
QL Today’s
QL Assembly Language Programming Series

Book One

Norman Dunbar



Copyright c©2014-2015 Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

http://qdosmsq.dunbar-it.co.uk/downloads/QLToday/QL_Assembly.pdf

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

First printing, December 2014
Second printing, June 2015

This pdf document was created on D:20150717162214+01’00’.

http://qdosmsq.dunbar-it.co.uk/downloads/QLToday/QL_Assembly.pdf
http://creativecommons.org/licenses/by-nc/3.0


Contents

I Introduction to Assembly Language

1 QL Assembly Language Programming . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.1 Introduction 31

1.2 The 6800x Processor 31

1.2.1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.2 Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.3 Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.4 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.2.5 The Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3 Addressing Modes 33

1.3.1 Register Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.2 Absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.3 Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.4 Address Register Indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.5 Register Indirect With Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.6 Register Indirect With Displacement And Index . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.7 Register Indirect With Pre Decrement Or Post Increment . . . . . . . . . . . . . . . . . 36



1.3.8 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 Coming Up... 37

2 The 6800x Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Introduction 39

2.2 The MOVE Instruction Family 39

2.2.1 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.2 Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 The CMP Instruction Family 45

2.4 Signed and Unsigned Numbers 46

2.5 Testing Condition Codes and Branching 48

2.6 Coming Up... 50

3 The 6800x Instruction Set - continued . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1 Introduction 51

3.2 More Branches. 51

3.3 Counting 56

3.3.1 Adding and Subtracting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Division and Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Coming Up... 60

4 The 6800x Instruction Set - continued . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Introduction 61

4.2 Tie the NOT 61

4.3 This OR That 62

4.4 This AND That 64

4.5 Exclusive OR Instructions 66

4.6 Shifting And Rotating 68

4.7 Coming Up... 69



5 The 6800x Instruction Set - continued . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Introduction. 71

5.1.1 A Few Quickies! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.2 A Few Little Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1.3 Testing, Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1.4 And Finally? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.5 So Here We Are! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Coming Up... 81

II SuperBasic, QDOS and Other Interesting Stuff. Part 1

6 6800x Exceptions And Exception Handling . . . . . . . . . . . . . . . . . . . . . 85

6.1 Introduction 85

6.2 Exceptions 85

6.3 Working QDOS Exceptions 88

6.4 What Happens When an Exception Occurs? 89

6.5 Building an Exception Handler. 90

6.6 The Exception Handler Code. 90

6.7 How it Works. 93

6.8 Coming Up... 95

7 Extending SuperBasic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Introduction 97

7.2 Linking To SuperBasic 97

7.3 Procedures 99

7.4 Functions 104

7.5 Getting Parameters 106

7.5.1 Keeping Things Even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.5.2 Two Of These And One Of Those Please . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Name Table Entries 112

7.7 Name List 114



7.8 The Maths Stack 118

7.8.1 A1 Is Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.8.2 A1 Is Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.8.3 A1 Is Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.9 Returning Values From Functions 120

7.10 Channel Tables 120

7.11 Exercise 121

7.12 Coming Up... 122

8 The QL Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.1 Introduction 123

8.2 The Screen 123

8.3 Mode 4 - screen memory usage 125

8.4 Mode 8 - screen memory usage 126

8.5 That calculation again! 128

8.6 Problems 133

8.7 Exercise 134

8.8 Answer 135

8.9 Coming Up... 136

III A Small Diversion into Subroutines.

9 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.1 Introduction 139

9.2 Subroutines 139

9.3 Building A Library 141

9.4 Documentation 141

9.5 The Subroutine Library 143

9.6 STR_COPY 143

9.7 STR_APPEND 143

9.8 STR_REVERSE 144



9.9 STR_INSERT 145

9.10 STR_COMP 145

9.11 STR_COMPI 146

9.12 FILE_CLOSE 146

9.13 FILE_OPEN 147

9.14 FILE_OPENIN 147

9.15 FILE_OPENNEW 148

9.16 FILE_OPENOVER 148

9.17 FILE_OPENDIR 149

9.18 FILE_GET_HEAD 149

9.19 FILE_SET_HEAD 150

9.20 PRINT 150

9.21 LINE_FEED 151

9.22 INPUT 151

9.23 JOB_HEADER 152

9.24 MEM_ALLOC 152

9.25 MEM_DEALLOC 153

9.26 SCR_MODE 153

9.27 CLS 154

9.28 SCR_PAPER 154

9.29 SCR_PAPER_SB 155

9.30 SCR_INK 155

9.31 SCR_STRIP 156

9.32 COLOURS 156

9.33 The Librarian 157

9.33.1 So how does this lot work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.34 Coming Up... 160



IV SuperBasic, QDOS and Other Interesting Stuff. Part 2

10 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

10.1 Introduction 163

10.2 Linked Lists 163

10.2.1 Adding Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2.2 Deleting Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.2.3 Finding Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2.4 The Code Wrapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.2.5 Running The Wrapper Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2.6 Problem Areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3 Doubly Linked Lists. 175

10.3.1 Adding Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.3.2 Deleting Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.3.3 Finding Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.3.4 A Better Mousetrap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.3.5 Double Trouble. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.3.6 Sorting Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.4 Remember those arrays? 179

10.5 Coming Up... 180

11 Single Linked Lists Demo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.1 Introduction 181

11.2 How Does The Code Work? 181

11.3 Coming Up... 188

12 Doubly Linked Lists Demo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

12.1 Introduction 189

12.2 How Does The Code Work? 189

12.3 Coming Up... 194

13 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13.1 Introduction 195



13.2 Recursion in Assembly Language 195

13.2.1 Factorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

13.2.2 The Fibonacci Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13.3 Coming Up... 201

14 Program Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.1 Introduction 203

14.2 Program Development in Assembly Language 203

14.2.1 The Initial Thought. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.2.2 Work It Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

14.2.3 Start Writing Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

14.2.4 Testing The Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

14.3 Coming Up... 205

V SuperBasic, QDOS and Other Interesting Stuff. Part 3

15 Dataspace Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

15.1 Introduction 209

15.2 The Code 210

15.3 Coming Up... 222

16 Using the Maths Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

16.1 Introduction 223

16.2 The Maths Package 223

16.3 Coming Up... 232

17 Much Ado About Previous Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . 233

17.1 Introduction 233

17.2 Chapter 15 - Dataspace Utility Problems 233

17.3 Chapter 16 - Artithmetic Package Problems 234

17.4 Coming Up... 238



18 Ascii To Long Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

18.1 Introduction 239

18.2 How QDOSMSQ Does It 239

18.3 Rules And Regulations 240

18.4 The Code 240

18.5 Code Improvements 243

18.6 Coming Up... 244

19 Assorted Revisions And Ramblings! . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

19.1 Introduction 245

19.2 SIGNED And UNSIGNED Tests 245

19.3 Which Way Round Is The ‘Subtraction’ In CMP? 246

19.4 Which CC Code To Use After CMP 246

19.5 Loops With Conditions 247

19.6 Do I TST.L D0 After TRAPs And Vectors? 249

19.7 Coming Up... 249

VI The Pointer Environment - Introduction

20 The Pointer Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

20.1 Introduction 253

20.2 The Pointer Environment 253

20.3 Coming Up... 256

21 The Pointer Record Investigated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

21.1 Introduction and Corrections 257

21.2 The Pointer Record 258

21.3 Coming Up... 266

22 WMAN, The Window Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

22.1 Introduction 267



22.2 WMAN 267

22.3 A Very Brief Overview Of WMAN 268

22.3.1 Selection Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

22.3.2 Hit and Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

22.3.3 Outline or Primary Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

22.3.4 Secondary Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

22.3.5 Information Sub Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

22.3.6 Information Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.3.7 Loose Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.3.8 Application Sub Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.3.9 Pan and Scroll Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.3.10 Sprites, Blobs and Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

22.3.11 Border . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

22.3.12 Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

22.4 More Useful Utilities From George 270

22.5 WMAN Windows Definition. 270

22.6 Standard Windows Definition 270

22.7 Coming Up... 274

23 WMAN, The Journey Continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

23.1 Introduction 275

23.2 WMAN Standard Windows Definition - Continued 275

23.2.1 Information Sub-Window List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

23.2.2 Loose Item List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

23.3 Coming Up... 283

VII SETW and Easy PEasy

24 Creating Your Own Windows With SETW . . . . . . . . . . . . . . . . . . . . . . . 287

24.1 Introduction 287

24.2 Downloading SETW 287

24.3 Running SETW 288

24.3.1 Entering Text Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288



24.3.2 Entering Sprites, Blobs & Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

24.3.3 The Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

24.3.4 Information Windows & Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

24.3.5 Interactively Sizing The Window & Contents . . . . . . . . . . . . . . . . . . . . . . . . . . 290

24.4 Coming Up... 291

25 Easy PEasy - Part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

25.1 Introduction. 293

25.2 Easy PEasy. 293

25.3 The Nine Steps To Happiness. 293

25.3.1 Initialise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

25.3.2 Check The PE & WMAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

25.3.3 Set The Window Definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

25.3.4 Position The Window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

25.3.5 Draw The Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

25.3.6 The Pointer Loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

25.3.7 Error Or Event? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

25.3.8 Process Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

25.3.9 Repeat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

25.4 Loose Item Action Routines. 298

25.5 Coming Up... 299

26 Easy PEasy - Part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

26.1 Introduction. 301

26.2 Easy PEasy. 301

26.3 Supplied Files. 301

26.4 Subroutines in Easy PEasy. 302

26.4.1 GetSp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

26.4.2 Rechp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.4.3 Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.4.4 Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.4.5 Set_AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

26.4.6 Sui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



26.5 The Example Program, EX0_asm. 306

26.6 Coming Up... 315

VIII The Pointer Environment - Continued

27 The Return of WMAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

27.1 Introduction 319

27.2 Application Sub-Windows 319

27.3 Application Sub-Window Hit Routines 320

27.4 Example Application Window 321

27.5 Example Program 326

27.6 Coming Up... 330

28 Application Sub-Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

28.1 Introduction 331

28.2 The Hit Routine. 331

28.3 The Advanced Hit Routine. 334

28.4 Conclusion 338

28.5 Coming Up... 339

29 Application Sub-Window Menus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

29.1 Introduction 341

29.2 Static Application Sub-Window Menus 341

29.3 The Generated Code 344

29.4 Menu Objects 347

29.5 Menu Items (and Index) List 348

29.6 Row List 350

29.7 Spacing Lists 351

29.8 Menu Section of Application Window Definition 352

29.9 Application Sub-Window Menu Item Hit Routines 354

29.10 Coming Up... 355



30 Creating and Using Libraries With GWASL . . . . . . . . . . . . . . . . . . . . . . 357

30.1 Introduction 357

30.2 The Library Code 357

30.3 End Of Chapter 30 360

IX The End - So Far Anyway

31 The End of an Era, or is it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

31.1 Introduction 363

31.2 So What Now? 363

31.3 The End 364

X Appendices and Other Blurb!

A How this book Evolved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

B Debugging with QMON2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377



List of Tables

2.1 Branch on condition instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Signed & Unsigned Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Decrement and branch instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Truth Table for Logical OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Truth Table for Logical AND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Truth Table for Logical EOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Bit Twiddling instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 MC6800x Exception Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 QDOS Exception Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Definition Block For BP_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Register Settings On Entry To SuperBasic Extensions. . . . . . . . . . . . . . . . . . . 106
7.3 Vectored Routines For Parameter Fetching. . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Keeping even numbers even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5 Keeping odd numbers even. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.6 Parameter format on the name table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.7 Parameter types and separators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.8 SuperBasic specific parameter details - byte 0. . . . . . . . . . . . . . . . . . . . . . 113
7.9 SuperBasic specific parameter details - byte 1. . . . . . . . . . . . . . . . . . . . . . 113
7.10 SuperBasic specific parameter details - bytes 0 and 1 together. . . . . . . 113
7.11 Function Return Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.12 SuperBasic Channel Table Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.1 Mode 4 Screen Memory Word Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



8.2 Mode 4 Colour Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.3 Mode 4 Example Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.4 Mode 8 Screen Memory Word Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.5 Mode 8 Colour Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.6 Mode 8 Colour Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.7 Truth Table for X AND 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.8 X AND 7 plus the Bits Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.9 Bitmaps for Mode 4 pixel masking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.10 QPC Screen Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.11 Truth Table for X AND 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

16.1 Arithmetic Package Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.2 RI_EXEC Entry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.3 RI_EXEC Exit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.4 RI_EXECB Entry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
16.5 RI_EXECB Exit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

17.1 QDOS Documentation and RI_EXEC/RI_EXECB Errors . . . . . . . . . . . . . . . . 236

19.1 Signed and Unsigned Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

20.1 The termination vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

21.1 The pointer record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
21.2 The Event Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

23.1 Information Sub-Window Object Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
23.2 Loose Item Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
23.3 Loose Item Object Justification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
23.4 Events, Codes and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

25.1 Loose Item Action Routine - Entry Registers . . . . . . . . . . . . . . . . . . . . . . . . 298
25.2 Loose Item Action Routine - Event Settings . . . . . . . . . . . . . . . . . . . . . . . . 299

26.1 EasyPEasy Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
26.2 EasyPEasy Sleep Entry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
26.3 EasyPEasy Sleep Exit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
26.4 EasyPEasy Set_AP Entry Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

27.1 Application Sub-Window Hit Routine - Registers . . . . . . . . . . . . . . . . . . . . 321

29.1 Application Sub-Window Menu Item List Entry . . . . . . . . . . . . . . . . . . . . . 349
29.2 Menu Item Hit Routine Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355



List of Figures

1.1 Status Register - System Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.2 Status Register - User Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.1 Name Table Entries for Three Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Maths Stack After Fetching Two Long Integer Parameters. . . . . . . . . . . . . 111
7.3 Previous Maths Stack After Fetching a String Parameter. . . . . . . . . . . . . . . 111
7.4 SuperBasic Name List Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.1 Linked List Node Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.2 A Simple Linked List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.3 Memory Organisation of a Simple Linked List. . . . . . . . . . . . . . . . . . . . . . . 165
10.4 Structure of a Doubly Linked List Node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
10.5 Conceptual Model of a Doubly Linked List. . . . . . . . . . . . . . . . . . . . . . . . . 176

23.1 Basic WMAN Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
23.2 Basic WMAN Window - With Informations Windows . . . . . . . . . . . . . . . . . 279
23.3 Basic WMAN Window - With an Information Object . . . . . . . . . . . . . . . . . 280
23.4 Basic WMAN Window - With Loose Items . . . . . . . . . . . . . . . . . . . . . . . . . . 283

26.1 Example program EX0 in action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

27.1 Application Window Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322





Listings

3.1 BSR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 DBNE Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Looping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Another Looping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Potentially Bug-ridden Looping Example . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Fixed Looping Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 ABCD Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 DIVS Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Pretty Bad Privacy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 LSL Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 LSR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 LSL Multlication Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 LSR Division Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 RTR Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Uppercase Check Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Exception Handler for the QL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Linking Extensions to SuperBasic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Example Extension Parameter Table . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 PSI_CLS Definition Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 PSI_CLS - The Final Version - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 100



7.5 PSI_CLS - The Final Version - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6 Colour Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.7 Colour Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.8 Using the Vectored Parameter Fetching Utilities . . . . . . . . . . . . . . . . . . . . 108

7.9 Checking Parameter Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.10 Fetching Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.11 Tidying a String from the Maths Stack - Part 1 . . . . . . . . . . . . . . . . . . . . . 108

7.12 Tidying a String from the Maths Stack - Part 2 . . . . . . . . . . . . . . . . . . . . . 109

7.13 How to Hang the QL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.14 Long Way to Keep Things Even . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.15 Fetching Mixed Type Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.16 Procedure to Print the Entire Name List . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1 Obtaining the Screen Address with SD_EXTOP . . . . . . . . . . . . . . . . . . . . 124

8.2 Mode 4 Screen Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Mode 8 Screen Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.1 Example of Repetitive Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9.2 Example of Non-repetitive Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.3 Example of a Messed up Stack! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.4 A Subroutine Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.5 STR_COPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.6 STR_APPEND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.7 STR_REVERSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.8 STR_INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.9 STR_COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.10 STR_COMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.11 FILE_CLOSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.12 FILE_OPEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.13 FILE_OPENIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.14 FILE_OPENNEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.15 FILE_OPENOVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.16 FILE_OPENDIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.17 FILE_GET_HEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.18 FILE_SET_HEAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.19 PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



9.20 LINE_FEED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.21 INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.22 JOB_HEADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.23 MEM_ALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.24 MEM_DEALLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.25 SCR_MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.26 CLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.27 SCR_PAPER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.28 SCR_PAPER_SB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.29 SCR_INK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.30 SCR_STRIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9.31 COLOURS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.1 Adding a Node - Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2 Adding a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.3 A Better Way of Adding a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.4 Deleting a Node - Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.5 Deleting a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.6 Finding a Node - Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.7 Finding a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.8 Finding a Node - Data Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.9 Linked Lists - Wrapper - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

10.10Linked Lists - Wrapper - Demo Placeholder . . . . . . . . . . . . . . . . . . . . . . 170

10.11Linked Lists - Wrapper - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.12Linked Lists - Wrapper - Demo Placeholder . . . . . . . . . . . . . . . . . . . . . . 174

10.13Adding a Node - Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.14Adding a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.15Deleting a Node - Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.16Deleting a Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

10.17Finding a Node - Data Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.18Finding a Node - Data Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

10.19Finding a Node - Alternative Data Comparison . . . . . . . . . . . . . . . . . . . . 178

11.1 Single Linked List - Demo Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11.2 Single Linked List - Demo Code - Root Node . . . . . . . . . . . . . . . . . . . . . 182

11.3 Single Linked List - Demo Code - Build List . . . . . . . . . . . . . . . . . . . . . . 182



11.4 Single Linked List - Demo Code - Add Node . . . . . . . . . . . . . . . . . . . . . 182

11.5 Single Linked List - Demo Code - Build Node . . . . . . . . . . . . . . . . . . . . . 183

11.6 Single Linked List - Demo Code - Show List . . . . . . . . . . . . . . . . . . . . . 183

11.7 Single Linked List - Demo Code - Show Node . . . . . . . . . . . . . . . . . . . . . 184

11.8 Single Linked List - Demo Code - Show Before and After States . . . . . . . . . . . 184

11.9 Single Linked List - Demo Code - Show Addresses . . . . . . . . . . . . . . . . . . 184

11.10Single Linked List - Demo Code - Show Next Address . . . . . . . . . . . . . . . . 185

11.11Single Linked List - Demo Code - Find Node . . . . . . . . . . . . . . . . . . . . . 186

11.12Single Linked List - Demo Code - Kill List . . . . . . . . . . . . . . . . . . . . . . . 187

11.13Single Linked List - Demo Code - Delete Node . . . . . . . . . . . . . . . . . . . . . 187

11.14Single Linked List - Demo Code - Deleting A Node . . . . . . . . . . . . . . . . . . . 187

12.1 Doubly Linked List - Demo Code - Root Node . . . . . . . . . . . . . . . . . . . . 190

12.2 Doubly Linked List - Demo Code - Build List . . . . . . . . . . . . . . . . . . . . . 190

12.3 Doubly Linked List - Demo Code - Add Node . . . . . . . . . . . . . . . . . . . . . . 191

12.4 Doubly Linked List - Demo Code - Show Node . . . . . . . . . . . . . . . . . . . . . 191

12.5 Changes to MsgAddr Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

12.6 Doubly Linked List - Demo Code - Show Prior Address . . . . . . . . . . . . . . . . 192

12.7 Changes to MsgNext Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

12.8 Changes to MsgData Text Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

12.9 Doubly Linked List - Demo Code - Deleting A Node . . . . . . . . . . . . . . . . . 193

13.1 Very Faulty Recursive Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13.2 Recursive Factorial Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

13.3 Recursive Fibonacci Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13.4 Improving the Fibonacci Code - Answers Array . . . . . . . . . . . . . . . . . . . . . 201

13.5 Improving the Fibonacci Code - Array Initialisation . . . . . . . . . . . . . . . . . . . 201

15.1 Dataspace Program - Equates etc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

15.2 Dataspace Program - Part 1 - Initialisation . . . . . . . . . . . . . . . . . . . . . . . 210

15.3 Dataspace Program - Part 2 - Get Filename . . . . . . . . . . . . . . . . . . . . . . . 211

15.4 Dataspace Program - Part 3 - Open the File . . . . . . . . . . . . . . . . . . . . . . 212

15.5 Dataspace Program - Part 4 - Read File Header . . . . . . . . . . . . . . . . . . . . 213

15.6 Dataspace Program - Part 5 - Exec Check . . . . . . . . . . . . . . . . . . . . . . . 213

15.7 Dataspace Program - Part 6 - Print Current Dataspace . . . . . . . . . . . . . . . . . 214

15.8 Dataspace Program - Part 7 - Get New Dataspace . . . . . . . . . . . . . . . . . . . 215

15.9 Dataspace Program - Part 8 - ASCII Conversion . . . . . . . . . . . . . . . . . . . . 215



15.10Dataspace Program - Part 9 - Multiply by 10 . . . . . . . . . . . . . . . . . . . . . . 216

15.11Dataspace Program - Part 10 - Final Checks . . . . . . . . . . . . . . . . . . . . . . . 217

15.12Dataspace Program - Part 11 - Write Header . . . . . . . . . . . . . . . . . . . . . . . 217

15.13Dataspace Program - Part 12 - Flush Buffers . . . . . . . . . . . . . . . . . . . . . . . 217

15.14Dataspace Program - Part 13 - Error Handling . . . . . . . . . . . . . . . . . . . . . 218

15.15Dataspace Program - Part 14 - Various Subroutines . . . . . . . . . . . . . . . . . . 218

16.1 Example Code, Calling a Vectored Routine . . . . . . . . . . . . . . . . . . . . . . 223

16.2 The Maths Package - Calculate Square Roots . . . . . . . . . . . . . . . . . . . . . 224

16.3 The Maths Package - Calculate Any Root . . . . . . . . . . . . . . . . . . . . . . . 226

17.1 Corrections to ANYROOT Code in Previous chapter . . . . . . . . . . . . . . . . . 234

17.2 ANYROOT - Swap_Tos - Original Code . . . . . . . . . . . . . . . . . . . . . . . . 235

17.3 ANYROOT - Swap_Tos - Original Code . . . . . . . . . . . . . . . . . . . . . . . . 235

17.4 ANYROOT - Swap_Tos - Suggested Op Codes . . . . . . . . . . . . . . . . . . . . 235

18.1 ASCII to LONG Converter - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

18.2 ASCII to LONG Converter - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

18.3 ASCII to LONG Converter - Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

18.4 ASCII to LONG Converter - Test Harness . . . . . . . . . . . . . . . . . . . . . . . 242

18.5 Better ASCII to LONG Converter - Converq . . . . . . . . . . . . . . . . . . . . . . 243

18.6 Better ASCII to LONG Converter - Part 1 . . . . . . . . . . . . . . . . . . . . . . . 243

18.7 Better ASCII to LONG Converter - Test Harness . . . . . . . . . . . . . . . . . . . 244

20.1 Simple PE Program - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

20.2 Simple PE Program - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

20.3 Simple PE Program - Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

20.4 Simple PE Program - Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

20.5 Simple PE Program - Part 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

20.6 Simple PE Program - Part 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

20.7 Simple PE Program - Part 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

20.8 Simple PE Program - Part 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

20.9 Simple PE Program - Part 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

20.10Simple PE Program - Part 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

21.1 Simple PE Program - Part 10 Original . . . . . . . . . . . . . . . . . . . . . . . . . . 257

21.2 Correction to line 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

21.3 Pointer Record Examiner - Equates . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

21.4 Pointer Record Examiner - Job Header . . . . . . . . . . . . . . . . . . . . . . . . . 259



21.5 Pointer Record Examiner - Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 260

21.6 Pointer Record Examiner - Open Console . . . . . . . . . . . . . . . . . . . . . . . 260

21.7 Pointer Record Examiner - Redefine Console . . . . . . . . . . . . . . . . . . . . . 260

21.8 Pointer Record Examiner - Get Pointer Environment . . . . . . . . . . . . . . . . . 260

21.9 Pointer Record Examiner - Outline Primary Window . . . . . . . . . . . . . . . . . . 261

21.10Pointer Record Examiner - Sign On . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

21.11Pointer Record Examiner - Read Pointer . . . . . . . . . . . . . . . . . . . . . . . . . 261

21.12Pointer Record Examiner - Print Details . . . . . . . . . . . . . . . . . . . . . . . . . 261

21.13Pointer Record Examiner - Space Table . . . . . . . . . . . . . . . . . . . . . . . . 262

21.14Pointer Record Examiner - Loop End . . . . . . . . . . . . . . . . . . . . . . . . . 262

21.15Pointer Record Examiner - Handle ESC . . . . . . . . . . . . . . . . . . . . . . . . 262

21.16Pointer Record Examiner - Exit Program . . . . . . . . . . . . . . . . . . . . . . . . 262

21.17Pointer Record Examiner - Scroll Screen . . . . . . . . . . . . . . . . . . . . . . . . 263

21.18Pointer Record Examiner - Handle TRAPs . . . . . . . . . . . . . . . . . . . . . . . 263

21.19Pointer Record Examiner - Print Hexadecimal . . . . . . . . . . . . . . . . . . . . . 263

21.20Pointer Record Examiner - Print a Space . . . . . . . . . . . . . . . . . . . . . . . . 263

21.21Pointer Record Examiner - Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 264

22.1 Main Window - Fixed Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

22.2 Main Window - Window Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

22.3 Main Window - Default Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

22.4 Do Not Type This In! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

22.5 Do Not Type This In Either! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

22.6 Main Window - Current Loose Item - Border Attributes . . . . . . . . . . . . . . . . 272

22.7 Main Window - Loose Item Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 273

22.8 Main Window - Help Window Details . . . . . . . . . . . . . . . . . . . . . . . . . 273

22.9 Main Window - Repeating Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

22.10Main Window - Repeating Part - End Flag . . . . . . . . . . . . . . . . . . . . . . . 274

23.1 WMAN Example Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

23.2 Pseudo SuperBasic Equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

23.3 WMAN Example Window - Information Window 0 . . . . . . . . . . . . . . . . . . . 277

23.4 WMAN Example Window - Information Window 1 . . . . . . . . . . . . . . . . . . 278

23.5 WMAN Example Window - Information Object . . . . . . . . . . . . . . . . . . . . 279

23.6 WMAN Example Window - Information Object Text . . . . . . . . . . . . . . . . . 280

23.7 WMAN Example Window - Loose Item 0 . . . . . . . . . . . . . . . . . . . . . . . 280



23.8 WMAN Example Window - Loose Item Object Text . . . . . . . . . . . . . . . . . 282

24.1 Executing SETW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

25.1 EasyPEasy Standard Code - Initialisation . . . . . . . . . . . . . . . . . . . . . . . 294

25.2 EasyPEasy Standard Code - Checking for the PE . . . . . . . . . . . . . . . . . . . 295

25.3 EasyPEasy Standard Code - Allocate Memory for the Window Definition . . . . . . 295

25.4 EasyPEasy Standard Code - Loose Item Initialisation . . . . . . . . . . . . . . . . . 295

25.5 EasyPEasy Standard Code - Position the Window . . . . . . . . . . . . . . . . . . . 296

25.6 EasyPEasy Standard Code - Draw the Window . . . . . . . . . . . . . . . . . . . . 296

25.7 EasyPEasy Standard Code - Reading the Pointer . . . . . . . . . . . . . . . . . . . . 296

25.8 EasyPEasy Standard Code - Error or Event Check . . . . . . . . . . . . . . . . . . . . 297

25.9 EasyPEasy Standard Code - Ignore Events . . . . . . . . . . . . . . . . . . . . . . . . 297

25.10EasyPEasy Standard Code - Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 299

26.1 Invoking EasyPEasy in Your Own Programs . . . . . . . . . . . . . . . . . . . . . . 302

26.2 EasyPEasy - GetSP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.3 EasyPEasy - Rechp Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.4 EasyPEasy - Move Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

26.5 EasyPEasy - Sleep Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

26.6 EasyPEasy - SetAP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

26.7 EasyPEasy - SetAP Item List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

26.8 EasyPEasy - Sui Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

26.9 Ex0 - Standard Job Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

26.10Ex0 - Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

26.11Ex0 - Loose Item Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

26.12Ex0 - Position and Draw Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

26.13Ex0 - Reading the Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

26.14Ex0 - Test for Errors or Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

26.15Ex0 - Console Channel Details & Code . . . . . . . . . . . . . . . . . . . . . . . . 309

26.16Ex0 - Checking Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

26.17Ex0 - Move Loose Item Action Routine . . . . . . . . . . . . . . . . . . . . . . . . 310

26.18Ex0 - SIZE Loose Item Action Routine . . . . . . . . . . . . . . . . . . . . . . . . 310

26.19Ex0 - SIZE Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

26.20Ex0 - EXIT Loose Item Action Routine . . . . . . . . . . . . . . . . . . . . . . . . 313

26.21Ex0 - SLEEP Loose Item Action Routine . . . . . . . . . . . . . . . . . . . . . . . 314

26.22Ex0 - Includes and Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314



27.1 Example Application Sub-Window List Definition . . . . . . . . . . . . . . . . . . . 319

27.2 Example Application Sub-Window Definition . . . . . . . . . . . . . . . . . . . . . 320

27.3 Test Window - ApplTestWin_asm . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

27.4 ApplTest_asm - Standard Job Header & Equates . . . . . . . . . . . . . . . . . . . . 326

27.5 ApplTest_asm - Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

27.6 ApplTest_asm - Loose Item Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . 327

27.7 ApplTest_asm - Window Creation & Display . . . . . . . . . . . . . . . . . . . . . 328

27.8 ApplTest_asm - Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

27.9 ApplTest_asm - Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

27.10ApplTest_asm - ESC Loose Item Action Routine . . . . . . . . . . . . . . . . . . . 329

27.11ApplTest_asm - Application Window HIT Routine . . . . . . . . . . . . . . . . . . 329

27.12ApplTest_asm - Console Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

27.13ApplTest_asm - Incorporating the EasyPEasy Library . . . . . . . . . . . . . . . . . 330

28.1 ApplTest_asm - New Job Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

28.2 ApplTest_asm - New Application Window HIT Routine . . . . . . . . . . . . . . . . 332

28.3 ApplTest_asm - Including the Window Definition . . . . . . . . . . . . . . . . . . . 332

29.1 AppMenuTest1Win_asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

29.2 AppMenuTest1Win_asm - Menu Objects . . . . . . . . . . . . . . . . . . . . . . . . 347

29.3 AppMenuTest1Win_asm - Menu Item List . . . . . . . . . . . . . . . . . . . . . . . 348

29.4 AppMenuTest1Win_asm - Row List . . . . . . . . . . . . . . . . . . . . . . . . . . 350

29.5 Relationship between the Row List & Menu Items List . . . . . . . . . . . . . . . . 350

29.6 AppMenuTest1Win_asm - Spacing Lists . . . . . . . . . . . . . . . . . . . . . . . . . 351

29.7 AppMenuTest1Win_asm - Application Window Definition . . . . . . . . . . . . . . 352

29.8 AppMenuTest1Win_asm - Application Window Definition . . . . . . . . . . . . . . 352

29.9 AppMenuTest1Win_asm - Application Window Setup Routine . . . . . . . . . . . . 353

29.10AppMenuTest1Win_asm - Application Window Drawing Routine . . . . . . . . . . 353

29.11AppMenuTest1Win_asm - Application Window Menu Area Definition . . . . . . . . 353

29.12AppMenuTest1Win_asm - Application Window Hit Routine . . . . . . . . . . . . . 354

30.1 Example Library - Lib_cls_asm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

30.2 Example Library - Lib_cls_sym_lst . . . . . . . . . . . . . . . . . . . . . . . . . . 359

30.3 Example Library - Lib_cls_in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

30.4 Example Library - Invoking the Library . . . . . . . . . . . . . . . . . . . . . . . . 359

30.5 Example Library - Brief Example of Use . . . . . . . . . . . . . . . . . . . . . . . . 360

B.1 QLTdis Broken Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369



B.2 QLTdis Symbol List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

B.3 QLTdis Symbol List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

B.4 Debugging QLTdis with Jmon2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

B.5 QLTDis Broken Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

B.6 QLTdis Broken Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375





I
1 QL Assembly Language Programming 31
1.1 Introduction
1.2 The 6800x Processor
1.3 Addressing Modes
1.4 Coming Up...

2 The 6800x Instruction Set . . . . . . . . . . . . . 39
2.1 Introduction
2.2 The MOVE Instruction Family
2.3 The CMP Instruction Family
2.4 Signed and Unsigned Numbers
2.5 Testing Condition Codes and Branching
2.6 Coming Up...

3 The 6800x Instruction Set - continued . 51
3.1 Introduction
3.2 More Branches.
3.3 Counting
3.4 Coming Up...

4 The 6800x Instruction Set - continued . 61
4.1 Introduction
4.2 Tie the NOT
4.3 This OR That
4.4 This AND That
4.5 Exclusive OR Instructions
4.6 Shifting And Rotating
4.7 Coming Up...

5 The 6800x Instruction Set - continued . 71
5.1 Introduction.
5.2 Coming Up...

Introduction to Assembly
Language





1. QL Assembly Language Programming

1.1 Introduction

Assembly language is very, very simple.

Not many people will agree at first, but if you think about it, it is. You have to tell the processor
what you want it to do in very simple steps. In SuperBasic, you can multiply two numbers together
easily - you can do it almost as easily in machine code too.

This series of articles is intended to let you in on the basic secrets of programming your QL in its
own natural language - machine code or assembly language. (Actually, machine code is what the
QL talks, we use assembly language which is ‘English’ sounding ‘words’ that get converted to
machine code by an assembler - I will tend to use the two terms as one.) To talk directly to the QL,
you must learn its language. This series should hopefully teach you how to do just that.

I make no assumptions about how much or how little you may already know - I will start very
simple and continue from there. Hopefully you will have an assembler, but if not, see below!

I was going to base the series on George Gwilt’s GWASS assembler, which is free and can be
distributed easily. Unfortunately, it won’t run on anything less than a 68020 which is no good for
those of us who are still running on an original QL. George, however, has supplied another of his
assemblers, GWASL for use in the series. Thanks George.

Most assembly language books tend to give little example programs as they go along to try to show
the bits of the instruction set that you have just learned about. I will attempt to do likewise.

1.2 The 6800x Processor

The processor we are programming is one of Motorola’s 68000 series. Be it a 68008 or a 68060 (if
you are lucky) all of them have the same basic instruction set, although some of the more powerful
processors have additional instructions. Partly because we have to cater for those on an original QL



32 Chapter 1. QL Assembly Language Programming

but mostly because I don’t have a clue about these additional instructions, we will be dealing with
the basic instruction set - there is enough there to keep us happy for a while. Inside the processor
there are a few different parts, but we are only concerned with the registers - the rest just does the
work and puts the results somewhere, setting a few flags along the way. Talking of flags, we will
also take a look at the status register - a very important part of programming.

1.2.1 Registers

Registers are where numbers get loaded into, manipulated and written out from. Some instructions
operate directly on memory locations, but to all intents and purposes, memory is just another
register but outside of the processor and a lot slower. The 68000 - which is the term I shall use from
now on to describe the entire family of processors - has different types of registers - data, address,
status and program counter. Data held in registers and in memory is held in High Order format.
This simply means that the numbers are stored in a similar manner to the way in which we would
expect them to be - the ‘rightmost’ end holds the most significant bit and the ‘leftmost’ the lowest -
just the way we write numbers down.

1.2.2 Data Registers

There are 8 data registers named D0 to D7 and these can be used to perform manipulations on the
numbers that are held in them. Each register can hold 32 bits of information. (A bit is a single
binary digit - basically a one or a zero). What these bits actually represent depends on the program
running at the time. Data registers are normally used for manipulating data in the form of bytes,
words and long words - these being 8, 16 and 32 bits long respectively.

1.2.3 Address Registers

There are 9 address registers named A0 to A7. A7 is sometimes known as the stack pointer or SP
register. What about the other address register then? The ninth address register is a duplicate of
A7 and is the SSP or Supervisor Stack Pointer. When coding the chip, you only have access to 8
address registers at any one time - you are either using the SP or SSP version of A7 but never both
at the same time.

Address registers are normally used to hold memory addresses, stack pointers etc and cannot be
used for byte sized manipulations.

1.2.4 Status Register

The status register holds a list of flags to tell the processor what is happening or has happened
internally. The status register is a 16 bit register in two 8 bit halves. The user byte is held in bits 0
to 7 ( the lowest end) and the system byte is held in the upper half or bits 8 to 15. The layout of the
system byte is shown in Figure 1.1.

Bit 15 14 13 12 11 10 9 8
T S I I I

Figure 1.1: Status Register - System Byte.

• Bit 15, ‘T’ is the trace flag - this defines whether the processor is in ‘single step’ mode or
running normally. If set to 1, the processor is tracing and if 0, is running normally. In trace



1.3 Addressing Modes 33

mode the processor ‘stops’ after each instruction has been executed and jumps to the Trace
exception routine. Exceptions are covered later in the series.

• Bit 13, ‘S’ is the supervisor flag - this defines whether the code being executed is running in
user or supervisor mode. If set, the processor is in supervisor mode otherwise it is in user
mode.

• Bits 10, 9 and 8, ‘III’ is the interrupt mask and represents a value between 0 and 7 and
indicates which of the seven interrupt levels are enabled.

• The other bits in the system byte are not used.

Bit 7 6 5 4 3 2 1 0
X N Z V C

Figure 1.2: Status Register - User Byte.

The user byte contains the 5 condition code flags which are set or reset by certain instructions and
then used by arithmetic or comparison instructions. The are used to tell later parts of a program
what happened recently. The program can adjust its operations to suit. Figure 1.2 shows the layout
of the user byte, the various flag bits are:

• Bit 4, ‘X’ is the extended flag. Which is very similar to the ‘C’ flag bit but is affected by
fewer instructions than ‘C’ is. This is used when carrying out very large sized arithmetic
instructions - such as 64 bit adds, for example. When affected it is set exactly like the ‘C’
flag.

• Bit 3, ‘N’ is the negative flag. It gets set to 1 if the last instruction created a negative number.
• Bit 2, ‘Z’ is the zero flag and is set to 1 if the last instruction generated a result of zero.
• Bit 1, ‘V’ is the overflow flag and is set to 1 if the last instruction generated an overflow

during 2’s complement arithmetic. See later for details.
• Bit 0, ‘C’ is the carry or borrow flag. And is used when a subtraction operation is carried out

- be it an actual subtraction or an implied one.
• The other bits in the user byte are not used.

The flags are used by the branch on condition (Bcc) instructions, the Decrement and branch (DBcc)
instructions or the Set (Scc) instructions. These will be explained later.

1.2.5 The Program Counter

The program counter does just that, it keeps track of where exactly the processor is within a program.
The program counter always points to the address in memory of the next instruction to be executed.
The program counter can of course be changed by a JMP (jump) instruction or a BRA (branch) but it
is always ready with the next instruction to be executed.

1.3 Addressing Modes

The 68000 has a large number of addressing modes and these can often become overwhelming to a
new machine code programmer - I know. It takes some time to understand each and every mode,
what it does and why it is used. Having said that, you do not need to remember all of their names,
just what they look like in source code and of course, what they do.

From here on, you need to be aware that numbers may be in decimal format or hexadecimal. All
hexadecimal numbers are prefixed with the dollar sign ($) and wherever this is seen in front of a
number (or in some cases, what appears to be a word) will be a hexadecimal number. (I will assume



34 Chapter 1. QL Assembly Language Programming

that you are familiar with hex.) A couple of examples of hexadecimal numbers are:

$100
$C0FFEE

which are equivalent to 256 and 12,648,430 respectively.

Without any further hesitation, lets dive right in with the addressing modes ...

1.3.1 Register Direct

This is an easy one to start off with. Register direct addressing mode simply means that both the
source and the destination in the instruction are registers either data, address or a mixture of both.

Simple examples are:

1 MOVE. L A2 , D1
2 MOVE.W D0 , D1
3 MOVE. L A1 , A3

These simply move (actually, they copy) data between various registers. The full meaning of the
actual instructions will be described later on.

1.3.2 Absolute

In this mode, the operand of the instruction is simply a memory address. This is also quite simple.
For example to ‘zeroise’ the contents of the first byte of screen memory (assuming a standard QL
and this is the last time that I will assume anything!)

1 CLR . B $20000

There are two variations to this mode, absolute short and absolute long. If the address given is a 16
bit word (ie 0 to 7FFF hex or 32767 decimal) then it refers to addresses in the first 32K of memory.
If the address given is 8000 hex or 32768 decimal and upwards it refers to address FFFF8000 and
upwards due to sign extension of the address word. This is absolute short, best used for addresses
of 0 to 7FFF hex only - to avoid confusion.

1 MOVE. L $1000 , D1 g e t a long from a d d r e s s $1000
2 MOVE. L $9000 , D1 g e t a long from a d d r e s s $FFFF9000

The other variation is absolute long, in this case, the address given is a full 32 bits long and refers
to the actual address in memory - there is no ambiguity with absolute long. MOVE.L $123456,D1 -
gets the long word at address $123456.

1.3.3 Relative

This mode will probably be the most used with QL programs as all code should be relocatable.
This means that it never assumes that it is running at a specific location in memory. Some early QL



1.3 Addressing Modes 35

programs were written to run at a specific location in memory and this caused no end of problems
when memory expansions became available. I think Psion chess was one of the guilty ones.

However, relative addressing simply means, relative to where the program counter is. The program
counter is always pointing at the address of the instruction in memory after the current one. An
example of relative addressing is this small loop and the jump back to the start of the loop:

1 S t a r t MOVEQ #1000 ,D0
2 Loop SUBQ #1 ,D0
3 BNE. S Loop ( PC )

This is a small and totally useless fragment of code. The relative address mode is in the BNE.S LOOP(PC)
instruction - it says - branch to the label called ‘loop’, relative to where the program counter is
currently pointing, if the result of the subtraction was not zero. The jump is specified in the code as
a negative number, not the actual address of where the label ‘loop’ is at.

This negative number (in the example above) is how many bytes are to be added to the program
counter to get the address of the next instruction to be executed. The jump can be forwards as well
as backwards.

Using relative addressing means that the program can be loaded anywhere in memory and still work.
If absolute addressing was used, the program would always have to be loaded at the same address if
a crash was to be avoided. The example above is the equivalent of the following SuperBasic code:

1 1000 REMark S t a r t
2 1010 LET D0 = 1000
3 1020 REMark Loop
4 1030 LET D0 = D0 − 1
5 1040 IF D0 <> 0 THEN GOTO (1040 − 10)

Note
Because of the slightly different way that assembler works, the calculation of the destination
line is not quite accurate. When the BNE.S instruction is being executed, the program counter
is already set to the following instruction. In the SuperBasic example above, the subtraction
of 10 from 1040 should really be 20 from 1050. However, it shall remain as above for now.

1.3.4 Address Register Indirect

This mode is called ‘indirect’ because the address register in question is not the operand in the
instruction. It simply serves as a pointer to the operand. In an earlier example we cleared out the
first byte of screen memory by using absolute addressing like this:

1 CLR . B $20000

This instruction could have been carried out using address register indirect mode as follows:

1 MOVEA. L #$20000 , A1
2 CLR . B ( A1 )



36 Chapter 1. QL Assembly Language Programming

All that this is doing is setting address register A1 with the value 131072 (decimal) which is 20000
(hexadecimal). It then clears out the first byte at that address. This is the same as this SuperBasic
example:

1 1000 LET A1 = 131072
2 1020 POKE A1 , 0

The register’s name is put in between a pair of brackets to signify that it is the memory address held
in the register that will be acted upon and not the register itself.

1.3.5 Register Indirect With Displacement

This mode is similar to the above, except that a displacement is added or subtracted from the
address register to give the final address to be operated upon. Using the above example again, we
can zeroise the first 4 byes of screen memory as follows:

1 MOVEA. L #$20000 , A1
2 CLR .W ( A1 )
3 CLR .W 2(A1 )

This time we use word sized operations, these simply affect 16 bits instead of 8 as with the byte
sized operations. The displacement is the number outside of the brackets and it is added to the
address registers contents to create the address to be operated upon. The displacement can be any
signed number that will fit into 16 bits. (-32768 to +32767)

1.3.6 Register Indirect With Displacement And Index

It’s starting to get complicated now. This is another mode where we have an address register and a
displacement to consider, but this time we have an index as well. In this case the displacement has
been reduced to 8 bits only giving a range of -128 to +127. The format of this addressing mode is:

1 CLR .W 2(A2 , A0 . L )

The contents of A2 is added to A0 to get the first address then the displacement is added to give the
final result. The 16 bits of memory at the final address is cleared out. (Like POKE_W A2 + A0 + 2,
0). In this case the entire 32 bit value of A0 is added to A2, this is indicated by the ‘.L’ after the
second register - the index.

If the suffix had been omitted or was ‘.W’ (which is the default if omitted) then the lower 16 bits of
A0 would have been used instead of the whole 32. Take note that the 16 bits will be ‘sign extended’
to a full 32 bits and this can have unpleasant side effects if the value in bit 15 is a 1 as this will
cause a negative index to be generated. There will be more on sign extension later.

The first register specified is always treated as 32 bit (.L) and does not require a ‘.L’ suffix - most, if
not all, assemblers will reject it anyway.

1.3.7 Register Indirect With Pre Decrement Or Post Increment

These addressing modes are used for stack operations, usually. The format of the pre-decrement
instruction is:



1.4 Coming Up... 37

1 MOVE. L D0,−(A7 )

And for post-increment it is:

1 MOVE. L ( A7) + ,D0

The actions carried out are as follows for pre-decrement: The value in A7 is decremented (reduced)
by the size of the data to be stored (byte, word or long) then the contents of D0 are stored at the
location pointed to by A7. In SuperBasic this equates to the following code fragment:

1 1000 LET A7 = A7 − 4
2 1010 POKE_L A7 , D0

The opposite action takes place with post-increment, as follows: The contents of the memory
address pointed to by A7 is copied into D0, then the address held in A7 id incremented by the size
of the data just copied ( byte, word or long). Again, this equates to:

1 1000 LET D0 = PEEK_L ( A7 )
2 1010 Let A7 = A7 + 4

1.3.8 Immediate

This is probably the simplest of all the addressing modes. It simply means that the data specifies
the address value. For example:

1 MOVE. L #100 ,D0

This copies the value of 100 into data register D0. The hash sign indicates that the data is copied
directly into the register. Do not get confused between this instruction and:

1 MOVE. L 100 ,D0

Note that there is no hash. This instruction means load the contents of address 100 into register D0.
This is not the same! This is a good source of confusion for beginners - I know all about it, and
sometimes still make this mistake!

1.4 Coming Up...

In the next chapter, we will take a closer look at some of the actual instructions in the 68000
instruction set.





2. The 6800x Instruction Set

2.1 Introduction

In part one, we learned some really boring stuff. Address modes are not what I would call interesting
reading, and I suppose that most of you who are still reading this, would agree.

At this point, however, it gets worse. We are now going to delve into the instruction set of the
processor.

2.2 The MOVE Instruction Family

The most common instruction in the entire world, is probably the MOVE instruction. It is actually
wrongly named as it really does a COPY rather than a MOVE. The format of the MOVE instruction
is:

1 MOVE source , d e s t i n a t i o n

or:

1 MOVE. s i z e sou rce , d e s t i n a t i o n

The data in source is copied to the destination. For example,

1 MOVE D0 , D1

takes whatever data is in data register 0 (zero) and copies it into data register 1. How much data is
moved? In this case, because no size is specified, the default size is always WORD so a single word



40 Chapter 2. The 6800x Instruction Set

of data is moved from D0 to D1. As there is space for 2 words in each of these registers, which
word is moved from D0 to which word in D1?

All instructions work from the ‘lowest’ end of the register towards the highest (with the exception
of MOVEP - see below). So, in the above example, the lowest 16 bits of D0 are copied to the lowest
16 bits of D1. The data in D0 is not altered in any way whatsoever. The same cannot be said for D1
as the original data in D1 has been replaced - but only the lowest 16 bits. The highest word has not
been altered.

If D0 contained $01020304 and D1 contained $11223344 then after the above move, D0 would be
unchanged and D1 would contain $11220304.

If the size of the instruction had been specified, as follows:

1 MOVE. B D0 , D1

Then only the lowest byte of D1 would have been altered. In this case D1 would have contained
$11223304 after the move. If the size specifier had been ‘L’ for LONG than the entire 4 bytes in D1
would have been overwritten by the 4 bytes from D0. After a long sized MOVE, both D0 and D1
would contain $01020304.

Because the move takes place into a data register the condition codes are affected. To copy data
into an address register use the MOVEA instruction, but always remember that it does not affect the
flags in the condition code register.

The changes that will take place every time a data register or memory location is used as the
destination for a MOVE are:

• X flag is never affected. It remains as it is.
• N flag is set if the data moved was negative. If the data was positive, N is cleared.
• V is always cleared. You cannot move a value into a register that causes an overflow.
• C is always cleared for similar reasons.
• Z is set if the data moved was zero. It is cleared if it was any other value.

The MOVE instruction has many variations, most of them simple and easy to understand. These are:

MOVE as described above.

MOVE CCR - the size is always word although the upper 8 bits are ignored - effectively a byte sized
move. The format of the instruction is :

1 MOVE source ,CCR

Executing this instruction results in the condition codes being set as follows:

• X is set to bit 4 of source
• N is set to bit 3 of source
• Z is set to bit 2 of source
• V is set to bit 1 of source
• C is set to bit 0 of source

All the other bits are simply ignored.

MOVE SR - the size is always word and may not be specified in the instruction. This instruction
copied the 16 bits of the condition code register to the destination. The instruction format is:



2.2 The MOVE Instruction Family 41

1 MOVE SR , d e s t i n a t i o n

When the instruction has been carried out, the lower 16 bits of the destination contain a copy of the
Status Register of the processor. The actual data in the status register is unaffected by the move.

There is a complimentary instruction to move data into the status register which is:

1 MOVE source , SR

Which takes the lower 16 bits of the source data and copies it into the status register. The lower 8
bits are used to change the flags in the CCR or Condition Codes Register (See MOVE CCR above).
The SR is affected according to the lower 16 bits of the source data as follows:

• T is set to bit 15 of source
• S is set to bit 13 of source
• III is set to bits 10, 9 and 8 of source
• X is set to bit 4 of source
• N is set to bit 3 of source
• Z is set to bit 2 of source
• V is set to bit 1 of source
• C is set to bit 0 of source

The other bits are simply ignored. There is a slight problem, the instruction MOVE source,SR must
be executed in Privileged mode or it will cause a ‘Privilege Violation Exception’ which on a normal
QL will simply lock it up. (Exceptions are covered later on in the series.)

Warn
Note: on the 68010 and up, the MOVE SR,destination becomes a privileged instruction.
There is a new instruction MOVE CCR,destination which allows access to the CCR part of
the SR. Programs written for the 68000 and 68008 may require to be re-written with this in
mind.

MOVE USP - A long sized instruction which copies data into the User Stack Pointer (USP) also
knows as A7. This instruction is also privileged and requires that the system is running in supervisor
mode. The format of the instruction is:

1 MOVE source , USP
2 MOVE USP , d e s t i n a t i o n

Both source and destination must be an address register. None of the condition codes are affected
by this instruction.

Why does this have to be run in supervisor mode? Well, if not, a privilege violation exception will
be generated and these instructions allow the operating system to set the value of a job’s stack
pointer.

If you remember, there are two A7 registers, one used for supervisor mode and the other for user
mode. Only one can be in use at any one time. This instruction allows the supervisor to set the USP
without affecting its own version of the A7 register. Not used much, if at all on the QL.

MOVEA - the contents (remember that word!) of the source is moved into an address register. This
instruction is either word or long sized and does not affect the condition codes. The format is:



42 Chapter 2. The 6800x Instruction Set

1 MOVEA. s i z e sou rce , An

Beware because if you move a word sized source, it will be sign extended to long (bit 15 will be
copied into bits 16 to 31) before the data is copied into the address register.

For example:

1 MOVEA.W #$0001 , A0

This will set A0 to $00000001 after the move. Bit 15 of the data is a zero so this is copied into all
the upper 16 bits of A0. The lower 16 bits are simply a direct copy of the data.

1 MOVEA.W #$8000 , A0

This will set A0 to $FFFF8000 after the move. Bit 15 is a one and this is copied into all the upper
16 bits of A0. The lower 16 are again a copy of the data.

Don’t forget about sign extension!

MOVEM - a word or long sized instruction which allows you to copy data to or from a number of
registers in a single instruction. The format of the instruction is:

1 MOVEM r e g i s t e r _ l i s t , d e s t i n a t i o n
2 MOVEM source , r e g i s t e r _ l i s t

None of the condition codes are affected by this instruction.

The instruction is most often used to store a number of registers on the stack on entry to a subroutine,
and to reinstate the original values on exit from the subroutine. The instruction stores the registers
starting with D0, then D1 and so on up to D7, then the address registers are stored in order from A0
to A7 - assuming all registers are specified.

A register list takes the format of a starting register name, a hyphen then a finish register name.
Another form is a start register name a slash and another register name. The two formats can be
mixed to give almost endless possibilities. The following are all register list examples :

D1−D4
A0−A3
D1 / D4−D7
D0−D2 / D4 / D7 / A0−A3 / A6

The hyphen means that all registers from the starting one to the finish one (inclusive) will be moved
to the destination. The slash signals that there is a ‘gap’ in the register list. The above examples
mean :

D1 and D2 and D3 and D4
A0 and A1 and A2 and A3
D1 and D4 and D5 and D6 and D7
D0 and D1 and D2 and D4 and D7 and A0 and A1 and A2 and A3 and A6 .



2.2 The MOVE Instruction Family 43

The list can be specified in any order (unless the assembler rules differently) as each register
detected is used to set a single bit in a 16 bit word. This word is used by the processor to determine
which of the registers are to be copied.

This instruction will be most often used in its Post decrement and pre-increment forms:

1 MOVEM. L D0−D3,−(A7 )
2 MOVEM. L ( A7) + ,D0−D3

MOVEP - Probably the strangest instruction in the 68000 set. This instruction transfers data from a
data register to alternating bytes in memory. The data is transferred from the data register starting
from the highest 8 bits, then the next 8 bits and so on. This is a word or long sized instruction. The
condition code flags are not affected. (I have never used or seen this instruction used on the QL.)
The formats are :

1 MOVEP. s i z e Dn , d i s p l a c e m e n t ( An )
2 MOVEP. s i z e d i s p l a c e m e n t ( An ) , Dn

The size is long or word, Dn is any data register, An is any address register and the displacement is
added to the address register to get the first address to be filled with data. An example might make
things clearer. If we assume that D0 holds $11223344 and A1 holds the address $000200000 then
the instruction:

1 MOVEP. L D0 , 0 ( A1 )

Copies the highest byte of D0 ($11) into address $20000, the next highest ($22) into address $20002,
the next byte ($33) into address $20004 and finally the lowest byte of D0 ($44) into address $20006.
Addresses $20001, $20003 and $20005 are not affected.

Had the displacement and A1 combined created an odd address then the odd addresses would have
been filled with data and the even ones would not have been affected.

MOVEQ - This is a very useful instruction and you will see it used on many occasions in QL assembly
language programs. It is the ‘Move Quick’ instruction and is used to quickly move any value
between -128 and 127 into any data register. The value is sign extended to 32 bits or long sized and
so fills the entire data register. The format is:

1 MOVEQ # da ta , Dn

The flags are affected by this instruction as follows:

• X flag is never affected. It remains as it is.
• N flag is set if the data moved was negative. If the data was positive, N is cleared.
• V is always cleared. You cannot move a value into a register that causes an overflow.
• C is always cleared for similar reasons.
• Z is set if the data moved was zero. It is cleared if it was any other value.

Remember, only 8 bit values are allowed and these must be between -128 and 127.

A number of 68000 instructions have this ‘quick’ mode, but why is it quick? Let us compare the
MOVEQ \#0,D0 with its equivalent MOVE.L \#0,D0. We simply see two different forms of what is
effectively the same instruction, the QL’s processor sees things a bit differently, as follows :



44 Chapter 2. The 6800x Instruction Set

First MOVEQ \#0,D0 is a 16 bit instruction in memory. MOVE.L \#0.D0 is also a 16 bit instruction
but it is followed in memory by a long word (32 bit) holding the data, in this case zero. This makes
the MOVEQ instruction 3 times smaller than the MOVE.L one. As the processor has less data to fetch
from memory, it takes less time to read the instruction and its data, therefore it is quicker. Looking
at the 68008 timing chart, it takes the MOVEQ instruction 8 clock cycles to execute and the MOVE.L
24 clock cycles.

And that is about it for the 68008’s MOVE instructions. This is probably the instruction with the
most variants and as I said before, probably the most used instruction in any program.

2.2.1 Exercise

1. Write down the correct instruction which will copy 4 bytes of data from address $20000 into
data register D7.

2. What is the fastest way to get the 8 bit value of 17 into all 32 bits of register D2?

3. What instruction would you use to copy the lowest 16 bits of register D1 into the lowest 16 bits
of register D3? What happens to the data in D1 after the move and what happens to the data that is
currently held in D3?

4. How would you place the lowest byte of D1 into a memory location which is 10 bytes further on
from the address currently held in A0?

5. Why is the MOVE instruction ‘wrongly’ named?

6. What does a privileged instruction require before it can be executed?

7. What happens if a privileged instruction is executed in user mode?

8. How many data registers does the 68008 have and how many address registers?

9. What values are set in each of the condition codes when the instruction MOVEQ #0,D1 is
executed?

10. What values are set if the instruction executed was MOVEA.L #0,A0?

2.2.2 Answers

1. MOVE.L $20000,D7

2. MOVEQ #17,D2 or MOVEQ #$11,D2

3. MOVE.W D1,D3. Nothing happens to the data in D1. The highest word on D3 is not affected
but the lower word is overwritten by the lowest word from D1.

4. MOVE.B D1,10(A0) or MOVE.B D1,$0A(A0).

5. The MOVE instruction actually copies data from source to destination, it does not move it in the
traditional sense of ‘it was over there but it has been moved to over there’.

6. The processor must be in supervisor mode.

7. A privilege exception will be generated (and the QL will probably hang).

8. There are 8 data registers and 9 address registers but only one of the A7 ‘twins’ can be used at a
time.

9. The Z flag is set to one and all the rest are reset to zero except the X flag which is unaffected and



2.3 The CMP Instruction Family 45

keeps its previous value.

10. No flags are changed. They all keep their previous values.

2.3 The CMP Instruction Family

While all this talk of moving data around, be it in memory or within the processor’s internal
registers, is ‘interesting’, being able to move data is not much use if you cannot do anything with it
when you have moved it. As the condition codes are affected by data movements we can sometimes
determine the value of the data we moved. This is of course true only if we want to know if the
value we moved was zero, or not zero, positive or negative but that’s about as accurate as we can
get using the MOVE instruction.

If we need to compare two values we will need to use the CMP family of instructions. CMP stands for
‘Compare’ and allows data to be compared against specific values, registers or memory contents.

The general format of the CMP instruction is:

1 CMP. s i z e sou rce , d e s t i n a t i o n

The CMP instruction has the effect of carrying out a subtraction of source from destination without
changing the destination at all. What it does change is the condition codes, and these will be set as
follows :

• X flag is never affected. It remains as it is.
• N flag is set if the result was negative. If the result was positive, N is cleared.
• V is set if the result caused an overflow otherwise cleared.
• C is set if a ‘borrow’ was generated and cleared otherwise.
• Z is set if the result was zero. It is cleared if it was any other value.

This instruction can be carried out in all three sizes - byte, word or long.

One of the common uses of this instruction, and perhaps the easiest to understand, is testing to
see whether two values are the same. If they are then the result of the ‘subtraction’ of source from
destination will always be zero. If the result is zero then the Z flag can be tested (somehow - we
shall see later) and then some actions taken if it is set while others can be taken if it is not set.

The instruction:

1 CMP. L D1 , D2

Will set the Z flag if the same value is present in both D1 and D2. If they are different, then the Z
flag will not be set.

There are only four variations of the CMP instruction - unlike MOVE which has a few more. The first
is simply CMP itself. This is used when comparing with a data register as in the above example. The
source, however, can be any of the 68000 addressing modes - although you cannot compare an
address register and a data register using the BYTE size. This means that:

1 CMP.W A0 , D2

is a legal instruction, but that:



46 Chapter 2. The 6800x Instruction Set

1 CMP. B A0 , D2

Is not. It is of course allowed that the data be POINTED to by an address register, as in:

1 CMP. B 0(A0 ) , D2

Which compares the byte of data at the address held in A0 with the byte of data held in the lowest
byte of register D2.

CMPA - is the form of the instruction used when comparing against a destination which is an address
register. It is very similar to the CMP variation, but only word and long sized comparisons can
be made. If the word size is used, then watch out for the old favourite pitfall of sign extension.
Whatever word sized data is used for the source of this comparison will be sign extended up to a
long word and then compared with the entire 32 bits of the address register.

This means that:

1 CMPA.W #$FFFF , A3

Would set the Z flag if and only if A3 contained the value of $FFFFFFFF but would not set it if A3
contained the value $0000FFFF. Beware. If at all possible, make your code explicit. So if you want
to test A3 as having $FFFF in its lower word, use CMPA.L \#\$FFFF,A3 instead of the word sized
version.

CMPI - is the third variation and this one is used when testing any address mode destination (except
PC relative or an address register’s contents) against source data which is, quite simply, a number.
This variation can be used in all 3 sizes. The format of the instruction is :

1 CMPI . s i z e # da t a , d e s t i n a t i o n

If the destination is a data register, then the instruction is equivalent to the CMP instruction.

CMPM - is the final variation. It is used to compare one memory location with another. It can be used
in all 3 sizes but can only be used in a single address mode - address register with post-increment.
The format is always:

1 CMPM. s i z e ( An ) + , ( An)+

The two address registers are pointers to the memory addresses to be compared and after this
instruction, the flags have been set according to the result of the ‘subtraction’ while both address
registers have been incremented by 1, 2 or 4 depending upon the size of the data being compared.

2.4 Signed and Unsigned Numbers

Before we take a closer look at the condition codes and how we can use them to alter the flow of a
program - that is, how we can implement loops, if then else etc, we need to take a break and discuss
the differences between signed and unsigned numbers.



2.4 Signed and Unsigned Numbers 47

When we MOVE some data into a data register the same number can actually mean two different
things. Confused? You will be!

If we use an 8 bit number as an example, the data $FF can either mean 255 or minus one. In a 16
bit example, $FFFF can mean either 65535 or -1 and in a 32 bit long word, $FFFFFFFF means
either 232 −1 or −1.

The important thing to remember is that it is you, the programmer, who decides which version is in
use at any particular time.

Ok, how does it work? The 68000 family of processors can use signed or unsigned numbers. If the
signed version is in use then the number will be either negative (less than zero) or positive (zero or
greater). If unsigned numbers are being used then the value will always be positive. How can the
processor tell the difference?

The answer to the question ‘is this number signed or unsigned?’ is either ‘yes’ or ‘no’ equivalent to
one or zero in binary terms. This implies that a single bit can be used to hold the sign of the number
and this is exactly how it happens. By convention the most significant bit of the number holds the
sign. A one indicates that the number is negative while a zero indicated that it is not.

Those of you who are thinking ahead of me now might well be saying ‘but surely using a single bit
of the register will reduce the amount of numbers that can be represented by a factor of two?’. Not
quite.

In binary, the numbers representing the hexadecimal values $00 to $0F will all fit into a half byte or
nibble. A nibble is 4 bits and each bit represent a single power of two in the number.

Just as 1231 means (1∗103)+(2∗102)+(3∗101)+(1∗100), which is, (1∗10∗10∗10)+(2∗
10∗10)+(3∗10)+(1∗1) which is, 1000+200+30+1 which is the number we have at the start
of all this, the same is true in binary.

The binary nibble 1010 is (1 ∗ 23)+ (0 ∗ 22)+ (1 ∗ 21)+ (0 ∗ 20), which is (1 ∗ 2 ∗ 2 ∗ 2)+ (0 ∗
2 ∗ 2)+ (1 ∗ 2)+ (0 ∗ 1), which is 8+ 0+ 2+ 0, which is 10 in decimal with converts to $0A in
hexadecimal.

All the possible values that can be held in an unsigned nibble are 0000 (zero) up to 1111 (15 or
$0F) and conversion is a matter of adding up each power of two in the number. From the right we
have 20 which is simply one. Then 21 or two and so on.

In an unsigned nibble the most significant bit (23) is used to hold the sign, so all numbers below
unsigned 7 are positive while those ‘above’ 7 are actually negative and so are below 0.

If the highest bit was not the sign bit it would represent 23 or 8. To convert into a signed value
simply negate the 8 to get minus 8, and add all the other bit values to it. Taking the same binary
example of 1010 as above, this is now (−1∗23)+(0∗22)+(1∗21)+(0∗20). This gives minus 8
plus 2 which is minus 6. This implies that for a signed number the range is minus 8 to plus 7 which
is still a possible 16 values as with the unsigned version, just shifted slightly down the number
scale.

That is the only difference between signed and unsigned numbers. The ranges of values in a byte
are minus 128 to plus 127, in a word it is minus 32768 to plus 32767 and for a long word it is minus
2147483648 to plus 2147483647.

When dealing with signed numbers any number which has a 8, 9, A, B, C, D, E or F in the most
significant digit (hex that is) is negative. All the rest are positive. I find the quickest way to find the
equivalent negative value is to subtract from 2bits. For example −1 in an 8 bit byte is 28 −1 which
is 256−1 which is 255. 255 in hex is $FF which is the 8 bit representation of −1. Similarly, −10



48 Chapter 2. The 6800x Instruction Set

is 256−10 = 146 which is $F6. Use 65,536 for 16 bit words and 4,294,967,296 for 32 bit long
words.

Enough for now. Just remember when coding a program in assembler that numbers can be two
different values at the same time. You determine which one is appropriate at any one time. It is
far easier to consider unsigned numbers all the time but this might not be applicable. Writing a
program to record the number of sheep jumping over a fence need never use signed numbers, while
the amount of money in your bank account probably will. Just remember to be consistent.

2.5 Testing Condition Codes and Branching

As you may remember when data is MOVEd into a data register or memory address, certain condition
codes are set or unset. These codes can be used, along with the results of a CMP instruction and/or
the discussion of signed and unsigned numbers above, to determine program flow. To change the
flow, we use the branch instruction also known as Bcc or Branch on condition code. The general
format of a Bcc instruction is:

1 Bcc l a b e l

The label part defines where the branch will be to (the destination) and is an offset from the current
program counter and of course may be positive or negative.

A branch instruction is equivalent to a SuperBasic GOTO command. Much frowned upon by purists,
but useful in certain situations. Never say ‘Never use a GOTO’ because in assembly language you
almost always have one!

There are a number of ‘branch’ instructions that look at the condition codes and change the course
of your program according to what they find. There are 14 of these and some appear remarkably
similar to others. They are listed in Table 2.1:

There is one more branch instruction that does not care about the flags, this is the BRA or Branch
unconditionally instruction. It is the most like a GOTO instruction as that is its exact purpose - goto
some other place in the program.

If the displacement value will fit into a single byte (-128 to +127) then a ‘short’ branch will take
place. This entire instruction fits into a single word. If the displacement is zero, then this would
normally indicate a short branch to the next instruction in the program. As this is where the PC is
pointing anyway the zero displacement is used to signify a long branch and the word following is
used as a 16 bit displacement allowing relative values between -32768 to +32767.

The short branch is written as Bcc.S with the dot and ‘s’ indicating the shortness. Most assemblers
default to the long branch which adds 2 bytes to your program for every Bcc instruction in it. I find
the ‘best’ way to reduce the ‘wasted’ bytes is to make all branches short and the assembler will
reject those which are out of range.

One of the most confusing aspects of assembly language programming for new and experienced
coders alike is ‘which are the signed and unsigned tests?’ I always have to look it up and I have
never found a place where all the tests are listed together with the signed and unsigned comparisons.
You won’t have this problem as I have listed them all in Table 19.1.

In the above description of the Bcc instructions I state, for example, that the BNE instruction will
branch if the last result was not zero. This is not quite the case. If I had just loaded a data register



2.5 Testing Condition Codes and Branching 49

Branch Name Signed/unsigned Description

BCC Branch Carry Clear Unsigned The branch is executed if the carry flag
is not set - ie zero.

BCS Branch Carry Set Unsigned The branch is executed if the carry flag
is set - ie one.

BEQ Branch Equal Both Branch only if the result of the last op-
eration caused the zero flag to be set.
MOVEQ #0,D0 for example.

BGE Branch Greater or Equal Signed Branch if the last operation resulted in a
signed number that was zero or greater.

BGT Branch Greater Than Signed Branch if the last result was greater that
zero.

BHI Branch Higher Unsigned Branch if the last result was greater than
zero.

BLE Branch Less or Equal Signed Branch if the last result was zero or less.
BLS Branch Lower or Same Unsigned Same as BLE, but ‘equal’ replaced by

‘same’.
BLT Branch Less Than Signed Branch only if the last result was less

than zero.
BMI Branch Minus Signed Branch if the result of the last operation

was negative. Ie less than zero but not
including zero.

BNE Branch Not Equal Both Branch if the last operation resulted in
a non-zero outcome. CMPI.L #1,D1 if
D1.L is not holding the value 1.

BPL Branch Plus Signed Branch if the result of the last operation
is positive ie zero or greater.

BVC Branch oVerflow Clear Both Branch if the last operation left the V
flag unset.

BVS Branch oVerflow Set Both Branch if the last operation left the V
flag set.

Table 2.1: Branch on condition instructions.

Test for Signed Unsigned

Greater Equal BGE BCC
Greater than BGT BHI
Equal BEQ BEQ
Not Equal BNE BNE
Less Equal BLE BLS
Less than BLT BCS
Negative BMI Not applicable
Positive BPL Not applicable

Table 2.2: Signed & Unsigned Tests.



50 Chapter 2. The 6800x Instruction Set

with some value which was not zero then the branch would be taken, as in the following fragment
of code:

1 MOVE. L ( A0 ) , D1
2 BNE. S Somewhere

If, on the other hand, I was comparing two registers then the branch would have been taken if they
did not have exactly the same contents :

1 CMP. L D3 , D4
2 BNE. S n o t _ e q u a l
3 BHI . S g r e a t e r

So you can see that there are more ways to use these conditional branches. Bear in mind, however,
that the CMP is simply a subtraction with the answer ‘thrown away’ and it is that discarded result
that is being checked. One other area of confusion is which register is greater in the BHI instruction
above?

In a CMP instruction it should be read as Destination CMP source. If this is followed by a Bcc then it
means branch if the destination is condition source. So in the above code fragment, we will branch
to the label ‘greater’ if and only if D4 is greater than D3.

There are other instructions that affect the flow of a program and these are the ‘looping’ constructs
or DBcc as they are written. These are the ‘Decrement and branch until condition. Confused? All
will be revealed in the next chapter.

2.6 Coming Up...

In the next chapter we will take a closer look at some more branching instructions and start thinking
about the project1.

1The project was to be a disassembler named “QLTdis”, but it fell dramatically by the wayside and is not discussed
further in this book.



3. The 6800x Instruction Set - continued

3.1 Introduction

The preceding chapter started off our great expedition into the various instructions used by the
6800x processor. In this chapter we continue in the same vein. There are still quite a few instructions
to cover.

3.2 More Branches.

At the end of part 2, I left you with a promise that the DBcc instructions would be explained in this
part, but just before we do that, there is the BSR instruction. This means ‘Branch to Sub-Routine’
and acts very much like GOSUB in SuperBasic (an instruction I have never used in SuperBasic, but
use almost in every program in assembler - strange that.)

BSR comes in 2 sizes - byte and word. The format is:

1 BSR . S l a b e l

or

1 BSR l a b e l

Label is the destination of the subroutine to be executed. BSR is a PC relative instruction in that the
destination is relative to the program counter - although it does not really look it.

The size of the instruction, byte or word, defines the size of the displacement from the PC of the
following instruction to the address of label. This displacement is added to the PC and the next
instruction executed is the one at that address (or PC + displacement). As the displacement is
signed, the byte sized BSR can ‘gosub’ -128 to +127 bytes from the PC while the word sized BSR



52 Chapter 3. The 6800x Instruction Set - continued

can ‘gosub’ -32,768 to +32,767 bytes from the PC. Although the resulting address must, of course,
be even.

At this point, a small example will maybe make things a bit clearer. Consider this chunk of (useless)
code. It serves no useful purpose apart from showing the use of BSR (and a few of the other
instructions we have already discussed.).

Read through the following code and at the end I shall explain what it is doing. The only instruction
not yet explained is RTS which for now simply means ‘Return To Sender’ - similar to RETURN or
END DEF (sort of) in SuperBasic.

1 S t a r t MOVEQ #0 ,D1
2
3 Again BSR . S Addon
4 CMPI . L #10 ,D1
5 BNE. S Again
6 MOVEQ #0 ,D0
7 RTS
8
9 Addon ADDQ. L #1 ,D1

10 RTS

Listing 3.1: BSR Example

The code starts by setting D1 to zero in all 32 bits - it is a long sized move. The label ‘Start’ simply
identifies the start of the code fragment and need not be called start - it could be called fred. It acts
like a line number in SuperBasic.

The second line of code calls a sub-routine called ‘addon’ which lives only a few bytes further on -
for this reason the byte sized variant of BSR is used and this makes the program smaller and slightly
quicker - as explained later. Had the distance to the sub-routine been more than 127 bytes (or less
than -128) then the assembler would have complained and the source would have had to have been
amended to remove the ‘.s’ from the instruction.

The second line also has a label - ‘Again’. Labels are used in assembler programs to mark significant
places in the code. In SuperBasic every line must have a number - in assembler only those referenced
in the code need have one, but there is no problem putting labels where it makes the code more
readable.

Following on, there is a check to see if the value in D1.L is 10 (decimal) followed by a branch if
not equal zero (BNE.S) to the label ‘Again’. If the value in D1 is not 10 the Zero flag will not have
been set and so the code will start executing from the label ‘Again’. If D1.L does equal 10 then the
branch to ‘Again’ will be ignored.

The next line sets D0.L to zero. This is because any code that runs on a QL either as a result of a
CALL address or EXECing1 a file returns any error codes to QDOS in D0.L and zero shows that
no error has taken place. All this will be explained in a later article.

The RTS instruction ends a subroutine and means return to where you came from (almost). If
the above code - beginning at ‘Start’ was called from SuperBasic, the RTS would return us to
SuperBasic. If it was called from some other part of the assembler program, it would return us to
the next instruction in that program.

The subroutine called from the second line begins at the label ‘Addon’. It is very simply and adds 1

1Actually, only CALL and EXEC_W take any notice of the error code in D0 when returning to SuperBasic. Jobs
executed with EXEC have no effect when they exit with D0 set to a non-zero value. More on this later in the series.



3.2 More Branches. 53

to the value in D1.L before the RTS returns to the place where it was called from.

Put simply. The code above loops around adding 1 to D1.L until such time as D1.L equals 10. At
this point the code returns to wherever it was called from.

This is not quite true. The RTS instruction returns back to the instruction that follows the BSR one.
So the above code returns to execute the CMPI.L \#10,D1 instruction after running the code in the
‘Addon’ subroutine.

Now that we have a few more instructions under our belts, there will be more bits of code appearing
in the rest of the series. This allows the reader to alleviate the boredom of these articles and allows
me to illustrate some examples of what I am trying to say!

1 For D0 = 10 t o −1 s t e p −1 . . .

Looks a bit like SuperBasic that, but you can do the very same in assembler as well. The above
code illustrating the BSR instruction can be rewritten to use the DBcc or ‘Decrement and Branch’
instructions. These are very similar to the Bcc instructions from part 2 of the series but they have
an additional purpose. They allow a loop to be executed a set number of times and also can cause
an exit from the loop if a certain condition occurs while executing the loop.

It might be better if these instructions were called DBUcc as in ‘Decrement and Branch Until
condition’ because that is actually what they do. The full set of DBcc instructions is described in
Table 3.1.

Mnemonic Branch Until Condition

DBCC Carry clear
DBCS Carry set
DBEQ Zero flag set
DBF (or DBRA) Branch false or always
DBGE Greater or equal
DBGT Greater than
DBHI Higher
DBLE Less or equal
DBLS Lower or same
DBLT Less than
DBMI Minus
DBNE Not equal (zero flag not set)
DBPL Plus
DBT True. Very strange instruction, see below
DBVC Overflow clear
DBVS Overflow set

Table 3.1: Decrement and branch instructions.

The format of the instruction is:

1 DBcc Dn , l a b e l

The counter is always a data register, D0 to D7, and only the lowest word is affected. The label
is specified as a 16 bit displacement from the PC to the next instruction to be executed. The



54 Chapter 3. The 6800x Instruction Set - continued

displacement is, as usual, signed allowing branches of between -32,767 and +32,768 bytes.

This instruction does not affect the condition codes. They remain the same as they were before the
instruction.

The operation of the instruction is in three parts:

• First, the condition is tested to determine if the termination condition of the loop has been
detected. This is the cc part. So a DBCS checks to see if carry is set. If the condition is
detected, no branch will be performed and no decrement of the data register will be carried
out either.

• Second, if the condition is not detected, the lowest 16 bits of the data register is decremented
by 1. If this results in a value of -1, then the loop is also terminated and no branch takes
place.

• Third, the branch is taken to the label specified. (PC relative).

Another example:
1 S t a r t MOVEQ #1000 ,D1
2 MOVEQ #0 ,D2
3 Loop ADDQ. L #1 ,D2
4 CMPI . L #100 ,D2
5 DBNE D1 , Loop
6
7 More ; More code h e r e . . .

Listing 3.2: DBNE Example

D1.L is initialised with 1,000 and D2.L is set to zero. Then the start of the loop (at label ‘Loop’)
where 1 is added to D2.L. Following the addition, D2 is checked to see if it equals 100. The DBNE
instruction checks the zero flag and if not set - therefore D2 is not equal 100 - subtracts 1 from D1
and if this does not result in D1 becoming -1, branches to the label ‘Loop’ to go round again.

At the label ‘More’ how can you tell which of the two cases ended the loop? As you know, the loop
is ended when the condition is detected or the counter reaches -1 As the DBcc instructions do not
change the flags you can make a simple check on the Zero flag or test D1 to see if it is -1 or not. So
the code that goes in at label ‘More’ will be this:

1 More BNE. S Got_100
2 Not_100 ; P r o c e s s D1 = −1 h e r e
3 ;
4 Got_100 ; P r o c e s s D1 = 100 h e r e
5 ;

Obviously, if we run a loop 1001 times where D1 goes from 1000 to -1, adding 1 to D2 then at
some point D2 must equal 100 and that will be the only termination of the loop. D1 will never get
to -1.

There are two ‘interesting’ DBcc instructions. These are DBF (Decrement and Branch Until False)
and DBT (Decrement and Branch Until True). What is so interesting about these two?

DBF is commonly written as DBRA which is more meaningful as it implies that a decrement will
be done followed by a branch. This is exactly what happens. The condition FALSE can never be
created so the instruction always branches until the counter becomes -1.

DBT is the opposite. It never branches because the condition is always detected. I have never seen a
DBT instruction used in any program I have read, written or disassembled.



3.2 More Branches. 55

Note that the loop is terminated when the counter becomes set to -1. This means that the above
loop will have 1,001 iterations assuming that D2 never became 100. This can cause confusion to
programmers used to processors that stop at zero. I learned on a Z80 (Sinclair ZX81) and there was
a DJNZ instruction which subtracted 1 from the B register and branched if it was non zero.

To loop around 10 times you set B to 10 and just did it. On the 68000 series, you would set the
counter to 9 not 10. Some programmers do this and others do it with the counter set to 10 but skip
the first iteration. The two examples shown in Listing 3.3 and Listing 3.4 are doing the same thing.

1 S t a r t MOVEQ #10 ,D0
2 BRA. S Skip
3 Loop BSR U s e f u l _ c o d e
4 Skip DBF D0 , Loop

Listing 3.3: Looping Example

1 S t a r t MOVEQ #9 ,D0
2 Loop BSR U s e f u l _ c o d e
3 DBF D0 , Loop

Listing 3.4: Another Looping Example

In Listing 3.3 the programmer sets the counter to the number of times the loop is to be executed
but then skips over the loop code itself to the end of the loop. The counter is reduced to 9 and the
loop is entered properly this time. The subroutine at label ‘Useful_code’ will be executed when the
counter has values 9,8,7,6,5,4,3,2,1,0 or 10 times.

In Listing 3.4 the programmer sets the counter to 9 and then executes the code as normal. Once
again the loop code at subroutine Useful_code will be executed 10 times once again, with the values
9,8,7,6,5,4,3,2,1 and 0 in the counter register D0.

Note
George Gwilt (the author of the GWASL assembler we are using in this series) points out
that while the second example is better in terms of readability, there could be problems if the
value in the counting register is zero. As George says, the method of subtracting one from
the counter then dropping into the loop could lead to a loop that performs 65536 times rather
than zero times - how can this be?
Assume that this subroutine is called from another part of some program with the loop counter
in D1.W:

1 l o o p y _ b i t SUBQ.W #1 ,D1
2 loop BSR do_someth ing
3 DBF D1 , loop
4 RTS

Listing 3.5: Potentially Bug-ridden Looping Example

Obviously, the problem is only apparent when the loop counter is set by some calculation
elsewhere in the program, not when setting it directly with immediate data as in my examples
above.
Why would this fail, or more to the point, when?
Imagine if D1.W was 1 then the above subroutine called, what would happen? Well, remember
how the DBcc instructions operate in three parts :

• the condition, if any, is tested to see if it is true. In this case, the condition is ignored as
the DBF instruction will always loop (it has no condition to check).

• the lowest word of D1 is decremented by one. Then tested to see if it is -1 yet. If it is,
the loop is not taken and the RTS is executed

• Third, If the counter register is not -1 then the loop is taken to the code at label ‘loop’.



56 Chapter 3. The 6800x Instruction Set - continued

So, with D1 set to 1 on entry, the loop is carried out once with D1 adjusted to zero by the
SUBQ.W \#1,D1 instruction. The loop will then terminate. No worries here.
What happens if D1 was set to zero on entry?
D1 would be set to -1 by the SUBQ.W instruction, then the code at ‘do_something’ would be
executed - but we had a zero count so this is wrong straight away. On return, the condition
test would be checked - but as there is no condition with DBF, D1 would be decremented to
-2. This does not equal -1 so the branch would be taken and taken again and again until D1
once more became -1. Then it would have been executed 65,536 times too many!
So beware. I can highly recommend the following code instead:

1 l o o p y _ b i t BRA. S s k i p p y _ b i t
2 loop BSR do_someth ing
3 s k i p p y _ b i t DBF D1 , loop
4 RTS

Listing 3.6: Fixed Looping Example

Which will always avoid the above problem. Now if D1 was zero, it will be decremented
to -1 when it skips to the DBF instruction and this will correctly terminate the loop without
executing the code in the do_something sub-routine.
So keep in mind the fact that the loop stops when the counter reaches -1 and that the counter
is decremented before testing for -1. Also bear in mind that George is a far better assembler
programmer than I am - if he says something, believe it!!

Which is the best to use? It’s up to you. Sometimes I use the first form and sometimes the second.
As far as reading source code is concerned, I prefer the second method because you can write
something like :

1 S t a r t MOVEQ #10−1 ,D0
2 :

Which at least shows better that the loop will be executed 10 times. Unfortunately, when you
disassemble the above instruction the assembler has calculated that 10 - 1 is 9 and it has once again
become:

1 S t a r t MOVEQ #9 ,D0
2 :

The first method, where the loop counter is initialised with the actual iteration count, then skips
the loop loses out in that there is the extra BRA.S instruction which uses up 2 bytes every time it is
used, and the BRA.S has to be executed as well as the jump - all of this takes time.

3.3 Counting

3.3.1 Adding and Subtracting

In the above code fragments, I introduced the ADDQ instruction to add a value to a register. There
are a few arithmetic instructions covering addition, subtraction, division and multiplication.

1 ADD. s i z e sou rce , Dn
2 ADD. s i z e Dn , d e s t i n a t i o n



3.3 Counting 57

This adds the source to the destination. The destination is overwritten but source is not affected.
The size can be byte, word or long. All the flags are affected as follows:

• N is set if the result is negative, cleared if not.
• Z is set if the result is zero, cleared if not.
• V is set if an overflow was generated, cleared if not.
• C is set if a carry was generated, cleared if not.
• X is set to the same value as the C flag.

Note that byte sized ADDs cannot be done if source is An. If destination is An then ADDA should be
used, however, some assemblers will convert ADD Dn,An into ADDA Dn,An for you.

1 ADDA. s i z e sou rce , An

This adds the source to the address register specified. The size can only be word or long but note
that regardless of the size of source, the whole of the address register is affected. Words are sign
extended to 32 bits. This instruction has no effect on the condition codes.

1 ADDI . s i z e # da t a , d e s t i n a t i o n

This instruction adds immediate data to the destination. The flags are all affected as per the ADD

instruction above. The size can be byte, word or long. It is not permitted to use this to add to an
address register.

1 ADDQ. s i z e # da t a , d e s t i n a t i o n

This is a very quick version of the above ADDI but it can only be used to add values between 1 and 8
to the destination. The size is byte, word or long as required. This instruction is always 2 bytes long
where the ADDI can be 4 or 6 bytes. Use ADDQ wherever a value between 1 and 8 is to be added.

The flags are affected as per the ADDI instruction. The difference between this and ADDI is that you
can use ADDQ to add 1,2,3,4,5,6,7 or 8 to an address register. Useful in loops.

1 ADDX. s i z e Dx , Dy
2 ADDX. s i z e −(Ax) , − (Ay )

This one adds with the X flag added as well. It is useful when adding numbers together that are
more than a register long - 32 bits. If you were to write a program that used 8 bytes in memory to
store a number, then you could add two of them together using ADDX.

The destination becomes set to the value source + destination + X flag.

The flags are affected as follows:

• N is set if the result is negative, cleared if not.
• Z is UNCHANGED if the result is zero, cleared if not.
• V is set if an overflow was generated, cleared if not.
• C is set if a carry was generated, cleared if not.
• X is set to the same value as the C flag.



58 Chapter 3. The 6800x Instruction Set - continued

Note the Z flag. If the result is zero it will be left as it is and not changed. If the result is non zero it
is cleared. For this reason the Z flag should be set before any ADDXing takes place so that at the end,
the result of zero shows up by having the Z flag still set.

This instruction and the SUBX one are mostly used in multiple precision addition and subtraction
routines.

1 ABCD Dx , Dy
2 ABCD −(Ax) , − (Ay )

This is Add Binary Coded Decimal and is almost identical to ADDX above except that the values
in the source and destination are treated as BCD instead of binary. Only 8 bits of the source and
destination are affected.

1 S t a r t MOVEQ #$19 , D0
2 MOVEQ #$03 , D1
3 ABCD D0 , D1

Listing 3.7: ABCD Example

Assuming that the X flag is clear, this will result in D1 being set to $22 which is the result of adding
19 and 3 in DECIMAL. The hexadecimal numbers in the register $19 and $03 are interpreted as
decimal digits, one digit for each 4 bits. The above example is actually adding 25 and 3 to make 34!

The flags are affected as follows:

• N is undefined.
• Z is UNCHANGED if the result is zero, cleared if not.
• V is UNDEFINED
• C is set if a DECIMAL carry was generated, cleared if not.
• X is set to the same value as the C flag.

The Subtraction instructions are exactly the same as the Addition flags, but subtract instead. I have
listed them below, but not explained them - read the corresponding ADD instruction for details.

SUB, SUBA, SUBI , SUBQ, SUBX and SBCD .

3.3.2 Division and Multiplication

1 DIVS source , Dn

This instruction divides destination by source and puts the result into destination. Source is a word
size and destination is long. The operation is carried out using signed values. The size is always
word.

The destination word is divided by the source word and the result put into the destination low word.
The remainder is placed in the destination high word.

Any attempt to divide by zero will cause a divide by zero exception to occur and on a standard
QL this will lock up. If overflow is detected during the operation the overflow flag is set but the
operation is aborted and the source and destination are unaffected.



3.3 Counting 59

The flags are affected as follows:

• N is set if the quotient is negative, cleared otherwise. Undefined on overflow.
• Z is set if the quotient is zero, cleared if not. Undefined on overflow.
• V is set if division overflow is detected. Cleared otherwise.
• C is always cleared.
• X is never affected. (Unchanged)

For those of us with short memories or a long period since our schooldays, the quotient is the result
of the division. The remainder is what is left over.

1 S t a r t MOVEQ #100 ,D0
2 MOVEQ #9 ,D1
3 DIVS D1 , D0

Listing 3.8: DIVS Example

Results in D0 being set to $00010009 which is 9 remainder 1. The 9 is in the lowest word while the
1 is in the highest word.

The instruction should be read as ‘divide source into destination’.

1 DIVU source , Dn

This is identical to the above except that both operands are treated as unsigned numbers. The flags
are affected as per the DIVS instruction. Although the quotient is always positive, the N flag is set
to the value in the highest bit of the lower word of destination. (ie the sign bit of a 16 bit word.)

1 MULS source , Dn

Multiply the destination word by the source word and place the LONG result into the destination
register. Both operands are treated as signed numbers.

The flags affected are:

• N - set if the result is negative, cleared otherwise.
• Z - set if the result is zero, cleared otherwise.
• V - Always cleared.
• C - Always cleared.
• X - Unchanged.

1 MULU source , Dn

Multiply the destination word by the source word and place the LONG result into the destination
register. Both operands are treated as unsigned numbers. The flags are set or cleared as per the
MULS instruction. The N flag is set to bit 31 of the result.

3.3.3 Negation

1 NEG. s i z e d e s t i n a t i o n



60 Chapter 3. The 6800x Instruction Set - continued

This instruction converts the binary value in the destination to its two’s compliment value. This is
done by subtracting the current value from zero, putting the result back into the destination and
setting the flags. All the flags are affected by this instruction. The instruction can act upon byte,
word or long sized values.

The flags affected are:

• N - set if the result is negative, cleared otherwise.
• Z - set if the result is zero, cleared otherwise.
• V - set if an overflow occurred, cleared otherwise.
• C - Cleared if the result was zero, set otherwise
• X - Set the same as the C flag.

1 NEGX. s i z e d e s t i n a t i o n

Same as NEG above except the value in the X flag is also subtracted to get the final result. The flags
are not affected in the same way as NEG, but as follows:

• N - set if the result is negative, cleared otherwise.
• Z - set if the result is zero, unchanged otherwise.
• V - set if an overflow occurred, cleared otherwise.
• C - Set if a ‘borrow’ was generated, cleared otherwise.
• X - Set the same as the C flag.

1 NBCD d e s t i n a t i o n

This instruction works on byte sized values only. It is similar to NEGX above, but the values are
treated as decimal and not binary. The contents of the byte at ‘destination’ is subtracted from zero
then the current value of the X flag is subtracted as well. The result is put back into ‘destination’
and the flags set as follows:

• N - undefined
• Z - set if the result is zero, cleared otherwise.
• V - undefined
• C - set if a borrow was required, cleared otherwise
• X - Set the same as the C flag.

3.4 Coming Up...

In the next chapter we shall continue our look at the instruction set with a look at the logical
instructions.



4. The 6800x Instruction Set - continued

4.1 Introduction

Following on from the previous chapter, we now start to look at the logical instructions in the
MC6800x instruction set.

Logic is the heart of all computer systems - well, all digital ones anyway. Logic is how the central
processor works. The 68000 series of processors are no exception and in the instruction set, there
are a few logical operations that can be carried out. This chapter discusses those instructions.

4.2 Tie the NOT

The logical NOT instruction is probably the simplest of all this family of instruction. It converts the
destination address from its current state of ones and zeros into the exact opposite to zeros and ones.
The format is:

1 NOT. s i z e d e s t i n a t i o n

Size can be byte, word or long. The instruction carries out a ‘ones compliment’ of the destination
address. If you remember back to the discussion of ‘Twos compliment’ numbers earlier on in the
series, you will remember that converting a positive number to negative involved flipping all the
zeros and ones and then adding one to the result. The NOT instruction carries out the first part of
flipping all the ones and zeros over.

If D0.W holds the value of $0001 then after a NOT.W D0, it will hold the value $FFFE. All the
original zeros have become ones and vice versa.

NOT must not be confused with the arithmetic NEG instruction which carries out a ‘twos compliment’
negation of a value. (D0.W in the above example would become $FFFF which is equivalent to
NOT.W D0 followed by ADDQ.W \#1,D0)



62 Chapter 4. The 6800x Instruction Set - continued

NOT affects the flags in the following way:

• N is set if the result becomes negative - the most significant bit becomes a 1. Cleared
otherwise.

• Z is set if the result is zero, cleared otherwise.
• V is always cleared - you cannot create an overflow by inverting the bits.
• C is always cleared - there is no carry generated by flipping bits.
• X is not affected.

4.3 This OR That

Next up in the logical family is the OR instruction of which there are a few. OR is quite different
from NOT in that it needs to have two operands in order to be used. The format of the OR instruction
is:

1 OR. s i z e sou rce , Dn

or

1 OR. s i z e Dn , d e s t i n a t i o n

Note that in this form of the instruction either the source or the destination must be a data register.
The size can be byte, word or long.

This is the ‘inclusive or’ instruction - there is also an ‘exclusive or’ variety which we will see later
on in this article. An inclusive or works according to the truth table for Logical OR in Table 4.1.

Source Destination OR
0 0 0
0 1 1
1 0 1
1 1 1

Table 4.1: Truth Table for Logical OR.

Simply imagine each individual bit in the source is being OR’d with the same bit in the destination.
The result - which will be stored in the destination bit - will always be a 1 if one OR other of the
two bits being processed is a 1. If both are zero then the result will also be zero.

