MonAm

	Loading & saving

	Executing programs

	Searching memory

	Miscellaneous

	Command summary

	Debugging stratagem

	Restrictions

	Bug hunting

	Exception analysis

	CHAPTER 5 Blink The Linker

	A simple Blink command

	Concepts

	ALVs

	Near data/bss

	Directives

	Input directives

	Output directives

	Options

	'WITH' files

	BLINKWITH: the Blink assign

	Special HUNK names

	Reserved symbols

	Blink messages

	Blink warnings/messages

	Blink errors

	CHAPTER 6 Other Tools
	S-record splitter

	Command line examples

	Operating system utility - FD2LVO

	FD2LVO details

	APPENDIX A AmigaDOS Error Codes
	APPENDIX B GenAm Error Messages
	Errors

	Warnings

	APPENDIX C Calling the Operating System
	Introduction

	Libraries

	Diskfont Llibrary

	DOS library

	Exec library

	Graphics library

	Icon library

	Intuition library

	Maths library

	Release 2.0 libraries

	Example programs

	CLI vs Workbench

	CLI startup

	Workbench startup

	Other 68000 series processors

	APPENDIX D Using the CLI

	Introduction

	Files, volumes and directories

	AmigaDOS wildcards

	Device names

	AmigaDOS commands

	Startup sequence

	APPENDIX E The Floating Point Co-processor
	Extended precision

	Double precision

	Single precision

	Packed decimal

	FPCR floating point control register

	FPSR floating point status register

	FPIAR floating point instruction register

	APPENDIX F New Features

	Summary of version 3 improvements

	The editor

	The assembler

	The debugger

	Integration

	The linker

	New include files

	Features added to Devpac Amiga version 2

	APPENDIX G Converting from other Assemblers

	Amiga Macro assembler and MCC assembler

	K-seka

	Assempro

	ArgAsm

	APPENDIX H Technical Support
	APPENDIX I Bibliography
	INDEX