An example

D0.W contains $AAAA and D1.W contains $6543 the instruction

1 OR.W D0 , D1

Will result in D1.W being set to $EFEB and D0 will remain unchanged. How does this work? In
binary:

D0 = $AAAA = 1010 1010 1010 1010
D1 = $6543 = 0110 0101 0100 0011



4.3 This OR That 63

So using the truth table above, the result will be:

D1 = $EFEB = 1110 1111 1110 1011

The flags affected by OR are exactly the same as for NOT above.

The OR Immediate format of the OR instruction has the format :

1 ORI . s i z e # da t a , d e s t i n a t i o n

and can be byte, word or long sized. It is used when the source value in the OR is immediate data as
opposed to a register or memory address. Some, but not all, assemblers will allow you to write:

1 OR. s i z e # da t a , d e s t i n a t i o n

But the actual instruction assembled will be ORI instead. Again the flags are affected as for NOT.

1 ORI # da t a ,CCR

This instruction is used to set the flags to a set of known values as supplied in the immediate data.
This instruction only uses bits 0 through 4 of the data supplied as the other bits are not used in the
68008. As it is possible that future processors may introduce other flags, you are always best to
make sure that bits 6 through 7 are zero when using this (and the following) instruction. That way,
you won’t cause any ‘strange effects’ on a different processor.

The flags are set as:

• C is set if value in bit 0 of the data is a 1 otherwise unaffected.
• V is set if value in bit 1 of the data is a 1 otherwise unaffected.
• Z is set if value in bit 2 of the data is a 1 otherwise unaffected.
• N is set if value in bit 3 of the data is a 1 otherwise unaffected.
• X is set if value in bit 4 of the data is a 1 otherwise unaffected.

1 ORI # da t a , SR

This is a similar instruction to the one above, and does a similar job except it affects the entire
status register. The other difference is that the processor must be running in Supervisor mode for
this instruction to be carried out. If it is not then a privilege exception will be generated - this will
hang the QL (usually)

As above, the flags are set according to the data - bits 0 to 4. The rest of the status register is set as
follows:

• T (trace) is set if value in bit 15 of the data is a 1 otherwise unaffected.
• S (supervisor) is set if value in bit 13 of the data is a 1 otherwise unaffected.

The value in bits 10, 9 and 8 can be anything from 0 through 7. This is OR’d with the current value
in the interrupt level bits of the SR and the new value becomes the new interrupt level mask.

Once again, all unused bits must be zero in the data to prevent unpredictable results on different
processors. (it is called defensive programming.)



64 Chapter 4. The 6800x Instruction Set - continued

This instruction can be used to turn off all interrupts except level 7. These are known as non-
maskable interrupts as they cannot be turned off.

1 TRAP #0
2 ORI #$0700 , SR

This sets the QL so that only a level 7 interrupt will be actioned. The only problem here is that
CTRL ALT and 7 activate a level 7 interrupt and effectively hangs your QL. After the above
instructions, the supervisor mode is still in effect. (Work it out in binary!!) To exit from supervisor
mode ANDI \#\$07FF,SR would need to be done - this leads us nicely into the AND family.

4.4 This AND That

In a similar manner to the OR instruction, the AND instruction needs two operands to work on to get
a result.

The format of the AND instruction is:

1 AND. s i z e sou rce , Dn

or

1 AND. s i z e Dn , d e s t i n a t i o n

Note that as with the OR instruction, this form of the instruction requires either the source or the
destination to be a data register. The size can be byte, word or long.

AND works according to the truth table for logical AND as per Table 4.2.

Source Destination AND
0 0 0
0 1 0
1 0 0
1 1 1

Table 4.2: Truth Table for Logical AND.

Simply imagine each individual bit in the source is being ANDed with the same bit in the destination.
The result - which will be stored in the destination bit - will always be a 1 if and only if both bits
being processed are 1. If either are zero then the result will also be zero.

Using the same example as for OR above:

D0.W contains $AAAA and D1.W contains $6543 the instruction:

1 AND.W D0 , D1

Will result in D1.W being set to $2002 and D0 will remain unchanged. How does this work? Once
again, in binary:



4.4 This AND That 65

D0 = $AAAA = 1010 1010 1010 1010
D1 = $6543 = 0110 0101 0100 0011

So using the truth table above, the result will be:

D1 = $2002 = 0010 0000 0000 0010

The flags affected by AND are exactly the same as for NOT above.

The ANDI (immediate) instruction has the same variations as the ORI instruction as described above.
These being:

1 ANDI . s i z e # da t a , d e s t i n a t i o n

And can be byte, word or long sized. It is used when the source value in the AND is immediate data
as opposed to a register or memory address. Some, but not all, assemblers will allow you to write:

1 AND. s i z e # da t a , d e s t i n a t i o n

But the actual instruction assembled will be ANDI instead. Again the flags are affected as for NOT.

1 ANDI # da t a ,CCR

This is an instruction that is used to reset or clear some or all of the flags. The flags are reset as
follows:

• C is reset if value in bit 0 of the data is a 0.
• V is reset if value in bit 1 of the data is a 0.
• Z is reset if value in bit 2 of the data is a 0.
• N is reset if value in bit 3 of the data is a 0.
• X is reset if value in bit 4 of the data is a 0.

1 ANDI # da t a , SR

This is another instruction which works on the status register but affects the entire width of the
status register, not just the CCR byte.

As above, the flags are reset according to the value in bits 1 - 4 of the immediate data. The rest of
the status register is reset as follows :

• T (trace) is reset if the value in bit 15 of the data is 0.
• S (supervisor) is rest if the value in bit 13 of the data is 0.

The value in bits 10, 9 and 8 is ANDed with the current value in the interrupt level bits of the SR and
the new value becomes the new interrupt level mask.

All unused bits should be one in the data to prevent unpredictable results on different processors.

This instruction can be used to exit from supervisor mode. The instructions:



66 Chapter 4. The 6800x Instruction Set - continued

1 TRAP #0
2 ANDI #$D7FF , SR

Would set the QL so that supervisor mode was first switched on (by the (TRAP #0) and then only
the supervisor bit in the SR was cleared (bit 13) so the QL would revert to user mode. All other
modes and interrupt levels and flags would remain unchanged.

4.5 Exclusive OR Instructions

Having dealt with the inclusive or instructions above, it is now time for the exclusive or instructions.
This has the format:

1 EOR. s i z e Dn , d e s t i n a t i o n

Where size can be byte, word or long. Notice this time that EOR source,Dn is not permitted? I
wonder why? (I don’t know - does anyone?)

This instruction also sets the flags as per the NOT instruction. In the truth table for inclusive or,
there was a 1 bit set in the result when there was a 1 in either the source or destination or both.
Exclusive or is different and only allows a 1 in the result when there is a single 1 in either the source
or destination. As shown in the truth table for Logical EOR in table 4.3.

Source Destination EOR
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.3: Truth Table for Logical EOR.

Using the same example as OR and AND above we now have the following :

D0.W contains $AAAA and D1.W contains $6543 the instruction

1 EOR.W D0 , D1

Will result in D1.W being set to $CFE9 and D0 will remain unchanged. How does this work? Once
again, in binary:

D0 = $AAAA = 1010 1010 1010 1010
D1 = $6543 = 0110 0101 0100 0011

So using the truth table above, the result will be:

D1 = $CFE9 = 1100 1111 1110 1001

One feature of EOR is that if you EOR the result of a previous EOR with the same value again, you
get back to the original value. Using this code:



4.5 Exclusive OR Instructions 67

1 MOVEQ #$AAAA, D0
2 MOVEQ #$6543 , D1
3 EOR.W D0 , D1
4 EOR.W D0 , D1

Will return us to the state we were in before the first EOR, in that D1 will once again hold the value
$6543. Try to work it out for yourselves using the example above as a guideline.

This can be used in a sort of ‘Pretty Bad Privacy’ program where data is encrypted using EOR. The
following small program demonstrates this.

1 START MOVEQ #7 ,D0
2 LEA DATA_STUFF , A1
3 MOVEQ #100−1 ,D1
4 LOOP EOR. B D0 , ( A1)+
5 DBF . S D1 , LOOP
6 RTS
7
8 DATA_STUFF Put 100 b y t e s o f d a t a h e r e !

Listing 4.1: Pretty Bad Privacy Example

The LEA instruction is a new one and will be discussed soon. Suffice to say that it simply loads the
address of the label ‘data_stuff’ into the address register named. This must be used in QL programs
as they have to be able to run at any memory address. The LEA instruction allows this.

The above code is very simple and assumes that there is exactly 100 bytes of data stored in memory
at the location labeled ‘data_stuff’ To encrypt the data, simply call the routine at label ‘start’ and
100 bytes will be encrypted. To decrypt it, simply call ‘start’ again and the data will be restored.

Warn
This extremely bad for of encryption is extremely easily cracked because of the use of a
single byte to encrypt the data so don’t go using it for anything you value, such as your bank
account details!

EOR has the usual variations:

1 EORI # da t a , d e s t i n a t i o n

You will notice the absence of EORI source,Dn as mentioned above.

1 EORI # da t a ,CCR

EORI \#data,CCR is an instruction that is used to change some or all of the flags in the user byte of
the status register. The flags are changed as follows:

• C is changed if the value in bit 0 of the data is a 1.
• V is changed if the value in bit 1 of the data is a 1.
• Z is changed if the value in bit 2 of the data is a 1.
• N is changed if the value in bit 3 of the data is a 1.
• X is changed if the value in bit 4 of the data is a 1.



68 Chapter 4. The 6800x Instruction Set - continued

1 EORI # da t a , SR

EORI \#data,SR works upon the entire status register.

As above, the flags are changed according to the data - bits 0 to 4. The rest of the status register is
changed as follows:

• T (trace) is changed if the value in bit 15 of the data is 0.
• S (supervisor) is changed if the value in bit 13 of the data is 0.

The value in bits 10, 9 and 8 is EOR’d with the current value in the interrupt level bits of the SR and
the new value becomes the new interrupt level mask.

4.6 Shifting And Rotating

There are 4 shift and 4 rotate instructions, 2 going left and 2 going right.

ASL and ASR are arithmetic shifts while LSL and LSR are logical shifts. What is the difference?
Taking the logical shifts first we have :

1 LSL . s i z e Dx , Dy

or

1 LSL . s i z e # da t a , Dy

or

1 LSL .W a d d r e s s

LSR has the same format, it just shifts in the opposite direction.

For the first two variations above, the data in Dy is affected and the size can be byte, word or long.
The number of shifts that take place is defined by the value in register Dx or in the immediate data.

For the final variation, the size must be word only, and the data in that address and the address
above it, is affected. For this format, there can only be a single shift at a time.

What happens is that the data is shifted by a single bit at a time. The bit that is shifted ‘out’ of the
register is placed into the C and X flags, while the ‘vacant’ bit is filled with a zero.

Consider this example:

1 MOVEQ #$81 , D0 ; D0 . B i s 1000 0001
2 LSL . B #1 ,D0 ; Now i t i s 0000 0010 and
3 ; C and X a r e 1
4 MOVEQ #5 ,D2
5 LSL . B D2 , D0 ; Now D0 . B i s 0100 0000

Listing 4.2: LSL Example

Shifting the opposite way gives this:



4.7 Coming Up... 69

1 MOVEQ #$81 , D0 ; D0 . B i s 1000 0001
2 LSR . B #1 ,D0 ; Now i t i s 0100 0010 and
3 ; C and X a r e 1
4 MOVEQ #5 ,D2
5 LSR . B D2 , D0 ; Now D0 . B i s 0000 0010

Listing 4.3: LSR Example

LSL is a quick way of multiplying an unsigned number by 2 for each bit shifted.

LSR is a quick way of dividing an unsigned number by 2 - but the fractions are lost. Another couple
of examples:

1 MOVEQ #8 ,D0 ; D0 . L h o l d s 8
2 LSL . L #1 ,D0 ; D0 . L now h o l d s 16
3 LSL . L #2 ,D0 ; D0 . L now h o l d s 64

Listing 4.4: LSL Multlication Example

1 MOVEQ #10 ,D0 ; D0 . L h o l d s 10
2 LSR . L #1 ,D0 ; D0 . L now h o l d s 5
3 LSR . L #1 ,D0 ; D0 . L now h o l d s 2 b u t
4 ; n o t e t h e r e m a i n d e r i s ‘ l o s t ’

Listing 4.5: LSR Division Example

When specifying the number of shifts as immediate data, only values from 1 to 8 can be used. If the
number of shifts required is greater than this, then a register counter has to be used. When shifting
memory, the shift is always a single bit.

After a shift in either direction the flags are set as follows:

• N is set if the result became negative (MSB set to 1), cleared otherwise.
• Z is set if the result became zero, cleared otherwise.
• V is always cleared.
• C is set to the LAST bit shifted out, cleared if the shift count was zero.
• X is set to the LAST bit shifted out. unaffected if the shift count was zero.

The arithmetic shifts - ASL and ASR - preserve the sign of the value by duplicating the previous
value of the sign bit in the new sign bit, so everything shifts as above, but the most significant bit of
the byte, word or long being shifted, is shifted back into itself.

4.7 Coming Up...

In the next chapter we shall finish looking at the remainder of the instruction set for the MC6800x.
That should conclude the most boring bits of learning about the processor.





5. The 6800x Instruction Set - continued

5.1 Introduction.

In this chapter we’ll take a look at the remaining instructions which we have yet to cover. There are
not many left now - you’ll be glad to hear.

5.1.1 A Few Quickies!

This section deals with a few instructions that the QL programmers rarely, if ever, use. These
instructions are:

CHK
ILLEGAL
RESET
RTR
STOP
TRAPV

The CHK instruction has the format:

1 CHK <ea > ,Dn

and causes an exception to be generated if the value in Dn.W is less than 0 or greater than the value
in the effective address. On a normal QL this is totally ignored - the exception that is - however,
with a bit of deft QDOS programming, this can be redirected to your own routine. I have never
seen this done in any programs - yet! By the way, the value in the effective address is a two’s
compliment signed number. The flags affected are:

• N - set if Dn.W is less than zero, cleared is Dn.W is greater than the effective address value.
Otherwise it is undefined.



72 Chapter 5. The 6800x Instruction Set - continued

• Z - undefined.
• V - undefined.
• C - undefined.
• X - unaffected.

The format of the ILLEGAL instruction is quite simply:

1 ILLEGAL

and all it does, by default, is to crash the QL! It can however be redefined to do something useful as
with the CHK instruction. (We may get around to covering QDOS stuff in a much later episode.)
This instruction also causes an exception to be generated. No condition codes are affected. The
RESET instruction has the format:

1 RESET

and causes the ‘reset’ line to be ‘asserted’ causing all external equipment interfaced to the processor
to be reset. On the QL, it actually causes a system reset - similar to you pressing the reset switch.
This instruction will only be executed if the processor is running in supervisor mode, in user mode,
all that happens is that the program counter is incremented by 2 to skip over this instruction. No
flags are affected.

RTR has the format:

1 RTR

and is actually equivalent to the following two instructions:

1 MOVE ( A7) + ,SR
2 RTS

However, the MOVE (A7)+,SR instruction is privileged on the 68000 so can only be run in
supervisor mode. Using RTR is not privileged so the two instructions can be combined as one. This
is a useful instruction for subroutines where the status register is saved on the stack on top of the
return address. The following code is an example.

1 s t a r t BSR example
2 ; more code h e r e
3
4 example MOVE SR,−(A7 ) ; S t a c k t h e s t a t u s r e g i s t e r e t c
5 ; do some code h e r e
6
7 RTR ; Uns tack t h e s t a t u s code

Listing 5.1: RTR Example

What happens when a subroutine is called is that the return address is placed on the stack and then
the subroutine jumped to. In this example the status register is placed on the stack as well. This is a
word sized SR on top of a long sized Program Counter.



5.1 Introduction. 73

The subroutine carries out various bits of processing - probably trashing the status codes etc as it
does so. At the end, the old SR is put back into the SR and the return address placed in the PC by
the RTR instruction.

It is a quirk of the 68000 that the instructions to move data from the SR are not privileged while
those that move data into the SR are privileged. This is a handy way around this restriction.

Obviously, the various flags in the SR are changed according to the word removed from the stack
except for the supervisor bit which is unchanged.

The STOP instruction has the format:

1 STOP # d a t a

and causes the processor to put the word of data into the SR, increment the PC to point at the
instruction following this one, and then the processor just stops - until any trace, interrupt or reset
exceptions are generated. The interrupt must be higher that the current processor interrupt level
to have any effect. The flags are set according to the data word in the instruction. This is another
privileged instruction and is the processor is in user mode, and a privilege violation exception will
be generated.

The TRAPV instruction has the format:

1 TRAPV

and is used to cause an exception if the V flag is set. (Overflow flag). Normally this is ignored on a
QL but can be redirected with the afore mentioned QDOS jiggery pokery to do something useful.
No flags are affected.

5.1.2 A Few Little Bits

This section deals with instructions that check, change, set or otherwise fiddle about with the
individual bits in a register or memory address. All of these instructions have a similar format,
which is:

Bxxx Dn, < e f f e c t i v e a d d r e s s >
Bxxx # da t a , < e f f e c t i v e a d d r e s s >

They all TEST the bit about to be fiddled with before fiddling with it. The flags are set according to
the state of the bit before the fiddling was done. Remember this important fact. The bit number is
either supplied in a data register or as immediate data.

When the bit number is being processed the 68000 makes sure that it is in range for the actual data
being operated on. If the effective address is a data register (you cannot use these instructions on
address registers) then the actual bit number is bit number MOD 32.

If a memory address is being manipulated, the range is adjusted to be 0 to 8 using bit number MOD
8.

The flags are all unaffected except for the Z flag which takes the state of the ‘previous’ value of the
bit being manipulated.

The instructions are:



74 Chapter 5. The 6800x Instruction Set - continued

Instruction What it does Description

BCHG Bit CHanGe Changes the specified bit from a 1 to a zero or from a zero to a 1.
BCLR Bit CLeaR Puts a 0 into the specified bit.
BSET Bit SET Puts a 1 into the specified bit.
BTST Bit TeST Sets the Z flag to the value of bit specified.

Table 5.1: Bit Twiddling instructions.

This family of instructions are very useful when using a byte, word or long to hold 8, 16 or 32
different flags in a program as each one can be tested, set or reset individually and this takes place
within QDOS in a number of places.

As a small example, imagine you were writing a program and you needed to check when the user
typed an UPPERCASE character. Rather than checking every one for ‘A’ and ‘Z’ (which only
apply to the English language remember, you could set up a bitmap table of 256 bytes and have
a single bit represent uppercase, another could be for numeric, another for control/unprintable
characters etc etc. As each character was read, index into the table on that character code and check
the appropriate bit.

1 ;
2 ; Some code above t o g e t a c h a r a c t e r from t h e u s e r / f i l e e t c
3 ; Assume D1 . B h o l d s t h e c h a r a c t e r code .
4 ; Assume t h a t b i t 0 i s t h e u p p e r c a s e / l o w e r c a s e f l a g b i t .
5 ;
6
7 checkUC LEA bitmap , A1 ; A1 i s a d d r e s s o f t h e b i tmap t a b l e
8 EXT .W D1 ; Ensure D1 .W i s t h e c h a r a c t e r code
9 BTST # 0 , ( A1 , D1 .W) ; I s i t u p p e r c a s e ?

10 BEQ. S uppe r ; Yes , i f b i t z e r o i s s e t
11
12 lower ; p r o c e s s l o w e r c a s e h e r e
13
14 uppe r ; p r o c e s s u p p e r c a s e h e r e
15
16 b i tmap ; 256 b y t e s go here , one f o r e v e r y c h a r a c t e r .

Listing 5.2: Uppercase Check Example

The bitmap table has a single byte for each available character 0 to 255 and sets the bits in each one
according to the character type. In this example we use bit 0 for upper/lower case only so wastes 7
bits of each byte, but remember, these extra bits could be used to define control characters, digits,
hex digits, alphabetic, alpha-numeric, punctuation etc.

The advantage to this method is that different tables can be loaded for different languages. The
disadvantage is that the program will be slightly longer because of the need to store the table.

5.1.3 Testing, Testing

In QLTdis1, I have used the TST instruction to compare a value against zero. This is a useful
instruction and replaces CMPI.size #0,Dn. The format is:

1QLTdis is a long abandoned project for this Assembly Language tutorial. It fell victim to a lack of planning, foresight
and most likely, ability, on my part. When I say abandoned it hasn’t been lost for good ....



5.1 Introduction. 75

1 TST . s i z e < e f f e c t i v e a d d r e s s >

The flags are set differently from CMPI as well as the V and C flags are always cleared to zero.
CMPI doesn’t do this. The flags are:

• N is set if the operand is negative, reset if positive.
• Z is set if the operand is zero, reset otherwise.
• V is always cleared.
• C is always cleared.
• X is not affected.

Why use TST when CMPI will do as good a job? Well it is all down to three things really:

• Do you want to use TST or CMPI #0?
• Do you need to preserve the V and C flags?

TST is quicker. TST takes 8 clock cycles while CMPI takes 16, 24 or 26 depending on the operation.
Both take the same time to work out the effective address calculation, but TST also needs fewer
read cycles - 2 - while CMPI needs 4 or 6.

TAS is another testing instruction, which actually does two separate operations in one single atomic2

step. The format is:

1 TAS < e f f e c t i v e a d d r e s s >

The size is always byte and need not be specified. The flags affected are:

• N is set if bit 7 of the operand was set, otherwise cleared.
• Z is set of the operand was zero, Reset otherwise.
• V is always cleared.
• C is always cleared.
• X is not affected.

The instruction reads the byte at effective address, checks bit 7, sets the flags and then sets bit 7.
The modified byte is written back to the effective address. It is similar to the following code:

1 BTST #7 , < e f f e c t i v e a d d r e s s >
2 BSET #7 , < e f f e c t i v e a d d r e s s >

Obviously there are two instructions here which alter the flags, however, TAS does it in one. The
main point about TAS is that it is a single instruction which cannot be interrupted once it has started.
This makes it useful for multi tasking or multi processor systems where any sequence of instructions
can be interrupted.

In the above example, the system could be interrupted by a floppy disc I/O request between the end
of the BTST and the start of the BSET. This could result in a new value being placed into effective
address by the interrupting routine. The BSET would then possibly give the wrong results after it
executed.

2An atomic instruction is one that cannot be split, like the atoms in Chemistry used to be considered. The TAS

instruction effectively carries out a BTST and then a BSET instruction. While the two instructions could be usurped by the
scheduler the single TAS cannot. So rogue and intermittent problems cannot occur. TAS is useful when using semaphores
in your code. But that’s a whole different ball game!



76 Chapter 5. The 6800x Instruction Set - continued

This will not ever happen with the TAS instruction. If the above code was being used in a multi
processor system to synchronise access to some system resource, the two instructions could lead to
mis-synchronisation. Using TAS would not allow this to happen.

Finally in this section, although not quite a testing instruction, is the ‘set according to condition
code’ instructions. These have the format:

1 Scc < e f f e c t i v e a d d r e s s >

The size is always byte and is not specified in the instruction. What happens is that the condition
code is tested, and if found to be true, the byte in effective address is changed to be all ones
otherwise it is changed to be all zeros. The condition codes are as for Bcc and DBcc.

This sets a memory address or a byte in a register to 255 or 0 for true or false. On QDOS systems
we tend to use 1 for true and 0 for false. How can we quickly change from 255 and zero to 1 and
zero?

The answer is quite simple, 255 is an unsigned number but if it was signed, it would be -1. Simply
follow the Scc instruction with NEG.B as follows:

1 ; Do some code h e r e t o s e t c o n d i t i o n f l a g s .
2 SMI D1 ; S e t D1 . B t o $FF i f ‘ someth ing ’ was minus
3 NEG. B D1 ; D1 . B now i s $01 or $00 which i s what we want !

5.1.4 And Finally?

I think we are just about finished covering all those boring instructions, but we still have a couple
to do yet. These don’t really fall under any of the headings I have used up until now, so I simply
add them on at the end!

On the QL, assembly language programs must be written so that they are ‘relocatable’. All this
means is that you must not assume that your code will always run from a specific address but that it
could run from ANY address.

The LEA instruction which has been used quite a lot in QLTdis already allows just this to happen.
This has the format:

1 LEA < e f f e c t i v e a d d r e s s > ,An .

None of the flags are affected. So, a quick bit of revision, what is the difference between the
following two instructions?

1 MOVE < e f f e c t i v e a d d r e s s > ,A1
2 LEA < e f f e c t i v e a d d r e s s > ,A1

MOVE calculates the effective address and reads its contents into A1 while LEA calculates the
effective address and puts that into A1, not its contents.

This allows position independent code to be written and is a very much used instruction in QDOS
programs. It also helps get around the fact that PC relative mode addressing is forbidden as the
destination in a MOVE instruction. The following code will not assemble:



5.1 Introduction. 77

1 MOVE. L D0 , b u f f e r ( PC )

But this will, and does what is required:

1 LEA b u f f e r , A1
2 MOVE. L D0 , ( A1 )

There is a similar instruction called Push Effective Address and this has the format:

1 PEA < e f f e c t i v e a d d r e s s >

and simply calculates the effective address and puts it onto the stack. The stack pointer is pre-
decremented and none of the flags are affected. All this is very similar to the following:

1 LEA some_code , A1 ; Get t h e a d d r e s s o f some_code
2 MOVE. L A1,−(A7 ) ; S t a c k i t

But why would you use PEA to do this rather that the above, and what use is it afterwards? Apart
from it being shorter to code - one instruction instead of two - it doesn’t require a register to be
used. The address is on the stack, so what next?

Think about these instructions:

1 PEA some_code , A1 ; Get t h e a d d r e s s o f some_code
2 RTS

What has just happened? The address of the routine at ‘some_code’ has been placed on the stack,
then when RTS is executed, it returns control to the address which is on the stack. So this is another
way of doing this:

1 LEA some_code , A1
2 JSR ( A1 )

Why would you use this? I have absolutely no idea! But it is important to note that the first method
will never return to the address after the RTS because there is no return address on the stack. The
second and ‘normal’ method will return to the address after the JSR (A1) as the JSR stacks its return
address.

The next and final two instructions are seldom used in normal assembler programs on the QL - at
least, I have never seen one in all my years of reading & writing code.3 They are probably used
most by the code generated by various compilers that exists for the QL so that ‘stack frames’ can
be built and parameters passed to sub-routines created by the compiler. The two instructions are
LINK and UNLK and they do not affect any flags.

The LINK instruction has the format:
3And now, after all these intervening years, I’ve actually written an article on their very use after George pointed out

that he uses them, frequently, in GWASL and GWASS etc.



78 Chapter 5. The 6800x Instruction Set - continued

1 LINK An , # d i s p l a c e m e n t

and carries out the following actions:

• First the stack pointer is decremented by 4.
• Then, the current contents of An are copied onto the stack.
• Then the stack pointer is copied to An.
• Finally, the stack pointer has the displacement ADDED to it.

UNLK has the format:
1 UNLK An

and carries out the reverse of the LINK instruction in that the stack pointer is reloaded from An,
then An is reloaded from the value on the stack and the stack pointer is incremented by 4.

Assuming that A7 is currently holding value $20000 and A4 is holding $00123456 the the sequence
of instructions:

1 LINK A4,−$10
2 ; do some th ing h e r e . . .
3 UNLK A4

will result in the following:

• A7 will be decremented by 4 to $1fffc
• A4 will be stored at this address ($1fffc)
• A4 will then have $1fffc loaded into it
• A7 will have $10 subtracted (because we supplied a negative displacement) to give $1ffec.

This means that the code between the LINK and UNLK instructions can use the free space between
(a7) and -4(A4) for working space. There are 16 bytes available for use between these addresses
and they can be accessed using A4 as a ‘stack frame pointer’ and using negative offsets. Any
stacked valued set up prior to the LINK instruction can be accessed using positive offsets from A4.

Once the UNLK instruction is reached, we must not have changed the value in A4 or all hell will
break loose!

• A7 is set to the value in A4 which should be $1fffc.
• A4 will be set to the long word at 0(a7) which is where its original value of $00123456 was

stored by the LINK instruction.
• A7 will have 4 added to it giving the original $20000 that we had when the LINK was

executed.

5.1.5 So Here We Are!

Well, that is the end of the most boring part of this series. I apologise for the dreary nature of the
previous few chapters but I can’t think of any other way to make a micro-processor’s instruction set
interesting reading!

We have now covered all the 68008 instructions and the time has come to start putting the informa-
tion into practice. However, when I was learning all about 68000 assembly language, there were a
few concepts that gave me troubles - and I still have to look them up even today!



5.1 Introduction. 79

To make things a bit easier for you, here are my bug-bears and an explanation of how to get around
them.

Comparing Things

Comparing registers or registers and values etc always gives me problems. I can never remember
which flags are set or which ones to check when using signed or unsigned values. The following
should hopefully make life easier.

Remember, when using the CMP instruction, you should read it as ‘if destination condition source’.

Equality checks - signed and unsigned are the same.

1 CMP. L D0 , D1
2 BEQ. S e q u a l ; i f d1 = d0 go to e q u a l .

or

1 CMPI . L #10 ,D1
2 BEQ. S e q u a l ; i f d1 = 10 go to e q u a l .

Non-equality checks - signed and unsigned are the same.

1 CMP. L D0 , D1
2 BNE. S n o t _ e q u a l ; i f d1 <> d0 go to n o t _ e q u a l .

or

1 CMPI . L #10 ,D1
2 BNE. S n o t _ e q u a l ; i f d1 <> 10 go to n o t _ e q u a l .

Greater than - unsigned only.

1 CMP. L D0 , D1
2 BHI . S g r e a t e r ; i f D1 > D0 go to g r e a t e r .

or

1 CMPI . L #10 ,D1
2 BHI . S g r e a t e r ; i f D1 > 10 go to g r e a t e r .

Greater than - signed only.

1 CMP. L D0 , D1
2 BGT. S g r e a t e r ; i f D1 > D0 go to g r e a t e r .

or



80 Chapter 5. The 6800x Instruction Set - continued

1 CMP. L #−5,D1
2 BGT. S g r e a t e r ; i f D1 > −5 go to g r e a t e r .

Greater Than or Equal - unsigned only.

1 CMP. L D0 , D1
2 BCC. S g r e a t e r _ e q ; i f ( D1 >= D0 ) go to g r e a t e r _ e q

or

1 CMPI . L #5 ,D1
2 BCC. S g r e a t e r _ e q ; i f ( D1 >= 5) go to g r e a t e r _ e q

Greater Than or Equal - signed only.

1 CMP. L D0 , D1
2 BGE. S g r e a t e r _ e q ; i f ( D1 >= D0 ) go to g r e a t e r _ e q

or

1 CMPI . L #−5,D1
2 BGE. S g r e a t e r _ e q ; i f ( D1 >= −5) go to g r e a t e r _ e q

Less than - unsigned only.

1 CMP. L D0 , D1
2 BCS . S l e s s ; i f D1 < D0 go to l e s s

or

1 CMPI . L #5 ,D1
2 BCS . S l e s s ; i f D1 < 5 go to l e s s

Less than - signed only.

1 CMP. L D0 , D1
2 BLT . S l e s s ; i f D1 < D0 go to l e s s

or

1 CMPI . L #−5,D1
2 BLT . S l e s s ; i f D1 < −5 go to l e s s

Less than or equal - unsigned only.



5.2 Coming Up... 81

1 CMP. L D0 , D1
2 BLS . S l e s s _ e q ; i f D1 <= D0 go to l e s s _ e q

or

1 CMPI . L #10 ,D1
2 BLS . S l e s s _ e q ; i f D1 <= 10 go to l e s s _ e q

Less than or equal - signed only.

1 CMP. L D0 , D1
2 BLE . S l e s s _ e q ; i f D1 <= D0 go to l e s s _ e q

or

1 CMPI . L #10 ,D1
2 BLE . S l e s s _ e q ; i f D1 <= 10 go to l e s s _ e q

Signed Numbers being MOVEd

Remember also that flags and conditions are set when data is MOVEd into data registers, or after
arithmetic etc, so the following are valid as well. Obviously, the following code will not work
correctly if you find this in a real program - don’t use it!

1 MOVE D1 , D0 ; Copy D1 t o D0 & s e t
2 ; t h e f l a g s a c c o r d i n g l y
3 BEQ. S D 1 _ i s _ z e r o ; D1 i s now 0
4 BNE. S D 1 _ i s _ n o t _ z e r o ; D1 i s n o t 0
5 BGE. S D1_is_0_or_more ; D1 i s now 0 or g r e a t e r
6 BPL . S D1_is_0_or_more ; D1 i s now 0 or g r e a t e r
7 BGT. S D1_is_1_or_more ; D1 i s now g r e a t e r t h a n 0
8 BLE . S D 1 _ i s _ 0 _ o r _ l e s s ; D1 i s now l e s s t h e n 0
9 BLT . S D 1 _ i s _ n e g a t i v e ; D1 i s now l e s s t h a n 0

10 BMI . S D 1 _ i s _ n e g a t i v e ; D1 i s now l e s s t h a n 0

5.2 Coming Up...

That’s it, there are no more instructions to learn. In the next chapter, we will investigate the various
exceptions that can occur when things go wrong, and what if anything, we can do on the QL to
prevent and handle them.





II
6 6800x Exceptions And Exception Handling

85
6.1 Introduction
6.2 Exceptions
6.3 Working QDOS Exceptions
6.4 What Happens When an Exception Occurs?
6.5 Building an Exception Handler.
6.6 The Exception Handler Code.
6.7 How it Works.
6.8 Coming Up...

7 Extending SuperBasic . . . . . . . . . . . . . . . . 97
7.1 Introduction
7.2 Linking To SuperBasic
7.3 Procedures
7.4 Functions
7.5 Getting Parameters
7.6 Name Table Entries
7.7 Name List
7.8 The Maths Stack
7.9 Returning Values From Functions
7.10 Channel Tables
7.11 Exercise
7.12 Coming Up...

8 The QL Screen . . . . . . . . . . . . . . . . . . . . . . 123
8.1 Introduction
8.2 The Screen
8.3 Mode 4 - screen memory usage
8.4 Mode 8 - screen memory usage
8.5 That calculation again!
8.6 Problems
8.7 Exercise
8.8 Answer
8.9 Coming Up...

SuperBasic, QDOS and Other
Interesting Stuff. Part 1





6. 6800x Exceptions And Exception Handling

6.1 Introduction

In this chapter, we are going to get stuck into a fairly complex part of the 6800x processor’s
workings - exception processing.

6.2 Exceptions

As mentioned in the instruction summary in past articles, the QL processor runs in two modes - user
and supervisor - and some instructions cannot be run in user mode without causing an exception to
be generated. I promised to explain what these exceptions are, so here goes ....

An exception is an event or happening that causes the processor to deviate from its normal course
of action and to jump to a predetermined place in the operating system where it starts executing
a piece of code that handles such events. In QDOS (the QL’s operating system) many of these
routines have been ‘botched’ in an effort to save on memory and others simply do nothing. This is
unfortunate, however, all is not lost.

All 68000 series processors have an area of memory set aside to hold the exception table. This
table is 1024 bytes long and holds a full set of exception vectors - basically a long word holding
the address of the sub-routine that handles the appropriate exception. In QDOS this table is only
partially there as will become clear. There are 256 vectors normally, each one being 4 bytes long.
Vector zero is at address zero in the memory map and vector 255 is at address $3FC.

The vector table should look like Table 6.1.

It can be seen that a huge number of the vectors are reserved for Motorola to use in future processors.
The User vectors look interesting, but have been obliterated by some of the code in QDOS and
cannot be used.

On the QL, the vectors are actually as per Table 6.2.



86 Chapter 6. 6800x Exceptions And Exception Handling

Vector Address Purpose

000 0000 Reset - SSP value
001 0004 Reset - USP value
002 0008 Bus Error
003 000C Address Error
004 0010 ILLEGAL Instruction
005 0014 Divide by zero
006 0018 CHK instruction
007 001C TRAPV instruction
008 0020 Privilege violation
009 0024 Trace
010 0028 Line 1010 emulator
011 002C Line 1111 emulator
012 0030 Reserved for Motorola
013 0034 Reserved for Motorola
014 0038 Reserved for Motorola
015 003C Uninitialised Interrupt
016 0040 Reserved for Motorola
... ... ...
024 0060 Spurious interrupt
025 0064 Interrupt level 1
026 0068 Interrupt level 2
027 006C Interrupt level 3
028 0070 Interrupt level 4
029 0074 Interrupt level 5
030 0078 Interrupt level 6
031 007C Interrupt level 7
032 0080 TRAP #0
033 0084 TRAP #1
034 0088 TRAP #2
035 008C TRAP #3
036 0090 TRAP #4
037 0094 TRAP #5
038 0098 TRAP #6
039 009C TRAP #7
040 00A0 TRAP #8
041 00A4 TRAP #9
042 00A8 TRAP #10
043 00AC TRAP #11
044 00B0 TRAP #12
045 00B4 TRAP #13
046 00B8 TRAP #14
047 00BC TRAP #15
048 00C0 Reserved for Motorola
... ... ...
064 0100 User vector 1
... ... ...
255 03FF User vector 192

Table 6.1: MC6800x Exception Table



6.2 Exceptions 87

Vector Address Purpose Comment

000 0000 Reset SSP value
001 0004 Reset USP value
002 0008 Bus Error Ignored by QDOS
003 000C Address Error May be redefined
004 0010 ILLEGAL Instruction May be redefined
005 0014 Divide by zero May be redefined
006 0018 CHK instruction May be redefined
007 001C TRAPV instruction May be redefined
008 0020 Privilege violation May be redefined
009 0024 Trace May be redefined
010 0028 Line 1010 emulator Unusable
011 002C Line 1111 emulator Unusable
012 0030 Reserved for Motorola Unusable
013 0034 Reserved for Motorola Unusable
014 0038 Reserved for Motorola Unusable
015 003C Uninitialised Interrupt Unusable
016 0040 Reserved for Motorola Unusable
... ... ...
024 0060 Spurious interrupt Ignored by QDOS
025 0064 Interrupt level 1 Ignored by QDOS
026 0068 Interrupt level 2 QL System interrupt
027 006C Interrupt level 3 Ignored by QDOS
028 0070 Interrupt level 4 Ignored by QDOS
029 0074 Interrupt level 5 Ignored by QDOS
030 0078 Interrupt level 6 Ignored by QDOS
031 007C Interrupt level 7 Hangs the QL - May be redefined
032 0080 TRAP #0 Make a call to QDOS
033 0084 TRAP #1 Make a call to QDOS
034 0088 TRAP #2 Make a call to QDOS
035 008C TRAP #3 Make a call to QDOS
036 0090 TRAP #4 Make a call to QDOS
037 0094 TRAP #5 Ignored by QDOS - May be redefined
038 0098 TRAP #6 Ignored by QDOS - May be redefined
039 009C TRAP #7 Ignored by QDOS - May be redefined
040 00A0 TRAP #8 Ignored by QDOS - May be redefined
041 00A4 TRAP #9 Ignored by QDOS - May be redefined
042 00A8 TRAP #10 Ignored by QDOS - May be redefined
043 00AC TRAP #11 Ignored by QDOS - May be redefined
044 00B0 TRAP #12 Ignored by QDOS - May be redefined
045 00B4 TRAP #13 Ignored by QDOS - May be redefined
046 00B8 TRAP #14 Ignored by QDOS - May be redefined
047 00BC TRAP #15 Ignored by QDOS - May be redefined
048 00C0 Reserved for Motorola Unusable
... ... ...
064 0100 User vector 1 Unusable
... ... ...
255 03FF User vector 192 Unusable

Table 6.2: QDOS Exception Table



88 Chapter 6. 6800x Exceptions And Exception Handling

Note
All vectors marked “Unusable” have been botched in the ROM and have bits of code in place
of the vectors. So you can see not much is left. The designers of QDOS didn’t have enough
room in the early ROMs to fit all the code in. Some early QLs came with a ROM ‘dongle’
hanging out of the external ROM slot so that all the code could fit.
Later versions got rid of the ROM dongle, but the exception vector table had then been
‘redesigned’ to make the code fit. Luckily the developers did allow a number of the exceptions
to be redefined so that programmers could write their own routines to handle these exceptions.

6.3 Working QDOS Exceptions

RESET - vectors 0 and 1 - these two vectors are simply the values that are put into the SSP and
USP on system power up. Vector 0 gives the value for the stack pointer for supervisor mode
and vector 1 gives the stack pointer for user mode.

ADDRESS ERROR - this occurs whenever the processor tries to do a word or long sized operation
or access at an odd address. For example, the following code fragment will cause an address
error:1

1 MOVEA. L #1 ,A1
2 MOVE.W ( A1 ) , D0

On a normal QL this will usually cause the system to hang, but as the vector can be redefined,
we can use it to point to an address that can correctly handle this error. More on this later.

ILLEGAL INSTRUCTION - this occurs when an instruction is executed that is not a valid
instruction for the processor, or when the ILLEGAL instruction is executed. Illegal usually
crashes the QL, but can be handled by our own routines.

DIVIDE BY ZERO - This should be obvious. This is ignored on the QL, but can be redefined for
our own use.

CHK INSTRUCTION - Called when the CHK instruction is used and the value in a data register
is out of bounds, Ignored on the QL but redefinable.

TRAPV INSTRUCTION - Called when the TRAPV instruction is executed and the V flag is set.
Ignored by the QL but, once again, is redefinable.

PRIVILEGE VIOLATION - When a program running in user mode attempts to execute an
instruction that is privileged, this exception is raised. Ignored by the QL, but redefinable.

TRACE - If the trace (T) bit is set in the Status Register, this execption is generated after each
instruction. Can be redefined to call code in a machine code monitor program, but usually
ignored by the QL.

INTERRUPT LEVEL 2 - there are 7 levels of interrupt on a normal 68000 series processor, but
only one is used on the QL. The level 2 interrupt is generated by the internal electronics and
causes the keyboard to be scanned, the scheduler to switch tasks etc. Levels 1 and 3 to 6 are
ignored on the QL.

INTERRUPT LEVEL 7 - Level 7 is the non-maskable interrupt and is raised when you press
CTRL ALT 7 together. When the QL hardware was being built and debugged, some external
equipment was ‘bolted on’ and this combination of keys caused a level 7 interrupt which
activated the debugging equipment. Unfortunately, when the QL went into production, the
code was left in and pressing these keys together is a pretty good way to trash the system.
May be redefined for our own use - this could be fun !

TRAP #0 - Switch the QL into supervisor mode and cause the SSP version of A7 to be used.

1Well, it will on a standard QL’s MC68008 processor. With QPC’s emulation of an MC68020 however, it will work
quite happily.



6.4 What Happens When an Exception Occurs? 89

TRAP #1 - this is the QDOS manager trap and is used to control resources in the QL such as baud
rates, jobs, memory allocation and deallocation etc.

TRAP #2 - this is the QL’s I/O manager trap and is used to open & close channels as well as
formatting discs and deleting files.

TRAP #3 - This allows QDOS to read data from channels, queues, set colours etc.
TRAP #4 - Used by the SuperBasic interpreter to switch between A6 relative and Absolute

addresses when calling various routines.
TRAP #5 to TRAP #15 - these are unused on the QL but can be redefined.

6.4 What Happens When an Exception Occurs?

When an exception occurs, some data is put onto the stack prior to the exception being processed.
Remember, the stack pointer is the SSP and not the normal USP variant of the A7 register.

For most exceptions, the data put onto the stack is simply the program counter and the status register
as follows:

High a d d r e s s −> PC low word
PC h igh word

SSP −−−−−−−−−−> S t a t u s r e g i s t e r word

so when the exception handler is running, the stack pointer holds the address of the SR at the time
the exception was caused and 4(A7) holds the program counter where the exception was caused.

The above is true for all exceptions apart from BUS ERROR, ADDRESS ERROR or RESET. These
three have a different stack frame:

High a d d r e s s −> PC low word
PC h igh word
S t a t u s r e g i s t e r word
I n s t r u c t i o n r e g i s t e r word
Access a d d r e s s low word
Access a d d r e s s h igh word

SSP −−−−−−−−−−> Access t y p e and f u n c t i o n code ( one word )

This additional data includes a copy of the first word of the instruction that was being processed
when the exception was caused, the address that was being accessed when the exception was caused
and a word describing what the processor was trying to do at the time.

Warn
Note that the value in the program counter on the stack is not always the actual address of the
start of the instruction - it could be anything from the next word or even the address 10 bytes
on from the actual address of the instruction - beware.

At the end of an exception processing routine an RTE instruction is used to restore the status register
and the program counter from the stack. It follows then that in the case of an ADDRESS or BUS
exception that this is going to fail unless the additional data is first cleared from the stack - or a
68020 used instead!



90 Chapter 6. 6800x Exceptions And Exception Handling

6.5 Building an Exception Handler.

I suppose we need to built an exception handler now! In the QL you build a table of vectors for the
following exceptions:

Address e r r o r
I l l e g a l
D i v i de by z e r o
CHK
TRAPV
P r i v i l e g e
Trace
I n t e r r u p t l e v e l 7
Trap #5
Trap #6
Trap #7
Trap #8
Trap #9
Trap #10
Trap #11
Trap #12
Trap #13
Trap #14
Trap #15

And then tell QDOS to use this table for your job. Any exceptions that are generated and that are
mentioned above will be handled by your own routine. Of all of these, the address error needs to
have special treatment because it has the extra data on the stack.

The problem being that if your instruction caused an error, what happens when you handle the
exception and RTE - does the program fail again because it tried to execute the same instruction
again? Sometimes is the only answer.

The following code will be very useful when you first start writing assembler as it will trap the
exceptions mentioned above and attempt to allow you to carry on. This example should be run on a
68000 or 68008 ONLY. I do not have the data for exception handling on a 68020 or above so Gold
Cards, Super Gold Cards etc may cause problems. I don’t know.

6.6 The Exception Handler Code.

1 ∗================================================================
2 ∗ Thi s code adds a ‘ p r o t e c t i v e b a r r i e r ’ t o t h e QL so t h a t s i l l y
3 ∗ programming e r r o r s can be i n t e r c e p t e d and h o p e f u l l y h a n d l e d
4 ∗ b e f o r e t h e QL c r a s h e s o u t .
5 ∗
6 ∗ Thi s code s h o u l d on ly be run on a 68000 or 68008 as t h e
7 ∗ e x c e p t i o n s t a c k f rame i s ( p r o b a b l y ) d i f f e r e n t on 68010 and
8 ∗ above .
9 ∗

10 ∗ C o p y r i g h t ( c ) Norman Dunbar 1999 b u t p e r m i s s i o n f o r u n l i m i t e d
11 ∗ use and abuse i s g i v e n !
12 ∗================================================================
13



6.6 The Exception Handler Code. 91

14 s t a r t l e a e x c e p t i o n s , a1 ; Tab le o f e x c e p t i o n s − empty
15 l e a x _ a d d r e s s , a2 ; Address e x c e p t i o n s
16 move . l a2 , ( a1 )+ ; Save i n t a b l e
17
18 l e a x _ i l l e g a l , a2 ; I l l e g a l e x c e p t i o n s
19 move . l a2 , ( a1 )+ ; Save i n t a b l e
20
21 l e a x _ d i v i d e , a2 ; D i v id e by z e r o
22 move . l a2 , ( a1 )+ ; Save i n t a b l e
23
24 l e a x_check , a2 ; CHK i n s t r u c t i o n
25 move . l a2 , ( a1 )+ ; Save i n t a b l e
26
27 l e a x _ t r a p v , a2 ; TRAPV i n s t r u c t i o n
28 move . l a2 , ( a1 )+ ; Save i n t a b l e
29
30 l e a x_p r iv , a2 ; P r i v i l e g e v i o l a t i o n
31 move . l a2 , ( a1 )+ ; Save i n t a b l e
32
33 l e a x _ t r a c e , a2 ; Trace e x c e p t i o n
34 move . l a2 , ( a1 )+ ; Save i n t a b l e
35
36 l e a x _ i n t _ 7 , a2 ; I n t e r r u p t l e v e l 7
37 move . l a2 , ( a1 )+ ; Save i n t a b l e
38
39 l e a x _ t r a p , a2 ; TRAP #5 t o TRAP #15
40 moveq #10 , d0 ; 11 e n t r i e s t o f i l l
41
42 t r a p _ l o o p move . l a2 , ( a1 )+ ; Save one i n t a b l e
43 db ra d0 , t r a p _ l o o p ; Then do t h e r e s t
44
45 l e a e x c e p t i o n s , a1 ; E x c e p t i o n s t a b l e , now f u l l
46 moveq #−1,d1 ; Job i d = ’ t h i s job ’
47 moveq # mt_ t rapv , d0 ; S e t e x c e p t i o n t a b l e
48 t r a p #1 ; And do i t
49 r t s ; E x i t t o S u p e r B a s i c
50
51 ∗================================================================
52 ∗ Now t h e a c t u a l e x c e p t i o n h a n d l e r s t h e m s e l v e s . Apar t from t h e
53 ∗ ADDRESS e x c e p t i o n , a l l have 3 words on t h e s t a c k when c a l l e d .
54 ∗================================================================
55
56 x _ a d d r e s s l e a t _ a d d r e s s , a1 ; Message t o p r i n t
57 b s r message_0 ; P r i n t t h e message
58 addq . l #8 ,A7 ; Tidy e x t r a d a t a o f f t h e s t a c k
59 r t e ; At tempt t o c o n t i n u e
60
61 t _ a d d r e s s dc .w 15
62 dc . b ’ADDRESS e r r o r . ’
63 dc . b 10
64
65 x _ i l l e g a l l e a t _ i l l e g a l , a1 ; Message t o p r i n t
66 b s r message_0 ; P r i n t t h e message
67 addq . l # 2 , 2 ( a7 ) ; Don ’ t do t h e i n s t r u c t i o n a g a i n !
68 r t e ; At tempt t h e n e x t i n s t r u c t i o n
69



92 Chapter 6. 6800x Exceptions And Exception Handling

70 t _ i l l e g a l dc .w 21
71 dc . b ’ILLEGAL i n s t r u c t i o n . ’
72 dc . b 10
73
74
75 x _ d i v i d e l e a t _ d i v i d e , a1 ; Message t o p r i n t
76 b s r message_0 ; P r i n t t h e message
77 r t e ; At tempt t o c a r r y on
78
79 t _ d i v i d e dc .w 16
80 dc . b ’DIVIDE BY ZERO. ’
81 dc . b 10
82
83
84 x_check l e a t_check , a1 ; Message t o p r i n t
85 b s r message_0 ; P r i n t t h e message
86 r t e ; At tempt t o c a r r y on
87
88 t _ c h e c k dc .w 17
89 dc . b ’CHK i n s t r u c t i o n . ’
90 dc . b 10
91
92
93 x _ t r a p v l e a t _ t r a p v , a1 ; Message t o p r i n t
94 b s r message_0 ; P r i n t t h e message
95 r t e ; At tempt t o c a r r y on
96
97 t _ t r a p v dc .w 19
98 dc . b ’TRAPV i n s t r u c t i o n . ’
99 dc . b 10

100
101
102 x _ p r i v l e a t _ p r i v , a1 ; Message t o p r i n t
103 b s r message_0 ; P r i n t t h e message
104 r t e ; At tempt t o c a r r y on
105
106 t _ p r i v dc .w 21
107 dc . b ’PRIVILEGE VIOLATION . ’
108 dc . b 10
109
110
111 x _ t r a c e l e a t _ t r a c e , a1 ; Message t o p r i n t
112 b s r message_0 ; P r i n t t h e message
113 r t e ; At tempt t o c a r r y on
114
115 t _ t r a c e dc .w 25
116 dc . b ’TRACE − n o t implemented . ’
117 dc . b 10
118
119
120 x _ i n t _ 7 l e a t _ i n t _ 7 , a1 ; Message t o p r i n t
121 b s r message_0 ; P r i n t t h e message
122 r t e ; At tempt t o c a r r y on
123
124 t _ i n t _ 7 dc .w 26
125 dc . b ’DO NOT PRESS CTRL ALT 7 ! ’



6.7 How it Works. 93

126 dc . b 10
127
128
129 x _ t r a p l e a t _ t r a p , a1 ; Message t o p r i n t
130 b s r message_0 ; P r i n t t h e message
131 r t e ; At tempt t o c a r r y on
132
133 t _ t r a p dc .w 39
134 dc . b ’TRAP #5 t o TRAP #15 − n o t implemented . ’
135 dc . b 10
136
137
138 ∗================================================================
139 ∗ Thi s r o u t i n e p r i n t s a message t o c h a n n e l 0 . The message i s a t
140 ∗ 0(A1 ) i n t h e u s u a l QDOS f o r m a t o f a s i z e word f o l l o w e d by t h e
141 ∗ t e x t . The UT_ERR0 r o u t i n e e x p e c t s an e r r o r code i n D0 −or− t h e
142 ∗ a d d r e s s o f a u s e r d e f i n e d e r r o r message i n D0 wi th b i t 31 s e t
143 ∗ t o show t h a t i t i s u s e r d e f i n e d .
144 ∗================================================================
145 message_0 move . l a1 , d0 ; User d e f i n e d message a d d r e s s
146 b s e t #31 , d0 ; Mark i t a s such
147 move .w u t _ e r r 0 , a2 ; V e c t o r e d r o u t i n e
148 j s r ( a2 ) ; P r i n t t h e e x c e p t i o n message
149 moveq #0 , d0 ; I g n o r e any e r r o r s
150 r t s
151
152 e x c e p t i o n s ds . l 19 ; Space f o r 19 e x c e p t i o n h a n d l e r s
153
154 ∗================================================================
155 ∗ HERE ENDETH THE CODE.
156 ∗================================================================

Listing 6.1: Exception Handler for the QL

6.7 How it Works.

Now that you have typed the above code into a file, I shall explain what is happening. The code
begins at the label ‘start’ and sets A1 to the address of the label ‘exceptions’ within the program.
This is where the LEA instruction is useful - when writing position independent programs. These
are programs that can be run at any address and are a requirement if you want to write good QDOS
programs.

The ‘exceptions’ label identifies the start of the 19 long words of data that hold the addresses of the
19 redefined exception vectors as detailed above. At the moment the table contains random garbage
and needs to be initialised before we tell QDOS to use the new vectors.

The address of the routine to handle address exceptions, ‘x_address’, is loaded into A2 - again using
position independent methods, and then placed in the table at the first location. You will note that
‘address register with post-increment’ addressing is used here. This means that A1 is automatically
incremented by the correct amount - 4 in the case of the long sized move - ready for the next vector
to be loaded.

This process is repeated for the illegal, divide by zero, CHK, TRAPV, privilege violation, trace and
interrupt level 7 vectors.

There are 11 vectors left in the table for TRAP #5 through to TRAP #15. Rather than give each



94 Chapter 6. 6800x Exceptions And Exception Handling

of these an individual handler, we point them all to the same one as we intend to ignore these
instructions when they occur. To set these 11 vectors up, we run through a small loop which counts
D0 down from 10 to -1 setting the vector for each of the 11 TRAP exceptions to be the single
routine at address x_trap.

Our exceptions table has now been defined and all we have to do is tell QDOS that we want to
use it. Once again, A1 is set to the start address of the exceptions table as required by QDOS,
D1 is then set to -1 which implies ‘the current job’ to QDOS. This is used in many of the QDOS
routines which require a job ID, passing -1 means ‘me’. As we are executing this code directly
from SuperBasic, that is what the current job will be. Once the vectors have been set up for any job,
all other jobs created by it will use the same vector table.

This means that as the initiating job is SuperBasic, and as most other jobs are created by SuperBasic,
this means that we have effectively created a protection mechanism for every job in the system
created from this point onwards! If this is the first code loaded on your system, then every single
job created will be protected by this code.

Trap #1 is called with D0 set to the value MT_TRAPV - a fancy way of saying 7 - and we return to
SuperBasic with any error codes that may arise. As there appears to be only ‘invalid job’ returned,
it is unlikely that there will be any as we are using the current job’s own id.

Now that the initialisation has been carried out, the exception handlers will just sit there until such
time as they are activated.

Most of the handler code is the same - we simply trap the exception, print a warning message to
channel #0 and attempt to carry on - but the Address and illegal exception handlers do additional
processing.

In the case of an address error, there is an extra 8 bytes of data on the stack on top of the ‘standard’
stack frame as discussed above. These need to be cleared off before we execute the RTE instruction.

Warn
this is only true of a QL with 128K or a Trump Card etc. If you use QXL or some other card
with an upgraded processor, then the stack is different and this code won’t work properly.

An Illegal instruction also manipulates the stack, but this time, it adds 2 to the address of the failed
instruction. This prevents it from trying to execute it again when we exit the routine. Of course
this may not always be successful and can cause further errors along the way - if the instruction
was followed by a word of data for example. Trying to execute the data could lead to another
exception and so on. What would you rather have, a message telling you about it or a lock up with
no indications?

The messages are defined in the standard QDOS manner of a size word followed by the bytes of the
message. The appropriate message has its address loaded into A1 by the exception handler, and a
branch is made to the sub-routine MESSAGE_0 which will attempt to display a message to channel
#0. If this fails, it will try #1 before giving up.

If you have a QDOS manual and you look up UT_ERR0 (that’s a zero by the way!) you will see that
it takes an error code in D0 as its only parameter. We are using it slightly differently as we are
defining our own messages and not using the Sinclair defined ones such as ‘invalid channel id’ or
‘bad parameter’ etc.In order to do this, we load D0 with the address of the message but set bit 31 of
D0 so that QDOS knows that it is an address and not an error code.

The UT_ERR0 routine lives in the ROM somewhere, I don’t know where it lives in all ROMs as
it could have been moved between ROM releases. Because of this, there is a vector table in the



6.8 Coming Up... 95

ROM at a standard position. To get the address of the routine, we simply read the contents of the
vector table into an address register and JSR to that address. (This will be explained later in the
series when I cover QDOS).

So now that we have assembled the code all we do is LRESPR it (or RESPR(512), LBYTES and
then CALL) and that is it. Whenever any exceptions occur, the above code will handle them and,
most importantly, tell you what has happened. Your QL may still be hung - but at least you should
know why!

6.8 Coming Up...

The is the end of quite a complex section on exceptions and their handling. If you have stuck with
me this far, the rest should be quite a lot simpler - well, at least until we get to the graphics stuff
that is :o)

However, the next chapter delves into the features of QDOS that allow the humble programmer the
ability to write their own assembly language procedures and functions to extend the workings of
SuperBasic. Along the way, the very important maths stack will be examined in quite a lot of detail





7. Extending SuperBasic

7.1 Introduction

This time we are looking at extending SuperBasic by adding extra procedures and functions which
can be loaded once after boot up and then used by any SuperBasic program that we load or type in
afterwards.

Along the way, we will have to take a look at the manner in which we do the following:

• link assembler extensions (procedures and functions) into SuperBasic
• fetching parameters
• testing separators (eg the ‘#’ before a channel number etc)
• the maths stack - and all its problems
• returning values for functions
• accessing the SuperBasic channel table

7.2 Linking To SuperBasic

When you have written some code that defines a new SuperBasic procedure or function, you must
tell SuperBasic what it is called and where it lives. There is a vectored routine to do this and it
is called BP_INIT (in QDOS) or SB_INIPR (in SMSQ). As an old hand at QDOS, I still use the
QDOS definitions and names. As we are all using George Gwilt’s GWASL assembler, and it uses
the QDOS names, we shall continue to do so in this series.

Start up the QED editor (or your favourite) and type the following in:

1 s t a r t l e a d e f i n e , a1 ; P o i n t e r t o t h e d e f i n i t i o n t a b l e
2 move .w BP_INIT , a2 ; The v e c t o r we need t o use
3 j s r ( a2 ) ; C a l l t h e v e c t o r e d r o u t i n e
4 r t s ; Re tu r n t o S u p e r B a s i c

Listing 7.1: Linking Extensions to SuperBasic



98 Chapter 7. Extending SuperBasic

You will note that we only execute a small stub of code. This is simply because we are linking
the new routines into SuperBasic and the actual code for the routines will be executed when a
SuperBasic program uses one of the new routines. All will become clear.

The definition table required by BP_INIT has to be in the format shown in Table 7.1 and it must
start at an even address. A1.L points at the table when BP_INIT is called:

Size Purpose

word How many new procedures (A1 points here)
Repeat for each procedure:

word Offset to code start for this procedure
byte How many bytes in the procedure name
bytes The procedure name
word Zero = end of procedures
word How many new functions

Repeat for each function:
word Offset to code start for this function
byte How many bytes in the function name
bytes The function name
word Zero = end of functions & table

Table 7.1: Definition Block For BP_INIT

As an example, our code file will introduce 1 new procedure and the definition table will be set up
like the following which you should now type into the editor following on from the code that is
already there :

1 d e f i n e dc .w 1 ; 1 new p r o c e d u r e
2 dc .w p s i _ c l s −∗
3 dc . b 7 , ’ PSI_CLS ’
4 dc .w 0 ; End of p r o c e d u r e s
5
6 dc .w 0 ; Number o f f u n c t i o n s
7 dc .w 0 ; End of f u n c t i o n s

Listing 7.2: Example Extension Parameter Table

Notice that the format of the procedure name is slightly different from normal QDOS string in that
the size of the name is stored in a byte and not in a word.

Now then, there is a caveat - isn’t there always? If the average length of the names of all the
procedures, or functions, is greater than 7 then the simple word for the number of procedures or
functions is changed to the value given by this calculation:

(total number of characters in proc names+number of procedures+7)/8

Checking our table above we have a total of 7 characters in the procedure name and there is 1 new
procedure. This gives an average of 7 characters per name (round up always!) so we are ok.

And that is it. On QL’s of JM vintage and below, the machine must be NEW’d before you can use
them. On JS and above, this need not be done.

Once a set of procedures and/or functions has been linked into SuperBasic, the definition block is
no longer required. If your code requires the use of some workspace, then you can use the definition
table. Just make sure that you don’t use more bytes that there are available !



7.3 Procedures 99

So, let’s write our first procedure.

7.3 Procedures

Procedures in assembly are very much like PROCedures in SuperBasic. For example, consider the
following:

1 1000 DEFine PROCedure PSI_CLS ( chan %, P%, S%, I %)
2 1010 PAPER # chan %, P%
3 1020 STRIP # chan %, S%
4 1030 INK # chan %, I%
5 1040 CLS # chan%
6 1050 END DEFine PSI_CLS

This simple routine is probably at the heart of many SuperBasic programs and is called like this:

1 100 PSI_CLS 1 , 2 , 4 , 0

To give channel #1 red paper, green strip and black ink. Assembler procedures are very similar and
in fact we shall now dive straight in and convert the above into assembler.

Back into the QED editor with the code from the start of this article typed in. We have so far typed
the code to link the new procedure and the definition block for the new procedure, now we need to
write the code for the procedure itself. Your file should look like this so far :

1 s t a r t l e a d e f i n e , a1 ; P o i n t e r t o t h e d e f i n i t i o n t a b l e
2 move .w BP_INIT , a2 ; The v e c t o r we need t o use
3 j s r ( a2 ) ; C a l l t h e v e c t o r e d r o u t i n e
4 r t s ; Re tu r n t o S u p e r B a s i c
5
6 d e f i n e dc .w 1 ; 1 new p r o c e d u r e
7 dc .w p s i _ c l s −∗
8 dc . b 7 , ’ PSI_CLS ’
9 dc .w 0 ; End of p r o c e d u r e s

10
11 dc .w 0 ; Number o f f u n c t i o n s
12 dc .w 0 ; End of f u n c t i o n s

Listing 7.3: PSI_CLS Definition Table

In the definition table there is an offset word to the start address of the new procedure. Ours is
defined like this:

1 dc .w p s i _ c l s −∗

Which is a useful way to get the assembler to calculate the offset for us. The ‘*’ is assembler
short-hand for ‘where I am now’ or ‘the current address’. Our example uses the label psi_cls so our
code has to start there.

On with the procedure. In assembler you must take great care to ensure that you have enough
parameters etc (see below) and that they are all the correct type. In this example, we will get using



100 Chapter 7. Extending SuperBasic

integer parameters but the first one must have a hash (#) in front of it. Of course, when using INK,
PAPER etc in SuperBasic, you can default the channel number and #1 will be used instead. This
means that the following statements are equivalent:

1 2000 PAPER #1 ,2
2 2010 PAPER 2

It would be nice if our PSI_CLS routine did a similar thing so that the following was equivalent:

1 2500 PSI_CLS #1 , 2 , 2 , 0
2 2510 PSI_CLS 2 , 2 , 0

This turns out to be quite easy to do.

Here then, is a list of what our procedure must do:

• Count how many parameters were supplied. There must be 3 or 4.
• If 4 parameters supplied, check that the first parameter has a hash in front of it.
• Fetches all parameters onto the maths stack.
• Convert parameters from maths stack to registers & validates them.
• Set the paper, strip and ink colours for the correct channel, defaulting to #1 as appropriate, if

only 3 parameters were supplied.
• Clear the channel using CLS.
• Returns to SuperBasic.
• Abort nicely whenever it detects an error.

Type the following after the definition block:

13 e r r _ b p equ −15 ; Bad p a r a m e t e r e r r o r
14 e r r _ n o equ −6 ; Channel n o t open
15 bv_chbas equ $30 ; O f f s e t t o c h a n n e l t a b l e
16 bv_chp equ $34 ; O f f s e t t o c h a n n e l t a b l e end
17 b v _ r i p equ $58 ; Maths s t a c k p o i n t e r
18
19 p s i _ c l s move . l a5 , d7 ; End of p a r a m e t e r s
20 sub . l a3 , d7 ; Minus s t a r t o f p a r a m e t e r s
21 d ivu #8 , d7 ; How many p a r a m e t e r s ?
22 cmpi .w #3 , d7 ; D e f a u l t i n g c h a n n e l i d ?
23 beq . s hash_ok ; yes , s k i p hash check
24
25 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 ∗ We do n o t have 3 p a r a m e t e r s so t e s t f o r 4 and i f n o t found ,
27 ∗ e r r o r e x i t . I f we do have 4 t h e n t h e f i r s t must have a hash i n
28 ∗ f r o n t .
29 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 hash_check cmpi .w #4 , d7 ; We need 4 p a r a m e t e r s
31 bne . s e r r o r _ b p ; Oops !
32 b t s t # 7 , 1 ( a6 , a3 . l ) ; I s t h e r e a # b e f o r e p1 ?
33 beq . s e r r o r _ b p ; No , we r e j e c t i t t h e n
34
35 hash_ok move .w c a _ g t i n t , a2 ; We want word i n t e g e r s
36 j s r ( a2 ) ; F e t c h them a l l
37 t s t . l d0 ; Did i t work ?
38 beq . s go t_ok ; Yes i t d i d



7.3 Procedures 101

39 r t s ; Ba le o u t o t h e r w i s e
40
41 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 ∗ We e x p e c t e d t o g e t 3 o r 4 p a r a m e t e r s and s h o u l d have , b u t now
43 ∗ t h a t we have g o t them , check t o make s u r e we have r e c e i v e d t h a t
44 ∗ which we e x p e c t e d t o .
45 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 go t_ok cmpi .w #4 , d3 ; Were t h e r e 4 o f them ?
47 beq . s go t_4 ; Yes
48
49 cmpi .w #3 , d3 ; Maybe d e f a u l t c h a n n e l i n use
50 beq . s go t_3 ; So t h a t i s ok t o o
51
52 e r r o r _ b p moveq # e r r_bp , d0 ; Bad P a r a m e t e r e r r o r code
53 e r r o r _ e x i t r t s ; Ba le o u t wi th e r r o r
54
55 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 ∗ We have 4 p a r a m e t e r s , so f e t c h t h e c h a n n e l i d i n t o D0 − t h i s i s
57 ∗ t h e f i r s t o f t h e p a r a m e t e r s . We need t o t i d y t h e maths s t a c k as
58 ∗ w e l l so t h a t g e t _ r e s t works c o r r e c t l y r e g a r d l e s s o f whe the r we
59 ∗ have 3 or 4 p a r a m e t e r s .
60 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 go t_4 move .w 0( a6 , a1 . l ) , d0 ; Get c h a n n e l i d
62 bmi . s e r r o r _ b p ; We don ’ t l i k e −ve c h a n n e l s
63 adda . l #2 , a1 ; Tidy s t a c k p o i n t e r
64 b r a . s g e t _ r e s t ; Sk ip d e f a u l t c h a n n e l i d b i t
65
66
67 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
68 ∗ At t h i s p o i n t we d e f a u l t t h e c h a n n e l b e i n g used t o # 1 . By
69 ∗ moving one t o D0 and p r o c e s s i n g as normal , we can do t h i s
70 ∗ w i t h o u t much e f f o r t .
71 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 go t_3 moveq #1 , d0 ; D e f a u l t c h a n n e l i s #1
73
74 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 ∗ Here c o n v e r t t h e S u p e r B a s i c c h a n n e l number i n D0 i n t o an
76 ∗ i n t e r n a l i d i n A0 and b a l e o u t i f i t f a i l s , o r i f t h e c h a n n e l
77 ∗ i s n o t open or has been c l o s e d − t h e r e i s a d i f f e r e n c e .
78 ∗ A c l o s e d c h a n n e l has a n e g a t i v e i d w h i l e a c h a n n e l n o t y e t
79 ∗ opened i s n o t i n t h e t a b l e .
80 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 g e t _ r e s t b s r c h a n n e l _ i d ; Conve r t DO−>QDOS i d i n A0 . L
82 bne . s e r r o r _ e x i t ; Ba le o u t i f e r r o r s

Listing 7.4: PSI_CLS - The Final Version - Part 1

At this point we have (A6,A1) pointing to the paper parameter on the stack and A0.L holding the
channel id for the requested channel (or the default of #1). Now we can set the paper colour (which
does not set the strip like SuperBasic does!)

Looking at the QDOS documentation for SD_SETPA and the others, we see that A1 is ‘undefined’
on return from the routine. This is bad so we need to preserve it across calls or we can fetch
all the parameters first. Registers D4 to D7 are not mentioned in the documentation so they are
preserved/not used by the routines so we shall fetch the parameters into these registers first of all
and this way we can also validate them for errors.



102 Chapter 7. Extending SuperBasic

83 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 ∗ Because we t i d i e d t h e s t a c k p o i n t e r i n A1 when we f e t c h e d t h e
85 ∗ c h a n n e l id , t h e f o l l o w i n g code e x p e c t s t o s e e t h e p a p e r c o l o u r
86 ∗ a t 0 (A6 , A1 ) and t h i s i s t h e same as i f we n e v e r were s u p p l i e d
87 ∗ wi th a c h a n n e l i d i n t h e f i r s t p l a c e − cunn ing s t u f f eh ?
88 ∗
89 ∗ F e t c h t h e r e m a i n i n g 3 p a r a m e t e r s i n t o r e g i s t e r s t h a t w i l l n o t
90 ∗ be t r a s h e d by t h e QDOS r o u t i n e s t h a t s e t t h e paper , s t r i p and
91 ∗ i n k . We r e j e c t any p a r a m e t e r which i s n e g a t i v e as we don ’ t d e a l
92 ∗ wi th n e g a t i v e c o l o u r s and j u s t i n case , we a l s o mask o u t t h e
93 ∗ h igh work of t h e p a r a m e t e r t o e n s u r e i t i s i n r a n g e 0 t o 2 5 5 .
94 ∗
95 ∗ NOTE: we c o u l d do away wi th t h e n e g a t i v e check and j u s t mask .
96 ∗ Thi s would i n e f f e c t c o n v e r t from a n e g a t i v e t o a p o s i t i v e
97 ∗ number − b u t t h i s i s t h e r e a l wor ld ( ? ) and we have t o pe r fo rm
98 ∗ p a r a m e t e r v a l i d a t i o n .
99 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

100 move .w 0( a6 , a1 . l ) , d4 ; Pape r i n D4
101 bmi . s e r r o r _ b p ; N e g a t i v e i s bad news
102 a n d i .w # $00f f , d4 ; Force r a n g e 0 − 255
103
104 move .w 2( a6 , a1 . l ) , d5 ; S t r i p i n D5
105 bmi . s e r r o r _ b p ; N e g a t i v e i s bad news
106 a n d i .w # $00f f , d5 ; Force r a n g e 0 − 255
107
108 move .w 4( a6 , a1 . l ) , d6 ; Ink i n D6
109 bmi . s e r r o r _ b p ; N e g a t i v e i s bad news
110 a n d i .w # $00f f , d6 ; Force r a n g e 0 − 255
111
112 adda . l #6 , a1 ; Tidy t h e s t a c k
113
114 moveq # s d _ s e t p a , d0 ; Pape r t r a p code
115 move .w d4 , d1 ; Pape r c o l o u r
116 moveq #−1,d3 ; I n f i n i t e t i m e o u t
117 ∗ ; Channel i d i s s t i l l i n A0
118 t r a p #3 ; S e t t h e p a p e r
119 t s t . l d0 ; OK?
120 bne . s e r r o r _ e x i t ; No b a l e o u t
121
122 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 ∗ Now t h e p a p e r has been s e t , and t h e d o c u m e n t a t i o n s a y s t h a t A0
124 ∗ i s p r e s e r v e d a l o n g wi th D3 , we can s e t t h e s t r i p c o l o u r now .
125 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
126 moveq # s d _ s e t s t , d0 ; S t r i p t r a p code
127 move .w d5 , d1 ; S t r i p c o l o u r
128 t r a p #3 ; S e t t h e s t r i p
129 t s t . l d0 ; OK?
130 bne . s e r r o r _ e x i t ; No b a l e o u t
131
132 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133 ∗ Now t h e s t r i p has been s e t , and t h e d o c u m e n t a t i o n s a y s t h a t A0
134 ∗ i s p r e s e r v e d a l o n g wi th D3 , we can s e t t h e i n k c o l o u r now .
135 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 moveq # s d _ s e t i n , d0 ; Ink t r a p code
137 move .w d6 , d1 ; Ink c o l o u r
138 t r a p #3 ; S e t t h e Ink



7.3 Procedures 103

139 t s t . l d0 ; Ok?
140 bne . s e r r o r _ e x i t ; No b a l e o u t
141
142 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 ∗ And f i n a l l y , we can CLS t h e s c r e e n .
144 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 moveq # s d _ c l e a r , d0 ; CLS whole s c r e e n
146 t r a p #3 ; Do i t
147 b r a . s e r r o r _ e x i t ; A l l done
148
149
150 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 ∗ Thi s r o u t i n e t a k e s a S u p e r B a s i c c h a n n e l number i n D0 and
152 ∗ c o n v e r t s i t i n t o a QDOS i n t e r n a l c h a n n e l i d i n A0 . I f t h e
153 ∗ c h a n n e l i s c l o s e d o r n o t y e t opened , t h e r o u t i n e r e t u r n s D0 =
154 ∗ ERR_NO and A0 i s i n v a l i d .
155 ∗ D0 w i l l be z e r o i f a l l i s ok .
156 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
157 c h a n n e l _ i d mulu #$28 , d0 ; O f f s e t i n t o c h a n n e l t a b l e
158 add . l bv_chbas ( a6 ) , d0 ; Add t a b l e s t a r t a d d r e s s
159 cmp . l bv_chp ( a6 ) , d0 ; V a l i d ?
160 bge . s ch_bad ; No , c h a n n e l # o f f end
161 move . l 0 ( a6 , d0 . l ) , d0 ; Channel i d
162 bmi . s ch_bad ; Channel c l o s e d
163 move . l d0 , a0 ; We need i d i n A0
164 moveq #0 , d0 ; No e r r o r s
165 r t s ; F i n i s h e d
166
167 ch_bad moveq # e r r_no , d0 ; Channel n o t open (−6)
168 r t s ; Ba le o u t

Listing 7.5: PSI_CLS - The Final Version - Part 2

Save the file and assemble it using GWASL. Once all errors have been sorted out, either LRESPR it
or ALCHP/LBYTES/CALL in the normal manner. If you have a JM and below, type NEW then try
this:

1 PSI_CLS #1 , 2 , 4 , 0 ( o r PSI_CLS 2 , 4 , 0 )

And see what happens when you

1 PRINT ’ H e l l o world ’ ( o r PRINT #1 , ’ H e l l o world ’ )

If you have a JS or above, then just try it without the NEW.

You should see the words ‘Hello world’ written in black, on a green strip on red paper - assuming
your display can handle the colour mixture !

In the code, you will notice that whenever I detect an error, I simply return to SuperBasic with the
error code in D0. This doesn’t look very friendly does it? Actually, QDOS is very friendly when it
comes to procedures because in the event of an error, QDOS will do all the tidying up that we need
to do so we don’t have to worry about it. This is discussed below in Section 7.4 Functions and in
Section 7.8 The Maths Stack.



104 Chapter 7. Extending SuperBasic

7.4 Functions

Wouldn’t it be nice to do this instead of the above:

1 PSI_CLS #1 , RED, GREEN, BLACK

In SuperBasic this would be done either by:

1 DEFine FuNct ion RED
2 r e t u r n 2
3 END DEFine RED
4
5 DEFine FuNct ion GREEN
6 r e t u r n 4
7 END DEFine GREEN
8
9 DEFine FuNct ion BLACK

10 r e t u r n 0
11 END DEFine BLACK

OK, I know it could be done like this:

1 RED = 2
2 GREEN = 4
3 BLACK = 0

but we are dealing with machine code functions and this is more illustrative of what we are about
to do. (So there!)

We shall now extend our original example so that we can specify colour values by name - this is
much more friendly in my opinion.

The following two lines in the definition block need to be removed :

1 dc .w 0 ; Number o f f u n c t i o n s
2 dc .w 0 ; End of f u n c t i o n s

Listing 7.6: Colour Functions

And replaced by the following:

1 dc .w 8 ; There a r e 8 f u n c t i o n s
2
3 dc .w black−∗ ; F i r s t f u n c t i o n
4 dc . b 5 , ’BLACK’
5
6 dc .w blue−∗ ; Second f u n c t i o n
7 dc . b 4 , ’BLUE’
8
9 dc .w red−∗ ; T h i r d f u n c t i o n

10 dc . b 3 , ’RED’
11
12 dc .w cyan−∗ ; F o u r t h f u n c t i o n
13 dc . b 4 , ’CYAN’



7.4 Functions 105

14
15 dc .w green−∗ ; F i f t h f u n c t i o n
16 dc . b 5 , ’GREEN’
17
18 dc .w magenta−∗ ; S i x t h f u n c t i o n
19 dc . b 7 , ’MAGENTA’
20
21 dc .w yel low−∗ ; Seven th f u n c t i o n
22 dc . b 6 , ’YELLOW’
23
24 dc .w whi te−∗ ; E i g h t h f u n c t i o n
25 dc . b 5 , ’WHITE’
26
27 dc .w 0 ; End of f u n c t i o n s

Listing 7.7: Colour Functions

The following is the code for the new functions, type it into the file after the end of the ‘channel_id’
subroutine:

1 b l a c k moveq #0 , d7
2 b r a . s r e t u r n _ d 7
3
4 b l u e moveq #1 , d7
5 b r a . s r e t u r n _ d 7
6
7 r e d moveq #2 , d7
8 b r a . s r e t u r n _ d 7
9

10 magenta moveq #3 , d7
11 b r a . s r e t u r n _ d 7
12
13 g r e e n moveq #4 , d7
14 b r a . s r e t u r n _ d 7
15
16 cyan moveq #5 , d7
17 b r a . s r e t u r n _ d 7
18
19 y e l l o w moveq #6 , d7
20 b r a . s r e t u r n _ d 7
21
22 w h i t e moveq #7 , d7
23
24 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ∗ Thi s r o u t i n e r e t u r n s t h e word v a l u e i n d7 t o S u p e r B a s i c a s t h e
26 ∗ r e s u l t o f t h e f u n c t i o n we a r e r u n n i n g . I t r e q u i r e s two b y t e s on
27 ∗ t h e t o p of t h e maths s t a c k and b e c a u s e t h e r e were no p a r a m e t e r s
28 ∗ s u p p l i e d t o any of t h e f u n c t i o n s , I can s a f e l y ask QDOS f o r
29 ∗ t h e s e two b y t e s .
30 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 r e t u r n _ d 7 move . l b v _ r i p ( a6 ) , a1 ; Because we had no params
32 moveq #2 , d1 ; Two b y t e s r e q u i r e d
33 move .w bv_ch r ix , a2 ; A l l o c a t e maths s t a c k s p a c e
34 j s r ( a2 ) ; Go g e t some s p a c e .
35 ∗ ; No e r r o r s a r e r e t u r n e d .
36
37 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



106 Chapter 7. Extending SuperBasic

38 ∗ The maths s t a c k has been e x t e n d e d by two b y t e s BUT i t may have
39 ∗ moved around i n memory so we need t o g e t t h e s t a c k p o i n t e r
40 ∗ i n t o A1 a g a i n .
41 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 move . l b v _ r i p ( a6 ) , a1 ; New t o p of s t a c k
43 subq . l #2 , a1 ; Space f o r our r e s u l t
44 move .w d7 , 0 ( a6 , a1 . l ) ; S t a c k t h e r e s u l t
45 move .w #3 , d4 ; S i g n a l word r e s u l t on s t a c k
46 move . l a1 , b v _ r i p ( a6 ) ; S t o r e new t o p of s t a c k
47 c l r . l d0 ; No e r r o r s
48 r t s ; Re tu r n r e s u l t t o S u p e r B a s i c

That is the end of the code. Assemble it, debug it and test it using the following:

1 PAPER GREEN
2 STRIP RED
3 INK BLACK
4 CLS
5 PRINT " H e l l o wor ld "

or, if you like:

1 PSI_CLS GREEN, RED, BLACK
2 PRINT " H e l l o wor ld "

In the procedure, PSI_CLS, we obtained some parameters for the various colours and channels. I
shall now discuss how this is done in much more detail.

7.5 Getting Parameters

On entry to a machine code extension (ie not an EXEC’d job or a CALLed routine) certain registers
are set up with very useful values. These are shown in Table 7.2.

Register Value

A1 Allegedly points to the top of the maths stack relative to A6, however, see below.
A3 Points to the start of the name table entry for the first parameter.
A5 Points to the first byte after the name table entry for the last parameter.
A6 Base address of SuperBasic. Do not change this register.

Table 7.2: Register Settings On Entry To SuperBasic Extensions.

A1 is supposed to point at the top of the maths stack (see below) relative to A6, but I have found
out the hard way that this is only the case when the procedure or function being executed has some
parameters and they have been fetched. A1 is set to the amount of space used (or free) on the maths
stack on entry to a procedure. (See Maths Stack below for full details.)

A3 points at the address of the first byte of the first entry in the name table for this procedure or
function. Again, this is relative to A6.



7.5 Getting Parameters 107

A5 points at the address of the first byte after the last name table entry for this procedure or function.
Again this is relative to A6.

A6 should never be changed as it points to the base of the SuperBasic job and almost all the various
routines involving the maths stack and getting/returning parameters rely on addresses being relative
to A6.

So we can now check to see how many parameters we have by the following calculation:

(A5−A3)/8

There are 8 bytes in each name table entry. Full details of the name table entries are given below.

If we have 3 parameters, then the name table entries will look like Figure 7.1:

Figure 7.1: Name Table Entries for Three Parameters.

So (A3,A6) points to the first byte of the first parameter and is the lowest address, (A5,A6) points
to the first byte past the last parameter and is the highest address.

The first name table entry starts at 0(A3,A6) and ends at 7(A3,A6). The second starts at 8(A3,A6)
and ends at 15(A3,A6) and the last starts at 16(A3,A6) and stops at 23(A3,A6).

When fetching parameters from the name list onto the maths stack, we can use some vectored
utilities to get them for us. These allow the retrieval of strings, long words, integers (short words)
and floating point values. They all expect A3 and A5 to be set up correctly as above. A3 and A5
are trashed by the routines, so if you have to check any parameter separators etc, then you must do
it before calling the fetch routines.

When the routines return, they set D3.W to the number of parameters fetched and set A1 to the
correct value for the top of the maths stack - relative to A6 of course. Now we can access the
values of each parameter separately as we like. On return the first parameter in the list is stored
at 0(A1,A6), the next is above the first and so on. When fetching parameters p1, p2, p3 from a
procedure or function call, they will end up on the maths stack in the correct order - 0(A1,A6) will
be pointing at p1 on the stack.

The parameter fetching routines are listed in Table 7.3.

Vector Purpose

CA_GTINT fetch integer parameters (2 bytes each).
CA_GTLIN fetch long parameters (4 bytes each).
CA_GTFP fetch floating point parameters (6 bytes each).
CA_GTSTR fetch string parameters (variable length).

Table 7.3: Vectored Routines For Parameter Fetching.



108 Chapter 7. Extending SuperBasic

They require to be called as follows:

1 s t a r t move .w c a _ g t i n t , a2 ; F e t c h a l l params as word i n t s
2 j s r ( a2 ) ; Do i t
3 t s t . l d0 ; Did i t work ?
4 beq . s ok ; Yes
5 r t s ; Re tu r n t o S u p e r B a s i c
6
7 ok . . . ; c a r r y on h e r e

Listing 7.8: Using the Vectored Parameter Fetching Utilities

At this point, D3.W can be tested to check that the correct number of parameters has been fetched.

1 s t a r t cmpi .w #4 , d3 ; Were t h e r e 4 p a r a m e t e r s ?
2 beq . s ok_4 ; Yes
3 moveq #−15 , d0 ; Bad p a r a m e t e r e r r o r code = −15
4 r t s ; and back t o S u p e r B a s i c
5
6 ok_4 . . . ; Ca r ry on h e r e

Listing 7.9: Checking Parameter Counts

To access the parameters we need to get the data off of the maths stack and into our working
registers, as follows:

1 move .w 0( a6 , a1 . l ) , d1 ; P a r a m e t e r one
2 move .w 2( a6 , a1 . l ) , d2 ; P a r a m e t e r two
3 move .w 4( a6 , a1 . l ) , d3 ; P a r a m e t e r t h r e e
4 move .w 6( a6 , a1 . l ) , d4 ; P a r a m e t e r f o u r

Listing 7.10: Fetching Parameter Values

and so on. Now that we have our parameters, we need do nothing more with the maths stack if we
are inside the code of a procedure. If we are in a function then we must tidy the maths stack. This
is simply done by adding the size of all parameters on the stack to A1. In our example we have 4
word length parameters, so we should add 8 to A1 as follows :

1 adda . l #8 , a1 ; R e s e t maths s t a c k

As mentioned, there is no need to do this in a procedure, but if you have to learn to do it for a
function, you are as well to learn to do it for everything - that way you don’t forget to do it and
cause a hanging QL.

Tidying a stack with strings on is more difficult and it is probably best done as each one is removed.
For example, say we have two strings on the stack after a call to CA_GTSTR then we get them off as
follows :

1 cmpi .w #2 , d3 ; Were t h e r e two s t r i n g s ?
2 beq . s ok ; Yes
3 moveq #−15 , d0 ; Bad p a r a m e t e r
4 r t s ; E x i t t o S u p e r B a s i c
5
6 ok l e a b u f f e r _ a , a2 ; D e s t i n a t i o n f o r one s t r i n g
7 l e a 0 ( a6 , a1 . l ) , a3 ; Source f o r s t r i n g
8 b s r c o p y _ s t r ; Copy
9 move .w 0( a6 , a1 . l ) , d0 ; S i z e word



7.5 Getting Parameters 109

10 addq .w #3 , d0 ; Make b i g g e r
11 b c l r #0 , d0 ; Make even
12 add .w d0 , a1 ; Th i s w i l l s i g n e x t e n d remember !

Listing 7.11: Tidying a String from the Maths Stack - Part 1

Ok, so we added the size of the first string plus 2 for the size of the size word as well, to A1 having
made it even so the stack is now cleared of the first string. This leaves one string with its size word
sitting at 0(A6,a1.l) ready for the next copy:

1 l e a b u f f e r _ b , a2 ; D e s t i n a t i o n f o r n e x t s t r i n g
2 l e a 0 ( a6 , a1 . l ) , a3 ; Source f o r s t r i n g
3 b s r c o p y _ s t r ; Do t h e copy
4 move .w 0( a6 , a1 . l ) , d0 ; S i z e word
5 addq .w #3 , d0 ; Make b i g g e r
6 b c l r #0 , d0 ; Make even
7 add .w d0 , a1 ; Th i s w i l l s i g n e x t e n d t o o !

Listing 7.12: Tidying a String from the Maths Stack - Part 2

and there you have a tidy stack once again.

You could ask ‘if we have to restore A1 to its value on entry, why not just save A1 and then restore
it afterward?’. Like this:

1 s t a r t move . l b v _ r i p ( a6 ) , a1 ; F e t c h t o p of Maths S t a c k
2 move . l a1 ,−( a7 ) ; S t a c k i t f o r l a t e r
3
4 ; Do l o t s o f s t u f f h e r e − f e t c h i n g p a r a m e t e r s e t c
5
6 move . l ( a7 ) + , a1 ; R e s t o r e A1
7
8 ; and so on

Listing 7.13: How to Hang the QL

Well, you could, but at certain times there will be a hung QL and you will not know why. The
reason is simple, but difficult to find or trace. When you fetch parameters onto the maths stack, it
can move around in memory. Preserving the original value is fine if the stack stays put, but if it
moves and you set BV_RIP to the old value, you can get into all sorts of trouble. It is best to keep
the stack tidy using the methods described above.

7.5.1 Keeping Things Even

You may well also ask “What is all this add 3 and clear bit 0 nonsense then?” Think about it in
binary for a bit. We have the word size of the string in D0.W and we must ensure that we add an
even number of bytes to A1. We must also remember to add 2 to A1 for the size of the size word
itself.

Lets try this with an even number first of all. Even numbers are detected by bit zero being clear, so:

So you can see what is happening. D0 always ends up being D0 + 2 and is always even. This is
good as it is what we want. What about odd numbers then?

So is this good then? Remember that the maths stack must be kept even. When odd length strings
are copied onto it by CA_GTSTR it pads out the space on the stack with a rubbish byte (CHR$(0) to
be precise) which is never used. The size word remains odd.



110 Chapter 7. Extending SuperBasic

D0 D0 + 3 Result

2 5 4
4 7 6
10 13 12

Table 7.4: Keeping even numbers even.

D0 D0 + 3 Result

3 6 6
5 8 8
11 14 14

Table 7.5: Keeping odd numbers even.

So for an odd sized string we need to add 2 for the size word, the odd number of bytes and one
spare for the padding. Our 3 lines of code handle this for all cases - even or odd sized strings. The
code is good!

Of course it would be simple to do this:

1 move .w 0( a6 , a1 . l ) , d0 ; S i z e word
2 b t s t #0 , d0 ; I s i t even ?
3 beq . s even ; Yes
4 addq .w #1 , d0 ; Add 1 f o r padd ing b y t e
5
6 even addq .w #2 , d0 ; Add 2 ro t h e s i z e word
7 add .w d0 , a1 ; And add wi th s i g n e x t e n s i o n

Listing 7.14: Long Way to Keep Things Even

But this is extra typing and takes longer, so the simple case shown above, works all the time.

7.5.2 Two Of These And One Of Those Please

What do you do if you want to get hold of two long words and a string?

Let us assume that you are writing an extension procedure that has this format:

1 DO_SOMETHING long_1 , long_2 , s t r i n g _ 1

This has two different types of parameters and we cannot fetch them all in one go unless we can
read the long parameters as strings and convert them ourselves. It is quite easy to fetch these
parameters - you just do it in two goes.

In the code we know that A3 and A5 hold the start and stop addresses of the parameters in the
Name Table. If we set A5 to be A3 + 16 and then collect long words we will get our two long
words. We can then set A5 back to its original value and set A3 to this less 8 and fetch the final
parameter as a string. Here we go then:

1 g e t _ l o n g s move . l a5 ,−( a7 ) ; Save l a s t p a r a m e t e r p o i n t e r
2 l e a 16( a3 ) , a5 ; S e t A5 f o r two p a r a m e t e r s
3 move .w c a _ g t l i n t , a2 ; F e t c h a l l ( 2 ) l o n g s



7.5 Getting Parameters 111

4 j s r ( a2 ) ; Do i t
5 t s t . l d0 ; OK?
6 beq . s g o t _ l o n g ; Yes
7 r t s ; E x i t w i th e r r o r code
8
9 g o t _ l o n g cmpi .w #2 , d3 ; Were t h e r e two ?

10 bne . s bad_params ; No , b a l e o u t
11 move . l ( a7 ) + , a5 ; A5 h o l d s a d d r e s s o f p3
12 l e a −8(a5 ) , a3 ; There can be on ly one !
13 move .w c a _ g t s t r , a2 ; F e t c h as s t r i n g s now
14 j s r ( a2 ) ; Do i t
15 t s t . l d0 ; OK?
16 beq . s g o t _ s t r i n g ; Yes
17 r t s ; E x i t w i th e r r o r code
18
19 bad_params moveq #−15 , d0 ; Bad p a r a m e t e r e r r o r
20 r t s ; E x i t t o S u p e r B a s i c
21
22 g o t _ s t r i n g ; c o n t i n u e from h e r e

Listing 7.15: Fetching Mixed Type Parameters

Ok, so now what does the maths stack look like? Remember when fetching parameters they end up
on the stack in the order you want them with the first at the lowest address and the next above it
and so on. This time, we fetched two longs and a string in two different calls. This means that after
the first fetch the maths stack looks like Figure 7.2:

Figure 7.2: Maths Stack After Fetching Two Long Integer Parameters.

But then we fetched a string and it got put onto the maths stack so it now looks like Figure 7.3:

Figure 7.3: Previous Maths Stack After Fetching a String Parameter.

QDOS is very helpful here. If during the course of fetching the string, the maths stack had to be



112 Chapter 7. Extending SuperBasic

moved in memory, QDOS will preserve the current contents so that ‘long_1’ and ‘long_2’ will still
be there when you come around to using their values. Nice!

In this discussion we mentioned the name table. This is discussed in detail next. Do you get the
feeling that this chapter is written upside down?

7.6 Name Table Entries

The name table is a list of 8 byte entries which define all the names used in SuperBasic (or
extensions to SuperBasic written in assembler), the type of each entry and where it lives in the
name list and the SuperBasic variables area.

As per the description above (GETTING PARAMETERS), the name table is also used to store
details of the parameters passed to our assembly routine. So for parameters passed, a copy is made
and stored at the end of the name table. The A3 and A5 registers are set up to point at the first and
last parameter and for these, the format of the name table is as follows:

Bytes 0 & 1 Bytes 2 & 3 Bytes 4 to 7

Type & separator
flag word.

Pointer to a NAME LIST entry which
may be an odd address.

Pointer to value in the vari-
ables area.

Table 7.6: Parameter format on the name table.

The low byte of the type word tells us what type of parameter we are dealing with and its separator(s)
as shown in Table 7.7.

Bytes 0 & 1 Bytes 2 & 3

Bit 7 0 = There is not a hash (#) in front of this parameter
Bit 7 1 = There is a hash (#) in front of this parameter
Bits 6 - 4 000 = No separator after this parameter
Bits 6 - 4 001 = Comma (,) after this parameter
Bits 6 - 4 010 = Semi-colon (;) after this parameter
Bits 6 - 4 011 = Back-slash (\) after this parameter
Bits 6 - 4 100 = Exclamation mark (!) after this parameter
Bits 6 - 4 101 = TO after this parameter
Bits 3 - 0 0000 = Null
Bits 3 - 0 0001 = String
Bits 3 - 0 0010 = Floating point
Bits 3 - 0 0011 = Integer

Table 7.7: Parameter types and separators.

For the first parameter, the type byte is at 1(a6,a3.l) as opposed to 0(a6,a3.l).

For the rest of SuperBasic, the name table uses bytes 0 and 1 to define the type of the entry as
shown in Table 7.10.

Note
The REPeat and FOR loop identifiers are hard coded to be of type floating point. This
represents the internal values for SuperBasic. I suspect that this is the reason that FOR loop
identifiers cannot be integer.



7.6 Name Table Entries 113

Byte 0 Value Description

$00 Undefined
$01 Expression
$02 Variable
$03 Array or substring
$04 SuperBasic PROCedure (Byte 1 is always zero)
$05 SuperBasic FuNction

Table 7.8: SuperBasic specific parameter details - byte 0.

Byte 1 Value Description

$00 Substring (Internal use only!)
$01 String
$02 Floating point.
$03 Integer

Table 7.9: SuperBasic specific parameter details - byte 1.

Bytes 0 & 1 Value Description

$0602 REPeat loop identifier
$0702 FOR loop identifier
$0800 Assembly language procedure
$0900 Assembly language function

Table 7.10: SuperBasic specific parameter details - bytes 0 and 1 together.



114 Chapter 7. Extending SuperBasic

SBASIC, on the other hand, under SMSQ allows integer FOR loops and I presume that the
internal format for these will be $0703 - I am sure that Jochen will correct me if I am wrong!!

For all entries in the name table, be they parameters or ‘proper’ names, have a word in bytes 2 & 3
which points to the entry in the name list for this ‘name’. This simply gives an easy way of storing
the names all in one place. Note that this value is simply the offset from the start of the name table
where the bytes of this name can be found. A fuller description of the name list follows on below.

If the value is -1, then this is an expression and has no name.

Finally, there is a long word which is the pointer to the variables area. If this value is negative then
the variable is undefined and has no entry there. Again, this value is an offset into the variables area
and not an absolute address.

7.7 Name List

The name list is a simple structure in SuperBasic. It holds the names of all procedures, variables,
functions etc that have ever been used in this session at the QL. It is odd in that each name is
preceded by a byte defining its length as opposed to a word in the normal QDOS manner. This
implies that names can be up to 255 characters long. There are no padding bytes to force even
addresses in the name list either. Beware when accessing this area that you only do byte sized
operations!

The name list starts at the address BV_NLBAS(A6) to BV_NLP(A6) with BV_NLBAS(A6) being
the lowest address and BV_NLP(A6) pointing to the first byte after the last entry in the name list.
As usual, the offsets you get from these basic variables are themselves relative to A6!

To explain further, Fetch the offsets from BV_NLBAS(A6) into A0. The address 0(A6,A0.L) is the
start of the name list. Or, in code:

1 s t a r t move . l BV_NLBAS( a6 ) , a0
2 l e a . l 0 ( a6 , a0 . l ) , a0
3 move . b 0 ( a0 ) , d0 ; D0 = s i z e o f t h e f i r s t e n t r y
4 . . . ; More code h e r e

Now A0 has the start of the name list, but beware of doing this in case SuperBasic gets moved. It is
best to stay relative as in the following:

1 s t a r t move . l BV_NLBAS( a6 ) , a0
2 move . b 0 ( a6 , a0 . l ) , d0 ; D0 = s i z e o f t h e f i r s t e n t r y
3 . . . ; More code h e r e

This is much safer.

The internal structure therefore looks like Figure 7.4.

How is the name list useful to us in writing procedures and functions? consider these commands:

1 OPEN_IN #3 , ’ r a m 1 _ t e s t _ f i l e ’
2 OPEN_IN #3 , r a m 1 _ t e s t _ f i l e



7.7 Name List 115

Figure 7.4: SuperBasic Name List Structure.

What is the difference? In the first case, the parameter for the filename is a quoted string and
internally, the OPEN_IN routine can fetch it using CA_GTSTR as described above. In the second, it
will fail if it uses CA_GTSTR because without quotes, the parameter is a NAME and not a STRING.

The procedure/function writer must check for a string parameter or a name parameter and treat
each accordingly. How is this done? - use the name table type byte as described above.

In the procedure or function, process a name as follows:

Assuming that A3 points to the name table entry for this parameter, then if bits 0 to 4 of 1(a6,a3.l)
is zero then we have a name and not a variable. We must copy the bytes of name, from the entry in
the name list, to the stack (or to the appropriate buffer) making sure that the size byte in the name
list is converted to a size word on the stack or in the buffer. The following fragment of code gives
the general idea:

1 n a m e _ t e s t move . b 1 ( a6 , a3 . l ) , d0
2 a n d i . b # $0f , d0
3 bne . s not_name
4 got_name ;
5 ; Must be a name so p r o c e s s a c c o r d i n g l y h e r e
6 ;
7 not_name ; P r o c e s s a s t r i n g h e r e

So when a name is detected we have to make space for it, copy the size byte from from the name
list into the size word in our string buffer (which has to be word aligned on an even address) and
then copy the individual bytes from the name list to the string buffer. At this point we are in the
same situation we would be in had we fetched a string using CA_GTSTR and copied it from the
maths stack into our buffer. Simple? (In my famous DJToolkit extensions I never actually bothered
doing this and I simply fetched all filenames etc as strings - if the user supplied a name instead, the
procedure or function complained. So far no-one has requested that it be updated to allow names!)

How about a bit of fun - lets write a procedure that prints the entire name list to a channel. It shall
be called nlist and it shall take one parameter which is the channel number - this will default to #1
if no parameter supplied.

1 b v _ n l b a s equ $20 ; Base o f name l i s t
2 bv_n lp equ $24 ; End of name l i s t
3 bv_chbas equ $30 ; Base o f c h a n n e l t a b l e
4 bv_chp equ $34 ; End of c h a n n e l t a b l e
5 e r r _ n o equ −6 ; Channel n o t open e r r o r
6 e r r _ b p equ −15 ; Bad p a r a m e t e r e r r o r
7
8 s t a r t l e a d e f i n e , a1 ; P o i n t e r t o t h e d e f i n i t i o n s



116 Chapter 7. Extending SuperBasic

9 move .w BP_INIT , a2 ; The v e c t o r we need t o use
10 j s r ( a2 ) ; C a l l t h e v e c t o r e d r o u t i n e
11 r t s ; Re tu r n t o S u p e r B a s i c
12
13 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 ∗ D e f i n i t i o n t a b l e f o r one new p r o c e d u r e
15 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 d e f i n e dc .w 1 ; 1 new p r o c e d u r e
17 dc .w n l i s t −∗ ; O f f s e t t o p r o c e d u r e
18 dc . b 5 , ’ NLIST ’ ; S i z e and name
19 dc .w 0 ; End of p r o c e d u r e s
20
21 dc .w 0 ; Number o f f u n c t i o n s
22 dc .w 0 ; End of f u n c t i o n s
23
24 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ∗ P r o c e d u r e NLIST s t a r t s h e r e . . .
26 ∗
27 ∗ Check f o r one o r z e r o p a r a m e t e r s − i f n o t t h e n e r r o r e x i t
28 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 n l i s t cmpa . l a3 , a5 ; No p a r a m e t e r s ?
30 beq . s n l_none ; Yes , s k i p
31 move . l a5 , d0 ; L a s t p a r a m e t e r p o i n t e r
32 sub . l a3 , d0 ; minus f i r s t
33 cmpi .w #8 , d0 ; One p a r a m e t e r ?
34 beq . s go t_one ; Yes
35
36 bad_pa r moveq #−15 , d0
37 e r r o r _ e x i t r t s
38
39 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 ∗ I f one p a r a m e t e r , must have a hash e l s e e r r o r e x i t
41 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 go t_one b t s t # 7 , 1 ( a6 , a3 . l ) ; check f o r a hash
43 beq . s bad_pa r ; Not g o t one
44
45 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 ∗ I t has a hash − f e t c h t h e c h a n n e l i d . I f t h i s f a i l s , e r r o r e x i t .
47 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 g e t _ o n e move .w c a _ g t i n t , a2 ; Ve c to r f o r word i n t e g e r s
49 j s r ( a2 ) ; F e t c h !
50 t s t . l d0 ; Ok?
51 bne . s e r r o r _ e x i t ; No , b a l e o u t
52 cmpi .w #1 , d3 ; One on ly ?
53 bne . s e r r o r _ e x i t ; No , b a l e o u t
54 move .w 0( a6 , a1 . l ) , d0 ; F e t c h c h a n n e l number
55 addq . l #2 , a1 ; Tidy s t a c k
56 t s t .w d0 ; S e t f l a g s
57 b l t . s bad_pa r ; N e g a t i v e i s a bad i d
58 b r a . s chan_ok ; s k i p d e f a u l t h a n d l i n g
59
60 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 ∗ No p a r a m e t e r s s u p p l i e d − d e f a u l t c h a n n e l number t o #1
62 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 n l_none moveq #1 , d0 ; D e f a u l t t o c h a n n e l #1
64 chan_ok b s r . s c h a n n e l _ i d ; c o n v e r t t o c h a n n e l i d i n A0



7.7 Name List 117

65 bne . s e r r o r _ e x i t ; Oops !
66
67 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
68 ∗ F e t c h t h e s t a r t o f t h e name l i s t from BV_NLBAS( A6 ) . The r e s u l t
69 ∗ of t h i s i s an o f f s e t from A6 t o where t h e n a m e l i s t a c t u a l l y
70 ∗ s t a r t s .
71 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 move . l b v _ n l b a s ( a6 ) , a3 ; S t a r t o f name l i s t
73 ∗ ; R e l a t i v e t o A6 !
74
75 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
76 ∗ Our main loop s t a r t s h e r e . We t e s t t o s e e i f we a r e f i n i s h e d
77 ∗ and i f n o t copy t h e ( n e x t ) name t o t h e b u f f e r f o r m a t t i n g i t a s
78 ∗ a QDOS s t r i n g .
79 ∗ D3 i s p r e s e r v e d i n s i d e t h e loop , so s e t i t once j u s t b e f o r e t h e
80 ∗ l oop s t a r t s .
81 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 moveq #−1,d3 ; Timeout f o r t h e c h a n n e l
83
84 n l _ l o o p cmpa . l bv_n lp ( a6 ) , a3 ; Compare o f f s e t s − done ?
85 bge . s n l_done ; Yes
86 moveq # i o _ s s t r g , d0 ; P r i n t some b y t e s p l e a s e
87 move . b 0 ( a6 , a3 . l ) , d2 ; Coun te r b y t e from name l i s t
88 e x t .w d2 ; Needs t o be word s i z e d
89 l e a 1 ( a6 , a3 . l ) , a1 ; S t a r t o f b y t e s t o p r i n t
90 adda .w d2 , a3 ; A d j u s t t o end of b y t e s
91 addq . l #1 , a3 ; A3 = n e x t e n t r y , s i z e b y t e
92 t r a p #3 ; P r i n t t h e name
93 ∗ ; P r e s e r v e s A0 , A3 and D3
94 t s t . l d0 ; Ok?
95 bne . s e r r o r _ e x i t ; Oops − f a i l e d
96
97 n l _ n l moveq # i o _ s b y t e , d0 ; Code f o r ’ send one byte ’
98 moveq #10 , d1 ; Newline c h a r a c t e r
99 t r a p #3 ; P r i n t n e w l i n e

100 ∗ ; P r e s e r v e s A0 , A3 and D3
101 t s t . l d0 ; Ok?
102 bne . s e r r o r _ e x i t ; Oops − f a i l e d
103
104 b r a . s n l _ l o o p ; L e t s go round a g a i n !
105
106 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 ∗ I f t h e r e i s no more t o do , r e t u r n t o S u p e r B a s i c .
108 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109 n l_done moveq #0 , d0 ; No e r r o r s
110 r t s ; E x i t t o S u p e r B a s i c
111
112 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 ∗ Copy t h e above code f o r t h e CHANNEL_ID s u b r o u t i n e t o h e r e as i t
114 ∗ i s r e q u i r e d .
115 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 c h a n n e l _ i d . . .

Listing 7.16: Procedure to Print the Entire Name List

Save the file, assemble, fix typing errors and test - super stuff this eh?



118 Chapter 7. Extending SuperBasic

When this procedure runs, you can see all the internal names like PRINT, CLOSE etc and also all
your own stuff like NLIST, GREEN, RED etc and also any filenames that you have used without
quotes around them. These are names like anything else.

if you try the following:

1 open_new #3 , r a m 1 _ t e s t
2 n l i s t #3
3 c l o s e #3

then load ram1_test into your editor (or copy to scr_), the last entry in the name list will be ram1_test
- because you didn’t use quotes. If you now try:

1 open_new #3 , " r a m 1 _ t e s t _ a g a i n "
2 n l i s t #3
3 c l o s e #3

This time, ram1_test_again will NOT be in the list because it is not a name, simply a string. This
routine can be used to get a list of all procedures, functions, names etc that are loaded into your QL.

7.8 The Maths Stack

The maths stack is where all internal mathematical calculations of floating point variables are done.
It is also used to allow parameters passed to machine code procedures and functions to be ‘collected’
from the user and passed to the registers etc for use by the procedure or function.

The maths stack is simply an area of memory which can be used for all these fancy calculations,
parameter handling etc. There is nothing (much) special about it and it is always addressed internally
using register A1 (relative to A6 - but you knew that didn’t you?)

One of the first things I learned when writing extensions to SuperBasic was that on entry to a
function or procedure, the A1 register is set to a value corresponding to the top of the maths stack.
This is a myth and is not correct.

The value in register A1 can be anything on entry to a machine code function or procedure. I have
done a lot of investigating (thanks to QMON2) and come up with the following rule:

If you want a suitable value in A1 for the top of the maths stack, then either fetch some parameters,
or, load it from BV_RIP.

This means that if a function wants to return a value - which functions usually do - and the function
has no parameters then you must load A1 from BV_RIP(A6) before calling the BV_CHRIX vector to
reserve space. As I found out to my cost, not setting A1 is a good way to trash the system!

If your function does have parameters, then AFTER they have been fetched, A1 is set ok, up until
that time, it is not and has the following possible values:

7.8.1 A1 Is Negative

If A1 is a negative number, then your function has been called as part of an expression such as:

1 PRINT 10 ∗ MY_FUNCTION( p1 , p2 , p3 . . . . )



7.8 The Maths Stack 119

The number in A1.L is the number of bytes that have already been used on the maths stack for the
‘10’ in this case. This will be -6 as the 10 will be stored as a floating point number.

7.8.2 A1 Is Zero

If the number in A1 is zero, then your function has been called thus:

1 PRINT MY_FUNCTION( p1 , p2 , p3 . . . . )

or

1 PRINT MY_FUNCTION( p1 , p2 , p3 . . . . ) + 10

and no bytes have been used on the maths stack yet.

7.8.3 A1 Is Positive

If A1.L is greater than zero then this implies that there are A1.L many bytes available on the
maths stack and calling BV_CHRIX to allocate stack space will not move the maths stack around in
memory.

Warn
I have never seen this documented and it has been discovered by me during long debugging
sessions. Now that SMSQ is here, the above information may no longer be valid. The only
thing to remember is that on entry to a procedure or function, A1 does not hold a suitable
value for the top of the maths stack as stated in various documents.

So that is the real situation and not as specified in the documentation. I took ages to debug one
simple function I wrote, which had no parameters and required some space on the maths stack for
its result. Take a look at the code in the colour functions (green, red etc) we wrote back at the start
of this article and you will see the following code:

1 r e t u r n _ d 7 move . l b v _ r i p ( a6 ) , a1 ; Because we had no params
2 moveq #2 , d1 ; S i z e o f s t a c k s p a c e needed
3 move .w bv_ch r ix , a2 ; A l l o c a t e maths s t a c k s p a c e
4 j s r ( a2 ) ; Get some s p a c e

As you can now see, we load A1 from BV_RIP because none of the functions had any parameters
passed. Had that one line of code been missed out, your QL would have crashed. Try it if you like!

Values on the maths stack must be stored at even addresses. For integers, long integers and floating
point values, this is not a problem. Strings, on the other hand, must be set up correctly with the
word defining the size n an even address and the bytes of the string following. Odd length strings
should have an extra padding byte to keep the A1 maths stack pointer even.

If you read back to section 7.5.1 ‘Keeping things even’ then you will see how to do this. If you
are returning a string from a function, you will need to reserve space for the string, its word count
and a possible spare byte for padding. Refer to the explanation above and you will see why the
following code ‘just works’ :



120 Chapter 7. Extending SuperBasic

1 r e t _ s t r i n g move .w ( a0 ) , d1 ; Assume s t r i n g i s a t ( A0 )
2 addq .w #3 , d1 ; Add s i z e word + padd ing
3 b c l r #0 , d1 ; Force even s i z e
4 move .w bv_ch r ix , a2 ; A l l o c a t e maths s t a c k s p a c e
5 j s r ( a2 )

Of course, I am assuming that A1 holds a suitable value. The code above will request an even
amount of space for a string result. First we fetch the length into D1 - this is the number of
characters in the string only.

We then add 3 to D1. This is 2 for the word count and one for a possible padding byte. By clearing
bit zero of D1 we force the number to be even and can then carry on with the request for space etc.
Easy stuff this!

7.9 Returning Values From Functions

When returning values on the maths stack you must be very careful. When a function exits there
must be a value on the top of the maths stack the pointer to this value needs to be stored in
BV_RIP(A6) and D4 has to have a values in it which defines the returned parameter type. See
Table 7.11.

D4 Return Parameter Type

1 String
2 Floating point
3 Word integer

Table 7.11: Function Return Data Types

Notice anything missing? Although we are allowed to fetch long integers as parameters, we are not
allowed to return them. This is a problem and the usual fix is to convert a long integer to a floating
point and return that instead. This will be covered in another thrilling episode !

7.10 Channel Tables

In our procedure PSI_CLS, we use a channel number in SuperBasic. In assembler, this is no use to
us as all internal operations that require a channel (CLS, PAPER etc) require a channel id which is
a 32 bit long number which bears no resemblance (or only coincidentally) to a SuperBasic channel
number.

In QDOS there is a channel table - for the entire system, and there is the SuperBasic channel table
which is used to convert channel numbers into channel ids which is what we require. SuperBasic
keeps us away from nasty things like internal representations - assembler does not.

The routine we used above, channel_id, is all that is required to convert a channel number to a
channel id. It looks at the SuperBasic channel table and for each channel that has been opened
(even if it is now closed) there will be an entry in the channel table. Each entry is $28 bytes long
(40 bytes) and has the structure shown in Table 7.12.

When a channel is opened in SuperBasic, an entry is created (or reused) in this table. At startup
channels #0, #1, and #2 are pre-created and that is all. If you now open #4, a new entry will be



7.11 Exercise 121

Offset Size Purpose

$00 Long QDOS internal channel id
$04 6 bytes Graphics cursor X position (Floating Point format)
$0A 6 bytes Graphics cursor Y position (Floating Point format)
$10 6 bytes Turtle angle (Floating Point format)
$16 Byte Pen status (0 = up or 1 = down)
$20 Word Character position on line for PRINT and INPUT etc
$22 Word Width of the channel. Set by WIDTH command in SuperBasic but defaults

to 80 when OPEN is called.
$24 Long Spare - currently unused

Table 7.12: SuperBasic Channel Table Definition

created for it. If you open channel #10, then blank entries are created for all the ‘in-between’
channels (5 to 9) and entry 10 is then created and initialised on top.

A channel that has never been opened can therefore still have an entry in this table - channels 5 to 9
in the above example. All of these use memory so it is advisable to start with 3 and work upwards
opening channels as you go, rather than opening #100 or something similar which needlessly wastes
40 bytes of memory for each unused channel.

A channel that is closed, or has never been opened, has a QDOS channel id which is negative.

In the Basic variables area in QDOS (to be covered in a later issue - and by the way, I refer to the
variables that hold information about SuperBasic, and not variables you create in SuperBasic!)
BV_CHBAS holds the offset from A6 to the first entry in the table (ie channel #0) and BV_CHP
holds the offset from A6 to the first byte after the last entry in the channel table. Don’t forget that
these are offsets and that everything in SuperBasic is relative to A6 - simply because by doing
this the base address for the job (SuperBasic is just another job in the machine) is held in A6. If
everything else is stored as an offset then moving the job in memory is simple as only the A6
register has to be updated.

Take a look at the code for channel_id again and note how we are using addresses that are relative
to A6. Make sure that you understand because all fiddling in the bowels of SuperBasic requires that
you understand relative addressing.

Most of the time you will only be interested in the conversion from SuperBasic channel number to
QDOS channel id.

7.11 Exercise

As an exercise, why not add a new procedure called PSI to the code for PSI_CLS. This new
procedure will carry out all the same work as PSI_CLS but it will not do the CLS part of it. This
will be useful when you want to set the colours for a window but not clear it. I will NOT be giving
the answers out next time, but here are a few hints:

• update the definition table with details of the new procedure.
• in the proc’s code, set D6.B to zero for PSI and 1 for PSI_CLS. Do this as the first instruction

in both procedures.
• In the PSI procedure, simply set D6 and jump to the code in PSI_CLS.
• Just before doing the actual CLS part of PSI_CLS, check the value in D6.B and if zero, don’t



122 Chapter 7. Extending SuperBasic

do the CLS simply BRA.S to error_exit instead.

All in all, I think this can be done in about 10 extra lines of code, maybe less, not counting the extra
lines in the definition block.

Warn
Adding even a few lines of code can sometimes cause any ‘short’ branches to go out of range
and this will cause errors in the assembly. If this happens, simply find the ones in error and
remove the ‘.s’ from the ‘bsr’ or ‘bra’ instructions.

7.12 Coming Up...

In the next chapter we delve into the QL’s screen layout and using our new found knowlege of
assembly language programming, we will develop a mode 4 ‘plot’ routine in assembler. If you find
this easy, there is an exercise for the reader - to develop the corresponding mode 8 ‘plot’ code !



8. The QL Screen

8.1 Introduction

In the last chapter, we looked at how easy it was to extend SuperBasic with new procedures and
functions. Hopefully you all tried out the exercise I left for you to do, if not, there will be points
deducted from your final score at the end of the course!

In this chapter, we shall take a look at the QL’s screen memory and how to play around with it. I
won’t be writing any extensions to SuperBasic this time, but you could extend some of the routines
to do so yourselves, and extend SuperBasic to your heart’s content.

8.2 The Screen

Inside the original QL, there were supposed to be two screen areas. As it turned out, the final
product only had one, but some memory was still left around for the second. Unfortunately, the
second screen’s memory has been partially overwritten by the system variables and so cannot be
safely used. To all intents and purposes, we can ignore that second screen and concentrate on the
primary screen itself. This is the one we can all use.

Nowadays, we have all sorts of screen modes and resolutions and with the coming of the Q40 &
Q60, we have numerous colours as well. As an old lag, I deal in mode 4 and mode 8 only but as
I use a QXL mostly (I am awaiting delivery of QPC 2 even as I type, and hopefully it will have
arrived by the time you read this!) I also have more resolution that the old 512 by 256 that the
original QL was limited to.

I also have no documentation regarding the resolutions available on other emulators, cards etc so I
cannot deal with those here - perhaps someone with more details/knowledge could write a follow
up article for an Aurora, Super Gold Card, Q40 etc. (Please!)

In the old days, 512 by 256 was the best you could expect - and only on 4 colours - red, black, green
and white. If you wanted more colours, you only had 256 by 256 to play with, however you did get



124 Chapter 8. The QL Screen

to use blue, yellow, magenta and cyan as well - it was a trade off, as with most things computer
related.

OK, here is how it was in the old days .... the screen starts at address $20000 or 131,072 in the QL’s
memory. Each line on the screen, all 256 of them, use 128 bytes to hold the colour information
for the pixels in the line. This implies that a QL screen takes up 32K of memory, and indeed this
is the case. To get the screen memory address of pixel x,y (x = dots across and y = dots down) a
calculation similar to the following was used:

address = 131072+(y∗128)+ INT (x/4)

This is because each scan line (or row down the screen) starts 128 bytes on from the previous line
hence (y∗128). Each row has 512 pixels in it (even in mode 8!) so the dots across are 512/128 = 4.
This is why the dots across (or x) must be divided by 4.

Warn
Don’t ever assume that the two paragraphs above are true. The various new cards and
graphics modes have changed all of the above. On my QXL, I can see the screen at the above
address only when I run it in QL 512 by 256 mode. The other modes use more memory and
in different places, so any program that writes to the screen at the original addresses will
probably cause carnage within the QXL and lead to unexplained crashes later on - if not
straight away. It must always be assumed the the old ways have gone forever and we must
always calculate the screen start address and how long a scan line is before trying to access
the memory.

For those of you who care about these things, the base of the screen address is at offset $32 in
the channel definition block, while the size, in bytes, of a scan line is at offset $64. (Except if the
QDOS version is less than 1.03, in which case, the scan line size is always 128 bytes.)

How to get this information? Easy, given the following code which assumes that A0.L holds a
channel id for a scr_ or con_ channel:

1 s c r _ s t u f f moveq # sd_ex top , d0 ; Trap code
2 moveq #−1,d3 ; Timout
3 l e a extop , a2 ; R o u t i n e t o c a l l v i a s d _ e x t o p
4 t r a p #3 ; Do i t
5 t s t . l d0 ; OK?
6 bne . s done ; No , b a l e o u t D1 = A1 = g a r b a g e
7
8 got_ them move .w d1 ,−( a7 ) ; Need t o check qdos , s ave s c a n _ l i n e
9 moveq # mt_ in f , d0 ; Trap t o g e t qdos v e r s i o n

10 t r a p #1 ; Get i t ( no e r r o r s )
11 move .w ( a7 ) + , d1 ; R e t r i e v e s c a n _ l i n e v a l u e
12 a n d i . l # $ f f 0 0 f f f f , d2 ; Mask t h e d o t i n QDOS " 1 . 0 3 " e t c
13 cmpi . l # $31003034 , d2 ; T e s t "1 x03 " where x = don ’ t c a r e
14 bcs . s t o o _ o l d ; Less t h a n 1 . 0 3 i s t o o o l d
15 done r t s ; F i n i s h e d
16
17 t o o _ o l d move .w #128 , d1 ; Must be 128 b y t e s
18 r t s ; A l l done
19
20 e x t o p move .w $64 ( a0 ) , d1 ; F e t c h t h e s c a n _ l i n e l e n g t h
21 move . l $32 ( a0 ) , a1 ; F e t c h t h e s c r e e n base
22 moveq #0 , d0 ; No e r r o r s
23 r t s ; done

Listing 8.1: Obtaining the Screen Address with SD_EXTOP



8.3 Mode 4 - screen memory usage 125

So given that we have a channel id in A0 we can extract the required information from the channel
definition block by using the SD_EXTOP trap. This trap takes the address of a routine to call in
A2, parameters for the routine in D1, D2 and A1, a channel id in A0 and returns with D1 and A1
holding values returned from the routine called and an error code in D0.

The way we are using it here we don’t need any parameters on the way in, but coming out, D1.W
holds the scan_line size and A2.L holds the address for the start of the screen memory.

The actual routine itself get presented with the channel definition block’s address in A0, not the
channel id. Within the routine we copy the screen base address into A1 and the scan_line size into
D1.W and return.

On exit, we need to know if the scan_line size is correct so we call QDOS again to get the version
of QDOS in D2. As this corrupts D1 we first save it on the stack. After the trap, D2 holds the
ASCII representation of the QDOS version, for example ‘1.02’ or ‘2.10’ or possibly ‘1m03’ for
some foreign ROMS. (Foreign as in not UK!)

To test for the version we simply mask out the dot or the ‘m’ or whatever from D2 and if the version
is less than 1x03, we simply set D1.W to 128 as this is the only value allowed. All other QDOS
versions from 1x03 onwards have the correct scan_line size in D1.W.

So, on exit, A1.L holds the screen address and D1.W holds the scan_line size in bytes. This scan
width is useful because we can use it to discover the maximum width of the screen in pixels,
provided we know the mode - and I am talking about mode 4 and 8 only here because that is all I
know about!

If we have, as I have on my QXL, a scan_line of 160 bytes, what is this telling me? It says that the
number of pixels across the screen will fit into one scan_line of 160 bytes. In mode 4 I know that
one word of memory holds the data for 8 individual pixels. In mode 8, I know that one word in
memory holds the data for 4 pixels. (Or, as My wife Alison refers to them, ‘pixies’.)

As there are 16 bits in a word we can assume correctly that two bits hold the data for mode 4 pixels
and 4 bits hold the data for mode 8 pixels. Thus we have 160 bytes times 8 bits and divided by 4
to give 640 pixels across in mode 4. In mode 8 the answer will be 320 BUT the screen width is
always the mode 4 width. Only the pixels double up in mode 8, so plotting point 639,0 in mode 8
still works! (or is it 0,639 - I can never remember!)

Our calculation above still works because the memory address of a pixel is now:

screen_base+(y∗ screen_width)+ INT (x/4)

and this works even on a QXL. We come back to this later.

8.3 Mode 4 - screen memory usage

So, as I said above, we have two bits per pixel (or 8 pixels per memory word) in mode 4. How
does this work? Mode 4 allows 4 colours, in binary the numbers from 0 to 3 can be represented by
two bits. Colours are also represented by ‘digits’ in that if you add two colours together you get a
different colour

The word in memory looks like Table 8.1.

In the above table, G7 refers to bit 7 of the green byte. The green byte is always even and lower in
memory than the red byte which is always odd.

The colour codes for the allowed mode 4 colours are as per Table 8.2.



126 Chapter 8. The QL Screen

Green byte bits (even address) Red byte bits (odd address = green address + 1)

G7 G6 G5 G4 G3 G2 G1 G0 R7 R6 R5 R4 R3 R2 R1 R0

Table 8.1: Mode 4 Screen Memory Word Format

Colour GR (Binary) Value (Decimal)

Black 00 0
Red 01 1
Green 10 2
White 11 3

Table 8.2: Mode 4 Colour Codes.

So white is represented by both colours mixed together, black by the lack of both colours and red
and green by themselves.

If in memory we have the green byte and the red byte in each word set up as follows, we can add
the corresponding bit in each byte to represent the colour for a single pixel as follows:

Green b y t e = 0000 1111
Red b y t e = 0101 0101

Which gives us the following:

Bit GR (Binary) Colour

7 00 Black
6 01 Red
5 00 Black
4 01 Red
3 10 Green
2 11 White
1 10 Red
0 11 White

Table 8.3: Mode 4 Example Bits

And that is how it works in mode 4. So we know the screen address (or do we? Think about it) and
we know how to poke values into the correct location so we can now write directly to the screen
can’t we? More later, keep those brain cells ticking over for now. There is something I have not yet
mentioned.

8.4 Mode 8 - screen memory usage

In mode 8 we have 8 different colours. To represent the values 0 to 7 we need at least 3 bits. As
there is flashing allowed in mode 8, we need a bit for flash on or flash off as well. 4 bits per pixel is
what we need and that is what we use.

In this mode, the green byte and the red byte are at the same addresses as in mode 4 with the green
being even and the red being odd, but the layout is different. The green byte shares with the flash



8.4 Mode 8 - screen memory usage 127

bit where the green bit is the odd numbered bit (7, 5, 3, 1) and the flash bits are in the even bits (6,
4, 2, 0). A similar arrangement goes on in the red byte with the red bits being even and the blue
being odd. So the layout looks like Table 8.4.

Green byte bits (even address) Red byte bits (odd address = green address + 1)

G3 F3 G2 F2 G1 F1 G0 F0 R3 B3 R2 B2 R1 B1 R0 B0

Table 8.4: Mode 8 Screen Memory Word Format.

Again the values for the colours represent the mixing of the reds, greens and blues - much like
colours in nature are just mixes of red, blue and yellow. (Light and inks mix differently and so have
different primary colours. In photography, we use yellow, cyan and magenta!)

The colours are as per Table 8.5:

Colour GRB (Binary) Value (Decimal)

Black 000 0
Blue 001 1
Red 010 2
Magenta 011 3
Green 100 4
Cyan 101 5
Yellow 110 6
White 111 7

Table 8.5: Mode 8 Colour Codes

So given the following bit pattern in mode 8:
Green b y t e = 0x0x 1x1x
Red b y t e = 1001 1110

and ignoring the flash bits (shown as ‘x’ above)and combining the appropriate GRB bits from each
byte we get the results shown in Table 8.6:

Bits (in each byte) GRB (Binary) Colour

76 010 Red
54 001 Blue
32 111 White
10 110 Yellow

Table 8.6: Mode 8 Colour Bits.

The flash bits are strange. At the beginning of each scan line, the flashing is turned off until such
time as a flash bit is set - this turns flashing on until the next flash bit which is set is found. This
turns flash off again - so the flash bits act like a toggle turning flash on and off each time a set bit is
found.

Note
Most books I have read on the subject totally ignore the flash bits after this discussion - I am
going to go into it in much more depth. Well that was a lie, I’m not!



128 Chapter 8. The QL Screen

8.5 That calculation again!

Have you had a good think about calculating screen addresses for pixels then? Better still, have you
thought about the problem I hinted at above? What is the problem then?

If each word of the screen memory holds data for either 8 or 4 pixels, then how can we calculate
the correct address for each pixel, because it is (now) obvious that the address for the first 8 pixels
in each row will be the same in mode 4 (or 4 pixels in mode 8) so our wonderful calculation above
needs a bit of tweaking to make it work correctly.

In mode 4, the screen address changes every 8 pixels across. So where x is 0 to 7, the screen address
is the same, for x = 8 to 15 it is the next word of memory and so on. The word that the x pixel
lives in is found by the calculation, but the actual pixel within that group of 8 pixels is not found.
Follow?

Assume row zero and pixel 2, this gives screen address =

base address+(0∗ scan width)+ INT (2/4)

or

base address+0+0

or

base address

This is the same address for pixel 0 through pixel 7. For pixels 8 to 15 it will be as follows (using 8
in the calculation):

base address+(0∗ scan width)+ INT (8/4)

or

base address+2

so we know the memory word, but not the actual bits within it. Remember bits 7 = pixel 0, bit 6 =
pixel 1 and so on down (up?) to bit 0 for pixel 7. How do we get to a value between 0 and 7 from
any x value? If we AND the x value with 7 that will give us a value between 0 and 7 won’t it - lets
see:

X X AND 7

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 0
9 1

10 2

Table 8.7: Truth Table for X AND 7

And so on. Are these the correct values for the bits in the word that we want? Try this and see if we



8.5 That calculation again! 129

get the results shown in Table 8.8:

X AND 7 Correct Bit

0 7
1 6
2 5
3 4
4 3
5 2
6 1
7 0

Table 8.8: X AND 7 plus the Bits Required

Not quite it would appear, but we could always subtract (x AND 7) from 7 couldn’t we? That would
give the correct answer. So a solution is at hand. If we subtract the result of (x AND 7) from 7, we
get the correct bit number in each byte of the calculated memory word. Yippee (or is it - read on.)

Not quite, I’m afraid. If we have the memory address, we can extract the current contents - we must
preserve the other 7 pixels when we plot this one remember - so we need to mask out the same bit
in each byte of the screen word. If we used the subtraction method identified above, we would
needs bucket loads of testing and masking to figure out which bit is required. We need another
method. Before we get to that, how exactly shall we preserve the current pixels?

Remember that a pixel is defined by a single bit in the green byte and the corresponding bit in the
red byte of the screen word. To set a pixel we must first set its two bits to zero (or black) and then
set the two bits according to the requested colour. This turns out to be quite simple.

First create a mask where the bit to be changed in the red and green bytes are set to zero and every
other bit is set to 1. If we AND this mask word with the screen word we effectively set that one
pixel to black. So far so good. Next set a new mask where the single bit in each byte is the requested
green or red bit and all the rest are zero. If we now OR this word with the screen word we have set
the pixel to our requested colour. Too many words, lets have an example.

Our screen shows the following colours in the first 8 pixels:

r e d g r e e n g r e e n b l a c k b l a c k w h i t e r e d w h i t e

This means that we have the following two bit values for each pixel:

01 10 10 00 00 11 01 11

Which means that we have the following word in memory:

01100101 10000111 = $6587

Now let us assume that we want to colour the first pixel (currently red) to white. So our mask to
clear that bit (bit 7 in each byte) needs to be set to

01111111 01111111 = $ 7 f 7 f



130 Chapter 8. The QL Screen

Now we AND this word with the screen word to get the following :

01100101 00000111 = $6507

Note now that the first pixel has been set to 00 (bit 7 from both bytes) so it has effectively been set
to black.

Next we need a white pixel so the colour mask for white must have a 1 in bit 7 of each byte. The
rest must be zero to preserve the current colours of all the other pixels. Our mask must be:

10000000 10000000 = $8080

So if we now OR this into the (new) screen word - currently $6507 - we get the following:

11100101 10000111 = $E587

Taking all the bits into colour values we get this:

11 10 10 00 00 11 01 11

which translates back to the following colours:

white green green black black white red white

Success, we have preserved all other pixels and set the first one to white. Now we know how to do
it to one pixel, it is the same for all the other 7, but the masks need to be changed for each pixel.
How?

If we decide to change pixel 0 (as above) the masks are $7f7f and $8080. This is easy. If we want
pixel 1 to be changed the masks are rotated one bit to the right becoming $bfbf and 4040 and so on.
Look again at our table above where we show the result of (x AND 7) and the correct bit in the
screen word - notice that if we assume that pixel 0 is being changed we can rotate the masks by
(x AND 7) bits to get the correct masks for whichever pixel we try to set, as Table 8.9 shows:

Pixel X AND 7 AND Mask OR Mask

0 0 01111111 G0000000 R0000000
1 1 10111111 0G000000 0R000000
2 2 11011111 00G00000 00R00000
3 3 11101111 000G0000 000R0000
4 4 11110111 0000G000 0000R000
5 5 11111011 00000G00 00000R00
6 6 11111101 000000G0 000000R0
7 7 11111110 0000000G 0000000R

Table 8.9: Bitmaps for Mode 4 pixel masking.

Note
I have only shown one byte of the AND mask, the other byte is identical as we are masking
out the same bit in each byte.



8.5 That calculation again! 131

Looking at the table, we see that the result of (X AND 7) is the pixel we need to set in the screen.
If we start with a mask suitable for pixel 0 and ROTATE it to the right by (X AND 7) bits, we get
the correct mask for that pixel. This also works for our colour mask as well. Things sometimes
become clear when you switch to binary, especially in graphics situations!

We now have the basics for a mode 4 ‘pixel setting’ routine. Lets try it out.

Assume that we want to set the colour of any pixel on the screen to any of the 4 colours we want
in mode 4. We can actually use any of the mode 8 colours because only bits 2 and 1 will be used.
This means that a mode 8 colour of blue (value 001) will result in a mode 4 value black (value 00)
being set for the appropriate pixel. This is exactly how SuperBasic would handle it.

We will use the registers as follows:

1 D1 .W = x ( a c r o s s )
2 D2 .W = y ( down )
3 D3 .W = c o l o u r (0 t o 7 )

Here’s the code in all its glory:

1 ∗======================================================================
2 ∗ In D3 b i t 2 i s g r e e n and b i t 1 i s red , we don ’ t need any o t h e r b i t s ,
3 ∗ so g e t r i d o f them now . Then s h i f t t h e Green b i t i n t o b i t 15 o f D4
4 ∗ and t h e r e d i n t o b i t 7 o f D3 . . .
5 ∗======================================================================
6 s t a r t b r a p l o t _ i n i t ; C a l l s t a r t +4 t o i n i t i a l i s e t h i n g s
7
8 p l o t _ 4 b s r . s c a l c ; Get A1 = s c r e e n a d d r e s s
9 a n d i .w #6 , d3 ; D3 = 00000000 00000GR0

10 l s l .w #6 , d3 ; D3 = 0000000G R0000000
11 move .w d3 , d4 ; D4 = 0000000G R0000000
12 l s l .w #7 , d4 ; D4 = GR000000 00000000
13 or .w d4 , d3 ; D3 = GR00000G R0000000
14 a n d i .w #$8080 , d3 ; D3 = G0000000 R0000000
15
16 ∗======================================================================
17 ∗ D3 .W i s now s e t t o a c o l o u r mask f o r p i x e l 0 . Th i s i s where we want
18 ∗ t o s t a r t . Now we need t o b u i l d a mask t o c l e a r o u t p i x e l 0 as w e l l .
19 ∗ Thi s i s ea sy − use t h e v a l u e from t h e t a b l e above . Then we can s t a r t
20 ∗ r o t a t i n g them i n t o t h e c o r r e c t p o s i t i o n as d e t a i l e d above .
21 ∗======================================================================
22 move .w # $7f7 f , d2 ; AND mask = 10000000 10000000
23 a n d i .w #7 , d1 ; ( x AND 7) i n d1
24 r o r .w d1 , d2 ; B u i l d c o r r e c t AND mask
25 r o r .w d1 , d3 ; B u i l d c o r r e c t OR mask ( c o l o u r )
26 and .w d2 , ( a1 ) ; AND o u t t h e c h a n g i n g p i x e l
27 o r .w d3 , ( a1 ) ; OR i n t h e ( new ) c o l o u r
28 moveq #0 , d0 ; No e r r o r s
29 r t s ; A l l done
30
31 ∗======================================================================
32 ∗ C a l c u l a t e t h e s c r e e n a d d r e s s f o r t h e x and y v a l u e s p a s s e d i n D1 and
33 ∗ D2 . T r a s h e s A1 , D4 and D5 .
34 ∗ The r o u t i n e p l o t _ i n i t must have been c a l l e d t o i n i t i a l i s e t h e s c r e e n
35 ∗ a d d r e s s e s and scan l i n e w i d t h s BEFORE c a l l i n g t h i s r o u t i n e .
36 ∗======================================================================



132 Chapter 8. The QL Screen

37 c a l c l e a s c r _ b a s e , a1 ; S t o r a g e f o r s c r e e n base a d d r e s s
38 move . l ( a1 ) + , d0 ; F e t c h t h e s c r e e n base a d d r e s s
39 move .w ( a1 ) , d6 ; And t h e scan l i n e s i z e
40 movea . l d0 , a1 ; Save i t
41
42 ∗======================================================================
43 ∗ D1 .W = x a c r o s s v a l u e
44 ∗ D2 .W = y down v a l u e
45 ∗ D3 .W = i n k c o l o u r r e q u i r e d
46 ∗ D6 .W = scan l i n e s i z e
47 ∗ A1 . L = s c r e e n base a d d r e s s
48 ∗======================================================================
49 move .w d2 , d5 ; Copy y v a l u e ( down )
50 e x t . l d5 ; We g e t a long r e s u l t n e x t . . .
51 mulu d6 , d5 ; M u l t i p l y by s c a n _ l i n e s i z e
52 adda . l d5 , a1 ; A1 = c o r r e c t s can l i n e a d d r e s s
53
54 move .w d1 , d4 ; Copy x v a l u e
55 l s r .w #2 , d4 ; D4 = INT ( x / 4 )
56 b c l r #0 , d4 ; Even a d d r e s s = g r e e n b y t e
57 adda .w d4 , a1 ; A1 = c o r r e c t s c r e e n word a d d r e s s
58 r t s ; Done
59
60 ∗======================================================================
61 ∗ Thi s r o u t i n e must be c a l l e d once b e f o r e u s i n g t h e p l o t r o u t i n e s . I t
62 ∗ i n i t i a l i s e s t h e s c r e e n base a d d r e s s and scan l i n e wid th from t h e
63 ∗ c h a n n e l d e f i n i t i o n b l o c k f o r S u p e r B a s i c c h a n n e l # 0 .
64 ∗======================================================================
65 p l o t _ i n i t suba . l a0 , a0 ; Channel i d f o r #0 i s a lways 0
66 l e a s c r _ b a s e , a1 ; P a r a m e t e r p a s s e d t o e x t o p r o u t i n e
67 l e a ex top , a2 ; A c t u a l r o u t i n e t o c a l l
68 moveq # sd_ex top , d0 ; Trap code
69 moveq #−1,d3 ; Timout
70 t r a p #3 ; Do i t
71 t s t . l d0 ; OK?
72 bne . s done ; No , b a l e o u t D1 = A1 = g a r b a g e
73
74 got_ them move .w d1 ,−( a7 ) ; Need t o check qdos , s ave s c a n _ l i n e
75 moveq # mt_ in f , d0 ; Trap t o g e t qdos v e r s i o n
76 t r a p #1 ; Get i t ( no e r r o r s )
77 move .w ( a7 ) + , d1 ; R e t r i e v e s c a n _ l i n e v a l u e
78 a n d i . l # $ f f 0 0 f f f f , d2 ; Mask t h e d o t i n QDOS " 1 . 0 3 " e t c
79 cmpi . l # $31003034 , d2 ; T e s t "1?03" where ? = don ’ t c a r e
80 bcs . s t o o _ o l d ; Less t h a n 1 . 0 3 i s t o o o l d
81
82 save move .w d1 , ( a1 ) ; S t o r e t h e s c a n _ l i n e s i z e
83
84 done r t s ; F i n i s h e d
85
86 t o o _ o l d move .w #128 , d1 ; Must be 128 b y t e s
87 b r a . s s ave ; Save D1 and e x i t
88
89 e x t o p move . l $32 ( a0 ) , ( a1 )+ ; S c a n _ l i n e l e n g t h − s t o r e d
90 move .w $64 ( a0 ) , d1 ; Sc r ee n base − n o t s t o r e d
91 moveq #0 , d0 ; No e r r o r s
92 r t s ; done



8.6 Problems 133

93
94 ∗======================================================================
95 ∗ S e t a s i d e some s t o r a g e s p a c e t o ho ld t h e s c r e e n base and s c a n _ l i n e
96 ∗ wid th . Th i s s a v e s h av ing t o c a l c u l a t e i t e v e r y t ime we p l o t a p i x e l .
97 ∗======================================================================
98 s c r _ b a s e ds . l 1
99 s c a n _ l i n e ds .w 1

Listing 8.2: Mode 4 Screen Plotting

And that is the end of the code. To use the above in your assembly language programs simply call
plot_init once to set up the screen base and scan line widths, then call plot_4 as often as you like.
Easy stuff.

To test this code out from SuperBasic, ALCHP (or RESPR) some heap and LBYTES the code file
to that address and CALL it. This initialises the system by calling plot_init. Now, simply CALL
address, x, y, colour and the points will be plotted. Make sure you are in mode 4 or the results may
be a bit crazy! An example program follows:

1 1000 PLOT_INIT = RESPR ( 2 5 6 ) : REMark Enough s p a c e f o r p l o t _ 8 as w e l l !
2 1005 PLOT_4 = PLOT_INIT + 4
3 1010 LBYTES f l p 1 _ p l o t _ b i n , PLOT_INIT
4 1015 CALL PLOT_INIT
5 1020 FOR a c r o s s = 0 t o 100
6 1025 FOR down = 0 t o 100
7 1030 CALL PLOT_4 , a c r o s s , down , RND(0 t o 7 )
8 1035 END FOR down
9 1040 END FOR a c r o s s

8.6 Problems

Ok, so what, if anything is wrong with the plot_4 routine? The answer is that there is no checking
to see if the x and y values are out of range. If you try to plot say pixel 2000,494 the chances are
that it would corrupt something in memory (probably a system variable) with either immediate or
later results.

It is probably easy to check the x value (or across) because there are 8 pixels per word in mode
4 so multiplying the scan line width (in bytes) by 4 should give the maximum resolution across.
Indeed, on my QXL, this works out. My scan line is 160 bytes and the maximum resolution is 640
across by 480 down. 160 times 4 is indeed 640. Unfortunately, I cannot think or find a method of
calculating the maximum display resolution in the ‘downward’ direction.

It may be true that all current display resolutions that are 640 across must be 480 down, but is this
true or not? It appears not. A quick check with the demo version of QPC 2 (an old demo version at
that) shows that It can have the resolutions listed in Table 8.10 ( across by down):

So we can already see that detecting a 640 pixels across resolution leads to a decision about the
downward resolution, is it 400 or 480?

I feel the need to be told if there is a way, simple and effective and which works on all machines,
whether they are black box QLs or Q40s or emulators, to tell the maximum screen resolution.
Anyone got any ideas? If so, Dilwyn will be glad to print the article you are about to write!!



134 Chapter 8. The QL Screen

X (Across) Y (Down)

512 256
640 400
640 480
800 600
1024 768
1152 864
1280 1024
1600 1200

Table 8.10: QPC Screen Dimensions

8.7 Exercise

For this exercise, I want you to write a mode 8 plot routine in a manner similar to the plot_4 routine
shown above. Here are some hints :

• Avoid the flash bits like the plague. Simply mask them out and set them to zero.
• The calc routine works for mode 8 as well. No need to change it.
• The mask for pixel 0’s colour needs to be GF000000 RB000000.
• The mask to clear pixel 0 needs to be 01111111 00111111 ($7f3f).

The algorithm is as follows:

• Calculate the screen address by calling calc. Sets A1 = screen address.
• Mask out all but bits 0, 1 and 2 of D3.W This is the pixel colour. D3 = GRB.
• Shift D3.W LEFT by 6 bits.
• Copy D3.W to D4.W
• Shift D4 left by 7 bits.
• ANDI.W D4.W with $8000 to preserve only bit 15 = G.
• ANDI.W D3.W with $C0 to zero the G bit currently in bit 8.
• OR.W D4 into D3 to give the correct colour mask for pixel 0.
• ANDI.W D1 with 6 to get the correct number of rotates (6 makes it even which it must be

because we need to rotate two bits for each pixel.)
• Rotate right, the two mask words, the correct number of bits.
• AND.W the mask with the screen word.
• OR.W the colour mask with the screen word.
• Clear D0 and return.

The results of (x and 6) are as follows:

And so on. Because we are using two bits of the green and red bytes to represent our colour, we
need to always rotate by an even number.

To test it all out, add the code to the end of the original file which has plot_4 in it and change the
first two lines from this:

1 s t a r t b r a p l o t _ i n i t
2 p l o t _ 4 b s r . s c a l c

to the following:

1 s t a r t b r a p l o t _ i n i t



8.8 Answer 135

X X AND 6

0 0
1 0
2 2
3 3
4 4
5 4
6 6
7 6
8 0
9 0

10 2

Table 8.11: Truth Table for X AND 6

2 p l o t _ 4 b r a p l o t _ 4
3 p l o t _ 8 b r a p l o t _ 8

This means that plot_init is the start address, plot_4 is at address + 4 and plot_8 has been inserted
at start address + 8, as follows:

1 1000 PLOT_INIT = RESPR ( 2 5 6 ) : REMark Enough s p a c e f o r p l o t _ 8 as w e l l !
2 1005 PLOT_4 = PLOT_INIT + 4
3 1010 PLOT_8 = PLOT_INIT + 8
4 1010 LBYTES f l p 1 _ p l o t _ b i n , PLOT_INIT
5 1015 CALL PLOT_INIT

Have fun.

8.8 Answer

1 p l o t _ 8 b s r . s c a l c ; Get A1 = s c r e e n a d d r e s s
2 a n d i .w #7 , d3 ; D3 = 00000000 00000GRB
3 l s l .w #6 , d3 ; D3 = 0000000G RB000000
4 move .w d3 , d4 ; D4 = 0000000G RB000000
5 l s l .w #7 , d4 ; D4 = GRB00000 00000000
6 a n d i .w #$8000 , d4 ; D4 = G0000000 00000000
7 a n d i .w #$00C0 , d3 ; D3 = 00000000 RB000000
8 or .w d4 , d3 ; D3 = G000000G RB000000
9 move .w # $7f3 f , d2 ; AND mask = 01111111 00111111

10 a n d i .w #6 , d1 ; ( x AND 6) i n d1
11 r o r .w d1 , d2 ; B u i l d c o r r e c t AND mask
12 r o r .w d1 , d3 ; B u i l d c o r r e c t OR mask ( c o l o u r )
13 and .w d2 , ( a1 ) ; AND o u t t h e c h a n g i n g p i x e l
14 o r .w d3 , ( a1 ) ; OR i n t h e ( new ) c o l o u r
15 moveq #0 , d0 ; No e r r o r s
16 r t s ; A l l done

Listing 8.3: Mode 8 Screen Plotting



136 Chapter 8. The QL Screen

8.9 Coming Up...

That’s all about the QL screen for the moment. Coming up in the next chapter , we will start to
take a look at subroutines in Assembly Language and build a (hopefully) useful subroutine library
which will allow us to include them in any new programs we write.



III
9 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . 139
9.1 Introduction
9.2 Subroutines
9.3 Building A Library
9.4 Documentation
9.5 The Subroutine Library
9.6 STR_COPY
9.7 STR_APPEND
9.8 STR_REVERSE
9.9 STR_INSERT
9.10 STR_COMP
9.11 STR_COMPI
9.12 FILE_CLOSE
9.13 FILE_OPEN
9.14 FILE_OPENIN
9.15 FILE_OPENNEW
9.16 FILE_OPENOVER
9.17 FILE_OPENDIR
9.18 FILE_GET_HEAD
9.19 FILE_SET_HEAD
9.20 PRINT
9.21 LINE_FEED
9.22 INPUT
9.23 JOB_HEADER
9.24 MEM_ALLOC
9.25 MEM_DEALLOC
9.26 SCR_MODE
9.27 CLS
9.28 SCR_PAPER
9.29 SCR_PAPER_SB
9.30 SCR_INK
9.31 SCR_STRIP
9.32 COLOURS
9.33 The Librarian
9.34 Coming Up...

A Small Diversion into
Subroutines.





9. Subroutines

9.1 Introduction

Here we are in part 9 of the series on assembly language for the QL and what we will look at today
are subroutines.

9.2 Subroutines

A subroutine is simply a piece of code that you call lots of times within your program. Because it is
called so many times, you extract the working code, move it somewhere safe and add an RTS at the
end. This is your subroutine - in its draft form!

Where the code used to be in the main source, now simply has a BSR sub_routine in its place. The
more times a routine is called, the bigger the saving in your typing and memory usage in the final
program. Another major advantage of using subroutines is that you only need to change or correct
them once - of course, if you make a mistake then every call to that subroutine is flawed as well!

For example, in a program you have written, you might find that you write the same piece of code
numerous times to clear the screen, something like that shown in Listing 9.1:

1 s t a r t b l a h b l a h b l a h
2 :
3 :
4 move . l c h a n n e l _ i d , a0 ; F i r s t c h a n n e l i d
5 moveq # s d _ c l e a r , d0 ; CLS
6 moveq # i n f i n i t e , d3 ; I n f i n i t e t i m e o u t
7 t r a p #3 ; CLS t i t l e window
8 :
9 :

10 move . l o t h e r _ c h a n n e l _ i d , a0 ; Another c h a n n e l i d
11 moveq # s d _ c l e a r , d0 ; CLS
12 moveq # i n f i n i t e , d3 ; I n f i n i t e t i m e o u t



140 Chapter 9. Subroutines

13 t r a p #3 ; CLS t i t l e window
14 :
15 :
16 move . l a n o t h e r _ i d , a0 ; And a n o t h e r c h a n n e l i d
17 moveq # s d _ c l e a r , d0 ; CLS
18 moveq # i n f i n i t e , d3 ; I n f i n i t e t i m e o u t
19 t r a p #3 ; CLS t i t l e window
20 :
21 :
22 r t s ; A l l done

Listing 9.1: Example of Repetitive Code

and so on. The above code looks duplicated and where you have duplication, you can usually -
but not always - extract the duplicate code to a subroutine. We can now rewrite the code above as
follows:

1 s t a r t b l a h b l a h b l a h
2 :
3 :
4 move . l c h a n n e l _ i d , a0 ; F i r s t c h a n n e l i d
5 b s r c l s
6 :
7 :
8 move . l o t h e r _ c h a n n e l _ i d , a0 ; Another c h a n n e l i d
9 b s r c l s

10 :
11 :
12 move . l a n o t h e r _ i d , a0 ; And a n o t h e r c h a n n e l i d
13 b s r c l s
14 :
15 :
16 r t s ; A l l done
17
18 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 ∗ S u b r o u t i n e t o c l e a r t h e SCR or CON c h a n n e l whose ID i s h e l d i n A0 .
20 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 c l s moveq # s d _ c l e a r , d0 ; CLS
22 moveq #−1,d3 ; I n f i n i t e t i m e o u t
23 t r a p #3 ; CLS t i t l e window
24 r t s

Listing 9.2: Example of Non-repetitive Code

The code that does the setting up of the various parameters for the system call to clear a channel
has been extracted and placed at the end all by itself. An RTS instruction has been added to allow
us to go back to where we came from. The second piece of code is easier (?) to read and will be
smaller when finished.

So that is all there is to it. If you remember back to the boring part of this series (what do you
mean ‘which boring part?’) where I discussed the inner workings of the BSR instruction, you will
remember that BSR stacks the address of the instruction that will be executed next (after the BSR),
jumps to the address given and continues executing from there until it finds an RTS instruction.

The RTS instruction stop the program in its tracks, sets the PC (2 points if you can remember what
PC stands for ...) to the address that was stacked and proceeds to execute from there again. Those of
you who are ahead of me at this point will realise that the RTS instruction takes the top 4 bytes off



9.3 Building A Library 141

of the stack regardless of what they are. If they are a valid return address then fine, no problems. If,
on the other hand, they are some data, then who knows what will happen when the RTS is executed.

For this reason, it is very important that your stack should be exactly the same on the way out of a
subroutine as it was on the way in. Don’t do something like that shown in Listing 9.3, for example:

1 s t a r t b l a h b l a h b l a h
2 :
3 :
4 move . l c h a n n e l _ i d , a0 ; F i r s t c h a n n e l i d
5 b s r c l s
6 :
7 :
8 r t s
9

10 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 ∗ BROKEN s u b r o u t i n e t o c l e a r t h e SCR or CON c h a n n e l whose ID i s i n A0 .
12 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 c l s move . l d0 ,−( a7 ) ; P r e s e r v e D0 u n t i l l a t e r
14 moveq # s d _ c l e a r , d0 ; CLS
15 moveq #−1,d3 ; I n f i n i t e t i m e o u t
16 t r a p #3 ; CLS t i t l e window
17 r t s ; Program e x p l o d e s h e r e !

Listing 9.3: Example of a Messed up Stack!

In this example, the old value of D0.L is on the stack on top of the return address. When the RTS
instruction is executed it doesn’t know (or care) about what is on the stack, it just grabs the top
4 bytes and sets the PC to that ‘address’. (You get 2 points if you remembered PC = Program
Counter!)

9.3 Building A Library

As you progress with assembly language programming, you may find that you build up a lot of
subroutines in your programs. What to do with them all?

Why not build yourself a library of routines that you can include in every program that needs
them. This way, you have a full set of tried and tested bits of code - which you should document
somewhere - that can be reused over and over again. The rest of this article will help you on your
way by building a number of useful (well, I have found them to be useful over the years) subroutines
that you can use.

9.4 Documentation

As with all good things, documentation is a must. If you have a large number of useful routines
then they should be documented somewhere. This will allow you to look for a routine in your
library and from that, find out its input & output parameters and which file it lives in.

A suitable template that you could use for each subroutine is as follows:

∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ NAME
∗ DEPENDENCY ( 1 )
∗ DEPENDENCY ( 2 )



142 Chapter 9. Subroutines

∗ PURPOSE
∗ INPUTS
∗ OUTPUTS
∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The above looks very like comments in a source file - this implies that we could add the documenta-
tion to the source file and then run a utility program to extract the details and store them in a text
file - which you can edit and/or print as desired.

Having a standard header above each subroutine also implies that you could write a utility program
to scan the entire library and ask you which ones you want to include in your output file - which
will be you source file for your next masterpiece - before extracting them all and writing them to
this file.

As for the subroutines themselves, I mentioned above that they exist in a draft form when you
simply extract the code from the ‘wordy’ source and add an RTS to the end. This is fine, but it could
be that you need to preserve certain registers so that the code calling the subroutine doesn’t need to
keep saving and restoring them. The updates required are:

Check which registers will be used by the code explicitly - save them before and restore them after
the main part of the subroutine code.

Check which system calls are made by the subroutine and look up the QDOSMSQ documentation
to see which registers are trashed by the system call. Add these registers to the save and restore
routines.

Save the registers as the first line of code in the subroutine and restore them as the line immediately
before the RTS (or as near to the RTS as possible).

Always have the subroutine return an error code and/or the flags set to signal if an error occurred or
not.

An actual example is shown in Listing 9.4:

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME CLS
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To c l e a r a s c r e e n / c o n s o l e c h a n n e l .
6 ∗ DESCRIPTION C l e a r s t h e s c r e e n c h a n n e l whose ID i s s u p p l i e d i n A0 .
7 ∗ INPUTS :
8 ∗ A0 . L = c h a n n e l ID
9 ∗ OUTPUTS:

10 ∗ D0 = E r r o r code
11 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
12 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 c l s move . l d1 / d3 / a1 ,−( a7 ) ; C o r r u p t e d by SD_CLEAR
14 moveq # s d _ c l e a r , d0 ; SD_CLEAR d e f i n e d i n GWASL
15 moveq #−1,d3 ; I n f i n i t e t i m e o u t
16 t r a p #3 ; CLS t h e window
17 move . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e c o r r u p t e d r e g i s t e r s
18 t s t . l d0 ; S e t Z f l a g i f a l l ok
19 r t s

Listing 9.4: A Subroutine Example



9.5 The Subroutine Library 143

In the above example, I have extended the ‘cls’ code from our original subroutine as follows:

• - I have added a documentation header comment.
• - I have preserved D3 because I use it in the code myself.
• - I have preserved D1 and A1 because the QDOSMSQ documentation states that these two

registers are ‘undefined’ on return from the system trap SD_CLEAR.
• - I have restored all 3 of these registers before the RTS.
• - I have added a TST.L D0 instruction to set the Z flags according to whether an error was

detected or not.

Note that although D0 is used by the code and by the system call, I have not preserved it. This is
quite simply because I use D0 to return any error codes back to the caller. As I have documented its
corruption in the header, I assume that the user of the subroutine will read this and know all about
it!

Bullet proofing the code like this helps to reduce unexpected bugs in your programs when you
forget to save a register and after a subroutine call, assume it still has the same value as before. I
know, I have been there. Of course, there is not much you can do to prevent the documentation you
use from being wrong (been there too) but at least you did your best!

9.5 The Subroutine Library

Onwards with the code for my (useful) subroutines.

9.6 STR_COPY

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_COPY
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE Copy t h e s t r i n g a t ( A2 ) ove r t h e s t r i n g a t ( A1 ) .
6 ∗ DESCRIPTION Copy t h e s t r i n g whose a d d r e s s i s p a s s e d i n A2 ove r t h e
7 ∗ s t r i n g whose a d d r e s s i s p a s s e d i n A1 t h u s o v e r w r i t i n g
8 ∗ t h e o l d c o n t e n t s o f t h e r e c e i v i n g s t r i n g .
9 ∗ INPUTS :

10 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g
11 ∗ A2 . L = Address o f t h e s e n d i n g s t r i n g
12 ∗ OUTPUTS:
13 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g ( p r e s e r v e d )
14 ∗ A2 . L = Address o f t h e s e n d i n g s t r i n g ( p r e s e r v e d )
15 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 s t r _ c o p y movem . l d0 / a1−a2 ,−( a7 ) ; P r e s e r v e working r e g i s t e r
17 move .w ( a2 ) + , d0 ; Get s i z e o f ’ from ’ s t r i n g
18 move .w d0 , ( a1 )+ ; S e t new s i z e o f ’ to ’ s t r i n g
19 b r a . s s c _ n e x t ; Sk ip t h e db ra s t u f f f i r s t t ime
20 sc_moveb move . b ( a2 ) + , ( a1 )+ ; Move a s i n g l e b y t e
21 s c _ n e x t db ra d0 , sc_moveb ; And t h e r e s t
22 movem . l ( a7 ) + , d0 / a1−a2 ; R e s t o r e working r e g i s t e r s
23 r t s ; E x i t

Listing 9.5: STR_COPY

9.7 STR_APPEND



144 Chapter 9. Subroutines

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_APPEND
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY STR_COPY
5 ∗ PURPOSE Append s t r i n g a t ( A2 ) t o t h e end of s t r i n g a t ( A1 ) .
6 ∗ DESCRIPTION Copy t h e s t r i n g whose a d d r e s s i s p a s s e d i n A2 t o t h e
7 ∗ end of t h e s t r i n g whose a d d r e s s i s p a s s e d i n A1 . The
8 ∗ o l d c o n t e n t s o f bo th s t r i n g s w i l l be p r e s e r v e d −
9 ∗ e x c e p t A1 which w i l l be e x t e n d e d of c o u r s e !

10 ∗ INPUTS :
11 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g
12 ∗ A2 . L = Address o f t h e s e n d i n g s t r i n g
13 ∗ OUTPUTS:
14 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g ( p r e s e r v e d )
15 ∗ A2 . L = Address o f t h e s e n d i n g s t r i n g ( P r e s e r v e d )
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 s t r _ a p p e n d movem . l d0 / a1−a2 ,−( a7 ) ; Save t h e working r e g i s t e r
18 move .w ( a2 ) + , d0 ; S i z e o f ’ from ’ s t r i n g
19 move .w ( a1 ) , d1 ; S i z e o f ’ to ’ s t r i n g
20 add .w d0 , ( a1 )+ ; New s i z e o f ’ to ’ s t r i n g
21 adda .w d1 , a1 ; New ’ to ’ s t r i n g end p o s i t i o n
22 b r a . s s c _ n e x t ; Copy b y t e s ove r u s i n g STR_COPY
23 ; D0 i s r e s t o r e d by STR_COPY
24 ; STR_APPEND e x i t s v i a STR_COPY .

Listing 9.6: STR_APPEND

9.8 STR_REVERSE

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_REVERSE
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE Reve r se t h e b y t e s i n t h e s t r i n g a t ( A1 ) .
6 ∗ DESCRIPTION R e v e r s e s t h e b y t e s i n t h e s t r i n g wi th a d d r e s s ( A1 ) .
7 ∗ INPUTS :
8 ∗ A1 . L = Address o f t h e s t r i n g t o be r e v e r s e d
9 ∗ OUTPUTS:

10 ∗ A1 . L = Address o f t h e s t r i n g t o be r e v e r s e d ( P r e s e r v e d )
11 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 s t r _ r e v e r s e move . l d0−d1 / a1−a2 ,−( a7 ) ; Save working r e g i s t e r s
13 move . l a1 , a2 ; Copy s t a r t a d d r e s s
14 move .w ( a1 ) + , d0 ; F e t c h l e n g t h word
15 beq . s s r _ q u i t ; Noth ing t o do
16 adda .w d0 , a2 ; Near t h e end of t h e s t r i n g
17 addq . l #1 , a2 ; The l a s t c h a r i n t h e s t r i n g
18 l s l .w #1 , d0 ; D0 = INT ( D0 / 2 )
19 b r a . s s r _ n e x t ; Sk ip t h e f i r s t one f o r DBRA
20 s r _ l o o p move . b ( a2 ) , d1 ; F e t c h t h e l a s t c h a r a c t e r
21 move . b ( a1 ) , ( a2 ) ; Move t h e f i r s t b y t e t o l a s t
22 move . b d1 , ( a1 )+ ; Move t h e l a s t b y t e t o f i r s t
23 subq . l #1 , a2 ; And a d j u s t l a s t
24 s r _ n e x t db ra d0 , s r _ l o o p ; And do t h e r e s t
25 s r _ q u i t movem . l ( a7 ) + , d0−d1 / a1−a2 ; R e s t o r e t h e working r e g i s t e r s
26 r t s

Listing 9.7: STR_REVERSE



9.9 STR_INSERT 145

9.9 STR_INSERT

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_INSERT
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY STR_APPEND
5 ∗ PURPOSE I n s e r t s t r i n g a t ( A2 ) i n t o s t r i n g a t ( A1 ) a t pos D0 .W.
6 ∗ DESCRIPTION I n s e r t s t h e s t r i n g wi th a d d r e s s a t ( A2 ) i n t o t h e s t r i n g
7 ∗ wi th a d d r e s s ( A1 ) a t t h e p o s i t i o n p a s s e d i n D0 .W so t h e
8 ∗ f i r s t c h a r a c t e r i n t h e i n s e r t e d s t r i n g i s a t ( A1 , D0 .W)
9 ∗ a f t e r t h e i n s e r t i o n . (0 i s t h e ve ry f i r s t c h a r a c t e r ! )

10 ∗ I f D0 >= l e n g t h ( A1 ) t h e n c a l l STR_APPEND .
11 ∗ INPUTS :
12 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g
13 ∗ A2 . L = Address o f t h e s t r i n g t o be i n s e r t e d
14 ∗ D0 .W = P o s i t i o n ( s t a r t i n g a t 0 ) where t o i n s e r t b e f o r e
15 ∗ OUTPUTS:
16 ∗ D0 = E r r o r code
17 ∗ A1 . L = Address o f t h e r e c e i v i n g s t r i n g ( p r e s e r v e d )
18 ∗ A2 . L = Address o f t h e s t r i n g t o be i n s e r t e d ( p r e s e r v e d )
19 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
20 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 s t r _ i n s e r t cmp .w d0 , ( a1 ) ; Are we append ing p e r h a p s ?
22 bge s t r _ a p p e n d ; Yes , ea sy c a s e t o d e a l w i th !
23 t s t .w d0 ; I s t h e r e a n y t h i n g i n D0?
24 bge . s s i _ o k ; Yes , n e g a t i v e s a r e bad !
25 moveq #−15 , d0 ; Bad p a r a m e t e r
26 r t s ; Z i s u n s e t , D0 = e r r o r code
27
28 s i _ o k movem . l d1 / a1−a4 ,−( a7 ) ; Save t h o s e worke r s
29 move . l a1 , a3 ; A3 = Address o f A1 s t r i n g
30 adda .w ( a1 ) , a3 ; P l u s t h e s i z e . . .
31 addq . l #2 , a3 ; A3 = l a s t c h a r o f s t r i n g +1
32 move . l a3 , a4 ; A4 = new l a s t c h a r a f t e r w a r d s
33 adda .w ( a2 ) , a4 ; Add t h e e x t r a l e n g t h
34 addq . l #2 , a4 ; And now we a r e t h e r e ( + 1 )
35 move .w ( a2 ) , d1 ; S i z e o f i n s e r t e d s t r i n g
36 b r a . s s i _ d n e x t ; Sk ip db ra
37 si_dmove move . b −(a3 ) , − ( a4 ) ; Move a b y t e
38 s i _ d n e x t db ra d1 , s i_dmove ; Do t h e r e s t
39 move .w ( a2 ) , d1 ; R e f e t c h t h e i n s e r t e d l e n g t h
40 adda .w d1 , a2 ; A2 n e a r l y a t t h e l a s t c h a r
41 addq .w #2 , a2 ; One p a s t t h e l a s t c h a r a c t e r
42 b r a . s s i _ i n e x t ; Sk ip db ra s t u f f
43 s i _ im o v e move . b −(a3 ) , − ( a4 ) ; I n s e r t a b y t e
44 s i _ i n e x t db ra d1 , s i _ i m ov e ; I n s e r t t h e r e s t
45 movem . l ( a7 ) + , d1 / a1−a4 ; R e s t o r e t h o s e worke r s
46 c l r . l d0 ; No e r r o r s
47 r t s

Listing 9.8: STR_INSERT

9.10 STR_COMP

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_COMP
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



146 Chapter 9. Subroutines

4 ∗ DEPENDENCY None
5 ∗ PURPOSE To compare two s t r i n g s f o r e x a c t e q u a l i t y
6 ∗ DESCRIPTION Compare t h e s t r i n g s a t ( A1 ) and ( A2 ) f o r e q u a l i t y .
7 ∗ Numbers i n t h e s t r i n g a r e c o n s i d e r e d as w e l l .
8 ∗ E q u i v a l e n t t o ’ IF ( A1$ = A2$ ) ’
9 ∗ INPUTS :

10 ∗ A1 . L = F i r s t s t r i n g
11 ∗ A2 . L = Second s t r i n g
12 ∗ OUTPUTS:
13 ∗ D0 = R e s u l t o f compar i son .
14 ∗ −1 = A1 s t r i n g i s < A2 s t r i n g
15 ∗ 0 = A1 s t r i n g = A2 s t r i n g
16 ∗ +1 = A1 s t r i n g > A2 s t r i n g
17 ∗ A1 . L = F i r s t s t r i n g ( p r e s e r v e d )
18 ∗ A2 . L = Second s t r i n g ( p r e s e r v e d )
19 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 s t r_comp movem . l a0−a2 ,−( a7 ) ; Must p r e s e r v e worke r s
21 moveq #2 , d0 ; Case & numbers c o n s i d e r e d
22 sc_params move . l a1 , a0 ; Uses d i f f e r e n t r e g i s t e r s
23 move . l a2 , a1 ; So swap them ove r
24 move .w UT_CSTR , a2 ; F e t c h t h e v e c t o r a d d r e s s
25 j s r ( a2 ) ; Compare s t r i n g s u s i n g ROM
26 movem . l ( a7 ) + , a0−a2 ; R e s t o r e working r e g i s t e r s
27 t s t . l d0 ; Make s u r e Z i s s e t / u n s e t
28 r t s

Listing 9.9: STR_COMP

9.11 STR_COMPI

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME STR_COMPI
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY STR_COMP
5 ∗ PURPOSE To compare two s t r i n g s f o r a p p r o x i m a t e e q u a l i t y
6 ∗ DESCRIPTION Compare t h e s t r i n g s a t ( A1 ) and ( A2 ) f o r e q u a l i t y wi th
7 ∗ numbers c o n s i d e r e d b u t n o t l e t t e r c a s e .
8 ∗ E q u i v a l e n t t o ’ IF ( A1$ == A2$ ) ’
9 ∗ INPUTS :

10 ∗ A1 . L = F i r s t s t r i n g
11 ∗ A2 . L = Second s t r i n g
12 ∗ OUTPUTS:
13 ∗ D0 = R e s u l t o f compar i son .
14 ∗ −1 = A1 s t r i n g i s < A2 s t r i n g
15 ∗ 0 = A1 s t r i n g == A2 s t r i n g
16 ∗ +1 = A1 s t r i n g > A2 s t r i n g
17 ∗ A1 . L = F i r s t s t r i n g ( p r e s e r v e d )
18 ∗ A2 . L = Second s t r i n g ( p r e s e r v e d )
19 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 s t r _ c o m p a r e movem . l a0−a2 ,−( a7 ) ; Must p r e s e r v e worke r s
21 moveq #3 , d0 ; Numbers + Case i n s i g n i f i c a n t
22 b r a sc_params ; Jump i n t o STR_COMP

Listing 9.10: STR_COMPI

9.12 FILE_CLOSE



9.13 FILE_OPEN 147

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_CLOSE
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE Close t h e c h a n n e l p a s s e d i n A0
6 ∗ DESCRIPTION Close t h e f i l e c h a n n e l w i th QDOS ID i n A0 . To p r e v e n t
7 ∗ any o r i g i n a l QL s y s t e m s from s e r i o u s problems , c he ck s
8 ∗ f o r #0 b e i n g c l o s e d and i g n o r e s i t .
9 ∗ INPUTS :

10 ∗ A0 . L = Channel ID t o be c l o s e d
11 ∗ OUTPUTS:
12 ∗ D0 i s p r e s e r v e d as IO_CLOSE does n o t r e t u r n e r r o r s
13 ∗ e x c e p t NOT OPEN and we i g n o r e t h e s e h e r e ! The Z f l a g
14 ∗ i s i n d e t e r m i n a t e a f t e r t h i s s u b r o u t i n e .
15 ∗ A0 . L i s r e t u r n e d u n d e f i n e d t o a v o i d c h a n n e l r e u s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ c l o s e cmpa . l #0 , a0 ; T e s t f o r S u p e r B a s i c #0
18 beq . s f c _ e x i t ; I g n o r e i t
19 move . l d0 ,−( a7 ) ; P r e s e r v e t h e worker
20 moveq # i o _ c l o s e , d0 ; P r e p a r e t o c l o s e i t
21 t r a p #2 ; Close i t
22 move . l ( a7 ) + , d0 ; R e s t o r e t h e worker
23 f c _ e x i t r t s

Listing 9.11: FILE_CLOSE

9.13 FILE_OPEN

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_OPEN
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To open a f i l e l i k e ’OPEN #3 , f i l e n a m e ’
6 ∗ DESCRIPTION Opens a f i l e i n mode 0 ( o l d e x c l u s i v e d e v i c e ) The
7 ∗ f i l e n a m e i s p a s s e d i n A0 . The c u r r e n t j o b assumes
8 ∗ owner sh ip o f t h e c h a n n e l . May need a TRAP #4 b e f o r e
9 ∗ c a l l i n g i f t h e f i l e n a m e i s r e l a t i v e A6 when c a l l e d .

10 ∗ INPUTS :
11 ∗ A0 . L = P o i n t e r t o f i l e n a m e
12 ∗ OUTPUTS:
13 ∗ A0 . L = Channel i d .
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ o p e n movem . l d1−d3 ,−( a7 ) ; Those worke r s need s a v i n g
18 moveq #0 , d3 ; Old e x c l u s i n g d e v i c e mode
19 fo_params moveq #IO_OPEN , d0 ; Trap code
20 moveq −1,d1 ; C u r r e n t j o b owns t h e c h a n n e l
21 t r a p #2 ; Open i t
22 movem . l ( a7 ) + , d1−d3 ; R e s t o r e worke r s
23 t s t . l d0 ; Make s u r e Z i s s e t / u n s e t
24 r t s

Listing 9.12: FILE_OPEN

9.14 FILE_OPENIN



148 Chapter 9. Subroutines

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_OPENIN
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY FILE_OPEN
5 ∗ PURPOSE To open a f i l e l i k e ’OPEN_IN #3 , f i l e n a m e ’
6 ∗ DESCRIPTION Opens a f i l e i n mode 1 ( o l d s h a r e d d e v i c e ) The
7 ∗ f i l e n a m e i s p a s s e d i n A0 . The c u r r e n t j o b assumes
8 ∗ owner sh ip o f t h e c h a n n e l . May need a TRAP #4 b e f o r e
9 ∗ c a l l i n g i f t h e f i l e n a m e i s r e l a t i v e A6 when c a l l e d .

10 ∗ INPUTS :
11 ∗ A0 . L = P o i n t e r t o f i l e n a m e
12 ∗ OUTPUTS:
13 ∗ A0 . L = Channel i d .
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ o p e n i n movem . l d1−d3 ,−( a7 ) ; Those worke r s need s a v i n g
18 moveq #1 , d3 ; Old s h a r e d d e v i c e mode
19 b r a fo_params ; Do t h e r e s t v i a FILE_OPEN

Listing 9.13: FILE_OPENIN

9.15 FILE_OPENNEW

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_OPENNEW
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY FILE_OPEN
5 ∗ PURPOSE To open a f i l e l i k e ’OPEN_NEW #3 , f i l e n a m e ’
6 ∗ DESCRIPTION Opens a f i l e i n mode 2 ( new e x c l u s i v e d e v i c e ) The
7 ∗ f i l e n a m e i s p a s s e d i n A0 . The c u r r e n t j o b assumes
8 ∗ owner sh ip o f t h e c h a n n e l . May need a TRAP #4 b e f o r e
9 ∗ c a l l i n g i f t h e f i l e n a m e i s r e l a t i v e A6 when c a l l e d .

10 ∗ INPUTS :
11 ∗ A0 . L = P o i n t e r t o f i l e n a m e
12 ∗ OUTPUTS:
13 ∗ A0 . L = Channel i d .
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ o p e n n e w movem . l d1−d3 ,−( a7 ) ; Those worke r s need s a v i n g
18 moveq #2 , d3 ; New e x c l u s i v e d e v i c e mode
19 b r a fo_params ; Do t h e r e s t v i a FILE_OPEN

Listing 9.14: FILE_OPENNEW

9.16 FILE_OPENOVER

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_OPENOVER
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY FILE_OPEN
5 ∗ PURPOSE To open a f i l e l i k e ’OPEN_OVER #3 , f i l e n a m e ’
6 ∗ DESCRIPTION Opens a f i l e i n mode 3 ( new o v e r w r i t e d e v i c e ) The
7 ∗ f i l e n a m e i s p a s s e d i n A0 . The c u r r e n t j o b assumes
8 ∗ owner sh ip o f t h e c h a n n e l . May need a TRAP #4 b e f o r e
9 ∗ c a l l i n g i f t h e f i l e n a m e i s r e l a t i v e A6 when c a l l e d .



9.17 FILE_OPENDIR 149

10 ∗ INPUTS :
11 ∗ A0 . L = P o i n t e r t o f i l e n a m e
12 ∗ OUTPUTS:
13 ∗ A0 . L = Channel i d .
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ o p e n o v e r movem . l d1−d3 ,−( a7 ) ; Those worke r s need s a v i n g
18 moveq #3 , d3 ; New o v e r w r i t e d e v i c e mode
19 b r a fo_params ; Do t h e r e s t v i a FILE_OPEN

Listing 9.15: FILE_OPENOVER

9.17 FILE_OPENDIR

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_OPENDIR
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY FILE_OPEN
5 ∗ PURPOSE To open a f i l e l i k e ’OPEN_DIR #3 , devicename ’
6 ∗ DESCRIPTION Opens a f i l e i n mode 4 ( d i r e c t o r y ) The f i l e n a m e i s
7 ∗ p a s s e d i n A0 . The c u r r e n t j o b assumes owner sh ip o f
8 ∗ t h e c h a n n e l . May need a TRAP #4 b e f o r e c a l l i n g i f t h e
9 ∗ f i l e n a m e i s r e l a t i v e A6 when c a l l e d .

10 ∗ INPUTS :
11 ∗ A0 . L = P o i n t e r t o f i l e n a m e
12 ∗ OUTPUTS:
13 ∗ A0 . L = Channel i d .
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 f i l e _ o p e n d i r movem . l d1−d3 ,−( a7 ) ; Those worke r s need s a v i n g
18 moveq #4 , d3 ; D i r e c t o r y mode
19 b r a fo_params ; Do t h e r e s t v i a FILE_OPEN

Listing 9.16: FILE_OPENDIR

9.18 FILE_GET_HEAD

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_GET_HEAD
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To r e a d t h e 64 b y t e s h e a d e r f o r a f i l e . ( a l r e a d y open )
6 ∗ DESCRIPTION Reads a 64 b y t e f i l e h e a d e r f o r t h e open f i l e wi th ID
7 ∗ i n A0 . L i n t o t h e b u f f e r whose a d d r e s s i s p a s s e d
8 ∗ i n A1 . L . Th i s b u f f e r must be a t l e a s t 64 b y t e s long !
9 ∗ INPUTS :

10 ∗ A0 . L = Channel ID
11 ∗ A1 . L = Address o f 64 b y t e b u f f e r t o p u t h e a d e r i n t o
12 ∗ OUTPUTS:
13 ∗ D0 = E r r o r code
14 ∗ D1 = S i z e o f h e a d e r r e a d i n t o b u f f e r
15 ∗ A0 = Channel i d ( p r e s e r v e d )
16 ∗ A1 = Address o f b u f f e r ( p r e s e r v e d )
17 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
18 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



150 Chapter 9. Subroutines

19 f i l e _ g e t _ h e a d movem . l d2−d3 / a0−a1 ,−( a7 ) ; Save working r e g i s t e r s
20 moveq #FS_HEADR, d0 ; Get t r a p code
21 moveq #64 , d2 ; B u f f e r s i z e
22 f g h _ r e s t moveq #−1,d3 ; I n f i n i t y i s a b i g t h i n g
23 t r a p #3 ; Do i t
24 movem . l ( a7 ) + , d2−d3 / a0−a1 ; R e s t o r e worke r s
25 t s t . l d0 ; S e t f l a g s
26 r t s ; Re tu rn t o c a l l e r

Listing 9.17: FILE_GET_HEAD

9.19 FILE_SET_HEAD

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME FILE_SET_HEAD
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY FILE_GET_HEAD
5 ∗ PURPOSE To w r i t e a 64 b y t e s h e a d e r f o r a f i l e . ( a l r e a d y open )
6 ∗ DESCRIPTION W r i t e s a 64 b y t e f i l e h e a d e r f o r t h e open f i l e wi th ID
7 ∗ i n A0 . L from t h e b u f f e r whose a d d r e s s i s p a s s e d i n
8 ∗ A1 . L . Th i s b u f f e r must be a t l e a s t 64 b y t e s long !
9 ∗ INPUTS :

10 ∗ A0 . L = Channel ID
11 ∗ A1 . L = Address o f 64 b y t e b u f f e r h o l d i n g t h e h e a d e r
12 ∗ OUTPUTS:
13 ∗ D0 = E r r o r code
14 ∗ D1 = S i z e o f h e a d e r w r i t t e n from b u f f e r
15 ∗ A0 = Channel i d ( p r e s e r v e d )
16 ∗ A1 = Address o f b u f f e r ( p r e s e r v e d )
17 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
18 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 f i l e _ s e t _ h e a d movem . l d2−d3 / a0−a1 ,−( a7 ) ; Save working r e g i s t e r s
20 moveq #FS_HEADS , d0 ; Get t r a p code
21 b r a f g h _ r e s t ; Do r e s t v i a FILE_GET_HEAD

Listing 9.18: FILE_SET_HEAD

9.20 PRINT

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME PRINT
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To send t h e s t r i n g a t ( A1 ) t o t h e c h a n n e l i n A0 .
6 ∗ DESCRIPTION Thi s r o u t i n e p r i n t s a QDOS s t r i n g ( word t h e n b y t e s ) t o
7 ∗ t h e c h a n n e l ID p a s s e d i n A0 . The s t r i n g s t a r t s a t A1 .
8 ∗ INPUTS :
9 ∗ A0 . L = Channel ID

10 ∗ A1 . L = Address o f a QDOS f o r m a t s t r i n g t o be p r i n t e d .
11 ∗ OUTPUTS:
12 ∗ D0 = E r r o r code
13 ∗ A0 = Channel i d ( p r e s e r v e d )
14 ∗ A1 = Address o f b u f f e r ( p r e s e r v e d )
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 p r i n t move . l a1 , −(a7 ) ; P r e s e r v e t h e b u f f e r a d d r e s s
18 movea .w u t_mtex t , a2 ; P r i n t a s t r i n g u t i l i t y



9.21 LINE_FEED 151

19 j s r ( a2 ) ; P r i n t i t
20 move . l ( a7 ) + , a1 ; R e s t o r e t h e b u f f e r a d d r e s s
21 t s t . l d0 ; Check f o r e r r o r s
22 r t s

Listing 9.19: PRINT

9.21 LINE_FEED

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME LINE_FEED
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To send a l i n e f e e d c h a r a c t e r t o t h e c h a n n e l i n A0 .
6 ∗ DESCRIPTION Thi s r o u t i n e p r i n t s a l i n e f e e d c h a r a c t e r t o t h e c h a n n e l
7 ∗ ID p a s s e d i n A0 .
8 ∗ INPUTS :
9 ∗ A0 . L = Channel ID

10 ∗ OUTPUTS:
11 ∗ D0 = E r r o r code
12 ∗ A0 = Channel i d ( p r e s e r v e d )
13 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
14 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 l i n e _ f e e d movem . l d1 / a1 ,−( a7 ) ; P r e s e r v e r e g i s t e r s
16 moveq # i o _ s b y t e , d0 ; Send one b y t e t o c h a n n e l
17 moveq # l i n e f e e d , d1 ; Byte t o send = l i n e f e e d
18 moveq # i n f i n i t e , d3 ; Timeout
19 t r a p #3 ; Do i t
20 movem . l ( a7 ) + , d1 / a1 ; R e s t o r e
21 t s t . l d0 ; S e t Z i f e r r o r s
22 r t s

Listing 9.20: LINE_FEED

9.22 INPUT

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME INPUT
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To o b t a i n i n p u t from t h e u s e r v i a t h e c h a n n e l ID i n A0 .
6 ∗ DESCRIPTION Thi s r o u t i n e a l l o w s t h e u s e r t o t y p e i n t o a b u f f e r
7 ∗ ( which i s p a r t o f t h i s s u b r o u t i n e ) up t o a maximum of
8 ∗ 256 b y t e s . A c h a n n e l ID i n A0 i s used .
9 ∗ INPUTS :

10 ∗ A0 . L = Channel ID
11 ∗ OUTPUTS:
12 ∗ D0 = E r r o r code
13 ∗ D1 .W = Number o f c h a r a c t e r s t y p e d EXCLUDING ENTER
14 ∗ i f D1 .W = 0 , u s e r s i mp l y p r e s s e d ENTER .
15 ∗ A0 = Channel i d ( p r e s e r v e d )
16 ∗ A1 = S t a r t o f b u f f e r ( word c o u n t o f s t r i n g u s e r t y p e d )
17 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
18 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 i n p u t movem . l d2−d3 ,−( a7 ) ; P r e s e r v e working r e g i s t e r s
20 l e a i _ b u f f e r +2 , a1 ; Our b u f f e r a d d r e s s p l u s 2
21 move . l a1 ,−( a7 ) ; Save i t on t h e s t a c k



152 Chapter 9. Subroutines

22 moveq # i o _ f l i n e , d0 ; I n p u t some b y t e s ( i n c LF )
23 moveq #256 , d2 ; B u f f e r s i z e maximum
24 moveq # i n f i n i t e , d3 ; I n i f i n i t e t i m e o u t
25 t r a p #3
26
27 move . l ( a7 ) + , a1 ; R e s t o r e b u f f e r p o i n t e r
28 subq .w #1 , d1 ; S u b t r a c t LF c h a r a c t e r
29 move .w d1 ,−( a1 ) ; Save l e n g t h and s e t A1
30 movem . l ( a7 ) + , d2−d3 ; R e s t o r e t h o s e worke r s
31 t s t . l d0 ; Did i t a l l work ?
32 r t s
33
34 i _ b u f f e r ds .w 128+1 ; 256 c h a r s + 1 word

Listing 9.21: INPUT

9.23 JOB_HEADER

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME JOB_HEADER
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE Code r e q u i r e d t o d e f i n e a QDOSMSQ j o b h e a d e r .
6 ∗ DESCRIPTION D e f i n e s a j o b h e a d e r r e a d y t o be f i l l e d i n by t h e u s e r .
7 ∗ The u s e r w i l l f i l l i n h i s / h e r own jobname between t h e
8 ∗ q u o t e s and t h e a s s e m b l e r w i l l do t h e r e s t .
9 ∗ INPUTS : None .

10 ∗ OUTPUTS: None .
11 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 s t a r t b r a . s p r o g _ s t a r t ; S h o r t jump t o program s t a r t
13 dc . l 0 ; Spa re .
14 dc .w $4afb ; Job i d must be a t l o c a t i o n 6
15 prog_name dc .w p r o g _ s t a r t −prog_name−2 ; Length o f j o b name
16 dc . b ’ ’ ; YOUR JOBNAME HERE
17
18 p r o g _ s t a r t PUT YOUR CODE HERE

Listing 9.22: JOB_HEADER

9.24 MEM_ALLOC

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME MEM_ALLOC
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE A l l o c a t e an a r e a o f memory on t h e heap .
6 ∗ DESCRIPTION A l l o c a t e an a r e a o f memory , s i z e a s p e r D0 . L , and
7 ∗ r e t u r n t h e a d d r e s s o f t h e a l l o c a t e d a r e a i n A0 . L . D0
8 ∗ i s s e t t o any e r r o r code and t h e Z f l a g w i l l be s e t i f
9 ∗ no e r r o r s o c c u r r e d , r e s e t o t h e r w i s e .

10 ∗ INPUTS :
11 ∗ D0 . L = Size , i n b y t e s , o f memory a r e a t o be a l l o c a t e d
12 ∗ OUTPUTS:
13 ∗ A0 . L = Base a d d r e s s o f t h e memory a r e a a l l o c a t e d
14 ∗ D0 = E r r o r code
15 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



9.25 MEM_DEALLOC 153

17 mem_alloc movem . l d1−d3 / a1−a3 ,−( a7 ) ; Save working r e g i s t e r s
18 move . l d0 , d1 ; Space r e q u i r e d i n D1
19 moveq #MT_ALCHP, d0 ; S e t t h e t r a p
20 moveq #−1,d2 ; For t h e c u r r e n t j o b
21 t r a p #1 ; Do i t
22 movem . l ( a7 ) + , d1−d3 / a1−a3 ; R e s t o r e working r e g i s t e r s
23 t s t . l d0 ; S e t f l a g s
24 r t s

Listing 9.23: MEM_ALLOC

9.25 MEM_DEALLOC

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME MEM_DEALLOC
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE D e a l l o c a t e an a l r e a d y a l l o c a t e d a r e a o f memory
6 ∗ DESCRIPTION D e a l l o c a t e a p r e v i o u s l y a l l o c a t e d a r e a o f memory , t h e
7 ∗ a d d r e s s o f which i s p a s s e d i n A0 . L .
8 ∗ INPUTS :
9 ∗ A0 . L = Address o f a r e a t o d e a l l o c a t e

10 ∗ OUTPUTS:
11 ∗ A0 . L = z e r o t o a v o i d u s i n g t h e memory a g a i n !
12 ∗ D0 = E r r o r code
13 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
14 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 mem_deal loc movem . l d1−d3 / a1−a3 ,−( a7 ) ; Save working r e g i s t e r s
16 moveq #MT_RECHP, d0 ; S e t t h e t r a p
17 t r a p #1 ; Do i t
18 movem . l ( a7 ) + , d1−d3 / a1−a3 ; R e s t o r e r e g i s t e r s
19 suba . l a0 , a0 ; Blank t h e memory a d d r e s s
20 t s t . l d0 ; S e t f l a g s
21 r t s

Listing 9.24: MEM_DEALLOC

9.26 SCR_MODE

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME SCR_MODE
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE Check t h e mode & s e t i f r e q u i r e d
6 ∗ DESCRIPTION Checks f o r t h e mode p a s s e d i n D0 and i f n o t c o r r e c t ,
7 ∗ change t o t h a t mode .
8 ∗ INPUTS :
9 ∗ D0 . B = 4 or 8 f o r r e q u i r e d mode

10 ∗ OUTPUTS:
11 ∗ D0 = E r r o r code
12 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
13 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 scr_mode move . l d1−d2 / d7 / a3 ,−( a7 ) ; Save working r e g i s t e r s
15 move . b d0 , d7 ; Save r e q u i r e d mode
16 cmpi .w #4 , d7 ; I s mode 4 r e q u i r e d ?
17 bne . s scrm_8 ; Nope .
18 c l r . b d7 ; Mode 4 r e q u i r e s 0



154 Chapter 9. Subroutines

19 scrm_8 moveq #mt_dmode , d0
20 moveq #−1,d1 ; Read c u r r e n t mode
21 moveq #−1,d2 ; Read c u r r e n t d i s p l a y t y p e
22 t r a p #1 ; Do i t
23 t s t . l d0 ; Did i t work ?
24 bne . s s c r m _ e x i t ; No , b a l e o u t
25 cmp . b d1 , d7 ; C o r r e c t mode?
26 beq . s s c r m _ e x i t ; Don ’ t s e t mode i f ok
27 moveq #mt_dmode , d0 ; Else , s e t i t
28 move . b d7 , d1 ; Get t h e mode from D7
29 t r a p #1 ; S e t mode
30 move . l ( a7 ) + , d1−d2 / d7 / a3 ; R e s t o r e r e g i s t e r s
31 t s t . l d0 ; S e t Z f l a g i f ok
32 s c r m _ e x i t r t s

Listing 9.25: SCR_MODE

9.27 CLS

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME CLS
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE To c l e a r a s c r e e n / c o n s o l e c h a n n e l .
6 ∗ DESCRIPTION C l e a r s t h e s c r e e n c h a n n e l whose ID i s s u p p l i e d i n A0 .
7 ∗ INPUTS :
8 ∗ A0 . L = c h a n n e l ID
9 ∗ OUTPUTS:

10 ∗ D0 = E r r o r code
11 ∗ A0 . L = c h a n n e l ID ( p r e s e r v e d )
12 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
13 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 c l s move . l d1 / d3 / a1 ,−( a7 ) ; These a r e c o r r u p t e d
15 moveq # s d _ c l e a r , d0 ; CLS
16 moveq #−1,d3 ; I n f i n i t e t i m e o u t
17 t r a p #3 ; CLS t h e window
18 move . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e c o r r u p t e d r e g i s t e r s
19 t s t . l d0 ; S e t Z f l a g i f ok
20 r t s

Listing 9.26: CLS

9.28 SCR_PAPER

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME SCR_PAPER
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE S e t t h e PAPER c o l o u r f o r t h e g i v e n c h a n n e l ID .
6 ∗ DESCRIPTION S e t s t h e p a p e r c o l o u r f o r t h e s c r e e n c h a n n e l whose ID
7 ∗ i s p a s s e d i n A0 , t o t h e c o l o u r code s u p p l i e d i n D0 .W.
8 ∗ INPUTS :
9 ∗ D0 .W = c o l o u r code f o r p a p e r c o l o u r

10 ∗ A0 . L = Channel ID .
11 ∗ OUTPUTS:
12 ∗ D0 = E r r o r code
13 ∗ A0 . L = c h a n n e l ID ( p r e s e r v e d )



9.29 SCR_PAPER_SB 155

14 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
15 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 s c r _ p a p e r move . l d1 / d3 / a1 ,−( a7 ) ; These w i l l be c o r r u p t e d
17 move .w d0 , d1 ; Get t h e p a p e r c o l o u r
18 moveq # s d _ c l e a r , d0 ; CLS
19 moveq #−1,d3 ; I n f i n i t e t i m e o u t
20 t r a p #3 ; S e t PAPER c o l o u r ( n o t STRIP )
21 move . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e c o r r u p t e d r e g i s t e r s
22 t s t . l d0 ; S e t Z f l a g i f a l l ok
23 r t s

Listing 9.27: SCR_PAPER

9.29 SCR_PAPER_SB

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME SCR_PAPER_SB
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY SCR_PAPER
5 ∗ DEPENDENCY SCR_STRIP
6 ∗ PURPOSE S e t t h e PAPER & STRIP c o l o u r f o r t h e g i v e n c h a n n e l ID .
7 ∗ DESCRIPTION S e t s t h e p a p e r & s t r i p c o l o u r f o r t h e s c r e e n c h a n n e l
8 ∗ whose ID i s p a s s e d i n A0 , t o t h e c o l o u r code s u p p l i e d
9 ∗ i n D0 .W. Works l i k e Supe rBas i c ’ s PAPER command .

10 ∗ INPUTS :
11 ∗ D0 .W = c o l o u r code f o r p a p e r & s t r i p c o l o u r
12 ∗ A0 . L = Channel ID .
13 ∗ OUTPUTS:
14 ∗ D0 = E r r o r code
15 ∗ A0 . L = c h a n n e l ID ( p r e s e r v e d )
16 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
17 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 s c r _ p a p e r _ s b move .w d0 , d1 ; Save t h e c o l o u r
19 b s r s c r _ p a p e r ; S e t t h e p a p e r c o l o u r
20 bne . s s p s b _ e x i t ; T e t s f o r e r r o r s
21 move .w d1 , d0 ; Get t h e c o l o u r code a g a i n
22 b s r s c r _ s t r i p ; S e t t h e s t r i p c o l o u r
23 s c s b _ e x i t r t s

Listing 9.28: SCR_PAPER_SB

9.30 SCR_INK

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME SCR_INK
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE S e t t h e INK c o l o u r f o r t h e g i v e n c h a n n e l ID .
6 ∗ DESCRIPTION S e t s t h e i n k c o l o u r f o r t h e s c r e e n c h a n n e l whose ID i s
7 ∗ p a s s e d i n A0 , t o t h e c o l o u r code s u p p l i e d i n D0 .W.
8 ∗ INPUTS :
9 ∗ D0 .W = c o l o u r code f o r i n k c o l o u r

10 ∗ A0 . L = Channel ID .
11 ∗ OUTPUTS:
12 ∗ D0 = E r r o r code
13 ∗ A0 . L = c h a n n e l ID ( p r e s e r v e d )
14 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .



156 Chapter 9. Subroutines

15 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 s c r _ i n k move . l d1 / d3 / a1 ,−( a7 ) ; These w i l l be c o r r u p t e d
17 move .w d0 , d1 ; Get t h e i n k c o l o u r
18 moveq # s d _ c l e a r , d0 ; CLS
19 moveq #−1,d3 ; I n f i n i t e t i m e o u t
20 t r a p #3 ; S e t INK c o l o u r
21 move . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e r e g i s t e r s
22 t s t . l d0 ; S e t Z f l a g i f a l l ok
23 r t s

Listing 9.29: SCR_INK

9.31 SCR_STRIP

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME SCR_STRIP
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE S e t t h e STRIP c o l o u r f o r t h e g i v e n c h a n n e l ID .
6 ∗ DESCRIPTION S e t s t h e s t r i p c o l o u r f o r t h e s c r e e n c h a n n e l whose ID
7 ∗ i s p a s s e d i n A0 , t o t h e c o l o u r code s u p p l i e d i n D0 .W.
8 ∗ INPUTS :
9 ∗ D0 .W = c o l o u r code f o r s t r i p c o l o u r

10 ∗ A0 . L = Channel ID .
11 ∗ OUTPUTS:
12 ∗ D0 = E r r o r code
13 ∗ A0 . L = c h a n n e l ID ( p r e s e r v e d )
14 ∗ Z f l a g s e t i f no e r r o r s , u n s e t o t h e r w i s e .
15 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 s c r _ s t r i p move . l d1 / d3 / a1 ,−( a7 ) ; These w i l l be c o r r u p t e d
17 move .w d0 , d1 ; Get t h e p a p e r c o l o u r
18 moveq # s d _ c l e a r , d0 ; CLS
19 moveq #−1,d3 ; I n f i n i t e t i m e o u t
20 t r a p #3 ; S e t STRIP c o l o u r ( n o t PAPER)
21 move . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e c o r r u p t e d r e g i s t e r s
22 t s t . l d0 ; S e t Z f l a g i f a l l ok
23 r t s

Listing 9.30: SCR_STRIP

9.32 COLOURS

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ NAME COLOURS
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 ∗ DEPENDENCY None
5 ∗ PURPOSE D e f i ne names f o r t h e v a r i o u s QDOSMSQ c o l o u r s
6 ∗ DESCRIPTION Not r e a l l y a s u b r o u t i n e , a s e t o f e q u a t e s which d e f i n e
7 ∗ names f o r t h e 8 c o l o u r s a v a i l a b l e on a ’ s t a n d a r d ’
8 ∗ QDOSMSQ machine .
9 ∗ INPUTS : None

10 ∗ OUTPUTS: None
11 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 b l a c k equ 0
13 b l u e equ 1
14 r e d equ 2
15 magenta equ 3



9.33 The Librarian 157

16 g r e e n equ 4
17 cyan equ 5
18 y e l l o w equ 6
19 w h i t e equ 7

Listing 9.31: COLOURS

9.33 The Librarian

Ok, so there you have a few of my favourite routines, all you need now is a librarian to sort them
out for you. Ok, I give up, here is one for you - this is very basic and not super at all (sorry for that
pun) it is up to you to expand on this if you want.

Some suggestions would be:

• Make PE aware?
• Add better/some error trapping.
• Save the dependencies so that the user need not enter them manually.
• Check what has just been entered with what has already been entered to avoid duplications.
• Reduce the number of file open/closes etc (On the Library file)
• Convert to assembler - Ha, now you’re quaking in your boots !

I have omitted line numbers from the following listing.

1 CLS
2 Outpu t = 3
3 INPUT ’ L i b r a r y name : ’ LibraryName$
4 INPUT ’ Outpu t f i l e name : ’ ; Outpu t$
5 OPEN_NEW # Output , Outpu t$
6 :
7 REPeat main_loop
8 INPUT ’ R o u t i n e name (ENTER t o q u i t ) : ’ ; Name$
9 IF ( Name$ = ’ ’ )

10 EXIT MainLoop
11 END IF
12 Extrac tName Name$
13 END REPeat MainLoop
14 :
15 CLOSE # Outpu t
16 PRINT " Done . "
17 STOP
18 :
19 :
20 DEF PROCedure Ext rac tName ( ReqdName$ )
21 LOCal A$ , L i b r a r y , FoundName$
22 L i b r a r y = Outpu t + 1
23 OPEN_IN # L i b r a r y , LibraryName$
24 REPeat LibLoop
25 IF (EOF # L i b r a r y )
26 EXIT LibLoop
27 END IF
28 INPUT # L i b r a r y , A$
29 IF ( A$(1 TO 6) == "∗ NAME" )
30 FoundName$ = A$(17 TO)
31 IF ( FoundName$ == ReqdName$ )
32 PRINT " Found s u b r o u t i n e : " & ReqdName$
33 GetDependenc ie s ( L i b r a r y )



158 Chapter 9. Subroutines

34 E x t r a c t C o d e ( L i b r a r y )
35 CLOSE # L i b r a r y
36 RETurn
37 ENDIF
38 END IF
39 END REPeat LibLoop
40 PRINT " Cannot f i n d : " & ReqdName$
41 END DEFine Ext rac tName
42 :
43 :
44 DEF PROCedure Ge tDependenc ie s ( Channel )
45 LOCal A$
46 REPeat DependLoop
47 IF (EOF # Channel )
48 RETurn
49 END IF
50 INPUT # Channel , A$
51 IF ( A$(1 TO 12) == "∗ DEPENDENCY" )
52 IF ( A$(17 TO 20) == " None " )
53 PRINT "No d e p e n d e n c i e s "
54 Re t u r n
55 END IF
56 PRINT " Dependency r e q u i r e d : " & A$(17 TO)
57 END IF
58 IF ( A$(1 TO 9) == "∗ PURPOSE"
59 RETurn
60 END IF
61 END REPeat DependLoop
62 END DEFine Ge tDependenc ie s
63 :
64 :
65 DEF PROC E x t r a c t C o d e ( Channel )
66 LOCal A$
67 REPeat FindCodeLoop
68 IF (EOF # Channel )
69 RETurn
70 END IF
71 INPUT # Channel , A$
72 IF ( A$(1 TO 5) == "∗−−−−"
73 EXIT FindCodeLoop
74 END IF
75 END REPeat FindCodeLoop
76 REPeat WriteCodeLoop
77 IF (EOF # Channel )
78 RETurn
79 END IF
80 INPUT # Channel , A$
81 IF ( A$(1 TO 5) == "∗−−−−"
82 EXIT WriteCodeLoop
83 END IF
84 PRINT # Output , A$
85 END REPeat WriteCodeLoop
86 PRINT " E x t r a c t e d . " \ \
87 END DEFine E x t r a c t C o d e



9.33 The Librarian 159

9.33.1 So how does this lot work?

After asking for your details etc, it simply enters a loop asking you for the next routine to be
extracted. This name is passed to ExtractName which opens the library file and scans it looking for
all those lines which start ‘* NAME’. Once it finds one, it tests to see if this line includes the name
you are looking for.

Note that this version of the program assumes you are using exactly the same format in your
comments as I am above and as per the following description:

• Column 1 = An asterisk, the comment marker for most assemblers I have used.
• Column 2 = A space.
• Columns 3 to 16 = Parameter name, eg NAME, DEPENDENCY etc.
• Columns 17 onwards = Parameter details etc.

If the name found is the same as the one you requested, the dependencies are extracted and listed.
You are advised to note these dependencies and enter them as the next routine to extract. Try not to
duplicate names etc as the program doesn’t test for duplicates.

Once all dependencies have been listed, The code is extracted and written to the output file.

A sample session follows:

L i b r a r y name : Win1_GWASL_Library_lib
Outpu t f i l e name : Win1_source_MyNextProjec t_asm
R o u t i n e name (ENTER t o q u i t ) : C o l o u r s
Found s u b r o u t i n e : COLOURS
No d e p e n d e n c i e s
E x t r a c t e d .

R o u t i n e name (ENTER t o q u i t ) : S c r _ p a p e r _ s b
Found s u b r o u t i n e : SCR_PAPER_SB
Dependency r e q u i r e d : SCR_PAPER
Dependency r e q u i r e d : SCR_STRIP
E x t r a c t e d .

R o u t i n e name (ENTER t o q u i t ) : S c r _ p a p e r
Found s u b r o u t i n e : SCR_PAPER
No d e p e n d e n c i e s
E x t r a c t e d .

R o u t i n e name (ENTER t o q u i t ) : SCR_STRIP
Found s u b r o u t i n e : SCR_STRIP
No d e p e n d e n c i e s
E x t r a c t e d .

R o u t i n e name (ENTER t o q u i t ) :
Done .

So there you have it and now you can enhance it as required to suit your own purposes. Remember,
my version expects the comments to be in the format given above. Additionally, no comments are
written to the output file but you can easily amend the code in ExtractCode to do the needful. Enjoy.



160 Chapter 9. Subroutines

9.34 Coming Up...

In the next chapter we shall be looking at the thorny subject of coding single and doubly linked
lists in assembler.



IV
10 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.1 Introduction
10.2 Linked Lists
10.3 Doubly Linked Lists.
10.4 Remember those arrays?
10.5 Coming Up...

11 Single Linked Lists Demo Code . . . . . . 181
11.1 Introduction
11.2 How Does The Code Work?
11.3 Coming Up...

12 Doubly Linked Lists Demo Code . . . . . 189
12.1 Introduction
12.2 How Does The Code Work?
12.3 Coming Up...

13 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . 195
13.1 Introduction
13.2 Recursion in Assembly Language
13.3 Coming Up...

14 Program Development . . . . . . . . . . . . . . 203
14.1 Introduction
14.2 Program Development in Assembly Language
14.3 Coming Up...

SuperBasic, QDOS and Other
Interesting Stuff. Part 2





10. Linked Lists

10.1 Introduction

This chapter introduces you to linked lists. In the QDOSMSQ operating system, linked lists are
used in many places - and you can use them in your own code as well. This chapter tells you how.

10.2 Linked Lists

Linked lists are used within QDOSMSQ to hold details of the directory devices installed on the
system, interrupt routines and so on, but what are they exactly?

Imagine that you are writing a program, and you decide that you need some storage for some data,
let’s say a list of people’s names and addresses. So, how about an array? Well, the problem with
that is how many entries are you going to allow? If you don’t allow enough entries, you won’t have
much of an address book. If you have too many entries then you are wasting space. If you sell the
program, or give it away, then you need to consider the needs of people other than yourself - some
will need a few entries and others, much more. How do you cope?

Well, a linked list could be the answer. You start off with no storage defined at all, except for a
single, maybe two, variables which hold the address in memory of the beginning (and maybe the
end) of your list of addresses. As you add new contacts to your address book, each one is created at
some ‘random’ location in memory and linked into your existing list of contacts. Hence, you have
a linked list.

In a linked list, each entry is called a node, and the pointer to the very first entry in the list is known
as the root node.

In memory an array, of 10 entries of 100 byte long strings, is consecutive. Don’t forget the strings
have a word at the start defining their length, so each entry is actually 102 bytes long. If the first
entry is located at address 1000 then the next entry is at address 1102, the next at 1204 and so on.
There are no gaps between entries and you can quickly calculate the start address of any particular



164 Chapter 10. Linked Lists

entry as

1000+(INDEX ∗104)

where INDEX is the entry you are looking for, starting at zero.

In a linked list, the nodes are potentially all over the place, the first might be at address 1000, the
second at 2000, the third at 1200 and so on. There is no logical order to the locations and you
cannot calculate the address of a particular node using any formula as you can with arrays.

What you can do, however, is store away the address of the first node in a special node known as the
root node, and from that, you can navigate along the list from start to finish by finding the address
of the next node from the data stored in the individual nodes. Our 100 byte long strings would
be 106 bytes allowing 4 bytes to store the memory address of the ‘next’ entry in the list and the
obligatory 2 byte length word. However, think about that 102 bytes in each entry of the array - you
might not need all 102 bytes. In our linked list, each node will have 4 bytes for the pointer and only
as much space as is required by the data, so each node need not be 102+4 bytes long. Another
saving over the array.

A linked list can be thought of like an old program on UK TV, Treasure Hunt, where Aneka Rice
used to zoom around the country in a helicopter picking up clues in one location which told her
where to go for the next clue and so on, until she found the ‘treasure’ at the end of the list of clues.
This is exactly what a linked list is.

If we have a node in our list defined as follows, then we can see how it looks in memory below.
Each node in the list will look like Figure 10.1 with a 4 byte pointer at the start holding the address
of the next node in the list, and everything from byte 4 onwards holding some form of desired data.

Figure 10.1: Linked List Node Structure.

The root node, as mentioned above, is special. It has no data part, only the pointer part, although it
is not necessary for it not to be a full node, the data part will be empty in such cases.

The conceptual layout in memory is a bit like Figure 10.2 (using the addresses mentioned above
and assuming the root node lives at address $ABCD):

Figure 10.2: A Simple Linked List.

The lowest section of each node above simply shows an example address in memory where that
particular node lives. It is not part of the node itself.



10.2 Linked Lists 165

In physical terms there are, of course, no handy arrows. Using real values as described above in the
pointer locations, it would look like Figure 10.3:

Figure 10.3: Memory Organisation of a Simple Linked List.

You can see from Figure 10.3 that the address of the following node is held in each node’s first 4
bytes. The address of FIRST is actually somewhere in your program and your program only needs
to allocate storage for the 4 bytes it takes to hold the address of the initial node in the list. FIRST is,
of course, the root node of the list.

You must store the value zero in there before you go off adding nodes, you’ll see this reason why
below in the code to add a node.

10.2.1 Adding Nodes.

Adding a new node is simple, you allocate it on the heap, fill in the data part and add it to the front
of the list. It is far easier to add a node at the start - address 1000 in the above example - than to
have to work through the entire list to find the current end, and then add it there. This method takes
longer and longer to carry out as you add extra entries to the list. Adding at the start of the list takes
the same time regardless of how many entries are in the list.

As you add each node to the list, you copy the value in FIRST into the new node’s NEXT pointer
and put the address of the new node into FIRST. Sounds complicated, but here it is in code. If we
assume that A0.L has the address of FIRST and that A1.L has the address of the node to be inserted
into the list, as contrivingly demonstrated by these two lines:

1 P r e l u d e l e a FIRST , a0 ; P o i n t e r t o s t o r a g e o f f i r s t node
2 l e a NewEntry , a1 ; Address o f new node

Listing 10.1: Adding a Node - Prelude

Then adding a new node to a list is as simple as this:

3 AddNode move . l ( a0 ) , ( a1 ) ; Save f i r s t node i n new node ’ s NEXT
4 move . l a1 , ( a0 ) ; S t o r e new node i n FIRST
5 r t s

Listing 10.2: Adding a Node

Nothing to it. The new node is always added at the start of the list, so the value in FIRST always
points to the most recently added node. As you need to have zero in the NEXT pointer of the final
node in the list, you can see why it was important to initialise the value in your programs FIRST
variable to zero before adding any nodes. If you didn’t have zero, you’d never know when the list
was finished.

One thing, you don’t want to allow the user to add the root node to its own list at any time, so best
change the above code to prevent this from happening.



166 Chapter 10. Linked Lists

3 AddNode cmpa . l a0 , a1 ; Don ’ t a l l o w t h e r o o t node t o be added
4 beq . s AddExit ; Ba le o u t q u i e t l y i f a t t e m p t e d
5 move . l ( a0 ) , ( a1 ) ; Save f i r s t node i n new node ’ s NEXT
6 move . l a1 , ( a0 ) ; S t o r e new node i n FIRST
7 AddExit r t s

Listing 10.3: A Better Way of Adding a Node

Another problem is when you try to add a node that is already there. So to be really careful, you
could call the FindNode routine (coming soon - have patience!) prior to adding it in. However, as
this scans the entire list until it finds or doesn’t find the new node, it could add quite a lot of time to
the simple exercise of adding a new node.

If you wrote the program, and you are allocating nodes on the heap each time, then don’t bother
attempting to find the node in the list before you add it.

10.2.2 Deleting Nodes.

Deleting a node is slightly more difficult. The node to be deleted could be anywhere in the list, or
not even in the list. How to find the correct node is the main problem. However, for the same of
argument, assume that we have the node address to be removed in A1.L and the address of FIRST
in A0.L after a successful ‘find’ operation, then removing the node at A1.L requires that we must
navigate the list, as in the following explanation.

We must navigate the list because we don’t know where in memory the node prior to the one we
wish to delete is. We need to find it, because it has a NEXT pointer holding the address of the
‘deleted’ node and this has to be changed or we lose everything in the list after the deleted node.

As ever, the value in the NEXT area of the very last node in the list is always zero. That way, we
know when we have hit the end of the list. Here’s the pseudo code to delete the node at A1.L from
the list beginning at (A0.L)

• If the node to be deleted is the root node (the list pointer in A0) then don’t allow it to be
deleted.

• Start of the main loop.
• If the value stored in the address that A0.L points to is equal to zero, we have been passed an

incorect node address to delete. Exit from the loop with an error.
• If the value stored in the address that A0.L points to is not the same as the value in A1.L then

copy the value in the address that A0.L points to into A0 and restart the main loop. Basically
we have replaced the address in A0 with the NEXT address from the node we were just
looking at.

• If the value stored in the address that A0.L points to is equal to the value in A1.L then we
have found the node PRIOR to the node we wish to delete and so the node we are looking at
has to have the NEXT address updated to bypass the node we wish to delete so that it now
points to the NEXT address which is currently stored in the node we are deleting. Exit from
the loop with no errors.

• End of main loop.

That’s the pseudo code, here’s the actual code. Using the same preliminary stuff as above to sort
out initial values of A0.L and A1.L and a little bit extra to show whether errors have been detected
or not, we begin with this:

1 P r e l u d e l e a FIRST , a0 ; P o i n t e r t o r o o t node
2 l e a OldNode , a1 ; Address o f node t o d e l e t e



10.2 Linked Lists 167

3 moveq #ERR_EF , d0 ; End of f i l e = node n o t found = e r r o r

Listing 10.4: Deleting a Node - Prelude

Now, here’s the actual code to find and remove the requested node.

4 DelNode cmpa . l a0 , a1 ; Don ’ t a l l o w t h e r o o t node d e l e t i o n
5 beq . s D e l E x i t ; Ba le o u t wi th e r r o r i f a t t e m p t e d
6
7 DelLoop cmp . l # 0 , ( a0 ) ; Reached t h e end y e t ?
8 beq . s D e l E x i t ; Yes , node n o t found , e x i t w i th e r r o r
9

10 cmp . l ( a0 ) , a1 ; Found t h e PRIOR node y e t ?
11 bne . s DelNext ; No , s k i p d e l e t i o n code & t r y a g a i n
12
13 DelFound move . l ( a1 ) , ( a0 ) ; PRIOR node NEXT = d e l e t e d node ’ s NEXT
14 moveq #0 , d0 ; Node found and d e l e t e d ok
15 b r a . s D e l E x i t ; Ba le o u t wi th no e r r o r s
16
17 DelNext move . l ( a0 ) , a0 ; A0 now h o l d s t h e NEXT node i n t h e l i s t
18 b r a . s DelLoop ; Go around a g a i n
19
20 D e l E x i t t s t . l d0 ; S e t z e r o f l a g f o r s u c c e s s
21 r t s

Listing 10.5: Deleting a Node

The above code returns with the Z flag set if the node was deleted from the list, and unset if the
node was not in the list. This allows the calling code to handle and errors correctly.

10.2.3 Finding Nodes.

The first thing you must do when deleting a node is to actually find it. The code above assumes
that A1 holds a valid node address in the list defined by A0. Having said that, the code is robust
enough to know that programmers make errors and it can handle the problem of a node address
being passed which is not in the list by virtue of the fact that it scans the list until it finds the node
prior to the one we wish to delete. It has to work that way because we need to adjust the NEXT
pointer in the prior node to point past the deleted node to its NEXT node - if you catch my drift?

The code to find an node in a list is dependant on the sort of data stored in each node. If you store
strings, the some form of string comparison routine needs to be built in - does it compare on an
equality basis (‘AAA’ = ‘AAA’) or nearly equal basis (‘AAA’ == ‘aaa’) and so on. You can use the
built in QDOSMSQ routines to do the comparisons.

If the data in the nodes are numbers (integers of word or long length) then you can compare them
directly. If they are QDOSMSQ floating point format numbers, you can use the built in arithmetic
routines to compare them. Regardless of which method is used, you need to write your own code
to compare two nodes, or a node and a value so that the find routine knows when it has found the
correct entry.

Of course, it is quite simple to build a FindNode routine which doesn’t know or care what sort of
data the individual nodes contain, provided it is passed the address of a routine which does know
and care. If the specification for said routine requires the Z flag to be set for found and unset for not
found, it could look something like the following peseudo code.

Assume that A0.L holds the address of FIRST, A1.L holds a pointer to a routine which compares



168 Chapter 10. Linked Lists

the node with a given value and A2.L holds a pointer to that value. The data that A2.L points to can
be anything, the routine at (A1.L) does the working out, our FindNode simply calls the routine once
for each node in the list until such time as it gets a set Z flag on return. The comparison routine
gets passed a node address in A3.L.

• Start of the main loop.
• If the value stored in the address that A0.L points to is equal to zero, we have not found a

node with the desired value. Exit the main loop with a NOT FOUND error.
• Copy the address at (A0.L) into A3 and call the routine to compare data. If it returns with the

Z flag set, the address in (A0.L) is the address of the node prior to the node we were looking
for, however, the address in A3.L is the address of our required node as it is taken from the
NEXT pointer. Remember, we passed the NEXT address (A0.L) over to the routine, not the
address of THIS node - A0.L. Exit from the loop with the Z flag set to indicate a found node.

• Copy the NEXT address from the node we are looking at into A0.L and go back to the start
of the loop.

• End of main loop.

And here’s the real code to do the finding for use. As ever, we start off with some contrived values.

1 P r e l u d e l e a FIRST , a0 ; P o i n t e r t o r o o t node a d d r e s s
2 l e a Compare , a1 ; Address o f node compar i son r o u t i n e
3 l e a Requi red , a2 ; Address o f t h e d a t a we a r e l o o k i n g f o r
4 moveq #ERR_NF , d0 ; Node n o t found = e r r o r

Listing 10.6: Finding a Node - Prelude

Now, here’s the actual code to find a node in the list which holds the required value.

5 FindNode cmp . l # 0 , ( a0 ) ; Reached t h e end y e t ?
6 beq . s D e l E x i t ; Yes , node n o t found , e x i t w i th e r r o r
7
8 move . l ( a0 ) , a3 ; F e t c h t h e NEXT node a d d r e s s i n t o A3 . L
9 j s r ( a1 ) ; And jump i n t o t h e compar i son r o u t i n e

10 beq . s FindFound ; Looks l i k e we found our node
11
12 FindNext move . l ( a0 ) , a0 ; A0 now h o l d s t h e NEXT node i n t h e l i s t
13 b r a . s FindNode ; Go around a g a i n
14
15 FindFound moveq #0 , d0 ; C l e a r t h e e r r o r f l a g
16
17 F i n d E x i t t s t . l d0 ; S e t z e r o f l a g f o r s u c c e s s
18 r t s

Listing 10.7: Finding a Node

The following is an example of a compare routine to look at a long word of data in the node at
(A3.L) and see if it is equal to the long word of data stored at (A2.L). Don’t forget, the comparison
routine must preserve A0, A1, A2 and D0 or it will all go horribly wrong. The following routine
does exactly that, by the simple method of not actually using those registers at all!

1 NData equ 4 ; O f f s e t t o node ’ s d a t a p a r t
2
3 Compare cmp . l NData ( A3 ) , ( A2 ) ; I s t h e d a t a = t h e v a l u e we want ?
4 r t s ; E x i t w i th Z s e t i f so

Listing 10.8: Finding a Node - Data Comparison



10.2 Linked Lists 169

If an attempt is made to find the root node, then it will fail.

So there you have three short but extremely powerful routines which make linked lists possible.
At this point I have to mention that there are actually routines built into QDOSMSQ to do exactly
the same work as the AddNode and DelNode routines above, but there is nothing like FindNode -
which is a shame. However, you now know how to build linked lists and add and delete nodes. You
also know how to find an entry in a linked list so that you can process it in some way.

10.2.4 The Code Wrapper.

Putting all of the above together and tying in some extras to allocate nodes etc, here is a small, but
perfectly formed program to create a linked list. The following is a wrapper that we shall use to
demonstrate first the single linked lists as explained above. Later on, when other types of linked list
are explained, we shall drop in only the code we need for the demo

1 ∗ =====================================================================
2 ∗ A t e s t h a r n e s s ’ job ’ f o r our l i n k e d l i s t s code . What ’ s t h e p o i n t o f
3 ∗ a l l t h e e x p l a n a t i o n s i f you can ’ t t e s t t h e code ?
4 ∗
5 ∗ Thi s code i s s i mp ly a wrapper t o a l l o w d i f f e r e n t demos t o be s l o t t e d
6 ∗ i n t o d e m o n s t r a t e t h e r e a l code i n t h e c h a p t e r , a s opposed t o t h e j o b
7 ∗ code .
8 ∗
9 ∗ The code b e i n g d e m o n s t r a t e d i s l o c a t e d a t DEMO below . As new demos

10 ∗ a r e r e q u i r e d , on ly t h a t b i t s h o u l d ( ! ) need c h a n g i n g .
11 ∗ =====================================================================
12
13 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 ∗ These a r e o f f s e t s from t h e s t a r t o f t h e job ’ s d a t a s p a c e where working
15 ∗ v a r i a b l e a r e s t o r e d . The d a t a s p a c e i s h e l d a t ( A4 ) i n t h e job ’ s code .
16 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 c on _ i d equ 0 ; Id f o r t i t l e c h a n n e l
18 con_ id2 equ 4 ; Id f o r main o u t p u t
19
20 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 ∗ These a r e s imp ly u s e r f r i e n d l y names i n s t e a d o f numbers f o r v a r i o u s
22 ∗ b i t s and bobs , c o l o u r s e t c .
23 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 b l a c k equ 0 ; Colour code f o r mode 4 b l a c k
25 r e d equ 2 ; Red
26 g r e e n equ 4 ; Green
27 w h i t e equ 7 ; White
28 l i n e f e e d equ 10 ; L i n e f e e d c h a r a c t e r
29 oops equ −1 ; G e n e r a l e r r o r code
30 e r r _ n c equ −1 ; NOT COMPLETE e r r o r code
31
32 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 ∗ C o n s t a n t s f o r use wi th j o b c o n t r o l commands . ( I t doesn ’ t m a t t e r i f I
34 ∗ have two names wi th t h e same v a l u e ! )
35 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 i n f i n i t e equ −1 ; I n f i n i t e t i m e o u t
37 me equ −1 ; Id f o r ’ t h i s ’ j o b
38
39
40 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



170 Chapter 10. Linked Lists

41 ∗ Code s t a r t s h e r e .
42 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 s t a r t b r a . s L i n k L i s t ; 2 b y t e s s h o r t jump
44 dc . l 0 ; 4 b y t e s padd ing
45 dc .w $4afb
46 dc .w 11 ; By tes i n job ’ s name
47 dc . b ’ L i n k e d L i s t s ’ , 0 ; By tes o f job ’ s name + padd ing
48
49 L i n k L i s t adda . l a6 , a4 ; A4 . L = s t a r t o f d a t a s p a c e
50 b s r Mode4 ; S e t t h e s c r e e n mode
51 b s r T i t l e ; Open t h e t i t l e window
52 b s r Outpu t ; Open t h e o u t p u t window
53 b s r Headings ; D i s p l a y h e a d i n g s
54 b s r Demo ; Do t h e demo code
55 b s r F i n i s h e d ; Advise u s e r t h a t we a r e done
56
57 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 ∗ Code ends h e r e .
59 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 a l l _ d o n e moveq # m t _ f r j o b , d0 ; Force Remove a j o b
61 moveq #me , d1 ; The c u r r e n t j o b
62 move . l d0 , d3 ; E r r o r code f o r S u p e r B a s i c
63 t r a p #1 ; K i l l t h i s j o b
64
65 b r a . s a l l _ d o n e ; Should n e v e r g e t h e r e

Listing 10.9: Linked Lists - Wrapper - Part 1

Note
The following code will be replaced by either the singly linked list or the doubly linked list
demo code which follows at the end of this chapter. For now, however, it is a place holder.

66 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 ∗ The DEMO code s t a r t s h e r e .
68 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 Demo r t s
70
71 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 ∗ The DEMO code ends h e r e .
73 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 10.10: Linked Lists - Wrapper - Demo Placeholder

Note
The following code is common to both demos.

74 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 ∗ S e t mode 4 i f n o t a l r e a d y s e t . Do n o t change from TV t o m o n i t o r o r
76 ∗ v i c e v e r s a . We must p r e s e r v e t h e d i s p l a y t y p e i f we r e s e t t h e mode .
77 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
78 Mode4 moveq #mt_dmode , d0
79 moveq #−1,d1 ; Read c u r r e n t mode
80 moveq #−1,d2 ; Read c u r r e n t d i s p l a y t y p e
81 t r a p #1 ; Do i t
82 t s t . l d0 ; Did i t work ?



10.2 Linked Lists 171

83 bne a l l _ d o n e ; No , b a l e out , c a n n o t c o n t i n u e
84
85 t s t . b d1 ; 0 i n D1 . B = Mode 4
86 beq . s ModeExit ; No need t o s e t mode 4
87 moveq #mt_dmode , d0
88 c l r . l d1 ; We need mode 4
89 t r a p #1 ; S e t mode 4 ( d2 = d i s p t y p e )
90 t s t . l d0 ; Check i t
91 bne a l l _ d o n e ; Ba le o u t i f e r r o r s d e t e c t e d
92 ModeExit r t s ; Done .
93
94 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
95 ∗ Mode 4 i s i n use . Open t h e t i t l e window a t t h e t o p o f t h e s c r e e n .
96 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97 T i t l e l e a con_def , a1 ; Window d e f i n i t i o n
98 movea .w ut_con , a2 ; U t i l i t y t o d e f i n e a window
99 j s r ( a2 ) ; Do i t

100 t s t . l d0 ; Did i t work ok ?
101 bne a l l _ d o n e ; No , e x i t program
102 move . l a0 , con _ i d ( a4 ) ; S t o r e t i t l e c h a n n e l i d
103 r t s ; Done
104
105 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 ∗ D e f i n i t i o n f o r t i t l e window c h a n n e l
107 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 con_de f dc . b r e d ; Borde r c o l o u r
109 dc . b 1 ; Borde r wid th
110 dc . b w h i t e ; Pape r / s t r i p c o l o u r
111 dc . b b l a c k ; Ink c o l o u r
112 dc .w 448 ; Width
113 dc .w 24 ; He igh t
114 dc .w 32 ; S t a r t p o s i t i o n x
115 dc .w 16 ; S t a r t p o s i t i o n y
116
117 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118 ∗ Open t h e o u t p u t window u n d e r n e a t h t h e t i t l e one .
119 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
120 Outpu t l e a con_def2 , a1 ; Outpu t window d e f i n i t i o n
121 movea .w ut_con , a2 ; U t i l i t y a g a i n
122 j s r ( a2 ) ; Do i t
123 t s t . l d0 ; Did i t work ?
124 bne a l l _ d o n e ; No , e x i t r o u t i n e
125 move . l a0 , con_ id2 ( a4 ) ; S t o r e o u t p u t c h a n n e l i d
126
127 moveq #0 , d0 ; No e r r o r s d e t e c t e d
128 r t s
129
130 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 ∗ D e f i n i t i o n f o r o u t p u t window c h a n n e l
132 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
133 con_def2 dc . b r e d ; Borde r c o l o u r
134 dc . b 1 ; Borde r wid th
135 dc . b w h i t e ; Pape r / s t r i p c o l o u r
136 dc . b b l a c k ; Ink c o l o u r
137 dc .w 448 ; Width
138 dc .w 200 ; He igh t



172 Chapter 10. Linked Lists

139 dc .w 32 ; X org
140 dc .w 40 ; Y org
141
142 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 ∗ P r i n t t h e h e a d i n g s
144 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 h e a d i n g s movea . l con _ i d ( a4 ) , a0 ; T i t l e c h a n n e l i d
146 b s r . s c l s ; C l e a r s c r e e n
147 l e a m e s _ t i t l e , a1 ; T i t l e s t r i n g
148 b s r . s prompt ; P r i n t t i t l e s t r i n g
149 r t s
150
151 m e s _ t i t l e dc .w mes_end−m e s _ t i t l e −2
152 dc . b ’ S i n g l e Linked L i s t s ’
153 mes_end equ ∗
154
155 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
156 ∗ Sign o f f message
157 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 F i n i s h e d movea . l con_ id2 ( a4 ) , a0 ; T i t l e c h a n n e l i d
159 l e a e n d _ t i t l e , a1 ; T i t l e s t r i n g
160 b s r . s prompt ; P r i n t t i t l e s t r i n g
161 b s r . s i n p u t ; Wait f o r ENTER
162 r t s
163
164 e n d _ t i t l e dc .w end_end−e n d _ t i t l e −2
165 dc . b l i n e f e e d , l i n e f e e d , ’ P r e s s ENTER t o q u i t : ’
166 end_end equ ∗
167
168 ∗ =====================================================================
169 ∗ CLS :
170 ∗ =====================================================================
171 ∗ 1 . C l e a r t h e ( s c r e e n ) c h a n n e l whose i d i s i n A0 .
172 ∗ =====================================================================
173 c l s moveq # s d _ c l e a r , d0 ; CLS
174 moveq # i n f i n i t e , d3 ; I n f i n i t e t i m e o u t
175 t r a p #3 ; CLS t i t l e window
176 r t s
177
178 ∗ =====================================================================
179 ∗ Prompt :
180 ∗ =====================================================================
181 ∗ 1 . P r i n t t h e s t r i n g a t ( A1 ) t o t h e c h a n n e l i n A0 .
182 ∗
183 ∗ Z s e t i f a l l ok , u n s e t i f n o t .
184 ∗ =====================================================================
185 prompt movea .w u t_mtex t , a2 ; P r i n t a s t r i n g u t i l i t y
186 j s r ( a2 ) ; P r i n t i t
187 t s t . l d0 ; Check f o r e r r o r s
188 r t s
189
190 ∗ =====================================================================
191 ∗ I n p u t :
192 ∗ =====================================================================
193 ∗ Wait f o r u s e r i n p u t from t h e c h a n n e l i d i n A0 .
194 ∗



10.2 Linked Lists 173

195 ∗ R e t u r n s t h e i n p u t l e n g t h ( n o t c o u n t i n g t h e ENTER c h a r a c t e r ) i n D1 .W
196 ∗ R e t u r n s t h e a d d r e s s o f t h e f i r s t c h a r a c t e r i n t h e b u f f e r i n A1 . L
197 ∗ P r e s e r v e s t h e c h a n n e l i d i n A0 . L
198 ∗ Z s e t i f a l l ok , u n s e t i f n o t .
199 ∗ =====================================================================
200 i n p u t l e a b u f f e r +2 , a1 ; Our b u f f e r a d d r e s s p l u s 2
201 move . l a1 ,−( a7 ) ; Save i t on t h e s t a c k
202 moveq # i o _ f l i n e , d0 ; I n p u t some b y t e s (+ l i n e f e e d )
203 moveq #60 , d2 ; B u f f e r s i z e maximum
204 moveq # i n f i n i t e , d3 ; I n i f i n i t e t i m e o u t
205 t r a p #3
206
207 move . l ( a7 ) + , a1 ; R e s t o r e b u f f e r p o i n t e r
208 subq .w #1 , d1 ; S u b t r a c t t h e l i n e f e e d
209 move .w d1 ,−2( a1 ) ; S t o r e l e n g t h i n b u f f e r
210 t s t . l d0 ; Did i t a l l work ?
211 r t s
212
213 b u f f e r ds .w 31 ; 60 c h a r s f o r i n p u t + 1 word
214
215 ∗ =====================================================================
216 ∗ h e x _ l :
217 ∗ =====================================================================
218 ∗ Conver t a 4 b y t e v a l u e i n D4 . L t o Hex i n a b u f f e r . Use t h e i n p u t
219 ∗ b u f f e r f o r t h e o u t p u t and DOES NOT s t o r e t h e l e n g t h word !
220 ∗
221 ∗ E x p e c t s D4 . L t o ho ld t h e v a l u e .
222 ∗ =====================================================================
223 h e x _ l swap d4 ; $ABCD −> $CDAB i n D4
224 b s r . s hex_w ; Conve r t t h e $AB p a r t f i r s t
225 swap d4 ; $CDAB −> $ABCD a g a i n
226 ∗ drop i n t o hex_w t o c o n v e r t t h e $CD p a r t
227
228 ∗ =====================================================================
229 ∗ hex_w :
230 ∗ =====================================================================
231 ∗ Conver t a 2 b y t e v a l u e i n D4 .W t o Hex i n a b u f f e r .
232 ∗
233 ∗ E x p e c t s D4 .W t o ho ld t h e v a l u e .
234 ∗ E x p e c t s A1 . L t o p o i n t a t t h e b u f f e r .
235 ∗ =====================================================================
236 hex_w r o r .w #8 , d4 ; $DE −> $ED i n D4
237 b s r . s hex_b ; Conve r t t h e $D p a r t f i r s t
238 r o l .w #8 , d4 ; $ED −> $DE a g a i n
239 ∗ drop i n t o hex_b t o c o n v e r t t h e $E p a r t
240
241 ∗ =====================================================================
242 ∗ hex_b :
243 ∗ =====================================================================
244 ∗ Conver t a 1 b y t e v a l u e i n D4 . B t o Hex i n a b u f f e r .
245 ∗
246 ∗ E x p e c t s D4 . B t o ho ld t h e v a l u e .
247 ∗ E x p e c t s A1 . L t o p o i n t a t t h e b u f f e r .
248 ∗ =====================================================================
249 hex_b r o r . b #4 , d4 ; Swap lower and h i g e r n i b b l e s
250 b s r . s h e x _ n i b b l e ; P r i n t h igh n i b b l e f i r s t



174 Chapter 10. Linked Lists

251 r o l . b #4 , d4 ; Swap back a g a i n
252 ∗ drop i n t o h e x _ n i b b l e t o p r i n t t h e lower n i b b l e
253
254 ∗ =====================================================================
255 ∗ h e x _ n i b b l e :
256 ∗ =====================================================================
257 ∗ Conver t a 4 b i t v a l u e i n D4 . B t o Hex i n a b u f f e r .
258 ∗
259 ∗ E x p e c t s D4 . B t o ho ld t h e v a l u e .
260 ∗ E x p e c t s A1 . L t o p o i n t a t t h e b u f f e r .
261 ∗ =====================================================================
262 h e x _ n i b b l e move . b d4 ,−( a7 ) ; Save v a l u e i n bo th n i b b l e s
263 a n d i . b # $0f , d4 ; D4 . B now = 0 t o 15
264 a d d i . b # ’0 ’ , d4 ; Now = ’0 ’ t o ’? ’ ( a s c i i on ly )
265 cmpi . b # ’9 ’ , d4 ; I s t h i s a d i g i t ?
266 b l s . s n i b _ d i g i t ; Yes
267 a d d i . b #7 , d4 ; Add o f f s e t t o UPPERCASE l e t t e r s
268
269 n i b _ d i g i t move . b d4 , ( a1 )+ ; S t o r e i n b u f f e r
270 move . b ( a7 ) + , d4 ; R e s t o r e o r i g i n a l v a l u e
271 r t s
272
273 ∗ =====================================================================
274 ∗ p r i n t _ h e x :
275 ∗ =====================================================================
276 ∗ Conver t D4 i n t o 8 hex c h a r a c t e r s , and p r i n t i t t o t h e c h a n n e l i n A0 . L
277 ∗
278 ∗ E x p e c t s D4 . L t o ho ld t h e v a l u e .
279 ∗ E x p e c t s A0 . L t o ho ld t h e c h a n n e l i d .
280 ∗ =====================================================================
281 p r i n t _ h e x l e a b u f f e r , a1 ; Outpu t b u f f e r f o r a d d r e s s
282 move .w # 8 , ( a1 )+ ; We know t h e r e s u l t i s 8 b y t e s
283 b s r h e x _ l ; Conve r t 4 b y t e s t o t e x t
284 l e a b u f f e r , a1 ; Text t o p r i n t
285 b s r prompt ; P r i n t i t
286 r t s ; A l l done . ( E r r o r code i n D0 )
287
288 ∗ =====================================================================
289 ∗ End of t e s t h a r n e s s
290 ∗ =====================================================================

Listing 10.11: Linked Lists - Wrapper - Part 2

10.2.5 Running The Wrapper Code.

The above code does absolutely nothing, but if you assemble it and exec the resulting file, you
should see a pair of windows one with a message ‘Single Linked Lists’ and a prompt in the other to
‘Press ENTER to quit’. Once you press the ENTER key, the job will finish. So far so good.

The reason that it does nothing is shown below:

1 ∗ =====================================================================
2 ∗ The DEMO code s t a r t s h e r e .
3 ∗ =====================================================================
4 Demo r t s
5



10.3 Doubly Linked Lists. 175

6 ∗ =====================================================================
7 ∗ The DEMO code ends h e r e .
8 ∗ =====================================================================

Listing 10.12: Linked Lists - Wrapper - Demo Placeholder

The code at Demo, does nothing but return to the caller. Our linked list code will be slotted in to
replace the lines of code shown above.

To demonstrate linked lists, we need only add some code to replace the lines above. In the following
two chapters we do just that, and code to demonstrate single and doubly linked lists follows there.

10.2.6 Problem Areas.

The above description, and code, is for a Single Linked List, so called because there is a single link
in each node which points to the next entry in the list. This is simple to code up - as we have seen -
and is fairly simple to understand, at least it is if I’ve done my job correctly.

The problem with a linked list created in the above fashion is that you always have to scan the list
from start to some undetermined entry when you want to delete a node. And this can add serious
delays to the processing of your application when a lot of nodes have to be traversed each time you
need to delete one.

There is an answer, Doubly Linked Lists.

10.3 Doubly Linked Lists.

If we change the structure of our nodes and add a PRIOR pointer to each node and to the root
node as well, we can store the address of both nodes neighbouring our current one, as shown in
Figure 10.4 which shows the node structure.

Figure 10.4: Structure of a Doubly Linked List Node.

Our conceptual model of the doubly linked list is shown in Figure 10.5.

10.3.1 Adding Nodes.

Adding a new node is still simple. Having allocated a node on the heap, you set it’s PRIOR pointer
to zero and it’s NEXT to the current address held in the FIRST pointer - almost identical to the
single linked list code above.

1 P r i o r equ 4 ; O f f s e t t o PRIOR p o i n t e r i n a node
2
3 P r e l u d e l e a FIRST , a0 ; P o i n t e r t o r o o t node



176 Chapter 10. Linked Lists

Figure 10.5: Conceptual Model of a Doubly Linked List.

4 l e a NewEntry , a1 ; Address o f new node

Listing 10.13: Adding a Node - Prelude

Then adding a new node to a doubly linked list is as simple as this:

5 AddNode cmpa . l a0 , a1 ; Don ’ t add t h e r o o t node a g a i n
6 beq . s AddExit ; Ba le o u t q u i e t l y i f a t t e m p t e d
7 move . l ( a0 ) , ( a1 ) ; Save f i r s t node i n new node ’ s NEXT
8 move . l a0 , P r i o r ( a1 ) ; S e t t h e PRIOR node f o r t h i s new node
9 move . l a1 , ( a0 ) ; S t o r e new node i n FIRST

10 move . l ( a1 ) , a0 ; A0 = a d d r e s s o f o r i g i n a l FIRST node
11 cmpa . l #0 , a0 ; Noth ing t o do i f A0 i s z e r o
12 beq . s AddExit ; Z s e t = F i r s t node added
13 move . l a1 , p r i o r ( a0 ) ; S t o r e new FIRST node
14 AddExit r t s

Listing 10.14: Adding a Node

As with single linked lists there is nothing to it. The new node is always added at the start of the list,
so the value in FIRST always points to the latest node added. The first non root node in a doubly
linked list has no real PRIOR node, so that part of the newly added node is simply set to point back
at the root node.

Building up the linked list above, in Figure 10.5, in stages, we would start with the root node
located, most likely, somewhere in our code itself. Initially both the next and prior pointers would
be set to zero.

The nodes are address at the start of the list, so the first node to be added would be the one on the
far right of the diagram, node $1200. That node would be created and added to the list by setting
the root node’s next pointer to address $1200 and the new node’s prior pointer to address $ABCD.
Because it is the final node in the list so far, its next pointer is set to zero.

After adding the node at address $2000, we would change the next pointer of the root node to this
new address, $2000, and the prior pointer of the node at $1200 to $2000. The new node would have
its prior pointer set to the address that was in the $1200 node’s prior pointer, which is $ABCD.

This process is repeated as we create each new node and add it to the list. Eventually, we end up
with the structure shown in Figure 10.5 above.

You can see how each node points onward to the NEXT one and also backwards to the PRIOR one.
The last node has no NEXT nodes, so it has its NEXT pointers set to zero to indicate the end of the
list.



10.3 Doubly Linked Lists. 177

10.3.2 Deleting Nodes.

Deleting a node is much simpler. There is no need to scan the entire list from the start looking for
the node prior to the one you want to delete because you already know it’s address by following the
PRIOR pointer backwards from the node to be deleted.

Here’s the pseudo code to delete a node. We assume, as before, that A0.L is the root node pointer
and A1.L is the node to be deleted.

• If the two addresses are equal, we cannot allow the root node to be deleted, exit with an error.
• If the address in the root node’s NEXT pointer is zero then we still have an empty list so the

value in A1 must be illegal. Exit with an error.
• Fetch the deleted node’s PRIOR pointer. Every real node in a list will have a valid PRIOR

pointer, only the root node has no prior pointer and we don’t allow that to be deleted.
• Store the NEXT pointer from the deleted node into the NEXT pointer of the prior node.
• Fetch the deleted node’s NEXT pointer, which might be zero if we are deleting the final node

in the list.
• If it is not zero, store the deleted node’s PRIOR pointer in the next node’s PRIOR pointer.
• Exit without error.

That’s the pseudo code, here’s the real code to do all of the above.

1 P r i o r equ 4 ; O f f s e t t o PRIOR p o i n t e r i n each node
2
3 P r e l u d e l e a FIRST , a0 ; P o i n t e r t o r o o t node
4 l e a OldNode , a1 ; Address o f node t o d e l e t e
5 moveq #ERR_BP , d0 ; T r y in g t o d e l e t e t h e r o o t node ?

Listing 10.15: Deleting a Node - Prelude

Now, here’s the actual code to find and remove the requested node.

6 DelNode cmpa . l a0 , a1 ; Don ’ t d e l e t e t h e r o o t node
7 beq . s D e l E x i t ; Ba le o u t wi th e r r o r i f a t t e m p t e d
8
9 cmp . l # 0 , ( a0 ) ; Do we a c t u a l l y have a l i s t ?

10 beq . s D e l E x i t ; Yes , node n o t found , e x i t w i th e r r o r
11
12 move . l P r i o r ( a1 ) , a0 ; F e t c h t h e d e l e t e d node ’ s PRIOR p o i n t e r
13 move . l ( a1 ) , ( a0 ) ; S t o r e i t s NEXT p o i n t e r i n t h e NEXT
14 ; p o i n t e r o f t h e PRIOR node
15
16 move . l ( a1 ) , a0 ; F e t c h t h e d e l e t e d node ’ s NEXT p o i n t e r
17 move . l P r i o r ( a1 ) , P r i o r ( a0 ) ; S t o r e i t s PRIOR p o i n t e r i n t h e
18 ; n e x t node ’ s PRIOR p o i n t e r .
19
20 DelFound move . l ( a1 ) , ( a0 ) ; PRIOR ’ s NEXT = t h e d e l e t e d node ’ s NEXT
21 moveq #0 , d0 ; Node d e l e t e d ok
22 b r a . s D e l E x i t ; Ba le o u t wi th no e r r o r s
23
24 DelNext move . l ( a0 ) , a0 ; A0 now h o l d s t h e NEXT node i n t h e l i s t
25 b r a . s DelNode ; Go around a g a i n
26
27 D e l E x i t t s t . l d0 ; S e t z e r o f l a g f o r s u c c e s s
28 r t s

Listing 10.16: Deleting a Node



178 Chapter 10. Linked Lists

10.3.3 Finding Nodes.

As with single linked lists, you may have a need to locate a specific node by its contents, so you
need a generic FindNode routine again. The fact that the list has two pointers this time around is
the only difference, so the code is basically the same as for the single linked list above.

The only difference is the offset to the data part of the node needs to be set to 8 bytes instead of 4,
so while the code for the FindNode remains the same, the code for the Compare routine needs to be
changed to the following to account for the extra pointer.

As before, the comparison routine must preserve A0, A1, A2 and D0 or it will all go horribly
wrong.

1 NData equ 8 ; O f f s e t from s t a r t o f node t o t h e d a t a
2
3 Compare cmp . l NData ( a3 ) , ( a2 ) ; I s t h e d a t a = t h e v a l u e we want ?
4 r t s ; E x i t w i th Z s e t i f so

Listing 10.17: Finding a Node - Data Comparison

Again, if an attempt is made to ‘find’ the root node, then it will fail.

10.3.4 A Better Mousetrap.

Because the code for the linked list find routine is identical except for the offset in the compare
routine you can use the same code. If you modify it so that it passes the offset over to the compare
routine in a spare register, say D1.W for example, then you can even have the same compare routine
for both single and doubly linked lists, as shown below.

1 Compare cmp . l 0 ( a3 , d1 .w) , ( a2 ) ; I s t h e d a t a = t h e v a l u e we want ?
2 r t s ; E x i t w i th Z s e t i f so

Listing 10.18: Finding a Node - Data Comparison

Another method, much loved in the internals of Microsoft Windows, is to store a word holding the
offset to the data at the start of each node. This would remove the need for the D1.W register to be
passed into the comparison routine as a parameter as it could easily extract the data from the node
itself, as follows:

1 Compare move .w ( a3 ) , d1 ; F e t c h t h e o f f s e t t o t h e d a t a
2 cmp . l 0 ( a3 , d1 .w) , ( a2 ) ; I s t h e d a t a = t h e v a l u e we want ?
3 r t s ; E x i t w i th Z s e t i f so

Listing 10.19: Finding a Node - Alternative Data Comparison

The drawback to this method is the redundancy of the data - each and every node has to have the
first two bytes set to the offset to the data plus 2 for the size of the offset word itself. Two extra
bytes per node may be the difference between getting all the data in memory or not. It is, of course,
always up to you. If you decide to go down this route, don’t forget to amend the code to add, find
and delete nodes to take the extra two bytes into consideration when manipulating the pointers to
NEXT and PRIOR. Your root node must also reflect these changes and have an offset word added
to its own structure.

You might see a need to build a couple of comparison routines to compare two nodes rather than
the example above where a node is being compared with a value. On the other hand, you could
simply write one routine to compare two nodes and when looking for a value, create a dummy node



10.4 Remember those arrays? 179

and use that in the comparison routine. That way, you don’t need separate routines to compare
values and nodes.

10.3.5 Double Trouble.

The problem with a doubly linked list is that while adding nodes is just as simple as before, but
deleting them could be problematical. If you are passed the address of a node which is not in the
list, how do you tell that it is or is not a valid node address? You can end up trashing bytes of
memory almost at random as you start changing the NEXT and PRIOR pointers for two areas of
memory which may not be in your list.

My solution is to use a flag word or long word after the two list pointers in each node and when
passed in a node address to delete, compare this value in the flag to see if it is correct before
attempting to delete the node. As ever, I leave this ‘as an exercise for the reader’ to modify the code
above to carry out said checks.

10.3.6 Sorting Lists.

The best way to sort a list is not to have to sort it at all. When you store a node in the list, store it in
the correct place according to its value. A doubly linked list is used here again as you will need to
go NEXT until you hit a value greater than the one you want to insert, then you might need to go
PRIOR to insert it in the correct location. I’ll leave you to figure out that little exercise.

There is an another way, which involves TREES of nodes rather than lists. A tree is simply a linked
list which has a LEFT, RIGHT and UP pointer in each node.

With a tree, the nodes are not in a long line, but they are off to the LEFT and RIGHT of the root
node. Each node may itself have children to the LEFT and RIGHT as well as a parent found by
following the UP pointer.

Unfortunately, trees are a bit beyond my skills at the moment. I remember doing them in college
and learning all the different ways to navigate them, but I cannot remember much about them
nowadays - it’s been over 30 years since I last considered them.

10.4 Remember those arrays?

Way back at the start of this chapter, I mentioned arrays and their problems. Well, combining an
array with a linked list could be useful - but remember, the array is limited by the fact that you have
to pre-define the number of entries.

Bearing this in mind, you could allocate an array of, say 1000 entries of 4 bytes each. Each entry in
the array holds the address of an individual node, not the actual data stored there. Our address book
system of 100 byte strings (not much of an address book I admit!) will now only need about 4Kb
plus 102 bytes per used node - including the string length word for each entry. Using a plain array
it would need almost 102Kb even for a blank address book.

Now you have compromised on memory needs as you don’t allocate the space required to store
your data until you need to, and you do allocate a much smaller amount to hold the ‘contents table’.
As you create new nodes, add their address to the array. You can still use the single or double linked
lists if you wish, but there is no need. The array holds all the locations of each node in the order
that they were created and you can navigate forwards, backwards and even access nodes at random
using this method because the formula to find a given node is once more usable.



180 Chapter 10. Linked Lists

Have fun trying that out!

10.5 Coming Up...

Coming up next, the real code for the single linked list demo, and following that, the code for the
doubly linked list demo.



11. Single Linked Lists Demo Code

11.1 Introduction

The following code demonstrates the use of single linked lists. It should be slotted into the test
harness code wrapper in Chapter 10 at the appropriate place. It cannot be assembled as it stands - it
needs to be part of the test harness.

11.2 How Does The Code Work?

The code is a small example of creating and navigating a linked list. The demo starts by creating a
list of 5 nodes, each holding one long word of data being simply the node number 0 to 4.

The list contents are then printed on the screen shoing the node address, the next pointer and the
data stored in that node. Once this is done, the node with data contents of 3 is located and deleted
prior to the new list being printed out again.

Finally, each node in the list is deleted.

The first part of the code simply controls the whole demo by calling various sub-routines to do the
hard work, display messages etc on screen.

1 ∗ =====================================================================
2 ∗ The DEMO code s t a r t s h e r e .
3 ∗
4 ∗ Thi s demo does t h e f o l l o w i n g :
5 ∗
6 ∗ C r e a t e s a number o f nodes and s t o r e s a LONG v a l u e i n each one .
7 ∗ L i s t s each node a d d r e s s , i t ’ s NEXT p o i n t e r and d a t a v a l u e on s c r e e n .
8 ∗ D e l e t e s a node .
9 ∗ L i s t s each node a d d r e s s , i t ’ s NEXT p o i n t e r and d a t a v a l u e on s c r e e n .

10 ∗ F i n d s a node based on i t s d a t a and d i s p l a y s i t s d e t a i l s on s c r e e n .
11 ∗ D e l e t e s a l l t h e nodes from t h e l i s t .



182 Chapter 11. Single Linked Lists Demo Code

12 ∗ =====================================================================
13 Demo b s r B u i l d L i s t ; B u i l d a l i n k e d l i s t
14 b s r Be fo r e ; D i s p l a y ’BEFORE: ’
15 b s r ShowLis t ; D i s p l a y l i s t d e t a i l s
16 b s r FindNode ; L oc a t e a s i n g l e node
17 bne . s DemoAfter ; F a i l e d t o f i n d node d a t a = 3
18 b s r Dele teNode ; D e l e t e a s i n g l e node
19
20 DemoAfter b s r A f t e r ; D i s p l a y ’AFTER : ’
21 b s r ShowLis t ; Show d e t a i l s a g a i n
22 b s r K i l l L i s t ; D e l e t e e n t i r e l i s t
23 r t s ; Done

Listing 11.1: Single Linked List - Demo Code

Following on from the main control section of the demo, we have our much beloved root node
which must be initialised to zero as outlined in the original article. This is the pointer we will be
loading into A0 quite often in the demo and it holds the address of the first node in the list. At
present, there is no list, so the contents are set to zero to indicate the very end of the list.

24 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ∗ A l o c a t i o n t o ho ld a s i n g l e long word p o i n t i n g t o t h e f i r s t ’ r e a l ’
26 ∗ node i n our l i n k e d l i s t . Th i s must be i n i t i a l i z e d t o z e r o .
27 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 RootNode dc . l 0 ; Th i s i s our r o o t node .

Listing 11.2: Single Linked List - Demo Code - Root Node

The first of our sub-routines follows on. This part builds a list of 5 nodes in the most simple manner
possible - it runs a loop which calls the sub-routine to create a single node and link it into the list.
If you want a bigger list, change the counter loaded into D7 to one less than the number of node
you want. Don’t forget to adjust the height of your window as wll if you want to see all the results
on screen at the same time.

29 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 ∗ B u i l d a l i s t o f 5 nodes each h o l d i n g a long word o f d a t a .
31 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 B u i l d L i s t l e a RootNode , a0 ; P o i n t e r t o r o o t node a d d r e s s
33 moveq #4 , d7 ; How many nodes i n D7 = 5
34 moveq #8 , d1 ; Each node i s 8 b y t e s long
35
36 Bui ldLoop b s r . s Bui ldNode ; C r e a t e a node , a d d r e s s i n A1
37 bne a l l _ d o n e ; J u s t d i e on e r r o r s
38 move . l d7 , 4 ( a1 ) ; S t o r e d a t a v a l u e
39 b s r . s AddNode ; Add t o l i s t
40 db ra d7 , Bui ldLoop ; Do t h e r e s t
41 r t s ; Done

Listing 11.3: Single Linked List - Demo Code - Build List

Here’s the first of the real list routines. We add a new node into the list in the manner outlined in
the article. We reject attempts to add the rot node into the list - but without flagging any errors -
and, as explained, we don’t attempt to check if the new node already exists in the list because we
are creating the node on the heap, so the chances of the new node being present already are pretty
slim to say the least.

42 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



11.2 How Does The Code Work? 183

43 ∗ AddNode − Adds a new node t o a l i s t . See t e x t f o r d e t a i l s .
44 ∗ P r e s e r v e s a l l r e g s i t e r s .
45 ∗ No e r r o r s r e t u r n e d .
46 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 AddNode cmpa . l a0 , a1 ; Don ’ t add t h e r o o t node a g a i n
48 beq . s AddExit ; Ba le o u t q u i e t l y i f a t t e m p t e d
49 move . l ( a0 ) , ( a1 ) ; Save f i r s t node i n new NEXT
50 move . l a1 , ( a0 ) ; S t o r e new node i n r o o t node
51 AddExit r t s

Listing 11.4: Single Linked List - Demo Code - Add Node

A new node is built by allocating some space on the common heap but we must preserve the
working registers, the following code does this for us.

52 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 ∗ A l l o c a t e a s i n g l e new node
54 ∗ On e n t r y , D1 . L i s amount o f memory r e q u i r e d .
55 ∗ On e x i t , A1 h o l d s t h e a d d r e s s o f t h e new node , w i th D0 h o l d i n g e r r o r s .
56 ∗ A l l r e g i s t e r s p r e s e r v e d − u n l e s s o t h e r w i s e s t a t e d .
57 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 BuildNode movem . l d1−d3 / a0 / a2−a3 ,−( a7 ) ; Save working r e g i s t e r s
59 moveq #MT_ALCHP, d0 ; S e t t h e t r a p
60 moveq #me , d2 ; I want i t f o r me
61 t r a p #1 ; Do i t
62 move . l a0 , a1 ; Node a d d r e s s i n t o A1
63 movem . l ( a7 ) + , d1−d3 / a0 / a2−a3 ; R e s t o r e working r e g i s t e r s
64 t s t . l d0 ; S e t f l a g s
65 r t s ; E x i t

Listing 11.5: Single Linked List - Demo Code - Build Node

The following sub-routine is called once to display the linked list before we do the deletions and
again after we have deleting a node. The code simply walks through the entire list and prints out
the node address, the next pointer and the data value by calling other sub-routines.

66 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 ∗ Walk t h r o u g h a l i n k e d l i s t d i s p l a y i n g t h e d e t a i l s o f each node as we
68 ∗ go .
69 ∗ On e n t r y , A0 = r o o t node of t h e l i s t .
70 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
71 ShowLis t l e a RootNode , a0 ; Root node a d d r e s s
72
73 ShowLoop move . l ( a0 ) , a0 ; Get a d d r e s s o f t h e n e x t node
74 cmpa . l #0 , a0 ; Done?
75 beq . s ShowExit ; Yes
76 move . l a0 ,−( a7 ) ; P r e s e r v e A0 − i t ’ s our node
77 b s r . s ShowNode ; D i s p l a y t h a t node ’ s d e t a i l s
78 move . l ( a7 ) + , a0 ; R e s t o r e t h e node p o i n t e r
79 b r a . s ShowLoop ; Do t h e r e s t o f t h e l i s t
80
81 ShowExit r t s ; Done

Listing 11.6: Single Linked List - Demo Code - Show List

This next short routine is called with the address of a node in A0.L and prints the details of that
node to the screen.



184 Chapter 11. Single Linked Lists Demo Code

82 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 ∗ D i s p l a y t h e d e t a i l s o f a s i n g l e node i n t h e l i n k e d l i s t .
84 ∗ On e n t r y A0 = t h e node a d d r e s s .
85 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 ShowNode move . l a0 , a5 ; The node a d d r e s s
87 move . l con_ id2 ( a4 ) , a0 ; The c h a n n e l a d d r e s s
88 move . l a5 , d4 ; The node a d d r e s s
89 b s r . s ShowAddr ; P r i n t node a d d r e s s
90 move . l ( a5 ) , d4 ; The NEXT p o i n t e r
91 b s r . s ShowNext ; P r i n t NEXT p o i n t e r
92 move . l 4 ( a5 ) , d4 ; The node d a t a
93 b s r ShowData ; P r i n t t h e d a t a
94 r t s

Listing 11.7: Single Linked List - Demo Code - Show Node

Obviously, just displaying the list contents isn’t very user firiendly, so the next couple of routines
display a title which informs the user if the list being displyed is ‘before’ or ‘after’ the deletion of a
node.

95 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 ∗ D i s p l a y ’BEFORE: ’ i n t h e o u t p u t c h a n n e l .
97 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
98 Be fo re l e a BeforeAddr , a1 ; The prompt
99 movea . l con_ id2 ( a4 ) , a0 ; Needs c h a n n e l i d

100 b s r Prompt ; P r i n t i t
101 r t s
102
103 BeforeAddr dc .w B4End−BeforeAddr−2
104 dc . b ’BEFORE: ’ , l i n e f e e d
105 B4End equ ∗
106
107 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
108 ∗ D i s p l a y ’AFTER: ’ i n t h e o u t p u t c h a n n e l
109 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 A f t e r l e a Af te rAddr , a1 ; The prompt
111 movea . l con_ id2 ( a4 ) , a0 ; Needs c h a n n e l i d
112 b s r Prompt ; P r i n t i t
113 r t s
114
115 Af t e rAddr dc .w AftEnd−AfterAddr −2
116 dc . b l i n e f e e d , l i n e f e e d , ’ AFTER : ’ , l i n e f e e d
117 AftEnd equ ∗

Listing 11.8: Single Linked List - Demo Code - Show Before and After States

There now follows one of three separate but short routines to display on screen, the various parts of
a list node. This one simply displays the node’s address in memory. Following after this routine is a
number of small sub-routines which assist in the displaying of node data by converting the contents
of D4 to hex and printing it to the screen.

118 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 ∗ D i s p l a y t h e node ’ s a c t u a l a d d r e s s i n memory .
120 ∗ On e n t r y D4 = t h e node a d d r e s s .
121 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
122 ShowAddr l e a MsgAddr , a1 ; Our prompt
123



11.2 How Does The Code Work? 185

124 ShowPrompt b s r Prompt ; P r i n t i t
125 b s r . s D4ToHex ; Conve r t D4 . L t o hex
126 b s r . s P r i n t H e x ; P r i n t i t and a l i n e f e e d
127 r t s
128
129 MsgAddr dc .w AddrEnd−MsgAddr−2
130 dc . b l i n e f e e d , ’ Node a d d r e s s : ’
131 AddrEnd equ ∗
132
133 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
134 ∗ P r i n t t h e c o n t e n t s o f t h e b u f f e r t o s c r e e n .
135 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 P r i n t H e x l e a Buf f e r , a1 ; What t o p r i n t
137 move . l con_ id2 ( a4 ) , a0 ; Channel t o p r i n t t o
138 b s r Prompt ; Do i t
139 r t s
140
141 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
142 ∗ Conver t t h e long word i n D4 t o hex r e a d y f o r p r i n t i n g
143 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
144 D4ToHex l e a b u f f e r +2 , a1 ; B u f f e r a d d r e s s
145 b s r h e x _ l ; Do a l l 4 b y t e s = 8 c h a r a c t e r s
146 l e a b u f f e r , a1 ; B u f f e r a g a i n
147 move .w # 8 , ( a1 ) ; S t o r e t e x t l e n g t h
148 r t s

Listing 11.9: Single Linked List - Demo Code - Show Addresses

The second and third routines to diplsy the details of a node now follow. Starting with the code to
show the node’s NEXT pointer address closely followed by the code to print the actual data stored
in the node.

149 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 ∗ D i s p l a y t h e node ’ s NEXT a d d r e s s i n memory .
151 ∗ On e n t r y D4 = t h e node ’ s NEXT p o i n t e r .
152 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 ShowNext l e a MsgNext , a1 ; Our prompt
154 b r a . s ShowPrompt ; P r i n t i t
155
156 MsgNext dc .w NextEnd−MsgNext−2
157 dc . b ’ NEXT p o i n t e r : ’
158 NextEnd equ ∗
159
160 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
161 ∗ D i s p l a y t h e node ’ s a c t u a l d a t a c o n t e n t .
162 ∗ On e n t r y D4 = t h e d a t a .
163 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164 ShowData l e a MsgData , a1 ; Our prompt
165 b r a . s ShowPrompt ; P r i n t i t
166
167 MsgData dc .w DataEnd−MsgData−2
168 dc . b ’ Data v a l u e : ’
169 DataEnd equ ∗

Listing 11.10: Single Linked List - Demo Code - Show Next Address

Next we have the code to locate a single node in the linked list based upon the data part of the node.



186 Chapter 11. Single Linked Lists Demo Code

This part is simply the setup routine for the following code at FindANode which does the actual
scanning of the node and calling the compare routine as described in the previous chapter.

170 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
171 ∗ L oc a t e a node i n t h e l i s t based on i t ’ s d a t a v a l u e .
172 ∗ On e x i t , A1 i s t h e r e q u i r e d node ’ s a d d r e s s p l u s Z s e t − i f found .
173 ∗ A1 i s u n d e f i n e d p l u s Z c l e a r − i f n o t found .
174 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 FindNode l e a RootNode , a0 ; P o i n t e r t o r o o t node i n l i s t
176 l e a Compare , a1 ; Node compar i son r o u t i n e
177 moveq #3 , d1 ; We a r e l o o k i n g f o r t h i s d a t a
178 b s r . s FindANode ; Go f i n d i t , o r n o t
179 r t s
180
181 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
182 ∗ Thi s r o u t i n e e x p e c t s t h e f o l l o w i n g i n p u t r e g i s t e r s t o be a b l e t o scan
183 ∗ a l i n k e d l i s t f o r t h e r e q u i r e d d a t a and r e t u r n t h e a d d r e s s o f t h e
184 ∗ node h o l d i n g t h a t d a t a wi th t h e Z f l a g s e t i f found , o r t h e Z f l a g
185 ∗ c l e a r e d f o r n o t found .
186 ∗
187 ∗ A0 . L = Rootnode of t h e l i s t .
188 ∗ A1 . L = Address o f Compare r o u t i n e .
189 ∗ D1 . L = Value t o look f o r i n l i s t .
190 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191 FindANode moveq # oops , d0 ; Assume n o t found ( y e t )
192
193 FindLoop cmpa . l #0 , a0 ; Reached t h e end y e t ?
194 beq . s F i n d E x i t ; Yes , node n o t found , e x i t
195
196 move . l ( a0 ) , a3 ; Get NEXT node i n t o A3 . L
197 j s r ( a1 ) ; C a l l t h e compar i son r o u t i n e
198 beq . s FindFound ; Looks l i k e we found our node
199
200 FindNext move . l ( a0 ) , a0 ; A0 = NEXT node i n t h e l i s t
201 b r a . s FindLoop ; Go around a g a i n
202
203 FindFound movea . l a3 , a1 ; Th i s i s t h e r e q u i r e d node
204 moveq #0 , d0 ; C l e a r e r r o r f l a g
205
206 F i n d E x i t t s t . l d0 ; S e t z e r o f l a g f o r s u c c e s s
207 r t s
208
209 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
210 ∗ Thi s i s t h e s i m p l e compare r o u t i n e f o r our FindNode code . On e n t r y ,
211 ∗ we have t h e f o l l o w i n g r e g i s t e r s s e t :
212 ∗
213 ∗ D1 . L = The v a l u e we want t o f i n d i n a node i n t h e l i s t .
214 ∗ A3 . L = The a d d r e s s o f t h e node we a r e s e a r c h i n g .
215 ∗
216 ∗ We must p r e s e r v e A0 , A1 and D1 .
217 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 NData equ 4 ; O f f s e t t o t h e d a t a
219 Compare cmp . l NData ( a3 ) , d1 ; Found t h e d a t a y e t ?
220 r t s ; E x i t w i th Z s e t i f so

Listing 11.11: Single Linked List - Demo Code - Find Node



11.2 How Does The Code Work? 187

This next routine is not really required on QDOSMSQ as a terminating job always has any allocated
heap areas returned to the system by the job scheduler routines. Because I’m a lazy typist and in
order that I reduce the large amounts of code in the magazine, I’m not writing any code here!

If you wish to carry out the list tidying explicitly for yourself as an exercise, feel free to do so. As
a suggestion, start a loop which keep going around the list fetching the NEXT node pointer and
deleting that from the list using the routines in this code. Once the node has been unlinked from the
list, you may deallocate it’s heap area - but don’t forget to preserve those registers.

221 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
222 ∗ QDOSMSQ t i d i e s up r a t h e r n i c e l y f o r us on e x i t − so we don ’ t have t o !
223 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
224 K i l l L i s t r t s

Listing 11.12: Single Linked List - Demo Code - Kill List

The folowing code sets up the demo to delete the node that was just ‘found’ by searching for the
node holding data 3. This code is called with the address of the ‘3’ node in A1.L and it simply sets
up the following routine which actually scans the list looking to make sure that the node we are
deleting exists in the list.

225 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
226 ∗ A demo r o u t i n e t o d e l e t e t h e node whose a d d r e s s i s p a s s e d i n A1 . L .
227 ∗ S e t s Z i f found & d e l e t e d , c l e a r s i t o t h e r w i s e .
228 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
229 Dele teNode l e a roo tnode , a0 ; Address o f t h e r o o t node
230 b s r . s DelANode
231 r t s

Listing 11.13: Single Linked List - Demo Code - Delete Node

This is the node deletion code itself. As described in the article, we must not delete the root node
itself - as this isn’t allocated on the heap. We must also check that the node is in the list by scanning
from start to finish looking for the node in the list which has a NEXT pointer holding the address of
the node we want to delete.

We remove a node from the list by copying the soon to be deleted node’s NEXT pointer into the
NEXT pointer of the node before it, thus bypassing the node we want to delete.

Warn
This code only deletes a node from the linked list. It does not deallocate the memory on the
common heap that was allocated to create the node. QDOSMSQ will do this at the end of the
demo, but in real life, you would need to carry out this task yourself - especially as you may
not want a number of deleted heap areas hanging around in memory fragmenting your heap.

232 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
233 ∗ R o u t i n e t o d e l e t e a node wi th t h e a d d r e s s p a s s e d i n A1 . L from t h e
234 ∗ l i s t whose a d d r e s s i s p a s s e d i n A0 . L . On e x i t , Z f l a g w i l l be s e t i f
235 ∗ d e l e t e d o r c l e a r e d i f n o t .
236 ∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
237 DelANode moveq # oops , d0 ; Assume i t ’ s go ing t o f a i l
238 cmpa . l a1 , a0 ; D e l e t i n g t h e r o o t node ?
239 beq . s D e l E x i t ; E x i t i f so .
240
241 DelLoop cmpi . l # 0 , ( a0 ) ; F i n i s h e d y e t ?
242 beq . s D e l E x i t ; E x i t n o t found



188 Chapter 11. Single Linked Lists Demo Code

243 cmpa . l ( a0 ) , a1 ; Found t h e p r e v i o u s node
244 ∗ ; t o t h e one we want t o d e l e t e ?
245 bne . s DelNext ; Not ye t , t r y a g a i n
246
247 DelFound move . l ( a1 ) , ( a0 ) ; D e l e t e t h e node − s e t NEXT
248 ∗ ; o f t h e node BEFORE t h e one t o
249 ∗ ; be d e l e t e d t o NEXT of t h e
250 ∗ ; node t h a t i s b e i n g d e l e t e d .
251 moveq #0 , d0 ; I n d i c a t e found and d e l e t e d
252 b r a . s D e l E x i t ; S e t Z f l a g on t h e way o u t
253
254 DelNext move . l ( a0 ) , a0 ; Get t h e n e x t node i n t h e l i s t
255 b r a . s DelLoop ; And t r y a g a i n
256
257 D e l E x i t t s t . l d0 ; S e t o r c l e a r Z f l a g
258 r t s
259
260 ∗ =====================================================================
261 ∗ The DEMO code ends h e r e .
262 ∗ =====================================================================

Listing 11.14: Single Linked List - Demo Code - Deleting A Node

And that is all there is to it. The SingleList demo code should be assembled and run in the normal
fashion. You’ll be able to see that there are indeed 5 nodes in the list (in the BEFORE section at the
top of the screen) then under that, the AFTER section shows a missing node with data content 3 -
we have deleted it from the list.

11.3 Coming Up...

In the next chapter the real working demo code for doubly linked lists will be shown and explained.



12. Doubly Linked Lists Demo Code

12.1 Introduction

The following code demonstrates the use of doubly linked lists. It should be slotted into the test
harness code wrapper from Chapter 10 at the appropriate place. It cannot be assembled as it stands
- it needs to be part of the test harness.

12.2 How Does The Code Work?

Much of the demo code is identical to last time, so I’ll save some space and paper by only showing
you routines that are changed or new ones that were added.

As with the SingleList demo, the code is a small example of creating and navigating a linked list.
The demo starts by creating a list of 5 nodes, each holding one long word of data being simply the
node number 0 to 4. Each node is linked to the one after it and to the one before it.

The list contents are then printed on the screen showing the node address, the prior pointer, the
next pointer and the data stored in that node. Once this is done, the node with data contents of 3 is
located and deleted prior to the new list being printed out again. Sounds very familiar doesn’t it?

I’ve had to trim the informational part of the screen output for each node to accommodate the extra
address in the PRIOR pointer and to make sure that it all fits on one screen line.

As with the demo code for singly linked lists, I’m not physically deleting the allocated heap areas
used for each node. This reduces the amount of code that appears in the magazine and reduces the
need to chop down a few more trees. However, bear in mind that if you create programs which don’t
delete the heap areas when a node is deleted, that your memory usage will remain high throughout
the run of the program.

In my case, this is a small demo and QDOSMSQ does the tidying up for me at the end of the demo.



190 Chapter 12. Doubly Linked Lists Demo Code

Note
In the following descriptions of changes to the existing demo code for single linked lists, all
of the line numbers shown or mentioned, refer to the original line numbers in the demo code
for single linked lists from the previous chapter.
Where code is being added, the first line number shown is where I have inserted it into my
version of the demo code. Your mileage may vary - as they say!

The first part of the code which has changed is the definition of the root node at line 24. In the
single linked list, this was a single long word initialised to zero. In this demo we have a pair of long
words initialised to zero. To make life easier, we also define a number of equates for use throughout
the remainder of the code.

The root node must now be initialised to zero in both its NEXT and PRIOR areas as outlined in the
original article. This is the pointer we will be loading into A0 quite often in the demo and it holds
the address of the first node in the list. At present, there is no list, so the contents are set to zero to
indicate the very end of the list. The PRIOR pointer will always be zero because there is never a
previous node to the root.

Note
So, effectively, I could have simply left the root node identical to that of the single linked list
demo, if there’s no need to hold a PRIOR address, we don’t need a PRIOR pointer storage
area.
However, read any book on linked lists in almost any language, and you will note that the
root node is simply a normal node, without any use of it’s PRIOR pointer. Some books do use
the PRIOR pointer, to point at the final node in the list, but that can lead to runaway code if
there’s no way to detect the end node. Especially when the last node’s NEXT pointer points
to the root node!

24 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ∗ A l o c a t i o n t o ho ld a s i n g l e long word p o i n t i n g t o t h e f i r s t ‘ r e a l ’
26 ∗ node i n our l i n k e d l i s t . Th i s must be i n i t i a l i z e d t o z e r o .
27 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 RootNode dc . l 0 ,0 ; Root node wi th 2 p o i n t e r s .
29
30 NodeSize equ 12 ; Node s i z e i n b y t e s
31 Next equ 0 ; O f f s e t t o NEXT p o i n t e r
32 P r i o r equ 4 ; O f f s e t t o PRIOR p o i n t e r
33 NData equ 8 ; O f f s e t t o t h e node ’ s d a t a

Listing 12.1: Doubly Linked List - Demo Code - Root Node

The code in BuildList (line 29 onwards) has been changed slightly too. In the single list version,
the offsets were hard coded as numbers. This isn’t very clever - if you change the offsets at any
future point, you have to find all the places where the numbers are hard coded. In the new version,
I use equates instead of hard coded values. This way, if I change my node structure, I only have to
change the equates once.

29 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 ∗ B u i l d a l i s t o f 5 nodes each h o l d i n g a long word o f d a t a .
31 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 B u i l d L i s t l e a RootNode , a0 ; Root node a d d r e s s
33 moveq #4 , d7 ; 5 nodes t o c r e a t e
34 moveq # NodeSize , d1 ; Each node i s 12 b y t e s long
35
36 Bui ldLoop b s r . s Bui ldNode ; C r e a t e node , a d d r e s s i n A1 . L
37 bne a l l _ d o n e ; J u s t d i e on e r r o r s



12.2 How Does The Code Work? 191

38 move . l d7 , NData ( a1 ) ; S t o r e d a t a v a l u e
39 b s r . s AddNode ; Add t o l i s t
40 db ra d7 , Bui ldLoop ; Do t h e r e s t
41 r t s ; Done

Listing 12.2: Doubly Linked List - Demo Code - Build List

AddNode has been changed to cater for the doubly linked list by initialising the NEXT and PRIOR
pointers in the new node and in the root node, then checking if there was already any nodes in the
list. If there were any nodes, the previous ‘first’ node in the list (ie, the most recent one added)
needs to have its PRIOR pointer set to be our brand new node. This is done by loading A0 with the
new node’s NEXT pointer and testing that for zero, if the new node has no NEXT address, it can
only be the very first node in the list.

We initialise as follows:

• NEXT(Root) copied to NEXT(NewNode)
• Root address copied to PRIOR(NewNode)
• NewNode address copied to NEXT(Root)

If this is not the very first node in the list then:

• Get address of NEXT(NewNode)
• NewNode address copied to PRIOR(NextNode).

43 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 ∗ AddNode − Adds a new node t o a l i s t . See t e x t f o r d e t a i l s .
45 ∗
46 ∗ E n t r y : A0 . L = r o o t node a d d r e s s , A1 . L = New node a d d r e s s .
47 ∗ E x i t : P r e s e r v e s a l l r e g i s t e r s , no e r r o r codes r e t u r n e d .
48 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 AddNode cmpa . l a0 , a1 ; Don ’ t add t h e r o o t node a g a i n
50 beq . s AddExit ; Ba le o u t q u i e t l y i f a t t e m p t e d
51 move . l ( a0 ) , ( a1 ) ; Save f i r s t node i n node ’ s NEXT
52 move . l a0 , P r i o r ( a1 ) ; S e t t h e new node ’ s PRIOR
53 move . l a1 , ( a0 ) ; S t o r e a d d r e s s o f node i n r o o t
54 cmpa . l # 0 , ( a1 ) ; F i r s t e v e r node ?
55 beq . s AddExit ; Yes . E x i t w i th Z s e t
56 move . l a0 ,−( a7 ) ; P r e s e r v e r o o t node p o i n t e r
57 move . l ( a1 ) , a0 ; A0 = add r o f p r e v i o u s f i r s t node
58 move . l a1 , p r i o r ( a0 ) ; S e t PRIOR t o our new node
59 move . l ( a7 ) + , a0 ; R e s t o r e r o o t node p o i n t e r
60 AddExit r t s

Listing 12.3: Doubly Linked List - Demo Code - Add Node

The ShowNode code is the next part that has changed. It has had a couple of lines added to call a
new routine - ShowPrior - which, as its name suggests, displays the address of the PRIOR pointer
for the node being displayed on screen.

Warn
The line BSR.S ShowNext must also be changed to remove the ‘.S’ from the BSR instruction.
We’ve slipped out of range of a short jump now, so you’ll get an error message ‘Number Too
Big’ if you don’t.

82 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 ∗ D i s p l a y t h e d e t a i l s o f a s i n g l e node i n t h e l i n k e d l i s t .



192 Chapter 12. Doubly Linked Lists Demo Code

84 ∗ On e n t r y A0 = t h e node a d d r e s s .
85 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 ShowNode move . l a0 , a5 ; The node a d d r e s s
87 move . l con_ id2 ( a4 ) , a0 ; The c h a n n e l a d d r e s s
88 move . l a5 , d4 ; The node a d d r e s s
89 b s r . s ShowAddr ; P r i n t node a d d r e s s
90 move . l ( a5 ) , d4 ; The NEXT p o i n t e r
91 b s r ShowNext ; P r i n t NEXT p o i n t e r
92 move . l P r i o r ( a5 ) , d4 ; The PRIOR p o i n t e r
93 b s r . s ShowPr ior ; P r i n t PRIOR p o i n t e r
94 move . l NData ( a5 ) , d4 ; The node d a t a
95 b s r ShowData ; P r i n t t h e d a t a
96 r t s

Listing 12.4: Doubly Linked List - Demo Code - Show Node

In addition, I’ve abbreviated the message printed by ShowAddr to the following:

129 MsgAddr dc .w AddrEnd−MsgAddr−2
130 dc . b l i n e f e e d , ’ Node add r : ’
131 AddrEnd equ ∗

Listing 12.5: Changes to MsgAddr Text Data

The following short routine should be added just above ShowNext (currently at line 149 onwards)
in the original code. It is called by ShowNode to display the address in a node’s PRIOR pointer.

149 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
150 ∗ D i s p l a y t h e node ’ s PRIOR a d d r e s s i n memory .
151 ∗ On e n t r y D4 = t h e node ’ s PRIOR p o i n t e r .
152 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 ShowPr ior l e a MsgPrior , a1 ; Our prompt
154 b r a . s ShowPrompt ; P r i n t i t
155
156 MsgPr ior dc .w Pr io rEnd−MsgPrior−2
157 dc . b ’ PRIOR : ’
158 P r i o r E n d equ ∗

Listing 12.6: Doubly Linked List - Demo Code - Show Prior Address

The code in the ShowNext and ShowData routines hasn’t changed, but the messages they display
have. I needed to shorten the text to get everything on screen in one line per node. Please make the
following changes at original lines 156 and 167:

156 MsgNext dc .w NextEnd−MsgNext−2
157 dc . b ’ NEXT: ’
158 NextEnd equ ∗

Listing 12.7: Changes to MsgNext Text Data

167 MsgData dc .w DataEnd−MsgData−2
168 dc . b ’ Data : ’
169 DataEnd equ ∗

Listing 12.8: Changes to MsgData Text Data

The code in DelANode has been reduced quite dramatically to the following. As before we don’t
allow deletion of the root node itself and exit quietly if any attempt is made to do so.



12.2 How Does The Code Work? 193

Next we check to ensure that we actually have a list to delete from. If the root node’s NEXT pointer
is still zero, we have no nodes in the list and again, we exit quietly. In both these exit situations, we
clear the Z flag to indicate a node not deleted error.

Deleting the node from the list (but, as before, not from memory) is actually quite simple. As A1
points to the node to be deleted we can find the node before it from the PRIOR(a1) address, and the
node after it by the NEXT(A1) address. All we do to delete the node from the list is set the prior
node’s NEXT address to the current value in the deleted node’s NEXT address and then set the
next node’s PRIOR address to the PRIOR address of the deleted node.

However, if we are deleting the very last node in the list, we must not attempt to change the
(non-existent) next node’s pointers as we may well end up writing to random locations in memory.
In the last node, the NEXT pointer is always zero.

232 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
233 ∗ R o u t i n e t o d e l e t e a node wi th t h e a d d r e s s p a s s e d i n A1 . L from t h e
234 ∗ l i s t w i th t h e a d d r e s s p a s s e d i n A0 . L . On e x i t , Z f l a g w i l l be s e t i f
235 ∗ t h e node was d e l e t e d , o r c l e a r e d i f n o t .
236 ∗ T r a s h e s A0 and D0 on e x i t .
237 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
238 DelANode moveq # oops , d0 ; Assume i t ’ s go ing t o f a i l
239 cmpa . l a1 , a0 ; T r y in g t o d e l e t e t h e r o o t n o d e ?
240 beq . s D e l E x i t ; E x i t i f so .
241
242 D e l L i s t cmpi . l # 0 , ( a0 ) ; Empty l i s t ?
243 beq . s D e l E x i t ; Yes . E x i t n o t found
244 move . l P r i o r ( a1 ) , a0 ; A0 = node b e f o r e t h e ’ d e l e t e d ’ one
245 move . l ( a1 ) , ( a0 ) ; P r i o r ’ s NEXT = d e l e t e d node ’ s NEXT
246 ∗ ; t h u s d e l e t i n g t h e node from t h e
247 ∗ ; NEXT c h a i n t h r o u g h t h e l i s t .
248 cmpi . l # 0 , ( a1 ) ; D e l e t i n g f i n a l node i n l i s t ?
249 beq . s DelDone ; Yes , n o t h i n g more t o do
250 move . l ( a1 ) , a0 ; A0 = d e l e t e d node ’ s NEXT
251 move . l P r i o r ( a1 ) , P r i o r ( a0 ) ; Next ’ s PRIOR = d e l e t e d node ’ s
252 ∗ ; PRIOR t h u s d e l e t i n g t h e node
253 ∗ ; from t h e PRIOR c h a i n .
254 DelDone moveq #0 , d0 ; I n d i c a t e node d e l e t e d s u c c e s s f u l l y
255
256 D e l E x i t t s t . l d0 ; S e t o r c l e a r Z f l a g
257 r t s
258
259 ∗ =====================================================================
260 ∗ The DEMO code ends h e r e .
261 ∗ =====================================================================

Listing 12.9: Doubly Linked List - Demo Code - Deleting A Node

And that is all the changes you have to make. The DoubleList demo code should be assembled
and run in the normal fashion. You’ll be able to see that there are indeed 5 nodes in the list (in the
BEFORE section at the top of the screen) then under that, the AFTER section shows a missing
node with data content 3 - we have deleted it from the list.



194 Chapter 12. Doubly Linked Lists Demo Code

12.3 Coming Up...

In the next chapter we’ll stray a little into some territory that I have never seen demonstrated in
assembly language programming for the QL, I’m talking of recursive routines. Until then, keep
your stack untangled!



13. Recursion

13.1 Introduction

After the recent musings on single and double linked lists, this time I’m going to delve into the
murky depths of a subject I’ve never seen before discussed for QDOSMSQ assembly language.
The subject is recursion.

Recursion is a very simple concept, but for some people, it can be quite difficult to get their head
around it, and it never comes clear. I suspect for those people, trying to do it in assembly language
is equally difficult. Lets hope I can explain it in simple enough terms for even me to understand!

13.2 Recursion in Assembly Language

A recursive routine is simply a routine which calls itself until a certain exit condition is detected.
The exit condition is very important, if you miss it out, your programs will loop around until such
time as the stack fills up and the program crashes, or eats itself.

Here’s a very simple example of a program that will recurse ‘forever’ until it dies.

1 S t a r t b s r . s Recu r se
2 r t s
3
4 Recur se b s r . s Recu r se
5 r t s

Listing 13.1: Very Faulty Recursive Program

None of the RTS instructions will ever get executed. because all the program does is calls Recurse
over and over again, but each call is nested inside the previous call, so the (A7) stack pointer keeps
going down by 4 each time it is called as the BSR instruction stacks the return address and then
branches off to the next iteration of Recurse.



196 Chapter 13. Recursion

Recursion educators are very fond of certain examples when teaching recursion. The towers of
Hanoi, Factorials, Exponentiation, Fibonacci numbers etc. I’m no different, so here’s a few small
explanations and examples.

13.2.1 Factorials

The factorial of a number is that number, multiplied by the factorial of the number before it. The
symbol for a factorial number is the exclamation mark (!) So, 4! = 4∗3!

There is no concept of a negative factorial, so −3!, doesn’t exist. The smallest factorial number is
1!, which has the value of 1.

Factorial numbers imply recursion and we have the following simple code.

However, just before we delve into the code be aware that factorials get very big very quickly,
12! ($1C8CFC00) is the largest that can fit into a single 32 bit (unsigned) register and 13! (
$17328CC00) cannot fit. The largest factorial we can fit into a 16 bit unsigned word is only 8!
($9D80) and as the 68008 processor can only multiply 16 bit numbers, this means that 9! will be
the biggest that the following routine can calculate without overflowing.

Note
Other processors in the MC68000 family can multiply 32 bit numbers.

On entry to the code, D0.W is the number to calculate the factorial of and on exit, D0.L is the result.
D0.W must in range 1 to 9 only but this routine does not perform error trapping - on your own head
be it!

1 S t a r t b r a . s S t a r t 2 ; Sk ip ove r r e s u l t a r e a
2 R e s u l t dc . l 0 ; R e s u l t a r e a
3 F i r s tNumber dc .w 9 ; Assume 9! by d e f a u l t
4
5 S t a r t 2 l e a R e s u l t , a3 ; Where t o shove t h e answer
6 moveq #0 , d0 ; C l e a r a l l 32 b i t s o f D0 . L
7 move .w 4( a3 ) , d0 ; F e t c h F i r s tNumber
8 b s r . s F a c t o r i a l ; Do i t
9 FRET_1 move . l d0 , ( a3 ) ; Shove i t !

10 moveq #0 , d0 ; No e r r o r s
11 r t s ; Back t o S u p e r B a s i c
12
13 F a c t o r i a l move .w d0 ,−( a7 ) ; S t a c k c u r r e n t number
14 subq .w #1 , d0 ; C a l c u l a t e p r e v i o u s number
15 bne . s Not_ze ro ; Not done u n l e s s n e x t number i s 0
16 FPOP move .w ( a7 ) + , d0 ; R e t r i e v e t h e v a l u e 1 from s t a c k
17 r t s ; Back t o FRET_1 i f F i r s tNumber
18 ∗ ; was 1 e l s e FRET_2
19
20 Not_ze ro b s r . s F a c t o r i a l ; L e t s go round aga in , and a g a i n
21 FRET_2 mulu ( a7 ) + , d0 ; Do t h e m u l t i p l i c a t i o n
22 r t s ; E x i t

Listing 13.2: Recursive Factorial Program

For the simplest case, assume we start with a value of $0001. The stack will look like this at label
‘Start’:



13.2 Recursion in Assembly Language 197

Re tu rn a d d r e s s t o S u p e r B a s i c .

As we drop through the code beginning at ‘Start2’ and execute our first branch to subroutine
‘Factorial’ the stack now looks like this :

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1

Tracing through the ‘Factorial’ code, we stack the current value of D0.W (which is 1) so the stack
now looks like this:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0001

After the subtraction, D0 has become zero, so we exit out of the ‘Factorial’ code from label FPOP
by popping the value $0001 off the stack into D0.W leaving the stack like this:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1

Then we execute the RTS instruction to return us to the label FRET_1 where we store the result of
$00000001 from D0.L into the result area set aside for this very purpose.

So far so good, we haven’t actually done any recursion yet, but read on. If we start with the value of
$0002 in ‘FirstNumber’ then the process is slightly different. We start, as ever with the SuperBasic
return address on the stack when we are at label ‘Start’.

Dropping into ‘Start2’ and executing our first BSR to ‘Factorial’, the stack is as above at the same
point. Nothing much has changed. However, we then stack the current value in D0.W to give a
stack as follows:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0002

This is slightly different. When we calculate the next number, we do not set D0.W to zero, so we
skip out of the ‘Factorial’ code block to the code at ‘Not_zero’ which immediately causes another
BSR to ‘Factorial’ leaving the stack as follows:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0002
Re tu rn a d d r e s s t o FRET_2

Once again, we stack D0.W and subtract one to find that we have now reached zero. The stack
looks like this:



198 Chapter 13. Recursion

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0002
Re tu rn a d d r e s s t o FRET_2
$0001

Once more, we pop the value $0001 off the stack back into D0.W and then execute the RTS

instruction. This time, however, we do not return to FRET_1 but to FRET_2 where we end up with
the following stack arrangement:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0002

The instruction at ‘FRET_2’ causes the top word on the stack to be multiplued by D0.W the result
store in D0.L. This leaves D0.L equal to $00000002 which just happens to be the correct value for
2! and we exit the code by returning to ‘FRET_1’ where we store the result again.

The process is similar for all the other numbers, so 5! will have a stack looking like this when we
reach, but just before we execute the code at ‘FPOP’:

Re tu rn a d d r e s s t o S u p e r B a s i c .
Re tu rn a d d r e s s t o FRET_1
$0005
Re tu rn a d d r e s s t o FRET_2
$0004
Re tu rn a d d r e s s t o FRET_2
$0003
Re tu rn a d d r e s s t o FRET_2
$0002
Re tu rn a d d r e s s t o FRET_2
$0001

The stack will begin to unwind as we do the sequence of MULU and RTS instructions at FRET_2
as we first calculate 1!, then 2!, then 3!, then 4! and finally 5! which is the result we return to
SuperBasic.

To run the above code, do this, or something like it:

1 1000 S t a r t = ALCHP( 1 2 8 )
2 1010 LBYTES w i n 1 _ s o u r c e _ f a c t o r i a l _ b i n , S t a r t
3 1020 :
4 1030 DEFine PROCedure F a c t ( n )
5 1040 IF n < 1 OR n > 9 THEN
6 1050 PRINT n ; ’ i s s l i g h t l y o u t o f range , 1 t o 9 on ly p l e a s e . ’
7 1060 END IF
8 1070 POKE_W S t a r t + 6 , n
9 1080 CALL S t a r t

10 1090 PRINT n ; ’ ! = ’ ; PEEK_L ( S t a r t + 2 )
11 1100 END DEFine F a c t



13.2 Recursion in Assembly Language 199

Now, at the SuperBasic prompt, run the above to load the code, you only need to do this once, then
just type Fact(n) where ‘n’ is a value between 1 and 9 as described above in the text. The results
will be ‘interesting’ if you use values outside of this range.

Actually, in the interests of experiment, I tried it out. Using values above 9 is fine, up to a point, but
zero will trash SuperBasic as the stack wanders down through memory and corrupts data that it
shouldn’t be anywhere near. Larger values will no doubt have the same effect, but anything over 9
gives incorrect results as the 16 bit MULU instruction isn’t using the additional bits of the number.
Anyone got a good 32 bit MULU and/or MULS routine they want to share?

I don’t have the numeric skills to write one, and while there are plenty on the Web, they are, of
course, someone else’s work and subject to copyright etc.

13.2.2 The Fibonacci Series

The Fibonacci series looks like this:

1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 . . .

Apart from the first two numbers, each number in the series is the sum of the previous two numbers.
This is written as

F i b o n a c c i (N) = F i b o n a c c i (N−1) + F i b o n a c c i (N−2)

The very explanation cries out for recursion, you can see it in the statement above. We need to cater
for the first two terms in the series and test for a Fibonacci(0) or Fibonacci(1) and return the value 1
for both of these values. The slight difference between Fibonacci and Factorial is that we need to
recurse twice for each number, once for (N −1) and once for (N −2). This makes the code slightly
more interesting and the stack too.

Here’s how it looks in plain and simple SuperBasic:

1 1000 DEFine FuNct ion F i b o n a c c i ( n )
2 1010 IF n = 0 OR n = 1 THEN RETurn 1
3 1020 RETurn F i b o n a c c i ( n−1) + F i b o n a c c i ( n−2)
4 1030 END DEFine

So how difficult could it be to convert the above (two) lines of working code into assembly language?
It all depends on how easily you get your head around the recursion, I had to sit and stare at the
screen for a while until I finally came up with the following code:

1 S t a r t b r a . s S t a r t 2 ; Sk ip ove r r e s u l t s t o r a g e
2 R e s u l t dc . l 0 ; Space f o r r e s u l t a t S t a r t + 2
3 F i r s tNumber dc . l 9 ; F ib ( 9 ) by d e f a u l t = S t a r t + 6
4
5 S t a r t 2 l e a R e s u l t , a3 ; Where t o shove t h e answer
6 move . l 4 ( a3 ) , d0 ; F e t c h F i r s tNumber
7 b s r . s F i b o n a c c i ; Do i t
8 FRET_1 move . l d0 , ( a3 ) ; Shove i t !
9 moveq #0 , d0 ; No e r r o r s

10 r t s ; Back t o S u p e r B a s i c
11



200 Chapter 13. Recursion

12 F i b o n a c c i cmpi . l #2 , d0 ; S p e c i a l c a s e s 0 o r 1?
13 bcc . s Fib_2 ; No , D0 i s 2 o r more . ( Unsigned ! )
14 moveq #1 , d0 ; Re tu r n 1 f o r F ib ( 0 ) o r F ib ( 1 )
15 r t s ; That ’ s our e x i t c l a u s e !
16
17 Fib_2 subq . l #1 , d0 ; C a l c u l a t e N−1
18 move . l d0 ,−( a7 ) ; S t a c k our ’N−1’ v a l u e
19 b s r . s F i b o n a c c i ; Work o u t F ib (N−1)
20 FRET_2 move . l d0 ,−( a7 ) ; Save t h e r e s u l t o f F ib (N−1)
21 move . l 4 ( a7 ) , d0 ; R e t r i e v e N−1
22 subq . l #1 , d0 ; C a l c u l a t e N−2
23 b s r . s F i b o n a c c i ; Work o u t F ib (N−2)
24 FRET_3 add . l ( a7 ) + ,D0 ; Add Fib (N−1) t o F ib (N−2)
25 adda . l #4 , a7 ; Tidy o r i g i n a l N−1 o f f o f s t a c k
26 r t s ; And r e t u r n

Listing 13.3: Recursive Fibonacci Program

To run the above code, do this, or something like it:

1 1000 S t a r t = ALCHP( 1 2 8 )
2 1010 LBYTES w i n 1 _ s o u r c e _ f i b o n a c c i _ b i n , S t a r t
3 1020 :
4 1030 DEFine PROCedure F ib ( n )
5 1040 IF n < 0 THEN
6 1050 PRINT n ; ’ i s s l i g h t l y o u t o f range , 0 and ove r on ly p l e a s e . ’
7 1060 END IF
8 1070 POKE_L S t a r t + 6 , n
9 1080 CALL S t a r t

10 1090 PRINT n ; ’ ! = ’ ; PEEK_L ( S t a r t + 2 )
11 1100 END DEFine Fib

This time we can use numbers larger than 9 as we are adding 32 bit values in the code, not
multiplying. Of course, you can still pick a number big enough to trash the stack. Interestingly
enough, Fib (30) executes in 1 second on my QPC setup, but the original SuperBasic version ran
and ran and ran I CTRL-SPACE’d it after a while.

As an exercise, try to work out what the stack looks like for different values of N - it’s an interesting
lesson in mind numbing loops. Once you figure it out though, it gets easier.

When you are writing recursive code like the two examples above, you must remember two golden
rules:

• you must always have a ‘get out’ clause to stop recursion
• never ever try to use other registers as storage - it just doesn’t work!

In the above, we just stacked our working values and this is fine, but in other code, you might need
to have a lot more values to stack, so how best to do this? The answer is quite simple, use the LINK
and UNLK instructions which are designed to build stack frames that you can access using Address
Register Indirect With Displacement - for example 4(a5) - addressing mode instructions.

Out of interest, has anyone spotted a potential problem with the above code?

The calculation of Fib(N-2) duplicates most of the work done by Fib(N-1). One solution to this
problem is to have an array of values in memory and when calculating a new value, store it in the
table if it has not been stored already, if it has been stored already, simply extract it from the table.



13.3 Coming Up... 201

The last two paragraphs should have given you an inkling of some homework - which will not
be marked - feel free to try out the implied exercises for yourself. The only problem with the
array of values is that you never know how big to make the table and you need some method of
determining if the table has been initialised (to all zeros) GWASL doesn’t fill buffers with zeros,
just with assorted random characters, unlike an array in SuperBasic.

The array could be set up as follows:

1 Answers dc . l 0 ; F ib ( 0 ) , 0 i n d i c a t e s u n i n i t i a l i s e d t a b l e
2 ds . l 1000 ; F ib ( 1 ) t h r o u g h Fib ( 1 0 0 0 )

Listing 13.4: Improving the Fibonacci Code - Answers Array

Because GWASL won’t initialise the entries for 2 to 1000 you have to do it yourself, as follows:

3 I n i t l e a Answers , a3 ; S t a r t o f answer a r r a y
4 cmpi . l # 0 , ( a3 ) ; Has t a b l e been i n i t i a l i s e d y e t ?
5 bne . s Done ; Yes , e x i t
6 move .w 1000 , d0 ; 1000 = 1001 e n t r i e s
7 I_Loop c l r . l ( a3 )+ ; C l e a r t h i s e n t r y , p o i n t a t n e x t
8 db ra d0 , I_Loop ; Do t h e r e s t
9 l e a Answers , a3 ; Answer ( 0 )

10 move . l # 1 , ( a3 )+ ; I n i t i a l i s e d t o F ib ( 0 )
11 move . l # 1 , ( a3 ) ; An i n i t i a l i s e F ib ( 1 ) a s w e l l .

Listing 13.5: Improving the Fibonacci Code - Array Initialisation

Code like the above should be called at the start of the file so that the initialisation is only ever
performed once per session. Making multiple calls to the Fibonacci code will only require the table
be initialised once.

When the code has calculated Fib(N-1) then it can store the result in D0.L into the table. As N-1 is
on the stack, it can be retrieved into a spare register - say D1 - and converted to an offset by shifting
it right twice (LSL.L #2,D1) and using that as an offset into the answer table.

Now, when asked to calculate a value, check the offset into the table and if it is not zero, return that
as your answer - no recursion and much faster. You’ll have to remember to limit the number of
allowable values if using a table - you could end up corrupting some random bits of memory and
the amount of space you need to ALCHP will go up as a result of the table - check it after assembly
to see how big it is.

Have fun and if you feel brave, Dilwyn wrote a SuperBasic version of ‘The Towers Of Hanoi’ some
time back, why not convert that to Assembly language:o)

13.3 Coming Up...

The next chapter takes a bit of a breather from all this hard work writing code. In it, I’ll discuss my
own personal methods of writing code.





14. Program Development

14.1 Introduction

In this chapter I’ll be going through the way I tend to write my assembly language (and indeed, all
my other languages too) programming from the initial thought to the ‘final completed’ program. I
put ‘final’ and ‘completed’ in quotes because programs never ever reach that stage there are always
bugs to fix and improvements to be made.

14.2 Program Development in Assembly Language

Program development is the art of starting from nothing more than an idea and progressing with
various stages until the thought becomes reality, or is discarded as unworkable.

We don’t all do things the same way, and assembly language programming is no different - we all
do it in a manner that is comfortable for us. The following lets you have a brief glance into my own
methods.

14.2.1 The Initial Thought.

The initial idea for a program comes at the most inopportune moments I have found. I’ve had ‘great’
ideas at three in the morning, at other times when I was in the bath reading a novel, while driving to
work and so on. The fact is, you never know when an idea will suddenly appear, so be prepared and
have a bit of paper and a pen handy - not while driving of course - to jot down your ideas before
they vanish from memory forever.

14.2.2 Work It Out.

Sometimes, given a little thought, the initial idea is found to be not so good after all and the project
is abandoned there and then. Those ideas that get through need to be fleshed out a little to see just



204 Chapter 14. Program Development

how good they are.

If they get past this stage, we can start to jot down the basic structure of our program. I personally
tend to start with ‘the big idea’ and break it down into stages before breaking these down into
smaller stages and so on until I have a set of small (hopefully) self contained routines at the bottom.
This is top down development and used to be quite popular.

14.2.3 Start Writing Code.

At this point, armed with your list of routines, you can begin to write down your initial thoughts for
the code you want to write to make the ’big idea’ come to fruition. Having all the routines broken
down by the previous stage, you know where repeated code can be extracted to a sub-routine and
so on.

I tend to use a pencil to write code at this stage and arm myself with a decent rubber (eraser for my
American readers!) because mistakes will be made. I also arm myself with three books:

• Andy Pennell’s QDOS manual.
• Andy Pennell’s Assembly Language Programming book.
• My trusty copy of the Motorola MC68000/MC68008 Programmer’s Guide.

I also have a cheap narrow feint ruled A4 sized notepad to do my coding on. I then let my brain run
away with itself to see how many different mistakes I can make in as short a time as possible.

Even after all these years, I still write down assembly code that just isn’t legal syntax and this is
sometimes ‘obvious’ when I look over the code, but usually I notice when George’s trusty assembler
(GWASL) complains about something in my code.

As I produce code for one routine. I usually find myself needing another, so I note it down on my
list and carry on. This ‘stepwise refinement’ of my rough draft usually produces code that will be
typed in using my trusty PFE text editor. This isn’t a QL program, it runs on Windows, but I’ve
used it form many years to write code and I prefer it. It allows me to save code in Linux format -
which just happens to be the same as the QL’s format and I like it.1

Once I have the code typed into a file, it gets saved to my C:\ or D:\ drive ready for import into
QPC. Within QPC, my code files are copied from the DOS_ device to my RAM_ disc and GWASL
is called into action. It almost never assembles first time.

QED is fired up and I make my changes to the RAM_ version, saving the file to DOS_ as a backup.
Once I have a code file that actually assembles, I save the whole lot to WIN1_SOURCE_ and get
ready to test it all out.

14.2.4 Testing The Code.

I tend to look on the bright side of most things, and running my own code is always fun. I simply
EX the binary file and see what happens. Usually, it’s a crash or system lock-up and I have to
reboot. At least rebooting QPC takes a lot less time that rebooting Windows.

So, I know that there is at least one bug in my code and so it’s bug hunting time again. After
reloading, I run my next test with a code listing and JMON/QMON to trace through the code.

I wrote an article recently about debugging with JMON/QMON so I wont go into great detail here.
(See Appendix B Debugging with QMON2)

1Since that was originally written I’ve converted over to Linux.



14.3 Coming Up... 205

Suffice to say, my initial trace starts off with me single stepping up to each sub-routine call, then let
each sub-routine run as a single unit. This way, I tend to quickly find out where my major problem
lies.

After another reboot - if required - I use the procedures outlined in my JMON/QMON article (See
Appendix B Debugging with QMON2) to set a break point at the ’broken’ sub-routine, and I run
the code to that point. From there on, I trace the code one line at a time until I hit a sub-sub-routine
and let that run as a unit again. Once more, I quickly narrow my search for the main problem down
to a single (or a couple) of small bits of code.

This code is then breakpointed and tested again, but in single step mode all the way through.

Eventually I either find the offending line(s) and fix them, or I find out which conditional branch
I’ve got the wrong way round - I have been known to BCC when I should have used BCS and so on.

The rest of the process is similar to the above. It may not be the best in the world, but it works for
me and I can quickly get debugged code finished and start ‘tarting’ it all up.

To show how easy most of the above is, I am going to work through a full example of ‘an idea’
from initial rough draft onwards to the finished code. I’m still working on this code at the moment
and will not be writing up the article until I’m finished. I shall be documenting the process as I go
and will write the article up from that.

You will no doubt have read some of my rants and raves about the Disassembler I’m writing as a
project for this series. It has been developed bit by bit without any of the above ‘discipline’ so it
has suffered from an extremely large number of errors, some stupidity on my part and a couple of
rewrites in places. As I’ve said before, this is not how I wanted to write the utility but I’m somewhat
stuck with it now. It shows how much better things are when you do it properly.

14.3 Coming Up...

Coming up in the next chapter we have a discussion of problems with QDOSMSQ EXECable files
being downloaded from the internet and how to best recreate the correct dataspace settings.





V
15 Dataspace Problems . . . . . . . . . . . . . . . 209
15.1 Introduction
15.2 The Code
15.3 Coming Up...

16 Using the Maths Package . . . . . . . . . . . 223
16.1 Introduction
16.2 The Maths Package
16.3 Coming Up...

17 Much Ado About Previous Chapters . 233
17.1 Introduction
17.2 Chapter 15 - Dataspace Utility Problems
17.3 Chapter 16 - Artithmetic Package Problems
17.4 Coming Up...

18 Ascii To Long Converter . . . . . . . . . . . . . 239
18.1 Introduction
18.2 How QDOSMSQ Does It
18.3 Rules And Regulations
18.4 The Code
18.5 Code Improvements
18.6 Coming Up...

19 Assorted Revisions And Ramblings! . . 245
19.1 Introduction
19.2 SIGNED And UNSIGNED Tests
19.3 Which Way Round Is The ‘Subtraction’ In CMP?
19.4 Which CC Code To Use After CMP
19.5 Loops With Conditions
19.6 Do I TST.L D0 After TRAPs And Vectors?
19.7 Coming Up...

SuperBasic, QDOS and Other
Interesting Stuff. Part 3





15. Dataspace Problems

15.1 Introduction

There has been much correspondence recently (today is the 3rd of April 20061)2 on the ql-users
email list since Dilwyn posted a messages about the seeming "Catch- 22" problems where someone
downloads a QL application from the internet and has to extract the zip file on a Windows PC. The
files thus extracted are then read into QPC (or similar) and subsequently, any executable files fail to
work.

The problem is caused by the need for QL files to have a correct file header which has the file type
byte set to be EXECable and a valid value in the data space part of the header.

Getting hold of a QL specific version of Zip/Unzip is quite simple, but it arrives in a zip file so we
have a recursive problem here. Dilwyn’s advice is quite simple, load the program into memory and
SEXEC it with the correct data space. This is indeed a simple solution, but I wouldn’t be writing
this article if I didn’t have an alternative would I?

Actually, there is a version of Zip for the QL which has been converted to run as an EXECable file
that will extract itself, so this is the easiest solution overall. However, the utility I describe below
can be used to make any file executable and to provide a data space value without having to read
the file off disc, delete it and then SEXEC a new copy back to the disc - what happens if you have a
crash just after the delete?

The code below is based on a utility I wrote many years ago (1991 actually) that was supplied with
WinBack when it was still a commercial program. I have only had to make a slight change to it for
this version.

In the old days, the utility checked to make sure that the file was already executable and failed if
not, this version doesn’t fail, it simply changes the file to be executable.

1Actually, today is the 15th November 2014!
2No it isn’t! It’s much later than that!



210 Chapter 15. Dataspace Problems

When you EXEC the dataspace_bin file, you will be prompted for a filename. Type one in and if it
is not an executable already, the program will advise you of this - then convert it to an EXEC file.

Next you will be shown the current data space and asked for a new value. The value you type
should be numeric (or numeric with a ‘k’ at the end) and even. If not even it will be rounded up to
the next even number.

If the value you type is less than the minimum the program allows (default is 1024 bytes), then
your value will be rounded up to the minimum value. If you don’t like this, then set minimum to
zero in the source code and it will be ignored.

To finish the program, simply press ENTER when prompted for a filename.

15.2 The Code

We shall begin the typing with the usual set of equates and constants, type the following into a file -
I suggest you name it dataspace_asm, but this is not mandatory.

1 ∗=====================================================================∗
2 ∗ DATASPACE v e r s i o n 1 . 1 0 ∗
3 ∗ ∗
4 ∗ C o p y r i g h t Norman Dunbar F e b r u a r y 1991/2006 ∗
5 ∗ ∗
6 ∗ Changes a t a s k f i l e ’ s d a t a s p a c e . ∗
7 ∗=====================================================================∗
8 ∗ ∗
9 ∗ AMENDMENTS ∗

10 ∗ ∗
11 ∗ 0 3 / 0 4 / 2 0 0 6 − makes f i l e s e x e c u t a b l e i f n o t and doesn ’ t compla in . ∗
12 ∗=====================================================================∗
13
14 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
15 ∗ EQUATES G e n e r a l ∗
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
17 f t y p equ $05 O f f s e t t o f i l e t y p e
18 f d a t equ $06 O f f s e t t o f i l e d a t a s p a c e
19 e x e c _ f i l e equ $01 I n d i c a t o r f i l e can be EXEC’ d
20 minimum equ 1024 Minimum d a t a s p a c e a l l o w e d
21
22 me equ −$01 Th i s j o b
23 l i n e f e e d equ $0A A s c i i l i n e f e e d
24 t i m e o u t equ −$01 I n f i n i t e t i m e o u t
25 b l a c k equ $00 Black i n k / p a p e r code
26 r e d equ $02 Red d i t t o
27 g r e e n equ $04 Green d i t t o
28 w h i t e equ $07 White d i t t o

Listing 15.1: Dataspace Program - Equates etc

Following on from the above, we have the standard QDOSMSQ job header. From the code that
follows below, you can see the header with the job name and version in the usual format for a
QDOSMSQ job.

29 ∗=====================================================================∗
30 ∗ The code s t a r t s h e r e wi th a s t a n d a r d QDOS j o b h e a d e r . ∗
31 ∗=====================================================================∗



15.2 The Code 211

32 s t a r t b r a . s d a t a s p a c e Jump ove r h e a d e r
33 dc . l 0 Make s u r e $4AFB i s a t o f f s e t 6
34 dc .w $4AFB ID word
35
36 name dc .w 22 Length o f name
37 dc . b ’ D a t a s p a c e V e r s i o n 1 . 1 0 ’
38
39 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
40 ∗ Open a c o n s o l e window ∗
41 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
42 d a t a s p a c e move .w ut_con , a2
43 l e a con_def , a1 Conso le d e f i n i t i o n b l o c k
44 j s r ( a2 ) Open a CON_ c h a n n e l
45 t s t . l d0 Check f o r e r r o r s
46 bne job_end And b a l e o u t i f found
47 move . l a0 , d7 S t o r e c o n s o l e i d
48
49 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
50 ∗ Conso le i s open , s i g n on ∗
51 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
52 s i g n _ o n l e a name , a1 Job name
53 b s r w r i t e _ t e x t P r i n t j o b name
54 l e a c o p y r i g h t , a1 C o p y r i g h t message
55 b s r w r i t e _ t e x t And c o p y r i g h t message

Listing 15.2: Dataspace Program - Part 1 - Initialisation

After the job header, the first part of the program performs all the initialisation that is required. The
job opens a new console channel and saves the channel number in D7.L. D7.L is not corrupted by
any of the code that follows, so it is a good place to save the channel number. It will be used each
time we pass through the main loop.

It is slightly more efficient to move data between two registers than it is to fetch from a memory
location. In this utility, that’s hardly going to be needed, but we might as well use all the registers
before we have to start saving data in memory.

Once the main console channel is open, we print a small sign on message showing the job name
(extracted from the standard job header area) and a copyright message and then drop into the main
processing loop.

Please note that although this code is copyright, you have my express permission to use and abuse
it as you see fit. If the code can be useful in programs that you write in future, please feel free to
copy it directly with my blessings!

You will note that much of this program is written as simple subroutine calls. Once again, reusing
existing and working code is always a good idea in my book.

56 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
57 ∗ Main loop , keep a s k i n g f o r a f i l e n a m e u n t i l ENTER on ly p r e s s e d ∗
58 ∗ ∗
59 ∗ F i r s t prompt f o r f i l e n a m e ∗
60 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
61 main_loop move . l d7 , a0 Conso le i d
62 l e a mess_1 , a1
63 b s r w r i t e _ t e x t E n t e r f i l e n a m e message



212 Chapter 15. Dataspace Problems

64 b s r g e t _ t e x t Get f i l e n a m e

Listing 15.3: Dataspace Program - Part 2 - Get Filename

The main loop starts off by getting the console channel number into A1 which is where most (if
not all) the channel handling routines expect it to be. D7 is never corrupted by the code below so
makes a good place to save it.

The user is prompted to ‘enter a filename or press ENTER only to quit’, the program waits for a
response from the user and if the user simply pressed ENTER, the program will skip off to the code
at label ‘any_key’ to terminate the program.

65 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
66 ∗ Then check i f i t was on ly ENTER and i f so e x i t t h e j o b ∗
67 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
68 check_end t s t .w d1 F i n i s h e d ?
69 beq any_key Yes
70
71 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
72 ∗ O t h e r w i s e a t t e m p t t o open t h e f i l e ∗
73 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
74 o p e n _ f i l e moveq # io_open , d0 Open f i l e
75 moveq #me , d1 For t h i s j o b
76 moveq #0 , d3 For i n p u t
77 move . l a1 , a0 F i l e name i s i n b u f f e r
78 t r a p #2
79 t s t . l d0 Check e r r o r s
80 beq . s r e a d _ h e a d Open was ok
81
82 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
83 ∗ Cannot open t h e f i l e , p r i n t i t s name and t h e e r r o r message ∗
84 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
85 c a n t _ o p e n move . l d0 ,−( a7 ) S t o r e e r r o r code
86 l e a mess_2 , a1 Cannot open message
87 b s r w r i t e _ t e x t P r i n t i t
88 l e a i n p u t , a1 F i l e name
89 b s r w r i t e _ t e x t P r i n t f i l e n a m e
90 l e a mess_6 , a1 A c o l o n
91 b s r w r i t e _ t e x t P r i n t i t
92 move . l ( a7 ) + , d0 Get e r r o r code
93 move .w u t _ e r r , a2
94 j s r ( a2 ) P r i n t e r r o r message
95
96 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
97 ∗ Note , D0 i s p r e s e r v e d by UT_ERR , so c a n n o t check f o r e r r o r s ∗
98 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
99

100 b r a . s main_loop

Listing 15.4: Dataspace Program - Part 3 - Open the File

Assuming that we got a response back from the user, we assume that it is a filename which the user
wishes to either make executable, or adjust the data space. The code at ‘open_file’ above attempts
to open the filename supplied by the user for input. This means that it must already exist on a
device somewhere.

If the file opened ok, the program skips to the code below which attempts to read the file header,



15.2 The Code 213

otherwise the user is presented with a message detailing why the file couldn’t be opened, and we
skip back to the start of the main loop where we prompt for another filename.

You will note my comment that UT_ERR preserves the error code passed to it in D0, so we cannot
make any checks to determine whether the error code in D0 is the one we passed in, or one generated
by UT_ERR. Don’t worry about it:o)

A quick tangent is required now, before we proceed. On a directory device such as ‘flp1_’, ‘mdv1_’
and so on, all files have two parts to them. First of all there is the file header - a 64 byte section of
data which is stored in the directory (and allegedly at the start of each file too - you just can’t get at
it!) - and the contents of the file proper.

This header holds details of the file size, it’s type, data space, various dates giving details of when
the file was last changed, backed up etc. We are interested in only two parts of the header in this
utility - the file type ( byte) and the file’s data space (long).

We defined a couple of equates way back at the start of the code - the ‘ftyp’ equate points at byte 5
of the 64 byte buffer and the ‘fdat’ points at the long word starting at byte 6 of the header. These
are the two places we need to get data from and write data to.

On with the real code again. The following reads a file header and processes errors as required.

101 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
102 ∗ F i l e has been opened ok , r e a d t h e f i l e h e a d e r ∗
103 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
104 r e a d _ h e a d move . l a0 , d6 S t o r e f i l e i d
105 moveq # f s _ h e a d r , d0
106 moveq #64 , d2 S i z e o f b u f f e r
107 moveq # t i m e o u t , d3 Timeout
108 l e a b u f f e r , a1 Pu t h e a d e r h e r e
109 move . l a1 , a5 S t o r e b u f f e r
110 t r a p #3 Go g e t t h e f i l e h e a d e r
111 t s t . l d0 Check f o r e r r o r s
112 beq . s check_exec none
113
114 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
115 ∗ Cannot r e a d f i l e header , say so and p r i n t t h e e r r o r message ∗
116 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
117 c a n t _ r e a d l e a mess_3 , a1 Cannot r e a d h e a d e r message
118 move . l d0 ,−( a7 ) S t o r e e r r o r code
119 b s r w r i t e _ t e x t P r i n t message
120 move . l ( a7 ) + , d0 Get e r r o r code
121 move .w u t _ e r r , a2
122 j s r ( a2 ) P r i n t e r r o r message
123 b r a main_end Skip t h e r e s t o f t h e loop

Listing 15.5: Dataspace Program - Part 4 - Read File Header

The code above tries to read the 64 byte file header into a buffer - which must be big enough to
hold all 64 bytes - and if an error is detected in the attempt, the user is told about the problem and
the file is closed prior to the main loop starting all over again.

The buffer start address is saved in register A5.L for later use prior to the attempt to read the file
header - this is because the real buffer address register, A1.L will be corrupted by the trap call.

124 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
125 ∗ Header has been r e a d ok , check i f t h e f i l e i s EXECable ∗
126 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗



214 Chapter 15. Dataspace Problems

127 check_exec cmpi . b # e x e c _ f i l e , f t y p ( a5 ) Check f i l e i s EXECable
128 beq . s c u r r e n t I t i s
129
130 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
131 ∗ F i l e i s n o t EXECable , p r i n t a warn ing message and c o n v e r t i t ∗
132 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
133 n o t _ e x e c l e a i n p u t , a1 F i l ename
134 b s r w r i t e _ t e x t P r i n t f i l e n a m e
135 l e a mess_4 , a1 Not an EXECable f i l e message
136 b s r w r i t e _ t e x t P r i n t t h e message
137 move . b # e x e c _ f i l e , f t y p ( a5 ) Make f i l e EXECable
138
139 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
140 ∗ F i l e i s EXECable , p r i n t i t s c u r r e n t d a t a s p a c e ∗
141 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
142 c u r r e n t l e a mess_5 , a1 C u r r e n t d a t a s p a c e i s message
143 b s r w r i t e _ t e x t P r i n t i t

Listing 15.6: Dataspace Program - Part 5 - Exec Check

The file is now open, its header has been read into our buffer. The code now checks to see if this file
is executable already. If it is, nothing is said or done, however, if the file is not executable - and this
will be the case for a file extracted by a Windows version of Zip - we display a warning message to
the user and convert the file to be EXECable.

In either case, we print a message which will eventually inform the user how big the file’s dataspace
is at the moment. The first part of the message is easy - it is simple text but we also need to print
out the current value. This is done by the code below.

144 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
145 ∗ Now g e t t h e c u r r e n t d a t a s p a c e & c o n v e r t i t t o ASCII ∗
146 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
147 move . l f d a t ( a5 ) , d3 D3 . L i s d a t a s p a c e
148 l e a i n p u t +2 , a1 A1 . L i s o u t p u t b u f f e r
149 l e a t e n s _ t a b l e , a2 Powers o f 10
150 moveq #0 , d1 D1 .W i s d i g i t c o u n t e r
151
152 n e x t _ d i g i t move . l ( a2 ) + , d2 D2 . L i s c u r r e n t power o f 10
153 beq . s a l l _ d o n e But z e r o i s end of t a b l e
154 c l r . b d0 D0 . B i s c u r r e n t d i g i t
155
156 d i g i t _ l o o p sub . l d2 , d3 S u b t r a c t t h e c u r r e n t power o f 10
157 b l t . s b u f f _ d i g i t Too f a r
158 addq . b #1 , d0 I n c r e a s e c u r r e n t d i g i t
159 b r a . s d i g i t _ l o o p And t r y a g a i n
160
161 b u f f _ d i g i t add . l d2 , d3 C o r r e c t f o r t h e o v e r f l o w
162 t s t . b d0 I s t h i s a z e r o ?
163 bne . s n o t _ a _ z e r o No
164 t s t .w d1 Yes , i s i t a l e a d i n g z e r o ?
165 beq . s n e x t _ d i g i t Yes , i g n o r e i t
166
167 n o t _ a _ z e r o a d d i . b # ’0 ’ , d0 Conve r t t o ASCII
168 move . b d0 , ( a1 )+ S t o r e i n b u f f e r
169 addq .w #1 , d1 I n c r e m e n t t o t a l d i g i t s
170 b r a . s n e x t _ d i g i t And do t h e r e s t
171



15.2 The Code 215

172 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
173 ∗ Check f o r a r e s u l t o f z e r o . In t h i s c a s e f o r c e a ’0 ’ t o be p r i n t e d ∗
174 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
175 a l l _ d o n e t s t .w d1 Any d i g i t s found ?
176 bne . s n o t _ z e r o yes
177 move . b # ’ 0 ’ , ( a1 ) S t o r e a z e r o
178 moveq #1 , d1 And s e t t h e c o u n t
179
180 n o t _ z e r o l e a i n p u t , a1 The b u f f e r
181 move .w d1 , ( a1 ) S t o r e c h a r a c t e r c o u n t
182
183 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
184 ∗ D a t a s p a c e i s c o n v e r t e d , p r i n t i t o u t ∗
185 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
186
187 b s r w r i t e _ t e x t P r i n t o l d d a t a s p a c e

Listing 15.7: Dataspace Program - Part 6 - Print Current Dataspace

The code above begins by reading the long word representing the file data space requirements from
the file header into register D3.L.

D3.L is then converted to text read for printing by the fairly simple method of repeatedly subtracting
assorted powers of 10 from the value until we get an overflow (underflow?) and saving the number
of times we managed to successfully subtract the current power of 10. This count is our current
digit and is held in D0.B as it cannot be greater than 9.

If the counter is non-zero, we convert it to ASCII by adding the ASCII code for ‘0’ (zero) to the
count and save it in the buffer located at A1. We only print out the full number when we have
decoded it - we don’t print each digit individually as we go along.

If the dataspace is still zero, even after processing all the digits, we simply print a zero.

188 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
189 ∗ Now prompt f o r , and r e a d i n t h e r e q u i r e d new d a t a s p a c e ∗
190 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
191 new l e a mess_8 , a1 New d a t a s p a c e message
192 b s r w r i t e _ t e x t P r i n t i t
193 b s r g e t _ t e x t Get new d a t a s p a c e
194 t s t .w d1 No t e x t ?
195 beq . s new Try a g a i n
196 move .w d1 , d0 Get t e x t l e n g t h
197 subq .w #1 , d0 A d j u s t f o r db ra
198 addq . l #2 , a1 A d j u s t A1 p a s t t h e word c o u n t e r

Listing 15.8: Dataspace Program - Part 7 - Get New Dataspace

Having printed out the current data space for the file in question, we next prompt the user to enter a
new value. If the user simply presses ENTER without entering a value, the program detects this,
and simply loops around to ask for the new data space value again. To get out of this loop a valid
numeric value must be entered.

The utility accepts pure digits or a number of digits suffixed by a ‘K’ (in upper or lower case) and
this is used to specify a data space in Kilobytes rather than bytes. If there are spaces in the user
input, they will simply be skipped.

199 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
200 ∗ Conver t from ASCII i n t o b i n a r y , i g n o r e l e a d i n g ( any ) s p a c e s & s t o p ∗



216 Chapter 15. Dataspace Problems

201 ∗ i f a ’K’ o r ’k ’ i s d e t e c t e d . R e j e c t a l l o t h e r non−d i g i t c h a r a c t e r s ∗
202 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
203 c o n v e r t moveq #0 , d4 Needs t o be a long word
204 move . l d4 , d5 D5 i s t o t a l so f a r
205
206 conv_nex t move . b ( a1 ) + , d4 Get a b y t e
207 cmpi . b # ’ ’ , d4 I s i t a s p a c e ?
208 beq . s t r y _ n e x t Yes , i g n o r e i t
209 cmpi . b # ’k ’ , d4 I s i t ’ k ’
210 bne . s t ry_K no
211
212 mul_1024 a s l . l #2 , d5 Yes , m u l t i p l y by 1024
213 a s l . l #8 , d5 Can ’ t do i t i n one go
214 b r a . s make_even And e x i t
215
216 t ry_K cmpi . b # ’K’ , d4 Try u p p e r c a s e
217 beq . s mul_1024 Yes
218
219 cmpi . b # ’0 ’ , d4 I s i t a d i g i t ?
220 bcs . s i n v a l i d No
221 cmpi . b # ’9 ’ , d4 But i t might be
222 b l s . s mul_10 Yes i t i s
223
224 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
225 ∗ An i n v a l i d d i g i t has been d e t e c t e d , p r i n t e r r o r message & t r y a g a i n ∗
226 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
227 i n v a l i d l e a mess_10 , a1 I n v a l i d d i g i t message
228 b s r . s w r i t e _ t e x t P r i n t i t
229 b r a . s new t r y a g a i n

Listing 15.9: Dataspace Program - Part 8 - ASCII Conversion

As we scan through the input supplied by the user we ignore any spaces. I could have written the
code to detect when the first digit had been detected and processed spaces after that as errors, but I
was obviously too lazy to do so back in 1991. (Not much has changed in 200634 then!)

Each character is checked and if it is a ‘K’ (in any letter case) it indicates the end of the input and
the current value is multiplied by 1024 to get the correct number of bytes.

If an invalid character is detected, an error message is printed and the user restarts the inner loop of
the program where s/he is prompted to type in a new data space value.

230 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
231 ∗ M u l t i p l y D5 . L by 10 and add i n t h e d i g i t j u s t r e a d ∗
232 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
233 mul_10 a s l . l #1 , d5 D5 = D5 ∗ 2
234 move . l d5 , d3 S t o r e f o r now
235 a s l . l #2 , d5 Now D5 = D5 ∗ 8
236 add . l d3 , d5 And f i n a l l y D5 = D5 ∗ 10
237 s u b i . b # ’0 ’ , d4 Conve r t b y t e t o ( long ) b i n a r y
238 add . l d4 , d5 T o t a l = ( t o t a l ∗ 10) + d i g i t
239

32006? Have I been writing Assembly articles that long? It’s 2014 at the moment and 2015 is rapidly approaching.
I’ll be getting a bus pass pretty soon at this rate!

4Ahem!



15.2 The Code 217

240 t r y _ n e x t db ra d0 , conv_nex t Do r e s t o f d i g i t s

Listing 15.10: Dataspace Program - Part 9 - Multiply by 10

If we get to the code above, then the current character in the user input must be a digit. We multiply
the running total so far by 10, convert the latest digit from an ASCII character down to a numeric
value and add it to the running total in D5.L before skipping back to continue scanning the input
area for another digit.

241 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
242 ∗ When f i n i s h e d , t h e v a l u e must be even ∗
243 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
244 make_even addq . l #1 , d5 P r e p a r e t o make even
245 b c l r #0 , d5 Make d a t a s p a c e even
246
247 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
248 ∗ And , n o t l e s s t h a n minimum a l l o w e d ∗
249 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
250 cmpi . l #minimum , d5 Check new s i z e
251 bcc . s s e t _ h e a d I t ’ s ok .
252 move . l #minimum , d5 Make s u r e i t i s = minimum s i z e

Listing 15.11: Dataspace Program - Part 10 - Final Checks

Eventually, we exit from the loop scanning the user’s input and arrive at the code above. This is a
short but very important piece of code. The data space for a file must be even. If it is odd, then any
attempt to EXEX (EX etc) the code will result in an address exception with the usual resulting lock
up. Just say no to odd addresses!

The running total in D5.L is rounded up to the next even number, or left alone if it is already even.

If the running total is less than our minimum allowed value, it is set to that value.

253 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
254 ∗ Now l o a d t h e h e a d e r wi th t h e new d a t a s p a c e and s e t i t ∗
255 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
256 s e t _ h e a d move . l d5 , f d a t ( a5 ) S t o r e i n t h e h e a d e r
257 moveq # f s _ h e a d s , d0 S e t t h e f i l e h e a d e r
258 moveq # t i m e o u t , d3 Timeout
259 move . l d6 , a0 F i l e i d
260 move . l a5 , a1 F i l e h e a d e r
261 t r a p #3 Go s e t i t
262 t s t . l d0 Any e r r o r s ?
263 bne . s n o t _ s e t Yes

Listing 15.12: Dataspace Program - Part 11 - Write Header

As we now have a new data space value in D5.L, we save it in the file header buffer in the correct
location and call the QDOSMSQ trap call to write the file header back to the device. If this works
ok, we drop into the following code to flush the changes to the device.

QDOSMSQ is happy to save changes in the file slave area until it has a moment to write them out.
This is ok in most cases, but if a user wishes to remove a floppy disc, for example, that we must
make sure that all changes are written down to the disc. The following code does that task, closes
the file and starts the main loop all over again.

264 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
265 ∗ Now f l u s h o u t t h e f i l e b u f f e r s , so t h a t i f I change d i s c s I have ∗



218 Chapter 15. Dataspace Problems

266 ∗ w r i t t e n t h e h e a d e r t o t h e c u r r e n t d i s c . Can ’ t d e t e c t t h e QDOS e r r o r ∗
267 ∗ READ/ WRITE f a i l e d ( t r y removing t h e d i s c and i t won ’ t f a i l o r ∗
268 ∗ produce an e r r o r code ) . I t might p r i n t a message i f i t can f i n d an ∗
269 ∗ open command c h a n n e l which i s n o t i n use . I g o t i t when t e s t i n g v i a ∗
270 ∗ a m o n i t o r b u t n o t w h i l e r u n n i n g on i t s own . ∗
271 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
272 f l u s h moveq # f s _ f l u s h , d0 P r e p a r e t o f l u s h t h e b u f f e r
273 moveq # t i m e o u t , d3 Th i s c o u l d t a k e a l l day
274 t r a p #3 But do i t anyway
275 t s t . l d0 And check f o r e r r o r s
276 beq . s main_end None , do t h e n e x t f i l e

Listing 15.13: Dataspace Program - Part 12 - Flush Buffers

If the file header failed to be written, the following code will inform the user that there is a problem
and display the QDOSMSQ error message.

277 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
278 ∗ Header n o t s e t o r f l u s h f a i l e d , p r i n t e r r o r message ∗
279 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
280 n o t _ s e t move . l d0 ,−( a7 ) S t o r e e r r o r code
281 l e a mess_7 , a1 Cannot s e t h e a d e r message
282 b s r . s w r i t e _ t e x t P r i n t i t
283 move . l ( a7 ) + , d0 Get e r r o r code
284 move .w u t _ e r r , a2
285 j s r ( a2 ) P r i n t e r r o r message
286
287 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
288 ∗ Can ’ t t r a p e r r o r s i n UT_ERR as D0 i s p r e s e r v e d . ∗
289 ∗ Close t h e f i l e & loop t o t h e s t a r t ∗
290 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
291 main_end move . l d6 , a0 F i l e i d f o r c l o s e
292 moveq # i o _ c l o s e , d0
293 t r a p #2 Close t h e f i l e
294 b r a main_loop And s e e i f more t o be done

Listing 15.14: Dataspace Program - Part 13 - Error Handling

We have now reached the end of the main loop. The code above retrieves the file’s channel number
from register D6.L, closes the file and skips back to the start of the main loop ready for the next file
to be processed.

The code below is a collection of simple subroutines, some you will have seen before, which carry
out various useful parts of the program. The comments above each should be sufficient to explain
what is going on.

Also included below are some data input and header buffer areas.

295 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
296 ∗ S u b r o u t i n e t o p r i n t t e x t t o s c r e e n ∗
297 ∗ ∗
298 ∗ ENTRY ∗
299 ∗ ∗
300 ∗ D7 . L = Channel i d ∗
301 ∗ A1 . L = P o i n t e r t o t e x t t o p r i n t ( Word t h e n b y t e s ) ∗
302 ∗ ∗
303 ∗ EXIT ∗
304 ∗ ∗



15.2 The Code 219

305 ∗ A0 . L = c h a n n e l i d ∗
306 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
307 w r i t e _ t e x t move .w u t_mtex t , a2 P r i n t t e x t v e c t o r
308 move . l d7 , a0 Channel i d
309 j s r ( a2 ) P r i n t i t
310 t s t . l d0 Check e r r o r s
311 bne . s j o b _ e r r o r Oops k i l l j o b
312 r t s O t h e r w i s e e x i t
313
314 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
315 ∗ A f a t a l e r r o r has o c c u r r e d , p r i n t i t , w a i t f o r any key and k i l l j o b ∗
316 ∗ w a i t f o r key a l l o w s WMAN & PTR_GEN u s e r s t o s e e t h e message b e f o r e ∗
317 ∗ WMAN r e s t o r e s t h e s c r e e n . ∗
318 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
319 j o b _ e r r o r move . l d7 , a0 Get c o n s o l e i d
320 move .w u t _ e r r 0 , a2 P r i n t e r r o r t e x t v e c t o r
321 j s r ( a2 ) P r i n t t o #0
322
323 any_key move . l d7 , a0 In c a s e e n t r y i s h e r e
324 l e a mess_12 , a1 P r e s s any key message
325 move .w u t_mtex t , a2 Don ’ t use WRITE_TEXT
326 j s r ( a2 ) P r i n t i t
327 moveq # i o _ f b y t e , d0 F e t c h one b y t e
328 moveq # t i m e o u t , d3 Take a l l day i f you l i k e
329 t r a p #3 Go g e t i t
330 moveq # i o _ c l o s e , d0
331 t r a p #2 Close c o n s o l e c h a n n e l
332
333 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
334 ∗ Thi s j o b w i l l s e l f d e s t r u c t i n no t ime a t a l l ∗
335 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
336 job_end moveq # m t _ f r j o b , d0 Job i s a b o u t t o d i e
337 moveq #me , d1 And i t i s t h i s j o b
338 t r a p #1 RIP ( t h e r e i s n o t r e t u r n )
339
340 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
341 ∗ S u b r o u t i n e t o g e t some t e x t from t h e u s e r ∗
342 ∗ ∗
343 ∗ ENTRY ∗
344 ∗ ∗
345 ∗ D7 . L = c h a n n e l i d ∗
346 ∗ ∗
347 ∗ EXIT ∗
348 ∗ ∗
349 ∗ D1 .W = number o f b y t e s r e a d ∗
350 ∗ A0 . L = c h a n n e l i d ∗
351 ∗ A1 . L = s t a r t o f b u f f e r ( word t h e n b y t e s ) ∗
352 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
353 g e t _ t e x t l e a i n p u t , a1 B u f f e r f o r t h e t e x t
354 move . l a1 ,−( a7 ) S t o r e i t
355 addq . l #2 , a1 Leave room f o r t h e l e n g t h word
356 moveq # i o _ f l i n e , d0
357 moveq #42 , d2 Maximum b u f f e r s i z e
358 moveq # t i m e o u t , d3 Take as long as you l i k e
359 t r a p #3 Get some t e x t
360 t s t . l d0 Check f o r e r r o r s



220 Chapter 15. Dataspace Problems

361 bne . s j o b _ e r r o r Bale o u t ( s t a c k w i l l be ok )
362 move . l ( a7 ) + , a1 Get b u f f e r s t a r t
363 subq .w #1 , d1 Remove t h e l i n e f e e d
364 move .w d1 , ( a1 ) S t o r e t e x t l e n g t h
365 r t s E x i t
366
367 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
368 ∗ D e f i n i t i o n b l o c k f o r my c o n s o l e c h a n n e l ∗
369 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
370 con_de f dc . b b l a c k Border c o l o u r
371 dc . b $01 Border wid th
372 dc . b w h i t e Pape r & s t r i p c o l o u r
373 dc . b b l a c k Ink c o l o u r
374 dc .w $01C0 Width = 448
375 dc .w $0064 He igh t = 100
376 dc .w $0020 X p o s i t i o n = 32
377 dc .w $0010 Y p o s i t i o n = 16
378
379 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
380 ∗ C o p y r i g h t message , so t h e wor ld knows my name ∗
381 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
382 c o p y r i g h t dc .w copy_end−c o p y r i g h t −2
383 dc . b l i n e f e e d
384 dc . b ’ C o p y r i g h t Norman Dunbar , Jan 1991 / A p r i l 2 0 0 6 . ’
385 dc . b l i n e f e e d
386 copy_end equ ∗
387
388 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
389 ∗ V a r i o u s prompts & e r r o r messages ∗
390 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
391 mess_1 dc .w end_1−mess_1−2
392 dc . b l i n e f e e d
393 dc . b ’ E n t e r f i l e n a m e ’
394 dc . b l i n e f e e d
395 dc . b ’ o r ENTER on ly t o f i n i s h : ’
396 end_1 equ ∗
397
398 mess_2 dc .w end_2−mess_2−2
399 dc . b ’ Cannot open ’
400 end_2 equ ∗
401
402 mess_3 dc .w end_3−mess_3−2
403 dc . b ’ Cannot r e a d f i l e h e a d e r : ’
404 end_3 equ ∗
405
406 mess_4 dc .w end_4−mess_4−2
407 dc . b ’ i s b e i n g c o n v e r t e d t o an EXECable f i l e ’
408 dc . b l i n e f e e d
409 end_4 equ ∗
410
411 mess_5 dc .w end_5−mess_5−2
412 dc . b ’ C u r r e n t d a t a s p a c e i s : ’
413 end_5 equ ∗
414
415 mess_6 dc .w end_6−mess_6−2
416 dc . b ’ : ’



15.2 The Code 221

417 end_6 equ ∗
418
419 mess_7 dc .w end_7−mess_7−2
420 dc . b ’ Cannot s e t f i l e h e a d e r : ’
421 end_7 equ ∗
422
423 mess_8 dc .w end_8−mess_8−2
424 dc . b l i n e f e e d
425 dc . b ’ E n t e r new d a t a s p a c e i n b y t e s , or ’
426 dc . b l i n e f e e d
427 dc . b ’ end wi th "K" f o r k i l o b y t e s : ’
428 end_8 equ ∗
429
430 mess_9 dc .w end_9−mess_9−2
431 dc . b ’ b y t e s ’
432 dc . b l i n e f e e d
433 end_9 equ ∗
434
435 mess_10 dc .w end_10−mess_10−2
436 dc . b ’ I n v a l i d d i g i t found i n i n p u t ’
437 dc . b l i n e f e e d
438 end_10 equ ∗
439
440 mess_11 dc .w end_11−mess_11−2
441 dc . b ’ D a t a s p a c e s e t . ’
442 dc . b l i n e f e e d
443 end_11 equ ∗
444
445 mess_12 dc .w end_12−mess_12−2
446 dc . b l i n e f e e d
447 dc . b ’ Goodbye , p r e s s any key t o k i l l j o b . . . . . ’
448 end_12 equ ∗
449
450 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
451 ∗ Two b u f f e r a r e a s , one f o r t h e f i l e h e a d e r & one f o r u s e r i n p u t ∗
452 ∗ n o t e how sneaky I have been , by u s i n g DS .W I have f o r c e d them bo th ∗
453 ∗ t o be word a l i g n e d . I f I had used DC. B t h e y might n o t have been , & ∗
454 ∗ I would be bound t o g e t an a d d r e s s e x c e p t i o n sometime . ( i t happened )∗
455 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
456
457 b u f f e r ds .w 32 B u f f e r i s 64 b y t e s maximum
458 i n p u t ds .w 22 S i z e = 41 + ENTER + word c o u n t
459
460 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
461 ∗ A t a b l e o f a l l powers o f ten , from 9 t o 0 . Th i s c o r r e s p o n d s t o t h e ∗
462 ∗ v a l u e s used when c o n v e r t i n g an UNSIGNED long word t o ASCII . ∗
463 ∗ 2^31 = 2 ,147 ,483 ,648 ∗
464 ∗ 10^9 = 1 ,000 ,000 ,000 so i s a b i g enough ’ h i g h e s t ’ power t o use ∗
465 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
466 t e n s _ t a b l e dc . l 1000000000 10 ^ 9
467 dc . l 100000000 10 ^ 8
468 dc . l 10000000 10 ^ 7
469 dc . l 1000000 10 ^ 6
470 dc . l 100000 10 ^ 5
471 dc . l 10000 10 ^ 4
472 dc . l 1000 10 ^ 3



222 Chapter 15. Dataspace Problems

473 dc . l 100 10 ^ 2
474 dc . l 10 10 ^ 1
475 dc . l 1 10 ^ 0
476 dc . l 0 Tab le end marker

Listing 15.15: Dataspace Program - Part 14 - Various Subroutines

15.3 Coming Up...

The next chapter takes a look at the maths package supplied deep in the bowels of QDOSMSQ and
shows a couple of examples of creating your own routines to perform lots of complicated arithmetic
routines.



16. Using the Maths Package

16.1 Introduction

Don’t worry, it’s not as bad as it sounds. What I’m talking about is the internal package of routines,
provided by the operating system, to allow various mathematical operations to be carried out. For
example, multiplying two floating point numbers together, or finding the square root of a number
and so on.

16.2 The Maths Package

The two entry points to this useful set of routines is known (in old QDOS format) as RI_EXEC -
which carries out a single operation - and RI_EXECB - which carries out a stream of operations. For
SMSQE users the names are QA_OP and QA_MOP respectively.

These are vectored routines which simply means that you can find where they are by loading the
contents of a word in memory. If the actual location of the code moves around between versions of
SMSQE (As QDOS is not being updated) then the vectors remain in the same place.

To call a vectored routine is quite simple. All you do is set up the entry registers as per the
QDOSMSQ documentation, load an address register with the vector and JSR (An) as follows:

1 move .w c a _ g t f p , a2 ; F e t c h f l o a t i n g p o i n t p a r a m e t e r ( s )
2 j s r ( a2 ) ; Do i t

Listing 16.1: Example Code, Calling a Vectored Routine

On return, D0 will be set to an error code or zero - with the Z flag set accordingly - if it all worked
ok. All current vectors are WORD sized by the way.

Without any further hesitation, lets jump straight in with some example code. The following short
routine shows the RI_EXEC entry point to the maths package in use. It is a simple demonstration and
creates a new function names ROOT which simply returns the square root of its single parameter.



224 Chapter 16. Using the Maths Package

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ E q u a t e s a s r e q u i r e d .
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 e r r _ b p equ −15 ; Bad p a r a m e t e r e r r o r
5 b v _ r i p equ $58 ; Maths s t a c k p o i n t e r
6 r i _ s q r t equ $28 ; Op code f o r s q u a r e r o o t
7
8 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 ∗ Usual s t a r t b l o c k f o r PROCedure and FuNct ion e x t e n s i o n s .

10 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 s t a r t l e a d e f i n e , a1 ; P o i n t e r t o d e f i n i t i o n t a b l e
12 move .w BP_INIT , a2 ;
13 j s r ( a2 ) ; C a l l BP_INIT
14 r t s ; E x i t t o S u p e r B a s i c
15
16 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 ∗ D e f i n i t i o n b l o c k f o r our new f u n c t i o n .
18 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 d e f i n e dc .w 0 ; 0 new p r o c e d u r e s
20 dc .w 0 ; End of p r o c e d u r e s
21
22 dc .w 1 ; There i s 1 f u n c t i o n
23
24 dc .w r o o t−∗ ; F i r s t f u n c t i o n
25 dc . b 4 , ’ROOT’
26
27 dc .w 0 ; End of f u n c t i o n s
28
29 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 ∗ The a c t u a l s t a r t o f t h e ROOT code i s n e x t .
31 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 r o o t move . l a5 , d7 ; End of p a r a m e t e r s
33 sub . l a3 , d7 ; Minus s t a r t o f p a r a m e t e r s
34 cmpi .w #8 , d7 ; One p a r a m e t e r ?
35 beq . s g e t _ 1 ; Yes
36 bad_param moveq # e r r_bp , d0 ; Bad P a r a m e t e r e r r o r
37 q u i t r t s ; E x i t
38
39 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 ∗ The s i n g l e f l o a t i n g p o i n t p a r a m e t e r i s f e t c h e d n e x t .
41 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 g e t _ 1 move .w c a _ g t f p , a2 ; We want a f l o a t v a r i a b l e
43 j s r ( a2 ) ; F e t c h i t
44 beq . s go t_ok ; Yes i t d i d
45 r t s ; Ba le o u t wi th e r r o r
46
47 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 ∗ Check t h a t i t a l l worked .
49 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 go t_ok cmpi .w #1 , d3 ; One p a r a m e t e r ?
51 bne . s bad_param ; Oops !
52
53 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
54 ∗ The v a l u e on t h e a r i t h m e t i c s t a c k i s r e a d y t o be SQRTed .
55 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 d o _ i t moveq # r i _ s q r t , d0 ; Take s q u a r e r o o t



16.2 The Maths Package 225

57 moveq #0 , d7 ; Must be z e r o o r c r a s h !
58 move .w RI_EXEC , a2 ; Get v e c t o r
59 j s r ( a2 ) ; Do i t
60 bne . s q u i t ; Oops !
61
62 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 ∗ I f a l l went wel l , r e t u r n t h e new v a l u e on t h e maths s t a c k as a f l o a t .
64 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 r e t _ f p moveq #2 , d4 ; Re tu rn FP number
66 r t s ; E x i t w i th r e s u l t

Listing 16.2: The Maths Package - Calculate Square Roots

Note
You will see in the next chapter a conversation between George Gwilt and myself. The code
above has been corrected from that in the original article according to George’s comments.

Save the above code to a file (mine is called square_root_asm) and assemble it. Once done, LRESPR
the resulting bin file (square_root_bin) and try it out as follows:

1 PRINT ROOT( 9 )
2 PRINT ROOT( 1 0 0 )
3 PRINT ROOT( 2 5 )

You can make sure that it is working properly by comparing the result from ROOT with the
corresponding result for SQRT.

There is nothing complicated in the code. Most of the above is checking that we expect a single
parameter and checking that everything worked on and so on. It is the last 8 lines of code that do
the actual work and return the result to SuperBasic.

The example above shows how a single operation is carried out. What do you have to do if the
mathematical operation you want to perform takes more than a single step?

The answer is simple, you build a list of steps as byte values and terminate them with a zero byte,
then call RI_EXECB to execute the steps in order.

Here is another example which uses a relatively simple set of commands to work out the Nth root
of any number. Sounds complicated but it is quite simply done using about the only bit of maths
‘trickery’ that I can remember from my time at school.

The following simple SuperBasic code will demonstrate:

1 1000 DEFine FuNct ion AnyRoot (m, n )
2 1010 :
3 1020 REMark R e t u r n s t h e Nth r o o t o f t h e number M
4 1030 :
5 1040 LOCal ln_m
6 1050 :
7 1060 ln_m = LN(m)
8 1070 ln_m = ln_m / n
9 1080 RETurn EXP( ln_m )

10 1090 END DEFine



226 Chapter 16. Using the Maths Package

If you type the above into SuperBasic and call it as follows, you can calculate all the roots you
want:

1 PRINT AnyRoot ( 1 0 0 , 3 ) : REMark c a l c u l a t e t h e cube r o o t o f 100

And so on. The code works and works quite well, however, as this is an Assembly Language
tutorial series, I can’t let you off the hook that easily! Here’s the Assembly version.

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ∗ E q u a t e s a s r e q u i r e d .
3 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 e r r _ b p equ −15 ; Bad p a r a m e t e r e r r o r
5 b v _ r i p equ $58 ; Maths s t a c k p o i n t e r
6 r i _ l n equ $2a ; Take LN of a number
7 r i _ d i v equ $10 ; D i v i de TOS i n t o NOS
8 r i _ e x p equ $2e ; EXP of a number
9 r i _ e n d equ $00 ; End of opcodes l i s t

10
11 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 ∗ Usual s t a r t b l o c k f o r PROCedure and FuNct ion e x t e n s i o n s .
13 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 s t a r t l e a d e f i n e , a1 ; D e f i n i t i o n t a b l e
15 move .w BP_INIT , a2 ;
16 j s r ( a2 ) ; C a l l BP_INIT
17 r t s ; Back t o S u p e r B a s i c
18
19 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 ∗ D e f i n i t i o n b l o c k f o r our new f u n c t i o n .
21 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 d e f i n e dc .w 0 ; 0 new p r o c e d u r e s
23 dc .w 0 ; End of p r o c e d u r e s
24
25 dc .w 1 ; There i s 1 f u n c t i o n
26
27 dc .w a n y r o o t−∗ ; F i r s t f u n c t i o n
28 dc . b 7 , ’ANYROOT’
29
30 dc .w 0 ; End of f u n c t i o n s
31
32 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 ∗ The a c t u a l s t a r t o f t h e ANYROOT code i s n e x t .
34 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 a n y r o o t move . l a5 , d7 ; End of p a r a m e t e r s
36 sub . l a3 , d7 ; Minus s t a r t o f p a r a m e t e r s
37 cmpi .w #16 , d7 ; Do we have two p a r a m e t e r s ?
38 beq . s g e t _ 2 ; Yes
39 bad_param moveq # e r r_bp , d0 ; Bad P a r a m e t e r e r r o r
40 q u i t r t s ; E x i t
41
42 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 ∗ The two f l o a t i n g p o i n t p a r a m e t e r s a r e f e t c h e d n e x t .
44 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 g e t _ 2 move .w c a _ g t f p , a2 ; We want f l o a t v a r i a b l e s
46 j s r ( a2 ) ; F e t c h
47 beq . s go t_ok ; A l l ok



16.2 The Maths Package 227

48 r t s ; Ba le o u t on e r r o r
49
50 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 ∗ Check t h a t i t a l l worked .
52 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 go t_ok cmpi .w #2 , d3 ; Two p a r a m e t e r s ?
54 bne . s bad_param ; Oops !
55 b r a . s d o _ i t ; s k i p ove r t h e op−codes
56
57 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
58 ∗ A l i s t o f op codes t o c a l c u l a t e t h e Nth r o o t o f M.
59 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 op_codes dc . b r i _ d i v ; D i v i de TOS i n t o NOS
61 dc . b r i _ e x p ; Take EXP of TOS
62 dc . b r i _ e n d ; End of op codes
63
64 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 ∗ At t h i s p o i n t t h e r e a r e two v a l u e s on t h e s t a c k :
66 ∗
67 ∗ 0(A6 , A1 . L ) = M = Big v a l u e
68 ∗ 6(A6 , A1 . l ) = N = Root t o f i n d
69 ∗
70 ∗ To work o u t our Nth r o o t o f M, we need t o do t h e f o l l o w i n g :
71 ∗
72 ∗ Take t h e LN of M.
73 ∗ Di v i de i t by N.
74 ∗ Take t h e EXP of t h e r e s u l t .
75 ∗ Re tu rn i t t o S u p e r B a s i c .
76 ∗
77 ∗ Of cour se , i t ’ s n e v e r a s ea sy as i t seems !
78 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
79 d o _ i t moveq # r i _ l n , d0 ; LN op code
80 moveq #0 , d7 ; Must be z e r o o r c r a s h !
81 move .w RI_EXEC , a2 ; Get v e c t o r f o r one op
82 j s r ( a2 ) ; Do i t
83 bne . s q u i t ; Oops !
84
85 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 ∗ Now t h e s t a c k i s h o l d i n g t h e f o l l o w i n g :
87 ∗
88 ∗ 0(A6 , A1 . L ) = LN(M)
89 ∗ 6(A6 , A1 . L ) = N = Root t o f i n d .
90 ∗
91 ∗ They a r e t h e wrong way around : o (
92 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 swap_ tos move . l 0 ( a6 , a1 . l ) , d7 ; Get a long word
94 move . l 6 ( a6 , a1 . l ) , d6 ; And a n o t h e r
95 move . l d6 , 0 ( a6 , a1 . l ) ; S t o r e
96 move . l d7 , 6 ( a6 , a1 . l ) ; S t o r e
97 move .w 4( a6 , a1 . l ) , d7
98 move .w 10( a6 , a1 . l ) , d6
99 move .w d6 , 4 ( a6 , a1 . l )

100 move .w d7 , 1 0 ( a6 , a1 . l ) ; Now we have N and LN(M) swapped
101
102 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 ∗ The s t a c k i s how we want i t t o be , so we can c o n t i n u e .



228 Chapter 16. Using the Maths Package

104 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 do_more moveq #0 , d7 ; Or a c r a s h w i l l p r o b a b l y r e s u l t
106 move .w RI_EXECB , a2 ; Per fo rm l o t s o f ops
107 l e a op_codes , a3 ; Op codes t o pe r fo rm
108 j s r ( a2 ) ; Do t h e op l i s t
109 bne . s e x i t ; Oops !
110
111 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
112 ∗ I f a l l went wel l , r e t u r n t h e r e s u l t on t h e a r i t h m e t i c s t a c k as f l o a t .
113 ∗ Note t h a t t h e maths s t a c k i s 6 b y t e s s h o r t e r now , so we have t o save
114 ∗ t h e t o p i n BV_RIP b e f o r e we e x i t .
115 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
116 r e t _ f p move . l a1 , b v _ r i p ( a6 ) ; Make s u r e maths s t a c k i s s e t
117 moveq #2 , d4 ; Re tu r n FP number
118 e x i t r t s ; E x i t w i th r e s u l t

Listing 16.3: The Maths Package - Calculate Any Root

Note
The code above has been corrected from that in the original article according to George’s
comments that can be read in the next chapter.

Save the above code to a file (mine is called any_root_asm) and assemble it. Once done, LRESPR
the resulting bin file (any_root_bin) and try it out as follows:

1 PRINT ANYROOT( 9 , 2 )
2 PRINT ANYROOT( 1 0 0 , 3 )
3 PRINT ANYROOT( 2 5 , 4 )

There’s not much of real interest in the above code. As ever we validate our parameters to make
sure we only expect two then fetch them as floating point values onto the maths stack. After a
check to see that we really did get two parameters, we have the values M and N on the stack with
M being at the ‘top’ (TOS = top of stack) and N being underneath it (NOS = next on stack).

We start by running a single op code to calculate ln(M) which leaves the stack with a new TOS
which is simply ln(M).

We next want to divide ln(M) by N but unfortunately, they are the wrong way around so we swap
over the 6 bytes at 0(A6,A1.L) with the 6 bytes at 6(A6,A1.L) and then run a sequence of op codes
to:

• Divide ln(M) by N leaving the result as the TOS.
• Calculate exp(ln(M)) as the new TOS

Once this has been done, we store the new value of A1 at BV_RIP(A6) as required, set the result to
be a floating point number and exit to SuperBasic with the result.

As you may have noticed, the text above mentions that the math stack pointer (A1.L) can be
changed by the various op codes that we execute. The following table gives you details on what op
codes are available and how they manipulate the maths stack.

So, there you have it, a pile of ingredients all set for you to make up your own numerical recipes.
Have fun.

Now, one thing that I have not mentioned above, or even used in the code examples is tem-
porary storage. However, before I delve into that, it’s best if you familiarise yourself with Ta-



16.2 The Maths Package 229

Value OpCode A1.L Description

$00 RI_END = End of op code list (RI_EXECB)
$02 RI_NINT +4 Convert FP to Word INT
$04 RI_INT +4 Truncate FP to Word INT
$06 RI_NLINT +2 Convert FP to Long INT
$08 RI_FLOAT -4 Convert Word INT to FP
$0A RI_ADD +6 Add TOS to NOS, remove TOS from stack
$0C RI_SUB +6 Subtract TOS from NOS, remove TOS from stack
$0E RI_MULT +6 Multiply NOS by TOS, remove TOS from stack
$10 RI_DIV +6 Divide TOS into NOS, remove TOS from stack
$12 RI_ABS = Make TOS positive
$14 RI_NEG = Negate TOS
$16 RI_DUP -6 Copy TOS and create a new TOS above current TOS
$17 ?? = Swap TOS and NOS. Available in Minerva ROMs and SMSQ only.
$18 RI_COS = Cosine of TOS
$1A RI_SIN = Sine of TOS
$1C RI_TAN = Tangent of TOS
$1E RI_COT = Cotangent of TOS
$20 RI_ASIN = Arcsine of TOS
$22 RI_ACOS = ArcCosine of TOS
$24 RI_ATAN = ArcTangent of TOS
$26 RI_ACOT = ArcCotangent of TOS
$28 RI_SQRT = Sqare root of TOS
$2A RI_LN = Natural log of TOS
$2C RI_LOG10 = Log base 10 of TOS
$2E RI_EXP = Exponential of TOS
$30 RI_POWFP +6 Raise NOS to power TOS, remove TOS from stack
$32 RI_PI -6 Put PI on the stack as the new TOS (SMSQ/E)
$31-$FF Are the ’save’ and ’load’ op codes

Table 16.1: Arithmetic Package Operations



230 Chapter 16. Using the Maths Package

bles 16.2, 16.3, 16.4 and 16.5 which detail exactly which input and output registers are required
for the RI_EXEC and RI_ECXECB vector calls.

Register Usage

D0.B Op code. The high word of D0 should be zero
D7.L Should be zero
A1.L Arithmetic stack pointer (relative to A6)
A4.L Pointer to variable storage (relative to A6)

Table 16.2: RI_EXEC Entry Registers

Register Usage

D0 Error code
D1-D3 Preserved
A0 Preserved
A1.L Updated to new arithmetic stack pointer
A2-A4 Preserved

Table 16.3: RI_EXEC Exit Registers

Register Usage

D0.B Not used
D7.L Should be zero
A1.L Arithmetic stack pointer (relative to A6)
A3.L Pointer to list of op codes.(NOT relative to A6)
A4.L Pointer to variable storage (relative to A6)

Table 16.4: RI_EXECB Entry Registers

You will notice that A4 was never used in my two examples. This is a pointer to the top of an area
of memory where you wish to save floating point values to, and load them back from. A4 is relative
to A6 (as ever).

The op codes from $31 through $FF can be used to save and load 6 byte floating point values from
the stack to and from the variables area.

Op codes that are even allow numbers to be loaded from storage onto the stack creating a new TOS
and setting A1 to A1-6.

Op codes that are odd cause the number at TOS to be removed from the stack and saved in the
variables area. This causes A1 to change to A1+6. The corresponding load routine is the op code
minus 1. (If I call this routine with $33 then the opposite routine is $32 and so on.)

The actual start address of the variables area where your number will be stored is calculated as:

A6.L+A4.L+((D0.B AND $FE)−$100)

or, in another way:
((D0.B AND $FE)−$100)(A6,A4.L)

Each load or save operation uses 6 bytes starting at the above address and working UP in memory.
This means that you cannot use all of the load/save op codes for the following reason.



16.2 The Maths Package 231

Register Usage

D0 Error code
D1-D3 Preserved
A0 Preserved
A1.L Updated to new arithmetic stack pointer
A2-A4 Preserved

Table 16.5: RI_EXECB Exit Registers

Assume you want to save two numbers from the stack. You might be tempted (as I was) to assume
that you could save the first using $FF and the second using $FD. OK, try it out. Remember saves
are odd, loads are even.

Assume also that the absolute address (ie A6+A4) of your variables area is $1000 0000.

So, where do our two values end up at?

For $FF it works out as:
$10000000+($FF AND $FE)
= $10000000+$FE
= $100000FE

For $FD it is:
$10000000+($FD AND $FE)
= $10000000+$FC
= $100000FC

Because each save uses 6 bytes, the ranges covered are:

• For code $FF, we use the bytes from $1000 00FE to $1000 0103
• For code $FD, we use the bytes from $1000 00FC to $1000 0101

This has two pretty major problems in my opinion. The first is that we have overwritten some bytes
above the top of our variables area and the second is that we have managed to overwrite a few bytes
of our first saved number with the second one!

The maximum range of bytes available for saving data to and loading it back from is between
-208(A6,A4.L) for op code $31 to -2(A6,A4.L) for op code $FF, however, it seems that you are best
to use only certain values (see below) to avoid trashing your saved values and avoid using the top
two values $FF and $FD for saves and loads or you will partially overwrite other data above your
variables area.

I would advise using the save codes as follows:

• $FB (-5) as the absolute minimum value; then
• $F5 (-11)
• $EF (-17)
• $E9 (-23)
• $E3 (-29)
• $DD (-35)
• $D7 (-41)
• ...

And so on subtracting 6 from the op code each time. To load these values back onto the arithmetic



232 Chapter 16. Using the Maths Package

stack, use the following codes:

• $FA (-6) as the absolute minimum value; then
• $F4 (-12)
• $EE (-18)
• $E8 (-24)
• $E2 (-30)
• $DC (-36)
• $D6 (-42)
• ...

George has documented the values and offsets to use in saving and loading floating point values
on my Wiki at http://www.qdosmsq.dunbar-it.co.uk/doku.php?id=qdosmsq:vectors:
op where there is an example of saving and reloading floating point variables from the maths stack
into a programmer defined variables storage area.

16.3 Coming Up...

Well, just when I thought everything was ok, George Gwilt hammered me silly by email (in the
nicest possible way of course) about this current chapter and the previous one.

In the next chapter, George and I have a conversation about what I did wrong or could have done
better.

Much of the code above has been changed to match George’s comments. Some of his explanations
are hinted at in the above, but have not yet been changed. Read on for the full, gory details!

http://www.qdosmsq.dunbar-it.co.uk/doku.php?id=qdosmsq:vectors:op
http://www.qdosmsq.dunbar-it.co.uk/doku.php?id=qdosmsq:vectors:op


17. Much Ado About Previous Chapters

17.1 Introduction

George Gwilt, my faithful reader, has brought me to task on my last two articles. Part 15 where
I wrote (ok, updated a very old 1991 utility which I had written) and again after Part 16 where I
delved into the Arithmetic Package in QDOSMSQ.

I shall attempt to answer Georges concerns in this chapter.

17.2 Chapter 15 - Dataspace Utility Problems

George makes a number of interesting points about this article and all I can say is, ‘he is absolutely
correct’.

As for my small routine to convert an ASCII string into a number in a long word, George asks why
it is not itself a sub-routine when I make such a ‘fuss’ (my word) of reusable code.

I can only plead guilty as charged and state, for the record, that this is the only time I’ve ever written
anything in assembly language which required me to do that conversion. To that end, and nothing
else, the code was in-lined in 1991 and remained so in 2006.

However, I’m sure a general purpose ASCII->Long could be easily written as a subroutine. I’m
certain that there is one lurking somewhere inside QDOSMSQ which correctly (I hope) handles
invalid characters, errors, overflow and so on.

I shall be creating just such a beast in the next chapter.

I feel rather unable to comment on George’s own conversion routine - I never did very well at maths
at school and I’m not sure exactly how George’s code works (yet!).



234 Chapter 17. Much Ado About Previous Chapters

17.3 Chapter 16 - Artithmetic Package Problems

Shortly after that article appeared, George contacted me with a whole host of problems. I shall
attempt to answer George’s concerns below, although George and I have conversed in an email
exchange on this subject, I think it is proper to publicise the results especially as they concern my
previous chapter. Corrections are due!

George ... I have only one comment on ROOT. It is that, as explained by Dickens (QL Advanced
User Guide), you do not need to test D0 for errors after a call to a vector since the condition codes
are set on return. Indeed Norman does not make the test after calling the vector BP_INIT near the
top of page 21. The two later tests on that page can thus be deleted.

Norman I agree, however, it has been my observation in the past that only sometimes are the
condition codes actually set on exit from QDOSMSQ. To this end I tend to always test D0 on exit
from a QDOSMSQ call - just to be safe. This does mean that where I neglected to do this after the
call to BP_INIT (on page 21) is where my error was. I should have had a test there.

George points out that I don’t need the two tests later on that same page. While technically correct,
I would be inclined to leave them present and add in the one I missed out rather than removing the
latter two. I like to make sure that the condition codes are correctly set by testing them explicitly as
this saves me trying to remember which calls do set them and which calls don’t.

George ANYROOT is more interesting as it uses RI_EXECB to perform a string of operations. Once
again the testing of D0 in do_it and do_more is not really needed. Also, I should point out that the
three lines of op_codes should not be between got_ok and do_it otherwise do_it will never be done.

Norman This is absolutely correct. I have no idea what went on here, but the code should be as
follows1:

53 go t_ok cmpi .w #2 , d3 ; One p a r a m e t e r ?
54 bne . s bad_param ; Oops !
55 b r a . s d o _ i t ; s k i p ove r t h e op−codes .

Listing 17.1: Corrections to ANYROOT Code in Previous chapter

With a short branch over the op-codes added. I suspect that I have inadvertently fixed the code
while running under QPC but forgotten to save the corrected version back to one of my DOS_
drives prior to importing the code into the article. Quite honestly, the original code without the
branch would most likely have hung the system.

I have checked my source code system and found that the same ‘broken’ version is present there
too, so it does look like I forgot to save a change back to DOS. ‘Mea Culpa’ as they say.

George Also I wonder how Norman expects it to work given that the address in A3, set in do_more,
is not relative to A6 as he suggests is necessary in his definition of RI_EXECB on page 26. (But see
later.)

Norman I’m afraid that this was a ‘copy and paste’ error. I copied the A1 line above it and pasted
it in. While I remembered to change the A1 to an A3, I neglected to remove the part about it being
relative to A6. That is incorrect as A3.L is the pointer to the string of bytes and is not relative to A6
at all.

George It is annoying that immediately after the first operation the operands are in the wrong order
on the stack. Norman has produced swap_tos to switch the order. The code works well, but, since
I started my programming life on machines with limited space and slow speed, I always try to

1And, if you read it again, it actually is now.



17.3 Chapter 16 - Artithmetic Package Problems 235

compress and speed up any program. I might suggest here that you eliminate the two occurrences
of exg d6,d7 2and instead swap the d7 and d6 in the following two lines in both cases.

Norman I started on a ZX-81 with 1KB of RAM and I’m mostly self-taught - hence all the errors!

George suggests changing my code at SWAP_TOS from this:

93 swap_ tos move . l 0 ( a6 , a1 . l ) , d7 ; Get a long word
94 move . l 6 ( a6 , a1 . l ) , d6 ; And a n o t h e r
95 exg d6 , d7 ; Swap them around
96 move . l d7 , 0 ( a6 , a1 . l ) ; S t o r e
97 move . l d6 , 6 ( a6 , a1 . l ) ; S t o r e
98 move .w 4( a6 , a1 . l ) , d7
99 move .w 10( a6 , a1 . l ) , d6

100 exg d6 , d7 ; Swap a g a i n
101 move .w d7 , 4 ( a6 , a1 . l )
102 move .w d6 , 1 0 ( a6 , a1 . l ) ; Now we have N and LN(M) swapped

Listing 17.2: ANYROOT - Swap_Tos - Original Code

to the following to save a couple of instructions and hence, valuable time and space:

93 swap_ tos move . l 0 ( a6 , a1 . l ) , d7 ; Get a long word
94 move . l 6 ( a6 , a1 . l ) , d6 ; And a n o t h e r
95 move . l d6 , 0 ( a6 , a1 . l ) ; S t o r e
96 move . l d7 , 6 ( a6 , a1 . l ) ; S t o r e
97 move .w 4( a6 , a1 . l ) , d7
98 move .w 10( a6 , a1 . l ) , d6
99 move .w d6 , 4 ( a6 , a1 . l )

100 move .w d7 , 1 0 ( a6 , a1 . l ) ; Now we have N and LN(M) swapped

Listing 17.3: ANYROOT - Swap_Tos - Original Code

Once again, George is correct - I must have run out of caffeine at that point. The two EXG instructions
are completely unnecessary when written as above.

George I have, however, a more radical suggestion. It is that you eliminate both do_it and swap_tos
and increase the size of op_codes so that the whole procedure is carried out with just one set of
operations using RI_EXECB. The easy way of doing this is possible if you have SMSQ or Minerva
both of which have additional operations one of which swaps TOS and NOS. The code is $17.

Norman I try to keep things as close to the original QL as possible so this option may not have
been available to some of my other readers. I was, however, completely unaware of it until George
sent me his email. I am completely surprised in finding myself to be the first person since QDOS
was originally written to need a SWAP_TOS_NOS routine :o)

When I wrote the code originally, I was almost certain that I could do it an one single RI_EXECB
operation. That was when I discovered the need for a swap operation and hence the break up into a
single RI_EXEC, manual swap and the RI_EXECB call. Not as elegant as I would have liked.

George The second method is to go through the business of copying TOS and NOS somewhere and
then returning them to NOS and TOS. The codes for this are in the group referred to by Norman as
$FF31 to $FFFF. The place I would use for temporary storage is the Basic buffer. First, op_codes
would become:

60 op_codes dc . b RI_LN,−5 ,−11 ,−6 ,−12 ,RI_DIV , RI_EXP , RI_END

Listing 17.4: ANYROOT - Swap_Tos - Suggested Op Codes

2Consider them eliminated.



236 Chapter 17. Much Ado About Previous Chapters

do_it and swap_tos would be deleted and do_more would have added to it:

1 movea . l b v _ b f b a s ( a6 ) , a4
2 l e a 12( a4 ) , a4 ; p o i n t t o t h e end of 12 b y t e s

If you really think that there may not be as much as 12 bytes available in the Basic buffer you can
add:

1 cmpa . l b v _ t k b a s ( a6 ) , a4 ; A4 beyond end of b u f f e r ?
2 b h i b u f f u l ; oops

bv_bfbas is 0 and bv_tkbas is 8.

The codes -5 and -6 save and load 6 bytes to and from -6(A6,A4.L) and the codes -11 and -12 do
the same with address -12(A6,A4.L).

Norman Again, when I wrote the article, I was having a few difficulties with the save and load
op-codes and was enjoying much discussion on the QL-USERS email list at the time. I avoided
them until I could better understand them. As it turned out, the explanations simply confused the
matter (for me) and I decided to leave them alone and simply document them at the end of my
article.

Interestingly, George raises something that I was always confused by when Simon N Goodwin was
writing in the old QL World assembly language series, using the Basic Buffer as a workspace. I’m
sure that there could be a couple of pages for an article here on this very subject - if someone who
knows it was prepared to write one (hint hint). :o)

George ... However, I do have severe objections to the later part of the article. This mainly relates
to the op codes, especially those used for loading and saving numbers onto and from the stack. The
table at the top of page 26 lists the op codes. If used in RI_EXECB these must fit into bytes. It is
thus plain wrong to list the codes other than those from 0 to $30 as $FF31-$FFFF. But why should
Norman do this?

Norman To answer the last question, I did it because I was advised by Marcel Kilgus, in an email,
that I differed from the documentation and that the load and save op-codes were indeed negative
words and not bytes. And indeed, I quote:

" ... the opcodes $FF31 to $FFFF are for load/save, not $32 to $FF. Yes, the latter DO work, but it
seems that’s more an undocumented side-effect."

I took the advice of the man who wrote QPC and probably has forgotten more about Assembly
Language programming that I have ever known!

George To find out I examined the definitions of RI_EXEC/RI_EXECB in five different publications:

Title Author Errors

QL Technical Guide David Karlin & Tony Tebby A and B
QL Advanced User Guide Adrian Dickens C
The Sinclair QDOS Companion Andrew Pennell None
QDOS Reference Manual Jochen Merz A

Table 17.1: QDOS Documentation and RI_EXEC/RI_EXECB Errors



17.3 Chapter 16 - Artithmetic Package Problems 237

Norman

George has given a pretty thorough explanation of the differences between the above 5 sets of
documentation and the code in a JS ROM and SMSQ/E - I can only state that I wish I had stuck
with Pennell rather than trying to find out more! See table 17.1.

I now skip directly to George’s closing points.

George ... Having explained how the operations codes are used by RI_EXEC and RI_EXECB I return
to Norman’s article on page 263.

1. In the description of the OpCodes he lists $FF31 to $FFFF as the ‘save’ and ‘load’ bytes. Clearly
these should be $31 to $FF (or 49 to 255).

Norman This is correct. Obviously, had I been paying more attention in class, I would have
questioned Marcel’s word information as the RI_EXECB call executes a string of bytes. Setting a
word in amongst the bytes would have resulted in an $FF op-code being carried out followed by a
separate and incorrect byte code, rather than a store or load operation.

Basically, when I say ‘a negative word’ I really mean ‘a negative byte’.

George 2. In the definition of RI_EXEC it is bits 8 to 15 of D0 which should be zero and not the
high word, which can in fact be anything.

Norman Correct. RI_EXEC expects a byte sized op-code.

George 3. In the definition of RI_EXECB A3.L is the absolute pointer to the list of op codes. It is
not relative to A6 as stated. (So ANYROOT will work after all.)

Norman Yes, as admitted above, this was a type on my part. A3.L is an non- relative address.

George 4.1 The byte op codes from $33 to $FF can be used to save and load numbers. The effect of
codes $31 and $32 depend on the operating system. JS ROM and SMSQ differ here. Both operating
systems contain oddities. In the JS ROM $ 31 will be treated as a save to -208(A4,A6.L). However,
$30 will be treated as the operation NOSˆTOS so that you can’t bring back the saved item!

SMSQE has a different, though similar quirk. The code $31 gives a "not implemented" error. Code
$32 puts PI on the stack. Code $33 saves the number on the stack to -206(A4,A6.L). As with the JS
ROM this number cannot be reloaded, since the code to do so just puts PI on the stack!

4.2 Norman mentions calling "this routine with $FF33". This is of course impossible with RI_EXECB,
the op code is just $33. You can call RI_EXEC with D0.W equal to $FF33, or $1C33, or $0033 and
each will have the same effect. He then says that the actual address used for storage is:

A6.L+A4.L+(D0.W AND $FFFE)

Again, I’m afraid this is not quite true. The address is actually:

((opcode AND 254)−256)(A4,A6.L)

Norman I agree with George’s point 4.1. As for 4.2, the address calculation I gave is the one I
found in Jochen’s QDOS Documentation.

George 4.3 Pennell is not wrong in the way Norman suggests in his first WARNING on page 28.
First, as I have tried to explain, the op codes are really and truly byte sized numbers (2 to 255).
Second, Pennell gives the range for loading (not saving) a number. His range of offsets, -206 to

3In the original QL Today publication.



238 Chapter 17. Much Ado About Previous Chapters

-2 is absolutely correct for QDOS. It is when Pennell says that the op codes with odd values $31
to $FF give the same range he is wrong. That range is -208 to -2, but the value -208 is effectively
useless. I don’t think this very minor error will bother anyone and it certainly does not warrant a
WARNING.

Norman I’m not doing very well am I? Once again, I stand corrected.

George 4.4 Norman suggests that in fact you can use a byte for the codes $31 to $FF when using
RI_EXEC, but that it is an undocumented feature. This is not true since Pennell (page 133) does
document it.

Norman I blame Marcel, it’s all his fault. (Only kidding.) As I mentioned above, I was basing my
article on the latest information that I had been given as a result of asking for clarification on the
QL-USERS mailing list.

George 4.5 I would like to add real WARNING. It is that you can crash the program by using an
odd op code below 50 in QDOS. This is because the code is used directly as an index into the
programs performing the operations.

Norman This is indeed true.

George I hope Norman will forgive me for attempting to set so many things straight. The errors
are not wholly his fault!

Norman Phew, I’m glad that’s over. I took a severe beating at the hands of George and I promise
to do better in future!

Seriously, I’m always happy to be corrected in anything I say or write - so, if you spot anything that
you disagree with, let me know.

And as for forgiveness, I have no problems there either.

17.4 Coming Up...

So, that’s a slightly different article this time. I hope to be back in deepest, darkest code again next
time, especially as I have promised to provide a useful ASCII to long word conversion routine. I
think I know just where I can find one.....



18. Ascii To Long Converter

18.1 Introduction

In the last exciting instalment of the series, I mentioned that I would be looking into the bowels of
QDOSMSQ to see if I can find a useful sub-routine to convert a string of ASCII characters into a
long value in a register. This was suggested by comments from George Gwilt when he mentioned
that he was surprised that I didn’t have a reusable routine to do this conversion. This chapter is a
result of that enquiry.

18.2 How QDOSMSQ Does It

As ever, I like to take the lazy approach to writing code. If someone else has done it for me, that’s
a bonus. Inside QDOSMSQ there is a vectored routine called CN_DTOF which reads a string of
characters and converts those to a floating point value on the maths stack. This routine can be
entered with D7.L holding the address of the first byte of memory after the final character of the
string, or with D7 set to zero.

In the latter case, the CN_DTOF routine simply keeps reading until it comes across any character
which is not a valid digit, decimal point or ‘e’ in the buffer. In the former case, the routine stops
when it reaches the address in register D7.L or if it hits an invalid character before then.

On exit, the buffer pointer is pointing at the character after the buffer or at the invalid character,
unless an error occurred, in which case A0.L and A1.L are restored to their values on entry.

So far so good, we have a floating point value on the maths stack at 0(A6,A1.L) but we wanted a
long value from our routine. This too is easy. Thinking back to the article on using the arithmetic
package, we can use the RI_NLINT operation to convert a floating point value down to a long word.
Once this is done, it is a simple job to copy it off the maths stack into our data register and we are
done.

All conversion ‘problems’ for the character data have been dealt with by QDOSMSQ as have



240 Chapter 18. Ascii To Long Converter

problems of overflow and so on when we convert from FP to LONG. How easy can it get?

18.3 Rules And Regulations

Obviously, we might have problems. Isn’t the maths stack provided for use by SuperBasic routines
only? Well, the code in this article shows that this is not the case, provided a couple of simple rules
are followed.

• Rule number one is that A1.L has to point at the byte just above the top of the maths stack -
at the highest address in other words.

• Rule number two is that you must have enough space on the maths stack for the operation(s)
to be carried out. It is possible that some routines will need working space on the maths
stack. This must be catered for or you may find that the maths operations corrupt data below
your maths stack.

Note
According to Dickens, the CN_DTOF vector uses about 30 bytes of space on the maths stack.
So, for this conversion routine to work, you should set up a maths stack with at least 30 bytes
- although it wouldn’t break the system to use a bit more for safety. I’m using 15 long words,
which should be ample.

The maths stack, while looking special, has to be considered for what it is, it is just a chunk of
memory somewhere in the system, relative to A6 of course.

18.4 The Code

The following is our conversion routine in all it’s glory. As you can see, there is not much to it.

1 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ; U s e f u l r o u t i n e t o c o n v e r t an ASCII s t r i n g t o a LONG word .
3 ;
4 ; E n t r y R e g i s t e r s :
5 ;
6 ; A0 . L − P o i n t e r t o f i r s t c h a r a c t e r i n b u f f e r ( n o t t h e s i z e word ) .
7 ; A1 . L − P o i n t e r t o an a r e a o f AT LEAST 30 b y t e s f o r a maths s t a c k .
8 ;
9 ; E x i t R e g i s t e r s :

10 ;
11 ; D0 . L − E r r o r code , o r z e r o i f no e r r o r s . ( Z f l a g s e t f o r no e r r o r s ) .
12 ; D1 . L − Value o f c o n v e r t e d ASCII s t r i n g .
13 ; A0 . L − Updated p o i n t e r . F i r s t c h a r a f t e r a l l v a l i d n u m e r i c s ( and ’ e ’ )
14 ; o r f i r s t c h a r a c t e r a f t e r end of i n p u t i n n o t h i n g was i n v a l i d .
15 ; Res t p r e s e r v e d
16 ;
17 ; E r r o r E x i t R e g i s t e r s :
18 ;
19 ; D0 . L − E r r o r code , o r z e r o i f no e r r o r s . ( Z f l a g s e t f o r no e r r o r s ) .
20 ; D1 . L − unknown .
21 ; A0 − P r e s e r v e d = p o i n t e r o f s t a r t o f b u f f e r on e n t r y .
22 ; Res t p r e s e r v e r .
23 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 r i _ n l i n t equ 6 ; Code t o c o n v e r t FP t o LONG
25



18.4 The Code 241

26 c o n v e r t movem . l d2 / d7 / a1−a3 ,−( a7 ) ; Save worke r s
27 suba . l a6 , a0 ; R e l a t i v i s e b u f f e r a d d r e s s
28 suba . l a6 , a1 ; And t h e maths s t a c k
29 moveq #0 , d0 ; Assume no e r r o r s
30 moveq #0 , d1 ; Zero r e s u l t
31 moveq #0 , d7 ; For CN_DTOF
32 move .w c n _ d t o f , a2 ; Conve r t ASCII t o an FP number
33 j s r ( a2 ) ; Do c o n v e r s i o n
34 t s t . l d0 ; OK?
35 bne . s r e s t o r e ; No , b a l e o u t .

Listing 18.1: ASCII to LONG Converter - Part 1

The entry point to our routine is at the ‘convert’ label above. We start off by saving all the registers
that we are going to use, or that will be trashed by the various QDOSMSQ code.

Once that has been done, we subtract the current value of A6 from the two pointer registers as these
addresses have to be A6 relative for the maths package code to work.

Next, and the most complicated part of the code is to convert our buffer load of characters into a
floating point number on the maths stack. If there were conversion errors then we abandon ship and
bale out.

Conversion errors occur when there are illegal characters in the buffer - more than one decimal
point, two or more ‘e’ characters etc. Note however, that conversion will stop when a non-valid
(but non-error causing) character is found. So ‘1024K’ will result in the value 1024 being created
and then conversion would stop.

36 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 ; We now have a f l o a t i n g p o i n t v a l u e on t h e maths s t a c k a t 0 ( a6 , a1 . l ) .
38 ; Conve r t t h a t down t o a long word .
39 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40
41 moveq # r i _ n l i n t , d0 ; FP t o LONG
42 moveq #0 , d7 ; For maths package
43 move .w r i _ e x e c , a2 ; Execu te one maths o p e r a t i o n
44 j s r ( a2 ) ; Do i t .
45 t s t . l d0 ; OK?
46 bne . s r e s t o r e ; No , b a l e o u t

Listing 18.2: ASCII to LONG Converter - Part 2

The second part of the code above, is where we convert the floating point value on the maths stack
into a long integer. This uses the afore mentioned maths package to do the conversion. Any errors
such as overflow will be trapped and returned in D0. We test for this on return from the RI_EXEC
and if we have a problem in conversion, we bale out.

47 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 ; We now have a long word on t h e maths s t a c k 0 ( a6 , a1 . l ) .
49 ∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50
51 move . l ( a6 , a1 . l ) , d1 ; Th i s i s our v a l u e
52 adda . l #4 , a1 ; Tidy maths s t a c k p o i n t e r
53
54 r e s t o r e movem . l ( a7 ) + , d2 / d7 / a1−a3 ; R e s t o r e worke r s
55 adda . l a6 , a0 ; U n r e l a t i v e t h e b u f f e r a g a i n
56 t s t . l d0 ; S e t f l a g s



242 Chapter 18. Ascii To Long Converter

57 r t s

Listing 18.3: ASCII to LONG Converter - Part 3

The above simply copies the long word from the maths stack into the D1 register ready to return it
to the caller, tidies up the stack and restores the working registers. We exit with the Z flag set if no
errors occurred and unset otherwise.

On exit, the address in A0.L points at the first character after the string of digits that were converted
- in an input buffer, for example, this would be the linefeed.

The QDOSMSQ routines to convert the ASCII into an FP number have ‘interesting’ register settings
on exit. If no errors occurred then we exit with A0.L set to point at the character after the end of
the buffer, or, at the invalid character that caused conversion to end. If there was a conversion error,
the value in A0.L is reset to that on entry - the pointer to the first character in the buffer.

My code exits with the registers set as described in the code header above.

As a quick example of testing the above, and just to prove that it does work, here is a small test
harness. Save the following as a new file named ‘test_asm’.

1 t e s t b r a . s t e s t 2
2
3 r e s u l t ds . l 1 ; One long word f o r t h e r e s u l t
4 ds . b 1 ; One b y t e f o r t h e t e r m i n a t o r
5
6 fp dc . b ’1234567 .89 x ’ ; The fp number i n A s c i i p l u s
7 ∗ ; an i n v a l i d c h a r a c t e r
8 dc . l 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; 15 Long words
9 msp equ ∗ ; STACK TOP f o r t h e maths s t a c k

10
11 t e s t 2 l e a fp , a0 ; B u f f e r h o l d i n g A s c i i
12 l e a msp , a1 ; Top of maths s t a c k
13 b s r . s c o n v e r t ; Conve r t from a s c i i t o long
14 l e a r e s u l t , a1
15 move . l d1 , ( a1 )+ ; Save r e s u l t
16 move . b ( a0 ) , ( a1 ) ; T e r m i n a t o r
17 r t s
18
19 i n w i n 1 _ s o u r c e _ c o n v e r t _ a s m ; Load i n t h e u t i l i t y code

Listing 18.4: ASCII to LONG Converter - Test Harness

Save the file and assemble it. To test it all out, the following is all that is required:

1 ADDR = a l c h p ( 1 0 2 4 )
2 LBYTES w i n 1 _ s o u r c e _ t e s t _ b i n , add r
3 CALL ADDR
4 PRINT ’ R e s u l t = ’ ; PEEK_L (ADDR+2)
5 PRINT ’ T e r m i n a t o r = ’ ; CHR$(PEEK(ADDR+ 6 ) )

Which in my case gives me a nice long value of 1234568 for Result and a terminator of ‘x’. In
the event of an illegal FP number being converted, say one with two decimal points or two ‘e’
characters or whatever, an invalid number error will result. If the FP value cannot be converted to a
LONG without overflowing, an overflow error will result.



18.5 Code Improvements 243

So, there is is, a small piece of code (around 156 bytes in my ‘test_bin’ file) to convert a string of
ASCII characters into a LONG word. How easy was that then?

18.5 Code Improvements

In the code above, the ‘convert’ routine assumes that a buffer, pointed to by A0.L, holds a string
of ASCII characters without a leading QDOS string’s length word. Unfortunately, most of QDOS
relies on there being a length word at the start, so we really should allow for this in the convert code
as well.

Well, I’ve been thinking (a rare thing for me - ask my wife!) and I realised that, internally,
QDOSMSQ allows D7.L to be zero or the address of the first byte in memory AFTER the last
character of the ASCII to be converted to a floating point value. We can use this in our favour. The
conversion stops when the address in D7 is reached as QDOSMSQ loops around converting each
character from the buffer.

With a slight modification the the code, we can cater for both formats of buffers - one without a
leading size, and one with. The changes required are simple.

Add the following code just before the code at convert, line 26 in my source file:

26 c o n v e r t q move .w ( a0 ) + , d7 ; Get t h e l e n g t h word
27 e x t . l d7 ; S ign e x t e n d t o a long word
28 add . l a0 , d7 ; D7 . L c o r r e c t l y s e t , A0 a l s o .

Listing 18.5: Better ASCII to LONG Converter - Converq

Then, remove the following line from near the start of the convert code, it’s just above the call to
CN_DTOF which is at line 31 in my file:

31 moveq #0 , d7 ; For CN_DTOF

So, your codefile should now look like this:

26 c o n v e r t q move .w ( a0 ) + , d7 ; Get t h e l e n g t h word
27 e x t . l d7 ; S ign e x t e n d t o a long word
28 add . l a0 , d7 ; D7 . L c o r r e c t l y s e t , A0 a l s o .
29
30 c o n v e r t movem . l d2 / d7 / a1−a3 ,−( a7 ) ; Save worke r s
31 suba . l a6 , a0 ; R e l a t i v i s e b u f f e r a d d r e s s
32 suba . l a6 , a1 ; And t h e maths s t a c k
33 moveq #0 , d0 ; Assume no e r r o r s
34 moveq #0 , d1 ; Zero r e s u l t
35 move .w c n _ d t o f , a2 ; Conve r t ASCII t o an FP number
36 j s r ( a2 ) ; Do c o n v e r s i o n
37 t s t . l d0 ; OK?
38 bne . s r e s t o r e ; No , b a l e o u t .

Listing 18.6: Better ASCII to LONG Converter - Part 1

And that’s all there is to it. You can now call the ‘convert’ code with A0.L pointing at a buffer of
ASCII characters and no QDOS length word as long as the buffer has an ‘invalid’ digit at the end, a
linefeed perhaps, or, you can point A0.L at a proper QDOSMSQ string’s length word and call the
code at ‘convertq’ instead - with D7 set to zero first of course.

A small test harness for the new version would be as follows:



244 Chapter 18. Ascii To Long Converter

1 t e s t b r a . s t e s t 2
2
3 r e s u l t ds . l 1 ; One long word f o r t h e r e s u l t
4 ds . b 1 ; One b y t e f o r t h e t e r m i n a t o r
5
6 fp dc .w 10 ; How long i s t h e t e x t ?
7 dc . b ’1234567 .89 ’ ; The fp number i n A s c i i p l u s
8 ∗ ; an i n v a l i d c h a r a c t e r
9 dc . l 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; 15 Long words

10 msp equ ∗ ; STACK TOP f o r t h e maths s t a c k
11
12 t e s t 2 l e a fp , a0 ; B u f f e r h o l d i n g A s c i i
13 l e a msp , a1 ; Top of maths s t a c k
14 b s r . s c o n v e r t q ; Conve r t from a s c i i t o long
15 l e a r e s u l t , a1
16 move . l d1 , ( a1 )+ ; Save r e s u l t
17 move . b ( a0 ) , ( a1 ) ; T e r m i n a t o r
18 r t s
19
20 i n w i n 1 _ s o u r c e _ c o n v e r t _ a s m ; Load i n t h e u t i l i t y code

Listing 18.7: Better ASCII to LONG Converter - Test Harness

The above is remarkably similar to the test harness I provided above. The only difference is that
the ASCII buffer at label ‘fp’ has been converted to a properly formatted QDOSMSQ string with a
leading length word added and the ‘x’ has been removed from the end of the original ASCII buffer.

Note the call to ‘convertq’ rather than ‘convert’.

18.6 Coming Up...

Now, just this week1 I have sold my house and so my wife Alison and I are in the process of looking
for a new home. This means that I might not have email etc for much longer so I cannot guarantee
whether I shall be writing in the next issue or not. Hopefully I will be, but just in case, I apologise
in advance for my absence!

See you soon for more exciting code!

1Ahem, that was written 8 years ago, in what must have been 2007. We are still in the ‘new’ house though - we
haven’t moved again, yet.....



19. Assorted Revisions And Ramblings!

19.1 Introduction

Greetings from the basement!

We have moved house and are getting settled.1 We have still got a lot of boxes to unpack and things
to find, but we are getting there. I have a new ‘office’ deep down in the basement where it is nice
and cool. This is the first in the Assembler series to come from the basement.

With all the upheaval of getting moved and unpacked etc, I have not got a lot of code for you
this time, hopefully, you won’t be too bored by this episode in which I go over bits and pieces of
assembly language programming that causes me grief.

It all started when I was having a think the other day about life in general and assembly language in
particular. I was pondering on the bits of programming in assembler that I always get wrong, or
have to really think about - and still get wrong.

19.2 SIGNED And UNSIGNED Tests

I don’t know about you, but I seem to have severe difficulties in remembering which are the signed
and which are the unsigned tests. I have to confess that I always have a list of them written down
(or printed out) and stuck to my work area - wherever that happens to be.

Table 19.1 is a reminder of the ‘cc’ code to use in a Bcc or whatever for signed and unsigned
comparisons:

So, if D0.B contains the value $FF it represents either 255 (unsigned) or -1 (signed). You, as the
programmer should know whether the value is considered signed or not and can make the correct
comparison checks.

The EQ and NE tests are interesting in that they either mean ‘two values are [not] the same’ when
1That was written originally in 2007. Treat with a pinch of salt now!



246 Chapter 19. Assorted Revisions And Ramblings!

Desired Test Signed Unsigned

Greater Equal GE CC
Greater Than GT HI
Equal/Zero EQ EQ
Not Equal/Zero NE NE
Less Equal LE LS
Less Than LT CS
Negative MI n/a
Positive PL n/a

Table 19.1: Signed and Unsigned Tests

comparing things such as memory and registers, or two registers etc, or, when having just loaded a
register with a value, they mean ‘the value just loaded into a data register is [not] zero’.

The following code examples are identical in result, one is just quicker than the other:

1 MOVE.W ( A1 ) , D0
2 BEQ. S D0Zero
3 . . . .

and

1 MOVE.W ( A1 ) , D0
2 CMPI .W #0 ,D0
3 BEQ. S D0Zero
4 . . .

19.3 Which Way Round Is The ‘Subtraction’ In CMP?

If I see CMPI.W #1234,D0 then it is obvious, I am comparing D0.W with the value 1234. That’s
easy. However, when I see CMP.W D0,D1 I lose the plot.

What am I comparing here is it D0 with D1 or the other way around. My brain hurts already.

Is the value of 1234 subtracted from D0 or is the value in D0 subtracted from 1234. Which way
round is the subtraction and the resulting setting of flags?

The answer, I note from part 2 of this series is that the source register is subtracted from the
destination register exactly as a SUB instruction would do, the result is simply discarded. So in the
instruction CMP.W D0,D1 the flags are set according to D1.W minus D0.W.

It is assumed that after this pseudo-subtraction, some Bcc, Scc or DBcc instruction will no doubt
check the flags and do something useful with the result.

19.4 Which CC Code To Use After CMP

Leading on from the above, I never remember which ‘cc’ code to use after a CMP - although, having
written out the above it is becoming clearer. The following code gives me the willies time after
time:



19.5 Loops With Conditions 247

1 . . .
2 CMP. L D0 , D1
3 BHI somewhere
4 . . .

This fragment has everything that confuses me, almost. It has a CMP followed by a ‘cc’ instruction -
so I have to think about the two ‘problem areas’ I mention above. Signed or unsigned and which
register is causing the HI to be true or false.

Well, the HI is, from my table above, unsigned and using my new found knowledge of the CMP

instruction I know (for a short while at least) that the flag are set to the result of (D1.L - D0.L) but
which way around does it go again?

The BHI should be read as ‘branch if destination register HI source register’ in the preceding CMP

or SUB or whatever was used to set the flags. So, using this explanation, I now know that the code
above branches if D1.L is higher (in an unsigned manner) than D0.L.

This leads me to surmise that the following pseudo-code:

1 IF u n s i g n e d ( D1 . L > D0 . L ) THEN
2 . . .
3 ELSE
4 . . .
5 END IF

Becomes:

1 IF CMP. L D0 , D1 F l a g s = r e s u l t o f D1 . L − D0 . L
2 BHI . s THEN D1 i s i n d e e d ( u n s i g n e d ) g r e a t e r t h a n t h a n D0
3 ELSE . . . D0 i s l e s s o r e q u a l t o D1 ( t h e ELSE b i t )
4 BRA. s ENDIF Skip ove r t h e THEN c l a u s e
5 THEN . . . Do t h e THEN s t u f f
6 ENDIF . . . T o g e t h e r a g a i n .

Alternatively, reverse the jumps to look more like the pseudo code:

1 IF CMP. L D0 , D1 F l a g s = r e s u l t o f ( D1 . L − D0 . L )
2 BLS . s ELSE D1 i s n o t HI ( u n s i g n e d ) t h a n D0
3 THEN . . . D1 i s i n d e e d HI t h a n D0 , ( t h e THEN b i t )
4 BRA. s ENDIF Skip ove r t h e ELSE c l a u s e
5 ELSE . . . Do t h e ELSE s t u f f
6 ENDIF . . . T o g e t h e r a g a i n .

Maybe we should think about writing our assembly language in pseudo code and having a pre-
processor convert it into the real assembler code ....

19.5 Loops With Conditions

The instruction format for decrement and branch on condition instructions is DBcc where ‘cc’ is
one of the many condition codes noted above.



248 Chapter 19. Assorted Revisions And Ramblings!

So, you have an area of RAM full of data and you go looking through it for the first occurrence of a
specific byte value, let’s say $00, and you know that the leading word of the data defines the length
in bytes. So, the following fragment would do the job - assuming A0.L points to the data and D1.W
holds a valid data length.

1 LOOP CMP. B #$00 , ( A0)+
2 DBcc D1 , LOOP
3 ENDLOOP . . .

What we need to figure out is which ‘cc’ we require and also, what is result when we get to the
ENDLOOP label if we found a zero byte or if we didn’t.

One way we will end up at ENDLOOP is when our counter in D1 expires - reaches minus 1 - that
indicates that we ran out of data before finding what we wanted. But, what happens if we find a
zero byte - and which ‘cc’ do we need.

If we remember that DBcc really means ‘test condition and decrement if false and branch’ then we
should be ok. Alternatively:

1 IF ’ cc ’ i s FALSE THEN
2 D1 = D1 − 1
3 IF D1 <> −1 Then
4 GOTO LOOP
5 ELSE
6 GOTO ENDLOOP
7 END IF
8 ELSE
9 GOTO ENDLOOP

10 END IF

So, we want to check for a zero byte, we can use the ‘EQ’ test - remember EQ means we have hit a
zero or two values are not equal - and our code now becomes:

1 LOOP CMP. B #$00 , ( A0)+
2 DBEQ D1 , LOOP
3 ENDLOOP . . .

So, we have reached ENDLOOP and we need to know if we hit a zero byte or if we ran out of data.
How to tell?

Well the good news is that the DBcc instructions do not alter the flags. So on exit from a DBcc loop,
if the ‘cc’ is still true, then the condition was met and the loop terminated before the counter ran
out. All we have to do is retest with the same condition as follows:

1 LOOP CMP. B #$00 , ( A0)+
2 DBEQ D1 , LOOP
3 ENDLOOP BEQ. S FoundZeroByte

In this case, we check for the EQ condition which tells us that the loop terminated early. We can
test the inverse condition as well to see if the loop expired without hitting the required condition:



19.6 Do I TST.L D0 After TRAPs And Vectors? 249

1 LOOP CMP. B #$00 , ( A0)+
2 DBEQ D1 , LOOP
3 ENDLOOP BNE. S NotFound

Which we see makes the branch if the loop expired when the counter in D1.W hit minus 1. I
propose that we rename this family of instructions to ‘Decrement and Branch UNLESS condition’.
That makes more sense to me.

19.6 Do I TST.L D0 After TRAPs And Vectors?

I always get corrected on this one, either by George or Simon. For years I have always done this:

1 . . .
2 TRAP #1
3 TST . L D0
4 BNE H a n d l e E r r o r
5 . . .

Which is fine for a TRAP call - it has to be done this way. However, for a vector call it is different:

1 . . .
2 MOVE.W UT_GTSTR , A2
3 JSR ( A2 )
4 TST . L D0
5 BNE Hand leEro r
6 . . .

This is wrong - I do not need to test D0 after a vectored utility call. The reason I do after a TRAP
and don’t after a vector is quite subtle and was only recently pointed out to me by Simon when it
all became very clear indeed.

A TRAP call is treated as an exception and to return from an exception handler, you use the RTE
instruction. To return from a vectored call, it is an RTS instruction. The difference between the two
is that the RTE restores the status register as well as the program counter. RTS simply restores the
program counter.

So, all these years where I’ve been testing D0 on return from vectors I’ve been wasting clock cycles
when I need not have done. The status register is correctly set on exit from a vectored utility but
has only D0 is set on return from a TRAP.

Simple, but it has caught me out for years. I now need to unlearn my habit of coding a TST.L D0
every time I use a vectored utility.

Happy coding.

19.7 Coming Up...

After many years of studious avoidance, I’m biting the bullet and attempting to learn to code
programs under the Pointer Environment.





VI
20 The Pointer Environment . . . . . . . . . . . . . 253
20.1 Introduction
20.2 The Pointer Environment
20.3 Coming Up...

21 The Pointer Record Investigated . . . . . 257
21.1 Introduction and Corrections
21.2 The Pointer Record
21.3 Coming Up...

22 WMAN, The Window Manager . . . . . . . 267
22.1 Introduction
22.2 WMAN
22.3 A Very Brief Overview Of WMAN
22.4 More Useful Utilities From George
22.5 WMAN Windows Definition.
22.6 Standard Windows Definition
22.7 Coming Up...

23 WMAN, The Journey Continues . . . . . . 275
23.1 Introduction
23.2 WMAN Standard Windows Definition - Continued
23.3 Coming Up...

The Pointer Environment -
Introduction





20. The Pointer Environment

20.1 Introduction

Well for many years now I’ve been avoiding this moment, but it has finally arrived. I am starting to
learn all about programming the PE in assembly language. You are coming along for the ride! I’m
sure that along the way I’ll be making as many, if not more, errors than I usually do and someone
out there who knows far more than me, will correct me as we go along. As I always say, you should
learn from your mistakes!1

20.2 The Pointer Environment

There are two parts to the PE, PTR_GEN and WMAN - the Pointer environment and the Window
Manager. To slip easily into programming, we shall start off with a small and perfectly useless
pointer only program, so the Window Manager stuff will not be used.

In order to run the program you should have loaded. If you are running SMSQ/E then it is built in
to the operating system. If you are running a ‘normal’ QL then you will need to load it. I suspect
most - if not all - users still with us will have a copy, however, if not, Dilwyn’s Web Site will have a
copy to download.

Ok, lets dive straight in with our next to useless program, beginning with a host of equates.

1 me equ −1 ; The c u r r e n t j o b i d
2 t i m e o u t equ −1 ; I n f i n i t e t i m e o u t
3 openOld equ 0 ; Open Old E x c l u s i v e d e v i c e
4 i o p _ p i n f equ $70 ; Get PE i n f o r m a t i o n
5 i o p _ o u t l equ $7a ; O u t l i n e a p r i m a r y window
6 i o p _ r p t r equ $71 ; Read t h e p o i n t e r

1Or mine!



254 Chapter 20. The Pointer Environment

7 termVec equ $01 ; When t o r e t u r n from IOP_RPTR

Listing 20.1: Simple PE Program - Part 1

The final equate above tells the call to IOP_RPTR when to return back to the code in our program.
It is 8 bits long and each bit has special meaning, as follows:

Bit Description

0 Return when a key or button is pressed in the window. Also, request window
resize

1 Return when a key or button is pressed (subject to auto repeat). Also request
window move

2 Return when a key or button is released in the window
3 Return when the pointer moves from the given co-ordinates in the window
4 Return when the pointer moves out of the window
5 Return when the pointer is inside the window
6 Pointer hit the window edge
7 Window Request

Table 20.1: The termination vector

Bits 0 and 1 look a bit funny and are used in conjunction with bit 7 to indicate a window request. If
bit 7 is set then the rest should be zero except bit 0 or 1 - one of these should be set. If bit 0 is set
the pointer is the resize one and if bit 1 is set it is the window move pointer. If both are unset, the
Window Required pointer will be displayed. With bit 7, the topmost window of the pile if hit and
selected. More on this later in the series.

Our termination vector is set to have bit zero turned on only. This means when a mouse button
is pressed or any key is pressed while the pointer is in the window we create later, the call to
IOP_RPTR will return.

As this is a job, we need a standard job header and as we have seen this so many times before, I
shall not insult your intelligence by explaining it yet again!

8 b r a . s s t a r t
9 dc . l 0

10 dc .w $4afb
11 dc .w 15
12 dc . b ’PTR_GEN T e s t v1 ’

Listing 20.2: Simple PE Program - Part 2

Next we have a few definitions of channel names, window sizes and space for the Pointer Record
that we get back from a call to IOP_RPTR. First of all, a channel to a console is required.

13 conChan dc .w 4
14 dc . b ’ con_ ’

Listing 20.3: Simple PE Program - Part 3

Once we have it open, we redefine it to be 200 wide, 100 deep and centred in the middle of a 512
by 256 ‘standard’ window using the following block of 4 words.

15 conDef dc .w 200 ,100 ,156 ,78

Listing 20.4: Simple PE Program - Part 4



20.2 The Pointer Environment 255

The next 24 bytes are used by the IOP_RPTR call and it stores the pointer record. There is more on
this later on in the text.

16 p t r R e c ds .w 12

Listing 20.5: Simple PE Program - Part 5

This is where we start the main code. It’s pretty simple as you can see and all we basically do here
is open a console device, redefine it as mentioned above, set a border of one pixel in red and finally
clear the screen (to black paper by default) If anything gives an error we simply kill the job and exit.

17 s t a r t moveq #IO_OPEN , d0 ; Open a c h a n n e l
18 moveq #me , d1 ; Channel r e q u i r e d f o r t h i s j o b
19 moveq # openOld , d3 ; Device e x i s t s
20 l e a conChan , a0 ; D e f in e d e v i c e t o open
21 t r a p #2 ; Do i t
22 t s t . l d0 ; Ok?
23 bne . s e x i t ; No , e x i t
24
25 moveq # sd_wdef , d0 ; R e d e f i n e open window
26 moveq #2 , d1 ; Borde r c o l o u r i s r e d
27 moveq #1 , d2 ; Borde r wid th i s one p i x e l
28 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
29 l e a conDef , a1 ; Conso le d e f i n i t i o n b l o c k
30 t r a p #3 ; Do i t
31 t s t . l d0 ; Ok?
32 bne . s e x i t ; NO, e x i t
33
34 moveq # s d _ c l e a r , d0 ; CLS
35 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
36 t r a p #3 ; Do i t
37 t s t . l d0 ; Ok
38 bne . s e x i t ; No , e x i t

Listing 20.6: Simple PE Program - Part 6

That’s about all the main setting up that we have to do. We now have a channel open redefined and
a nice border showing. The next stage is to look for the PE, if it isn’t found, we have a problem and
simply exit.

39 FindPE moveq # i o p _ p i n f , d0 ; Get PE I n f o r m a t i o n
40 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
41 t r a p #3 ; Do i t
42 t s t . l d0 ; Ok?
43 bne . s e x i t ; No , e x i t

Listing 20.7: Simple PE Program - Part 7

So far so good. If the PE exists, we now need to make sure that our window is outlined. This
indicates to the PE that the window is to be ‘managed’ It also defines the limits of the ‘hit area’
where a hit or do or keypress will be registered by our program. This gets a better explanation later
in the series.

44 GotPE moveq # i o p _ o u t l , d0 ; OUTLN our window
45 move . l # $00020002 , d1 ; Shadow s i z e o f 2
46 moveq #0 , d2 ; Don ’ t p r e s e r v e window c o n t e n t s
47 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
48 l e a conDef , a1 ; Window s i z e w i t h o u t shadow



256 Chapter 20. The Pointer Environment

49 t r a p #3 , ; Do i t
50 t s t . l d0 ; Ok?
51 bne . s e x i t ; No , e x i t

Listing 20.8: Simple PE Program - Part 8

The shadow size is added to the sized defined in our console definition block but the shadow is
outside of the hit area for our window. Now we read the pointer. The call to IOP_RPTR will not
return unless the timeout expires or an event happens that has been set in the termination vector to
cause a return. We are looking for a button or keypress while the pointer is inside out window.

52 P o i n t e r moveq # i o p _ r p t r , d0 ; Read t h e P o i n t e r
53 moveq #0 , d1 ; S e t p o i n t e r co−o r d i n a t e s 0 ,0
54 moveq # termVec , d2 ; Re tu rn on b u t t o n o r k e y p r e s s
55 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
56 l e a p t rRec , a1 ; S t o r a g e f o r p o i n t e r r e c o r d
57 t r a p #3 ; Do i t
58 moveq #0 , d0 ; We i g n o r e CHANNEL NOT OPEN
59 e r r o r s

Listing 20.9: Simple PE Program - Part 9

When the user click in the window with the mouse, either button will do, or presses a key, the call to
IOP_RPTR will return having filled the pointer record with useful information. We are not bothering
with that here in this first simple demo. We are also ignoring the possibility of A0 pointing at a
channel that is closed because by the time we get here, we have carried out lots of actions on it - so
it should still be open!

The next part of the code simply kills off our job reclaiming any resources it allocated and closing
channels etc.

60 e x i t move . l d0 , d3 ; Save any e r r o r codes
61 moveq #MT_FRJOB , d0 ; K i l l a j o b
62 moveq # t i m e o u t , d1 ; The j o b t o k i l l i s t h i s one
63 t r a p #1 ; K i l l me
64 b r a . s e x i t ; We n e v e r g e t h e r e . . .

Listing 20.10: Simple PE Program - Part 10

That is all there is to this small demonstration. When assembled and run, you should see a 200 by
150 window centered on screen (well on a standard QL screen anyway) cleared to show black paper
with a single pixel red border and a shadow down the right and bottom borders. It is waiting for
you to move the pointer into. When you do it will change to an arrow and will remain as an arrow
while you move it around. Click a button or press a key while the pointer is in our window and the
job will kill itself.

So there we are, a very simple pointer Environment program. More next time as we extend our
programming knowledge of the PE. See you then.

20.3 Coming Up...

That’s it then, a very quick and useless introduction to the Pointer Environment code. Next time,
we shell delve a little deeper and investigate the Pointer Record to see what it can tell us.



21. The Pointer Record Investigated

21.1 Introduction and Corrections

George Gwilt has made a couple of suggestions for improving the code in the previous chpater. In
summary:

• All the calls to the TRAP #3 and checking the error return can be extracted to a small
subroutine and called as required.

• The timeout value in D3 is actually preserved through all the TRAP #3 calls and so need not
be implicitly set after the call to SD_WDEF.

Both of these improvements have been incorporated into this article’s code.

In addition to what George spotted, I have one of my own to add. The code at Exit (line 60) reads
as follows:

60 e x i t move . l d0 , d3 ; Save any e r r o r codes
61 moveq #MT_FRJOB , d0 ; K i l l a j o b
62 moveq # t i m e o u t , d1 ; The j o b t o k i l l i s t h i s one
63 t r a p #1 ; K i l l me
64 b r a . s e x i t ; We n e v e r g e t h e r e . . .
65 c a s e

Listing 21.1: Simple PE Program - Part 10 Original

This is slightly incorrect as line 62, which moves the timeout value into D1 should read:

62 moveq #me , d1 ; The j o b t o k i l l i s t h i s one

Listing 21.2: Correction to line 62

The reason it works is simple, the equates for timeout and me are both -1, so on this occasion, I got
away with it!

Having got the errors out of the way, let us progress.



258 Chapter 21. The Pointer Record Investigated

21.2 The Pointer Record

I mentioned in the previous (short) chapter on the Pointer Environment that the pointer record
needs a bit of discussion and to this end, I’ve written a small pointer record diagnostic program
that allows you to see what happens when you press a key and so on in a call to IOP_RPTR. The
code will be shown later in this article. Note however, that it doesn’t include any sub-windows yet -
those are a feature of a later article.

When you make a call to IOP_RPTR you have to have A1 pointing at a 24 byte buffer, aligned on an
even address, where the call will write information about things that happened, and where, during
the call.

The pointer record looks like Table 21.1.

Offset Size Description

$00 Long Channel ID
$04 Word Sub window number (-1 = main window)
$06 Word X coordinate
$08 Word Y coordinate
$0A Byte Keystroke or button (0 = none)
$0B Byte Key down or button down (0 = none)
$0C Long Event vector LSB only used
$10 Word Window or sub-window width
$12 Word Window or sub-window height
$14 Word Window or sub-window X co-ordinate
$16 Word Window or sub-window Y co-ordinate

Table 21.1: The pointer record

Now, remembering back to the termination vector in the last article, you will remember that this
tells IOP_RPTR when to return, so the data in the pointer record depends to a certain extent on what
you set in the termination vector. In our first pointer environment example, we simply set bit 0 so
we would return from the call to IOP_RPTR when a button on the mouse was pressed or a key on
the keyboard (where else) was pressed.

What are all those fields in the pointer record used for?

The channel id is simply the channel ID of the window enclosing the pointer. This will not be a
sub-window because sub-windows don’t have an Id, they are ‘simply’ sections of the main window.
There will be more of sub-windows in a future chapter.

If the window is indeed adorned with sub-windows, the second field holds a word sized sub- window
number. This can be used to index into the sub-window table to fetch back the dimensions and so
on of the sub-window in question. If this value is $FFFF (minus 1) then the pointer was not in any
sub-windows but in the main window.

The X and Y coordinates are those of the pointer position within either the main window or the
sub-window. The values are in pixels and both are word sized values.

The next two fields denote which key or mouse button was pressed (and released) or is being held
down. For most values this corresponds to the ASCII value of the character code so the ESC key
would be $1b or 27 (decimal) however, certain keys have different values:

• a HIT with the space bar gives a code of $01



21.2 The Pointer Record 259

• a DO with ENTER gives $02 for example.

You will see this as we experiment later with our code for this article. A zero in these fields says
that no key or mouse button was pressed/held.

Next we have the event vector which is a long word in size. Only the lowest byte is used (at offset
$0F). This appears to be a bitmap of certain operations that have taken place, one or more may have
caused the termination of the IOP_RPTR call.

Ok, the documentation says that only the lowest byte is used, but the documentation is very old.
Things have moved on and it is possible for jobs to be sent an event, rather than generating one
themselves, so it is possible that you will see data in bytes other than the lowest one.

Finally, we have 4 words defining the width, height, x and y positions of the window or sub-window
in which the pointer event took place. You do not - some might say unfortunately - get the border
colour and width or paper and ink colours from the pointer record.

So, now you have details of what the PE documentation has to say about the pointer record, what
else can we find out about it ourselves? To answer this question and to see exactly what is stored in
it after a call to IOP_RPTR, I have written the following almost useful utility to allow us to view the
contents of the pointer record after an event has occurred.

I have deliberately kept it simple - as I don’t want to clutter up the code with unnecessary adornments
- this is not a Windows program after all!:-)

You may notice that it is very similar to our very first introduction to PTR_GEN programming as
per the last article.

As ever, we start with a number of equates. None of these need any explanation, so I won’t! You
can experiment with the value of TermVec as described in the previous article - if you wish.

1 Me equ −1 ; C u r r e n t j o b i d
2 Timeout equ −1 ; I n f i n i t e t i m e o u t
3 OpenOld equ 0 ; Open e x i s t i n g e x c l u s i v e d e v i c e
4 i o p _ p i n f equ $70 ; Get PE i n f o r m a t i o n
5 i o p _ o u t l equ $7a ; O u t l i n e a p r i m a r y Window
6 i o p _ r p t r equ $71 ; Read t h e p o i n t e r
7 TermVec equ $01 ; When t o s t o p r e a d i n g
8 KeySt roke equ $0a ; K e y s t r o k e o r b u t t o n
9 ESC equ $1b ; ESC key code

10 Space equ ’ ’ ; One s p a c e
11 LineFeed equ $0a ; L i n e f e e d

Listing 21.3: Pointer Record Examiner - Equates

The usual standard QDOSMSQ job header needs no introduction by now either.

12 b r a . s s t a r t
13 dc . l 0
14 dc .w $4afb
15 JobName dc .w JobName_x−JobName−2
16 dc . b ’PTR_RECORD T e s t v1 ’
17 JobName_x equ ∗

Listing 21.4: Pointer Record Examiner - Job Header

A few channel definitions and useful tables and such like come next. We are using a bigger window
than the previous article as we have a bit of text to print in our window this time. The previous



260 Chapter 21. The Pointer Record Investigated

utility didn’t do much at all, simply closing down when you clicked a button or pressed a key. This
one loops around until you explicitly quit by pressing ESC.

18 ConChan dc .w 4 ; Conso le c h a n n e l name
19 dc . b ’ con_ ’
20
21 ConDef dc .w 412 ,156 ,50 ,30 ; P r imary Window width , h e i g h t , x , y
22
23 HexBuff ds .w 1 ; 2 Bytes s t o r a g e f o r hex c o n v e r s i o n
24
25 SpaceTab dc .w 2 0 , 1 8 , 1 6 , 1 4 , 1 3 , 1 2 , 8 , 6 , 4 , 2
26
27 P t r Re c ds .w 12 ; P o i n t e r Record f o r IOP_RPTR

Listing 21.5: Pointer Record Examiner - Definitions

Next up we have the start of the code proper. Like last time, much of this could be considered
boiler plate in that it never varies much. Obviously, my error trapping is quite simple, in the event
of an error, bale out of the program. This is suitable for a small test program but in real life would
need to be slightly more robust.

We start off by opening a channel to a console device. This will default the colours and so forth to a
black paper and white text.

28 S t a r t moveq # io_open , d0 ; Open a f i l e o r c h a n n e l .
29 moveq #me , d1 ; Open f o r me
30 moveq #OpenOld , d3 ; Old e x c l u s i v e d e v i c e
31 l e a ConChan , a0 ; Channel d e f i n i t i o n
32 t r a p #2 ; Do i t
33 t s t . l d0 ; OK
34 bne E x i t ; Nope , b a l e o u t .

Listing 21.6: Pointer Record Examiner - Open Console

Assuming the console has opened ok, we now redefine the size we want it to be and give it a red
border one pixel wide. Once that has been done, we call CLS on the window.

35 moveq # sd_wdef , d0 ; R e d e f i n e window
36 moveq #2 , d1 ; Red b o r d e r
37 moveq #1 , d2 ; One p i x e l wide
38 moveq # t i m e o u t , d3 ; I n f i n i t e t i m e o u t
39 l e a ConDef , a1 ; D e f i n i t i o n b l o c k
40 b s r Trap3 ; Do t r a p #3 r e t u r n h e r e i f a l l ok .
41
42 moveq # s d _ c l e a r , d0 ; c l s
43 b s r . s Trap3 ; Do t r a p #3 r e t u r n h e r e i f a l l ok .

Listing 21.7: Pointer Record Examiner - Redefine Console

From this point onwards, both A0 and D3 are preserved by all the calls to TRAPs etc that we make
in the program. You will not see these being set again.

Next, we have to find out if the user has loaded the Pointer Environment or not. If they have, we
can continue with the remainder of the program, otherwise we simply bale out. A real program
would display a message to the user telling them what the problem is and not simply ‘vanish’.

44 FindPE moveq # i o p _ p i n f , d0 ; Get PE i n f o r m a t i o n
45 b s r . s Trap3 ; Do t r a p #3 r e t u r n h e r e i f a l l ok .

Listing 21.8: Pointer Record Examiner - Get Pointer Environment



21.2 The Pointer Record 261

The PE exists and is usable. We now have to outline our primary window. This defines the area in
which all pointer operations take place for this application. We also add a 4 by 4 shadow to our
display to give the appearance that our application’s window is floating above the screen.

46 GotPE moveq # i o p _ o u t l , d0 ; O u t l i n e p r i m a r y window
47 move . l # $00040004 , d1 ; Shadow 4 by 4
48 moveq #0 , d2 ; I g n o r e window c o n t e n t s
49 l e a ConDef , a1 ; Ou t ln s i z e
50 b s r . s Trap3 ; Do t r a p #3 r e t u r n h e r e i f a l l ok .

Listing 21.9: Pointer Record Examiner - Outline Primary Window

All the preparatory work for the PE has been done, we now display a message telling the user to
‘press ESC to quit’. As we cleared the screen earlier on, this will appear at the top of our window.
We also print a string containing headers to explain what each field of the (soon to be) printed
output relates to.

51 l e a SignOn , a1 ; Message , ESC t o q u i t
52 move .w u t_mtex t , a2 ; P r i n t message v e c t o r
53 j s r ( a2 ) ; Do i t
54 bne E x i t ; Ba le o u t on e r r o r
55
56 l e a T i t l e , a1 ; Headings
57 move .w u t_mtex t , a2 ; P r i n t message v e c t o r
58 j s r ( a2 ) ; Do i t
59 bne E x i t ; Ba le o u t on e r r o r
60
61 moveq #−13 , d4 ; t o c o u n t 14 l i n e s = f i r s t s c r e e n .

Listing 21.10: Pointer Record Examiner - Sign On

The main pointer loop begins here. As mentioned in the text, we are using the same termination
vector as last time, return from IOP_RPTR when the user clicks a mouse button or presses a key.

62 P o i n t e r moveq # i o p _ r p t r , d0 ; Read p o i n t e r
63 moveq #0 , d1 ; I n i t i a l x , y f o r p o i n t e r
64 moveq #TermVec , d2 ; Re tu r n on b u t t o n o r k e y p r e s s
65 l e a Pt rRec , a1 ; P o i n t e r r e c o r d s t o r a g e
66 t r a p #3 ; Do i t

Listing 21.11: Pointer Record Examiner - Read Pointer

When we get to this point, the call to IOP_RPTR has returned and as part of that call, the pointer
record has been filled in with data. This is where we start to print it all out.

There are 24 bytes in the pointer record, so we start by initialising our byte counter to 23 - as DBF
requires. A2.L is set to the address of the pointer record and then we start a loop to convert each
byte of the pointer record to hexadecimal and print it out.

67 P r i n t O u t moveq #23 , d7 ; 24 b y t e s t o p r i n t o u t
68 l e a Pt rRec , a2 ; L o c a t i o n o f d a t a = p o i n t e r r e c o r d
69 addq .w #1 , d4 ; Line c o u n t e r
70 bmi . s PLoop ; Nega t ive , h e a d i n g s won ’ t s c r o l l
71 b s r . s S c r o l l ; S c r o l l and p r e s e r v e h e a d i n g s
72
73 PLoop move . b ( a2 ) + , d6 ; F e t c h a b y t e from p o i n t e r r e c o r d
74 b s r . s HexI t ; Conve r t t o hex i n b u f f e r a t ( A3 )
75 subq . l #2 , a3 ; A d j u s t b u f f e r p o i n t e r



262 Chapter 21. The Pointer Record Investigated

76 exg a1 , a3 ; B u f f e r now i n A1
77 moveq # i o _ s s t r g , d0 ; Send b y t e s t o c h a n n e l
78 moveq #2 , d2 ; Two b y t e s on ly
79 b s r . s Trap3 ; Do t r a p #3 r e t u r n h e r e i f a l l ok .
80 exg a1 , a3 ; Swap b u f f e r s back a g a i n

Listing 21.12: Pointer Record Examiner - Print Details

As we move through the buffer, D7 is used to keep track of how many bytes are still to be printed
(minus one of course) so, at certain points along the way, we check if D7 is equal to one of the
entries in our ‘space table’ and if so, we print a space. This is a quick and simple manner of splitting
up the long string of characters that would result from converting 24 bytes to hexadecimal and
printing them out.

81 SpaceReqd l e a SpaceTab , a3 ; Tab le o f s p a c e p o s i t i o n s
82 moveq 9 , d5 ; 10 v a l u e s i n t a b l e
83
84 SpaceNext cmp .w ( a3 ) + , d7 ; I s D7 a s p a c e p o s i t i o n ?
85 dbeq d5 , SpaceNext ; Scan u n t i l found , o r n o t
86 bne . s LoopEnd ; I t was n o t found
87 b s r . s DoSpace ; P r i n t a s i n g l e s p a c e

Listing 21.13: Pointer Record Examiner - Space Table

At the end of the main loop, when all 24 bytes have been converted and printed out, we throw a
new line and get ready to see if we should quite or not.

88 LoopEnd dbf d7 , PLoop ; Do some more b y t e s
89
90 b s r . s DoLinefeed ; P r i n t a l i n e f e e d now

Listing 21.14: Pointer Record Examiner - Loop End

At this point we now start to use the data in the pointer record in ‘anger’. We have printed the
contents to the screen - so we will see what is in the buffer, however, if the key we pressed was
ESC, we terminate the program. If it was some other key, we skip back to the start of the pointer
loop and start off by reading the pointer again.

The ESC key has keycode 27 decimal or $1B hexadecimal and we look in the pointer record for
that value as the key that was pressed. Remember, our termination vector said to exit when a key
was pressed or button clicked so we are looking for a keystroke. It could be that we will find data
elsewhere in the pointer record about our ‘event’ - time will tell.

91 Escape l e a Pt rRec , a2 ; P o i n t e r r e c o r d a g a i n
92 cmpi . b # esc , KeySt roke ( a2 ) ; Got ESC key ?
93 bne . s P o i n t e r ; Go around a g a i n

Listing 21.15: Pointer Record Examiner - Handle ESC

This is the end of the program. We arrive here when the user presses the ESC key or if any errors
occur in setting up our windows and so on.

94 E x i t move . l d0 , d3 ; E r r o r code i n D3
95 moveq # m t _ f r j o b , d0 ; Force remove a j o b .
96 moveq #me , d1 ; Job i d o f c u r r e n t j o b .
97 t r a p #1 ; K i l l me
98 b r a . s E x i t ; We n e v e r g e t here , b u t . . .

Listing 21.16: Pointer Record Examiner - Exit Program



21.2 The Pointer Record 263

The next subroutine was added on advice from George. We scrolls up one line if we have filled the
screen. This helps to keep the headings on the screen at all times. (Not in my original code.)

99 S c r o l l moveq #2 , d2 ; l i n e 2
100 b s r . s Pos ; S e t c u r s o r below h e a d i n g s
101 moveq #−10 , d1 ; S c r o l l up one l i n e
102 moveq # s d _ s c r b t , d0 ; S c r o l l t h e lower p a r t on ly
103 b s r . s Trap3
104 moveq #14 , d2 ; l i n e 14 ( bot tom l i n e )
105 Pos moveq #0 , d1 ; S e t c u r s o r back t o x =0 , y=14
106 moveq # sd_pos , d0 ; Drop i n t o t r a p 3 code & r e t u r n .

Listing 21.17: Pointer Record Examiner - Scroll Screen

This is another of George’s suggested improvements, replace all those TRAP #3 calls, and error
checks with a single subroutine to do it all.

107 Trap3 t r a p #3 ; Do t h e t r a p
108 t s t . l d0 ; Did i t work ?
109 bne . s Oops ; F r a i d n o t
110 r t s ; Yes i t d i d
111
112 Oops addq . l #4 , a7 ; D e l e t e t h e r e t u r n a d d r e s s
113 b r a . s E x i t ; Ba le o u t

Listing 21.18: Pointer Record Examiner - Handle TRAPs

A sub-routine to take the byte value in D6 and convert it to a pair of Hexadecimal digits in the
buffer pointed to by A3. This code trashes A3 and D6 but everything else is unaffected.

114 HexI t l e a HexBuff , a3 ; B u f f e r f o r o u t p u t
115 move . b d6 ,−( a7 ) ; Save hex b y t e
116 l s r . b #4 , d6 ; Keep h igh n i b b l e i n low n i b b l e
117 b s r . s N ib b l e ; Conve r t n i b b l e t o hex
118 move . b ( a7 ) + , d6 ; R e s t o r e hex b y t e
119
120 N ib b l e a n d i . b # $0f , d6 ; Keep lower n i b b l e
121 cmpi . b #10 , d6 ; Check f o r a−f
122 bcs . s Add_0 ; No , 0−9 on ly
123 addq . b #7 , d6 ; O f f s e t t o ’A’
124 Add_0 add . b # ’0 ’ , d6 ; ASCII code now
125 move . b d6 , ( a3 )+ ; And b u f f e r i t
126 r t s ; Done

Listing 21.19: Pointer Record Examiner - Print Hexadecimal

A sub routine to print out a space to the channel in A0.L. This is used between fields of the pointer
record to break up the monotony of 48 hexadecimal characters in a long string across the screen.
This code trashes registers as per IO_SBYTE which is what it calls to do the work. There is another
subroutine here as well that prints a linefeed at the end of each decoding of the pointer record.

127 DoSpace moveq # Space , d1 ; P r i n t a s p a c e
128 b r a . s DoI t ; Sk ip n e x t b i t
129
130 DoLinefeed moveq # LineFeed , d1 ; P r i n t a l i n e f e e d
131
132 DoI t moveq # i o _ s b y t e , d0 ; Send one b y t e t o c h a n n e l
133 t r a p #3 ; Do i t



264 Chapter 21. The Pointer Record Investigated

134 t s t . l d0 ; Ok
135 bne E x i t ; No b a l e o u t
136 r t s

Listing 21.20: Pointer Record Examiner - Print a Space

And finally in this file, the two messages we print at the start of the program. One telling the user
how to quit and the other is used as the headings for the columns of data produced when we run the
program.

Take note that there are two spaces after ‘Channel’ and one space before ‘wide’ in the following.
‘KS’ simply refers to Key Stroke and ‘KD’ is Key Down.

137 SignOn dc .w s ignon_x−s ignon −2
138 dc . b ’ P r e s s ESC t o q u i t . . . ’ , 1 0 , 1 0
139 SignOn_x equ ∗
140
141 T i t l e dc .w T i t l e _ x −T i t l e −2
142 dc . b ’ Channel SubW PtrX PtrY KS KD EventVec ’
143 dc . b ’ Wide High Xorg Yorg ’ , L i n e f e e d
144 T i t l e _ x equ ∗

Listing 21.21: Pointer Record Examiner - Messages

The way the QDOSMSQ is written and the above program takes advantage of the fact, is that A0.L
is never corrupted by any of the channel handling routines. I never have to - at least in the above
simple code - preserve it anywhere. It simply remains unaffected from the time the channel is
opened until the job is killed off. As George pointed out in his comments on my previous article,
the timeout in D3 is also preserved. The above code takes that into consideration as well.

Running the program is simple, simply EX or EXEC it and a window will appear centralised
on your screen. It will be showing a prompt that says to press ESC to quit. As written the code
will return from the IOP_RPTR call when a key or button is pressed, but you can experiment with
different settings in the termination vector to see what happens under different circumstances.

I’ve written the code to put a space between each field of the pointer record when printed out on the
screen. It’s not the best way of doing things but is a lot easier to read than a string of 48 hex digits
on screen in one line! Feel free to modify the code to print things in a better fashion if you wish!

When the code is run, move the pointer around, press various keys - try pressing keys together and
see what results appear in the output. The channel Id should remain constant as should the width
and placement of the window, but some of the other fields will change as you press different keys
or click mouse buttons - try some together and see what you get.

As I experimented with my version of the utility, I discovered the following.

Using a termination vector of $01 - exit when a button or key is pressed:

• A HIT with the button space bar sets both KeyStroke and KeyDown to $01.
• A DO with the button or ENTER sets both to $02.
• A normal keypress only sets KeyStroke to the ASCII code of the key. KeyDown is zero.

The event vector takes on different values according to what has been happening in the window:

After the start of the program, the pointer remains inside the hit area, a click with the mouse buttons
sets the vector to $2B. This is the value when SPACE or ENTER are pressed.

If the pointer remains inside the windows as above, any other keypress sets it to $2D.



21.2 The Pointer Record 265

If the pointer has been outside of the window and comes back in - which it has to for the program
to register events, SPACE, ENTER, HIT or DO buttons set it once to $3B. Other keypresses set it
once to $3D.

If the job is ‘picked’ the KeyStroke is set to $08 and the event vector is set to $3D.

If the pointer is on the border then that counts as being inside the hit area for the primary window,
however, if it is on the shadow, that counts as outside the primary window. So the hit area is
exactly the size you defined in the call to IOP_OUTL and the additional shadow area is just window
decoration.

The event vector is a single long word which records all the events which have occurred in the call
to IOP_RPTR. The documentation says that Table 21.2 is the structure of the event vector, so who
am I to argue?

Pointer Level

Bit 0 Keyclick detected
Bit 1 Key down
Bit 2 Key up
Bit 3 Pointer moved
Bit 4 Pointer moved out of window
Bit 5 Pointer was in the window
Bit 6 Pointer hit the window edge

Sub-window

Bit 8 Sub-window split
Bit 9 Sub-window join
Bit 10 Sub-window pan
Bit 11 Sub-window scroll

Window

Bit 16 Do
Bit 17 Cancel
Bit 18 Help
Bit 19 Move
Bit 20 Resize
Bit 21 Sleep
Bit 22 Wake

Job Level

Bit 24 Key or button pressed. Request resize (with bit 31)
Bit 25 Key or button pressed subject to autorepeat. Request move (with bit

31)
Bit 26 Key or button released
Bit 27 Pointer moved from given co-ordinates
Bit 28 Pointer moved out of window
Bit 29 Pointer is inside the window
Bit 30 Pointer hit the window edge
Bit 31 Window request. Used also with bits 24 and 25.

Table 21.2: The Event Vector

George has also pointed out to me that a job can wait for a set of events or can send a set of events
to another job. There are eight possible events each represented by a different bit in a byte. Thus
sending the value 255 to another job is to send all events 0 to 7. Sending 36 would be to send events
2 and 5. Bits 24 to 31 of the event vector contain the job events that have occurred.

Not mentioned are events that can be sent to your job by another job. I do not have any documenta-



266 Chapter 21. The Pointer Record Investigated

tion about the bits for that level and what they define. I’m sure one or two of my eagle eyed readers
will let me know!

You can use the values returned from the code above to check the bits that are set in the event vector
and see exactly what events were recorded while the call to IOP_RPTR was taking place.

21.3 Coming Up...

In the next chapter, we move on from PTR_GEN and into WMAN - at least, that’s the plan.



22. WMAN, The Window Manager

22.1 Introduction

At the end of the last chapter I mentioned that we would be delving into the WMAN system next.
Well, here we are. However, before we get down and dirty in the code, I need to make sure you all
know what I’m talking about, so let’s start with a brief introduction/reminder to WMAN and all it’s
constituent parts.

22.2 WMAN

Until now, we have been playing with the PE or Pointer Environment routines. These allow for
a window to be outlined, the pointer to be drawn and read and so on. However, to use these few
routines to write applications with multiple windows and so on, loose items, menus whatever,
would be quite difficult. This isn’t to say that it cannot be done, it’s just difficult.

What we really need is a utility to allow us the ability to define our window structure, the loose
items and so on contained within it and convert that into what QDOSMSQ really needs to have to
be able to give us all the goodies we get from the PE, well, WMAN is just that.

Using WMAN we can define a window and all it’s contents, then use the vectors from WMAN
to setup, display, remove and interact with our application without having to write code to handle
everything ourselves.

George Gwilt mentioned in a comment about part 20 of this series that I treated the call to IOP_PINF
as a method of finding out whether or not the Pointer Environment had been loaded. While it does
indeed do this, it also returns a vector to the current location of the WMAN utilities in memory in
A1.L - and it is these vectors we will be exploring in the coming articles.



268 Chapter 22. WMAN, The Window Manager

22.3 A Very Brief Overview Of WMAN

Before we go on, we need to know what all the bits of the PE actually are, so there now follows
a small briefing on that very subject. I won’t be spending a lot of time in the discussions so
if you need further information there is a very good “Idiot’s Guide To The PE” available on
Dilwyn’s web site at http://www.dilwyn.uk6.net/pe/peig/pe.html if you want to read it online or
http://www.dilwyn.uk6.net/pe/peig.zip if you want to download it to read at your leisure.

22.3.1 Selection Keys

A selection key is simply the key that you press - when the pointer is over the appropriate primary
window (see below) - to activate some function or feature of the program in question. It may cause
an action to be carried out or simply highlight an option is a menu. Normally, the selection key is
shown underlined, but this is not necessary, although it is more helpful to the user of the program if
it is.

22.3.2 Hit and Do

When the mouse buttons are in use then a HIT is what happens when you click with the left mouse
button and a DO is when you click with the right one. On the keyboard, a HIT is when you tap the
spacebar and a DO is when you tap ENTER. The actions carried out when you HIT or DO may be
the same or may be different - it’s all down to how the programmers wrote the code.

22.3.3 Outline or Primary Window

I have mentioned outlines before, however, for the same of completeness, I’m reiterating here.
The outline (or primary window) is the rectangle of your screen that the program will perform all
it’s workings within. Any secondary windows (see below) opened by the program must be fully
contained within the area bounded by the outline.

Of course, some programs allow you to move their windows around the screen. This also moves
the outline around and wherever the window ends up when the user has moved it, becomes the new
outlined area and all secondary windows will now appear within the new location.

The biggest size that an outline can be is the maximum width and height of the screen minus the
shadow width and depth.

22.3.4 Secondary Windows

Secondary Windows are things like QMENU’s file open utilities and so on, pop-up messages giving
you error messages and anything else that takes place within the outline or primary window.

22.3.5 Information Sub Windows

These are small areas of the primary or secondary windows that show static text or little images
or whatever. The most commonly seen and recognisable ones are those green and white stippled
‘caption bars’ that most PE programs have at the top of every window.

Indeed, the caption bar for most PE programs that I know of is set up with a green and white
stippled information window all the way across the top of the window, then on top of that there is
another plain white information window nicely centralised horizontally on top of the first one. The



22.3 A Very Brief Overview Of WMAN 269

program name or caption is then inserted as an Information Objects (see below) into this second
information window.

22.3.6 Information Objects

Once an information sub window has been created you need something to put in it - for information
purposes. To this end you need to create information objects. These can be text or blobs, sprites or
patterns (see below). The most noticeable ones are the program name shown in the ‘caption bar’ of
most PE programs.

22.3.7 Loose Items

Loose items are small ‘buttons’ with text or graphics on them. They usually have a border that
magically appears when the pointer is within the bounds of the loose item in question. A hit or do
on a loose item will cause some action to be carried out.

The popular loose items known to most users would probably be the ZZz, ESC, resize and move
ones that appear in the caption bars of may PE programs.

22.3.8 Application Sub Windows

There’s not much to say about the application sub windows really. They are what’s left of the
primary or secondary window after borders, information sub windows and loose items etc have
been removed. They are the areas of the screen that the program prints it’s output or allows input
from the user and so on.

A graphics drawing program, for example, would use the application sub window to allow the user
to draw whatever it is that they are drawing.

22.3.9 Pan and Scroll Bars

These are displayed if the data in an application sub window is too wide (pan) or too tall( scroll)
to be displayed completely within the area of the screen set aside for the application sub window.
GUI users on other system (Linux or Windows) will be familiar with the concept.

At first, these can be a nightmare as a ‘DO’ within the scroll bar (or pan bar) will split it and
you then end up with two separately scrollable (and/or pannable) windows within the application
window. Could be useful at times I suppose!

22.3.10 Sprites, Blobs and Patterns

A SPRITE is a picture that appears on the display somewhere. A pointer is just a sprite that is moved
around the screen. Sprites may be drawn to look like text, for example, in logos and programmer’s
names etc, or they may be small pictures to represent some function of the program.

A BLOB is part of a sprite and holds only data that defines the shape. It has no colour information
at all. The PATTERN is the part of the sprite that holds the colour data. Why separate them like
this? I suspect it was to save memory - why bother having sprites defined with the same shape,
just different colours - by defining the BLOB once and the PATTERS for the colours, you save
repeating the blob data - perhaps?

Blobs and patters can be used independently of sprites though.



270 Chapter 22. WMAN, The Window Manager

22.3.11 Border

The border around the primary and secondary windows, and indeed any other object, is optional
and up to the programmer. However, most programs use borders.

When you move the pointer over a loose item, a border may appear around it to indicate that you
can carry out some form of action if you were to hit or do the loose item in question. Once the
pointer is outside the loose item boundary, the border may vanish.

22.3.12 Shadow

The shadow for a window is drawn down the right side and along the bottom. It is optional and
entirely at the discretion of the developer. When in use, a shadow gives the impression that the
window is hovering above the desktop. The shadow is outside the outline and does not register hit
or do actions. It is purely decorative.

22.4 More Useful Utilities From George

The GWASL assembler that George Gwilt wrote has been used as the assembler of choice through-
out this long running series. George has come up trumps again with another utility that allows the
easy generation of assembler code that defines a WMAN windows definition (more on this later)
and I’ve been testing it out. Unfortunately, my holiday got in the way and I have a new version of
the utility and GWASL to test out at the moment.

I’m sure that these programs will soon be available from George’s usual repository of fine code. In
addition, I shall be trying these utilities out myself and reporting back.

22.5 WMAN Windows Definition.

As mentioned above, WMAN is slightly more involved that the bare bones PE in as much as it
carries out a huge amount of work on your behalf. This is all work that you would have to write
into each and every program you write using the WMAN system (here-after known collectively as
the PE or the Pointer Environment) but in order to take advantage of all this hard work, you have to
set things up in a standard manner.

If you look back an issue or so, you will notice that up until now, all my PE test programs simply
opened a console and set an outline before entering the main loop to read the pointer, act upon it,
repeat as necessary. Obviously, my test programs were small and insignificant - but even though,
they could benefit from a bit more added ‘sparkle’. The WMAN routines make this possible.

The first thing we have to do is create a definition of our window in memory. This will be in a
standard format and when done, we call a WMAN routine (WM_SETUP) to initialise the various
internals required to make our window work under WMAN. Let’s now take a look at the standard
definition as required by WMAN.

22.6 Standard Windows Definition

So, now you know what all the bits in a window are, we can get right in and start discussing the
standard way we have to define a windows and all its decorations. Let’s take a look at one that
someone else prepared earlier.



22.6 Standard Windows Definition 271

The following is extracted from a small utility written by Oliver Fink many years ago. The utility
shows various bits of information about the running QDOSMSQ system. I have modified the
original in a few places but the full credit must remain with Oliver. The code is in the public
domain.

The start of the definition is the main window itself:
1 ; Main window d e f i n i t i o n :
2 dc .w 160 ; d e f a u l t window wid th
3 dc .w 84 ; h e i g h t
4 dc .w 146 ; i n i t i a l p o i n t e r x p o s i t i o n
5 dc .w 8 ; y p o s i t i o n

Listing 22.1: Main Window - Fixed Part

So far so simple, nothing much here that we haven’t met already. All we are doing here is telling
WMAN how big our window is to be and where within the window the pointer is to be positioned
when the window is first drawn.

The above positioning of the pointer is relative to the window outline. So in our window which is
160 pixels wide, the pointer is located 146 pixels along - nearly at the far right end. It is located 8
pixels down from the top. When drawn on screen, this places the pointer directly over the ESC
loose item.

When the program is first executed, the PE attempts to position the main window on the screen so
that the requested position of the pointer is superimposed on the current pointer position on screen.
This prevents disconcerting jumps of the pointer every time you start up a new program.

You can see this in action if you move the mouse around on screen, note where it ends up, then EX
a new program that uses the PE. You will see that the main window appears wrapped around where
you last saw the pointer.

Next we define the attributes for our window.
6 dc . b $00 ; MSbit c l e a r t o c a l l CLS
7 ; ; L S b i t c l e a r a l l o w s c u r s o r keys
8 ; ; t o move p o i n t e r .
9 dc . b 2 ; shadow d e p t h

10 dc .w 1 ; b o r d e r wid th
11 dc .w 0 ; b o r d e r c o l o u r ( b l a c k )
12 dc .w 7 ; p a p e r c o l o u r ( w h i t e )

Listing 22.2: Main Window - Window Attributes

Again, there’s nothing remarkably difficult here. Bit 7 of the first byte tells WMAN whether or not
the window is to be cleared. Setting bit 7 says that the window must not be cleared. Following on,
we define a shadow size for the bottom and right edges of our window. Bit 0 of this byte enables or
disables the ability to move the pointer using the cursor keys.

Note
The ability to disable/enable cursor key pointer movement is only mentioned, briefly, in the
QPTR manual under the section on the Working Definition.
Disabling the cursor key movement also disables the ability to select items in an application
sub-window menu using the space bar or enter keys. This could be a bug!

Remembering back to our initial forays into the raw Pointer Environment, you may remember that
we could have a different shadow depth on both of those sides, using WMAN, it appears that the
shadow must be the same down each side. Oh well!



272 Chapter 22. WMAN, The Window Manager

Note
The documentation says that for sub-windows the shadow depth should be zero. Best we stick
to that advice. Remember, a sub-window is one ‘embedded’ within the main window. See
application sub-windows or information sub-windows above.

Next, and finally for the main window, we have the definition of where the default pointer sprite for
the window is to be found.

13 dc .w 0 ; use d e f a u l t p o i n t e r

Listing 22.3: Main Window - Default Pointer

This is one of my changes. In a need to reduce the amount of code in the magazine and also, to
reduce your typing, I’ve modified Oliver’s definition to use the default arrow pointer in the main
window and in the application sub-window which will be defined below. Oliver had a custom sprite
for the main window and another for the application sub-window. Both have been removed. The
original file had this definition (don’t type this in!) and a chunk of code to define the sprite to be
used.

1 ; DO NOT TYPE THIS IN !
2 dc .w s p r t −∗ ; p o i n t e r t o p o i n t e r s p r i t e

Listing 22.4: Do Not Type This In!

You should be aware that all pointers in a window definition are word sized and relative to their
own position in the definition block.

Now, that implies that all object lists must be within plus or minus 16KB of the pointer position,
which might be a problem when there are a lot of objects and so on to define. To this end, if bit
zero is set - an odd address - then that offset is used as a pointer to a long word which itself is a
relative pointer to the object in question. Obviously, the word length odd pointer obviously has to
be made even first, this is done simply by clearing bit zero.

In the above, if the Pointer Sprite above was defined a long long way away, we would see something
like this:

1 . . .
2 dc .w s p r t −∗+1 ; ODD P o i n t e r t o long p o i n t e r t o
3 ; ; our window ’ s p o i n t e r s p r i t e
4 . . .
5 s p r t dc . l R e a l _ s p r t −∗ ; Long p o i n t e r t o p o i n t e r s p r i t e
6 . . .
7 R e a l _ s p r t . . . . ; P o i n t e r s p r i t e d e f i n i t i o n

Listing 22.5: Do Not Type This In Either!

If any pointer is to something we don’t need, then simply set it to zero. So, for example, instead of
using Oliver’s original ‘?’ sprite (shaped like a question mark) we have defined this word pointer as
zero and get the default arrow sprite instead. In this case, zero means ‘use the default’ but in other
places, it means ‘not used’.

Next to be defined are the attributes for all the loose items we will be using in the window. Starting
with the easy bits:

14 ; menu i t em a t t r i b u t e s
15 dc .w 1 ; C u r r e n t i t em b o r d e r wid th
16 dc .w 0 ; Borde r c o l o u r ( b l a c k )

Listing 22.6: Main Window - Current Loose Item - Border Attributes



22.6 Standard Windows Definition 273

As before, it is simple. We define a black border 1 pixel in width. When the pointer is over any of
our loose items, this border will be drawn around it to indicate that ‘you can do something here’.

Following the border, we have the attributes for the loose items that are unavailable, available and
selected. These attributes require 8 bytes each and define paper and ink (for text objects contained
within them) and also blobs and patterns for the other object types. We are only using the paper and
ink attributes, but the others must be there. We use zero to indicate ‘not in use’.

17 ; Menu i t em u n a v a i l a b l e
18 dc .w 30 ; Pape r − g r e e n / w h i t e s t i p p l e
19 dc .w 30 ; Ink − g r e e n / w h i t e s t i p p l e
20 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
21 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob
22
23 ; Menu i t em a v a i l a b l e
24 dc .w 7 ; Pape r − w h i t e
25 dc .w 0 ; Ink − b l a c k
26 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
27 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob
28
29 ; Menu i t em s e l e c t e d
30 dc .w 4 ; Pape r − g r e e n
31 dc .w 0 ; Ink − b l a c k
32 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
33 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob

Listing 22.7: Main Window - Loose Item Attributes

In this example program, the loose items are never anything except available (and very briefly,
selected) so the unavailable attributes are never used, but they still have to be defined. Oliver has
chosen to use a paper and ink colour of 30 for unavailable loose items. That value gives a pleasant
green/white stipple. Don’t worry about it because you will never see it!

Following the loose item attributes, we have a relative pointer to the help window. In this program,
we are not using one, so that pointer gets the value of zero.

34 dc .w 0 ; P o i n t e r t o h e l p window

Listing 22.8: Main Window - Help Window Details

That is the end of the fixed part of the window definition. So far so good, there has been nothing
too difficult yet. I wonder what is coming?

The rest of the definition block defines the repeating parts of the window definition. What exactly
does that mean?

The documentation has this to say about the repeating parts:

“To allow for a variety of different layouts within the window as the size of the window varies, part of
the window definition may be repeated several times. The definition should be made in order of
decreasing window size. The last definition which defines the smallest allowable window, should be
followed by a word containing -1. If the top nibble of a layout size word is zero, then the layout
may not be scaled. If it is %0100 then it may [be scaled].”

Note
This actually shows up what I think is a contradiction in the documentation. There are other
values that can be used in the top nibble, not only %0000 and %0100. More on scaling later
in the series.



274 Chapter 22. WMAN, The Window Manager

So there you have it. The fixed part of the window defines the default layout for the window. That
layout and all other possible ones allowed, need to be defined in the repeating part of the window
definition.

A window can be scaled by WMAN if the definition allows for it. The scaling flag is the top nibble
(4 bits) of the size words for the window layout. If the top nibble is %0000 then it cannot be scaled
and if it is %0100 then it may be scaled.

Scaling applies separately to the width and to the height of the different layouts. You don’t have to
scale vertically and horizontally, you can pick one, the other or both as desired.

For simplicity, and because I have not investigated scaling yet, Oliver and I will be sticking to
non-scaled windows for now. Scaling will be a subject for a future article.

The following is the repeating parts for our single, non-scaling layout in our small program.

35 ; Base o f r e p e a t e d p a r t o f window d e f i n i t i o n
36 dc .w 160 ; Width f o r t h i s l a y o u t
37 dc .w 84 ; He igh t f o r t h i s l a y o u t
38
39 ; P o i n t e r s t o d e f i n i t i o n l i s t s
40 dc .w i l −∗ ; I n f o r m a t i o n sub−windows
41 dc .w l l −∗ ; Loose menu i t e m s
42 dc .w a l−∗ ; A p p l i c a t i o n sub−windows

Listing 22.9: Main Window - Repeating Part

The above would be repeated for each and every different allowable layout for the window, from
the biggest to the smallest. Following on from the very last layout, the smallest allowed, we have
the terminating word.

43 dc .w −1 ; End f l a g

Listing 22.10: Main Window - Repeating Part - End Flag

So we allow one and only one layout, which just happens to be exactly the same size as the
default one defined in the fixed part of the definition block. It has three pointers at the end for the
information sub-windows, the loose items and any application sub-windows that are required in this
layout. Each layout will have it’s own list and they need not be the same for each different layout.

We shall pause for breath at this point and discuss these lists in the next article. Hopefully, the
above was not too taxing and I’ve explained it better that I ever had it explained to me!

22.7 Coming Up...

The next chapter continues our look at the window definition by looking into the lists of objects
attached to our window.



23. WMAN, The Journey Continues

23.1 Introduction

At the end of the previous article I promised that we would continue our look at the standard
window definition from where we left off. In this article that is exactly what we shall be doing as
we take a look into the lists of objects that hang off of our window. I’m referring to the information
sub-windows, loose items and applications sub-window lists. In addition, we have also to consider
the various objects that are used within these lists.

23.2 WMAN Standard Windows Definition - Continued

At the end of the previous article, we had reached the following definition for our example window:

1 ; Main window d e f i n i t i o n .
2 dc .w 160 ; D e f a u l t window wid th
3 dc .w 84 ; He ig h t
4 dc .w 146 ; I n i t i a l p o i n t e r x p o s i t i o n
5 dc .w 8 ; Y p o s i t i o n
6 dc . b $00 ; MSbit c l e a r t o c a l l CLS
7 dc . b 2 ; Shadow d e p t h
8 dc .w 1 ; Borde r wid th
9 dc .w 0 ; Borde r c o l o u r ( b l a c k )

10 dc .w 7 ; Pape r c o l o u r ( w h i t e )
11 dc .w 0 ; Use d e f a u l t p o i n t e r
12
13 ; Loose i t em a t t r i b u t e s .
14 dc .w 1 ; C u r r e n t i t em b o r d e r wid th
15 dc .w 0 ; Borde r c o l o u r ( b l a c k )
16
17 ; Loose i t em u n a v a i l a b l e .
18 dc .w 30 ; Pape r − g r e e n / w h i t e s t i p p l e



276 Chapter 23. WMAN, The Journey Continues

19 dc .w 30 ; Ink c o l o u r
20 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
21 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob
22
23 ; Loose i t em a v a i l a b l e .
24 dc .w 7 ; Pape r c o l o u r ( w h i t e )
25 dc .w 0 ; Ink c o l o u r ( b l a c k )
26 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
27 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob
28
29 ; Loose i t em s e l e c t e d .
30 dc .w 4 ; Pape r c o l o u r ( g r e e n )
31 dc .w 0 ; Ink c o l o u r ( b l a c k )
32 dc .w 0 ; P o i n t e r t o b lob f o r p a t t e r n
33 dc .w 0 ; P o i n t e r t o p a t t e r n f o r b lob
34
35 ; Help window , i f used .
36 dc .w 0 ; P o i n t e r t o h e l p window
37
38 ; Repea ted p a r t o f window d e f i n i t i o n − from l a r g e s t t o s m a l l e s t l a y o u t .
39 dc .w 160 ; Width f o r t h i s l a y o u t
40 dc .w 84 ; He igh t f o r t h i s l a y o u t
41
42 ; P o i n t e r s t o d e f i n i t i o n l i s t s f o r t h i s l a y o u t .
43 dc .w i n f o L i s t −∗ ; I n f o sub−windows
44 dc .w l o o s L i s t −∗ ; Loose i t e m s
45 dc .w a p p L i s t−∗ ; App sub−windows
46
47 dc .w −1 ; End of l a y o u t s

Listing 23.1: WMAN Example Window

In this article, we will be concentrating on the final part of the above.

Before we move on, a little light relief. If I replace the pointers to the three lists in the final
part of the layout definition above, with zero - to indicate that I have no loose items, information
sub-windows or application sub-windows - and then run the resulting code, the following screenshot
in Figure 23.1 shows what I get.

Figure 23.1: Basic WMAN Window

You can see that so far, all we have defined is a small white window, with a shadow and a black
border. The pointer we are using is the default arrow and it is positioned close to the top at the far
right of the window. At least it works!

Note
You will not be able to assemble the code I have given you so far. There is a lot more coding
to do before you get to that stage. I have a test harness wrapped around my window definition
to make things easier for me to explain as I go along.



23.2 WMAN Standard Windows Definition - Continued 277

23.2.1 Information Sub-Window List

Most PE programs that I have ever seen have a caption bar across the top, possibly with a few loose
items such as sleep (ZZz), Move and so on. The caption bar is usually - but not always - green and
white stripes with the program name displayed in the middle on a white background. There are
surprisingly, very few programs that do not stick to this colour scheme, however, the new graphics
drivers are changing this and we are starting to get multi-coloured programs with trendy new 3D
effects.

That sort of thing can wait until we get to grips with the basics, and so, in the age old traditions of
green and white stripes, we shall continue! In addition, the fancy effects are only for those of us
running SMSQ and so on, they are not available to the 128KB Standard Black Box QL users.

The usual method of getting the green and white caption bar is to define an information sub-window
that covers the required length of the window and position it at the top of the window layout we are
defining. The white background for the program name is simply a second information sub-window
positioned over the first one. Finally, the title of the program itself is a text object that the second
(plain white) information sub-window is linked to.

To be accurate, the program title is a text string embedded within a text object linked to the second
information sub-window. All will become clear below.

The process could almost be likened to the following SuperBasic code.

1 1000 REMark Main Window
2 1010 OPEN #3 , con_
3 1020 WINDOW #3 ,160 ,84 ,50 ,32
4 1030 PAPER #3 ,7
5 1040 BORDER #3 ,1 ,0
6 1050 CLS #3
7 1060 :
8 1070 REMark C a p t i o n Bar background
9 1080 :

10 1090 WINDOW #3 ,98 ,14 ,50+30 ,32+0+1
11 1100 PAPER #3 ,85
12 1110 CLS #3
13 1120 :
14 1130 REMark C a p t i o n Bar White B i t
15 1140 :
16 1150 WINDOW #3 ,52 ,10 ,50+54 ,32+3+1
17 1160 PAPER #3 ,7
18 1170 INK #3 ,0
19 1180 CLS #3
20 1190 :
21 1200 REMark Program t i t l e
22 1210 :
23 1220 PRINT #3 , ’ Sys In fo ’
24 1230 :
25 1240 CLOSE #3

Listing 23.2: Pseudo SuperBasic Equivalent

It isn’t quite the same as that, but things should hopefully become clear as we progress. For now,
the definitions of the information sub-windows is shown below and should look strangely familiar.

48
49 ; I n f o r m a t i o n sub−window No . 0



278 Chapter 23. WMAN, The Journey Continues

50 i n f o L i s t dc .w 98 ; Sub−window wid th
51 dc .w 14 ; Sub−window h e i g h t
52 dc .w 30 ; Sub−window x o r i g i n
53 dc .w 0 ; Sub−window y o r i g i n
54 dc . b $00 ; MSbit c l e a r t o c l e a r window
55 dc . b 0 ; Shadow d e p t h
56 dc .w 0 ; Borde r wid th
57 dc .w 0 ; Borde r c o l o u r
58 dc .w 85 ; Pape r c o l o u r ( g r e e n / w h i t e )
59 dc .w 0 ; P o i n t e r t o i n f o o b j e c t l i s t

Listing 23.3: WMAN Example Window - Information Window 0

Most of the above you have seen before in the fixed part of the main window definition. As
mentioned in the previous article, the shadow depth for sub-windows must be zero. If you are like
me, you’ll be wondering what happens if you define a shadow on a sub-window. It appears, nothing.
I tried putting a shadow of size 1 on an information sub- window and it simply was not drawn. I
suspect that internally, WMAN is making as many sanity checks as it can and is probably ignoring
the shadow size.

The definition above is equivalent to lines 1070 to 1120 in the SuperBasic code in Listing 23.2.
That’s an awful lot of typing for a simple result!

Next we need to define the second of our information sub-windows, the plain white one used as a
background for the title.

60
61 ; I n f o r m a t i o n sub−window No . 1
62 dc .w 52 ; Sub−window wid th
63 dc .w 10 ; Sub−window h e i g h t
64 dc .w 54 ; Sub−window x o r i g i n
65 dc .w 3 ; Sub−window y o r i g i n
66 dc . b $00 ; MSbit c l e a r t o c l e a r window
67 dc . b 0 ; Shadow d e p t h
68 dc .w 0 ; Borde r wid th
69 dc .w 0 ; Borde r c o l o u r
70 dc .w 7 ; Pape r c o l o u r ( w h i t e )
71 dc .w i n f o O b j s−∗ ; P o i n t e r t o i n f o o b j e c t l i s t
72
73 dc .w −1 ; End f l a g

Listing 23.4: WMAN Example Window - Information Window 1

As this is our final information sub-window, there is a terminating word of -1 at the end of the
definition. The one thing to notice in these definitions is a pointer to a list of information objects.
These are explained next.

Setting the information objects list pointer to zero, in the above, and running the resulting program
gives us the window in Figure 23.2. You can see both of the information sub-windows now, the
green and white stripes is the first and the white one is the second. Next we shall look at adding an
information object to the second one.

Information Sub-Window Object List

There are 4 different types of object that you can place within an information sub- window. These
are shown in Table 23.1.



23.2 WMAN Standard Windows Definition - Continued 279

Figure 23.2: Basic WMAN Window - With Informations Windows

Type Code Description

Text -N This object is text. Character N will be underlined.
Text 0 This object is text. There will be no characters underlined.
Sprite 2 This object is a sprite.
Blob 4 This object is a blob.
Pattern 8 This object is a pattern.

Table 23.1: Information Sub-Window Object Types

If the type of the object is negative, then a text object is to be used and the character in the string
corresponding to the negative number ‘positivised’ (I think I just made up a new word!) will be
underlined. We are not using that here, but when we come to discuss Loose Items, we shall see an
example or two.

The following is the definition of our text object for the program title.

74 i n f o O b j s dc .w 42 ; O b j e c t wid th
75 dc .w 10 ; O b j e c t h e i g h t
76 dc .w 6 ; X o r i g i n
77 dc .w 0 ; Y o r i g i n
78 dc . b 0 ; O b j e c t t y p e ( See t a b l e )
79 dc . b 0 ; Spa re
80 dc .w 0 ; Text i n k c o l o u r
81 dc . b 0 ; Text c h a r a c t e r x s i z e
82 dc . b 0 ; Text c h a r a c t e r y s i z e
83 dc .w p r g T i t l e −∗ ; P o i n t e r t o o b j e c t o f c o r r e c t t y p e
84
85 dc .w −1 ; end f l a g

Listing 23.5: WMAN Example Window - Information Object

As we only require one object for our information sub-window, there is the usual end of list indicator
word of -1 after the definition.

Note
The information in the following paragraphs has been added by George Gwilt since the
original article was published. These paragraphs correct the original one written by me.1

If the object is text, the word at offset 10 gives the colour of the ink to be used to display the text.

If the object is a blob (type 4) the word is used as a word relative pointer to the pattern to be used
with the blob.

1In QL Today Magazine



280 Chapter 23. WMAN, The Journey Continues

If the object is a pattern (type 6) the word points to the blob to be used with the pattern.

If the object is a sprite, the word is not used. In all cases the word at offset 14 points to the object
itself whether it is text, sprite, blob or pattern. Thus, for a sprite, its pointer is at offset 14, not 10 as
Norman says.

Because this is a text object, we define the ink colour and the character sizes. However, if the object
type is non-text ie a blob, pattern or sprite, then the ‘ink’ word is used as a word sized relative
pointer to a pattern or blob or sprite and the character sizes are ignored. It may be wise to set those
to zero just in case.

You will notice that the actual object content is defined elsewhere and one of those word sized
relative pointers (or zero!) is used to tell WMAN where the content can be found.

Because our object is a text object, we simply define a QDSOMSQ format string as normal and
make sure our pointer above actually points to the string. The definition for our program’s title is as
follows.

86 ; O b j e c t No . 2 −> TEXT
87 p r g T i t l e dc .w 7
88 dc . b ’ Sys In fo ’

Listing 23.6: WMAN Example Window - Information Object Text

Now that we have defined all the required information sub-windows and objects that are required
for each, assembling my test program and running it gives the window in Figure 23.3.

Figure 23.3: Basic WMAN Window - With an Information Object

Looks much better than the previous plain white version wouldn’t you say? You can see spaces
along the caption bar and these will be used - very soon - for a couple of loose items. Read on!

23.2.2 Loose Item List

Loose items are probably the QL’s equivalent of Windows Buttons. The following is the definition
of a loose item with a text object displayed upon it.

89 ; Loose menu i t em No . 1
90 dc .w 24 ; H i t a r e a wid th
91 dc .w 11 ; He igh t s i z e
92 dc .w 132 ; X o r i g i n
93 dc .w 2 ; Y o r i g i n
94 dc . b 0 ; O b j e c t x j u s t i f i c a t i o n
95 dc . b 0 ; O b j e c t y j u s t i f i c a t i o n
96 dc . b 0 ; O b j e c t t y p e
97 dc . b 3 ; S e l e c t i o n k e y s t r o k e
98 dc .w objESC−∗ ; P o i n t e r t o o b j e c t
99 dc .w 1 ; Loose i t em number



23.2 WMAN Standard Windows Definition - Continued 281

100 dc .w escape−∗ ; P o i n t e r t o a c t i o n r o u t i n e

Listing 23.7: WMAN Example Window - Loose Item 0

You can see a subtle difference between an information sub-window and a loose item definition.
Loose items have the properties listed in Table 23.2.

Property Description

Hit area width The width of the loose item. Includes the border defined above in the
fixed definition

Hit area height The height of the loose item. Includes the border defined above in the
fixed definition

X origin Where the loose iten will be drawn. Relative to the start of the layout
Y origin Where the loose iten will be drawn. Relative to the start of the layout
X justification How the object will be positioned horozontally within the hit area
Y justification How the object will be positioned vertically within the hit area
Object type Same types and rules as for Information sub-window objects above
Selection
Keystroke

For a letter, the upper case letter. For an event it is the event number
minus 14

Pointer to object The usual word sized relative pointer to an object of the correct type.
Zero if no text.

Loose item number The loose item number. You get to choose it.
Pointer to action
routine

The address of the code to be called when this loose item is HIT or
DOne

Table 23.2: Loose Item Properties

As mentioned in Table 23.2, objects are justified within the loose item hit area. This is different
from the positioning of objects in information sub-windows. Table 23.3 shows the justification
settings.

Code Description

Positive The object is left or top justified within the hit area
Zero The object will be centred within the hit area
Negative The object is right or bottom justified within the hit area

Table 23.3: Loose Item Object Justification Rules

If a key press is required to activate the loose item, it is defined by setting the code of the capital
letter to be used.

Note
More from George:

First of all, any keypress including such things as TAB and the arrow keys can be used.
The selection is not confined to letters and those keypresses which are defined as ‘events’.
However, lower case letters are not allowed.

If, on the other hand, some event is to be used to activate the loose item, then the event number
minus 14 is used instead. In our example above, the keystroke is set to 3 for ESC.



282 Chapter 23. WMAN, The Journey Continues

If you remember back to Chapter 21 when the event record was described, then you may get an
inkling of what the event number actually is. It is the bit set in the event vector for the given action.
Table 23.4 shows the events and their details.

Event Name Event Number Event Code Description

DO 16 2 ENTER pressed or right mouse button clicked
CANCEL 17 3 ESC pressed
HELP 18 4 F1 pressed
MOVE 19 5 CTRL+F4 pressed
RESIZE 20 6 CTRL+F3 pressed
SLEEP 21 7 CTRL+F1 pressed
WAKE 22 8 CTRL+F2 pressed

Table 23.4: Events, Codes and Descriptions

Note
More updates by George.

The official documentation refers to "event number" and "event code". The event number is
the number of the bit set in the event vector which is at position $14 in the window status
area. For the seven events listed by Norman the corresponding bits to be set are 16 to 22. The
event code is the event number less 14.

If a loose item is to be activated by a keypress producing an event the selection keystroke
must be the event code as Norman says.

The action routine is called when the loose item is HIT or DOne. The parameters passed to the
action routine will be discussed in a later article.

Loose Item Object List

Loose item objects are identical to those for information sub-windows and so, are the same to
define. The following is an example of the text object required by our example loose item above.

101 ; O b j e c t No . 4 −> TEXT
102 objESC dc .w 3
103 dc . b ’ESC’

Listing 23.8: WMAN Example Window - Loose Item Object Text

Nothing at all surprising there, it is a text object after all and as such, we simply define a QDOSMSQ
string in the normal manner. Had the object been a blob, pattern or sprite, we would define one of
those in the normal manner. More on those objects later on in the series.

Now that we have defined all the required loose items and objects that are required for each,
assembling my test program and running it gives the following. I have moved the pointer from its
default position in the screenshot in Figure 23.4 so that you can see the contents of all the loose
items without obstruction.

All we need now is an application sub-window for our code to write to and we are ready to add
actions etc. I shall keep you in suspense until next time.



23.3 Coming Up... 283

Figure 23.4: Basic WMAN Window - With Loose Items

23.3 Coming Up...

In the next chapter we shall continue looking at the remainder of the standard window definition. It
seems like there is quite a lot going on, but it will hopefully soon be quite easily understood.

We will take a look at adding simple application sub-windows and creating loose item action
routines. We might even get a working program to play with, who knows? See you then.





VII
24 Creating Your Own Windows With SETW 287
24.1 Introduction
24.2 Downloading SETW
24.3 Running SETW
24.4 Coming Up...

25 Easy PEasy - Part 1. . . . . . . . . . . . . . . . . . 293
25.1 Introduction.
25.2 Easy PEasy.
25.3 The Nine Steps To Happiness.
25.4 Loose Item Action Routines.
25.5 Coming Up...

26 Easy PEasy - Part 2. . . . . . . . . . . . . . . . . . 301
26.1 Introduction.
26.2 Easy PEasy.
26.3 Supplied Files.
26.4 Subroutines in Easy PEasy.
26.5 The Example Program, EX0_asm.
26.6 Coming Up...

SETW and Easy PEasy





24. Creating Your Own Windows With SETW

24.1 Introduction

In this chapter, I shall be taking a small diversion into one of George Gwilt’s utility programs. This
one, SETW, allows you to interactively create windows for your applications. SETW then goes
away and does all the hard work of setting everything up.

24.2 Downloading SETW

SETW, and other useful utilities, are available from George’s web site, http://gwiltprogs.
info/ and from there I advise you to download the following three utilities:

• SETW - setwp05.zip
• EasyPEasy - peassp02.zip
• GWASL - gwaslp07.zip

The latest version of GWASL is required to enable you to assemble PE programs created using
SETW and using the EasyPEasy library files in peassp02.zip. As you will require these for the
remainder of the tutorial then you should download them all now to save time later.

There are other files there similarly names but with a ‘p’ replaced by and ‘s’ - these are the sources
for the utilities and while educational, you don’t need them.

The files are zipped up using the QDOS version of zip, so copy them from wherever you downloaded
them to into your QL system (QPC etc) and unzip them using the QDOS version of unzip. There is
one supplied with the C68 system and that works fine.

http://gwiltprogs.info/
http://gwiltprogs.info/


288 Chapter 24. Creating Your Own Windows With SETW

24.3 Running SETW

In order to create correctly written assembly source for GWASL, we need to pass a single parameter
to SETW when we execute it. The parameter is "-abin" with no spaces. This tells SETW that
the code produced will be used to build a binary file rather than a relocatable one which will be
subsequently linked with other relocatable files to produce the final binary.

We GWASL users don’t have a linker so all our programs need to be self contained, or may include
pre-assembled modules and libraries using the LIB command.

1 EX SETW ; ’−ab in ’

Listing 24.1: Executing SETW

The command above is all we need. If you do not have Toolkit 2, then the EXECUTE command
from Turbo Toolkit can be used instead.

We will use SETW to create a file that we will use later on. It will be a very simple window with a
single information window near the top and a single text object within the information window.
Feel free to follow along on your own QL system as we go.

The program starts by opening a window as big as it can on your screen, it displays a few bits of
information and prompts for the root name of the various files to be created.

For our example, we simply set the name to ‘hello’ - without the quotes. Type it in and press
ENTER.

SETW will create three files when we are done. They will be created on ram1_ (in my case) or
wherever you have configured SETW to put them by default. The three files created will be:

• Ram1_hello_wda - a file for use by George’s TurboPTR utility. It is of no use to us and can
be safely deleted when finished.

• Ram1_hello_asm - a file for use by an assembler, in our case, GWASL, this is the file we will
need.

• Ram1_hello_z - a file for use with another of George’s utilities, CPTR, a program to help
C68 users write PE programs. Again, we don’t need this file and it can safely be deleted.

24.3.1 Entering Text Objects

The next screen that appears is titled ‘ALTER TEXT’ and is where we enter every text object to be
used in our finished utility. We must be very careful here and not forget any because SETW creates
code for what we enter and we cannot go back and add another if we forget one. (Well possibly we
can in the generated assembler file, but I have not confirmed this yet.)

To enter your text objects, press the ‘N’ key to create a new text object and simply type in the
required text. For our example window all we need is one single object containing the text ‘Hello
World’ (without quotes) - for the main reason that this is how everyone starts to learn a new
language! Press ENTER when you have entered the text.

In slightly more complicated programs, there would be a lot more text objects to enter, but for now,
press the ESC key to exit from the ALTER TEXT screen.

24.3.2 Entering Sprites, Blobs & Patterns

We don’t need any sprites, blobs or patterns in this example, so simply press the ESC key when
prompted for each of these.



24.3 Running SETW 289

24.3.3 The Main Window

The next prompt is to tell SETW about the main window, how many windows are needed and so on.
In many cases the default is correct and all we need do is press ENTER at each prompt - however,
make sure you read the prompt and think before pressing ENTER - once you have done so, there’s
no going back! (Ask me how I know!)

When asked for the number of main windows, accept the default of 1 by pressing ENTER.

When asked for the number of loose Items, accept the default of zero by pressing ENTER.

When asked for the number of Information Windows, we will need one, so press the ‘1’ key and
press ENTER.

We are now asked to enter the number of information objects in each information window. We
require one information object in our one single information window. Type ‘1’ and press ENTER.

When asked how many Applications Windows you want, accept the default of zero.

Next we are asked to select a shadow size. I find a size of 2 to be adequate. Type ‘2’ and press
ENTER.

For the border size choose a width of 1.

For all the prompts asking us to select a colour, select option 1 each time. Use the arrow keys to
highlight the desired option and press ENTER to select it. We want "1. Default" for our colours. (I
will explain the others later on in the series.)

Next we get to choose the sprite to be used as a pointer in the main window. I much prefer the
standard arrow, so select it as above, and press ENTER. If you wish, you can choose another sprite
to use as the pointer instead - it’s your choice.

24.3.4 Information Windows & Objects

Now that all the details for the main window have been entered, or default chosen, we get to enter
the requirements for each (or in our case, one!) Information Window.

First of all we need to enter the border width, I use a width of one pixel for all my programs. Type
‘1’ and press ENTER.

Next we need the border colour, as before, select "1. Default" and press ENTER.

Select the default again for the paper colour.

We are now asked to select a type for our information objects for this information Window. As we
only entered a single information object way back at the beginning and that was a text object, we
should select "text" and press ENTER. Other object types would be available if we had entered any
sprites, blobs or patterns.

Next we see a window appear with the list of (one!) text objects. As there is only one, it has been
highlighted for us. Press ENTER to select it.

Select the default colour again.

When asked for the character sizes for X and Y for this text object, select zero for both.



290 Chapter 24. Creating Your Own Windows With SETW

24.3.5 Interactively Sizing The Window & Contents

Now the fun begins! A window appears that allows us to interactively resize the main window and
the information window we have created. Once done, we can position these items almost at will.

Looking at the window currently being displayed, the lower right corner shows the currently defined
dimensions for the main window itself. At the top left is an outline of the noted dimensions. We
can use the arrow keys to change the dimensions - up makes the window less tall, down makes it
taller, left makes the window narrower and right makes it wider.

Pressing the ALT key makes the change in size bigger. This saves wearing out your keyboard
getting the window to the size you would like!

For this demonstration program, we require a window size of 200 wide by 100 deep. Use the ALT
and arrow keys to make the dimensions 200 wide and 100 deep. When the desired dimensions have
been achieved, press ENTER.

We are now asked if a variable window is to be created, this will be covered in a future tutorial so
for now, type ‘N’. (There is no need to press ENTER.)

Next we need to set the origin of the window. Again the arrow keys move things around and the
ALT key makes the movements bigger. For the demonstration, set the origin to 50, 50. You will get
a rough idea of where the origin will be as a small dot moves around the screen under the control of
your arrow keys. Press ENTER when the origin is where you would like it to be.

Next up, we get to size our information windows, or window in our case! I have decided to make it
slightly wider than the space required for the text object. That itself is 12 characters of 6 pixels
wide or 72 pixels in total. As I like to have a bit of leading and trailing space in my information
windows, use the arrow keys and ALT, as before, to resize information window number one to be
74 pixels wide by 12 deep. You may choose a different dimension if you like, but it will need to be
a minimum of 72 pixels wide to hold all the text.

The program starts off in position mode rather than in size mode. You may need to press F2 to
toggle between the two modes. Check the prompt on screen for advice about which mode you are
currently in.

Once you have the desired size, press F2 and move the window to a position of 62 across by 2
down. If the information window size plus the position causes it to extend off the edge(s) of the
main window, you will not be allowed to position it where you want to. In this case, toggle between
size and position with the F2 key until you have it correctly sized and positioned.

Press ENTER when done. This takes you now to the sizing and positioning of the information
window object (where the actual text object will be placed). If you remember the text object is 12
characters or 72 pixels wide which means that we need an object big enough to take that plus a
little space at the beginning and end. As I like a couple of pixels either end of my objects, set the
information object to be at position 4 across and 1 down. Press ENTER when satisfied.

That’s it for our little test window. SETW now displays some information about the files it created
and after a pause, or when you press a key, it will cycle through all the main windows we created -
one in our case - and display them on screen as they have been defined.

At this point, there’s not much we can do if it all went horribly wrong. We simply have to start
again - or get down and dirty in the generated assembly file! Press ENTER to exit from SETW.

On ram1_, in my case, we now have the files that SETW generated for us. We are only interested
in the hello_asm file and can happily delete the others. Feel free to examine the generated file in



24.4 Coming Up... 291

an editor and compare what has been created with the previous articles where I explain what the
individual bits of a WMAN window definition are.

The assembly source file generated is not able to be assembled as it is and then run, it has no code
in it to make it a correctly functioning QDOS job. That comes later.

Until next time, feel free to generate more windows of your own and get to know George’s SETW
utility - we will be using it in future articles in this series.

24.4 Coming Up...

We take the file we created with SETW and feed it into another of George’s utilities, EasyPEasy, in
the next chapter. EasyPeasy tries to make coding for the PE much easier. Until next time, happy
windowing.





25. Easy PEasy - Part 1.

25.1 Introduction.

At the end of the previous chapter, we had created a very minimal ‘Hello World’ window using
George Gwilt’s SETW application. In this chapter, we take a first look at George’s other utility to
make PE programming easy, EasyPEasy. As mentioned last time, you should have downloaded the
peasp02.zip file from George’s website. If you find a later version (say peasp03.zip or higher, get
that instead!) The website address is http://gwiltprogs.info/.

25.2 Easy PEasy.

Unlike many other utilities, Easy PEasy isn’t a program you can run, it is a collection of information
and small binary files that you can include with your own programs - using the LIB and IN
commands in your source code and assembling with GWASL - to make programming the Pointer
Environment a little easier. Actually, quite a lot easier as George has done much of the hard work,
all we have to do is open a console, make a few checks and write the code to handle our own needs
as opposed to the needs of getting the PE up and running.

Much of what follows in this chapter is a blatant theft of George’s readme file. For this I make no
apology - there is no better way to document something that straight from the horse’s mouth!

25.3 The Nine Steps To Happiness.

With Easy PEasy, there are nine steps to happiness. The following is basically a skeleton for writing
a PE program in assembly language:

1. Initialise your program and open a con_ channel.
2. Are the PTR_GEN & WMAN present? Abort the program if not.
3. Set up the window working definition.

http://gwiltprogs.info/


294 Chapter 25. Easy PEasy - Part 1.

4. Position the window.
5. Draw the window contents.
6. Read the pointer.
7. Did we have an error - exit if so, else it was an event.
8. Process the event.
9. Goto step 6.

Each step in the above, thanks to the coding that George has done, is quite simple.

25.3.1 Initialise.

The initialisation step consists of setting up your console channel and opening it. The standard
QDOSMSQ job header is also required. The code is very simple, and looks like that shown in
Listing 25.1. It is best to do the setup as soon as possible after the program is executed rather than
setting up other stuff first. It saves time and effort - in case something goes wrong and you have to
bale out.

1 b r a . s s t a r t
2 dc . l 0
3 dc .w $4afb
4
5 i d equ 0 ; S t o r a g e f o r c h a n n e l i d
6 wmvec equ 4 ; S t o r a g e f o r WMAN v e c t o r
7 s l i m i t equ 8 ; S t o r a g e f o r Window l i m i t s c a l l
8
9 jname dc .w jname_e−jname−2

10 dc . b "My EPE Program "
11 jname_e ds . b 0
12 ds .w 0
13
14 ; Conso le d e f i n i t i o n .
15 con dc .w 4
16 dc . b ’ con_ ’
17
18 ; The j o b s t a r t s h e r e .
19 s t a r t l e a ( a6 , a4 . l ) , a6 ; Get t h e d a t a s p a c e a d d r e s s i n A6 . L
20
21 l e a con , a0 ; Con_ c h a n n e l d e f i n i t i o n
22 moveq #−1,d1 ; R e q u i r e d f o r t h i s j o b
23 moveq #0 , d3
24 moveq # io_open , d0
25 t r a p #2 ; Open t h e c h a n n e l
26 t s t . l do ; Did i t work ?
27 bne s u i ; E x i t v i a s u i r o u t i n e i n EasyPEasy
28 move . l a0 , i d ( a6 ) ; Save t h e c h a n n e l i d

Listing 25.1: EasyPEasy Standard Code - Initialisation

25.3.2 Check The PE & WMAN.

The console is open now, or we have baled out of the program. Obviously we don’t get much
feedback from the program if anything went wrong, a proper user friendly application would, of
course, display a suitable error message. The next easy step is to check for the presence or otherwise
of PTR_GEN and WMAN as per Listing 25.2.



25.3 The Nine Steps To Happiness. 295

The following code requires a channel id, for a CON_ channel, to be in A0.

29 ; Check f o r PE b e i n g p r e s e n t .
30 moveq # i o p _ p i n f , d0
31 moveq #−1,d3
32 t r a p #3
33 t s t . l d0 ; P t r _ g e n p r e s e n t ?
34 bne s u i ; No , b a l e o u t
35 move . l a1 , wmvec ( a6 ) ; Yes , s ave WMAN v e c t o r
36 beq s u i ; Oops ! Bale out , no WMAN
37 movea . l a1 , a2 ; Keep WM v e c t o r i n A2
38 l e a s l i m i t ( a6 ) , a1 ; S t o r a g e , 4 words long
39 moveq # i o p _ f l i m , d0 ; Need maximum s i z e o f window
40 t r a p #3
41 s u b i . l #$C0008 , ( a1 ) ; Less 12 ( wid th ) and 8 ( h e i g h t )

Listing 25.2: EasyPEasy Standard Code - Checking for the PE

The code in Listing 25.2 checks for the PE being present and if not found, bales out via the code at
sui. If the PE is found, the WMAN vector is saved in data space for later use - however, if WMAN
is not loaded (but PTR_GEN is) the job will exit via the familiar sui routine. Easy PEasy requires
both the PTR_GEN and WMAN files to be loaded in order to create and run PE programs.

Next up, we find out the maximum size that the con_ channel can grow to. We assume that that
code always works - but it may be good practice to check, just in case. The 4 words returned
indicate the size and position of the con_ channel, and these 4 words are placed into the job’s data
space and a small margin is subtracted from the width and height.

25.3.3 Set The Window Definition.

The window definition is expected to hold a value in wd0 for the size of working definition and
status area space. The code in Listing 25.3 reads the amount of memory required for the window
definition (created by SETW and defined in ww0_0) and allocates space in the common heap for
our program to use. If this fails, the call to getsp will never return - it exits through the sui code on
error.

42 ; Rese rve memory f o r t h e window working d e f i n i t i o n .
43 l e a wd0 , a3 ; Address o f window d e f i n i t i o n
44 move . l #ww0_0 , d1 ; S i z e o f working d e f i n i t i o n
45 b s r g e t s p ; A l l o c a t e s p a c e
46 movea . l a0 , a4 ; Save i n A4 . L t o o

Listing 25.3: EasyPEasy Standard Code - Allocate Memory for the Window Definition

If the memory allocation worked, the address is returned in A0 and we save it in A4 for later use.
This is a handy feature of Easy PEasy and the way it was written by George.

Before we can call the WMAN routine to set up our window - wm_setup - we need to make sure
that the status area for loose items is all initialised properly. The code in Listing 25.4 assumes that
all loose items will be available when the program starts. Zero is the value we need for available.

The labels wst0 and wst0_e are defined by the SETW program. (As you can see SETW does most
of the hard work of calculating various sizes and labels for us!)

47 ; P r e s e t a l l Loose I t e m s t o a v a i l a b l e .
48 movea . l i d ( a6 ) , a0 ; R e s t o r e c h a n n e l ID
49 moveq # wst0_e−wst0 −1,d1 ; S i z e o f s t a t u s a r e a − 1



296 Chapter 25. Easy PEasy - Part 1.

50 l e a wst0 , a1 ; Wst0 = s t a t u s a r e a a d d r e s s
51
52 loop c l r . b ( a1 )+ ; Zero = Loose I tem i s a v a i l a b l e
53 dbf d1 , l oop ; C l e a r e n t i r e a r e a
54 l e a wst0 , a1 ; R e s e t p o i n t e r t o s t a t u s a r e a
55 moveq #0 , d1 ; D e f a u l t window s i z e
56 l e a wd0 , a3 ; Wd0 = window d e f i n i t i o n a d d r e s s
57 j s r wm_setup ( a2 ) ; C r e a t e t h e working d e f i n i t i o n

Listing 25.4: EasyPEasy Standard Code - Loose Item Initialisation

25.3.4 Position The Window.

This is probably one of the easiest parts of the code! We assume that the pointer is in the position
on screen where we wish the window to appear. The position of the window may move to make
sure that it remains on the screen, however, in normal circumstances, the pointer in our window
will be positions in exactly the same place where the on screen pointer is now.

Note
If you don’t default the pointer position to -1 to indicate where the pointer is now, then
you must note that the value in D1 is in absolute screen coordinates relative to the start
of the screen (at 0,0) and not relative to the program’s main window or to any application
sub-windows within.

This can be useful if a window has no ‘move’ abilities - you can simply put the pointer where you
wish the window to appear, and execute the program. The window will be drawn exactly (adjusted
to fit on screen) where you have put the pointer.

58 ; P o s i t i o n , b u t do n o t draw , t h e window .
59 moveq #−1,d1 ; P o s i t i o n a t p o i n t e r p o s i t i o n
60 j s r wm_prpos ( a2 ) ; I t ’ s a p r i m a r y window

Listing 25.5: EasyPEasy Standard Code - Position the Window

25.3.5 Draw The Contents.

The windows has been positioned, however, it has not been drawn on screen, so we need to draw it
now. This is even simpler than the positioning of the windows.

61 ; Draw t h e window .
62 j s r wm_draw ( a2 ) ; Draw t h e window and i t s c o n t e n t s

Listing 25.6: EasyPEasy Standard Code - Draw the Window

That was difficult! ;-)

25.3.6 The Pointer Loop.

At this point, we have the windows on screen and the user is waiting to use the application. We
have to enter a loop to read the pointer and act accordingly.

63 ; Main p o i n t e r r e a d i n g loop .
64 r e a d _ p t r j s r wm_rptr ( a2 ) ; Read t h e p o i n t e r .
65 ; ; Does n o t r e t u r n u n t i l



25.3 The Nine Steps To Happiness. 297

66 ; ; E i t h e r D0 or D4 a r e non−z e r o

Listing 25.7: EasyPEasy Standard Code - Reading the Pointer

For most loose items, application windows and so on, an action routine will have been defined and
coded. These action routines will be discussed later. The pointer reading routine - wm_rptr - will
not return until either D0 or D4 are non-zero as a result of an action routine.

25.3.7 Error Or Event?

If D0 is non-zero, and error has occurred and we should (somehow) handle it and probably bale out
of the program. Alternatively, we can simply ignore errors and try again. The program developer
decides.

If D4 is non-zero, an event has occurred and we need to handle that in our code before, possibly,
returning to the pointer reading loop again.

An event is defined as a key press such as ENTER while the pointer is not positioned on a loose
item or menu item, ESC, F1 (Help) or any of the CTRL+Fn key combinations - SLEEP, WAKE,
MOVE or SIZE - but only provided that the key press doesn’t select a menu item.

An event can be generated by any of the action routines as well. Within the action routines the
programmer has the choice of either handling the action code there and then, or, setting an event in
D4 and returning. This will cause the call to wm_rptr to exit and return back to the application
where the event can be handled.

Some programmers like to control where and when the action handling code is performed and like
to keep it all in the main code, others like to carry out the actions within the action handlers. It’s
entirely up to the developer - the end user will see no difference whichever method is chosen.

Obviously, how a program handles errors and events is up to the programmer and a generic method
can’t be given here. However, as an example, the following may suffice.

67 ; I g n o r e e r r o r s .
68 bne . s r e a d _ p t r ; E r r o r i n D0? I f so , i g n o r e i t
69 ; ; Th i s assumes t h e r e i s an o p t i o n i n
70 ; ; t h e program t o l e t t h e u s e r EXIT

Listing 25.8: EasyPEasy Standard Code - Error or Event Check

25.3.8 Process Events.

At this stage in our program, we have returned from reading the pointer (wm_rptr) and no errors
have been reported (in D0), so we must have detected an event in D4. We have three choices here -
if our action routines should have handled things, then perhaps we should ignore the event and read
the pointer again - alternatively, this could be an error and we should abort the program. The other
alternative is that our action routines have set the event in D4, so our code should now process the
appropriate event.

As above when trapping errors, there’s no ‘one size fits all’ answer and every program should
handle events accordingly. The following is an example whereby the events are simply ignored and
we return to reading the pointer.

71 ; I g n o r e e v e n t s .
72 b r a . s r e a d _ p t r ; I g n o r e e v e n t numbers i n D4

Listing 25.9: EasyPEasy Standard Code - Ignore Events



298 Chapter 25. Easy PEasy - Part 1.

Obviously, if your code is processing events ‘outside the action routines’ then your own code, to
process the appropriate event, would go here, rather than simply ignoring the events.

The event numbers are discussed below in ‘Loose Item Action Routines’.

25.3.9 Repeat.

Repeat has already been handled above. All we do - in this simple example - is loop back to read
the pointer when we hit an error or when any event occurs.

25.4 Loose Item Action Routines.

There are two kinds of action routines you need to be aware of. Those for loose items and those
for application menu items. As we have not yet discussed much for Application Windows or their
menu items, they will be discussed later.

An action routine for a loose item is called from within the wm_rptr call, and if the action routine
exits with D0 and D4 both set to zero, the wm_rptr call will resume again - in other words, control
will not return to your own code just yet.

On entry to a loose item action routine various registers are set with specific parameters:

Register Description

D1.L High word = pointer X position, Low Word = pointer Y position.
D2.W Selection keystroke letter, in its upper cased format, or 1 = Hit/SPACE or 2 =

DO/ENTER. D2.W may be an event code if an event triggered this action.
D4.B An event number - see below - if an event triggered this action routine.
A0.L Channel id.
A1.L Pointer to the status area.
A2.L WMAN vector.
A3.L Pointer to loose menu item.
A4.L Pointer to window working definition.

Table 25.1: Loose Item Action Routine - Entry Registers

If the loose item was triggered as the result of a selection keystroke, D2.W will hold the uppercased
letter code.

If the loose item was triggered as a result of an event, D4.B holds the event number and D2.W
holds the event code in the table below.

In addition to the above, the status of the loose item which triggered the action routine will be set to
selected. It is not reset to available on exit, this is your responsibility.

Action routines must exit with D5, D6 and D7, A0 and A4 preserved to the same value that they
had on entry to the routine. In addition, the code must set the SR according to the value in D0. A5
and A6 can be used and left at any value by the action routines, while D1 - D3 and A1 - A3 appear
to be undefined as to their exit status.

If an error is detected, the routine should exit with an error code in D0 and the SR set accordingly.
If the action routine simply wishes to cause wm_rptr to return to the user’s code where an event
will be processed - rather than processing it in the action routine itself, D4 should be set to the
correct event number that the user code should process.



25.5 Coming Up... 299

Event Keystroke Event Number (D4.B) Event Code (D2.W)

Hit Space 0 1
Do Enter 16 2
Cancel ESC 17 3
Help F1 18 4
Move CTRL+F4 19 5
Size CTRL+F3 20 6
Sleep CTRL+F1 21 7
Wake CTRL+F2 22 8

Table 25.2: Loose Item Action Routine - Event Settings

Obviously, if setting D4 with an event number then D4 should be set before D0 otherwise the SR
will take on the settings for D4 instead of D0.

If no error was detected by the action routine, and no event is to be returned, both D0 and D4 must
be set to zero on exit.

The action routine needs to perform the application specific code to process the loose item that was
triggered, however, it must also reset the status of the loose item that triggered the action routine.
This can be done as follows.

73 ; A c t io n r o u t i n e code goes h e r e . . .
74 move . l d5−d7 / a0−a4 ,−( a7 ) ; P r e s e r v e r e g i s t e r s t h a t we need
75 . . . ; Do your s t u f f !
76 move . l ( a7 ) + , d5−d7 / a0−a4 ; R e s t o r e r e g i s t e r s p r i o r t o e x i t
77
78 ; R e s e t l o o s e i t em s t a t u s as p a r t o f a c t i o n r o u t i n e .
79 move .w wwl_item ( a3 ) , d1 ; Get t h e l o o s e i t em number
80 move . b #wsi_mkav , w s _ l i t em ( a1 , d1 .w) ; Redraw as a v a i l a b l e
81 moveq #−1,d3 ; Reques t a s e l e c t i v e redraw
82 j s r wm_ldraw ( a2 ) ; Redraw s e l e c t e d l o s e i t e m s
83 moveq #0 , d4 ; No e v e n t s i g n a l l e d h e r e
84 moveq #0 , d0 ; No e r r o r s e i t h e r
85 r t s ; Back t o wm_rptr

Listing 25.10: EasyPEasy Standard Code - Actions

The code above could be used as a template for loose item action routines. It begins by preserving
the registers that we must preserve plus, it stacks A1 and A2 as well - for added safety, as they will
be required in the code to reset the loose item status.

Should you reset the status on entry to the routine or exit? It’s up to your code obviously. However,
I prefer to do it at the end of the action routine. If the action routine is short and quick, it probably
makes no difference. If the routine takes some time - lets say, it’s formatting a floppy disc - then it’s
best to leave it at selected until the format finishes and then reset it. However, it’s your choice.

25.5 Coming Up...

In the upcoming chapter, we’ll take a deeper look at Easy PEasy and the routines that George has
written for us. If we have time and space, we might take a look at an example of its use. See you
then.





26. Easy PEasy - Part 2.

26.1 Introduction.

At the end of the previous chapter - Easy PEasy Part 1, I promised to take a look at the various code
routines that George has written to make life a lot easier for PE assembly language programmers. If
you haven’t already done so, get over to George’s web site and download the programs mentioned
last time. The website address is http://gwiltprogs.info/.

26.2 Easy PEasy.

As I mentioned last time, Easy PEasy isn’t a program you can run, it is a collection of information
and small binary files that you can include with your own programs - using the LIB and IN
commands in your source code and assembling with GWASL - to make programming the Pointer
Environment a little easier.

26.3 Supplied Files.

With Easy PEasy, there are a number of files supplied, these are:

Keys_pe A file that can be included in your source file to define a number of equates for the various
Trap #3 routines introduced by the PE.

Keys_wdef Another include file. This one defines the WMAN window definition equates.

Keys_wman Similar to keys_pe above but this file defines the equates for WMAN routines and
vectors.

Keys_wstatus This file defines the equates etc for the window status area.

Keys_wwork This file contains the definitions for the window working definition.

http://gwiltprogs.info/


302 Chapter 26. Easy PEasy - Part 2.

Qdos_pt The equates etc for the PE interface.

Csprc_bin Some sprites, mostly for mode 4 but a few exist for mode 8. This file should be LIBbed
by your own programs to use the sprites.

Csprc_sym_lst This file lists the names of all the sprites in the above file. If you need to use a
sprite in the above (binary) file, you must use the name listed in this file.

Peas_bin This file contains all the useful code subroutines that George has written to make using
the PE from assembly language easy. This file is binary and as such, should be LIBbed by your
source code.

Peas_sym_lst This file lists all the routines supplied in the above file. Make sure that you use the
name(s) listed in this file if you wish to use George’s code in your own PE programs.

26.4 Subroutines in Easy PEasy.

The file peas_bin should be included at the very end of your own program’s code, as follows:

1 i n w i n 1 _ s o u r c e _ e a s y p e a s y _ p e a s _ s y m _ l s t
2 l i b w i n 1 _ s o u r c e _ e a s y p e a s y _ p e a s _ b i n

Listing 26.1: Invoking EasyPEasy in Your Own Programs

The first ‘in’ line includes the peas_sym_lst file which defines offsets from the current position to
the entry points for the routines in the peas_bin file which is copied ‘as is’ straight into your final
executable file. For this reason, you must keep these lines together and in the order shown above.

Routine Description

GetSp Allocates an area of memory and returns the address in A0.L. The size of the
area required must be passed in D1.L on entry. No other registers are affected.
Exits via SUI (see below) if the memory allocation causes an error.

Rechp Deallocates and frees an area of memory allocated by GetSp above. The address
should be passed in A4.L. No other registers are affected.

Move Processes a MOVE request then returns with D4 and D0 both set to zero. No
other registers are affected. Can be called from inside the MOVE action routine
in your own programs.

Sleep Puts the program to sleep and creates a button in the button frame - if present.
If the button frame is not present, the button will be placed on the top left of the
display. See below for register usage.

Set_AP Set an application window menu. See below for register usage. All registers
are preserved on exit.

Sui The program exits without warning and without any error messages. GetSp
above will exit through here if there is an error when allocating memory.

Table 26.1: EasyPEasy Library Routines

26.4.1 GetSp

GetSp allocates an area of memory for the current job, and returns the address in register A0.L.
There are no errors returned (in D0) as the routine exits through sui (below) if it detects an error.
Only register A0.L is affected by the routine - all others are preserved.



26.4 Subroutines in Easy PEasy. 303

On entry, the number of bytes required should be held in D1.L. On exit, A0.L holds the address
of the allocated area. An example of use, taken from George’s example EX0_asm, can be see in
Listing 26.2.

1 . . .
2 move . l #ww0_0 , d1 ; S i z e o f working d e f i n i t i o n .
3 b s r g e t s p ; Re tu rn ALCHP’ d a d d r e s s i n A0 .
4 movea . l a0 , a4 ; Copy t o A4 .
5 . . .

Listing 26.2: EasyPEasy - GetSP Example

There is no requirement to check for an error with this routine, if it returns to your program then it
has worked.

26.4.2 Rechp

Rechp returns an area of memory, probably allocated using GetSp above, to the system. The address
to deallocate must be passed in A4.L. All other registers are preserved and no errors are returned by
this routine. An example of use would be after unsetting a widow definition, as per the following
from EX0_asm:

1 . . .
2 j s r wm_unset ( a2 )
3 b s r r e c h p
4 . . .

Listing 26.3: EasyPEasy - Rechp Example

Again, there is no need to check for errors as the routine never fails.

26.4.3 Move

Move is called when a program detects that the user has requested a MOVE be carried out. The
routine can be called either from your own code (if the read pointer loop exits with D0/D4 not zero)
or from within an action routine called by the read pointer loop. In either case, calling the move
routine is as simple as this:

1 ; MOVE l o o s e i t em a c t i o n r o u t i n e .
2 a fun0_0 b s r move ; P r o c e s s a MOVE.
3 . . .

Listing 26.4: EasyPEasy - Move Example

The above is another example taken from George’s EX0_asm example program. After processing
the move, the program needs to reset the loose item that caused the move request. See below for a
fuller explanation of the example program and the code that is used to reset the loose items.

26.4.4 Sleep

Sleep sets the program to a button which contains the name of the program and is placed in the
button frame if there is one or at the top left of the screen if there isn’t.

While in button mode, A HIT - left mouse click or SPACE - on the button will cause the program to
waken and restore itself to full size again.



304 Chapter 26. Easy PEasy - Part 2.

A DO - right mouse click or ENTER - on the button will cause the program to waken if the program
is currently located in the button frame, or, causes a move if the button frame is not present.

The registers required to call sleep are shown in Table 26.2.

Register Description

D1.L The size needed for the button. Can be obtained from ww0_1.
D2.L The size needed for main window. Can be obtained from ww0_0.
A2.L The WMAN vector.
A4.L Pointer to the window working definition for the button window.

Table 26.2: EasyPEasy Sleep Entry Registers

On exit from the sleep routine, the registers are set as per Table 26.3.

Register Description

D1-D3 Undefined.
A0.L The channel ID.
A1.L Undefined.
A2.L Preserved - the WMAN vector.
A3.L The window definition address.
A4.L Pointer to the working definition which may have changed.

Table 26.3: EasyPEasy Sleep Exit Registers

As before, the following is an example from EX0_asm where the SLEEP loose item sets the sleep
event in D4 and returns. This causes the read pointer loop to exit back to the user’s code where
the events etc are checked. The following extract shows the checks made to handle the sleep event
being detected:

1 . . .
2 no_er2 b t s t # p t__zzzz , wsp_weve ( a1 ) ; Was i t a SLEEP e v e n t ?
3 beq . s wrp t ; No , r e a d t h e p o i n t e r a g a i n
4 move . l #ww0_1 , d1 ; Get main window b u t t o n s i z e
5 move . l #ww0_0 , d2 ; Get main window s i z e
6 b s r s l e e p ; P r o c e s s a SLEEP
7 b r a . s wrp t ; Read t h e p o i n t e r a g a i n
8 . . .

Listing 26.5: EasyPEasy - Sleep Example

In the above extract, we can see D1 and D2 being set to the sizes calculated (by SETW - see
previous chapter) for the main window and the buttonised window. Registers A2 and A4 are
correctly set.

After calling sleep, the program must continue to read the pointer otherwise it won’t know if a DO
or a HIT has been detected, or if it has been woken from slumber etc.

26.4.5 Set_AP

Set_AP is used to create an application window menu within a particular application window for
a program. It is assumed that each item in the menu will be exactly the same length, although if
QDOS strings are being used the word count for each one will determine what appears.



26.4 Subroutines in Easy PEasy. 305

The registers required to call Set_AP are defined in Table 26.4.

Register Description

D1.W How many items are present?
D2.W The length of each item.
A0.L Pointer to the start of the list of items.
A1.L Pointer to the application window.
A4.L Pointer to the window working definition.

Table 26.4: EasyPEasy Set_AP Entry Registers

On exit, all registers are preserved.

George has provided an example program that uses this routine, EX1_asm. When run, the program
displays a list of files on flp1_ when you click on the Display loose item. You can then select as
many files as you wish, and click the Copy loose item. The selected files will then be copied to
ram1_. The appropriate extract from this demonstration program is:

1 . . .
2 movea . l fnmes ( a6 ) , a0 ; P o i n t e r t o l i s t o f f i l e names
3 moveq #36 , d2 ; I n t e r v a l be tween e n t r i e s
4 movea . l a1 , a5 ; Needed l a t e r on , saved
5 movea . l ww_pappl ( a4 ) , a1 ; L i s t o f app window p o i n t e r s
6 movea . l ( a1 ) , a1 ; Get app window 0 from l i s t
7 b s r s e t _ a p ; S e t t h e app window menu
8 . . .

Listing 26.6: EasyPEasy - SetAP Example

The program has previously read the directory of all files (but no directories etc) on flp1_ into the
area of memory addressed by A0. The data stored there (effectively) looks like the following:

1 . . .
2 i t em_1 dc .w 4 ; Length o f s t r i n g
3 dc . b ’ boot ’ ; F i l ename from f l p 1 _
4 dc . b 0 , 0 , . . . ; 32 padd ing b y t e s
5
6 i t em_2 dc .w 7 ; Length o f s t r i n g
7 dc . b ’ boot_pe ’ ; F i l ename from f l p 1 _
8 dc . b 0 , 0 , . . . ; 29 padd ing b y t e s
9 . . .

Listing 26.7: EasyPEasy - SetAP Item List

You can see from the above that each entry is a total of 36 bytes long (the difference between
addresses item_1 and item_2) although the actual menu items themselves, the filename, need not
be exactly 36 bytes. Regardless of the value of the padding bytes, the data displayed in the menu
items will only show the actual filenames as defined by the QDOS strings making up each item.

An article of application window menus will be coming soon in this series.

26.4.6 Sui

Sui is a dramatic routine to call. Wherever your program is in its processing, calling sui will cause
it to exit. In addition, the GetSp routine (above) will call sui if it cannot allocate a suitable area of



306 Chapter 26. Easy PEasy - Part 2.

memory. George’s example program calls sui when it detects that the Pointer Environment is not
present, as follows:

1 . . .
2 moveq # i o p _ p i n f , d0 ; F ind P o i n t e r Envi ronment & WMAN
3 moveq #−1,d3 ; Timeout
4 t r a p #3 ; Do i t
5 t s t . l d0 ; Did i t work ?
6 bne s u i ; F a i l e d , o r PE a b s e n t , b a l e o u t
7 . . .

Listing 26.8: EasyPEasy - Sui Example

No registers are used by this routine. It never returns an error - because it never actually returns!

26.5 The Example Program, EX0_asm.

So, having discussed the various bits and pieces of Easy PEasy, lets dissect one of George’s example.
The simplest example is EX0_asm and it’s corresponding SETW designed window file, EX0w_asm,
so those are what we will look at next.

This example simply shows how to use the four main events in a PE program:

• Move - moves the window around the screen.
• Resize - allows the window to be sized.
• Sleep - puts the program to sleep either in the button frame, if present, or on screen.
• Esc - exit from the program.

The program looks like Figure 26.5 when running on QPC:

Figure 26.1: Example program EX0 in action.

The window in Figure 26.5 shows an outline with a green border and an interesting paper colour.
A white information window is displayed listing the various loose items in the program. The
information window is white with a green border and black ink.

Along the very top of the window we can see the program’s title - BASICS - in a red papered
information window with a green border and ink, and the four loose items for MOVE and SIZE on
the left with ESC and SLEEP on the right.

The window has been created by SETW and the definitions are all held in the file EX0w_asm which
is supplied in the peass download from George’s web site.

What follows is a slightly amended version of the program supplied by George. I have updated



26.5 The Example Program, EX0_asm. 307

some of the comments to make then more readable and understandable (by me!) and in a couple of
places, I have rearranged the order of some of the instructions - with George’s blessings of course.

1 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ; S t a n d a r d j o b h e a d e r .
3 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 b r a . s s t a r t
5 dc . l 0
6 dc .w $4afb
7
8 fname dc .w fname_e−fname−2
9 dc . b "EX0 v1 . 0 5 "

10 fname_e ds . b 0
11 ds .w 0
12
13 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 ; I n c l u d e t h e v a r i o u s Easy PEasy i n c l u d e f i l e s . These g i v e us names f o r
15 ; a l l t h e v a r i o u s o f f s e t s , v e c t o r s , t r a p s e t c used by t h e PE .
16 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 i n win1_as s_pe_keys_pe
18 i n w i n 1 _ a s s _ p e _ q d o s _ p t
19 i n win1_ass_pe_keys_wwork
20 i n w i n 1 _ a s s _ p e _ k e y s _ w s t a t u s
21 i n win1_ass_pe_keys_wman
22 i n win1_ass_pe_keys_wdef
23
24
25 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 ; De f i n e a few e x p l i c i t e q u a t e s f o r t h i s example program . These a r e
27 ; o f f s e t s i n t o t h e program ’ s d a t a s p a c e ( r e l a t i v e t o A6 ) where we s t o r e
28 ; v a r i o u s b i t s o f u s e f u l i n f o r m a t i o n , c h a n n e l i d s and so on .
29 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 i d equ 0
31 wmvec equ 4
32 s l i m i t equ 8 ; S i z e − o r i g i n

Listing 26.9: Ex0 - Standard Job Header

The above is the usual QDOSMSQ job header, and so on. The various IN lines pull in the include
files from Easy PEasy.

33 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 ; Here i s when t h e example code r e a l l y s t a r t s .
35 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 s t a r t l e a ( a6 , a4 . l ) , a6 ; D a t a s p a c e i n A6
37 b s r . s ope ; Open a con c h a n n e l
38 move . l a0 , i d ( a6 ) ; Keep t h e ID s a f e
39 moveq # i o p _ p i n f , d0 ; F ind P o i n t e r Envi ronment & WMAN
40 moveq #−1,d3 ; Timeout
41 t r a p #3 ; Do i t
42 t s t . l d0 ; Did i t work ?
43 bne s u i ; F a i l e d , o r PE a b s e n t , b a l e o u t
44 move . l a1 , wmvec ( a6 ) ; Keep WMAN v e c t o r s a f e t o o
45 beq s u i ; WMAN n o t p r e s e n t , b a l e o u t
46 movea . l a1 , a2 ; Copy WMAN v e c t o r t o A2
47 l e a s l i m i t ( a6 ) , a1 ; B u f f e r f o r r e s u l t s
48 moveq # i o p _ f l i m , d0 ; F ind maximum s i z e o f window



308 Chapter 26. Easy PEasy - Part 2.

49 t r a p #3 ; Do i t
50 s u b i . l #$C0008 , ( a1 ) ; Less 12 , 8 from width , h e i g h t
51 l e a wd0 , a3 ; Address o f main window d e f i n i t i o n
52 move . l #ww0_0 , d1 ; S i z e o f working d e f i n i t i o n
53 b s r g e t s p ; Re tu r n ALCHP’ d a d d r e s s i n A0
54 movea . l a0 , a4 ; Copy t o A4 .

Listing 26.10: Ex0 - Initialisation

The section of code above carries out various initialisations and checks for the Pointer Environment
and WMAN before allocating enough space for the working definition for the main window which
SETW stores for us in ww0_0.

55 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
56 ; We need t o s e t t h e s t a t u s a r e a t o z e r o s
57 ; and t h e l o o s e i t e m s t o " a v a i l a b l e " ( z e r o ) .
58 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 l e a wst0 , a1 ; S t a t u s a r e a a d d r e s s
60 movea . l a1 , a0 ; Copy t o A0
61 moveq # wst0_e−wst0 −1,d1 ; By tes t o c l e a r − 1
62
63 s t 1 c l r . b ( a0 )+ ; S e t s t a t u s t o z e r o / a v a i l a b l e
64 db ra d1 , s t 1 ; And r e p e a t
65
66 movea . l i d ( a6 ) , a0 ; Get t h e c h a n n e l ID a g a i n
67 move . l wd_xmin+ wd_rbase ( a3 ) , d1 ; Minimum s i z e ( x , y ) i n D1
68 a n d i . l #$0FFF0FFF , d1 ; Lop o f f t h e s c a l i n g f a c t o r s
69 ; ; Wm_setup g e t s u p s e t i f you l e a v e
70 ; ; s c a l i n g s t u f f a t t a c h e d . The x , y
71 ; ; s i z e s i n D1 must be a c t u a l s i z e s .
72 j s r wm_setup ( a2 ) ; S e t up t h e working d e f i n i t i o n

Listing 26.11: Ex0 - Loose Item Initialisation

Just before we (finally) set up the window, we need to be sure that all the loose items are set to
available - in this case - and that the status area is filled with zeros. As ever, SETW has put the
status area details in an easy to find location - wst0 - and we use this to initialise the status area
easily. Regardless of the actual size of the status area itself, the above code will always work.

Please note, in the above George picks the smallest window definition as the one to use when the
program first starts. The size of the smallest definition is obtained from wd_xmin + wd_rbase(a3)
and placed in D1.L with the high word containing the width and the low word holding the height.
Because this definition has scaling details embedded in the top nibble of each word, these must be
masked out before calling wm_setup.

The same applies if you set D1.L to zero - which means use the default (largest) definition - unless
the scaling factors are masked off, the call to wm_setup will return, but your window will not
display correctly, if at all. This problem also affects the wm_fsize routine which returns the size,
in D1.L, for a given definition. You must mask off the scaling nibbles.

73 moveq #−1,d1 ; S e t t h e window p o s i t i o n . . .
74 j s r wm_prpos ( a2 ) ; . . . t o where t h e p o i n t e r i s
75 j s r wm_wdraw ( a2 ) ; Draw t h e c o n t e n t s

Listing 26.12: Ex0 - Position and Draw Window

The snippet of code above sets the window position to be where the pointer is on screen right now,
then draws the window.



26.5 The Example Program, EX0_asm. 309

76 wrpt j s r wm_rptr ( a2 ) ; Read t h e p o i n t e r

Listing 26.13: Ex0 - Reading the Pointer

The above starts the pointer reading loop. This code will not return unless an action routine sets D0
with an error code, or, sets D4 with an event number.

77 beq . s n o _ e r r ; As D0 i s zero , D4 must be non z e r o
78 b r a s u i ; E r r o r , D0 i s non zero , b a l e o u t

Listing 26.14: Ex0 - Test for Errors or Events

If we have returned from the read pointer loop, then D0 is holding an error code, or D4 holds an
event number. Because the Status Register must hold the flags according to the value in D0 on exit
from an action routine, checking for the Z flag being set implies that D0 is indeed holding an error.

If no error is detected, the code skips off to a label no_err below, where D4 is checked for events to
process, otherwise, the program dies horribly with a call to the sui routine supplied by George.

79 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80 ; D e f a u l t c o n s o l e c h a n n e l d e f i n i t i o n .
81 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
82 con dc .w 3
83 dc . b ’ con ’
84
85 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 ; R o u t i n e t o open a c h a n n e l f o r t h i s j o b .
87 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 ope l e a con , a0 ; To open " con "
89 moveq #−1,d1 ; For t h i s j o b
90 moveq #0 , d3
91 moveq # io_open , d0
92 t r a p #2
93 r t s

Listing 26.15: Ex0 - Console Channel Details & Code

The code above defines a console channel for our program and opens it.

94 n o _ e r r movea . l ( a4 ) , a1 ; S t a t u s a r e a
95 b t s t # p t__can , wsp_weve ( a1 ) ; Was i t a CANCEL e v e n t ?
96 bne s u i ; Yes , e x i t
97
98 b t s t # pt__move , wsp_weve ( a1 ) ; Was i t a MOVE e v e n t ?
99 beq . s no_er1 ; No , s k i p

100 b s r move ; Yes , p r o c e s s a MOVE
101 b r a . s wrp t ; Read p o i n t e r a g a i n
102
103 no_er1 b t s t # p t__ws iz , wsp_weve ( a1 ) ; Was i t a SIZE e v e n t ?
104 beq no_er2 ; No , s k i p
105 b s r . s r e s z e ; Yes , p r o c e s s a SIZE
106 b r a . s wrp t ; Read p o i n t e r a g a i n
107
108 no_er2 b t s t # p t__zzzz , wsp_weve ( a1 ) ; Was i t a SLEEP e v e n t ?
109 beq . s wrp t ; No , r e a d t h e p o i n t e r a g a i n
110 move . l #ww0_1 , d1 ; Get main window b u t t o n s i z e
111 move . l #ww0_0 , d2 ; Get main window s i z e
112 b s r s l e e p ; P r o c e s s a SLEEP



310 Chapter 26. Easy PEasy - Part 2.

113 b r a . s wrp t ; Read p o i n t e r a g a i n

Listing 26.16: Ex0 - Checking Events

The code above is executed on return from the read pointer loop with an event number in D4. It
begins by checking to see if the CANCEL event occurred (or was set in an action routine) and if so,
exits the program via the sui routine.

Assuming that the event was not CANCEL, the next check is for a MOVE event. If it was a MOVE,
the move is handled by George’s move routine and we return to the read pointer loop again.

The next check is for a SIZE event and if detected, we process the MOVE request and return to the
pointer reading loop, otherwise we skip to the final check.

The last check we make is for a SLEEP event. If this is not a SLEEP request, we skip back and
begin reading the pointer again. It this is a SLEEP request, we set the registers as required by the
sleep routine by loading D1 with the current window size and D2 with the button window size -
both helpfully defined by SETW - and jump into the sleep routine.

The sleep routine returns control to our code again and we skip back to reading the pointer. We
must do this or we will never be able to know when the sleeping program has been wakened etc.

All of the above checks were made by looking at the individual bits in the window byte of the event
vector.

114 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
115 ; Loose i t em a c t i o n r o u t i n e s .
116 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
117 ; MOVE
118 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 afun0_0 b s r move ; P r o c e s s a MOVE
120
121 a f 1 move .w wwl_item ( a3 ) , d1 ; Loose i t em number
122 move . b #wsi_mkav , w s _ l i t e m ( a1 , d1 .w) ; Ask f o r redraw
123 moveq #−1,d3 ; S e l e c t i v e redraw
124 j s r wm_ldraw ( a2 ) ; Redraw l o o s e i t e m s
125 c l r . b w s _ l i t e m ( a1 , d1 .w) ; A v a i l a b l e s t a t u s
126 moveq #0 , d4 ; No e v e n t s
127 moveq #0 , d0 ; No e r r o r s
128 r t s ; Read t h e p o i n t e r a g a i n

Listing 26.17: Ex0 - Move Loose Item Action Routine

The program demonstrates both methods of handling loose item action routines. MOVE and SIZE
are handled within the read pointer loop and not by the above code which checks the event bits
outside of the read pointer loop.

The action routine above, for a MOVE, carries out all the processing necessary to make the window
move on screen. It simply calls the move routine supplied by George.

The code at label af1 is necessary as it resets the loose item’s status to available - when a loose item
is hit or done, it’s status changes to selected. Once this has been done and the loose item redrawn,
D4 and D0 are set to tell the read pointer loop to continue, the action has been processed.

129 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
130 ; RESIZE
131 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 afun0_1 move . l a3 ,−( a7 ) ; Save working r e g i s t e r



26.5 The Example Program, EX0_asm. 311

133 movea . l ww_wdef ( a4 ) , a3 ; Window d e f i n i t i o n x , y s i z e
134 b s r . s r e s z e ; P r o c e s s a SIZE
135 movea . l ( a7 ) + , a3 ; R e s t o r e p o i n t e r t o l o o s e i t em
136 b r a . s a f 1 ; And r e s e t s t a t u s e t c

Listing 26.18: Ex0 - SIZE Loose Item Action Routine

The action routine above processes a SIZE request when the Size Loose Item is hit or done. It does
this by calling code common to the action routine itself and called by the user level code (outside
the pointer reading loop) when a SIZE event bit is set in the window event vector.

Unfortunately, there is no Easy PEasy way to do a resize (at least, not at the moment) so we
programmers have to do it all ourselves. As shown below.

137 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138 ∗ To per fo rm t h e r e s i z e we need t o
139 ∗ a . F ind t h e amount o f r e s i z e ( by wm_chwin )
140 ∗ b . Throw away t h e c u r r e n t working d e f i n i t i o n ( by wm_unset )
141 ∗ c . F ind t h e new s i z e ( by wm_fsize )
142 ∗ d . Get s p a c e f o r t h e new working d e f i n i t i o n ( by g e t s p )
143 ∗ e . S e t up t h e new working d e f i n i t i o n ( by wm_setup )
144 ∗ f . P o s i t i o n t h e new window ( by wm_prpos )
145 ∗ g . Draw t h e c o n t e n t s ( by wm_wdraw )
146 ∗
147 ∗ Comments
148 ∗ On a .
149 ∗ We have t o s e t t h e r e s i z e b i t i n t h e window b y t e o f t h e
150 ∗ e v e n t v e c t o r i n t h e s t a t u s a r e a b e f o r e wm_chwin i s c a l l e d .
151 ∗ The change i n s i z e i s r e t u r n e d i n D1 and t h e window s i z e
152 ∗ e v e n t number i s r e t u r n e d i n D4 .
153 ∗
154 ∗ On c .
155 ∗ On e n t r y t o wm_fsize , D1 must c o n t a i n t h e r e q u e s t e d s i z e .
156 ∗ Thi s s i z e must be chosen c a r e f u l l y . I t must be no b i g g e r
157 ∗ t h a n t h e maximum i n t h e window d e f i n i t i o n . I t must be
158 ∗ s m a l l e r t h a n t h e maximum s i z e f o r t h e window l a y o u t . The
159 ∗ x−s i z e must be a m u l t i p l e o f 4 ( t o a l l o w p r o p e r s t i p p l i n g .
160 ∗ F i n a l l y t h e s i z e must n o t be b i g g e r t h a n t h e c u r r e n t s c r e e n
161 ∗ s i z e wi th a l l o w a n c e f o r shadow and b o r d e r .
162 ∗ On e x i t D1 c o n t a i n s t h e a c t u a l s i z e and D2 .W c o n t a i n s t h e
163 ∗ number o f t h e r e p e a t e d s e c t i o n .
164 ∗ In t h i s example we do n o t r e a l l y need t o use wm_fsize s i n c e
165 ∗ we know t h a t D2 .W w i l l be z e r o and t h a t t h e v a l u e i n D1
166 ∗ w i l l be t h a t on e n t r y ( s i n c e we have a v a r i a b l e window ) .
167 ∗
168 ∗ On d .
169 ∗ The s p a c e needed i s found from t h e l a b e l ww0_0 s e t i n t h e
170 ∗ window d e f i n i t i o n .
171 ∗
172 ∗ On e .
173 ∗ For wm_setup we need on e n t r y :
174 ∗ D1 = s i z e
175 ∗ A0 = c h a n n e l ID
176 ∗ A1 −> s t a t u s a r e a
177 ∗ A3 −> window d e f i n i t i o n
178 ∗ A4 −> s p a c e f o r working d e f i n i t i o n
179 ∗



312 Chapter 26. Easy PEasy - Part 2.

180 ∗ On f .
181 ∗ On e n t r y t o wm_prpos we need t h e p o s i t i o n i n D1 .
182 ∗ In o r d e r t o e n s u r e t h a t t h e bot tom r i g h t c o r n e r o f t h e
183 ∗ r e s i z e d window i s i n t h e same p o s i t i o n as t h a t o f t h e o l d
184 ∗ we need t o s u b t r a c t t h e i n c r e a s e i n s i z e from t h e p o i n t e r
185 ∗ o r i g i n i n t h e o l d window .
186 ∗ The new p o s i t i o n i s t h u s wd_org p l u s ww_xsize minus t h e
187 ∗ new s i z e .
188 ∗
189 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
190 r e s z e move . l ww_xorg ( a4 ) , d7
191 move . l ww_wdef ( a4 ) , a5 Window d e f
192 add . l wd_xorg ( a5 ) , d7
193 add . l ww_xsize ( a4 ) , d7 P t r pos f o r PRPOS ( o p t r )
194 b s e t # p t__ws iz , wsp_weve ( a1 )
195 j s r wm_chwin ( a2 ) S e t s change t o D1 (mv)
196 b c l r # p t__ws iz , wsp_weve ( a1 )
197 move .w wd_rbase+wd_xmin ( a5 ) , d5
198 a n d i .w # $ f f f , d5
199 move .w ww_xsize ( a4 ) , d4
200 swap d1
201 sub .w d1 , d4
202 cmp .w d5 , d4
203 b g t . s r e s z e 1 D4 i s g r e a t e r
204 move .w d5 , d4
205
206 r e s z e 1 move .w wd_xs ize ( a5 ) , d5
207 cmp .w d5 , d4
208 b l t . s r e s z e 2 D4 i s s m a l l e r
209 move .w d5 , d4
210
211 r e s z e 2 moveq #3 , d3
212 add .w d4 , d3
213 a n d i .w # $ f f f c , d3 Keep answer i n D3 .W (mv)
214 move .w wd_rbase+wd_ymin ( a5 ) , d5
215 a n d i .w # $ f f f , d5
216 move .w ww_ysize ( a4 ) , d4
217 swap d1
218 sub .w d1 , d4
219 cmp .w d5 , d4
220 b g t . s r e s z e 3 D4 i s g r e a t e r
221 move .w d5 , d4
222
223 r e s z e 3 move .w wd_ys ize ( a5 ) , d5
224 cmp .w d5 , d4
225 b l t . s r e s z e 4 D4 i s s m a l l e r
226 move .w d5 , d4
227
228 r e s z e 4 swap d3
229 move .w d4 , d3 D3 = new mv x | y
230 j s r wm_unset ( a2 )
231 b s r r e c h p
232
233 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234 ; Now r e s t r i c t s i z e t o t h e s c r e e n s i z e l e s s ( 1 2 , 8 )
235 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



26.5 The Example Program, EX0_asm. 313

236 move . l s l i m i t ( a6 ) , d1
237 cmp .w d3 , d1
238 b l e r e s z e 7 D1 OK
239 move .w d3 , d1
240
241 r e s z e 7 swap d1
242 swap d3
243 cmp .w d3 , d1
244 b l e Resze8 D1 OK
245 move .w d3 , d1 New s i z e
246
247 r e s z e 8 swap d1 New l i m i t e d s i z e
248 move . l d1 , d3
249 j s r wm_fsize ( a2 )
250 move . l d1 ,−( a7 ) Keep s i z e pro tem
251 move . l #ww0_0 , d1 Space needed
252 b s r g e t s p
253 move . l ( a7 ) + , d1 Rep lace s i z e
254 movea . l a0 , a4 New wwd
255 movea . l i d ( a6 ) , a0 Rep lace ID
256 j s r wm_setup ( a2 )
257
258 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
259 ; The p o s i t i o n f o r PRPOS i s o p t r−mv wi th minimum of 4 | 2
260 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
261 move . l d7 , d1
262 swap d1
263 swap d3
264 sub .w d3 , d1
265 cmpi .w #4 , d1
266 bge . s r e s z e 5 D1 n o t l e s s t h a n 4
267 move .w #4 , d1 S e t minimum of 4
268
269 r e s z e 5 swap d1
270 swap d3
271 sub .w d3 , d1
272 cmpi .w #2 , d1
273 bge . s r e s z e 6 D1 n o t l e s s t h a n 2
274 move .w #2 , d1 S e t minimum of 2
275
276 r e s z e 6 j s r wm_prpos ( a2 )
277 jmp wm_wdraw ( a2 )

Listing 26.19: Ex0 - SIZE Processing

The above code is George’s way of processing a SIZE request from within an action routine or
from user code that detected the SIZE bit set in the window event vector.

The other two action routines, for SLEEP and ESC, demonstrate how an action routine can simply
set the appropriate bit in the window vector, set D4 to indicate an event and exit with D0 cleared.

In this case, the actions cause the pointer reading loop to return to the user’s code where the events
can be checked for (see above) and processed accordingly.

278 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
279 ; EXIT − s e t t h e CANCEL e v e n t i n t h e windows e v e n t v e c t o r , p u t t h e
280 ; CANCEL e v e n t number i n D4 and e x i t w i th D0 s e t t o z e r o .



314 Chapter 26. Easy PEasy - Part 2.

281 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
282 afun0_3 b s e t # p t__can , wsp_weve ( a1 ) ; S e t CANCEL window e v e n t
283 moveq # pt__can , d4 ; ESC e v e n t number
284 moveq #0 , d0 ; No e r r o r s
285 r t s ; Re tu r n t o e x i t from r e a d i n g t h e
286 ; ; p o i n t e r and i n t o t h e PROCESS EVENT
287 ; ; s e c t i o n o f t h e use r ’ s code .

Listing 26.20: Ex0 - EXIT Loose Item Action Routine

First of all, the action routine for the ESC loose item. This is the simplest action routine as it only
has to set the event bit, set D4 and D0 then exit. It doesn’t have to reset the ESC loose item status
from selected back to available because the program is about to exit and the user will never see the
redrawn loose item. Simple.

288 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
289 ; SLEEP − s e t t h e ZZZ e v e n t b i t i n t h e window e v e n t v e c t o r , p u t t h e ZZZ
290 ; e v e n t number i n D4 , red raw t h e ZZZ l o o s e i t em as a v a i l a b l e − e l s e i t
291 ; i s s t i l l s e l e c t e d when we wake from t h e b u t t o n f rame − t h e n e x i t w i th
292 ; D0 s e t t o z e r o .
293 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 afun0_2 move .w wwl_item ( a3 ) , d1 ; I t em number f o r t h e ZZZ l o o s e i t em
295 move . b #wsi_mkav , w s _ l i t e m ( a1 , d1 .w) ; Redraw as a v a i l a b l e
296 moveq #−1,d3 ; S e l e c t i v e redraw
297 j s r wm_ldraw ( a2 ) ; Redraw l o o s e i t e m s
298 c l r . b w s _ l i t e m ( a1 , d1 .w) ; A v a i l a b l e s t a t u s s e t
299 b s e t # p t__zzzz , wsp_weve ( a1 ) ; S e t ZZZ window e v e n t .
300 moveq # p t__zzzz , d4 ; ZZZ e v e n t number
301 moveq #0 , d0 ; No e r r o r s
302 r t s ; Re tu r n t o e x i t from r e a d i n g t h e
303 ; ; p o i n t e r and i n t o t h e PROCESS EVENT
304 ; ; s e c t i o n o f t h e use r ’ s code .

Listing 26.21: Ex0 - SLEEP Loose Item Action Routine

The sleep loose item’s action routine is almost as simple, but because the program will - hopefully -
be awakened at some point, it has to reset the loose item status and redraw it.

The code above starts off by obtaining the correct loose item number and changing it’s status to
indicate that it is available. It then calls wm_ldraw to redraw only those loose items asking for a
status change & redraw - as signalled by the value of minus one in D3. This prevents redrawing up
to 32 loose items which don’t need redrawing because nothing has changed.

Once redrawn, the loose item’s status is set to available as well, the SLEEP bit is set in the window
event vector, D4 is set to show the event number and we exit with D0 cleared to show that no errors
occurred.

On return from the above two action routines, the read pointer loop will exit and processing will
continue from the beq.s no_err just after the wrpt label. (Many lines above!)

305 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 ; P u l l i n window d e f i n i t i o n as c r e a t e d by SETW.
307 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
308 i n win1_ass_pe_EX0w_asm
309
310 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
311 ; P u l l i n t h e Easy PEasy s t u f f n e x t − code r o u t i n e s and s p r i t e s .
312 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



26.6 Coming Up... 315

313 i n w i n 1 _ a s s _ p e _ p e a s _ s y m _ l s t
314 l i b w i n 1 _ a s s _ p e _ p e a s _ b i n
315
316 i n w i n 1 _ a s s _ p e _ c s p r c _ s y m _ l s t
317 l i b w i n 1 _ a s s _ p e _ c s p r c _ b i n

Listing 26.22: Ex0 - Includes and Libraries

The last few lines of code pull in the SETW defined window from the file EX0w_asm, then LIBs in
the Easy PEasy routines and the various sprites that your program might want to use.

26.6 Coming Up...

The next chapter in the ongoing saga of writing PE programs in assembler, will concentrate on
application windows and their window menus.





VIII
27 The Return of WMAN . . . . . . . . . . . . . . . . 319
27.1 Introduction
27.2 Application Sub-Windows
27.3 Application Sub-Window Hit Routines
27.4 Example Application Window
27.5 Example Program
27.6 Coming Up...

28 Application Sub-Windows . . . . . . . . . . . 331
28.1 Introduction
28.2 The Hit Routine.
28.3 The Advanced Hit Routine.
28.4 Conclusion
28.5 Coming Up...

29 Application Sub-Window Menus . . . . . 341
29.1 Introduction
29.2 Static Application Sub-Window Menus
29.3 The Generated Code
29.4 Menu Objects
29.5 Menu Items (and Index) List
29.6 Row List
29.7 Spacing Lists
29.8 Menu Section of Application Window Definition
29.9 Application Sub-Window Menu Item Hit Routines
29.10 Coming Up...

30 Creating and Using Libraries With GWASL
357

30.1 Introduction
30.2 The Library Code
30.3 End Of Chapter 30

The Pointer Environment -
Continued





27. The Return of WMAN

27.1 Introduction

Before my recent delving into George’s SETW, his Easy PEasy utilities and my brief foray into
pdf magazine production, I was walking through the various requirements of setting up a window
definition using WMAN. This edition continues from where we left off but incorporates George’s
utilities into the examples. As George has made it easy to write Pointer Environment programs, I
think we should make use of his hard work. Code reuse is all the rage!

However, before we start coding, we better take a moment to discuss Application Sub-Windows.

27.2 Application Sub-Windows

There are a number of uses for application sub-windows, for the program’s display or to hold a
menu, correctly known as an application window menu. An application window is a variable thing
and as such, can be defined in a number of ways. Because of this, and because an application can
have multiple application sub-windows, when defining our main window (or the variable parts of
our main window) we don’t have a pointer to an application window. Instead, we have a pointer to
a list of pointers and each of these, in turn, points to an application window definition. The list is
terminated by a zero word.

The following is the relevant extracts from a definition of a main window which contains information
windows, loose items and a pair of application sub-windows.

1 ; Main window d e f i n i t i o n :
2 . . .
3 dc .w i n f o _ l i s t −∗ ; P o i n t e r t o i n f o r m a t i o n window l i s t
4 dc .w l o o s _ l i s t −∗ ; P o i n t e r t o l i s t o f l o o s e i t e m s
5 dc .w a p p w _ l i s t−∗ ; P o i n t e r t o l i s t o f app windows
6 . . .
7



320 Chapter 27. The Return of WMAN

8 ; A p p l i c a t i o n window l i s t :
9 a p p w _ l i s t dc .w appw_0−∗ ; P o i n t e r t o 1 s t sub−window de fn

10 dc .w appw_1−∗ ; P o i n t e r t o 2nd sub−window de fn
11 dc .w 0 ; No more app sub−windows

Listing 27.1: Example Application Sub-Window List Definition

The definition of an application sub-window is described below.

12 ; A p p l i c a t i o n sub−window d e f i n i t i o n :
13 appw_0 dc .w 192 ; Width i n p i x e l s (+ s c a l i n g )
14 dc .w 119 ; He igh t i n p i x e l s (+ s c a l i n g )
15 dc .w 4 ; X org r e l a t i v e t o 0 i n main window
16 dc .w 18 ; Y org r e l a t i v e t o 0 i n main window
17 dc . b 256 ; B i t 7 s e t = c l e a r window
18 dc . b 0 ; Shadow d e p t h − must be 0 !
19 dc .w 1 ; Borde r wid th
20 dc .w 0 ; Borde r c o l o u r
21 dc .w 7 ; Pape r c o l o u r
22 dc .w 0 ; P o i n t e r t o p o i n t e r s p r i t e , o r 0
23 dc .w 0 ; User d e f i n e d s e t u p r o u t i n e , o r 0
24 dc .w 0 ; User d e f i n e d drawing r o u t i n e , o r 0
25 dc .w a h i t 0 −∗ ; H i t r o u t i n e
26 dc .w 0 ; Sub−window c o n t r o l r o u t i n e , o r 0
27 dc .w 0 ; Max X c o n t r o l s e c t i o n s ( s p l i t s )
28 dc .w 0 ; Max Y c o n t r o l s e c t i o n s ( s p l i t s )
29 dc . b 9 ; S e l e c t i o n key
30 dc . b 0 ; Spa re b y t e − must be 0
31 . . .

Listing 27.2: Example Application Sub-Window Definition

For our current needs, this definition allows us to have a simple application sub-window with no
pan and scroll control bars and no menu. The user defined setup and drawing routines are most
often defined as zero words to allow WMAN to do the hard work.

27.3 Application Sub-Window Hit Routines

The hit routine for an application sub-window is called from within the wm_rptr call either when
you HIT in the window, or when you press the selection key for that sub-window. Similar to loose
item action routines previously discussed, if the code exits with D0 set to zero, the wm_rptr call
will resume again - in other words, control will not return to your own code just yet - unless the hit
code sets any event bits in the event vector. This is slightly different from loose item action routines
in this respect.

On entry to a sub-window hit routine various registers are set with specific parameters as defined in
Table 27.1

Hit routines should exit with D1, D5 - D7, A0 and A4 preserved to the same value that they had on
entry to the routine. D2, D4, A1 - A3, A5 and A6 are undefined on exit (which means that they
don’t care what value they have.) The hit code must set the SR according to the value in D0 on exit.

D3, on return from a hit routine, should normally be returned as per its value on entry. It is not
used by wm_rptr however, it is used by wm_rptrt (read pointer with return on timeout) from
WMAN 1.5 onwards. Wm_rptr ignores the upper word of D3. If your read pointer loop is using



27.4 Example Application Window 321

Register Description

D1.L High word = pointer X position. Low word = pointer Y position in absolute
screen coordinates. Ie, the pointer position within the entire screen and not
within the program’s window or the application sub-window itself.

D2.W Selection keystroke letter, in its upper cased format, or 1 = Hit/SPACE or 2
= DO/ENTER. If D2 is -1, then the application sub-window was “hit” by an
external keystroke. Zero indicates no key was pressed.

D4.B An event number. This can only be 0, pt__do (16) or pt__cancel (17) as all
other events are handled by WMAN. If you have a loose item with ESC as
the selection keystroke, then the loose item action routine will catch the ESC
keystroke - the application sub-window hit routine will not see it if the ESC
causes the program to exit.

A0.L Channel id.
A1.L Pointer to the status area.
A2.L WMAN vector.
A3.L Pointer to sub-window definition.
A4.L Pointer to window working definition.

Table 27.1: Application Sub-Window Hit Routine - Registers

the wm_rptrt vector instead, and you have changed the value of D3 within the hit code, you must
clear the high word on exit.

It is important to note that WMAN doesn’t set the event bits for you, it is up to the hit code to do
that for you. For example, if someone HITs the application window then the hit routine will be
called with D2 = 1 which is also the case also when someone DOes the application window but the
pt__do bit in the window byte of the event vector will not be set.

On exit, if D0 is clear and the status (Z) bit is set, control will return to the wm_rptr loop and not to
your application’s code. To return to your own code, the hit routine needs to set at least one event
bit in the event vector.

If an error is detected within the hit code, then it should exit with the appropriate error code in D0
and the status register set accordingly.

27.4 Example Application Window

As before, we now create a useful (!) demonstration program to show us the simplest use of an
application sub window. The program will look like the following when completed and running:

You can see from Figure 27.1 how I’m sticking to accepted QDOSMSQ design standards here can’t
you!

The window above consists of the following:

• An outline with white paper, a black single pixel border and a shadow. The default arrow
sprite is used for the entire window.

• A ‘caption bar’ consisting of a single information window with green/white striped paper
(paper colour 92).

• Within the information window is a single information text object which is simply the
program name.



322 Chapter 27. The Return of WMAN

Figure 27.1: Application Window Test

• Also located within the information window is one loose item containing a text object (‘X’)
and this has the keypress code set up to close the window.

• The remainder of the outline is filled with an application window, with white paper and a
black single pixel border. (No shadow - they are forbidden for application windows!). This
window also uses the default arrow sprite and has a selection key of TAB. This means that if
you press the TAB key, the pointer will jump into the application sub-window.

The window was set up using SETW as follows:

1. When prompted for ‘name$’ enter ApplTestWin.
2. On the ‘Alter Text’ screen.

• Press N for new, type ‘X’ (without the quotes) then ENTER.
• Press N for new, type ‘Application Window Test’ (without the quotes) then ENTER
• Press ESC.

3. On the ‘Alter Sprite’ screen.
• Press ESC.

4. On the ‘Alter Blob’ screen.
• Press ESC.

5. On the ‘Alter Patt’ screen.
• Press ESC.

6. Number of main windows = 1
7. Number of Loose Items = 1
8. Number of Information windows = 1
9. Number of IW Objects = 1

10. Number of application windows = 1
11. Application windows menu items = 0
12. For main window 1:

• Shadow = 2
• Border size = 1
• Border colour = colour_ql -> black
• Paper colour - colour_ql -> white
• Sprite = arrow

13. Loose Items:
• Press N for ‘system palette defaults’
• Confirm N when prompted again for defaults
• Border size = 1



27.4 Example Application Window 323

• Border colour = colour_ql -> black
• Unavailable background = colour_ql -> white
• Unavailable Ink = colour_ql -> grey
• Available background = colour_ql -> white
• Available Ink = colour_ql -> black
• Selected background = colour_ql -> green
• Selected Ink = colour_ql -> black

14. Loose Item 1:
• Type = text
• Object -> select the ‘X’ text object
• Selection key = ESC

15. Information Window 1:
• Border size = 0
• Paper = colour_ql -> No 92

16. Object 1:
• Type = text
• Object -> select the ‘Application Window Test’ text object.
• Colour = colour_ql -> black
• Xcsize = 0
• Ycsize = 0

17. Application Window 1:
• Border size = 1
• Border colour = colour_ql -> black
• Paper colour = colour_ql -> white
• Sprite = arrow
• Selection key = TAB

18. Main window size: (Use the arrow keys to change the size, press ENTER when correct)
• Width = 200
• Height = 140
• Do you want a variable window = N
• Set the origin to 0,0 (Press ENTER when correct)

19. Loose Item 1: (Toggle hit/position with F2. Press ENTER when correct)
• Hit size = 10 x 10
• Position = 186 x 3

20. Information Window 1: (Toggle size/position with F2. Press ENTER when correct)
• Size = 200 x 16
• Position = 0 x 0
• Object position = 2 x 2

21. Application Window 1: (Toggle size/position with F2. Press ENTER when correct)
• Size = 192 x 119
• Position = 4 x 18

When you have completed this procedure, and SETW has exited, you should save the file
ram1_ApplTestWin_asm to a safer place. The file should look like the following, although I
have added some extra comments to my copy of the generated code.

1 ; ApplTestWin_asm
2
3 ; Undef ined L a b e l s − need t o be d e f i n e d e l s e w h e r e i n my own code .
4 ; a h i t 0 − a p p l i c a t i o n window 0 h i t a c t i o n r o u t i n e .
5 ; a fun0_0 − Loose i t em 0 h i t a c t i o n r o u t i n e .



324 Chapter 27. The Return of WMAN

6
7 ; L a b e l s f o r E x t e r n a l Use
8 ; wst0 − Window s t a t u s a r e a
9 ; wd0 − Window d e f i n i t i o n a d d r e s s

10 ; ww0_0 − Window d e f a u l t s i z e
11 ; ww0_1 − Window b u t t o n s i z e
12
13 SYS_SPR dc .w 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6
14 dc .w 1 7 , 1 8 , 1 9 , 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0
15 dc .w 3 1 , 3 2 , 3 3 , 3 4 , 3 5 , 3 6 , 3 7
16
17
18 ; D e f i n i t i o n o f a l l t e x t o b j e c t s h e r e
19
20 t x t 0 dc .w t x t 0 _ e −2− t x t 0
21 dc . b "X"
22 t x t 0 _ e ds . b 0
23 ds .w 0
24
25 t x t 1 dc .w t x t 1 _ e −2− t x t 1
26 dc . b " A p p l i c a t i o n Window T e s t "
27 t x t 1 _ e ds . b 0
28 ds .w 0
29
30
31 ; A p p l i c a t i o n window l i s t .
32 a p p _ l i s t 0
33 dc .w appw0−∗
34 dc .w 0
35
36
37 ; A p p l i c a t i o n windows 0 d e f i n i t i o n .
38 appw0 dc .w 192 x s i z e
39 dc .w 119 y s i z e
40 dc .w 4 xorg
41 dc .w 18 yorg
42 dc .w 256 f l a g
43 dc .w 1 borw
44 dc .w 0 borc
45 dc .w 7 pap r
46 dc .w 0 p s p r ∗
47 dc .w 0 s e t r ∗
48 dc .w 0 draw ∗
49 dc .w a h i t 0 −∗ h i t ∗
50 dc .w 0 c n t r l ∗
51 dc .w 0 nxsc
52 dc .w 0 nysc
53 dc . b 9 skey
54 dc . b 0 s p r 1
55
56 ; I n f o r m a t i o n O b j e c t ( s )
57 pob l0 dc .w 138 x s i z e
58 dc .w 10 y s i z e
59 dc .w 2 xorg
60 dc .w 2 yorg
61 dc . b 0 t y p e



27.4 Example Application Window 325

62 dc . b 0 s p a r
63 dc . l 0 Ink , x c s i z e , y c s i z e
64 dc .w t x t 1 −∗ pob j ∗
65 dc .w −1
66
67 ; I n f o r m a t i o n window ( s )
68 infw0 dc .w 200 x s i z e
69 dc .w 16 y s i z e
70 dc .w 0 xorg
71 dc .w 0 yorg
72 dc .w 0 f l a g
73 dc .w 0 borw
74 dc .w 526 borc
75 dc .w 92 pap r
76 dc .w pobl0−∗ pob l ∗
77 dc .w −1 end
78
79 ; Loose i t em ( s )
80 l i t m 0 dc .w 10 ,10 x s i z e , y s i z e
81 dc .w 186 ,3 xorg , yorg
82 dc . b 0 ,0 x j s t , y j s t
83 dc . b 0 ,3 type , skey
84 dc .w t x t 0 −∗ pob j ∗
85 dc .w 0 i t em
86 dc .w afun0_0−∗ p a c t ∗
87 dc .w −1 end
88
89 l i t m 1 dc .w 16404 ,12 x s i z e , y s i z e
90 dc .w 0 ,0 xorg , yorg
91 dc . b 0 ,0 x j s t , y j s t
92 dc . b 0 ,0 type , skey
93 dc .w 0 pob j ∗
94 dc .w 0 i t em
95 dc .w 0 p a c t ∗
96 dc .w −1 end
97
98 ; Window d e f i n i t i o n
99 wd0 dc .w 200 x s i z e

100 dc .w 140 y s i z e
101 dc .w 0 xorg
102 dc .w 0 yorg
103 dc .w 258 f l a g
104 dc .w 1 borw
105 dc .w 0 borc
106 dc .w 7 pap r
107 dc .w 0 s p r t ∗
108 dc .w 1 curw
109 dc .w 0 c u r c
110 dc .w 7 uback
111 dc .w 255 u ink
112 dc .w 0 ub lob ∗
113 dc .w 0 u p a t t ∗
114 dc .w 7 aback
115 dc .w 0 a i n k
116 dc .w 0 a b l o b ∗
117 dc .w 0 a p a t t ∗



326 Chapter 27. The Return of WMAN

118 dc .w 4 sback
119 dc .w 0 s i n k
120 dc .w 0 s b l o b ∗
121 dc .w 0 s p a t t ∗
122 dc .w 0 h e l p
123 dc .w 200 x s i z e
124 dc .w 140 y s i z e
125 dc .w infw0−∗ p i n f o ∗
126 dc .w l i t m 0−∗ p l i t e m ∗
127 dc .w a p p _ l i s t 0 −∗ p a p p l ∗
128 dc .w 16384 x s i z e
129 dc .w 12 y s i z e
130 dc .w 0 p i n f o ∗
131 dc .w l i t m 1−∗ p l i t e m ∗
132 dc .w 0 p a p p l ∗
133 dc .w −1
134
135 ; S i z e s
136 ww0_0 equ 290
137 ww0_1 equ 148
138
139 ; S t a t u s Areas
140 wst0
141 ds . b 65
142 wst0_e ds . b 0
143 ds .w 0

Listing 27.3: Test Window - ApplTestWin_asm

27.5 Example Program

Having defined our application window test definition, we need a program to run it. However, we
must also decide what the program is intended to do when running. As this is our first program with
an application window, we will simply write some information to the application window when
‘things’ happen.

I mentioned ‘code reuse’ above, so the following is based very heavily on George’s example code,
with (I hope) all the unnecessary bits removed. Unnecessary, that is, for this example of mine!

The following is enough of a test harness to get our newly designed window up and running, but
only the ESC key and the ‘X’ loose item works. The rest of the program will come later.

In the source code that follows, where I use the ‘in’ or the ‘lib’ commands, you will need to replace
‘win1_georgegwilt_’ with the location of the files being included. Unless you have exactly the same
source setup as I do!

We start, as ever, with a standard QDOSMSQ job header and then pull in the various include files
from Easy PEasy. Three offsets into the job’s data area are then defined.

1 b r a . s s t a r t
2 dc . l 0
3 dc .w $4afb
4
5 fname dc .w fname_e−fname−2
6 dc . b " A p p l i c a t i o n Window T e s t 1"
7 fname_e ds . b 0



27.5 Example Program 327

8 ds .w 0
9

10 ; We need t h e v a r i o u s e q u a t e s f i l e s e t c .
11
12 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ k e y s _ p e
13 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ q d o s _ p t
14 i n win1_geo rgegwi l t _peas s_keys_wwork
15 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ k e y s _ w s t a t u s
16 i n win1_georgegwi l t_peass_keys_wman
17 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ k e y s _ w d e f
18
19 i d equ 0 ; Channel i d s t o r a g e
20 wmvec equ 4 ; WMAN v e c t o r s t o r a g e
21 s l i m i t equ 8 ; IOP_FLIM r e s u l t s − 4 words . . .
22 ; ; X−s i z e , Y−s i z e , X−org , Y−org

Listing 27.4: ApplTest_asm - Standard Job Header & Equates

Following on from the above, we have the job’s start and initialisation code. As the vast majority of
this has been explained before in the introductory article on George’s Easy PEasy, I shall not go
into it again here. See Easy PEasy Part 1 in Volume 14 Issue 3 for full details.

23 s t a r t l e a ( a6 , a4 . l ) , a6 ; Make A6 p o i n t t o t h e job ’ s d a t a s p a c e
24 b s r op_con ; Open a con c h a n n e l
25 move . l a0 , i d ( a6 ) ; And s t o r e t h e c h a n n e l i d
26 moveq # i o p _ p i n f , d0 ; Trap t o g e t P o i n t e r I n f o r m a t i o n
27 moveq #−1,d3 ; Timeout
28 t r a p #3 ; Do i t
29 t s t . l d0 ; I s p t r _ g e n p r e s e n t ?
30 bne s u i ; No , b a l e o u t v i a SUI
31 move . l a1 , wmvec ( a6 ) ; Yes , s t o r e t h e WMAN v e c t o r
32 beq s u i ; Oops ! WMAN wasn ’ t a c t u a l l y found
33
34 f l i m movea . l a1 , a2 ; The WMAN v e c t o r i s r e q u i r e d i n A2
35 ; ; The c h a n n e l i d i s a l r e a d y i n A0
36 l e a s l i m i t ( a6 ) , a1 ; R e s u l t b u f f e r
37 moveq # i o p _ f l i m , d0 ; Query maximum s i z e o f window
38 moveq #0 , d2 ; D2 must be z e r o
39 ; ; D3 i s p r e s e r v e d t i m e o u t from above
40 t r a p #3 ; Do i t ( No e r r o r s )
41 t s t . l d0 ; Did i t work ?
42 bne s u i ; No , e x i t v i a SUI
43
44 s u b i . l #$C0008 , ( a1 ) ; A d j u s t max h e i g h t & wid th f o r shadow
45 ; ; and b o r d e r s .
46 l e a wd0 , a3 ; Get a d d r e s s o f window d e f i n i t i o n
47 move . l #ww0_0 , d1 ; Get s i z e o f t h e working d e f i n i t i o n
48 b s r g e t s p ; ALCHP memory and s e t A0 t o a d d r e s s
49 movea . l a0 , a4 ; Which we save i n A4

Listing 27.5: ApplTest_asm - Initialisation

So far so good. Next we use a generic piece of code to go through the status area and set all the
lose item status bytes to ‘available’.

50 l e a wst0 , a1 ; S t a t u s a r e a s t a r t s h e r e
51 movea . l a1 , a0 ; Copy t o A0



328 Chapter 27. The Return of WMAN

52 moveq # wst0_e−wst0 −1,d1 ; How many b y t e s t o c l e a r − 1
53
54 s t _ c l r c l r . b ( a0 )+ ; C l e a r one b y t e
55 dbf d1 , s t _ c l r ; Then t h e r e m a i n d e r

Listing 27.6: ApplTest_asm - Loose Item Initialisation

At this point we are just about ready to go. So, the next piece of code will call out the various
WMAN routines to setup the window definition, position it on screen where the pointer currently
is located and draw it before vanishing into the twilight zone that is the read pointer loop within
WMAN. All of these have been described before so I don’t go into detail.

56 movea . l i d ( a6 ) , a0 ; Get t h e c h a n n e l i d where we need i t
57 ; A1 i s t h e s t a t u s a r e a a d d r e s s
58 ; A3 i s t h e window d e f i n i t i o n a d d r e s s
59 ; A4 i s t h e working d e f i n i t i o n a d d r e s s
60 move . l wd_xmin+ wd_rbase ( a3 ) , d1 ; Get t h e minimum d i m e n s i o n s
61 a n d i . l #$FFF0FFF , d1 ; Mask o f f any s c a l i n g f a c t o r s
62 j s r wm_setup ( a2 ) ; S e t up t h e working d e f i n i t i o n
63
64 moveq #−1,d1 ; Draw t h e window where t h e p o i n t e r i s
65 j s r wm_prpos ( a2 ) ; P o s i t i o n i t a s a p r i m a r y window
66 j s r wm_wdraw ( a2 ) ; Draw t h e c o n t e n t s
67 wrpt j s r wm_rptr ( a2 ) ; E n t e r t h e " r e a d p o i n t e r " loop i n WMAN

Listing 27.7: ApplTest_asm - Window Creation & Display

At this point, WMAN takes over and we never get beyond the above code unless an event is detected
- or set in an action routine - or an action routine flags an error. You will learn more about this as
we add some meat to this programs workings later on.

The following code will exit from the program if an error occurred. The Z flag is already set or
unset according to the value in D0.

Note
Of course, the following checks only work if the application sub-window hit routine, or the
various loose item action routines set D4 first, then D0. Otherwise, we need to make sure that
the Z flag is set according to D0 before we test it.

68 beq . s n o _ e r r ; S i n c e D0 i s z e r o D4 i s non z e r o
69 b r a s u i ; An e r r o r o c c u r r e d e x i t v i a SUI

Listing 27.8: ApplTest_asm - Error Handling

If we are here, we need to check for any events that may have been detected or set in an action
routine. In this example, we don’t check every event, only the CANCEL event caused by the ESC
key being pressed.

On return from the wm_rptr call, A0 is the channel id and A4 is the working definition address.

70 n o _ e r r movea . l ( a4 ) , a1 ; S t a t u s a r e a a d d r e s s
71 b t s t # p t__can , wsp_weve ( a1 ) ; Check f o r CANCEL e v e n t
72 bne s u i ; E x i t
73
74 b r a . s wrp t ; No more e v e n t s , r e a d p o i n t e r a g a i n

Listing 27.9: ApplTest_asm - Event Handling



27.5 Example Program 329

As mentioned above, this example currently is only checking for the ESC key being pressed.
However, we have a loose item that can also be clicked to escape from the program. Rather than
handling the ESC key and the loose item separately, we simply set the CANCEL event within the
loose item action routine and let WMAN take care of it by passing control out of the read pointer
loop into the above event handling code.

The following is the loose item action routine to do this.

75 ; Loose i t em a c t i o n r o u t i n e
76
77 afun0_0 b s e t # p t__can , wsp_weve ( a1 ) ; S e t t h e CANCEL e v e n t b i t
78 moveq # pt__can , d4 ; CANCEL e v e n t number
79 moveq #0 , d0 ; No e r r o r s
80 r t s ; E x i t h e r e and e x i t from wm_rptr t o o

Listing 27.10: ApplTest_asm - ESC Loose Item Action Routine

Because we have an application window defined, then the following is the default application
window hit routine. When you hit the application window, or press the TAB key, the following
code is executed. The default simply sets the registers to show no errors, no events and returns
control back to the wm_rptr loop.

81 ; A p p l i c a t i o n sub−window h i t r o u t i n e
82
83 a h i t 0 moveq #0 , d4
84 moveq #0 , d0
85 r t s

Listing 27.11: ApplTest_asm - Application Window HIT Routine

Note
The loose item action routine and application window hit routine names, afun0_0 and ahit0

are hard coded by SETW and, unless we physically edit the code generated by SETW, we
must use the names SETW chooses for us.
There is a pattern to the names though, ahit0 is the application sub-window hit routine for
application sub-window zero. Ahit1 would be the hit routine for sub-window 1 and so on.
For loose items, you have a layout number and a loose item number to contend with. So
afun0_0 is for layout zero and loose item zero within that layout. Afun0_1 is the next loose
item within that layout, and so on.
Note also, if, as above, the hit routine sets D4 first, then D0 prior to exiting, the code that
checks for errors need not execute an instruction to set the Z flag according to D0, it can
simply test the Z flag immediately. See line 68 in Listing 27.8 above.

The remainder of the code, so far, consists of helper routines and is shown below without any
further discussion.

86 ; V a r i o u s h e l p e r r o u t i n e s go h e r e . . .
87
88 con dc .w con_e−con−2 ; S i z e o f c h a n n e l d e f i n i t i o n
89 dc . b ’ con ’
90 con_e equ ∗
91
92 op_con l e a con , a0 ; We want a c o n s o l e
93 moveq #−1,d1 ; For t h i s j o b
94 moveq #0 , d3 ; Open t y p e = "OPEN"
95 moveq # io_open , d0
96 t r a p #2 ; Do i t



330 Chapter 27. The Return of WMAN

97 r t s

Listing 27.12: ApplTest_asm - Console Handling

And finally, we need to load in the window definition we generated using SETW and all the Easy
PEasy code libraries supplied by George.

98 ; P u l l i n our window d e f i n i t i o n f i l e .
99

100 i n win1_source_ApplTes tWin_asm
101
102 ; We need George ’ s Easy PEasy code n e x t .
103
104 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ p e a s _ s y m _ l s t
105 l i b w i n 1 _ g e o r g e g w i l t _ p e a s s _ p e a s _ b i n
106
107 ; And f i n a l l y , George ’ s s p r i t e s .
108
109 i n w i n 1 _ g e o r g e g w i l t _ p e a s s _ c s p r c _ s y m _ l s t
110 l i b w i n 1 _ g e o r g e g w i l t _ p e a s s _ c s p r c _ b i n

Listing 27.13: ApplTest_asm - Incorporating the EasyPEasy Library

Save the code as ApplTest_asm. At least, that’s what I called mine!

The code above can be assembled and executed and the window we designed a couple of issues ago
will be displayed on screen. Currently it does nothing useful but if you press the TAB key when
the pointer is outside the application window (but inside the main window) then you will see it
jump into the application window. HITting the ‘X’ loose item will cause the program to exit as will
pressing the ESC key.

27.6 Coming Up...

In the coming chapter we will add some code to this example to allow us to monitor events.



28. Application Sub-Windows

28.1 Introduction

Last issue I left you looking at a wonderful but practically useless program - ApplTest_asm - which
displayed itself on screen and reacted only to the user clicking on a loose item or pressing the ESC
key to quit the program. Apart from that, the most useful thing it did was to move the pointer into
the middle of the application sub-window when the user pressed the TAB key.

This time, we get to add a little code, and see what happens when we hit an application sub-window.
Let’s get coding.

28.2 The Hit Routine.

You don’t actually need to have a hit routine for all your application sub-windows, there’s nothing
wrong with setting up an application sub-window in a program and then not having a hit routine.
This is especially true if you intend to display information in it rather than handle user interactions
and so on. As you will see when running the code below, the hit routine for an application
sub-window gets called very frequently, so if you don’t need one, don’t use one.

You can disable the hit routine, if you don’t need or want one, by setting the pointer to the hit
routine to zero in the window definition file created by SETW. Now, it’s time to get down to editing
our new program.

We need to copy the two files we created last time, and rename them. So, copy ApplTest_asm to
ApplHitTest_asm, and ApplTestWin_asm to ApplHitTestWin_asm. These are going to be used in
our first experiment.

First of all, we need to change one text object in the file ApplHitTestWin_asm, so edit that file and
change the caption text to ‘Application Window Hit Test’ from ‘Application Window Test 1’. Save
the file.



332 Chapter 28. Application Sub-Windows

Next up, we need to edit ApplHitTest_asm.

Note
Where possible, line numbers reference those in the file we created in the previous chapter.
Lines starting at 1, will be new ones that should be inserted. Anything else will be noted in
the text.

5 fname dc .w fname_e−fname−2
6 dc . b " A p p l i c a t i o n Window H i t T e s t "
7 fname_e ds . b 0

Listing 28.1: ApplTest_asm - New Job Name

Next we need to change the application sub-window hit routine. Look through the code for the
routine named ahit0, which should be around line 83, and change it to the following.

83 ; A p p l i c a t i o n sub−window h i t r o u t i n e
84
85 a h i t 0 movem . l d1 / d3 / d5−d7 / a0 / a4 ,−( a7 ) ; Save t h e worke r s
86 moveq #0 , d1 ; D1 .W = A p p l i c a t i o n window number
87 moveq #0 , d2 ; D2 .W = Ink c o l o u r = b l a c k
88 ; A4 a l r e a d y = Working d e f i n i t i o n
89 j s r wm_swapp ( a2 ) ; S e t c h a n n e l i d t o t h e sub window
90
91 movem . l a1−a2 ,−( a7 ) ; A1 & A2 g e t c o r r u p t e d
92 l e a h i t , a1 ; Text s t r i n g t o p r i n t
93 move .w u t_mtex t , a2 ; P r i n t s t r i n g v e c t o r
94 j s r ( a2 ) ; P r i n t t h e message
95
96 l e a h i t t e r , a1 ; H i t c o u n t e r l o c a t i o n
97 move .w ( a1 ) , d1 ; H i t c o u n t e r v a l u e
98 addq .w # 1 , ( a1 ) ; I n c r e m e n t c o u n t e r
99 move .w u t_min t , a2 ; P r i n t i n t e g e r v e c t o r

100 j s r ( a2 ) ; P r i n t i t
101
102 movem . l ( a7 ) + , a1−a2 ; R e s t o r e working r e g i s t e r s
103
104 movem . l ( a7 ) + , d1 / d3 / d5−d7 / a0 / a4 ; R e s t o r e t h e worke r s
105
106 moveq #0 , d4 ; No e v e n t s
107 moveq #0 , d0 ; No e r r o r s
108 r t s
109
110 ; S t r i n g s and t h i n g s go h e r e
111
112 h i t t e r dc .w 0 ; How many t i m e s have I been h i t ?
113
114 h i t dc .w h i t _ e −h i t −2 ; H i t message
115 dc . b ’HIT : ’
116 h i t _ e equ ∗

Listing 28.2: ApplTest_asm - New Application Window HIT Routine

Then, right at the end, line 100, where we include our window definition, change the file name to
suit our new name - from ApplTestWin_asm to ApplHitTestWin_asm.

100 ; P u l l i n our window d e f i n i t i o n f i l e .



28.2 The Hit Routine. 333

101
102 i n win1_source_ApplHi tTes tWin_asm

Listing 28.3: ApplTest_asm - Including the Window Definition

Save the file. We are done.

Note in the above code, the call to wm_swapp. This sets the channel id in A0 to point to the
application sub-window that we specify in D1. The ink colour is set according to the value in
D2.W and the sub-window is cleared. If we don’t do this call, we might still print to the application
window however, if we do, it’s just luck! You should always ensure that the channel id in A0 has
been explicitly pointed to the appropriate application window before attempting to print, cls, set
paper or ink, etc when executing code within a hit routine. If you don’t, any text printed by the
code in the hit routine may well end up writing all over a loose item, or an information window or
some random place in the window.

Obviously if you are running a program that has an application sub-window that doesn’t have a hit
routine, you will still need to call wm_swapp to make sure that the channel id in A0 points to where
the sub-window is on screen - assuming of course, that you wish to write text to that sub-window
as part of the application.

When you assemble it and execute it, note how the counter changes as you move the pointer over
and around the application sub-window. It seems that you don’t have to use the left mouse button
or space bar to get a HIT. In fact using the right mouse button or ENTER both add 1 to the counter.
The documentation says that If there is no keystroke, or the keystroke is not the selection keystroke
for a loose menu item or an application sub-window, then, if the pointer is within a sub-window,
the hit routine is called, or else the loose menu item list is searched to find a new current item.

Press ESC to stop the program, then execute it again, try to keep the pointer outside the application
sub-window. Now, press TAB. The pointer jumps into the sub-window, but what happens to the
counter? It increases by two rather than one on every subsequent press of the TAB key.

This happens when you press some other key combinations, F1 increases the counter by two as
well. Other letter or digit keys increment the counter by one.

I wonder why? Maybe, in the case of F1, the keystroke itself causes a hit and then the HELP
event that the keystroke causes forces another hit? This doesn’t explain the TAB key having the
same effect though - that doesn’t cause a hit. I mentioned above that a hit routine gets called very
frequently didn’t I?

Note
Ok, as an aside, I tested it. Using QMON2, I put a breakpoint at Ahit0 - the entry point for
the application sub-window hit routine. On hitting the TAB key, I got a breakpoint. Looking
at the registers I found that the pointer position in D1 was well outside my window limits,
very strange. D2, the keystroke was set to -1 to indicate that an external keystroke fired the hit
routine. There was no event in D4 - it was zero and D6, an undefined register was zero. So
far so good, I noted down the registers and let the program continue.
It immediately stopped at the hit routine again, this time the pointer position had moved into
my screen bounds from wherever it had been in hyperspace. D2 was now zero to indicate
that no key has been pressed. D4 was still zero - so no events either. D6 had changed to $80.
Wonder what that means?
Letting the program run again, I pressed F1 this time - without moving the pointer. Once
again I hit the breakpoint. I could see the pointer position in D1 had not changed, D4 still
showed no events, D2 showed no key press and D6 had returned to zero.
And again, I let the program run and it broke again. D6 was back at $80 again. D1, D2, D4
were all unchanged (as were all the other registers.)



334 Chapter 28. Application Sub-Windows

I hit space this time, when I let QMON run the program. As expected this showed a $01 in
D2 - the key press for a HIT is converted to $01, D6 was showing zero again. D4 still showed
no events.
Once more, QMON let the program run and this time, I pressed ENTER. D4 showed the
value $10 or the event number for a DO. The key press in D2 was set to $02 for a DO. D6
was zero and nothing else changed.
Finally, I pressed ESC to quit. Now, according to the docs, I should have stopped at Ahit0
again with D4 showing the CANCEL event, however, as documented above there was a loose
item which had the ESC key set as the selection keystroke. That code was executed to exit
from the program, rather than the application sub-window hit code being called with D4 set
to the CANCEL event number.

28.3 The Advanced Hit Routine.

So, that’s our first very simple hit test program done and dusted. It’s quite simple but quite useless,
all it does is show you the running total of hits in the window. You will soon get bored of it.

For our next trick, we shall improve the utility to display full details of what data gets passed
to the hit routine. Copy ApplHitTest_asm to ApplHitTest_2_asm, and ApplHitTestWin_asm to
ApplHitTestWin_2_asm.

As before, we need to change one text object in the file ApplHitTestWin_2_asm, so edit that file
and change the caption text to ‘Application Window Hit Test 2’ from ‘Application Window Hit
Test’. Save the file.

Next up, we need to edit ApplHitTest_2_asm.

1 fname dc .w fname_e−fname−2
2 dc . b " A p p l i c a t i o n Window H i t T e s t 2"
3 fname_e ds . b 0

Next we need to change the application sub-window hit routine. Look through the code for the
routine named ahit0 and change it to the following.

1 ; A p p l i c a t i o n sub−window h i t r o u t i n e
2
3 a h i t 0 movem . l d1 / d3 / d5−d7 / a0 / a4 ,−( a7 ) ; Save H i t R o u t i n e r e g i s t e r s
4
5 b s r . s a p i n i t ; I n i t i a l i s e t h e sub−window
6 b s r . s p t r p o s ; Show t h e p o i n t e r p o s i t i o n
7 b s r . s k e y s t r ; D i s p l a y k e y s t r o k e
8 b s r e v e n t s ; P r i n t e v e n t d e t a i l s
9

10 movem . l ( a7 ) + , d1 / d3 / d5−d7 / a0 / a4 ; R e s t o r e H i t R o u t i n e r e g i s t e r s
11 moveq #0 , d0 ; No e r r o r s
12 r t s

The main code in this advanced hit routine is simple - it stacks all the registers that we require
to preserve throughout the hit routine, and makes calls to a few helper routines to carry out one
specific task. I admit, this is not the most efficient method, but it allows me to split the code into
manageable chunks for describing in the text.



28.3 The Advanced Hit Routine. 335

1 ; He lp e r − I n i t i a l i s e t h e sub−window .
2
3 a p i n i t movem . l d1−d2 / a1−a2 ,−( a7 ) ; We need t h e s e r e g i s t e r s l a t e r
4 moveq #0 , d1 ; D1 .W = A p p l i c a t i o n window number
5 moveq #0 , d2 ; D2 .W = Ink c o l o u r
6 ; A4 = Working d e f i n i t i o n
7 j s r wm_swapp ( a2 ) ; S e t c h a n n e l i d t o t h e sub window
8 movem . l ( a7 ) + , d1−d2 / a1−a2 ; P t r p o s i t i o n & k e y s t r o k e back a g a i n
9 r t s

The first subroutine called simply initialises the application sub-window setting the ink to black
and forcing the channel Id to cover the application sub-window. Any registers corrupted by the
routine are stacked on entry and restored on exit.

1 ; He lp e r − D i s p l a y p o i n t e r p o s i t i o n d e t a i l s .
2
3 p t r p o s movem . l d1−d3 / a1 ,−( a7 ) ; These g e t c o r r u p t e d h e r e
4 l e a p t r x , a1 ; ’ P t r _ x : ’
5 b s r . s p r i n t ; P r i n t i t
6
7 move . l ( a7 ) , d1 ; R e s t o r e t h e o l d D1 a g a i n .
8
9 swap d1 ; Lo = p o i n t e r X, Hi = p o i n t e r Y

10 b s r p r _ i n t 2 ; P r i n t p o i n t e r X
11
12 l e a p t r y , a1 ; ’ Ptr_Y : ’
13 b s r . s p r i n t ; P r i n t i t
14
15 movem . l ( a7 ) + , d1−d3 / a1 ; R e t r i e v e o t h e r r e g i s t e r s
16 b s r . s p r _ i n t 2 ; P r i n t p o i n t e r Y
17 r t s

The code above preservers all registers that will be corrupted and then displays the current pointer
position in absolute screen coordinates. These are relative to the 0,0 position of the entire screen
and not relative to the 0,0 position of the actual main window for our application.

1 ; He lp e r − D i s p l a y k e y s t r o k e
2
3 k e y s t r movem . l d1−d3 / a1 ,−( a7 ) ; These g e t c o r r u p t e d h e r e
4 l e a keys tk , a1 ; ’Key : ’
5 b s r . s p r i n t ; P r i n t i t
6
7 move . l 4 ( a7 ) , d2 ; R e t r i e v e D2
8 cmpi . b #−1,d2 ; E x t e r n a l k e y s t r o k e ?
9 bne . s k _ h i t ; no , t r y a HIT

10
11 l e a keyex t , a1 ; ’ E x t e r n a l ’
12 b r a . s k _ d o i t ; P r i n t & e x i t
13
14 k _ h i t cmpi . b #1 , d2 ; HIT?
15 bne . s k_do ; No , t r y a DO
16
17 l e a k e y h i t , a1 ; ’HIT ’



336 Chapter 28. Application Sub-Windows

18 b r a . s k _ d o i t ; P r i n t & e x i t
19
20 k_do cmpi . b #2 , d2 ; DO?
21 bne . s k_ ze r o ; No , must be a key code or z e r o
22
23 l e a keydo , a1 ; ’DO’
24 b r a . s k _ d o i t ; P r i n t & e x i t
25
26 k_ ze ro cmpi . b #0 , d2 ; Zero = no key p r e s s e d
27 bne . s k_keys ; Has t o be a key p r e s s
28
29 l e a keyzero , a1 ; ’No key ’
30 b r a . s k _ d o i t ; P r i n t & e x i t
31
32 k_keys move .w d2 , d1 ; Need k e y s t r o k e i n D1 . B
33 moveq # i o _ s b y t e , d0
34 moveq #−1,d3
35 t r a p #3 ; P r i n t k e y s t r o k e
36 b r a . s k_done ; E x i t
37
38 k _ d o i t b s r . s p r i n t ; P r i n t message
39 k_done movem . l ( a7 ) + , d1−d3 / a1 ; R e s t o r e working r e g i s t e r s
40 r t s

The code above starts, as usual, by preserving the working registers. It then checks the value in D2
to see which, if any Key was pressed to cause a hit in the application sub-window. D2 can be any
of the following:

• Negative 1 = the activation key was pressed to place the pointer into the application sub-
window.

• 1 - HIT - the left mouse button was clicked within the application sub-window, or the space
bar was pressed.

• 2 - DO - the right mouse button or the ENTER key was pressed while the pointer was within
the application sub-window.

• Zero - no key or mouse button has been pressed.
• Anything else - this will be the upper cased key code for the actual key that was pressed.

If the TAB key is pressed, you might briefly see the ‘external keystroke’ message flash across
the screen quickly followed by ‘No key pressed’ - as I mentioned previously, pressing TAB (the
activation key for the sub-window) results in two separate calls to the hit routine.

1 ; He lp e r − P r i n t e v e n t d e t a i l s
2
3 e v e n t s movem . l d1−d3 / a1 ,−( a7 ) ; Save t h e u s u a l bunch
4 l e a even t , a1 ; ’ Event : ’
5 b s r . s p r i n t ; P r i n t message
6 move .w d4 , d1 ; Event number
7 b s r . s p r _ i n t 2 ; P r i n t i t
8 movem . l ( a7 ) + , d1−d3 / a1 ; R e s t o r e t h e worke r s
9 r t s

Finally, we have the helper routine that displays details of whatever event was detected which



28.3 The Advanced Hit Routine. 337

caused the hit routine to be activated. As ever, the code starts by preserving the working registers
and then examines D4 to see which, if any, event took place.

1 ; He lp e r − P r i n t s t r i n g a t ( a1 ) t o c h a n n e l i n A0 .
2 ; Then CLS t o end of l i n e .
3
4 p r i n t move .w u t_mtex t , a2 ; V ec to r t o p r i n t s t r i n g
5 j s r ( a2 ) ; P r i n t i t
6 movem . l d1 / d3 / a1 ,−( a7 ) ; These g e t c o r r u p t e d
7 moveq # s d _ c l r r t , d0 ; CLS t o end of c u r s o r l i n e
8 moveq #−1,d3
9 t r a p #3 ; Do i t

10 movem . l ( a7 ) + , d1 / d3 / a1 ; R e s t o r e
11 r t s
12
13
14 ; He lp e r − P r i n t word i n t a t ( a1 ) t o c h a n n e l i n A0 .
15
16 p r _ i n t move .w ( a1 ) , d1 ; Get word t o p r i n t
17 p r _ i n t 2 move .w u t_min t , a2 ; P r i n t word i n t v e c t o r
18 j s r ( a2 ) ; P r i n t i t
19 r t s

The above routines are called by the main sub-routines themselves to display messages and numeric
values on screen. The various messages are defined in the code below.

1 ; A s s o r t e d TEXT messages e t c f o l l o w .
2
3 p t r x dc .w p t r x _ e−p t r x −2
4 dc . b ’ Ptr_X : ’
5 p t r x _ e equ ∗
6
7 p t r y dc .w p t r y _ e−p t r y −2
8 dc . b ’ Ptr_Y : ’
9 p t r y _ e equ ∗

10
11 k e y s t k dc .w keys tk_e−keys tk −2
12 dc . b $0a
13 dc . b ’Key : ’
14 k e y s t k _ e equ ∗
15
16 k e y h i t dc .w k e y h i t _ e−k e y h i t −2
17 dc . b ’1 = HIT ’
18 k e y h i t _ e equ ∗
19
20 keydo dc .w keydo_e−keydo−2
21 dc . b ’2 = DO’
22 keydo_e equ ∗
23
24 k e y e x t dc .w keyex t_e−keyex t −2
25 dc . b ’−1 = E x t e r n a l Keys t roke ’
26 k e y e x t _ e equ ∗
27
28 k e y z e r o dc .w keyzero_e−keyzero −2
29 dc . b ’0 = No Key P r e s s e d ’



338 Chapter 28. Application Sub-Windows

30 k e y z e r o _ e equ ∗
31
32 e v e n t dc .w even t_e−even t −2
33 dc . b $0a
34 dc . b ’ Event : ’
35 e v e n t _ e equ ∗

So, there you have it, a small and incredibly inefficient hit routine to display some of the data that
are passed into an application sub-window hit routine when it is executed. I have not bothered to
display the various window definition addresses etc - if you wish, feel free to create a 32 bit long to
hexadecimal conversion routine to display these values.

I have deliberately left these out in an effort to save space in the magazine1 - my listings can get a
tad on the long side!

There is one final change we need to make to our source code, right at the end, where we include
our window definition, change the file name to ApplHitTestWin_2_asm.

1 ; P u l l i n our window d e f i n i t i o n f i l e .
2
3 i n win1_source_ApplHi tTes tWin_2_asm

Save the file. We are done.

When assembled and executed, the code in the hit routine displays a few details of register settings
on entry to the hit routine. It’s not very useful, but shows the pointer position in absolute screen
coordinates as opposed to relative to the start of the actual sub-window (which would have been a
lot more useful in my opinion), it shows the key press if any key was pressed and it shows which
event, if any, occurred. Remember, only a limited number of events get through to a application
sub-window hit routine.

If you press the TAB key and watch closely, you might see a brief message saying ‘External
Keystroke’ before the text is replaced by ‘No key pressed’. This shows, once again, that the TAB
key results in two calls to the hit routine.

28.4 Conclusion

One thing has become obvious from even these two little routines, an application sub-window
results in a huge number of hits! Even moving the pointer within a sub-window results in multiple
hits. It might be better to display information - whatever the application needs to print on screen -
to an information window instead. This should certainly save on processing time. However, as I
mentioned above, only use a hit routine if you absolutely need one.

Failing this, the ideal hit routine for an application window should be hugely efficient - and it should
exit quickly when it doesn’t need to do any [further] processing, rather than just doing everything
each time the code is entered.

1QL Today



28.5 Coming Up... 339

28.5 Coming Up...

The next chapter continues looking at application sub-windows, but we will be loading them with
menus!





29. Application Sub-Window Menus

29.1 Introduction

At the end of the last chapter, I promised to continue looking at Application Sub-Windows by
adding Application Sub-Window Menus to them.

Effectively, there are two different types of application sub-window menus:

• Static - which are defined in the program source code and never change;
• Dynamic - which may change as the applications runs.

In this chapter, we shall look at the Static Application Sub-Window Menus only. In a future chapter,
we shall look at Dynamic Menus as they are much more difficult to set up correctly.

29.2 Static Application Sub-Window Menus

Static menus, as I shall call them from this point onwards, are created by the developer as s/he
writes the program. As the program runs, static menus do not change - other than setting entries to
available or unavailable as required.

We can use SETW to create static menus. All that is required is for the developer to decide on the
menu options, the required layout of rows and columns, and what to do when the user clicks on an
option - although this latter option is not needed by SETW, only in the application’s code.

We need to design a new window using SETW, so proceed to execute the utility and proceed as
follows:

1. When prompted for ‘name$’ enter AppMenuTest1. I’d like to use the name AppMenuTest1Win,
but that is too big for SETW. When finished, the file AppMenuTest1_asm is easily renamed
to AppMenuTest1Win_asm.

2. On the ‘Alter Text’ screen.
• Press N for new, type ‘X’ (without the quotes) then ENTER.



342 Chapter 29. Application Sub-Window Menus

• Press N for new, type ‘Application Menu Test 1’ (without the quotes) then ENTER
• Press N for new, type ‘One’ then enter.
• Press N for new, type ‘Two’ then enter.
• Press N for new, type ‘Three’ then enter.
• Press N for new, type ‘Four’ then enter.
• Press N for new, type ‘Five’ then enter.
• Press N for new, type ‘Six’ then enter.
• Press N for new, type ‘Seven’ then enter.
• Press N for new, type ‘Eight’ then enter.
• Press N for new, type ‘Nine’ then enter.
• Press N for new, type ‘Ten’ then enter.
• Press ESC.

3. On the ‘Alter Sprite’ screen.
• Press ESC.

4. On the ‘Alter Blob’ screen.
• Press ESC.

5. On the ‘Alter Patt’ screen.
• Press ESC.

6. Number of main windows = 1.
7. Number of Loose Items = 1.
8. Number of Information windows = 2.
9. For Information Window 1 of 2, the number of IW Objects = 1.

10. For information windows 2 of 2, the number of IW Objects = 0.10
11. Number of application windows = 1.
12. Application windows menu items = 10.
13. For main window 1:

• Shadow = 2
• Border size = 1
• Border colour = colour_ql -> black
• Paper colour - colour_ql -> white
• Sprite = arrow

14. Presentation of loose Items:
• Press N for ‘system palette defaults’
• Confirm N when prompted again for defaults
• Border size = 1
• Border colour = colour_ql -> black
• Unavailable background = colour_ql -> white
• Unavailable Ink = colour_ql -> grey
• Available background = colour_ql -> white
• Available Ink = colour_ql -> black
• Selected background = colour_ql -> green
• Selected Ink = colour_ql -> black

15. Loose Item 1:
• Type = text
• Object -> select the ‘X’ text object
• Selection key = ESC

16. Information Window 1:
• Border size = 0
• Paper = colour_ql -> No 92



29.2 Static Application Sub-Window Menus 343

17. Object 1:
• Type = text
• Object -> select the ‘Application Window Test’ text object.
• Colour = colour_ql -> black
• Xcsize = 0
• Ycsize = 0

18. Information Window 2:
• Border size = 1
• Border colour = ql_colour -> black
• Paper = colour_ql -> white

19. Application Window 1:
• Border size = 1
• Border colour = colour_ql -> black
• Paper colour = colour_ql -> white
• Sprite = arrow
• Selection key = TAB
• Presentation of Menu Items

– Select N for system palette defaults
– Select N for defaults, again.
– Border size = 1.
– Border colour = ql_colour -> black.
– Unavailable background = ql_colour -> white.
– Unavailable ink = ql_colour -> grey.
– Available background = ql_colour -> white.
– Available ink = ql_colour -> black.
– Selected background = ql_colour -> green.
– Selected ink = ql_colour -> black.
– Scroll arrow = ql_colour -> white.
– Scroll bar = ql_colour -> black.
– Scroll background = ql_colour -> red.
– When prompted for the ten menu items, select the text items ‘One’ through ‘Ten’.

Give each one a selection key of the digit that matches the number described by
the text object. For example, ‘One’ has a key of ‘1’, ‘Two’ has ‘2’ and so on up to
‘Ten’ which has selection key ‘0’ (Zero).

20. Main window size: (Use the arrow keys to change the size, press ENTER when correct)
• Width = 220
• Height = 140
• Do you want a variable window = N
• Set the origin to 0,0 (Press ENTER when correct)

21. Loose Item 1: (Toggle hit/position with F2. Press ENTER when correct)
• Hit size = 10 x 10
• Position = 206 x 3

22. Information Window 1: (Toggle size/position with F2. Press ENTER when correct)
• Size = 220 x 16
• Position = 0 x 0
• Object position = 2 x 2

23. Information Window 2: (Toggle size/position with F2. Press ENTER when correct)
• Size = 216 x 14
• Position = 2 x 125



344 Chapter 29. Application Sub-Window Menus

24. Application Window 1: (Toggle size/position with F2. Press ENTER when correct)
• Size = 208 x 104
• Position = 2 x 18

When you have completed this procedure, and SETW has exited, you should save the file
ram1_AppMenuTest1_asm to a safer place and rename it to AppMenuTest1Win_asm. The file
should look similar to the following, although I have added some extra comments to my copy of
the generated code.

29.3 The Generated Code

The file should look similar to the following, although I have added some extra comments to my
copy of the generated code.

Note
I have removed a few sections of the following file in order to reduce duplication of chunks
of code in the magazine. These sections are discussed below.

1 ; AppMenuTest1Win_asm .
2
3 ; Undef ined L a b e l s − need t o be d e f i n e d e l s e w h e r e i n my own code .
4
5 ; a h i t 2 _ 0 − menu i t em 0 , h i t r o u t i n e .
6 ; a h i t 2 _ 1 − menu i t em 1 , h i t r o u t i n e .
7 ; a h i t 2 _ 2 − menu i t em 2 , h i t r o u t i n e .
8 ; a h i t 2 _ 3 − menu i t em 3 , h i t r o u t i n e .
9 ; a h i t 2 _ 4 − menu i t em 4 , h i t r o u t i n e .

10 ; a h i t 2 _ 5 − menu i t em 5 , h i t r o u t i n e .
11 ; a h i t 2 _ 6 − menu i t em 6 , h i t r o u t i n e .
12 ; a h i t 2 _ 7 − menu i t em 7 , h i t r o u t i n e .
13 ; a h i t 2 _ 8 − menu i t em 8 , h i t r o u t i n e .
14 ; a h i t 2 _ 9 − menu i t em 9 , h i t r o u t i n e .
15 ; asmnu0 − User d e f i n e d s e t u p r o u t i n e .
16 ; adraw0 − User d e f i n e d draw r o u t i n e .
17 ; a h i t 0 − a p p l i c a t i o n window 0 h i t a c t i o n r o u t i n e .
18 ; a fun0_0 − Loose i t em 0 h i t a c t i o n r o u t i n e .
19
20 ; L a b e l s f o r E x t e r n a l Use
21 ; mst0 − menu i t e m s s t a t u s a r e a
22 ; wst0 − Window s t a t u s a r e a
23 ; wd0 − Window d e f i n i t i o n a d d r e s s
24 ; ww0_0 − Window d e f a u l t s i z e
25 ; ww0_1 − Window b u t t o n s i z e
26
27 SYS_SPR dc .w 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8 ,
28 1 9 , 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 , 7 , 2 8 , 2 9 , 3 0 , 3 1 , 3 2 , 3 3 ,
29 34 ,35 ,36 ,37
30
31 ; Text o b j e c t f o r " Close " l o o s e i t em .
32 t x t 0 dc .w t x t 0 _ e −2− t x t 0
33 dc . b "X"
34 t x t 0 _ e ds . b 0
35 ds .w 0
36



29.3 The Generated Code 345

37 ; Text o b j e c t f o r c a p t i o n b a r .
38 t x t 1 dc .w t x t 1 _ e −2− t x t 1
39 dc . b " A p p l i c a t i o n Menu T e s t 1"
40 t x t 1 _ e ds . b 0
41 ds .w 0
42
43 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 ; ∗∗∗∗ Text o b j e c t s f o r t h e menu i t e m s . Removed − s e e t e x t .
45
46 ; ∗∗∗∗ Menu i t e m s l i s t . Removed − s e e t e x t .
47
48 ; ∗∗∗∗ Row l i s t . Removed − s e e t e x t .
49
50 ; ∗∗∗∗ Spac ing l i s t . Removed − s e e t e x t .
51 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52
53 ; A p p l i c a t i o n window l i s t .
54 a p p _ l i s t 0
55 dc .w appw0−∗
56 dc .w 0
57
58
59 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 ; ∗∗∗∗ A p p l i c a t i o n window 0 d e f i n i t i o n . Removed − s e e t e x t .
61 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62
63
64 ; I n f o r m a t i o n O b j e c t ( s ) .
65 pob l0
66 dc .w 138 x s i z e
67 dc .w 10 y s i z e
68 dc .w 2 xorg
69 dc .w 2 yorg
70 dc . b 0 t y p e
71 dc . b 0 s p a r
72 dc . l 0 spce
73 dc .w t x t 1 −∗ pob j ∗
74 dc .w −1
75
76 ; I n f o r m a t i o n Window ( s ) .
77 infw0
78 dc .w 220 x s i z e
79 dc .w 16 y s i z e
80 dc .w 0 xorg
81 dc .w 0 yorg
82 dc .w 0 f l a g
83 dc .w 0 borw
84 dc .w 526 borc
85 dc .w 92 pap r
86 dc .w pobl0−∗ pob l ∗
87 dc .w 216 x s i z e
88 dc .w 14 y s i z e
89 dc .w 2 xorg
90 dc .w 125 yorg
91 dc .w 0 f l a g
92 dc .w 1 borw



346 Chapter 29. Application Sub-Window Menus

93 dc .w 0 borc
94 dc .w 7 pap r
95 dc .w 0 pob l ∗
96 dc .w −1 end
97
98 ; Loose I tem ( s ) .
99 l i t m 0

100 dc .w 10 ,10 x s i z e , y s i z e
101 dc .w 206 ,3 xorg , yorg
102 dc . b 0 ,0 x j s t , y j s t
103 dc . b 0 ,3 type , skey
104 dc .w t x t 0 −∗ pob j ∗
105 dc .w 0 i t em
106 dc .w afun0_0−∗ p a c t ∗
107 dc .w −1 end
108
109 l i t m 1
110 dc .w 16404 ,12 x s i z e , y s i z e
111 dc .w 0 ,0 xorg , yorg
112 dc . b 0 ,0 x j s t , y j s t
113 dc . b 0 ,0 type , skey
114 dc .w 0 pob j ∗
115 dc .w 0 i t em
116 dc .w 0 p a c t ∗
117 dc .w −1 end
118
119 ; Window d e f i n i t i o n
120 wd0
121 dc .w 220 x s i z e
122 dc .w 140 y s i z e
123 dc .w 0 xorg
124 dc .w 0 yorg
125 dc .w 258 f l a g
126 dc .w 1 borw
127 dc .w 0 borc
128 dc .w 7 pap r
129 dc .w 0 s p r t ∗
130 dc .w 1 curw
131 dc .w 0 c u r c
132 dc .w 7 uback
133 dc .w 255 u ink
134 dc .w 0 ub lob ∗
135 dc .w 0 u p a t t ∗
136 dc .w 7 aback
137 dc .w 0 a i n k
138 dc .w 0 a b l o b ∗
139 dc .w 0 a p a t t ∗
140 dc .w 4 sback
141 dc .w 0 s i n k
142 dc .w 0 s b l o b ∗
143 dc .w 0 s p a t t ∗
144 dc .w 0 h e l p
145 dc .w 220 x s i z e
146 dc .w 140 y s i z e
147 dc .w infw0−∗ p i n f o ∗
148 dc .w l i t m 0−∗ p l i t e m ∗



29.4 Menu Objects 347

149 dc .w a p p _ l i s t 0 −∗ p a p p l ∗
150 dc .w 16384 x s i z e
151 dc .w 12 y s i z e
152 dc .w 0 p i n f o ∗
153 dc .w l i t m 1−∗ p l i t e m ∗
154 dc .w 0 p a p p l ∗
155 dc .w −1
156
157 ; S i z e s
158 ww0_0 equ 670
159 ww0_1 equ 148
160
161 ; S t a t u s Areas :
162 ; Menu i t em s t a t u s a r e a .
163 mst0 ds . b 10
164 mst0_e ds . b 0
165 ds .w 0
166
167 ; Window s t a t u s a r e a .
168 wst0 ds . b 65
169 wst0_e ds . b 0
170 ds .w 0

Listing 29.1: AppMenuTest1Win_asm

Much of the above is similar to when was discussed in a previous article. If you think back to
that article on application sub-windows, we simply used the hit routine to print text all over the
application sub-window. That was about as simple as it gets - other than not actually having a hit
routine I suppose! Adding a menu to an application sub-window means we have quite a lot more
work to do at the coding stage as we have to consider the following:

• Defining the menu objects - these can be text, sprite etc. Every menu item must be defined.
• Defining the menu items list - when we have defined each menu object, we then have to build

a list of all the menu items that we wish to include in our final menu.
• Defining the menu row list - when we have the menu items list defined, we amalgamate that

list into a menu row list which defines the start and end of each row in the menu.
• Defining the spacing lists - the row list defines the hit size and the spacing for each row and

each column in the menu.
• Define the application sub-window - menus need their own section in the application sub-

window definition.

So much to do just to show a menu in a window, lets get on and do it.

29.4 Menu Objects

The first stage is to define the various objects that will be incorporated into the menu. In this
example, I have used ten separate text objects (as they are the simplest). You can use any of the
various Pointer Environment object types if you wish. The code generated by SETW for these
items is as follows.

1 ; ∗∗∗∗ Text o b j e c t s f o r t h e menu i t e m s .
2
3 t x t 2 dc .w t x t 2 _ e −2− t x t 2
4 dc . b " One "



348 Chapter 29. Application Sub-Window Menus

5 t x t 2 _ e ds . b 0
6 ds .w 0
7
8
9 ; ∗∗∗∗ Txt3 t h r o u g h t x t 1 0 d e l e t e d f o r b r e v i t y .

10
11
12 t x t 1 1 dc .w t x t 1 1 _ e −2− t x t 1 1
13 dc . b " Ten "
14 t x t 1 1 _ e ds . b 0
15 ds .w 0

Listing 29.2: AppMenuTest1Win_asm - Menu Objects

As you can see from the above, I have omitted to show text objects txt3 through txt10 as there is
really no need to take up space in the magazine with repetitive data.

The above code simply defines ten separate text objects - ‘One’, ‘Two’, ..... ‘Nine’ and ‘Ten’ to be
used, later, in our static menu.

You should be aware, also, that the line numbers above (and indeed, in the following snippets) bear
no resemblance to the ones in the original file.

29.5 Menu Items (and Index) List

The next section of code that I have removed from the main listing above is the menu items list.
This is shown below, but please note that once again, I have removed the vast majority of the code
for brevity.

16 ; ∗∗∗∗ Menu i t e m s l i s t .
17
18 meos2 dc . b 1 ,0 ; x _ j u s t i f i c a t i o n , y _ j u s t i f i c a t i o n
19 dc . b 0 ,49 ; I t em type , s e l e c t i o n key
20 dc .w t x t 2 −∗ ; P o i n t e r t o o b j e c t
21 dc .w 0 ; I tem number . (−1 f o r i n d e x e s )
22 dc .w a h i t 2 _ 0−∗ ; H i t r o u t i n e f o r t h i s i t em
23 ; ; Zero f o r i n d e x e s
24
25
26 ; NOTE: Menu i t e m s 1 t h r o u g h 8 removed h e r e f o r b r e v i t y .
27
28
29 dc . b 1 ,0 ; x _ j u s t i f i c a t i o n , y _ j u s t i f i c a t i o n
30 dc . b 0 ,48 ; I t em type , s e l e c t i o n key
31 dc .w t x t 1 1−∗ ; P o i n t e r t o o b j e c t
32 dc .w 9 ; I tem number . (−1 f o r i n d e x e s )
33 dc .w a h i t 2 _ 9−∗ ; H i t r o u t i n e f o r t h i s i t em
34 ; ; Zero f o r i n d e x e s

Listing 29.3: AppMenuTest1Win_asm - Menu Item List

The label meos2 is the start of the menu items list. We told SETW that there would be 10 items,
and so, there will be 10 menu items in this list. Each one has the structure described in Table 29.1.

Each item in a menu items list is 10 bytes in length.



29.5 Menu Items (and Index) List 349

Offset Size Description

0 1 X (Horizontal) justification.
• -ve = Right justified
• 0 = Centred
• +ve = Left Justified

The justification value is the number of pixels from the edge of the
hit area that the object is to be positioned at.

1 1 Y (Vertical) justification.
• -ve = Bottom justified
• 0 = Centred
• +ve = Top Justified

The justification value is the number of pixels from the edge of the
hit area that the object is to be positioned at.

2 1 Item type:
• 0 - Text object
• 2 - Sprite object
• 4 - Blob object
• 6 - Pattern object

3 1 Selection key, upper cased if necessary.
4 2 Relative pointer to the actual object.
6 2 Item number. If this is an index items list, set to -1 for all items.
8 2 relative pointer to the hit/action routine for this particular item. For

index item lists, must be zero.

Table 29.1: Application Sub-Window Menu Item List Entry



350 Chapter 29. Application Sub-Window Menus

Looking at the first menu object generated by SETW, we see that it is left justified and one pixel
from the start of the left end of the hit area. Vertically, it is centred within the hit area. It is a text
object and has a selection key of 49, witch is the code for a digit ‘1’ on the keyboard. The text
object itself is the text ‘One’ as shown above in the preceding section. The item is numbered zero
and the hit routine for this item is defined to be at label ahit2_0.

So far, so good. We have defined a list of objects and then gathered them into a list of menu items.
The menu items list - in this case - is in a contiguous section of memory, it need not be so. The row
list defines the menu ordering, that comes next.

The above structure is used to define menu item lists and also index lists. An index is drawn by the
wm_index vector (which also draws pan and scroll bars & arrows - if necessary). Indices are best
thought of as the row and column headings - similar to a spreadsheet, for example, when columns
have letters and rows have numbers to identify them.

WMAN takes care of aligning the indices with the contents of the static menu.

29.6 Row List

The row list takes the various menu items, defined above, and organises them into rows - surprisingly
enough. For every row you wish to have in your menu, you need a single row list entry. As SETW
tries to make as few rows and/or columns as it can - it tries to fit as much as possible into a given
space - what SETW generates may not be what you want. In the default case for our SETW session,
we have been given two rows and thus, five columns, for our ten menu items.

Our generated row list is as follows:

35 ; ∗∗∗∗ Row l i s t .
36
37 drow0 dc .w 0+meos2−∗ ; P o i n t e r t o row 0 s t a r t = i t em 0 .
38 dc .w 50+meos2−∗ ; P o i n t e r t o row 0 end = i t em 4 .
39
40 dc .w 50+meos2−∗ ; P o i n t e r t o row 1 s t a r t = i t em 5 .
41 dc .w 100+meos2−∗ ; P o i n t e r t o row 1 end = i t em 9 .

Listing 29.4: AppMenuTest1Win_asm - Row List

Each row list item contains two pointers, the first is to the start of the first entry in the menu items
list entry for this row. The second pointer is to the first byte past the end of the last menu items list
entry for this row.

Given the above then, we can see that the first row, starting at label drow0, begins at meos2 (relative
to the pointer itself - as usual). Meos2 is a list of 10 sets of 10 byte entries defining all ten items in
our menu. The first row ends at meos2 + 50, which happens to be the very first byte of the menu
items list for menu item number 5 (ie, the sixth menu item - we count from zero)

The second row list entry starts at meos2 + 50 and ends at meos2 + 100. These pointers are to
menu items list item number 5 and at the first byte past the very last menu items list entry. As the
following diagram attempts to display:

Meos2+0 Menu I tem 0 <−−−−−+ S t a r t o f row 0 .
Meos2+10 Menu I tem 1 |
Meos2+20 Menu I tem 2 |
Meos2+30 Menu I tem 3 |
Meos2+40 Menu I tem 4 |
Meos2+50 Menu I tem 5 <−−−−−−−−+−−+ End of row 0 , s t a r t o f row 1 .



29.7 Spacing Lists 351

Meos2+60 Menu I tem 6 | | |
Meos2+70 Menu I tem 7 | | |
Meos2+80 Menu I tem 8 | | |
Meos2+90 Menu I tem 9 | | |
Meos2+100 equ ∗ <−−−−−−−−−−−−−−+ End of row 1 .

| | | |
Drwo0 P o i n t e r t o −−−−−−−+ | | |

P o i n t e r t o −−−−−−−−−−+ | |
P o i n t e r t o −−−−−−−−−−−−−+ |
P o i n t e r t o −−−−−−−−−−−−−−−−+

Listing 29.5: Relationship between the Row List & Menu Items List

If the menu items list is a single chunk of memory, then each row start pointer is equal to the
previous row end pointer - except for the first row. As in the example above, the end pointer for
row 0 is the same address as the start pointer for row 1.

Now that we have our rows defined, we have to set up the spacing lists for each row and each
column in the menu.

29.7 Spacing Lists

Each menu item in our static menu has a given hit area and a spacing. The hit area defines where the
pointer can be to make the item beneath it the current item, this is normally indicated by a border
being drawn around the current item. A HIT or a DO within the hit area, or a press of the selection
keystroke while the pointer is withing the application sub-window, will cause the appropriate menu
item action routine to be executed.

The spacing defines how many pixels across - or down depending on whether this is the column or
row spacing list - there are between the start of ‘this’ menu item and the start if the ‘next’ one. The
spacing must include an allowance for the border to be drawn around the current item.

42 ; ∗∗∗∗ Spac ing l i s t s .
43
44 ; Spac ing l i s t . D e f i n e s wid th o f h i t a r e a f o r each COLUMN and s p a c i n g
45 ; be tween columns . (5 columns . )
46
47 s p l s 0 dc .w 34 ; H i t a r e a wid th column 0
48 dc .w 36 ; Space between t h i s column and t h e n e x t .
49
50 dc .w 34 ; H i t a r e a wid th column 1
51 dc .w 36 ; Space between t h i s column and t h e n e x t
52
53 dc .w 34 ; H i t a r e a wid th column 2
54 dc .w 36 ; Space between t h i s column and t h e n e x t
55
56 dc .w 34 ; H i t a r e a wid th column 3
57 dc .w 36 ; Space between t h i s column and t h e n e x t
58
59 dc .w 34 ; H i t a r e a wid th column 4
60 dc .w 36 ; Space between t h i s column and t h e n e x t
61
62
63 ; Spac ing l i s t . D e f i n e s h e i g h t o f h i t a r e a f o r each ROW and s p a c i n g
64 ; be tween rows . (2 rows . )



352 Chapter 29. Application Sub-Window Menus

65
66 s p l s 1 dc .w 10 ; H i t a r e a h e i g h t row 0
67 dc .w 12 ; Space between t h i s row and t h e n e x t
68
69 dc .w 10 ; H i t a r e a h e i g h t row 1
70 dc .w 12 ; Space between t h i s row and t h e n e x t

Listing 29.6: AppMenuTest1Win_asm - Spacing Lists

The first list above, at label spls0 defines the columns in our menu. We already know that SETW
has decreed that there shall be five columns and two rows, so the column spacing list has five
entries, one for each column. Each entry consists of a pair of words - the first defines the width of
the column (or the height of the row) and the second defines the space between this column and the
next.

In the example above, we see that SETW has calculated that our widest text object is 5 characters
wide - this corresponds to ‘Three’, ‘Seven’ and ‘Eight’ - and has allocated 34 pixels of hit area for
each column. The spacing for each columns is set to the (border width * 2) plus the hit area width.
It must be twice the border width as there is a border on each side (or top & bottom).

The spacing list for the rows shows a height of ten pixels for the hit area and taking the border into
consideration again, a spacing of 12 pixels between the tops of each row.

29.8 Menu Section of Application Window Definition

The application window definition needs an extra section adding after the normal definition, to
cover the need for a static menu. In addition, two entries in the normal definition part are amended
(from what we used for an application sub-window without a menu - see last time) to point to the:

• User defined setup routine, or zero if not required.
• User defined drawing routine, or zero if not required.

The new style application window definition is as follows:

1 ; ∗∗∗∗ A p p l i c a t i o n window 0 d e f i n i t i o n .
2
3 appw0 dc .w 208 ; Width i n p i x e l s (+ s c a l i n g )
4 dc .w 104 ; He igh t i n p i x e l s (+ s c a l i n g )
5 dc .w 2 ; X o r i g i n , r e l a t i v e t o 0 i n main window
6 dc .w 18 ; Y o r i g i n , r e l a t i v e t o 0 i n main window
7 dc .w 256 ; F l ag − b i t 7 s e t = c l e a r window
8 ; ; − b i t 1 s e t = d i s a b l e c u r s o r keys
9 dc .w 1 ; Borde r wid th

10 dc .w 0 ; Borde r c o l o u r
11 dc .w 7 ; Pape r c o l o u r
12 dc .w 0 ; P o i n t e r t o p o i n t e r s p r i t e , o r 0 f o r ar row

Listing 29.7: AppMenuTest1Win_asm - Application Window Definition

The first part is exactly as we used last time, nothing different to see here. Following the above, we
have this:

13 ; Note t h e f o l l o w i n g f o r menus .
14
15 dc .w asmnu0−∗ ; User d e f i n e d s e t u p r o u t i n e , o r 0
16 dc .w adraw0−∗ ; User d e f i n e d drawing r o u t i n e , o r 0



29.8 Menu Section of Application Window Definition 353

17 dc .w a h i t 0 −∗ ; A p p l i c a t i o n window h i t r o u t i n e
18 dc .w 0 ; C o n t r o l r o u t i n e , o r 0
19 dc .w 0 ; Max X c o n t r o l s e c t i o n s ( s p l i t s )
20 dc .w 0 ; Max Y c o n t r o l s e c t i o n s ( s p l i t s )
21 dc . b 9 ; S e l e c t i o n key
22 dc . b 0 ; Spa re b y t e − must be 0

Listing 29.8: AppMenuTest1Win_asm - Application Window Definition

The first two entries in the above definition are the new ones. These are our pointers to a user
defined setup routine and a user defined drawing routine. You will notice that the application
window still has its own hit routine, even though it contains a menu and each and every menu item
has a dedicated hit routine of its own. Note also, in this small example,that our settings for the pan
and scroll sections are all unused. We’ll come back to those in a future chapter.

The user defined setup code would normally consist of a single line as follows:

1 asmnu0 jmp wm_smenu ( a2 ) ; Ve c to r $08

Listing 29.9: AppMenuTest1Win_asm - Application Window Setup Routine

Similarly, the user defined drawing routine need only perform the following tasks:

2 adraw0 jmp wm_index ( a2 ) ; Ve c to r $34
3 bne . s a d e x i t ; Ba le o u t on e r r o r s
4 jmp wm_mdraw ( a2 ) ; Ve c to r $20
5 a d e x i t r t s

Listing 29.10: AppMenuTest1Win_asm - Application Window Drawing Routine

The call to wm_index is not required unless your menu has been defined to have sections and/or
index items1. What are index items? Think of a spreadsheet, each row has a number and each
column has a letter. These are the index items. Our example is not using index items, however, if it
did then we would set them up exactly as per the menu items list, except, for indexes the list entries
have no hit routine (set to zero) and the item number is always -1.

Note
If the pointer to the user defined drawing routine is zero, then WMAN will still draw the
application sub-window’s border and, unless the flag is set to say ‘do not clear’, will clear
it to the defined paper colour. If you find missing menus in your application sub-windows,
check that you have a drawing routine!

Following on from the above, there is a brand new section dedicated to the menu.

23 ; The f o l l o w i n g s e c t i o n i s r e q u i r e d when an a p p l i c a t i o n sub−window
24 ; c o n t a i n s a menu .
25
26 dc .w mst0−wst0 ; P o i n t e r t o menu s t a t u s a r e a . ( See t e x t )
27
28 dc .w 1 ; C u r r e n t Item , b o r d e r wid th
29 dc .w 0 ; C u r r e n t Item , b o r d e r c o l o u r
30
31 dc .w 7 ; U n a v a i l a b l e background c o l o u r
32 dc .w 255 ; U n a v a i l a b l e i n k c o l o u r
33 dc .w 0 ; U n a v a i l a b l e b lob p o i n t e r

1George Gwilt has discovered that anything to do with these index items is not actually implemented in the WMAN
code. Looks like Tony Tebby had a good idea, that couldn’t be fulfilled.



354 Chapter 29. Application Sub-Window Menus

34 dc .w 0 ; U n a v a i l a b l e p a t t e r n p o i n t e r
35
36 dc .w 7 ; A v a i l a b l e background c o l o u r
37 dc .w 0 ; A v a i l a b l e i n k c o l o u r
38 dc .w 0 ; A v a i l a b l e b lob p o i n t e r
39 dc .w 0 ; A v a i l a b l e p a t t e r n p o i n t e r
40
41 dc .w 4 ; S e l e c t e d background c o l o u r
42 dc .w 0 ; S e l e c t e d i n k c o l o u r
43 dc .w 0 ; S e l e c t e d b lob p o i n t e r
44 dc .w 0 ; S e l e c t e d p a t t e r n p o i n t e r
45
46 dc .w 5 ; Number o f columns i n t h e menu
47 dc .w 2 ; Number o f rows i n t h e menu
48 dc .w 0 ; X o f f s e t t o s t a r t o f menu
49 dc .w 0 ; Y o f f s e t t o s t a r t o f menu
50 dc .w s p l s 0−∗ ; P o i n t e r t o column s p a c i n g l i s t
51 dc .w s p l s 1−∗ ; P o i n t e r t o row s p a c i n g l i s t
52 dc .w 0 ; P o i n t e r t o column i n d e x l i s t
53 dc .w 0 ; P o i n t e r t o row i n d e x l i s t
54 dc .w drow0−∗ ; P o i n t e r t o menu row l i s t

Listing 29.11: AppMenuTest1Win_asm - Application Window Menu Area Definition

The first new entry we need is a pointer to the menu items status area. This has been defined for us,
by SETW, at label mst0. There should be a single byte for each menu item. Note however, that
we need to have this status area pointer defined as relative to the window status area. Hence the
calculation in the above definition.

Note
This fact is not very clearly documented in the PE documentation. I had an extended
conversation with George on this setting as I had never seen the fact that the menu status area
pointer is relative to the window status area - George had a pencilled in note in his copy of
the documentation indicating this need. Obviously, I didn’t.

Next up, we see the menu attributes - border width and colour, item paper and ink, blobs and patters
for unavailable, available and selected items.

After the attributes section, we define the menu itself with details of how many columns there are,
how many rows, offsets to the start of the menu and the pointers to the various sections discussed
above.

29.9 Application Sub-Window Menu Item Hit Routines

In addition to the application sub-window’s own hit routine, as described previously, each and every
item in the menu (Static or dynamic) may also have a hit routine. This routine could be a single one
for all, or a separate one for each menu item. It depends on how the program is designed.

Note
Whenever a program has a static or dynamic menu, there must be a hit routine for the
application sub-window containing the menu. The absolute minimum code in the hit routine
is as follows:

1 a h i t 0 jmp wm_hit ( a2 ) ; Ve c to r $34

Listing 29.12: AppMenuTest1Win_asm - Application Window Hit Routine



29.10 Coming Up... 355

If you do not have the above code present in the hit routine for the application sub-window,
then when you attempt to hit or do a menu item, nothing will work. The above code does not
need an RTS.

On entry to a menu item hit routine various registers are set with specific parameters as described
in Table 29.2.

Register Description

D1.L Virtual column/row for the hit menu item.
D2.W Item number.
D4.L An event number. This can only be 0 or pt__do (16).
A0.L Channel id.
A1.L Pointer to the menu status area.
A2.L WMAN vector.
A3.L Pointer to sub-window definition.
A4.L Pointer to window working definition.

Table 29.2: Menu Item Hit Routine Registers

Registers not mentioned above are free for use as they are not used by the hit routine.

Hit routines should exit with D5 - D7, A0 and A4 preserved to the same value that they had on
entry to the routine. D1 - D3, A1 - A3, A5 and A6 are undefined on exit (which means that they
don’t care what value they have.) D4.B must be either zero or a window event to be set on exit.

D0 should contain zero or an error code and the SR must be set according to the value in D0 on exit.

Note
D3, on return from a hit routine, should normally be returned as per its value on entry. It is
not used by wm_rptr however, it is used by wm_rptrt (read pointer with return on timeout)
from WMAN 1.5 onwards. Wm_rptr ignores the upper word of D3. If your read pointer loop
is using the wm_rptrt vector instead, and you have changed the value of D3 within the hit
code, you must clear the high word on exit.

On exit, if D0 is clear and the status (Z) bit is set, control will return to the wm_rptr loop and not to
your application’s code. To return to your own code, the hit routine needs to set at least one event
bit in the event vector which can be done by returning a suitable value in D4.B on exit.

If an error is detected within the hit code, then it should exit with the appropriate error code in D0
and the status register set accordingly.

29.10 Coming Up...

So, that’s the end of this exciting chapter. We have designed a window and looked deep into the
structures involved in defining a static menu.

In the upcoming chapter we’ll add some code and play around. We might even see if it’s possible
to take the design from SETW and massage it to suit our own needs and considerations.





30. Creating and Using Libraries With GWASL

30.1 Introduction

At the end of the last issue, I promised to continue looking at Application Sub-Windows by adding
some code to our menu enabled program. Unfortunately, due to the current very busy situation at
work, and a mild dose of tendonitis in my thumb, I’m having to do a lot of one-handed typing these
days which is slowing me down a lot. To this end, I’m taking a break from application menus for a
wee while, and this issue, my article will be small - but hopefully, perfectly formed - looking at
how we can create and use our own libraries of useful routines with GWASL.

30.2 The Library Code

The following is the complete code for a small library that allows your own assembly code to clear
various parts of the screen. I apologise for the briefness of this article, but as I said, I’m typing one
handed at the moment.

The code should be typed into a file named lib_cls_asm or something similar.

1 ; =========================================================;
2 ; l i b _ c l s _ a s m . ;
3 ; =========================================================;
4 ; A s m a l l l i b r a r y t o d e m o n s t r a t e t h e use o f same i n GWASL ;
5 ; I t ’ s n o t p a r t i c u l a r l y u s e f u l , i t on ly d e m o n s t r a t e s a ;
6 ; p o i n t ! ;
7 ; =========================================================;
8 ; A l l r o u t i n e s e x p e c t t h e c h a n n e l i d i n A0 . L . ;
9 ; A l l r o u t i n e s assume i n f i n i t e t i m e o u t . ;

10 ; A l l r e g s i t e r s a r e p r e s e r v e d , e x c e p t D0 . L . ;
11 ; E r r o r codes a r e r e t u r n e d i n D0 . L and t h e Z f l a g . ;
12 ; =========================================================;
13



358 Chapter 30. Creating and Using Libraries With GWASL

14 c l s _ s c r e e n equ $20
15 c l s _ t o p equ $21
16 c l s _ b o t t o m equ $22
17 c l s _ l i n e equ $23
18 c l s _ e n d equ $24
19
20 i n f i n i t y equ −1
21
22 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
23 ; CLEAR_SCREEN − C l e a r s e n t i r e s c r e e n .
24 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 c l e a r _ s c r e e n moveq # c l s _ s c r e e n , d0
26 b r a . s j u s t _ d o _ i t
27
28 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 ; CLEAR_TOP − C l e a r s t o p o f s c r e e n .
30 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 c l e a r _ t o p moveq # c l s _ t o p , d0
32 b r a . s j u s t _ d o _ i t
33
34 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 ; CLEAR_BOTTOM − C l e a r s bot tom of s c r e e n .
36 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 c l e a r _ b o t t o m moveq # c l s _ b o t t o m , d0
38 b r a . s j u s t _ d o _ i t
39
40 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 ; CLEAR_TO_EOL − C l e a r t o end of c u r s o r l i n e .
42 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 c l e a r _ t o _ e o l moveq # c l s _ e n d , d0
44 b r a . s j u s t _ d o _ i t
45
46 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 ; CLEAR_LINE − C l e a r s e n t i r e c u r s o r l i n e .
48 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 c l e a r _ l i n e moveq # c l s _ l i n e , d0
50
51 j u s t _ d o _ i t movem . l d1 / d3 / a1 ,−( a7 )
52 moveq # i n f i n i t y , d3
53 t r a p #3
54 movem . l ( a7 ) + , d1 / d3 / a1
55 t s t . l d0
56 r t s

Listing 30.1: Example Library - Lib_cls_asm

So, you can see that there’s not much to it.

That’s the end of step one. The next step is to assemble the file using GWASL in the normal manner,
fix any errors, and create an output file most likely named lib_cls_bin. In addition to the binary file,
there will be another symbol file named lib_cls_sym created. We need that file shortly, however, it
isn’t in a format we can use just yet.

Once all errors have been removed and the source assembled, we are ready to move onto creating
our library. In actual fact, half of the library is already created - lib_cls_bin - but we need to convert
the symbol file into a text file that we can include in our own source code in order to actually call



30.2 The Library Code 359

the routines in the library.

Execute the utility named sym_bin in your gwasl directory. The layout of the screen should look
pretty familiar if you have used GWASL frequently. Choose option 1 as normal, and type in the
path to the lib_cls_sym file.

After a couple of seconds, you can choose the option to exit. Our work is done!

Sym_bin has taken the binary formatted lib_cls_sym file and created from it a new text file names
lib_cls_sym_lst. If you open this in an editor, it will look something like the following:

1 CLS_SCREEN EQU $00000020
2 CLS_TOP EQU $00000021
3 CLS_BOTTOM EQU $00000022
4 CLS_LINE EQU $00000023
5 CLS_END EQU $00000024
6 INFINITY EQU $FFFFFFFF
7
8 CLEAR_SCREEN EQU ∗+ $00000000
9 JUST_DO_IT EQU ∗+ $00000012

10 CLEAR_TOP EQU ∗+ $00000004
11 CLEAR_BOTTOM EQU ∗+ $00000008
12 CLEAR_TO_EOL EQU ∗+$0000000C
13 CLEAR_LINE EQU ∗+ $00000010

Listing 30.2: Example Library - Lib_cls_sym_lst

You can see that all the equates defined in our source code have been made visible as well as offsets
to the various routines. These offsets are the actual addresses within the lib_cls_bin file where the
individual routines start.

It would be nice if there was some way for equates etc within a library to be invisible from outside
it without us having to do too much extra work, however, as far as I’m aware, it’s not possible to
define an equate as ‘local’ - similar to SuperBasic. What we can do is delete the top few lines
leaving only the offsets to the routines. Edit the file to delete the lines from CLS_SCREEN down
to INFINITY.

Next, create a new file containing these two lines, call it lib_cls_in:

1 i n w i n 1 _ g w a s l _ l i b s _ l i b _ c l s _ s y m _ l s t
2 l i b w i n 1 _ g w a s l _ l i b s _ l i b _ c l s _ b i n

Listing 30.3: Example Library - Lib_cls_in

And that’s all there is to it. To use the code simply include the following at the end of your own
assembly code:

1 i n w i n 1 _ g w a s l _ l i b s _ l i b _ c l s _ i n

Listing 30.4: Example Library - Invoking the Library

Obviously, your paths will be different from mine, so change accordingly to suit your own system.

I have combined the IN and the LIB commands into one single file because I like to do as little
typing as possible. You need not do this and to use the library, simply add the two lines above into
the end of your own code at some point.

To demonstrate the code, all you need is something like this. Not shown in this example are other
libraries that I use to set colours, open screens etc.



360 Chapter 30. Creating and Using Libraries With GWASL

1 s t a r t b s r o p e n _ s c r ; Open s c r _ c h a n n e l r e t u r n i d i n A0
2 b s r s e t _ c o l o u r s ; S e t paper , s t r i p and i n k p r e s e r v e s
3 ; ; a l l r e g i s t e r s e x c e p t D0 . L
4 b s r c l e a r _ s c r e e n ; C l e a r s c r e e n
5 . . . ; E tc
6
7 i n w i n 1 _ g w a s l _ l i b s _ l i b _ c l s _ i n
8 i n w i n 1 _ g w a s l _ l i b s _ l i b _ d e f a u l t s _ i n
9 i n w i n 1 _ g w a s l _ l i b s _ l i b _ c o l o u r s _ i n

Listing 30.5: Example Library - Brief Example of Use

30.3 End Of Chapter 30

In the next chapter I’ll continue where I left off at the end of the previous chapter. I shall also be
looking at the recent changes to EasyPEasy.



IX

31 The End of an Era, or is it? . . . . . . . . . . . 363
31.1 Introduction
31.2 So What Now?
31.3 The End

The End - So Far Anyway





31. The End of an Era, or is it?

31.1 Introduction

In the last issue, we ended up with a LibGen1 application that was getting somewhere. But it’s
not finished yet. This issue might well be the last paper copy of QL Today that you receive, but
I have no current plans to stop development of this utility, nor to stop writing down stuff as I go
along! I need to take a slight diversion into creating dynamic application sub-window menus before
I can finish the utility properly. Unfortunately, this issue will not be continuing the program’s
development as I am in the middle of a huge amount of work in my current contract, and by the
time you read this, I’ll hopefully be in a new one.

31.2 So What Now?

Well, I have a half finished application and a few more articles on the Pointer Environment up my
sleeve. Time permitting of course. As there will unlikely be a future paper version of QL Today,
and I have no idea what the future of a replacement might be, I am setting up a mailing list on my
web site so that anyone who wishes to take advantage of the remainder of the series, plus any other
work I can think of and have time, to write, can.

You will be required to register on the list with a valid email address and I will also need your name
too. My blog gets numerous registrations on a daily basis and most of them are from spam bots
hoping to get free spam comments posted on my blog - they don’t! Anyone signing up without
a valid name and email gets deleted as part of my regular housekeeping. The mailing list will
not allow you to register without a name and email address. Please supply your valid name. No
nicknames please. That saves me some work clearing out the spam bots as well.

You will not get spammed by me when you register. Traffic will be light I imagine. Whenever I

1Well, yes we did, in the first version of the book. Since that was published, I’ve decided to rewrite the whole set of
chapters on LibGen as a separate book, so watch this space....



364 Chapter 31. The End of an Era, or is it?

have an article ready, I’ll send an email and supply a link where you can obtain the latest article.
I’m looking at mailing list software that allows me to add attachments to the emails sent out, but so
far, these seem few and far between - at least amongst the ones I’m allowed to use by my hosting
company that is.

I know Dave Park mentioned that he would be setting up a Joomla system to replace the printed QL
Today, but I haven’t heard much for a while, so I’m not sure of progress on that matter.2

Anyway, check the web page at http://qdosmsq.dunbar-it.co.uk to see if the details of the
mailing list have been added, and if so, join up to keep reading the rest of the series. At least with
my own mailing list, I’ll have a half decent idea of how many readers I actually have!3 ;-)

31.3 The End

So, that’s it. I’ve been writing these articles since the very first volume of QL Today, 17 years
ago! It’s been a long hard slog at times, and I haven’t regretted a minute of it. I’d like to thank
my faithful reader(s), George Gwilt who has far better coding skills than I have, and who kept a
watchful eye on everything I wrote, offering corrections, bug fixes and observations on just about
every article. Thanks George.

Hugh Rooms has commented on my articles as well as offering solutions too. And for that I’m
grateful.

To all of you who read my articles and never once gave me any feedback, I thank you too. Without
you, I wouldn’t have as many readers as I have - but honestly, if you ever get involved in a series
like that again, please give the author some feedback - even just a quick email to say "hello" or
similar. Writing in isolation, for free, is fine, but it’s far better to know that your efforts are being
read by the "masses".

I wish everyone involved in QL Today, best wishes for the future.

Cheers, Norm.

2As far as I am aware, this unfortunately, never happened. Dave’s other commitments prevented him from getting
this off the ground.

3At the last count, I have 54 readers!

http://qdosmsq.dunbar-it.co.uk


X

A How this book Evolved . . . . . . . . . . . . . . 367

B Debugging with QMON2 . . . . . . . . . . . . 369

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Appendices and Other Blurb!





A. How this book Evolved

This book started life on my PC as text files - one for each chapter, well, for a while it did.
Eventually, I decided to convert to creating the files directly in Docbook format as my main source
code, and those were converted to text format prior to sending them off to Dilwyn and/or Geoff for
inclusion in the QL Today magazine.

These initial non-DocBook text files were manually edited to wrap paragraphs and listings and
warnings etc in the appropriate Docbook syntax. It’s quite amazing how much more difficult it is to
change text into Docbook than the other way around!

Once all the chapters were Docbook’d, I ran them through a validator to ensure that they were
indeed valid XML and valid Docbook.

The validated chapters were gathered together into a ‘book’ - as defined by Docbook - and the raw
XML processed by a utility named Publican which allowed me to create numerous different output
formats from the same input source file. Sadly, I had a few problems with Publican - it’s a great
tool, don’t get me wrong, and they even have a version for Windows (it’s free too!) but it wasn’t
really what I needed. I decided to go for a proper system instead. (I still use Publican for other
work.)

Enter LATEX

LATEX is a text processing system as opposed to a PDF generator, it is much used by scientists
around the world, amongst others. If it’s good enough for CERN, it’s good enough for me.

This actual book that you are reading now was slightly different. It was further processed by a utility
called dblatex to produce LATEX format source text and converted into a book by the TeXstudio
application.

I think you’ll agree that using LATEX creates a far nicer version of PDF etc. That version of the book
was released into the wild around Christmas 2014.



368 Chapter A. How this book Evolved

Since then, I have manually gone through all the different chapter files to remove the old DocBook
conversion routines etc, and replace them with plain LATEX ones instead. This reduced the amount
of code that I had to have lying around. The final result is a set of plain LATEX source files.

These source files were collected together and merged into a LATEX template designed for books,
the Legrand Orange Book, which I modified quite a lot to produce the wonderfully typeset version
of the pdf book that you are reading.

There’s a lot of work goes into this you know! ;-)



B. Debugging with QMON2

Many years ago while still working on the Project - QLTdis - I had a small problem. ADDX and
SUBX were being decoded as ADD or SUB when I tested a file containing ADDX and SUBX instructions.
What was going wrong? Well the original code looked like the following:

1 d type_24 b t s t #8 , d0 ; I f b i t 8 i s 0 , can ’ t be ADDX/SUBX
2 beq . s t 2 4 _ n o t _ t 3 0 ; Easy b i t done
3 move .w d0 , d4 ; Need D4 t o ho ld t h e op−code
4
5 a n d i .w # $00c0 , d0 ; Mask b i t s 7 & 6 of t h e op−code
6 cmpi .w # $00c0 , d0 ; Both s e t ?
7 bne . s t 2 4 _ n o t _ t 3 0 ; No , s k i p ove r t y p e 30 s t u f f

Listing B.1: QLTdis Broken Code

As the original programmer of this code, when I read through it, everything seemed fine - as it
always does - but obviously, something was amiss. What to do?

The rest of this exciting article, is a brief foray into the art of debugging using QMON2.

QMON2 is Tony Tebby’s original disassembler/monitor tool which allows a QDOSMSQ job code
or SuperBasic extension or CALLed code to be debugged by single stepping through the guts of
the code until you find the bit that isn’t doing what it is supposed to be doing.

I have been using QMON2 to help me debug code for years and although I don’t use it as often
as I should perhaps, I do happen to like it quite a lot. It seems, unfortunately, that it is no longer
available in its English format as Digital Precision still hold the rights to the program - as far as I
am aware - but in Germany, you can get a copy from Jochen. Actually, you can get a copy from
Jochen in any country in the world, provided you are able to read and understand German manuals.

QMON2 is fine, but as we don’t yet have anything like a source code debugger on the QL, it is a bit
difficult to figure out where to put breakpoints in your code so that you don’t spend ages single
stepping through code you know works to find the bit that doesn’t work.



370 Chapter B. Debugging with QMON2

George Gwilt has provided a little help here, so not only does he supply you with a neat little
assembler but he also gives you help in debugging as well.

When you have assembled the code for QLTdis there is a listing file created with the _LST extension,
but another file is created with a _SYM extension. This file holds the goodies we need to debug.

The SYM file is binary and holds a list of all your equates in it, plus a list of all the program labels
and their offset from the start of the program. So, if you think that you have a bug in a specific
routine, all you have to do is decode the SYM file to extract the routine’s offset from the start of the
program and set a breakpoint at that place in the code. The problem is, how exactly do you decode
the binary file?

George does not document the SYM file format, so you could assemble a few routines and see if
you can make any sense of the binary file, but there is a much easier way. Simply by running the
SYM_BIN program supplied with GWASL you feed it a SYM file and it spits out a text file holding
all the data you will ever need. The output file is named the same as the SYM file but with a further
_LST extension, so I have ‘dev2_source_qltdis_sym_lst’ as my file.

The following is a small extract from this file on my system. Yours may well look different, but
don’t worry if it does. The first part of the file matches up with my equates:

1 CON_ID EQU $00000000
2 CON_ID2 EQU $00000004
3 PRT_ID EQU $00000008
4 PC_ADDR EQU $0000000C
5 PC_END EQU $00000010
6 BLACK EQU $00000000
7 RED EQU $00000002
8 GREEN EQU $00000004
9 WHITE EQU $00000007

10 LINEFEED EQU $0000000A
11 OOPS EQU $FFFFFFFF
12 ERR_NC EQU $FFFFFFFF
13 INFINITE EQU $FFFFFFFF
14 ME EQU $FFFFFFFF

Listing B.2: QLTdis Symbol List

Then we get to the nitty gritty, the labels I have used in my source code and their offsets from the
start of the program. The first one is my label ‘start’ and it is actually the very first instruction in
the file, so it has offset zero. Following on are all the other labels I used.

1 START EQU ∗+$00000000
2 QLTDIS EQU ∗+$00000010
3 JOB_INIT EQU ∗+$0000003E
4 EXIT EQU ∗+$0000003A
5
6 . . . . a few dozen l i n e s removed f o r b r e v i t y !
7
8 DTYPE_23 EQU ∗+$00000B9A
9 DTYPE_24 EQU ∗+$00000BAC

10
11 . . . . a n o t h e r few dozen l i n e s removed f o r b r e v i t y !

Listing B.3: QLTdis Symbol List

We can see that regardless of the start address of the program when loaded into memory (by



371

QMON2 or JMON2) we can still work out where the code for the DTYPE_24 routine, for example,
starts simply by adding $0BAC to the actual start address of the program.

The following is a small session showing how I debugged through my DTYPE_24 routine to fix the
above mentioned problem.

So, to set the scene, I have edited the source code for the type 24 instructions, assembled QLTdis
and produced a new listing of the SYM file. I’ve looked through the listing and found that my
entry point for DTYPE_24 is at offset $0BAC. I then start up JMON2 (in this case, but QMON2 is
exactly the same):

1 jmon ’ w i n 1 _ s o u r c e _ q l t d i s _ q l t d i s _ b i n ’

Listing B.4: Debugging QLTdis with Jmon2

If you try this and get an error, make sure you have LRESPR’d the JMON_BIN code for JMON2
or the QMON_BIN code for QMON2 depending on which one you want to use.

When the monitor appears, the very first instruction in the job has already been executed, so I could
be anywhere in the job file. Because I have written the code myself, I know what the very first
instruction is, it is BRA.S QLTDIS. Because I know this, I know that the instruction I am looking at
must be the code at label ‘QLTDIS’.

If I was debugging some other code that I did not have the original nicely commented source files
for, then I would not know where I was in the actual job, or extension, as the first instruction could
have sent me off into any location in its own code or even into the ROM.

In this case I have jumped from label ‘START’ to label ‘QLTDIS’ and there are quite a few bytes
between the two labels. QMON2 is showing me a register dump and the address of, the op-code
word and the next instruction to be executed. For the sake of brevity, I’ve omitted the register dump
itself.

1A0EB8 6100 BSR . L $1A0EE6

So, I’m somewhere in the code for QLTdis, but where. I know I’m at the instruction at address
$1A0EB8 but what is the start address of the job itself?

The QMON2 command ‘C’ will calculate an address and the option ‘S’ will display the start address
of the job.

QMON> C S
001A0EA8 1707688

This is the Hexadecimal and decimal values for the start of the QLTdis job I’m trying to debug.
How can I be sure? Try disassembling the start address for a couple of instructions:

QMON> DI S 5
1A0EA8 600E BRA. S $1A0EB8
1A0EAA 0000 ORI . B #0 ,D0
1A0EAE 4AFB ILLEGAL
1A0EB0 0006 ORI . B #$4C , D6
1A0EB4 5464 ADDQ.W #2 ,−(A4 )



372 Chapter B. Debugging with QMON2

The first line is the one to look at, it shows a branch to address $1A0EB8 that QMON2 was showing
me originally as the second instruction to be executed. So, the ‘S’ value does appear to be my label
for ‘START’ and this is what I want.

So, I know that the routine I want to check out is ‘DTYPE_24’ and that it is at an offset of $0BAC
from start, what address is this? Again using the C command to calculate an address, I do this:

QMON> C S+$0BAC
001A1A54 1710676

I now know where my routine starts, again, to check that it is so, I can disassemble the first few
instructions:

QMON> DI S+$0BAC 5
1A1A54 0800 BTST #$8 , D0
1A1A54 6732 BEQ. S $1A1A8C
1A1A54 3800 MOVE.W D0 , D4
1A1A54 0240 ANDI .W $C0 , D0
1A1A54 0800 CMPI .W $C0 , D0

This looks remarkably like the correct code to me, so I can now set a breakpoint at this address and
let QMON2 tell me when I get there. Of course, if I was debugging someone else’s code, I wouldn’t
have a handy list of offsets into the program, so I would have to run through it step by step by step
until I found out where the code I wanted to check was. Once I’d reached that stage, I would make
a note of the address and calculate the offset from the start so that I could easily set a breakpoint
there on my next foray into the debugging session. It’s much easier when you have the source!

Anyway, I set a breakpoint as follows using the ‘B’ command.

QMON> B S+$0BAC
BRP 1A1A54

I could also have simply used the calculated address from earlier by typing ‘B $1A1A54’ which
would have had the same effect. Note that if I set a break point at the same address it will delete the
breakpoint at that address. The ‘B’ command is a toggle.

Again, this is what my code originally looked like when I was debugging the fix for this instruction
type:

1 d type_24 b t s t #8 , d0 ; I f b i t 8 i s 0 , can ’ t be ADDX/SUBX
2 beq . s t 2 4 _ n o t _ t 3 0 ; Easy b i t done
3 move .w d0 , d4 ; Need D4 wi th t h e op−code
4
5 a n d i .w # $00c0 , d0 ; Mask b i t s 7 & 6 of t h e op−code
6 cmpi .w # $00c0 , d0 ; Both s e t ?
7 bne . s t 2 4 _ n o t _ t 3 0 ; No , s k i p ove r t y p e 30 s t u f f

Listing B.5: QLTDis Broken Code

Now I’m ready to go, so I simply type the QMON2 go command which is ‘G’.

QMON> G



373

The ‘G’ command means, Go until you hit a breakpoint or finish the program. It causes the program
to run at nearly full speed. This means I get all the clear screens and prompts etc that I would
normally get when running the program without the debugger. I therefore need to enter a start
address and so on to get the disassembler to start working.

I have already loaded a file of assembled ADDX and SUBX instructions into an area of memory that
I allocated with ALCHP and I have its address written down on paper - my own memory is a bit
random these days.

After I have typed in the start and end addresses (and the printer device) I return to the QMON
prompt with a register dump and the address, hex code and decoded instruction for the next
instruction to be executed:

At brp SR 0000 −−0−−−−− SSP 00028480
D0−D3 0000D300 01BC0924 0000003C FFFFFFFF
D4−D7 0013FFFF 00000000 00000003 0013D300
A0−A3 004 C0016 001A1601 001A11DD 001A1130
A4−A7 001A2362 001A11DD 0013A3C8 001A32Fa
1A1A54 0800 BTST #$8 , D0
QMON>

Taking the above a section at a time, we have this first:

At brp SR 0000 −−0−−−−− SSP 00028480

This is telling me that I’m stopped at a breakpoint - ‘at brp’ - and the contents of the status register
in hex - 0000. Next to that is the interrupt mask value - 0 then 5 dashes showing the current state of
the CCR flags. As all are showing dashes, none of the flags are set. Finally, there is the current
value of the ‘alternative’ stack pointer. In this case I’m running in user mode, so I can see the SSP
(supervisor stack pointer) value.

Below the status line is a register dump showing the current values of all data and address registers.

D0−D3 0000D300 01BC0924 0000003C FFFFFFFF
D4−D7 0013FFFF 00000000 00000003 0013D300
A0−A3 004 C0016 001A1601 001A11DD 001A1130
A4−A7 001A2362 001A11DD 0013A3C8 001A32Fa

In my case I have the registers split over two lines each for data and address values. This depends
on the width of the channel to which QMON2 is writing the register dump.

Below the register dump is the address, the op-code word and the disassembled instruction for the
next instruction to be executed. Under that is the QMON2 prompt.

1A1A54 0800 BTST #$8 , D0
QMON>

Back to the debugging session. I want to know what is causing my ADDX instructions to be decoded
as ADD. So, I have my source listing for Type_24 instructions, and because I’ve hit the breakpoint I
set, I know that an ADDX is coming through the type_24 decoding routine before jumping into the
type_30 decode - or is it? I need to find out.



374 Chapter B. Debugging with QMON2

The register dump shows me the op-code in D0.W and also in D7.W, it is $D300 which is ADDX
D0,D1. The op-code in binary is as follows, the bit numbers are in HEX above the individual bits
themselves:

C 8 4 0
1101 0011 0000 0000

Lets trace through the code and see what happens. Remember that the next instruction to be
executed is showing just above the QMON prompt, so when I enter the ‘T’ for Trace command, I
will be executing the instruction BTST #8,D0. Let’s do it.

QMON> T
SR 0000 −−0−−−−− SSP 00028480

1A1A58 6732 BEQ. S $1A1A8C
QMON>

I’m not showing the register dumps, unless there is anything of interest in the registers.

We have tested bit 8 of D0 and found that it is not zero because the Z flag is not showing in the list
of flags. This has to be an ADDX, ADD or an ADDA.L instruction (see the table in my explanation of
type_24 decoding above). Let’s step again.

QMON> T
SR 0000 −−0−−−−− SSP 00028480

1A1A5A 3800 MOVE.W D0 , D4
QMON>

Nothing of interest here, step again:

QMON> T
SR 0008 −−0−N−−− SSP 00028480

1A1A5C 0240 ANDI .W #$C0 , D0
QMON>

Now it’s starting to get interesting, the ‘N’ flag is showing after we moved D0.W to D4.W - this
shows that the most significant bit of the new value in D4.W is set and thus the value in D4.W is
negative (if using signed arithmetic!). This is how QMON2 displays flags which have been set, the
flag letter is displayed on the ‘SR’ line.

Step again:

QMON> T
SR 0004 −−0−−Z−− SSP 00028480

D0−D3 00000000 01BC0924 0000003C FFFFFFFF
D4−D7 Ommitted
A0−A3 Ommitted
A4−A7 Ommitted
1A1A60 0C40 CMPI .W #$C0 , D0
QMON>



375

So, we have set the Z flag because D0.W is now holding zero (Although D0.L is holding zero, the
upper word was already zero only the lower word has changed because the instruction just executed
ANDed a word value with DO.W.) The next instruction is waiting to be executed so lets do it. Step
again:

QMON> T
SR 0009 −−0−N−−C SSP 00028480

1A1A64 6626 BNE. S $1A1A8C
QMON>

It looks like we are going to take the branch as the Zero flag is not set. Lets remind ourselves of
what the original source code looked like again:

1 d type_24 b t s t #8 , d0 ; I f b i t 8 i s 0 , can ’ t be ADDX/SUBX
2 beq . s t 2 4 _ n o t _ t 3 0 ; Easy b i t done
3 move .w d0 , d4 ; Need D4 wi th t h e op−code word
4
5 a n d i .w # $00c0 , d0 ; Mask b i t s 7 & 6 of t h e op−code
6 cmpi .w # $00c0 , d0 ; Both s e t ?
7 bne . s t 2 4 _ n o t _ t 3 0 ; No , s k i p ove r t y p e 30 s t u f f

Listing B.6: QLTdis Broken Code

So you can see where we have single stepped through the above code, and we are just about to
jump to label ‘T24_NOT_T30’ because this instruction is not a type_30. Except, we know that it is
an ADDX instruction because that is what I was testing, and ADDX is a type_30, so what have I done
wrong?

I have tested bits 7 and 6 and found them both to be zero (because the Z flag was set after I
stepped through the ANDI.W $C0,D0 instruction. This means that the jump should not be taken
to T24_NOT_T30 because I have not yet ascertained that the instruction is not an ADDX. With bits
7 and 6 set to 00, I could be looking at ADDX or ADD. I should not be taking the jump until I have
further tested the value in bits 5 and 4 as per my algorithm above.

This could be why the ADDX is being decoded as ADD, because I have the wrong condition in my
test. In order to fix this, I have to change the source code, re-assemble and try my test again. I do
this without the QMON2 first of all and if it still fails, I can use QMON2 to try and find out why
again. I need to give the current job a ‘G’ instruction and then I can ESC from the decoding and
exit the program.

I shall go do that and report back. Hang on here for a bit ......

Ok, I’m back. I made the change from BNE.S to BEQ.S and it worked fine. So it looks like I have
correctly identified the bug. I need more testing though to make sure I cover all possible op-codes.
I have followed up my ADDX testing by passing test files which have ADD, ADDA, ADDQ and ADDI

instructions, along with assorted SUB variants and all appears to be working well.

So there you have it, an example of how I manage to get my code wrong and how I can use the
tools available to try to sort it out. As I mentioned earlier, QMON2 is available from Jochen for a
small fee, but only if you understand German manuals.

Laurence (Lau) Reeves has a different version of QMON2, written by himself, which fixes some
bugs but I don’t know if this is widely available or if it comes with a manual. Perhaps he could be
persuaded to part with it or make it available - who knows. I’m not sure if he ever wrote a manual
for it though.





Index

A

Addressing Modes
Absolute . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Address Register Indirect . . . . . . . . . . . . 35
Immediate . . . . . . . . . . . . . . . . . . . . . . . . . .37
Register Direct . . . . . . . . . . . . . . . . . . . . . 34
Register Indirect With Displacement . . 36
Register Indirect With Displacement And

Index . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Register Indirect With Pre Decrement Or

Post Increment . . . . . . . . . . . . . . . . . 36
Relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

C

Comparing Things . . . . . . . . . . . . . . . . . . . . . . 79

E

Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Extending SuperBasic . . . . . . . . . . . . . . . . . . . 97

F

Fetching mixed type parameters . . . . . . . . . 110

Fetching Parameters . . . . . . . . . . . . . . . . . . . . 106
Function Return Values . . . . . . . . . . . . . . . . . 120

L

Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Double Link - Demo Code . . . . . . . . . . 189
Single Link - Demo Code . . . . . . . . . . . 181
Test Harness . . . . . . . . . . . . . . . . . . . . . . 169

M

Maths Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
MC6800x Instructions

ABCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
ADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ADDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ADDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ADDQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
ADDX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
AND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
ANDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ASR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Bcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
BCHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
BCLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
BSET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



378 INDEX

BSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
BTST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
CHK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
CMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CMPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CMPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
DBcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
DIVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DIVU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
EOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
EORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
ILLEGAL. . . . . . . . . . . . . . . . . . . . . . . . . .72
LEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
LSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MOVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
MOVE CCR . . . . . . . . . . . . . . . . . . . . . . . 40
MOVE SR . . . . . . . . . . . . . . . . . . . . . . . . . 40
MOVE USP . . . . . . . . . . . . . . . . . . . . . . . . 41
MOVEA . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
MOVEM. . . . . . . . . . . . . . . . . . . . . . . . . . .42
MOVEP . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MOVEQ . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MULS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
MULU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
NBCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
NEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
NEGX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
NOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
ORI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
PEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Program Counter . . . . . . . . . . . . . . . . . . . 33
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
RTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SBCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Scc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Status Register . . . . . . . . . . . . . . . . . . . . . 32

System Byte, 32
User Byte, 33

STOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
SUB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
SUBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
SUBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
SUBQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
SUBX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

TAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
TRAPV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
TST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
UNLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

N

Name List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Name Table . . . . . . . . . . . . . . . . . . 106, 107, 112

P

Pointer Environment . . . . . . . . . . . . . . . . . . . 253
Pointer Environment Vectors

IOP_OUTL . . . . . . . . . . . . . . . . . . . . . . . 265
IOP_PINF . . . . . . . . . . . . . . . . . . . . . . . . 267
IOP_RPTR . . . . . 254–256, 258, 259, 261,

264–266
wm_fsize . . . . . . . . . . . . . . . . . . . . . . . . . 308
wm_index . . . . . . . . . . . . . . . . . . . . 350, 353
wm_ldraw . . . . . . . . . . . . . . . . . . . . . . . . 314
wm_rptr297, 298, 320, 321, 328, 329, 355
wm_rptrt . . . . . . . . . . . . . . . . 320, 321, 355
WM_SETUP . . . . . . . . . . . . . . . . . . . . . . 270
wm_setup . . . . . . . . . . . . . . . . . . . . 295, 308
wm_swapp . . . . . . . . . . . . . . . . . . . . . . . . 333

Printing the Name List . . . . . . . . . . . . . . . . . 115
Programs and applications

LATEX . . . . . . . . . . . . . . . . . . . . . . . . 367, 368
ANYROOT . . . . . . . . . . . . . . 226, 234, 237
C68 . . . . . . . . . . . . . . . . . . . . . . . . . . 287, 288
CLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
COLOURS . . . . . . . . . . . . . . . . . . . . . . . 156
Cptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
dataspace_bin . . . . . . . . . . . . . . . . . . . . . 210
dblatex . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
DJToolkit . . . . . . . . . . . . . . . . . . . . . . . . . 115
DocBook . . . . . . . . . . . . . . . . . . . . . 367, 368
EasyPEasy . 287, 293, 295, 299, 301, 306,

307, 311, 315, 319, 326, 327, 330,
360

FILE_CLOSE . . . . . . . . . . . . . . . . . . . . . 146
FILE_GET_HEAD . . . . . . . . . . . . . . . . 149
FILE_OPEN . . . . . . . . . . . . . . . . . . . . . . 147
FILE_OPENDIR . . . . . . . . . . . . . . . . . . 149
FILE_OPENIN . . . . . . . . . . . . . . . . . . . . 147
FILE_OPENNEW . . . . . . . . . . . . . . . . . 148
FILE_OPENOVER . . . . . . . . . . . . . . . . 148



INDEX 379

FILE_SET_HEAD. . . . . . . . . . . . . . . . . 150
Gwasl31, 55, 97, 103, 201, 204, 270, 287,

288, 293, 301, 357–359, 370
Gwass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
JMON . . . . . . . . . . . . . . . . . . . . . . . 204, 205
JMON2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
JOB_HEADER. . . . . . . . . . . . . . . . . . . . 152
LibGen . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
LINE_FEED . . . . . . . . . . . . . . . . . . . . . . 151
MEM_ALLOC . . . . . . . . . . . . . . . . . . . . 152
MEM_DEALLOC . . . . . . . . . . . . . . . . . 153
NLIST. . . . . . . . . . . . . . . . . . . . . . . . . . . .115
PFE - Programmers File Editor . . . . . . 204
Plot_4. . . . . . . . . . . . . . . . . . . . . . . .133, 134
Plot_8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Pretty Bad Privacy . . . . . . . . . . . . . . . . . . 67
PRINT . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
PSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
PSI_CLS. . . . . . . . .99, 100, 106, 120, 121
PTR_GEN . . . . . . 253, 259, 266, 293–295
Publican . . . . . . . . . . . . . . . . . . . . . . . . . . 367
QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
QED Editor . . . . . . . . . . . . . . . . . . . . . 97, 99
QL Exception Handler . . . . . . . . . . . . . . 90
QLTdis . . . . . . . . . . . . . . . . 50, 74, 369–371
QMON . . . . . . . . . . . . . . . . . . 204, 205, 334
QMON2 . . . . . . . . . . . . 118, 369, 371–375
QPC . . . . . . . . . . . . . . . . . . . . . . . . . 204, 209
QPTR Toolkit . . . . . . . . . . . . . . . . . . . . . 271
ROOT . . . . . . . . . . . . . . . . . . . . . . . 223, 234
SCR_INK. . . . . . . . . . . . . . . . . . . . . . . . .155
SCR_MODE . . . . . . . . . . . . . . . . . . . . . . 153
SCR_PAPER . . . . . . . . . . . . . . . . . . . . . . 154
SCR_PAPER_SB . . . . . . . . . . . . . . . . . . 155
SCR_STRIP . . . . . . . . . . . . . . . . . . . . . . 156
SETW . . . . . . . . . 287–291, 293, 295, 304,

306, 308, 315, 319, 322, 323, 329–
331, 341, 344, 347, 348, 350, 352,
354, 355

STR_APPEND . . . . . . . . . . . . . . . . . . . . 143
STR_COMP . . . . . . . . . . . . . . . . . . . . . . 145
STR_COMPI. . . . . . . . . . . . . . . . . . . . . .146
STR_COPY . . . . . . . . . . . . . . . . . . . . . . . 143
STR_INSERT . . . . . . . . . . . . . . . . . . . . . 145
STR_REVERSE. . . . . . . . . . . . . . . . . . . 144
Sym_bin . . . . . . . . . . . . . . . . . . . . . . . . . . 359
TeXstudio . . . . . . . . . . . . . . . . . . . . . . . . . 367
The Librarian . . . . . . . . . . . . . . . . . . . . . .157

TurboPTR . . . . . . . . . . . . . . . . . . . . . . . . 288
WinBack. . . . . . . . . . . . . . . . . . . . . . . . . .209
WMAN . . . . . . . . . . . . . . . . . . . . . . . . . . 253,

266, 267, 270, 271, 274, 275, 278,
280, 291, 293–295, 301, 308, 319–
321, 328, 329, 350, 353, 355

R

Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Factorials . . . . . . . . . . . . . . . . . . . . . . . . . 196
Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . 199

S

Screen handling . . . . . . . . . . . . . . . . . . . . . . . 123
SuperBasic Channel Table . . . . . . . . . . . . . . 120

T

Tidying the Maths Stack . . . . . . . . . . . . . . . . 108
Trap Calls

IO_SBYTE . . . . . . . . . . . . . . . . . . . . . . . 263
MT_TRAPV . . . . . . . . . . . . . . . . . . . . . . . 94
SD_CLEAR. . . . . . . . . . . . . . . . . . . . . . .143
SD_EXTOP . . . . . . . . . . . . . . . . . . . . . . . 125
SD_WDEF . . . . . . . . . . . . . . . . . . . . . . . . 257

V

Vectored Utilities
BP_INIT . . . . . . . . . . . . . . . . . . . 97, 98, 234
BV_CHRIX . . . . . . . . . . . . . . . . . . 118, 119
CA_GTFP . . . . . . . . . . . . . . . . . . . . . . . . 107
CA_GTINT . . . . . . . . . . . . . . . . . . . . . . . 107
CA_GTLIN . . . . . . . . . . . . . . . . . . . . . . . 107
CA_GTSTR . . . . . . . . . . . . . 107–109, 115
CN_DTOF . . . . . . . . . . . . . . . 239, 240, 243
QA_MOP . . . . . . . . . . . . . . . . . . . . . . . . . 223
QA_OP . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
RI_ECXECB . . . . . . . . . . . . . . . . . . . . . . 230
RI_EXEC . . . . . . . 223, 230, 236–238, 241
RI_EXECB. . . . . . . . . . 223, 225, 234–237
SB_INIPR . . . . . . . . . . . . . . . . . . . . . . . . . 97
UT_ERR . . . . . . . . . . . . . . . . . . . . . . . . . 213
UT_ERR0 . . . . . . . . . . . . . . . . . . . . . . . . . 94


	Part I — Introduction to Assembly Language
	1 QL Assembly Language Programming
	1.1 Introduction
	1.2 The 6800x Processor
	1.3 Addressing Modes
	1.4 Coming Up...

	2 The 6800x Instruction Set
	2.1 Introduction
	2.2 The MOVE Instruction Family
	2.3 The CMP Instruction Family
	2.4 Signed and Unsigned Numbers
	2.5 Testing Condition Codes and Branching
	2.6 Coming Up...

	3 The 6800x Instruction Set - continued
	3.1 Introduction
	3.2 More Branches.
	3.3 Counting
	3.4 Coming Up...

	4 The 6800x Instruction Set - continued
	4.1 Introduction
	4.2 Tie the NOT
	4.3 This OR That
	4.4 This AND That
	4.5 Exclusive OR Instructions
	4.6 Shifting And Rotating
	4.7 Coming Up...

	5 The 6800x Instruction Set - continued
	5.1 Introduction.
	5.2 Coming Up...


	Part II — SuperBasic, QDOS and Other Interesting Stuff. Part 1
	6 6800x Exceptions And Exception Handling
	6.1 Introduction
	6.2 Exceptions
	6.3 Working QDOS Exceptions
	6.4 What Happens When an Exception Occurs?
	6.5 Building an Exception Handler.
	6.6 The Exception Handler Code.
	6.7 How it Works.
	6.8 Coming Up...

	7 Extending SuperBasic
	7.1 Introduction
	7.2 Linking To SuperBasic
	7.3 Procedures
	7.4 Functions
	7.5 Getting Parameters
	7.6 Name Table Entries
	7.7 Name List
	7.8 The Maths Stack
	7.9 Returning Values From Functions
	7.10 Channel Tables
	7.11 Exercise
	7.12 Coming Up...

	8 The QL Screen
	8.1 Introduction
	8.2 The Screen
	8.3 Mode 4 - screen memory usage
	8.4 Mode 8 - screen memory usage
	8.5 That calculation again!
	8.6 Problems
	8.7 Exercise
	8.8 Answer
	8.9 Coming Up...


	Part III — A Small Diversion into Subroutines.
	9 Subroutines
	9.1 Introduction
	9.2 Subroutines
	9.3 Building A Library
	9.4 Documentation
	9.5 The Subroutine Library
	9.6 STR_COPY
	9.7 STR_APPEND
	9.8 STR_REVERSE
	9.9 STR_INSERT
	9.10 STR_COMP
	9.11 STR_COMPI
	9.12 FILE_CLOSE
	9.13 FILE_OPEN
	9.14 FILE_OPENIN
	9.15 FILE_OPENNEW
	9.16 FILE_OPENOVER
	9.17 FILE_OPENDIR
	9.18 FILE_GET_HEAD
	9.19 FILE_SET_HEAD
	9.20 PRINT
	9.21 LINE_FEED
	9.22 INPUT
	9.23 JOB_HEADER
	9.24 MEM_ALLOC
	9.25 MEM_DEALLOC
	9.26 SCR_MODE
	9.27 CLS
	9.28 SCR_PAPER
	9.29 SCR_PAPER_SB
	9.30 SCR_INK
	9.31 SCR_STRIP
	9.32 COLOURS
	9.33 The Librarian
	9.34 Coming Up...


	Part IV — SuperBasic, QDOS and Other Interesting Stuff. Part 2
	10 Linked Lists
	10.1 Introduction
	10.2 Linked Lists
	10.3 Doubly Linked Lists.
	10.4 Remember those arrays?
	10.5 Coming Up...

	11 Single Linked Lists Demo Code
	11.1 Introduction
	11.2 How Does The Code Work?
	11.3 Coming Up...

	12 Doubly Linked Lists Demo Code
	12.1 Introduction
	12.2 How Does The Code Work?
	12.3 Coming Up...

	13 Recursion
	13.1 Introduction
	13.2 Recursion in Assembly Language
	13.3 Coming Up...

	14 Program Development
	14.1 Introduction
	14.2 Program Development in Assembly Language
	14.3 Coming Up...


	Part V — SuperBasic, QDOS and Other Interesting Stuff. Part 3
	15 Dataspace Problems
	15.1 Introduction
	15.2 The Code
	15.3 Coming Up...

	16 Using the Maths Package
	16.1 Introduction
	16.2 The Maths Package
	16.3 Coming Up...

	17 Much Ado About Previous Chapters
	17.1 Introduction
	17.2 Chapter 15 - Dataspace Utility Problems
	17.3 Chapter 16 - Artithmetic Package Problems
	17.4 Coming Up...

	18 Ascii To Long Converter
	18.1 Introduction
	18.2 How QDOSMSQ Does It
	18.3 Rules And Regulations
	18.4 The Code
	18.5 Code Improvements
	18.6 Coming Up...

	19 Assorted Revisions And Ramblings!
	19.1 Introduction
	19.2 SIGNED And UNSIGNED Tests
	19.3 Which Way Round Is The `Subtraction' In CMP?
	19.4 Which CC Code To Use After CMP
	19.5 Loops With Conditions
	19.6 Do I TST.L D0 After TRAPs And Vectors?
	19.7 Coming Up...


	Part VI — The Pointer Environment - Introduction
	20 The Pointer Environment
	20.1 Introduction
	20.2 The Pointer Environment
	20.3 Coming Up...

	21 The Pointer Record Investigated
	21.1 Introduction and Corrections
	21.2 The Pointer Record 
	21.3 Coming Up...

	22 WMAN, The Window Manager
	22.1 Introduction
	22.2 WMAN
	22.3 A Very Brief Overview Of WMAN
	22.4 More Useful Utilities From George
	22.5 WMAN Windows Definition.
	22.6 Standard Windows Definition
	22.7 Coming Up...

	23 WMAN, The Journey Continues
	23.1 Introduction
	23.2 WMAN Standard Windows Definition - Continued
	23.3 Coming Up...


	Part VII — SETW and Easy PEasy
	24 Creating Your Own Windows With SETW
	24.1 Introduction
	24.2 Downloading SETW
	24.3 Running SETW
	24.4 Coming Up...

	25 Easy PEasy - Part 1.
	25.1 Introduction.
	25.2 Easy PEasy.
	25.3 The Nine Steps To Happiness.
	25.4 Loose Item Action Routines.
	25.5 Coming Up...

	26 Easy PEasy - Part 2.
	26.1 Introduction.
	26.2 Easy PEasy.
	26.3 Supplied Files.
	26.4 Subroutines in Easy PEasy.
	26.5 The Example Program, EX0_asm.
	26.6 Coming Up...


	Part VIII — The Pointer Environment - Continued
	27 The Return of WMAN
	27.1 Introduction
	27.2 Application Sub-Windows
	27.3 Application Sub-Window Hit Routines
	27.4 Example Application Window
	27.5 Example Program
	27.6 Coming Up...

	28 Application Sub-Windows
	28.1 Introduction
	28.2 The Hit Routine.
	28.3 The Advanced Hit Routine.
	28.4 Conclusion
	28.5 Coming Up...

	29 Application Sub-Window Menus
	29.1 Introduction
	29.2 Static Application Sub-Window Menus
	29.3 The Generated Code
	29.4 Menu Objects
	29.5 Menu Items (and Index) List
	29.6 Row List
	29.7 Spacing Lists
	29.8 Menu Section of Application Window Definition
	29.9 Application Sub-Window Menu Item Hit Routines
	29.10 Coming Up...

	30 Creating and Using Libraries With GWASL
	30.1 Introduction
	30.2 The Library Code
	30.3 End Of Chapter 30


	Part IX — The End - So Far Anyway
	31 The End of an Era, or is it?
	31.1 Introduction
	31.2 So What Now?
	31.3 The End


	Part X — Appendices and Other Blurb!
	A How this book Evolved
	B Debugging with QMON2
	Index


